WO2022250007A1 - Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer Download PDF

Info

Publication number
WO2022250007A1
WO2022250007A1 PCT/JP2022/021080 JP2022021080W WO2022250007A1 WO 2022250007 A1 WO2022250007 A1 WO 2022250007A1 JP 2022021080 W JP2022021080 W JP 2022021080W WO 2022250007 A1 WO2022250007 A1 WO 2022250007A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
integer
diamine
aligning agent
Prior art date
Application number
PCT/JP2022/021080
Other languages
French (fr)
Japanese (ja)
Inventor
美希 豊田
佳和 原田
司 藤枝
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023523460A priority Critical patent/JPWO2022250007A1/ja
Priority to CN202280038187.7A priority patent/CN117396803A/en
Publication of WO2022250007A1 publication Critical patent/WO2022250007A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
  • Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors.
  • a liquid crystal display element is generally constructed by arranging a pair of electrode substrates so as to face each other with a predetermined gap (several ⁇ m) and sealing liquid crystal between the electrode substrates. By applying a voltage between the transparent conductive films forming the respective electrodes of the electrode substrate, the display on the liquid crystal display element is performed.
  • These liquid crystal display elements have liquid crystal alignment films that are indispensable for controlling the alignment state of liquid crystal molecules.
  • Patent Document 1 discloses a polyimide alignment film obtained by using a diamine compound having a specific structure containing a triazine ring as a liquid crystal alignment film in which the pretilt angle of liquid crystal molecules can be easily adjusted.
  • liquid crystal display element various drive systems having different electrode structures, different physical properties of liquid crystal molecules to be used, etc. have been developed. For example, various modes such as TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane Switching) method, and FFS (Fringe Field Switching) method are known. .
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • VA vertical alignment liquid crystal display elements have a wide viewing angle, fast response speed, high contrast, and can eliminate the need for rubbing in the production process. It is widely used mainly for monitors and monitors (Patent Documents 2 and 3).
  • a touch panel type liquid crystal display must be highly durable against external pressure such as pressure from a finger or a pointing device such as a pen. is required.
  • tablet terminals and mobile terminals are becoming lighter and thinner, and in the process of assembling the panels during the manufacture of liquid crystal displays, the panels are more likely to be distorted or subjected to stress inside the panels. Such distortion and stress of the panel cause peeling of the alignment film from the substrate, and cause defective bright spots and defective alignment. Therefore, the liquid crystal alignment film is required to be resistant to substrate peeling.
  • the present invention provides at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine represented by the following formula (1) and a polyimide that is an imidized product of the polyimide precursor ( P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • the liquid crystal aligning agent which can obtain the liquid crystal aligning agent which a board
  • the diamine for obtaining the polymer (P) of the present invention has a structure in which an aromatic ring containing a diamine moiety and a benzene ring having an aromatic hydroxyl group are linked by a specific linking group.
  • the aromatic hydroxyl group has a structure with little steric hindrance and has the effect of enhancing the interaction between the alignment film and the substrate.
  • the polymer (P) since the polymer (P) has the above-mentioned aromatic hydroxyl group in the side chain portion of the polymer and has a structure with improved flexibility, the reactivity between the aromatic hydroxyl group and the sealing agent is increased, resulting in high sealing performance. It is considered that a liquid crystal alignment film having adhesion and high voltage holding characteristics was obtained.
  • the above-mentioned specific linking group has a structure that includes a hetero atom, an ester group, an amide bond, etc. in the alkyl chain, it has more suitable polarity and rigidity in the molecule than linking only with the alkyl chain. can be given. Therefore, it is considered that the rigidity of the product of the aromatic hydroxyl group and the sealing agent is improved, so that the liquid crystal aligning agent that is less likely to be peeled off from the substrate can be obtained, and the liquid crystal display element having high durability against external pressure can be obtained. .
  • the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing a diamine represented by the above formula (1) (hereinafter also referred to as a specific diamine) and the polyimide precursor It is characterized by containing at least one polymer (P) selected from the group consisting of polyimides which are imidized substances.
  • the diamine represented by Formula (1) (excluding some diamines) is also the subject of the present invention.
  • a polymer obtained using a diamine component containing the diamine represented by formula (1) is also an object of the present invention.
  • L in the above formula (1) is —(CH 2 ) n —O— (n is an integer of 1 to 6)), —(CH 2 ) n —, from the viewpoint of suitably obtaining the effects of the present invention.
  • diamine represented by the above formula (1) include diamines represented by any of the following formulas (d1-1) to (d1-11). Among them, diamines represented by any one of (d1-1) to (d1-3) are more preferable from the viewpoint of suitably obtaining the effects of the present invention.
  • diamine represented by the above formula (1) include diamines represented by any of the following formulas (d2-1) to (d2-6). Among them, diamines represented by any one of (d2-1) to (d2-3) are more preferable from the viewpoint of suitably obtaining the effects of the present invention.
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing the specific diamine, or a polyimide that is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
  • a polyamic acid (P′), which is a polyimide precursor of the polymer (P) can be obtained by a polymerization reaction between a diamine component containing the specific diamine and a tetracarboxylic acid component.
  • the specific diamines may be used singly or in combination of two or more. In this case, the amount of the specific diamine used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
  • the diamine component used for producing the polyamic acid (P') may contain a diamine other than the specific diamine (hereinafter also referred to as other diamine).
  • a diamine other than the specific diamine hereinafter also referred to as other diamine.
  • the amount of the specific diamine used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component. Examples of other diamines are listed below, but the present invention is not limited to these.
  • the other diamines may be used singly or in combination of two or more.
  • diamines having an amide bond such as 4,4′-diaminobenzanilide, 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis( diamines having a urea bond such as 4-aminophenethyl)urea; 4,4′-sulfonyldianiline, 3,3′-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 3,3'-diaminodiphenyl ether, 3,4'-diamino diphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'
  • Diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane, bis(p-aminophenylcarbamoylpropyl)tetramethyldisiloxane; meta-xylylenediamine, 1,3-propanediamine, Tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine), the formula described in WO2018/117239 ( Y-1) to a diamine in which two amino groups are bonded to a group represented by any one of (Y-167), etc.
  • A represents a monovalent group in which two primary amino groups are bonded to an aromatic group.
  • aromatic groups include benzene rings, naphthalene rings, and biphenyl structures.
  • X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O -, -COO-, -OCO- or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, m1 is 1 to is an integer of 2.
  • J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms, with the proviso that At least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, or 3 carbon atoms.
  • alkoxy groups alkenyl groups having 3 to 10 carbon atoms, halogen atom-containing alkyl groups, halogen atom-containing alkoxy groups, alkyl groups having 3 to 10 carbon atoms, alkoxy groups having 3 to 10 carbon atoms, and 3 carbon atoms
  • the carbon-carbon bond of any methylene group of the alkenyl group from 1 to 10 is replaced with a substituent selected from the group consisting of heteroatom-containing groups interrupted by oxygen atoms.
  • J is a monovalent organic group having two or more at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms.
  • At least one alicyclic hydrocarbon group or aromatic hydrocarbon group may have the substituents exemplified above, and the other alicyclic hydrocarbon groups or aromatic hydrocarbon groups of J are It may be unsubstituted or have substituents other than those exemplified above.
  • halogen atom-containing alkyl groups include halogen atom-containing alkyl groups having 1 to 10 carbon atoms.
  • Halogen atom-containing alkoxy groups include, for example, halogen atom-containing alkoxy groups having 1 to 10 carbon atoms.
  • Examples of the alicyclic hydrocarbon group for J include cyclobutane ring, cyclopentane ring, cyclohexane ring, cyclodecane ring, steroid skeleton (e.g., cholestanyl group, cholesteryl group, lanostanyl group, etc.), and the like.
  • a benzene ring, a naphthalene ring, etc. can be mentioned as a hydrogen group.
  • examples of the group "-XJ" include the following structure (S1), and more preferred structures are the following formulas (S1-1) to (S1-5) can be mentioned.
  • (X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —CO—N(CH 3 )—, —NH—, —O—, -COO- or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, m1 is an integer of 1 to 2 When m1 is 2, a1 and A1 each independently have the above definition.).
  • G 1 represents a divalent cyclic group selected from a phenylene group and a cyclohexylene group.
  • Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
  • X 1 and R 1 have the same definitions as X 1 and R 1 in formula (S1) above.)
  • aromatic diamine (d) examples include diamines represented by the following formulas (d-1) and (d-2). More preferred specific examples are the groups of formulas (d-1) to (d-1) to ( diamines represented by d-2), and cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, and 3,5-diaminobenzo diamines having a steroid skeleton such as cholestanyl acid, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane.
  • X and J have the same definitions as X and J of the aromatic diamine (d), including preferred embodiments. In the formula (d-2), two X and J may be the same may be different.
  • diamines include the above aromatic diamine (d), p-phenylenediamine, the above carboxy group-containing diamine, 4,4'-diaminodiphenylmethane, 4,4'- Diaminobenzophenone, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, diamine having photo-orientation group, radical initiation function , a diamine having a terminal photopolymerizable group, a diamine having a group “—N(D)—”, and a diamine having the above specific nitrogen-containing structure are preferred.
  • the amount of the other diamines used is preferably 10 to 90 mol%, more preferably 20 to 80 mol, based on the total diamine components used. %.
  • the amount of the other diamine used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
  • the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid.
  • tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
  • the tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. .
  • liquid crystal display element When a liquid crystal display element has a low voltage holding ratio (VHR), it may be difficult to apply a sufficient voltage to the liquid crystal molecules even if a voltage is applied.
  • automotive applications such as car navigation systems and meter panels may be used or left in high-temperature environments for long periods of time.
  • temperature differences occur between different parts in the same substrate during firing, and the liquid crystal alignment film in the part that is excessively heated will not release the liquid crystal. The ability to orient is deteriorated, and as a result, there may be a problem that the obtained liquid crystal display element partially causes display defects.
  • the polyamic acid (P') is used.
  • the tetracarboxylic acid component to be reacted with the diamine component is more preferably an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, or a derivative thereof.
  • a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, or a derivative thereof.
  • the tetracarboxylic acid component that can be used in the synthesis of the polyamic acid (P′)
  • the following tetracarboxylic dianhydrides or derivatives thereof hereinafter collectively referred to as specific tetracarboxylic acid derivatives
  • the specific tetracarboxylic acid The derivative is preferably the following acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride or derivative thereof.
  • the tetracarboxylic dianhydride derivative include the above-described tetracarboxylic dianhydride derivative, and the tetracarboxylic dianhydride or derivative thereof may be used alone, or two More than one species may be used in combination.
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3
  • the proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 1 mol of the total tetracarboxylic acid component used.
  • a polyamic acid is synthesized by reacting a diamine component containing the specific diamine with a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent.
  • the ratio of the tetracarboxylic dianhydride and the diamine used in the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 2 per equivalent of the amino group of the diamine.
  • a ratio that provides equivalents is preferred, and a ratio that provides 0.3 to 1.2 equivalents is more preferred.
  • the reaction temperature in the polyamic acid synthesis reaction is preferably -20 to 150°C, more preferably 0 to 100°C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the polyamic acid synthesis reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 to 250°C, preferably 0 to 180°C.
  • the amount of the basic catalyst is 0.5 to 30 times the molar amount of the amic acid group, preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is 1 to 50 times the molar amount of the amic acid group, preferably 3 to 30 times the molar amount.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering 2 to 10 times.
  • Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
  • a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the specific diamine, together with an appropriate terminal blocking agent end-blocking A stop-type polymer may be synthesized.
  • the end-blocking polymer has effects of improving the film hardness of the alignment film obtained by the coating film and improving the adhesion properties between the sealant and the alignment film.
  • the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • Acid anhydrides dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4 -aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n - monoamine compounds such as heptylamine and n-octylamine; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or having unsaturated bonds such as 2-acryloyloxyethyl isocyanate and 2-methacryloy
  • the proportion of the end blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the liquid crystal aligning agent of the present invention is a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
  • the liquid crystal aligning agent of the present invention may contain other polymers other than the polymer (P).
  • other polymers include at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not contain the specific diamine and a polyimide that is an imidized product of the polyimide precursor.
  • polysiloxane polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer , poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative, poly(meth)acrylate, and the like.
  • the polymer (B) is selected from the group consisting of a polyimide precursor obtained using a diamine component containing the aromatic diamine (d) and an imidized product of the polyimide precursor, from the viewpoint of improving vertical alignment.
  • At least one polymer is included.
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
  • Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
  • Other polymers may be used singly or in combination of two or more.
  • the content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
  • the liquid crystal aligning agent of the present invention may contain components other than those mentioned above, if necessary.
  • the component include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and , at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant , sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group
  • crosslinkable compounds (c-1) and (c-2) include N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N' -tetraglycidyl-2,2'-dimethyl-4.4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N', Epoxy compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as N'-tetraglycidyl-4,4'-diaminodiphenylmethane; N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane , N,N,N′,N′-tetraglycidyl-1,3-diaminocyclohexane, N,N,N′,N′-
  • Epoxy compounds in which the tertiary nitrogen atom is bound to an aliphatic carbon atom epoxy compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Co., Ltd.); Compounds having two or more oxetanyl groups described; Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, Compounds having blocked isocyanate groups such as B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.); N,N,N',N'- Tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dime
  • the content of the crosslinkable compound is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, and still more preferably 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. 1 to 20 parts by mass.
  • Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen-containing aromatic heterocycles such as 3-picolylamine.
  • a monoamine having a nitrogen-containing aromatic heterocycle it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 100 parts by mass relative to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. 20 parts by mass.
  • Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane.
  • Silane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane,
  • organic solvent used in the liquid crystal aligning agent of the present invention examples include lactone solvents such as ⁇ -valerolactone and ⁇ -butyrolactone; (n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)- lactam solvents such as 2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone; N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, N,N-diethylpropionamide, N,N,
  • Preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene.
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass. From the viewpoint of forming a uniform and defect-free coating film, it is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by weight.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used for horizontal alignment type (TN system, STN system, IPS system, FFS system, etc.) or vertical alignment type liquid crystal alignment film.
  • a liquid crystal alignment film used for a vertically aligned liquid crystal display element such as a VA system or a PSA (Polymer Sustained Alignment) system is preferable.
  • the liquid crystal display element of the present invention comprises the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a process of polymerizing a polymerizable compound by at least one of irradiation with an active energy ray and heating while placing a substance and applying a voltage between electrodes.
  • the liquid crystal display device of the present invention can be manufactured, for example, by performing the following steps (1) to (3) or steps (1) to (4) in this order.
  • the liquid crystal aligning agent of the present invention is coated on one surface of the substrate by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an ink jet method, or the like to prepare a coating film.
  • the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate
  • an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. may be used to form a coating film on one surface of at least one of the substrates.
  • the coating film is baked for the purpose of preventing dripping of the applied aligning agent.
  • preheating is performed first.
  • the prebaking temperature is preferably 30 to 200°C, more preferably 40 to 150°C, and particularly preferably 40 to 100°C.
  • the pre-baking time is preferably 0.25-10 minutes, more preferably 0.5-5 minutes.
  • a heating (post-baking) step is preferably performed.
  • the post-bake temperature is preferably 80-300°C, more preferably 120-250°C.
  • the post-bake time is preferably 5-200 minutes, more preferably 10-100 minutes.
  • the thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above steps (1) and (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
  • ultraviolet rays and visible rays including light with a wavelength of 150 to 800 nm can be used as the radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is applied, the direction of irradiation is oblique.
  • Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell (3-1) When manufacturing a VA liquid crystal display element Two substrates having the liquid crystal alignment film of the present invention formed on at least one of them are prepared, and a liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
  • the first method is a conventionally known method. First, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other.
  • a sealant is applied to the periphery of the two substrates and attached to each other, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealant to contact the film surface, and then the injection hole is opened. Seal.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
  • liquid crystal composition The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structures or terphenyl structures linked by alkyl groups).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, and MLC-7081 manufactured by Merck.
  • Negative liquid crystals include, for example, MLC-6608, MLC-6609, MLC-6610, and MLC-7026-100 manufactured by Merck.
  • MLC-6608, MLC-6609, MLC-6610, and MLC-7026-100 manufactured by Merck.
  • MLC-3023 manufactured by Merck & Co., Ltd. can be mentioned.
  • the mesogenic structure includes a structure in which two or more aromatic groups or aliphatic groups are linked, such as a biphenyl structure, a terphenyl structure, a naphthalene ring, a group obtained by removing two hydroxy groups from bisphenol A, or any of these A fluorine atom-containing structure in which a part of the hydrogen atoms of the structure are replaced with fluorine atoms can be mentioned.
  • Specific compounds include 4,4'-dimethacryloxybiphenyl or 3-fluoro-1,1'-biphenyl-4,4'-diyl dimethacrylate.
  • the compound having a polymerizable group may be a compound having the polymerizable group described above, and the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components. , more preferably 1 to 20 parts by mass.
  • the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction.
  • a diamine component containing a diamine having a photopolymerizable group at the end thereof which is used in the reaction.
  • the polymer obtained is mentioned.
  • Step of irradiating the liquid crystal cell with light The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • As the light for irradiation for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • the polymer composition contained in the liquid crystal aligning agent is a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, or a liquid crystal alignment film for a transmission scattering type liquid crystal light control element, Alternatively, it can also be used for applications other than these, such as protective films for color filters, gate insulating films for flexible displays, and substrate materials.
  • DA-1-1 (14.0 g, 50.7 mmol), potassium carbonate (12.4 g, 90.0 mmol), hydroquinone (90.6 g, 823 mmol), and ethanol (362 g) were added to a 1 L four-necked flask. , and 45° C. for 5 hours. After the reaction, the reaction solution and water (1200 g) were added to a 2 L beaker to precipitate crude DA-1-2. The precipitate was collected by filtration and vacuum-dried at 50° C. Methanol (350 g) and ethanol (190 g) were added to the crude DA-1-2 and heated to 60° C. to dissolve.
  • DA-1-2 (9.98 g, 34.4 mmol), THF (120 g), and carbon-supported platinum (supported amount 3% by mass, 0.500 g) were added, at room temperature under a hydrogen atmosphere. reacted. After completion of the reaction, carbon-supported platinum was removed by filtration, and the resulting filtrate was concentrated and the precipitated crystals were vacuum-dried at 50° C. to obtain DA-1 (yield: 7.71 g, 33.5 mmol, yield: 97 .4%, orange solid). From the 1 H-NMR results shown below, this solid was confirmed to be DA-1.
  • the reaction solution was diluted with ethyl acetate (1350 g), and the organic phase was washed with pure water (720 g). Subsequently, the organic phase was washed twice with a 2.0 mol/L hydrochloric acid aqueous solution (720 g) and three times with pure water (720 g). The resulting organic phase was concentrated under reduced pressure to obtain a pale yellow oily crude product. Ethanol (400 g) and pure water (274 g) were added to the resulting crude product, sodium hydroxide (21.8 g) was added, and the mixture was reacted at room temperature for 20 hours for hydrolysis.
  • DA-2 (1.10 g, 4.00 mmol), DA-3 (1.08 g, 10.00 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.00 mmol) and NMP (27.8 g) were added and stirred at 60° C. for 3 hours while purging with nitrogen. Then, CA-2 (1.93 g, 9.86 mmol) and NMP (7.73 g) were added and stirred at 40° C. for 3 hours to give a polyamic acid solution (2) with a solid content concentration of 20% by mass (viscosity : 710 mPa ⁇ s) was obtained. This polyamic acid had an Mn of 10,800 and an Mw of 34,800.
  • DA-2 (1.65 g, 6.00 mmol), DA-3 (0.973 g, 9.00 mmol), CA-2 (2.91 g, 14.8 mmol) and NMP (31.3 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (4) with a solid concentration of 15% by mass (viscosity: 520 mPa ⁇ s).
  • This polyamic acid had an Mn of 14,500 and an Mw of 32,900.
  • DA-1 (0.691 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (24.5 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 5) (Viscosity: 680 mPa ⁇ s) was obtained.
  • This polyamic acid had an Mn of 11,100 and an Mw of 25,600.
  • DA-2 (0.822 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-2 (2.89 g, 14.8 mmol) and NMP (25.0 g) were added and stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution with a solid content concentration of 20% by mass.
  • (6) (viscosity: 640 mPa ⁇ s) was obtained.
  • This polyamic acid had an Mn of 13,400 and an Mw of 32,000.
  • DA-1 (0.691 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-3 (3.23 g, 14.8 mmol) and NMP (25.8 g) were added and stirred at room temperature for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 7) (Viscosity: 670 mPa ⁇ s) was obtained.
  • This polyamic acid had an Mn of 14,300 and an Mw of 30,900.
  • DA-2 (0.823 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-3 (3.21 g, 14.8 mmol) and NMP (26.2 g) were added and stirred at room temperature for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 8) (Viscosity: 720 mPa ⁇ s) was obtained.
  • This polyamic acid had an Mn of 15,300 and an Mw of 32,600.
  • DA-5 (0.553 g, 4.00 mmol), DA-3 (1.08 g, 10.0 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.0 mmol) and NMP (25.7 g) were added and stirred at 60° C. for 3 hours while purging with nitrogen. Then, CA-2 (1.91 g, 9.76 mmol) and NMP (7.66 g) were added and stirred at 40° C. for 3 hours to give a polyamic acid solution (9) with a solid content concentration of 20% by mass (viscosity : 760 mPa ⁇ s) was obtained. This polyamic acid had an Mn of 11,300 and an Mw of 25,880.
  • DA-5 (0.829 g, 6.00 mmol), DA-3 (0.973 g, 9.00 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (26.7 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (11) with a solid concentration of 15% by mass (viscosity: 460 mPa ⁇ s).
  • This polyamic acid had an Mn of 15,200 and an Mw of 23,800.
  • DA-3 (1.62 g, 15.0 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (25.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. Then, the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (12) (viscosity: 520 mPa ⁇ s) with a solid concentration of 15% by mass. This polyamic acid had an Mn of 10,600 and an Mw of 41,000.
  • Table 1 below shows the specifications of the monomer components used in the above examples and comparative examples.
  • Example 3-1 [Preparation of Liquid Crystal Aligning Agent] ⁇ Example 3-1> NMP (8.00 g) and BCS (8.00 g) were added to the polyamic acid solution (1) (4.00 g) obtained in Example 2-1 and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent. (A-1) was obtained.
  • Examples 3-2, 3-5 to 3-8 Comparative Examples 3-1, 3-2> Examples 3-2, 3-5 to 3-2 were prepared in the same manner as in Example 3-1 except that the polyamic acid solutions (2) and (5) to (10) were used instead of the polyamic acid solution (1). 3-8, Comparative Examples 3-1 and 3-2 liquid crystal aligning agents (A-2), (A-5) to (A-8), (B-1) and (B-2) were obtained.
  • Example 3-3 NMP (5.00 g) and BCS (6.00 g) were added to the polyamic acid solution (3) (4.00 g) obtained in Example 2-3 and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent. (A-3) was obtained.
  • Example 3-4 Comparative Examples 3-3, 3-4> Example 3-4, Comparative Example 3- Liquid crystal aligning agents (A-4), (B-3) and (B-4) of 3 and 3-4 were obtained. Specifications of the liquid crystal aligning agents obtained in the above Examples and Comparative Examples are shown in Table 2 below.
  • liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained as described above no abnormality such as turbidity or precipitation was observed, and the solution was uniform. One thing has been confirmed.
  • rubbing resistance, seal adhesion, voltage holding ratio and vertical alignment were evaluated.
  • the liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained above were spin-coated onto the ITO surface of a glass substrate having an ITO electrode over the entire surface. and dried on a hot plate at 70° C. for 90 seconds. After that, it was baked in an infrared heating furnace at 230° C. for 30 minutes to form a coating film having a thickness of 100 nm, thereby obtaining a substrate with a liquid crystal alignment film.
  • This liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako Co., Ltd.) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, pushing length: 0.6 mm).
  • the substrate was observed with a microscope, and evaluation was performed by defining "good” when streaks due to rubbing were not observed on the film surface and "bad” when streaks were observed. The results are shown in Table 3 below.
  • liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained above are combined into a rectangular transparent electrode-attached glass having a length of 30 mm, a width of 40 mm, and a thickness of 1.1 mm.
  • Each substrate was spin-coated, dried on a hot plate at 70° C. for 90 seconds, and then baked in a hot air circulating oven at 230° C. for 20 minutes to form a liquid crystal alignment film with a thickness of 100 nm.
  • Two substrates thus obtained were prepared, and a bead spacer with a diameter of 4 ⁇ m was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealant (723K1 manufactured by Kyoritsu Chemical Industry Co., Ltd.) was applied. Then, these substrates were bonded together so that the liquid crystal alignment film surfaces of the substrates faced each other and the overlapping width of the substrates was 1 cm. At that time, the dropping amount of the sealant was adjusted so that the diameter of the sealant after bonding was 3 mm. After fixing the two laminated substrates with a clip, they were irradiated with ultraviolet rays of 4 J/cm 2 in terms of wavelength of 365 nm, and thermally cured at 120° C. for 1 hour to prepare a sample for adhesion evaluation.
  • a sealant 723K1 manufactured by Kyoritsu Chemical Industry Co., Ltd.
  • Adhesion was evaluated using a desktop precision universal tester (AGS-X 500N manufactured by Shimadzu Corporation). After the edges of the upper and lower substrates of the obtained evaluation sample were fixed, the substrates were pushed in from the upper central portion, and the peeling strength (N) was measured. Then, the seal adhesion (N/mm) was evaluated using a value obtained by normalizing the pressure (N) with the measured diameter (mm) of the sealant. The results are shown in Table 3 below. The peeling strength and the measured diameter of the sealant were as follows.
  • Example 3-1 strength: 16.6 N, diameter: 3.3 mm ⁇ Example 3-2: strength: 15.4 N, diameter: 3.1 mm ⁇ Example 3-3: strength: 15.9 N, diameter: 3.2 mm ⁇ Example 3-4: Strength: 16.6 N, diameter: 3.3 mm ⁇ Example 3-5: strength: 14.9 N, diameter: 2.9 mm ⁇ Example 3-6: strength: 15.4 N, diameter: 3.1 mm ⁇ Example 3-7: Strength: 16.4 N, diameter: 3.3 mm ⁇ Example 3-8: strength: 15.6 N, diameter: 3.1 mm ⁇ Comparative Example 3-1: Strength: 12.0 N, Diameter: 3.1 mm ⁇ Comparative Example 3-2: Strength: 8.6 N, Diameter: 3.2 mm ⁇ Comparative Example 3-3: Strength: 13.0 N, Diameter: 3.1 mm ⁇ Comparative Example 3-4: Strength: 11.5 N, Diameter: 3.8 mm
  • liquid crystal cells were produced in the following procedure.
  • a liquid crystal aligning agent was spin-coated on a glass substrate with ITO electrodes, dried on a hot plate at 70° C. for 90 seconds, and then baked in an infrared heating furnace at 230° C. for 20 minutes to form a liquid crystal alignment film having a thickness of 100 nm. .
  • Two substrates with this liquid crystal alignment film are prepared, and a bead spacer with a diameter of 4 ⁇ m (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, and a thermosetting sealant ( XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed.
  • a thermosetting sealant XN-1500T manufactured by Mitsui Chemicals, Inc.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
  • liquid crystal aligning agents (A-5) to (A-8) obtained above a liquid crystal cell was produced in the following procedure.
  • a liquid crystal aligning agent was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern with a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line/space of 5 ⁇ m was formed. C. for 20 minutes in an infrared heating furnace to form a liquid crystal alignment film with a thickness of 100 nm.
  • a glass substrate with an ITO electrode was spin-coated, dried on a hot plate at 70° C. for 90 seconds, and then baked in an infrared heating furnace at 230° C.
  • normal conditions conditions for forming the liquid crystal alignment film.
  • a liquid crystal alignment film having a thickness of 100 nm was prepared in the same manner as the normal conditions except that the baking conditions for each of the above substrates were changed to 60 minutes in an infrared heating furnace at 230 ° C. as the severe conditions for evaluating the vertical alignment properties of the liquid crystal alignment film. formed.
  • Two substrates with a liquid crystal alignment film prepared under normal conditions are prepared, and a bead spacer with a diameter of 4 ⁇ m (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, and heat cured.
  • a flexible sealant (XN-1500T, manufactured by Mitsui Chemicals, Inc.) was printed.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
  • the examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent containing the specific diamine as the diamine component used the liquid crystal alignment film obtained from the liquid crystal alignment agent containing no specific diamine as the diamine component. It exhibited excellent rubbing resistance and high seal adhesion as compared with the comparative example.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using the alicyclic acid dianhydride as the tetracarboxylic acid component has a high voltage holding ratio and good verticality as compared with the case where the aromatic acid dianhydride is used. showed orientation.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal aligning agent comprising at least one polymer (P) selected from the group consisting of polyimide precursors obtained by using a diamine component including a diamine represented by formula (1), and polyimides which are imidization products of said polyimide precursors. (In the formula, p represents an integer of 0 or 1.)

Description

液晶配向剤、液晶配向膜、液晶表示素子、ジアミン及び重合体Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, diamine and polymer
 本発明は、液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を具備する液晶表示素子、並びにそれらに適した新規なジアミン、及び重合体に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a liquid crystal display element comprising the liquid crystal aligning film, and a novel diamine and polymer suitable for them.
 液晶表示素子は、携帯電話、スマートフォンなどの小型用途から、テレビ用、モニター用などの比較的大型の用途まで幅広く使用されている。液晶表示素子は、一般的に、一対の電極基板を所定間隙(数μm)にて互いに対向するように配置するとともに電極基板の間に液晶を封入して構成されている。そして、電極基板の各電極を構成する透明導電膜間に電圧を印加することによって、液晶表示素子における表示を行うようにされている。これら液晶表示素子は、液晶分子の配列状態を制御するために不可欠な液晶配向膜を有する。特許文献1には、液晶分子のプレチルト角の調節が容易な液晶配向膜として、トリアジン環を含む特定構造のジアミン化合物を用いて得られるポリイミド配向膜が開示されている。 Liquid crystal display elements are used in a wide range of applications, from small applications such as mobile phones and smartphones to relatively large applications such as televisions and monitors. A liquid crystal display element is generally constructed by arranging a pair of electrode substrates so as to face each other with a predetermined gap (several μm) and sealing liquid crystal between the electrode substrates. By applying a voltage between the transparent conductive films forming the respective electrodes of the electrode substrate, the display on the liquid crystal display element is performed. These liquid crystal display elements have liquid crystal alignment films that are indispensable for controlling the alignment state of liquid crystal molecules. Patent Document 1 discloses a polyimide alignment film obtained by using a diamine compound having a specific structure containing a triazine ring as a liquid crystal alignment film in which the pretilt angle of liquid crystal molecules can be easily adjusted.
 一方、液晶表示素子としては、電極構造や、使用する液晶分子の物性等が異なる種々の駆動方式が開発されている。例えば、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の各種のモードが知られている。
 VA(垂直配向)方式の液晶表示素子は、視野角が広く、応答速度が速く、コントラストが大きく、また、生産プロセス上もラビング処理が不要にできることから、特に、大型化のニーズが高いテレビ用やモニター用を中心に広く使用されている(特許文献2~3)。
On the other hand, as a liquid crystal display element, various drive systems having different electrode structures, different physical properties of liquid crystal molecules to be used, etc. have been developed. For example, various modes such as TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane Switching) method, and FFS (Fringe Field Switching) method are known. .
VA (vertical alignment) liquid crystal display elements have a wide viewing angle, fast response speed, high contrast, and can eliminate the need for rubbing in the production process. It is widely used mainly for monitors and monitors (Patent Documents 2 and 3).
特表2006-511696号公報Japanese Patent Publication No. 2006-511696 特開2008-76950号公報JP-A-2008-76950 WO2008/117615号WO2008/117615
 タッチパネル方式の液晶ディスプレイでは、指や、ペンなどのポインティングデバイスによる押圧等の外部圧力に対して耐久性が高いこと、つまり外部圧力が付与された場合にも配向不良や輝点不良が生じにくいことが求められる。また、タブレット型端末やモバイル端末では、軽量化及び薄型化が進み、液晶ディスプレイ製造時のパネル組み立て工程において、パネルの歪みが生じたりパネル内部に応力がかかりやすくなっている。こうしたパネルの歪みや応力は、配向膜の基板からの剥がれの原因となり、輝点不良や配向不良が発生する原因にもなる。そのため、液晶配向膜には、基板剥がれが生じにくいことが要求される。また、タブレット型端末やモバイル端末では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。このような場合、液晶表示素子の破損を防ぐため、液晶配向膜とシール剤との接着性(密着性ともいう)を、従来に比べて高くする必要がある。 A touch panel type liquid crystal display must be highly durable against external pressure such as pressure from a finger or a pointing device such as a pen. is required. In addition, tablet terminals and mobile terminals are becoming lighter and thinner, and in the process of assembling the panels during the manufacture of liquid crystal displays, the panels are more likely to be distorted or subjected to stress inside the panels. Such distortion and stress of the panel cause peeling of the alignment film from the substrate, and cause defective bright spots and defective alignment. Therefore, the liquid crystal alignment film is required to be resistant to substrate peeling. Further, in tablet terminals and mobile terminals, in order to secure as many display surfaces as possible, it is necessary to make the width of the sealant used for bonding the substrates of the liquid crystal display element narrower than before. In such a case, in order to prevent breakage of the liquid crystal display element, it is necessary to increase the adhesiveness (also referred to as adhesion) between the liquid crystal alignment film and the sealant as compared with the prior art.
 本発明は、基板剥がれが生じにくい液晶配向膜を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子を得ることができる液晶配向剤を提供することを一つの目的とする。また、液晶配向膜とシール剤との接着性が高く、液晶表示素子の強度を高くする液晶配向膜を得ることができる液晶配向剤を提供することを他の一つの目的とする。 An object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film that is less prone to substrate peeling and a liquid crystal display element having high durability against external pressure. Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film having high adhesiveness between the liquid crystal aligning film and the sealant and increasing the strength of the liquid crystal display element.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の構造を有する新規な重合体を含有する液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。
 本発明は、下記式(1)で表されるジアミンを含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を有する液晶表示素子にある。
Figure JPOXMLDOC01-appb-C000005
(式中、Lは、-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-NH-(nは1~6の整数である。)、-(CH-O-C(=O)-(nは1~6の整数である。)、-(CH-C(=O)-O-(nは1~6の整数である。)、-O-(CH-O-(nは1~6の整数である。)、-C(=O)-O-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-O-(CH-(m、及びnはそれぞれ独立して1~6の整数である。)、又は-C(=O)-O-(CH-O-C(=O)-(nは1~6の整数である。)を表す。OHと結合するベンゼン環の任意の水素原子はメチル基、メトキシ基、又はハロゲン原子で置き換えられてもよい。pは、0又は1の整数を表す。)
 なお、本明細書全体を通して、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、*は結合手を表す。
As a result of intensive research to achieve the above objects, the present inventors have found that a liquid crystal aligning agent containing a novel polymer having a specific structure is effective for achieving the above objects. , have completed the present invention.
The present invention provides at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine represented by the following formula (1) and a polyimide that is an imidized product of the polyimide precursor ( P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000005
(wherein L is -(CH 2 ) n -O- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-NH- (n is 1 to 6 is an integer of ), -(CH 2 ) n -OC(=O)- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-O- (n is an integer of 1 to 6), -O-(CH 2 ) n -O- (n is an integer of 1 to 6), -C(=O)-O-(CH 2 ) n —O— (n is an integer of 1 to 6), —(CH 2 ) m —C(═O)—O—(CH 2 ) n — (m and n are each independently 1 to is an integer of 6.), or -C(=O)-O-(CH 2 ) n -O-C(=O)- (n is an integer of 1 to 6.) Bonding with OH Any hydrogen atom of the benzene ring may be replaced with a methyl group, a methoxy group, or a halogen atom.p represents an integer of 0 or 1.)
Throughout the present specification, halogen atoms include fluorine, chlorine, bromine, and iodine atoms, and * represents a bond.
 本発明によれば、基板剥がれが生じにくい液晶配向剤を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子を得ることができる液晶配向剤が提供される。また、液晶配向膜とシール剤との接着性が高く、液晶表示素子の強度を高くする液晶配向膜を得ることができる液晶配向剤が提供される。
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。本発明の重合体(P)を得るためのジアミンは、ジアミン部位を含む芳香環と、芳香族水酸基を有するベンゼン環とが、特定の連結基で結合された構造を有する。上記芳香族水酸基は、立体障害の少ない構造を有し、配向膜と基板との相互作用を高める効果を有するため、基板剥がれが生じにくい液晶配向膜が得られたと考えられる。また、重合体(P)は、重合体の側鎖部位に上記芳香族水酸基を有し、フレキシブル性が向上した構造であるため、芳香族水酸基とシール剤との反応性が高くなり、高いシール密着性と高い電圧保持率特性を有する液晶配向膜が得られたと考えらえる。さらに、上記特定の連結基は、アルキル鎖中にヘテロ原子やエステル基、アミド結合等を含んだ構造となっているため、アルキル鎖のみで連結するよりも、分子内に適度な極性と剛直性を付与させることが可能となる。そのため、芳香族水酸基とシール剤との生成物の剛性が向上するため、基板剥がれが生じにくい液晶配向剤を得ることができ、かつ外部圧力に対する耐久性が高い液晶表示素子が得られたと考えられる。
ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning agent which can obtain the liquid crystal aligning agent which a board|substrate peeling does not produce easily, and can obtain a liquid crystal display element with high durability with respect to an external pressure is provided. Moreover, the liquid crystal aligning agent which can obtain the liquid crystal aligning film which has high adhesiveness of a liquid crystal aligning film and a sealing agent, and raises the intensity|strength of a liquid crystal display element is provided.
Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, the following is considered to be one of the reasons. The diamine for obtaining the polymer (P) of the present invention has a structure in which an aromatic ring containing a diamine moiety and a benzene ring having an aromatic hydroxyl group are linked by a specific linking group. The aromatic hydroxyl group has a structure with little steric hindrance and has the effect of enhancing the interaction between the alignment film and the substrate. In addition, since the polymer (P) has the above-mentioned aromatic hydroxyl group in the side chain portion of the polymer and has a structure with improved flexibility, the reactivity between the aromatic hydroxyl group and the sealing agent is increased, resulting in high sealing performance. It is considered that a liquid crystal alignment film having adhesion and high voltage holding characteristics was obtained. Furthermore, since the above-mentioned specific linking group has a structure that includes a hetero atom, an ester group, an amide bond, etc. in the alkyl chain, it has more suitable polarity and rigidity in the molecule than linking only with the alkyl chain. can be given. Therefore, it is considered that the rigidity of the product of the aromatic hydroxyl group and the sealing agent is improved, so that the liquid crystal aligning agent that is less likely to be peeled off from the substrate can be obtained, and the liquid crystal display element having high durability against external pressure can be obtained. .
 本発明の液晶配向剤は、上記のように、上記式(1)で表されるジアミン(以下、特定ジアミンともいう。)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする。
 なお、式(1)で表されるジアミン(但し、一部のジアミンを除く。)も本発明の対象である。また、式(1)で表されるジアミンを含むジアミン成分を用いて得られる重合体も本発明の対象である。
As described above, the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing a diamine represented by the above formula (1) (hereinafter also referred to as a specific diamine) and the polyimide precursor It is characterized by containing at least one polymer (P) selected from the group consisting of polyimides which are imidized substances.
The diamine represented by Formula (1) (excluding some diamines) is also the subject of the present invention. A polymer obtained using a diamine component containing the diamine represented by formula (1) is also an object of the present invention.
 上記式(1)中のLは、本発明の効果を好適に得る観点から、-(CH-O-(nは1~6の整数である。)、-(CH-O-C(=O)-(nは1~6の整数である。)、-(CH-C(=O)-O-(nは1~6の整数である。)が好ましい。 L in the above formula (1) is —(CH 2 ) n —O— (n is an integer of 1 to 6), —(CH 2 ) n —, from the viewpoint of suitably obtaining the effects of the present invention. OC(=O)-(n is an integer of 1 to 6) and -(CH 2 ) n -C(=O)-O-(n is an integer of 1 to 6) are preferred. .
 上記式(1)においてpが0の場合、上記式(1)で表されるジアミンの好ましい具体例としては、下記式(d1-1)~(d1-11)のいずれかで表されるジアミンが挙げられ、なかでも本発明の効果を好適に得る観点から、(d1-1)~(d1-3)のいずれかで表されるジアミンが、より好ましい。
Figure JPOXMLDOC01-appb-C000006
When p is 0 in the above formula (1), preferred specific examples of the diamine represented by the above formula (1) include diamines represented by any of the following formulas (d1-1) to (d1-11). Among them, diamines represented by any one of (d1-1) to (d1-3) are more preferable from the viewpoint of suitably obtaining the effects of the present invention.
Figure JPOXMLDOC01-appb-C000006
 上記式(1)においてpが1の場合、上記式(1)で表されるジアミンの好ましい具体例としては、下記式(d2-1)~(d2-6)のいずれかで表されるジアミンが挙げられ、なかでも本発明の効果を好適に得る観点から、(d2-1)~(d2-3)のいずれかで表されるジアミンが、より好ましい。
Figure JPOXMLDOC01-appb-C000007
When p is 1 in the above formula (1), preferred specific examples of the diamine represented by the above formula (1) include diamines represented by any of the following formulas (d2-1) to (d2-6). Among them, diamines represented by any one of (d2-1) to (d2-3) are more preferable from the viewpoint of suitably obtaining the effects of the present invention.
Figure JPOXMLDOC01-appb-C000007
(重合体(P)の製造)
 本発明の液晶配向剤に含有される重合体(P)は、上記特定ジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、上記特定ジアミンを含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。上記特定ジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 この場合、特定ジアミンの使用量は、全ジアミン成分に対して、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましい。
(Production of polymer (P))
The polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained using a diamine component containing the specific diamine, or a polyimide that is an imidized product of the polyimide precursor. Here, the polyimide precursor is a polymer from which a polyimide can be obtained by imidating polyamic acid, polyamic acid ester, or the like.
A polyamic acid (P′), which is a polyimide precursor of the polymer (P), can be obtained by a polymerization reaction between a diamine component containing the specific diamine and a tetracarboxylic acid component. The specific diamines may be used singly or in combination of two or more.
In this case, the amount of the specific diamine used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, relative to the total diamine component.
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、特定ジアミン以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。上記特定ジアミンに加えて、その他のジアミンを併用する場合は、ジアミン成分に対する特定ジアミンの使用量は、90モル%以下が好ましく、80モル%以下がより好ましい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The diamine component used for producing the polyamic acid (P') may contain a diamine other than the specific diamine (hereinafter also referred to as other diamine). When other diamine is used in addition to the specific diamine, the amount of the specific diamine used is preferably 90 mol % or less, more preferably 80 mol % or less, relative to the diamine component. Examples of other diamines are listed below, but the present invention is not limited to these. The other diamines may be used singly or in combination of two or more.
 「A-X-J」で表される芳香族ジアミン(d)、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノ-2-メチルフェニルオキシ)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、3-[2-[2-(4-アミノフェノキシ)エトキシ]エトキシ]ベンゼンアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、4’-[2-(4-アミノフェノキシ)エトキシ]-[1,1’-ビフェニル]-4-アミン、1,4-ビス[2-(4-アミノフェニル)エチル]ブタンジオアート、1,6-ビス[2-(4-アミノフェニル)エチル]ヘキサンジオアート、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、;4,4’-ジアミノアゾベンゼン、ジアミノトラン、4,4-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を側鎖に有する芳香族ジアミン、などの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートに代表される、ベンゾイン若しくはそのアルキルエーテル化物、ベンジルケタール類、アセトフェノン類、アシルホスフィンオキサイド類、ベンゾフェノン類、又はアミノベンゾフェノン類などのラジカル重合開始剤機能を発現する基を分子内に有するジアミン(以下、ラジカル開始機能を有するジアミンともいう。);4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、下記式(z-1)~式(z-5)で表されるジアミン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-1,4-ベンゼンジアミン、N,N ’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素含有構造(以下、特定の窒素含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、及び4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;N1,N4-ビス(2-tert-ブトキシカルボニルアミノ-4-アミノフェニル)アジパミド、4-アミノ-N-(2-tert-ブトキシカルボニルアミノ-4-アミノフェニル)ベンズアミド、カルバミン酸,N-[(2,5-ジアミノフェニル)メチル]-,1,1-ジメチルエチルエステル、カルバミン酸,N-[3-(2,5-ジアミノフェニル)プロピル]-,1,1-ジメチルエチルエステル、カルバミン酸,N,N-[(2,5-ジアミノ-1,3-フェニレン)ジ-3,1-プロパンジイル]ビス-,C,C-ビス(1,1-ジメチルエチル)エステル、N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン、安息香酸,4-アミノ-2-tert-ブトキシカルボニルアミノ-,1,1’-[(1,1,3,3-テトラメチル-1,3-ジシロキサンジイル)ジ-4,1-ブタンジイル]エステル、カルバミン酸,N-[2-(4-アミノフェニル)エチル]-N-[[[2-(4-アミノフェニル)エチル]アミノ]カルボニル]-,1,1-ジメチルエチルエステル、カルバミン酸,N-(4-アミノフェニル)-N-[[1-(4-アミノフェニル)-4-ピぺリジニル]メチル]-,1,1-ジメチルエチルエステルなどの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン;
1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン、ビス(p-アミノフェニルカルバモイルプロピル)テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等
Figure JPOXMLDOC01-appb-C000008
aromatic diamines represented by "AXJ" (d), p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'- Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4 '-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl )-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, bis(4-aminophenoxy)methane , 1,2-bis(4-aminophenyl)ethane, 1,2-bis(4-aminophenoxy)ethane, 1,3-bis(3-aminophenyl)propane, 1,4-bis(4-aminophenyl ) butane, 1,4-bis(4-amino-2-methylphenyloxy)butane, 1,4-bis(3-aminophenyl)butane, bis(3,5-diethyl-4-aminophenyl)methane, 1 ,5-bis(4-aminophenoxy)pentane, 1,5-bis(3-aminophenoxy)pentane, 1,6-bis(4-aminophenoxy)hexane, 1,6-bis(3-aminophenoxy) Hexane, 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8-bis(3- aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1,10-bis( 3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)un Decane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12-bis(3-aminophenoxy)dodecane, 3-[2-[2-( 4-aminophenoxy)ethoxy]ethoxy]benzenamine, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4,4-bis(4-aminophenoxy)biphenyl , 4,4′-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis(6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine, 4′-[2-(4-aminophenoxy)ethoxy]-[ 1,1′-biphenyl]-4-amine, 1,4-bis[2-(4-aminophenyl)ethyl]butanedioate, 1,6-bis[2-(4-aminophenyl)ethyl]hexanedioate art, 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylenebis(3-aminobenzoate), 1,3-phenylenebis(4-aminobenzoate), 1,3-phenylenebis(3- aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, bis(3-aminophenyl)isophthalate; 4,4'-diaminoazobenzene , diaminotolan, 4,4-diaminochalcone, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo-prop-1-enyl]phenyl]4- (4,4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[[(E)-3-[4- [4-(4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]oxymethyl]phenyl]phenyl]methoxy]-3-oxo-prop-1-enyl]phenyl]4-( 4,4,4-trifluorobutoxy)benzoate, an aromatic diamine having a cinnamate structure in the side chain, and a diamine having a photoalignable group; 2-(2,4-diaminophenoxy)ethyl methacrylate; 2,4-diamino-N,N-diallylaniline 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2 -hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate, benzoin or alkyl ethers thereof, benzyl ketals, acetophenones, acylphosphine oxides, benzophenones, or aminobenzophenones A diamine having a group that exhibits a radical polymerization initiator function in the molecule (hereinafter also referred to as a diamine having a radical initiation function). ); diamines having an amide bond such as 4,4′-diaminobenzanilide, 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis( diamines having a urea bond such as 4-aminophenethyl)urea; 4,4′-sulfonyldianiline, 3,3′-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 3,3'-diaminodiphenyl ether, 3,4'-diamino diphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2'-bis(4-aminophenyl)hexafluoropropane, 2,2'-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(3-amino-4-methylphenyl)hexafluoro propane, 2,2'-bis(4-aminophenyl)propane, 2,2'-bis(3-aminophenyl)propane, 2,2'-bis(3-amino-4-methylphenyl)propane, 3, 3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4,4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4 -aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl -3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diamino Carbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl- 2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4′-[4,4′-propane-1,3-diylbis(piperidine-1,4 -diyl)]dianiline, 4-(4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, diamines represented by the following formulas (z-1) to (z-5), 2,5- bis(4-aminophenyl)pyrrole, 4,4′-(1-methyl-1H-pyrrole-2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-(4-aminophenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5 -heterocycle-containing diamines such as aminobenzimidazole, 2-(4-aminophenyl)-6-aminobenzimidazole, 5-(1H-benzimidazol-2-yl)benzene-1,3-diamine, or 4, 4'-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-1,4-benzenediamine, N,N'-bis(4-aminophenyl )-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4 - At least one nitrogen-containing structure selected from the group consisting of nitrogen-containing heterocycles, secondary amino groups and tertiary amino groups (hereinafter referred to as specific nitrogen-containing Also called structure. ) (provided that the molecule does not have an amino group bonded with a protective group that is eliminated by heating and replaced with a hydrogen atom.); 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3, 5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diamino biphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenylethane-3,3'-dicarboxylic acid, and 4,4'-diamino Diamines having a carboxy group such as diphenyl ether-3,3′-dicarboxylic acid; 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6 -diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl) -1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6-amine; N1, N4-bis(2-tert-butoxycarbonylamino-4-aminophenyl)adipamide, 4-amino-N-(2-tert-butoxycarbonylamino-4-aminophenyl)benzamide, carbamic acid, N-[(2, 5-diaminophenyl)methyl]-,1,1-dimethylethyl ester, carbamic acid, N-[3-(2,5-diaminophenyl)propyl]-,1,1-dimethylethyl ester, carbamic acid, N, N-[(2,5-diamino-1,3-phenylene)di-3,1-propanediyl]bis-,C,C-bis(1,1-dimethylethyl) ester, N-tert-butoxycarbonyl- N-(2-(4-aminophenyl)ethyl)-N-(4-aminobenzyl)amine, benzoic acid, 4-amino-2-tert-butoxycarbonylamino-, 1,1'-[(1,1 , 3,3-tetramethyl-1,3-disilo xandiyl)di-4,1-butanediyl]ester, carbamic acid, N-[2-(4-aminophenyl)ethyl]-N-[[[2-(4-aminophenyl)ethyl]amino]carbonyl]-, 1,1-dimethylethyl ester, carbamic acid, N-(4-aminophenyl)-N-[[1-(4-aminophenyl)-4-piperidinyl]methyl]-, 1,1-dimethylethyl ester A group such as “—N(D)—” (D represents a protective group that is eliminated by heating and replaced by a hydrogen atom, preferably a tert-butoxycarbonyl group. );
Diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane, bis(p-aminophenylcarbamoylpropyl)tetramethyldisiloxane; meta-xylylenediamine, 1,3-propanediamine, Tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis(cyclohexylamine), the formula described in WO2018/117239 ( Y-1) to a diamine in which two amino groups are bonded to a group represented by any one of (Y-167), etc.
Figure JPOXMLDOC01-appb-C000008
 上記芳香族ジアミン(d)において、Aは2つの第一級アミノ基が芳香族基に結合した1価の基を表す。芳香族基の具体例として、ベンゼン環、ナフタレン環、ビフェニル構造が挙げられる。Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
 Jは、炭素数4~40の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基からなる群から選ばれる少なくとも1種の基を有する1価の有機基を表し、但し、上記脂環式炭化水素基及び芳香族炭化水素基が有する水素原子の少なくとも一つは、ハロゲン原子、ハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、炭素数3~10のアルケニル基、並びにハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、及び炭素数3~10のアルケニル基の任意のメチレン基が有する炭素-炭素結合が酸素原子で中断されているヘテロ原子含有基からなる群から選ばれる置換基で置換されている。
 尚、Jが炭素数4~40の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基からなる群から選ばれる少なくとも1種の基を2つ以上有する1価の有機基である場合、少なくとも一つの脂環式炭化水素基又は芳香族炭化水素基が上記で例示した置換基を有すればよく、Jが有するその他の脂環式炭化水素基又は芳香族炭化水素基は、非置換又は上記で例示した以外の置換基を有してもよい。
In the aromatic diamine (d) above, A represents a monovalent group in which two primary amino groups are bonded to an aromatic group. Specific examples of aromatic groups include benzene rings, naphthalene rings, and biphenyl structures. X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O -, -COO-, -OCO- or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, m1 is 1 to is an integer of 2. When m1 is 2, a1 and A1 each independently have the above definition).
J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms, with the proviso that At least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, or 3 carbon atoms. -10 alkoxy groups, alkenyl groups having 3 to 10 carbon atoms, halogen atom-containing alkyl groups, halogen atom-containing alkoxy groups, alkyl groups having 3 to 10 carbon atoms, alkoxy groups having 3 to 10 carbon atoms, and 3 carbon atoms The carbon-carbon bond of any methylene group of the alkenyl group from 1 to 10 is replaced with a substituent selected from the group consisting of heteroatom-containing groups interrupted by oxygen atoms.
J is a monovalent organic group having two or more at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms. In some cases, at least one alicyclic hydrocarbon group or aromatic hydrocarbon group may have the substituents exemplified above, and the other alicyclic hydrocarbon groups or aromatic hydrocarbon groups of J are It may be unsubstituted or have substituents other than those exemplified above.
 ハロゲン原子含有アルキル基としては、例えば、炭素数1~10のハロゲン原子含有アルキル基が挙げられる。
 ハロゲン原子含有アルコキシ基としては、例えば、炭素数1~10のハロゲン原子含有アルコキシ基が挙げられる。
Examples of halogen atom-containing alkyl groups include halogen atom-containing alkyl groups having 1 to 10 carbon atoms.
Halogen atom-containing alkoxy groups include, for example, halogen atom-containing alkoxy groups having 1 to 10 carbon atoms.
 Jの脂環式炭化水素基としては、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロデカン環、ステロイド骨格(例として、コレスタニル基、コレステリル基、ラノスタニル基など)などを挙げることができ、芳香族炭化水素基としては、ベンゼン環、ナフタレン環などを挙げることができる。Jがシクロヘキサン環及びベンゼン環の少なくともいずれかを有する場合、基「-X-J」として、例えば、下記の構造(S1)を挙げることができ、より好ましい構造として下記式(S1-1)~(S1-5)を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
(Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-CO-N(CH)-、-NH-、-O-、-COO-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
 Gは、フェニレン基、及びシクロヘキシレン基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
 Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
Figure JPOXMLDOC01-appb-C000010
(X、Rは、上記式(S1)のX、Rと同義である。)
Examples of the alicyclic hydrocarbon group for J include cyclobutane ring, cyclopentane ring, cyclohexane ring, cyclodecane ring, steroid skeleton (e.g., cholestanyl group, cholesteryl group, lanostanyl group, etc.), and the like. A benzene ring, a naphthalene ring, etc. can be mentioned as a hydrogen group. When J has at least one of a cyclohexane ring and a benzene ring, examples of the group "-XJ" include the following structure (S1), and more preferred structures are the following formulas (S1-1) to (S1-5) can be mentioned.
Figure JPOXMLDOC01-appb-C000009
(X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —CO—N(CH 3 )—, —NH—, —O—, -COO- or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, m1 is an integer of 1 to 2 When m1 is 2, a1 and A1 each independently have the above definition.).
G 1 represents a divalent cyclic group selected from a phenylene group and a cyclohexylene group. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
Figure JPOXMLDOC01-appb-C000010
(X 1 and R 1 have the same definitions as X 1 and R 1 in formula (S1) above.)
 上記芳香族ジアミン(d)の具体例としては、下記式(d-1)~(d-2)で表されるジアミンが挙げられる。より好ましい具体例としては、基「-X-J」が、上記の構造(S1)又は上記式(S1-1)~(S1-5)のいずれかである、式(d-1)~(d-2)で表されるジアミン、並びにコレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000011
(X、Jは、上記芳香族ジアミン(d)のX、Jと好ましい態様を含めて同義である。前記式(d-2)において、2個のX、Jは、互いに同一であっても異なっていてもよい。)
Specific examples of the aromatic diamine (d) include diamines represented by the following formulas (d-1) and (d-2). More preferred specific examples are the groups of formulas (d-1) to (d-1) to ( diamines represented by d-2), and cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, and 3,5-diaminobenzo diamines having a steroid skeleton such as cholestanyl acid, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane.
Figure JPOXMLDOC01-appb-C000011
(X and J have the same definitions as X and J of the aromatic diamine (d), including preferred embodiments. In the formula (d-2), two X and J may be the same may be different.)
 その他のジアミンとしては、本発明の効果を好適に得る観点から,上記芳香族ジアミン(d)、p-フェニレンジアミン、上記カルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、上記光配向性基を有するジアミン、ラジカル開始機能を有するジアミン、光重合性基を末端に有するジアミン、基「-N(D)-」を有するジアミン、上記特定の窒素含有構造を有するジアミンが好ましい。 Other diamines include the above aromatic diamine (d), p-phenylenediamine, the above carboxy group-containing diamine, 4,4'-diaminodiphenylmethane, 4,4'- Diaminobenzophenone, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, diamine having photo-orientation group, radical initiation function , a diamine having a terminal photopolymerizable group, a diamine having a group “—N(D)—”, and a diamine having the above specific nitrogen-containing structure are preferred.
 上記特定ジアミンに加えてその他のジアミンを使用する場合、上記その他のジアミンの使用量は、使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。
 上記その他のジアミンの使用量は、重合体(P)の製造に使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。
When other diamines are used in addition to the specific diamines, the amount of the other diamines used is preferably 10 to 90 mol%, more preferably 20 to 80 mol, based on the total diamine components used. %.
The amount of the other diamine used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
(テトラカルボン酸成分)
 上記ポリアミック酸(P’)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
(Tetracarboxylic acid component)
When producing the polyamic acid (P'), the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid. Derivatives of tetracarboxylic dianhydrides such as carboxylic acid dialkyl ester dihalides can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。中でも、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましく、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。 The tetracarboxylic dianhydride or derivative thereof includes an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or derivatives thereof. . Among them, it is more preferable to contain a tetracarboxylic dianhydride or a derivative thereof having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, and a cyclobutane ring structure. , a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a cyclopentane ring structure and a cyclohexane ring structure, or derivatives thereof.
 液晶表示素子では、その電圧保持率(VHR:Voltage Holding Ratio)が低いと、電圧を印加しても液晶分子に十分な電圧がかかり難くなる場合がある。特に、カーナビゲーションシステムやメーターパネルなどの車載用途では、長時間高温環境下で使用あるいは放置される場合があり、その場合には電圧保持率の低下がより顕著であるため、高い電圧保持率を有する液晶配向膜が求められる場合がある。
 また、液晶表示素子では、用いられる基板の薄型化、大型化の影響で、焼成時に、同じ基板内の異なる部分間で温度差が生じ、過度に加熱された部分の液晶配向膜は、液晶を配向させる能力が低下し、その結果、得られる液晶表示素子が部分的に表示不良を来す問題が生じる場合がある。そのため、過度の加熱にさらされた場合であっても、液晶を配向させる能力が高い液晶配向膜が求められる場合がある。
 上記高い電圧保持率を有する液晶配向膜、及び/又は、過度の加熱にさらされた場合であっても液晶を配向させる能力が高い液晶配向膜を得る観点から、上記ポリアミック酸(P’)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、又はこれらの誘導体がより好ましい。中でも、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。
 ポリアミック酸(P’)の合成に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(以下、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 また、上記高い電圧保持率を有する液晶配向膜、及び/又は、過度の加熱にさらされた場合であっても液晶を配向させる能力が高い液晶配向膜を得る観点から、上記特定のテトラカルボン酸誘導体は、好ましくは、以下の非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物又はその誘導体が好ましい。
 尚、上記テトラカルボン酸二無水物の誘導体としては、上記したテトラカルボン酸二無水物の誘導体が挙げられ、上記テトラカルボン酸二無水物又はその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
When a liquid crystal display element has a low voltage holding ratio (VHR), it may be difficult to apply a sufficient voltage to the liquid crystal molecules even if a voltage is applied. In particular, automotive applications such as car navigation systems and meter panels may be used or left in high-temperature environments for long periods of time. In some cases, a liquid crystal alignment film having
In addition, in liquid crystal display elements, due to the influence of thinning and increasing size of the substrates used, temperature differences occur between different parts in the same substrate during firing, and the liquid crystal alignment film in the part that is excessively heated will not release the liquid crystal. The ability to orient is deteriorated, and as a result, there may be a problem that the obtained liquid crystal display element partially causes display defects. Therefore, there is a demand for a liquid crystal alignment film that has a high ability to align liquid crystals even when exposed to excessive heating.
From the viewpoint of obtaining a liquid crystal alignment film having a high voltage holding ratio and/or a liquid crystal alignment film having a high ability to align liquid crystals even when exposed to excessive heating, the polyamic acid (P') is used. When producing, the tetracarboxylic acid component to be reacted with the diamine component is more preferably an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, or a derivative thereof. Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, or a derivative thereof.
As the tetracarboxylic acid component that can be used in the synthesis of the polyamic acid (P′), the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives) are preferred. .)including.
In addition, from the viewpoint of obtaining a liquid crystal alignment film having a high voltage holding ratio and/or a liquid crystal alignment film having a high ability to orient liquid crystals even when exposed to excessive heating, the specific tetracarboxylic acid The derivative is preferably the following acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride or derivative thereof.
Examples of the tetracarboxylic dianhydride derivative include the above-described tetracarboxylic dianhydride derivative, and the tetracarboxylic dianhydride or derivative thereof may be used alone, or two More than one species may be used in combination.
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。 Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride product, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a, 4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2 .2]octane-2,3,5,6-tetracarboxylic dianhydride, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride alicyclic tetracarboxylic dianhydrides such as products; pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfone Tetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ethertetracarboxylic dianhydride, 3,3′,4,4′-perfluoroisopropylidene diphthalic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2 ',3,3'-biphenyltetracarboxylic dianhydride, 4,4'- Bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, ethylene glycol bis-anhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic acid Fragrances such as anhydride, 4,4'-oxydi(1,4-phenylene)bis(phthalic acid) dianhydride, or 4,4'-methylenedi(1,4-phenylene)bis(phthalic acid) dianhydride group tetracarboxylic dianhydrides; other tetracarboxylic dianhydrides described in JP-A-2010-97188.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、またはこれらの誘導体である。 Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellit acid dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3′,4, 4′-biphenyltetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, or derivatives thereof.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分1モルに対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 1 mol of the total tetracarboxylic acid component used.
(ポリアミック酸の合成)
 ポリアミック酸の合成は、上記特定ジアミンを含むジアミン成分と、上記テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましく、さらに好ましくは0.3~1.2当量となる割合である。通常の重縮合反応と同様に、このテトラカルボン酸二無水物の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の合成反応における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
 ポリアミック酸の合成反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
(Synthesis of polyamic acid)
A polyamic acid is synthesized by reacting a diamine component containing the specific diamine with a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent. The ratio of the tetracarboxylic dianhydride and the diamine used in the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 2 per equivalent of the amino group of the diamine. A ratio that provides equivalents is preferred, and a ratio that provides 0.3 to 1.2 equivalents is more preferred. As in ordinary polycondensation reactions, the closer the equivalent of the acid anhydride group in this tetracarboxylic dianhydride to one equivalent, the greater the molecular weight of the resulting polyamic acid.
The reaction temperature in the polyamic acid synthesis reaction is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
The polyamic acid synthesis reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる Specific examples of the organic solvent include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used
(ポリアミック酸エスエルの合成)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(Synthesis of Polyamic Acid Ester)
Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
(ポリイミドの合成)
 また、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
(Synthesis of polyimide)
Moreover, a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester. The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃であり、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in the solution, the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 to 250°C, preferably 0 to 180°C. The amount of the basic catalyst is 0.5 to 30 times the molar amount of the amic acid group, preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is 1 to 50 times the molar amount of the amic acid group, preferably 3 to 30 times the molar amount. Double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらのうちから選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the generated polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering 2 to 10 times. Solvents in this case include, for example, alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of solvents selected from these, because the purification efficiency is further improved.
<末端封止剤>
 本発明におけるポリイミド前駆体やポリイミドを合成するに際して、テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分、及び上記特定ジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。末端封止型の重合体は、塗膜によって得られる配向膜の膜硬度の向上や、シール剤と配向膜の密着特性の向上という効果を有する。
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。
<Terminal blocking agent>
When synthesizing the polyimide precursor or polyimide in the present invention, a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the specific diamine, together with an appropriate terminal blocking agent end-blocking A stop-type polymer may be synthesized. The end-blocking polymer has effects of improving the film hardness of the alignment film obtained by the coating film and improving the adhesion properties between the sealant and the alignment film.
Examples of the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later. An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。 Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. Acid anhydrides; dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4 -aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n - monoamine compounds such as heptylamine and n-octylamine; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or having unsaturated bonds such as 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate Isocyanate and the like can be mentioned.
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。 The proportion of the end blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。 The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By having the molecular weight within such a range, it is possible to ensure good orientation of the liquid crystal display element.
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention is a liquid composition in which the polymer (P) and optionally other components are preferably dispersed or dissolved in a suitable solvent.
 本発明の液晶配向剤は、重合体(P)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、上記特定ジアミンを含まないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。前記重合体(B)として、垂直配向性を高める観点から、上記芳香族ジアミン(d)を含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物からなる群から選ばれる少なくとも1種の重合体が挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
The liquid crystal aligning agent of the present invention may contain other polymers other than the polymer (P). Specific examples of other polymers include at least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not contain the specific diamine and a polyimide that is an imidized product of the polyimide precursor. (B), polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer , poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative, poly(meth)acrylate, and the like. The polymer (B) is selected from the group consisting of a polyimide precursor obtained using a diamine component containing the aromatic diamine (d) and an imidized product of the polyimide precursor, from the viewpoint of improving vertical alignment. At least one polymer is included. Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like. Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
Other polymers may be used singly or in combination of two or more. The content of the other polymer is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
 本発明の液晶配向剤は、その他、必要に応じて上記以外の成分を含有していてもよい。当該成分としては、例えば、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに、重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。 In addition, the liquid crystal aligning agent of the present invention may contain components other than those mentioned above, if necessary. Examples of the component include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and , at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant , sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
 架橋性化合物(c-1)、(c-2)の好ましい具体例としては、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合するエポキシ化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合するエポキシ化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのエポキシ化合物;WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール 1,3-ジグリセロラート ジ(メタ)アクリレート、ペンタエリストール トリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートなどの重合性不飽和基を有する架橋性化合物が挙げられる。 Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N' -tetraglycidyl-2,2'-dimethyl-4.4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N', Epoxy compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as N'-tetraglycidyl-4,4'-diaminodiphenylmethane; N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane , N,N,N′,N′-tetraglycidyl-1,3-diaminocyclohexane, N,N,N′,N′-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4 -aminocyclohexyl)methane, bis(N,N-diglycidyl-2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis( N,N-diglycidylaminomethyl)cyclohexane, 1,4-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis (N,N-diglycidylaminomethyl)benzene, 1,3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, 1,3,5-tris(N,N-diglycidylaminomethyl)benzene, etc. Epoxy compounds in which the tertiary nitrogen atom is bound to an aliphatic carbon atom, epoxy compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Co., Ltd.); Compounds having two or more oxetanyl groups described; Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, Compounds having blocked isocyanate groups such as B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.); N,N,N',N'- Tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxy compounds having a hydroxy group or an alkoxy group such as methylphenyl)propane and 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane; Glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3-diglycerolate di(meth)acrylate, pentaerythritol Stall tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate, hexaethylene glycol mono(meth)acrylate, etc.) and a crosslinkable compound having a polymerizable unsaturated group.
 上記架橋性化合物の含有量は、液晶配向剤に含有される重合体成分100質量部に対して、0.01~30質量部が好ましく、より好ましくは0.1~20質量部、さらに好ましくは1~20質量部である。 The content of the crosslinkable compound is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, and still more preferably 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. 1 to 20 parts by mass.
 誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンが挙げられる。窒素含有芳香族複素環を有するモノアミンを使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen-containing aromatic heterocycles such as 3-picolylamine. When using a monoamine having a nitrogen-containing aromatic heterocycle, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 100 parts by mass relative to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. 20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane. Silane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- isocyanatopropyltriethoxysilane and the like. When using a functional silane compound, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. .
 本発明の液晶配向剤で使用する有機溶媒としては、例えばγ-バレロラクトン、γ-ブチロラクトンなどのラクトン溶媒;γ-ブチロラクタム、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドンなどのラクタム溶媒;N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、N,N-ジメチルラクトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、テトラメチル尿素などのアミド溶媒;シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールn-プロピルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネートなどを挙げることができる。これらは、2種以上を混合して使用することができる。 Examples of the organic solvent used in the liquid crystal aligning agent of the present invention include lactone solvents such as γ-valerolactone and γ-butyrolactone; (n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)- lactam solvents such as 2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone; N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-dimethylpropionamide, N,N-diethylpropionamide, N,N-dimethyllactamide, 3-methoxy-N,N-dimethylpropanamide, Amide solvents such as 3-butoxy-N,N-dimethylpropanamide and tetramethylurea; cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, 3 -methyl methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol n-propyl Ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether , diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), diisobutyl ketone, isoamine propionate, isoamyl isobutyrate, diisopentyl ether, ethylene carbonate, propylene carbonate, and the like. These can be used in combination of two or more.
 好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンと2,6-ジメチル-4-ヘプタノン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、シクロヘキサノンとエチレングリコールモノブチルエーテル、シクロヘキサノンとプロピレングリコールモノブチルエーテル、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノブチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、シクロヘキサノンとジエチレングリコールモノエチルエーテル、シクロペンタノンとジエチレングリコールモノエチルエーテル、シクロヘキサノンとジイソブチルケトン、シクロペンタノンとジイソブチルケトン、メチルイソブチルケトンとプロピレングリコールモノブチルエーテル、メチルエチルケトンとプロピレングリコールモノブチルエーテル、シクロヘキサノンと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロペンタノンと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンとジエチレングリコールジエチルエーテル、シクロペンタノンとジエチレングリコールジエチルエーテル、テトラメチル尿素とプロピレングリコールジアセテート、N,N-ジメチルプロピオンアミドとプロピレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノブチルエーテル、テトラメチル尿素とシクロヘキサノンとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテルアセテート、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテル、N,N-ジエチルプロピオンアミドとプロピレングリコールモノメチルエーテル、テトラメチル尿素とプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとシクロヘキサノンとジエチレングリコールジエチルエーテル、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテル、N,N-ジエチルホルムアミドと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンと酢酸n-ブチル、シクロペンタノンと酢酸n-ブチル、4-ヒドロキシ-4-メチル-2-ペンタノンとエチレングリコールモノブチルエーテル、シクロヘキサノンとプロピレングリコールジアセテート、及びシクロペンタノンとプロピレングリコールジアセテートなどを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene. Glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2 -pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and 2,6-dimethyl-4 -heptanone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene Glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and 2,6-dimethyl -4-heptanone, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol diacetate, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and 2,6-dimethyl-4 -heptanone, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, cyclohexanone and ethylene glycol monobutyl ether, cyclohexanone and propylene glycol monobutyl ether, cyclohexanone and propylene glycol monomethyl ether, cyclopentanone and propylene glycol monobutyl ether, cyclopentanone Tantanone and propylene glycol monomethyl ether, cyclohexanone and diethylene glycol monoethyl ether, cyclopentanone and diethylene glycol monoethyl ether, cyclohexanone and diisobutyl ketone, cyclopentanone and diisobutyl ketone, methyl isobutyl ketone and propylene glycol monobutyl ether, methyl ethyl ketone and propylene glycol monobutyl ether , cyclohexanone and 4-hydroxy-4-methyl-2-pentanone, cyclopentanone and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and diethylene glycol diethyl ether, cyclopentanone and diethylene glycol diethyl ether, tetramethyl urea and propylene glycol diacetate, N,N-dimethylpropionamide and propylene glycol monobutyl ether, tetramethylurea and propylene glycol monobutyl ether, tetramethylurea and cyclohexanone and propylene glycol monomethyl ether, N,N-dimethylpropionamide and propylene glycol monomethyl ether, N,N-dimethylpropionamide and ethylene glycol monobutyl ether acetate, N,N-dimethylpropionamide and ethylene glycol monobutyl ether, N,N-diethylpropionamide and propylene glycol monomethyl ether, tetramethylurea and propylene glycol monomethyl ether, N , N-dimethylpropionamide and cyclohexanone and diethylene glycol diethyl ether, N,N-diethylformamide and propylene glycol monomethyl ether, N,N-diethylformamide and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and n-butyl acetate , cyclopentanone and n-butyl acetate, 4-hydroxy-4-methyl-2-pentanone and ethylene glycol monobutyl ether, cyclohexanone and propylene glycol diacetate, and cyclopentanone and propylene glycol diacetate. The kind and content of such a solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is in the range of 1 to 10% by mass. From the viewpoint of forming a uniform and defect-free coating film, it is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by weight.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型(TN方式、STN方式、IPS方式又はFFS方式等)若しくは垂直配向型の液晶配向膜に用いることができる。垂直配向型の液晶配向膜として、中でも、VA方式又はPSA(Polymer Sustained Alignment)方式等の垂直配向型の液晶表示素子に用いる液晶配向膜が好ましい。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent. The liquid crystal alignment film of the present invention can be used for horizontal alignment type (TN system, STN system, IPS system, FFS system, etc.) or vertical alignment type liquid crystal alignment film. As the vertically aligned liquid crystal alignment film, a liquid crystal alignment film used for a vertically aligned liquid crystal display element such as a VA system or a PSA (Polymer Sustained Alignment) system is preferable.
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。
<Liquid crystal display element>
The liquid crystal display element of the present invention comprises the liquid crystal alignment film. The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a process of polymerizing a polymerizable compound by at least one of irradiation with an active energy ray and heating while placing a substance and applying a voltage between electrodes.
 本発明の液晶表示素子は、例えば以下の工程(1)~(3)又は工程(1)~(4)をこの順に行う方法により製造することができる。
(1)液晶配向剤を、導電膜を有する一対の基板の少なくとも一方の基板上に塗布して塗膜を形成する工程
 パターニングされた透明導電膜が設けられている基板一対の基板の少なくとも一方の基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布して塗膜を作製する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
 また、IPS方式又はFFS方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いて、該基板の少なくとも一方の基板の一面に塗膜を形成してもよい。
The liquid crystal display device of the present invention can be manufactured, for example, by performing the following steps (1) to (3) or steps (1) to (4) in this order.
(1) A step of applying a liquid crystal aligning agent on at least one of a pair of substrates having a conductive film to form a coating film. A substrate provided with a patterned transparent conductive film. The liquid crystal aligning agent of the present invention is coated on one surface of the substrate by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an ink jet method, or the like to prepare a coating film. Here, the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
In the case of manufacturing an IPS or FFS liquid crystal display element, a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used. may be used to form a coating film on one surface of at least one of the substrates.
(2)塗膜を焼成する工程
 液晶配向剤塗布後、塗布した配向剤の液垂れ防止等の目的で、上記塗膜を焼成する。好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そして、加熱(ポストベーク)工程が実施されることが好ましい。このポストベーク温度は好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
(2) Step of Baking Coating Film After applying the liquid crystal aligning agent, the coating film is baked for the purpose of preventing dripping of the applied aligning agent. Preferably, preheating (prebaking) is performed first. The prebaking temperature is preferably 30 to 200°C, more preferably 40 to 150°C, and particularly preferably 40 to 100°C. The pre-baking time is preferably 0.25-10 minutes, more preferably 0.5-5 minutes. Then, a heating (post-baking) step is preferably performed. The post-bake temperature is preferably 80-300°C, more preferably 120-250°C. The post-bake time is preferably 5-200 minutes, more preferably 10-100 minutes. The thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 上記工程(1)および(2)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 The coating film formed in the above steps (1) and (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板表面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。 In the photo-alignment treatment, ultraviolet rays and visible rays including light with a wavelength of 150 to 800 nm, for example, can be used as the radiation to irradiate the coating film. When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is applied, the direction of irradiation is oblique.
(3)上記一対の基板の間に液晶層を形成して液晶セルを作製する工程
(3-1)VA方式の液晶表示素子を製造する場合
 上記のようにして、2枚の基板のうちの少なくとも一方に本発明の液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部にシール剤を塗布して貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
(3) Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell (3-1) When manufacturing a VA liquid crystal display element Two substrates having the liquid crystal alignment film of the present invention formed on at least one of them are prepared, and a liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned. The first method is a conventionally known method. First, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, a sealant is applied to the periphery of the two substrates and attached to each other, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealant to contact the film surface, and then the injection hole is opened. Seal.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。
 いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
The second method is a method called ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
(液晶組成物)
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例えば、トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物)を含んでもよい。
 液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、又はMLC-7026-100などが挙げられる。
 また、後述する重合性基を有する化合物を含有する液晶組成物として、メルク社製のMLC-3023が挙げられる。
(Liquid crystal composition)
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structures or terphenyl structures linked by alkyl groups).
The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, and MLC-7081 manufactured by Merck.
Negative liquid crystals include, for example, MLC-6608, MLC-6609, MLC-6610, and MLC-7026-100 manufactured by Merck.
As a liquid crystal composition containing a compound having a polymerizable group, which will be described later, MLC-3023 manufactured by Merck & Co., Ltd. can be mentioned.
(3-2)PSA方式の液晶表示素子を製造する場合
 重合性基を有する化合物を含有する液晶組成物を注入又は滴下する点以外は上記(3-1)と同様にする。重合性基を有する化合物としては、例えば、メソゲン構造と2つ以上の光重合性基又は熱重合性基を有する化合物を挙げることができる。メソゲン構造としては、2つ以上の芳香族基または脂肪族基が連結された構造が挙げられ、ビフェニル構造、ターフェニル構造、ナフタレン環、ビスフェノールAから2つのヒドロキシ基を除いた基、或いはこれらの構造が有する水素原子の一部がフッ素原子で置き換えられたフッ素原子含有構造が挙げられる。具体的な化合物として、4,4’-ジメタクリルオキシビフェニル、又は3-フルオロ-1,1’-ビフェニル-4,4’-ジイルジメタクリレートが挙げられる。
(3-2) Production of PSA type liquid crystal display device The procedure of (3-1) above is repeated except that the liquid crystal composition containing a compound having a polymerizable group is injected or dropped. Examples of compounds having a polymerizable group include compounds having a mesogenic structure and two or more photopolymerizable groups or thermally polymerizable groups. The mesogenic structure includes a structure in which two or more aromatic groups or aliphatic groups are linked, such as a biphenyl structure, a terphenyl structure, a naphthalene ring, a group obtained by removing two hydroxy groups from bisphenol A, or any of these A fluorine atom-containing structure in which a part of the hydrogen atoms of the structure are replaced with fluorine atoms can be mentioned. Specific compounds include 4,4'-dimethacryloxybiphenyl or 3-fluoro-1,1'-biphenyl-4,4'-diyl dimethacrylate.
(3-3)重合性基を有する化合物を含む液晶配向剤を用いて基板上に塗膜を形成した場合
 上記(3-1)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA方式の液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記した重合性基を有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
(3-3) When a coating film is formed on a substrate using a liquid crystal aligning agent containing a compound having a polymerizable group After performing the same as in (3-1) above, the liquid crystal through the step of irradiating ultraviolet rays described later. A method of manufacturing a display element may be employed. According to this method, a liquid crystal display device having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having the polymerizable group described above, and the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components. , more preferably 1 to 20 parts by mass. Further, the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
(4)液晶セルに光を照射する工程
 上記(3-2)又は(3-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
(4) Step of irradiating the liquid crystal cell with light The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light for irradiation, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable. A low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外側表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。また、上記液晶配向剤に含まれる重合体組成物は、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜、或いはこれら以外の用途、例えばカラーフィルタの保護膜、フレキシブルディスプレイのゲート絶縁膜、基板材料にも用いることができる。 The liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays. Further, the polymer composition contained in the liquid crystal aligning agent is a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, or a liquid crystal alignment film for a transmission scattering type liquid crystal light control element, Alternatively, it can also be used for applications other than these, such as protective films for color filters, gate insulating films for flexible displays, and substrate materials.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。化合物の略号、及び各特性の測定方法は以下のとおりである。 The present invention will be specifically described below with reference to examples, but the present invention should not be construed as being limited to these examples. Abbreviations of compounds and methods for measuring properties are as follows.
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000012
(tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000012
(ジアミン)
Figure JPOXMLDOC01-appb-C000013
(diamine)
Figure JPOXMLDOC01-appb-C000013
(溶媒)
 THF:テトラヒドロフラン
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル(ブチルセロソルブ)
(solvent)
THF: tetrahydrofuran NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether (butyl cellosolve)
[粘度]
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
[分子量の測定]
 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(GPC KD-803,GPC KD-805の直列)(昭和電工社製)を用いて、以下の条件で測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
[viscosity]
Measurement was performed using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL (milliliter), a cone rotor TE-1 (1°34', R24), and a temperature of 25°C.
[Measurement of molecular weight]
Room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko), column (GPC KD-803, GPC KD-805 in series) (manufactured by Showa Denko), measured under the following conditions. did.
Column temperature: 50°C
Eluent: N,N-dimethylformamide (as additives, lithium bromide monohydrate (LiBr.H 2 O) at 30 mmol/L (liter), phosphoric acid/anhydrous crystals (o-phosphoric acid) at 30 mmol/L (liter) L, tetrahydrofuran (THF) is 10 mL/L)
Flow rate: 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight; 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratories).
[特定ジアミン(DA-1)~(DA-2)の合成]
 式(DA-1)~(DA-2)で表される化合物の合成法を、以下に詳述する。なお、式(DA-1)~(DA-2)で表される化合物は、文献等未公開の新規化合物である。
[Synthesis of specific diamines (DA-1) to (DA-2)]
Methods for synthesizing the compounds represented by formulas (DA-1) to (DA-2) are detailed below. The compounds represented by the formulas (DA-1) to (DA-2) are novel compounds that have not been disclosed in the literature.
H-NMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「Varian NMR System 400NB」(Varian製)400MHz、「AVANCE III」(BRUKER製)500MHz。
 溶媒:重水素化ジメチルスルホキシド(DMSO-d、標準物質:テトラメチルシラン)。
<Measurement of 1 H-NMR>
Apparatus: Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) "Varian NMR System 400NB" (manufactured by Varian) 400 MHz, "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: deuterated dimethylsulfoxide (DMSO-d 6 , standard: tetramethylsilane).
<実施例1-1:DA-1の合成>
(DA-1-1の合成)
Figure JPOXMLDOC01-appb-C000014
<Example 1-1: Synthesis of DA-1>
(Synthesis of DA-1-1)
Figure JPOXMLDOC01-appb-C000014
 500mLの四つ口フラスコへ、3,5-ジニトロベンジルアルコール(19.9g、100mmol)、THF(118g)、及びトリエチルアミン(12.5g,123mmol)を入れ、氷浴で5℃まで冷却した後、メタンスルホニルクロリド(12.5g、109mmol)を滴下した。反応終了後、析出したトリエチルアミン塩をろ過により除去し、得られたろ液を濃縮して粗物のDA-1-1を得た。DA-1-1の粗物、及び、2-プロパノール(68.0g)の混合物を80℃でスラリー撹拌を1時間行った後、室温まで冷却してからろ過により結晶を回収した。回収した結晶を50℃で真空乾燥させることでDA-1-1(収量:20.9g、75.6mmol、収率:75.6%、黄色固体)を得た。 3,5-Dinitrobenzyl alcohol (19.9 g, 100 mmol), THF (118 g), and triethylamine (12.5 g, 123 mmol) were placed in a 500 mL four-necked flask and cooled to 5°C in an ice bath. Methanesulfonyl chloride (12.5 g, 109 mmol) was added dropwise. After completion of the reaction, the precipitated triethylamine salt was removed by filtration, and the resulting filtrate was concentrated to obtain crude DA-1-1. A mixture of crude DA-1-1 and 2-propanol (68.0 g) was subjected to slurry stirring at 80° C. for 1 hour, then cooled to room temperature and filtered to collect crystals. The collected crystals were vacuum-dried at 50° C. to obtain DA-1-1 (yield: 20.9 g, 75.6 mmol, yield: 75.6%, yellow solid).
(DA-1-2の合成)
Figure JPOXMLDOC01-appb-C000015
(Synthesis of DA-1-2)
Figure JPOXMLDOC01-appb-C000015
 1Lの四つ口フラスコへDA-1-1(14.0g、50.7mmol)、炭酸カリウム(12.4g,90.0mmol)、ヒドロキノン(90.6g,823mmol)、及びエタノール(362g)を加え、45℃で5時間反応させた。反応後、2Lビーカーへ反応液と水(1200g)を加え、DA-1-2の粗物を析出させた。析出物をろ過により回収し、50℃で真空乾燥を行った後、DA-1-2の粗物へメタノール(350g)及びエタノール(190g)を加えて60℃に加温し溶解させた。不溶物をろ過により取り除き、得られたろ液へ、水(1000g)を加えてDA-1-2を析出させた。析出した固体をろ過により回収し、50℃で真空乾燥させてDA-1-2(収量:10.0g、34.5mmol、収率:68.0%、黄色固体)を得た。 DA-1-1 (14.0 g, 50.7 mmol), potassium carbonate (12.4 g, 90.0 mmol), hydroquinone (90.6 g, 823 mmol), and ethanol (362 g) were added to a 1 L four-necked flask. , and 45° C. for 5 hours. After the reaction, the reaction solution and water (1200 g) were added to a 2 L beaker to precipitate crude DA-1-2. The precipitate was collected by filtration and vacuum-dried at 50° C. Methanol (350 g) and ethanol (190 g) were added to the crude DA-1-2 and heated to 60° C. to dissolve. Insoluble matter was removed by filtration, and water (1000 g) was added to the resulting filtrate to precipitate DA-1-2. The precipitated solid was collected by filtration and vacuum dried at 50° C. to obtain DA-1-2 (yield: 10.0 g, 34.5 mmol, yield: 68.0%, yellow solid).
(DA-1の合成)
Figure JPOXMLDOC01-appb-C000016
(Synthesis of DA-1)
Figure JPOXMLDOC01-appb-C000016
 500mL四つ口フラスコへ、DA-1-2(9.98g、34.4mmol)、THF(120g)、及びカーボン担持白金(担持量3質量%、0.500g)加え、室温、水素雰囲気下で反応させた。反応終了後、カーボン担持白金をろ過により取り除き、得られたろ液を濃縮して析出した結晶を、50℃で真空乾燥させてDA-1(収量:7.71g、33.5mmol、収率:97.4%、橙色固体)を得た。以下に示すH-NMRの結果から、この固体がDA-1であることを確認した。
 H-NMR(500MHz,DMSO-d):δ(ppm=)8.86(s,1H),6.75(d,2H,J=9.0Hz),6.64(d,2H,J=9.0Hz)、5.83(d,2H,J=1.9Hz)、5.74(t,1H,J=2.0Hz),4.71(br,4H),4.66(s,2H).
To a 500 mL four-necked flask, DA-1-2 (9.98 g, 34.4 mmol), THF (120 g), and carbon-supported platinum (supported amount 3% by mass, 0.500 g) were added, at room temperature under a hydrogen atmosphere. reacted. After completion of the reaction, carbon-supported platinum was removed by filtration, and the resulting filtrate was concentrated and the precipitated crystals were vacuum-dried at 50° C. to obtain DA-1 (yield: 7.71 g, 33.5 mmol, yield: 97 .4%, orange solid). From the 1 H-NMR results shown below, this solid was confirmed to be DA-1.
1 H-NMR (500 MHz, DMSO-d 6 ): δ (ppm=) 8.86 (s, 1H), 6.75 (d, 2H, J=9.0Hz), 6.64 (d, 2H, J = 9.0 Hz), 5.83 (d, 2H, J = 1.9 Hz), 5.74 (t, 1H, J = 2.0 Hz), 4.71 (br, 4H), 4.66 ( s, 2H).
<実施例1-2:DA-2の合成>
 下記に示す経路に従って、ジアミンDA-2を合成した。
Figure JPOXMLDOC01-appb-C000017
<Example 1-2: Synthesis of DA-2>
Diamine DA-2 was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000017
(DA-2-1の合成)
 2000mLの四つ口フラスコに、テトラヒドロフラン(361g)、3,4-ジヒドロキシ安息香酸エチル(90.2g、495mmol)及びN,N-ジイソプロピルエチルアミン(320g、2.48mol)を仕込み、窒素雰囲気氷冷条件下でクロロメチルメチルエーテル(MOMCl、179g、2.22mol)を滴下した。滴下後、室温条件下で原料が消失するまで反応させた。反応終了後、酢酸エチル(1350g)で反応液を希釈し、純水(720g)で有機相を洗浄した。続いて、2.0mоl/L塩酸水溶液(720g)で2回、純水(720g)で3回有機相を洗浄した。得られた有機相を減圧濃縮することで薄黄色オイル状の粗物を得た。
 得られた粗物にエタノール(400g)及び純水(274g)を加え、更に水酸化ナトリウム(21.8g)を仕込み、室温条件下で20時間反応させ、加水分解させた。反応終了後、1.0mоl/L塩酸水溶液(600mL)を反応液に加えて結晶を析出させ、純水(266g)を加えてスラリー洗浄した。続いて、ろ過、ろ物を純水洗浄、ヘキサン洗浄し、乾燥することでDA-2-1を白色結晶として得た(収量:111g、458mmol、収率:93%)。
(Synthesis of DA-2-1)
A 2000 mL four-necked flask was charged with tetrahydrofuran (361 g), ethyl 3,4-dihydroxybenzoate (90.2 g, 495 mmol) and N,N-diisopropylethylamine (320 g, 2.48 mol), under ice cooling conditions in a nitrogen atmosphere. Chloromethyl methyl ether (MOMCl, 179 g, 2.22 mol) was added dropwise below. After the dropwise addition, the reaction was allowed to proceed under room temperature conditions until the raw materials disappeared. After completion of the reaction, the reaction solution was diluted with ethyl acetate (1350 g), and the organic phase was washed with pure water (720 g). Subsequently, the organic phase was washed twice with a 2.0 mol/L hydrochloric acid aqueous solution (720 g) and three times with pure water (720 g). The resulting organic phase was concentrated under reduced pressure to obtain a pale yellow oily crude product.
Ethanol (400 g) and pure water (274 g) were added to the resulting crude product, sodium hydroxide (21.8 g) was added, and the mixture was reacted at room temperature for 20 hours for hydrolysis. After completion of the reaction, a 1.0 mol/L hydrochloric acid aqueous solution (600 mL) was added to the reaction solution to precipitate crystals, and pure water (266 g) was added for slurry washing. Subsequently, the filtrate was washed with pure water and hexane, and dried to obtain DA-2-1 as white crystals (yield: 111 g, 458 mmol, yield: 93%).
(DA-2-2の合成)
 2000mLの四つ口フラスコに、テトラヒドロフラン(452g)中、3,5-ジニトロベンジルアルコール(75.2g、379mmol)、DA-2-1(106g、438mmol)、4-ジメチルアミノピリジン(DMAP、4.62g)、及び1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC、94.5g)を仕込み、窒素雰囲気室温条件下で4時間反応させた。反応終了後、純水(810g)に反応液を注ぎ込むことで結晶を析出させ、ろ過、ろ物を純水洗浄、メタノール洗浄を実施した。続いて、得られたろ物をメタノール(180g)でスラリー洗浄し、ろ過、乾燥することでDA-2-2(収量:156g、369mmol、収率:97%、薄黄色結晶)を得た。
(Synthesis of DA-2-2)
In a 2000 mL four-necked flask were added 3,5-dinitrobenzyl alcohol (75.2 g, 379 mmol), DA-2-1 (106 g, 438 mmol), 4-dimethylaminopyridine (DMAP, 4.5 g) in tetrahydrofuran (452 g). 62 g) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, 94.5 g) were charged and reacted for 4 hours in a nitrogen atmosphere at room temperature. After completion of the reaction, the reaction solution was poured into pure water (810 g) to precipitate crystals, which was then filtered, and the filter cake was washed with pure water and methanol. Subsequently, the obtained filter cake was slurry-washed with methanol (180 g), filtered and dried to obtain DA-2-2 (yield: 156 g, 369 mmol, yield: 97%, pale yellow crystals).
(DA-2-3の合成)
 2000mLの四つ口フラスコに、テトラヒドロフラン(195g)及びメタノール(327g)中、4.0mоl/L塩酸水溶液(200g)とDA-2-2(131g、310mmol)を仕込み、50℃加熱条件下で約12時間反応させた。反応終了後、酢酸エチル(1310g)とトルエン(432g)を反応液に加えて、2相分離させた。塩酸相を除去後、有機層を純水(400g)で3回洗浄した。有機相を減圧濃縮することで内部総重量を555gとし、2-プロパノール(262g)を加えて氷冷撹拌することで結晶を析出させた。析出した結晶をろ過、乾燥することでDA-2-3(収量:80.3g、240mmol、収率:78%、黄色結晶)を得た。
(Synthesis of DA-2-3)
A 2000 mL four-necked flask was charged with 4.0 mol/L hydrochloric acid aqueous solution (200 g) and DA-2-2 (131 g, 310 mmol) in tetrahydrofuran (195 g) and methanol (327 g), and heated at 50° C. to about The reaction was allowed to proceed for 12 hours. After completion of the reaction, ethyl acetate (1310 g) and toluene (432 g) were added to the reaction solution to separate two phases. After removing the hydrochloric acid phase, the organic layer was washed with pure water (400 g) three times. The organic phase was concentrated under reduced pressure to a total internal weight of 555 g, 2-propanol (262 g) was added, and the mixture was stirred under ice cooling to precipitate crystals. Precipitated crystals were filtered and dried to obtain DA-2-3 (yield: 80.3 g, 240 mmol, yield: 78%, yellow crystals).
(DA-2の合成)
 1000mLの四つ口フラスコに、テトラヒドロフラン(240g)及びメタノール(80g)中、DA-2-3(39.2g、117mmol)とカーボン担持白金(担持量3質量%、3.13g)を仕込み、水素雰囲気40℃加熱条件下で2日間反応させた。反応終了後、ろ過、減圧濃縮することで内部総重量を35gとした。続いて、メタノール(120g)を加えて結晶を析出させ、濾過、乾燥することでDA-2(収量:28.0g、102mmol、収率:87%、薄黄色結晶)を得た。
 H-NMR(400MHz,DMSO-d):δ(ppm=)9.60(s,2H),7.38(s,1H),7.32-7.38(m,1H),6.81(d,1H,J=8.0Hz),5.83(d,2H,J=1.6Hz),5.76-5.77(m,1H),4.96(s,2H),4.78(s,4H)
(Synthesis of DA-2)
A 1000 mL four-necked flask was charged with DA-2-3 (39.2 g, 117 mmol) and carbon-supported platinum (3 mass% supported, 3.13 g) in tetrahydrofuran (240 g) and methanol (80 g), and hydrogen was added. The reaction was carried out for 2 days under heating conditions of 40° C. atmosphere. After completion of the reaction, the total internal weight was adjusted to 35 g by filtering and concentrating under reduced pressure. Subsequently, methanol (120 g) was added to precipitate crystals, which were filtered and dried to obtain DA-2 (yield: 28.0 g, 102 mmol, yield: 87%, pale yellow crystals).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm=) 9.60 (s, 2H), 7.38 (s, 1H), 7.32-7.38 (m, 1H), 6 .81 (d, 1H, J = 8.0Hz), 5.83 (d, 2H, J = 1.6Hz), 5.76-5.77 (m, 1H), 4.96 (s, 2H) , 4.78(s, 4H)
[重合体の合成]
<実施例2-1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.921g、4.00mmol)、DA-3(1.08g、10.0mmol)、DA-4(2.28g、6.00mmol)、CA-1(2.50g、10.0mmol)及びNMP(27.1g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-2(1.94g、9.90mmol)及びNMP(7.77g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(1)(粘度:680mPa・s)を得た。このポリアミック酸のMnは14,360、Mwは49,800であった。
[Synthesis of polymer]
<Example 2-1>
DA-1 (0.921 g, 4.00 mmol), DA-3 (1.08 g, 10.0 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.0 mmol) and NMP (27.1 g) were added and stirred at 60° C. for 3 hours while purging with nitrogen. After that, CA-2 (1.94 g, 9.90 mmol) and NMP (7.77 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (1) having a solid content concentration of 20% by mass (viscosity : 680 mPa·s). This polyamic acid had an Mn of 14,360 and an Mw of 49,800.
<実施例2-2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(1.10g、4.00mmol)、DA-3(1.08g、10.00mmol)、DA-4(2.28g、6.00mmol)、CA-1(2.50g、10.00mmol)及びNMP(27.8g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-2(1.93g、9.86mmol)及びNMP(7.73g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(2)(粘度:710mPa・s)を得た。このポリアミック酸のMnは10,800、Mwは34,800であった。
<Example 2-2>
DA-2 (1.10 g, 4.00 mmol), DA-3 (1.08 g, 10.00 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.00 mmol) and NMP (27.8 g) were added and stirred at 60° C. for 3 hours while purging with nitrogen. Then, CA-2 (1.93 g, 9.86 mmol) and NMP (7.73 g) were added and stirred at 40° C. for 3 hours to give a polyamic acid solution (2) with a solid content concentration of 20% by mass (viscosity : 710 mPa·s) was obtained. This polyamic acid had an Mn of 10,800 and an Mw of 34,800.
<実施例2-3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(1.38g、6.00mmol)、DA-3(0.973g、9.00mmol)、CA-2(2.90g、14.8mmol)及びNMP(30.0g)を加えて、40℃で3時間撹拌することで、固形分濃度15質量%のポリアミック酸溶液(3)(粘度:450mPa・s)を得た。このポリアミック酸のMnは12,100、Mwは28,900であった。
<Example 2-3>
DA-1 (1.38 g, 6.00 mmol), DA-3 (0.973 g, 9.00 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (30.0 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (3) with a solid concentration of 15% by mass (viscosity: 450 mPa·s). This polyamic acid had an Mn of 12,100 and an Mw of 28,900.
<実施例2-4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(1.65g、6.00mmol)、DA-3(0.973g、9.00mmol)、CA-2(2.91g、14.8mmol)及びNMP(31.3g)を加えて、40℃で3時間撹拌することで、固形分濃度15質量%のポリアミック酸溶液(4)(粘度:520mPa・s)を得た。このポリアミック酸のMnは14,500、Mwは32,900であった。
<Example 2-4>
DA-2 (1.65 g, 6.00 mmol), DA-3 (0.973 g, 9.00 mmol), CA-2 (2.91 g, 14.8 mmol) and NMP (31.3 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (4) with a solid concentration of 15% by mass (viscosity: 520 mPa·s). This polyamic acid had an Mn of 14,500 and an Mw of 32,900.
<実施例2-5>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.691g、3.00mmol)、DA-3(0.811g、7.50mmol)、DA-4(1.71g、4.50mmol)、CA-2(2.90g、14.8mmol)及びNMP(24.5g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸の溶液(5)(粘度:680mPa・s)を得た。このポリアミック酸のMnは11,100、Mwは25,600であった。
<Example 2-5>
DA-1 (0.691 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (24.5 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 5) (Viscosity: 680 mPa·s) was obtained. This polyamic acid had an Mn of 11,100 and an Mw of 25,600.
<実施例2-6>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(0.822g、3.00mmol)、DA-3(0.811g、7.50mmol)、DA-4(1.71g、4.50mmol)、CA-2(2.89g、14.8mmol)及びNMP(25.0g)を加えて、40℃で3時間撹拌することで、、固形分濃度20質量%のポリアミック酸の溶液(6)(粘度:640mPa・s)を得た。このポリアミック酸のMnは13,400、Mwは32,000であった。
<Example 2-6>
DA-2 (0.822 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-2 (2.89 g, 14.8 mmol) and NMP (25.0 g) were added and stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution with a solid content concentration of 20% by mass. (6) (viscosity: 640 mPa·s) was obtained. This polyamic acid had an Mn of 13,400 and an Mw of 32,000.
<実施例2-7>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.691g、3.00mmol)、DA-3(0.811g、7.50mmol)、DA-4(1.71g、4.50mmol)、CA-3(3.23g、14.8mmol)及びNMP(25.8g)を加えて、室温で3時間撹拌することで、、固形分濃度20質量%のポリアミック酸の溶液(7)(粘度:670mPa・s)を得た。このポリアミック酸のMnは14,300、Mwは30,900であった。
<Example 2-7>
DA-1 (0.691 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-3 (3.23 g, 14.8 mmol) and NMP (25.8 g) were added and stirred at room temperature for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 7) (Viscosity: 670 mPa·s) was obtained. This polyamic acid had an Mn of 14,300 and an Mw of 30,900.
<実施例2-8>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(0.823g、3.00mmol)、DA-3(0.811g、7.50mmol)、DA-4(1.71g、4.50mmol)、CA-3(3.21g、14.8mmol)及びNMP(26.2g)を加えて、室温で3時間撹拌することで、、固形分濃度20質量%のポリアミック酸の溶液(8)(粘度:720mPa・s)を得た。このポリアミック酸のMnは15,300、Mwは32,600であった。
<Example 2-8>
DA-2 (0.823 g, 3.00 mmol), DA-3 (0.811 g, 7.50 mmol), DA-4 (1.71 g, 4.50 mmol), CA-3 (3.21 g, 14.8 mmol) and NMP (26.2 g) were added and stirred at room temperature for 3 hours to obtain a polyamic acid solution with a solid concentration of 20% by mass ( 8) (Viscosity: 720 mPa·s) was obtained. This polyamic acid had an Mn of 15,300 and an Mw of 32,600.
<比較例2-1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-5(0.553g、4.00mmol)、DA-3(1.08g、10.0mmol)、DA-4(2.28g、6.00mmol)、CA-1(2.50g、10.0mmol)及びNMP(25.7g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-2(1.91g、9.76mmol)及びNMP(7.66g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(9)(粘度:760mPa・s)を得た。このポリアミック酸のMnは11,300、Mwは25,880であった。
<Comparative Example 2-1>
DA-5 (0.553 g, 4.00 mmol), DA-3 (1.08 g, 10.0 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.0 mmol) and NMP (25.7 g) were added and stirred at 60° C. for 3 hours while purging with nitrogen. Then, CA-2 (1.91 g, 9.76 mmol) and NMP (7.66 g) were added and stirred at 40° C. for 3 hours to give a polyamic acid solution (9) with a solid content concentration of 20% by mass (viscosity : 760 mPa·s) was obtained. This polyamic acid had an Mn of 11,300 and an Mw of 25,880.
<比較例2-2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(1.51g、14.0mmol)、DA-4(2.28g、6.00mmol)、CA-1(2.50g、10.0mmol)及びNMP(25.2g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-2(1.90g、9.70mmol)及びNMP(7.61g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(10)(粘度:770mPa・s)を得た。このポリアミック酸のMnは11,290、Mwは21,800であった。
<Comparative Example 2-2>
DA-3 (1.51 g, 14.0 mmol), DA-4 (2.28 g, 6.00 mmol), CA-1 (2.50 g, 10.0 mmol) and NMP (25.2 g) were added, and the mixture was stirred at 60°C for 3 hours while purging with nitrogen. After that, CA-2 (1.90 g, 9.70 mmol) and NMP (7.61 g) were added and stirred at 40 ° C. for 3 hours to give a polyamic acid solution (10) with a solid content concentration of 20% by mass (viscosity : 770 mPa·s). This polyamic acid had an Mn of 11,290 and an Mw of 21,800.
<比較例2-3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-5(0.829g、6.00mmol)、DA-3(0.973g、9.00mmol)、CA-2(2.90g、14.8mmol)及びNMP(26.7g)を加えて、40℃で3時間撹拌することで、固形分濃度15質量%のポリアミック酸溶液(11)(粘度:460mPa・s)を得た。このポリアミック酸のMnは15,200、Mwは23,800であった。
<Comparative Example 2-3>
DA-5 (0.829 g, 6.00 mmol), DA-3 (0.973 g, 9.00 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (26.7 g) were added and stirred at 40° C. for 3 hours to obtain a polyamic acid solution (11) with a solid concentration of 15% by mass (viscosity: 460 mPa·s). This polyamic acid had an Mn of 15,200 and an Mw of 23,800.
<比較例2-4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(1.62g、15.0mmol)、CA-2(2.90g、14.8mmol)及びNMP(25.6g)を加えて、40℃で3時間撹拌することで、固形分濃度15質量%のポリアミック酸溶液(12)(粘度:520mPa・s)を得た。このポリアミック酸のMnは10,600、Mwは41,000であった。
<Comparative Example 2-4>
DA-3 (1.62 g, 15.0 mmol), CA-2 (2.90 g, 14.8 mmol) and NMP (25.6 g) were added to a 50 mL four-necked flask equipped with a stirrer and nitrogen inlet tube. Then, the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (12) (viscosity: 520 mPa·s) with a solid concentration of 15% by mass. This polyamic acid had an Mn of 10,600 and an Mw of 41,000.
 上記実施例及び比較例に用いたモノマー成分の仕様を下記表1に示す。 Table 1 below shows the specifications of the monomer components used in the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[液晶配向剤の調製]
<実施例3-1>
 実施例2-1で得られたポリアミック酸溶液(1)(4.00g)にNMP(8.00g)及びBCS(8.00g)を加えて、室温で3時間撹拌することで、液晶配向剤(A-1)を得た。
[Preparation of Liquid Crystal Aligning Agent]
<Example 3-1>
NMP (8.00 g) and BCS (8.00 g) were added to the polyamic acid solution (1) (4.00 g) obtained in Example 2-1 and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent. (A-1) was obtained.
<実施例3-2、3-5~3-8、比較例3-1、3-2>
 ポリアミック酸溶液(1)の代わりにそれぞれポリアミック酸溶液(2)、(5)~(10)を用いた以外は、実施例3-1と同様にして、実施例3-2、3-5~3-8、比較例3-1、3-2の液晶配向剤(A-2)、(A-5)~(A-8)、(B-1)、(B-2)を得た。
<Examples 3-2, 3-5 to 3-8, Comparative Examples 3-1, 3-2>
Examples 3-2, 3-5 to 3-2 were prepared in the same manner as in Example 3-1 except that the polyamic acid solutions (2) and (5) to (10) were used instead of the polyamic acid solution (1). 3-8, Comparative Examples 3-1 and 3-2 liquid crystal aligning agents (A-2), (A-5) to (A-8), (B-1) and (B-2) were obtained.
<実施例3-3>
 実施例2-3で得られたポリアミック酸溶液(3)(4.00g)にNMP(5.00g)及びBCS(6.00g)を加えて、室温で3時間撹拌することで、液晶配向剤(A-3)を得た。
<Example 3-3>
NMP (5.00 g) and BCS (6.00 g) were added to the polyamic acid solution (3) (4.00 g) obtained in Example 2-3 and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent. (A-3) was obtained.
<実施例3-4、比較例3-3、3-4>
 ポリアミック酸溶液(3)の代わりにそれぞれポリアミック酸溶液(4)、(11)、(12)を用いた以外は、実施例3-3と同様にして、実施例3-4、比較例3-3、3-4の液晶配向剤(A-4)、(B-3)、(B-4)を得た。上記実施例及び比較例で得られた液晶配向剤の仕様を下記表2に示す。
<Example 3-4, Comparative Examples 3-3, 3-4>
Example 3-4, Comparative Example 3- Liquid crystal aligning agents (A-4), (B-3) and (B-4) of 3 and 3-4 were obtained. Specifications of the liquid crystal aligning agents obtained in the above Examples and Comparative Examples are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記の通り得られた液晶配向剤(A-1)~(A-8)、(B-1)~(B-4)には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。得られた液晶配向剤を用いて、ラビング耐性、シール密着性、電圧保持率及び垂直配向性の評価を行った。 In the liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained as described above, no abnormality such as turbidity or precipitation was observed, and the solution was uniform. One thing has been confirmed. Using the obtained liquid crystal aligning agent, rubbing resistance, seal adhesion, voltage holding ratio and vertical alignment were evaluated.
[ラビング耐性の評価]
 上記で得られた液晶配向剤(A-1)~(A-8)、(B-1)~(B-4)を、全面にITO電極が付いたガラス基板のITO面にそれぞれスピンコートし、70℃のホットプレート上で90秒間乾燥させた。その後、230℃の赤外線加熱炉で30分間焼成を行い、膜厚100nmの塗膜を形成させて、液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布(吉川化工製、YA-20R)でラビング処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.6mm)した。本基板を顕微鏡にて観察を行い、膜面にラビングによるスジが見られなかったものを「良好」、スジがみられたものを「不良」と定義して評価を行った。結果を下記表3に示す。
[Evaluation of rubbing resistance]
The liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained above were spin-coated onto the ITO surface of a glass substrate having an ITO electrode over the entire surface. and dried on a hot plate at 70° C. for 90 seconds. After that, it was baked in an infrared heating furnace at 230° C. for 30 minutes to form a coating film having a thickness of 100 nm, thereby obtaining a substrate with a liquid crystal alignment film. This liquid crystal alignment film was rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako Co., Ltd.) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, pushing length: 0.6 mm). The substrate was observed with a microscope, and evaluation was performed by defining "good" when streaks due to rubbing were not observed on the film surface and "bad" when streaks were observed. The results are shown in Table 3 below.
[シール密着性評価サンプルの作製]
 上記で得られた液晶配向剤(A-1)~(A-8)、(B-1)~(B-4)を、縦30mm×横40mm×厚み1.1mmの長方形の透明電極付きガラス基板にそれぞれスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に直径4μmのビーズスペーサーを塗布した後、シール剤(協立化学産業社製723K1)を塗布した。次いで、これらの基板の液晶配向膜面が向き合い、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、365nmの波長換算で4J/cmの紫外線を照射し、120℃で1時間熱硬化させて、密着性評価用のサンプルを作製した。
[Preparation of seal adhesion evaluation sample]
The liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained above are combined into a rectangular transparent electrode-attached glass having a length of 30 mm, a width of 40 mm, and a thickness of 1.1 mm. Each substrate was spin-coated, dried on a hot plate at 70° C. for 90 seconds, and then baked in a hot air circulating oven at 230° C. for 20 minutes to form a liquid crystal alignment film with a thickness of 100 nm.
Two substrates thus obtained were prepared, and a bead spacer with a diameter of 4 μm was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealant (723K1 manufactured by Kyoritsu Chemical Industry Co., Ltd.) was applied. Then, these substrates were bonded together so that the liquid crystal alignment film surfaces of the substrates faced each other and the overlapping width of the substrates was 1 cm. At that time, the dropping amount of the sealant was adjusted so that the diameter of the sealant after bonding was 3 mm. After fixing the two laminated substrates with a clip, they were irradiated with ultraviolet rays of 4 J/cm 2 in terms of wavelength of 365 nm, and thermally cured at 120° C. for 1 hour to prepare a sample for adhesion evaluation.
[シール密着性の評価]
 密着性の評価は、卓上型精密万能試験機(島津製作所社製AGS-X 500N)を用いて行った。得られた評価サンプルの上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の強度(N)を測定した。そして、計測したシール剤の直径(mm)で圧力(N)を規格化した値を用いてシール密着性(N/mm)の評価を実施した。結果を下記表3に示す。なお、剥離する際の強度及び計測したシール剤の直径は、それぞれ、以下の通りであった。
 ・実施例3-1:強度:16.6N、直径:3.3mm
 ・実施例3-2:強度:15.4N、直径:3.1mm
 ・実施例3-3:強度:15.9N、直径:3.2mm
 ・実施例3-4:強度:16.6N、直径:3.3mm
 ・実施例3-5:強度:14.9N、直径:2.9mm
 ・実施例3-6:強度:15.4N、直径:3.1mm
 ・実施例3-7:強度:16.4N、直径:3.3mm
 ・実施例3-8:強度:15.6N、直径:3.1mm
 ・比較例3-1:強度:12.0N、直径:3.1mm
 ・比較例3-2:強度:8.6N、直径:3.2mm
 ・比較例3-3:強度:13.0N、直径:3.1mm
 ・比較例3-4:強度:11.5N、直径:3.8mm
[Evaluation of seal adhesion]
Adhesion was evaluated using a desktop precision universal tester (AGS-X 500N manufactured by Shimadzu Corporation). After the edges of the upper and lower substrates of the obtained evaluation sample were fixed, the substrates were pushed in from the upper central portion, and the peeling strength (N) was measured. Then, the seal adhesion (N/mm) was evaluated using a value obtained by normalizing the pressure (N) with the measured diameter (mm) of the sealant. The results are shown in Table 3 below. The peeling strength and the measured diameter of the sealant were as follows.
・Example 3-1: strength: 16.6 N, diameter: 3.3 mm
・Example 3-2: strength: 15.4 N, diameter: 3.1 mm
・Example 3-3: strength: 15.9 N, diameter: 3.2 mm
・Example 3-4: Strength: 16.6 N, diameter: 3.3 mm
・Example 3-5: strength: 14.9 N, diameter: 2.9 mm
・Example 3-6: strength: 15.4 N, diameter: 3.1 mm
・Example 3-7: Strength: 16.4 N, diameter: 3.3 mm
・Example 3-8: strength: 15.6 N, diameter: 3.1 mm
・Comparative Example 3-1: Strength: 12.0 N, Diameter: 3.1 mm
・Comparative Example 3-2: Strength: 8.6 N, Diameter: 3.2 mm
・Comparative Example 3-3: Strength: 13.0 N, Diameter: 3.1 mm
・Comparative Example 3-4: Strength: 11.5 N, Diameter: 3.8 mm
[電圧保持率評価用の液晶セルの作製]
 上記で得られた液晶配向剤(A-1)~(A-8)、(B-1)~(B-4)を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤をITO電極付きガラス基板にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布し、熱硬化性シール剤(三井化学社製、XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。次に、この液晶セルに15VのDC電圧を印加した状態で、液晶セルの外側から波長325nm以下のカットフィルターを通したUVを10J/cm照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。尚、上記液晶配向剤(A-1)~(A-8)、(B-1)~(B-4)を用いて得られる液晶表示素子はいずれも、均一な液晶配向性を示した。
[Preparation of liquid crystal cell for voltage holding rate evaluation]
Using the liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) obtained above, liquid crystal cells were produced in the following procedure. A liquid crystal aligning agent was spin-coated on a glass substrate with ITO electrodes, dried on a hot plate at 70° C. for 90 seconds, and then baked in an infrared heating furnace at 230° C. for 20 minutes to form a liquid crystal alignment film having a thickness of 100 nm. . Two substrates with this liquid crystal alignment film are prepared, and a bead spacer with a diameter of 4 μm (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, and a thermosetting sealant ( XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell. Next, while a DC voltage of 15 V was applied to the liquid crystal cell, 10 J/cm 2 of UV was irradiated from the outside of the liquid crystal cell through a cut filter with a wavelength of 325 nm or less. The UV illuminance was measured using UV-MO3A manufactured by ORC. Then, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32/ A-1) was irradiated for 30 minutes. All of the liquid crystal display elements obtained using the liquid crystal aligning agents (A-1) to (A-8) and (B-1) to (B-4) exhibited uniform liquid crystal alignment.
[電圧保持率の評価]
 UV照射後の電圧保持率評価用の液晶セルを用いて電圧保持率を測定した。60℃の熱風循環オーブン中で1Vの電圧を60μsec間印加し、その後1667msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。値が高いほど良好である。結果を下記表3に示す。
[Evaluation of voltage holding ratio]
A voltage retention rate was measured using a liquid crystal cell for voltage retention rate evaluation after UV irradiation. A voltage of 1 V was applied for 60 μsec in a hot air circulating oven at 60° C., the voltage was measured after 1667 msec, and how much voltage was retained was calculated as a voltage retention rate. VHR-1 manufactured by Toyo Technica Co., Ltd. was used to measure the voltage holding rate. The higher the value, the better. The results are shown in Table 3 below.
[垂直配向性評価用の液晶セルの作製]
 上記で得られた液晶配向剤(A-5)~(A-8)を用いて下記に示すような手順で液晶セルの作製を行った。
 液晶配向剤を画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、70℃のホットプレートで90秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。また、ITO電極付きガラス基板にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。これらの液晶配向膜の形成条件を、以下、「通常条件」と称する。
 液晶配向膜の垂直配向性評価の過酷条件として、上記それぞれの基板において焼成条件を230℃の赤外線加熱炉で60分間に代えた以外は、通常条件と同様にして膜厚100nmの液晶配向膜を形成した。
 通常条件で作製した液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布し、熱硬化性シール剤(三井化学社製、XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。次に、この液晶セルに15VのDC電圧を印加した状態で、液晶セルの外側から波長325nm以下のカットフィルターを通したUVを10J/cm照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。
 過酷条件で作製した液晶配向膜付き基板を用いた以外は、同様にして、液晶セルの作製及びUV照射を行った。
 尚、上記液晶配向剤(A-5)~(A-8)を用いて得られる液晶表示素子はいずれも、均一な液晶配向性を示した。
[Preparation of Liquid Crystal Cell for Vertical Alignment Evaluation]
Using the liquid crystal aligning agents (A-5) to (A-8) obtained above, a liquid crystal cell was produced in the following procedure.
A liquid crystal aligning agent was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern with a pixel size of 100 μm × 300 μm and a line/space of 5 μm was formed. C. for 20 minutes in an infrared heating furnace to form a liquid crystal alignment film with a thickness of 100 nm. Also, a glass substrate with an ITO electrode was spin-coated, dried on a hot plate at 70° C. for 90 seconds, and then baked in an infrared heating furnace at 230° C. for 20 minutes to form a liquid crystal alignment film with a thickness of 100 nm. These conditions for forming the liquid crystal alignment film are hereinafter referred to as "normal conditions".
A liquid crystal alignment film having a thickness of 100 nm was prepared in the same manner as the normal conditions except that the baking conditions for each of the above substrates were changed to 60 minutes in an infrared heating furnace at 230 ° C. as the severe conditions for evaluating the vertical alignment properties of the liquid crystal alignment film. formed.
Two substrates with a liquid crystal alignment film prepared under normal conditions are prepared, and a bead spacer with a diameter of 4 μm (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) is applied on one of the liquid crystal alignment films, and heat cured. A flexible sealant (XN-1500T, manufactured by Mitsui Chemicals, Inc.) was printed. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell. Next, while a DC voltage of 15 V was applied to the liquid crystal cell, 10 J/cm 2 of UV was irradiated from the outside of the liquid crystal cell through a cut filter with a wavelength of 325 nm or less. The UV illuminance was measured using UV-MO3A manufactured by ORC. Then, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32/ A-1) was irradiated for 30 minutes.
A liquid crystal cell was produced and UV irradiation was performed in the same manner, except that a substrate with a liquid crystal alignment film produced under severe conditions was used.
All of the liquid crystal display elements obtained using the liquid crystal aligning agents (A-5) to (A-8) exhibited uniform liquid crystal alignment.
[垂直配向性の評価]
 Axostep(オプトサイエンス社製)を使用して、上記で作製した液晶表示素子のプレチルト角を測定した。通常条件(20分)と過酷条件(60分)でのプレチルト角の差(通常条件-過酷条件=Δプレチルト)を算出した。Δプレチルトが小さいほど液晶配向膜の垂直配向性が良好である。結果を表3に示す。
[Evaluation of Vertical Alignment]
Using Axostep (manufactured by Optoscience), the pretilt angle of the liquid crystal display element produced above was measured. The difference in pretilt angle between the normal condition (20 minutes) and the severe condition (60 minutes) (normal condition−severe condition=Δpretilt) was calculated. The smaller the Δpretilt, the better the vertical orientation of the liquid crystal alignment film. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表3に示されるように、ジアミン成分に特定ジアミンを含む液晶配向剤から得られる液晶配向膜を用いた実施例は、ジアミン成分に特定ジアミンを含まない液晶配向剤から得られる液晶配向膜を用いた比較例に比べ、優良なラビング耐性及び高いシール密着性を示した。また、テトラカルボン酸成分に脂環式酸二無水物を用いた液晶配向剤から得られる液晶配向膜は、芳香族酸二無水物を用いた場合と比較して高い電圧保持率及び良好な垂直配向性を示した。

 
As shown in Table 3, the examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent containing the specific diamine as the diamine component used the liquid crystal alignment film obtained from the liquid crystal alignment agent containing no specific diamine as the diamine component. It exhibited excellent rubbing resistance and high seal adhesion as compared with the comparative example. In addition, the liquid crystal alignment film obtained from the liquid crystal alignment agent using the alicyclic acid dianhydride as the tetracarboxylic acid component has a high voltage holding ratio and good verticality as compared with the case where the aromatic acid dianhydride is used. showed orientation.

Claims (15)

  1.  下記式(1)で表されるジアミンを含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lは、-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-NH-(nは1~6の整数である。)、-(CH-O-C(=O)-(nは1~6の整数である。)、-(CH-C(=O)-O-(nは1~6の整数である。)、-O-(CH-O-(nは1~6の整数である。)、-C(=O)-O-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-O-(CH-(m、及びnはそれぞれ独立して1~6の整数である。)、又は-C(=O)-O-(CH-O-C(=O)-(nは1~6の整数である。)を表す。OHと結合するベンゼン環の任意の水素原子はメチル基、メトキシ基、又はハロゲン原子で置き換えられてもよい。pは、0又は1の整数を表す。)
    Containing at least one polymer (P) selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine represented by the following formula (1) and a polyimide that is an imidized product of the polyimide precursor A liquid crystal aligning agent characterized by:
    Figure JPOXMLDOC01-appb-C000001
    (wherein L is -(CH 2 ) n -O- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-NH- (n is 1 to 6 is an integer of ), -(CH 2 ) n -OC(=O)- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-O- (n is an integer of 1 to 6), -O-(CH 2 ) n -O- (n is an integer of 1 to 6), -C(=O)-O-(CH 2 ) n —O— (n is an integer of 1 to 6), —(CH 2 ) m —C(═O)—O—(CH 2 ) n — (m and n are each independently 1 to is an integer of 6.), or -C(=O)-O-(CH 2 ) n -O-C(=O)- (n is an integer of 1 to 6.) Bonding with OH Any hydrogen atom of the benzene ring may be replaced with a methyl group, a methoxy group, or a halogen atom.p represents an integer of 0 or 1.)
  2.  前記式(1)で表されるジアミンが、下記式(d1-1)~(d1-11)のいずれかで表されるジアミンである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to claim 1, wherein the diamine represented by the formula (1) is a diamine represented by any one of the following formulas (d1-1) to (d1-11).
    Figure JPOXMLDOC01-appb-C000002
  3.  前記式(1)で表されるジアミンが、下記式(d2-1)~(d2-6)のいずれかで表されるジアミンである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    The liquid crystal aligning agent according to claim 1, wherein the diamine represented by the formula (1) is a diamine represented by any one of the following formulas (d2-1) to (d2-6).
    Figure JPOXMLDOC01-appb-C000003
  4.  前記重合体(P)が、前記ジアミン成分と、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有するテトラカルボン酸成分と、の重合反応により得られる請求項1に記載の液晶配向剤。 The polymer (P) contains the diamine component, an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof. The liquid crystal aligning agent according to claim 1, which is obtained by a polymerization reaction of a tetracarboxylic acid component.
  5.  前記重合体(P)が、前記ジアミン成分と、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、又はこれらの誘導体を含有するテトラカルボン酸成分と、の重合反応により得られる請求項1に記載の液晶配向剤。 The polymer (P) is a polymerization of the diamine component and a tetracarboxylic acid component containing an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, or a derivative thereof. The liquid crystal aligning agent according to claim 1, obtained by reaction.
  6.  前記重合体(P)を得る際の、前記式(1)で表されるジアミンの使用量が、全ジアミン成分に対して、5モル%以上である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the amount of the diamine represented by the formula (1) used when obtaining the polymer (P) is 5 mol% or more with respect to the total diamine component.
  7.  前記ジアミン成分が、更に、「A-X-J」で表される芳香族ジアミン(d)を含む、請求項1に記載の液晶配向剤。
     (Aは2つの第一級アミノ基が芳香族基に結合した1価の基を表す。Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
     Jは、炭素数4~40の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基からなる群から選ばれる少なくとも1種の基を有する1価の有機基を表し、但し、上記脂環式炭化水素基及び芳香族炭化水素基が有する水素原子の少なくとも一つは、ハロゲン原子、ハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、炭素数3~10のアルケニル基、並びにハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、及び炭素数3~10のアルケニル基の任意のメチレン基が有する炭素-炭素結合が酸素原子で中断されているヘテロ原子含有基からなる群から選ばれる置換基で置換されている。)
    The liquid crystal aligning agent according to claim 1, wherein the diamine component further contains an aromatic diamine (d) represented by "AXJ".
    (A represents a monovalent group in which two primary amino groups are bonded to an aromatic group. X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -COO-, -OCO- or -((CH 2 ) a1 -A 1 ) m1 -(a1 is is an integer of 1 to 15, A 1 represents an oxygen atom or —COO—, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A 1 are each independently defined above ).
    J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms, with the proviso that At least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, or 3 carbon atoms. -10 alkoxy groups, alkenyl groups having 3 to 10 carbon atoms, halogen atom-containing alkyl groups, halogen atom-containing alkoxy groups, alkyl groups having 3 to 10 carbon atoms, alkoxy groups having 3 to 10 carbon atoms, and 3 carbon atoms The carbon-carbon bond of any methylene group of the alkenyl group from 1 to 10 is replaced with a substituent selected from the group consisting of heteroatom-containing groups interrupted by oxygen atoms. )
  8.  請求項1~7のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 7.
  9.  請求項8に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 8.
  10.  以下の工程(1)~(3)をこの順に行うことを含む、液晶表示素子の製造方法。
     工程(1):請求項1~7のいずれか1項に記載の液晶配向剤を、導電膜を有する一対の基板の少なくとも一方の基板上に塗布して塗膜を形成する工程
     工程(2):前記塗膜を焼成する工程
     工程(3):前記一対の基板の間に液晶層を形成して液晶セルを作製する工程
    A method for manufacturing a liquid crystal display device, comprising performing the following steps (1) to (3) in this order.
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 7 onto at least one of a pair of substrates having a conductive film to form a coating film. Step (2). : Step of baking the coating film Step (3): Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell
  11.  工程(1)~(3)の後に、以下の工程(4)をさらに行うことを含む、請求項10に記載の液晶表示素子の製造方法。
     工程(4):前記液晶セルに光を照射する工程
    11. The method of manufacturing a liquid crystal display element according to claim 10, further comprising performing the following step (4) after steps (1) to (3).
    Step (4): Step of irradiating the liquid crystal cell with light
  12.  下記式(1)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Lは、-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-NH-(nは1~6の整数である。)、-(CH-O-C(=O)-(nは1~6の整数である。)、-(CH-C(=O)-O-(nは1~6の整数である。)、-O-(CH-O-(nは1~6の整数である。)、-C(=O)-O-(CH-O-(nは1~6の整数である。)、-(CH-C(=O)-O-(CH-(m、及びnはそれぞれ独立して1~6の整数である。)、又は-C(=O)-O-(CH-O-C(=O)-(nは1~6の整数である。)を表す。OHと結合するベンゼン環の任意の水素原子はメチル基、メトキシ基、又はハロゲン原子で置き換えられてもよい。pは、0又は1の整数を表す。但し、pが0の場合、Lは、-(CH-C(=O)-NH-(nは1~6の整数である。)以外の基を表す。)
    A diamine represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000004
    (wherein L is -(CH 2 ) n -O- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-NH- (n is 1 to 6 is an integer of ), -(CH 2 ) n -OC(=O)- (n is an integer of 1 to 6), -(CH 2 ) n -C(=O)-O- (n is an integer of 1 to 6), -O-(CH 2 ) n -O- (n is an integer of 1 to 6), -C(=O)-O-(CH 2 ) n —O— (n is an integer of 1 to 6), —(CH 2 ) m —C(═O)—O—(CH 2 ) n — (m and n are each independently 1 to is an integer of 6.), or -C(=O)-O-(CH 2 ) n -O-C(=O)- (n is an integer of 1 to 6.) Bonding with OH Any hydrogen atom of the benzene ring may be replaced with a methyl group, a methoxy group, or a halogen atom.p represents an integer of 0 or 1. However, when p is 0, L is -(CH 2 ) represents a group other than n -C(=O)-NH- (n is an integer of 1 to 6).)
  13.  pが1である、請求項12に記載のジアミン。 The diamine of claim 12, wherein p is 1.
  14.  請求項12又は13に記載のジアミンを含むジアミン成分を用いて得られる重合体。 A polymer obtained using a diamine component containing the diamine according to claim 12 or 13.
  15.  前記ジアミン成分とテトラカルボン酸成分との重縮合反応により得られるポリイミド前駆体又はそのイミド化物であるポリイミドである、請求項14に記載の重合体。 The polymer according to claim 14, which is a polyimide precursor obtained by a polycondensation reaction of the diamine component and the tetracarboxylic acid component or an imidized product thereof.
PCT/JP2022/021080 2021-05-28 2022-05-23 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer WO2022250007A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523460A JPWO2022250007A1 (en) 2021-05-28 2022-05-23
CN202280038187.7A CN117396803A (en) 2021-05-28 2022-05-23 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-089857 2021-05-28
JP2021089857 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250007A1 true WO2022250007A1 (en) 2022-12-01

Family

ID=84228784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021080 WO2022250007A1 (en) 2021-05-28 2022-05-23 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer

Country Status (4)

Country Link
JP (1) JPWO2022250007A1 (en)
CN (1) CN117396803A (en)
TW (1) TW202311506A (en)
WO (1) WO2022250007A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209505A (en) * 2010-03-30 2011-10-20 Jnc Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP2016133675A (en) * 2015-01-20 2016-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal display element, and retardation film and production method of the same
CN110791833A (en) * 2019-11-26 2020-02-14 中国科学院长春应用化学研究所 Polyimide fiber and preparation method thereof
JP2020154185A (en) * 2019-03-21 2020-09-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209505A (en) * 2010-03-30 2011-10-20 Jnc Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP2016133675A (en) * 2015-01-20 2016-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal display element, and retardation film and production method of the same
JP2020154185A (en) * 2019-03-21 2020-09-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
CN110791833A (en) * 2019-11-26 2020-02-14 中国科学院长春应用化学研究所 Polyimide fiber and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022250007A1 (en) 2022-12-01
TW202311506A (en) 2023-03-16
CN117396803A (en) 2024-01-12

Similar Documents

Publication Publication Date Title
CN107022358B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer, and diamine
JP2019117399A (en) Liquid crystal aligning agent, liquid crystal alignment film, method of manufacturing liquid crystal alignment film, and liquid crystal display device
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN106398721B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, method for producing liquid crystal alignment film, polymer, and diamine
JP6547565B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
JP7497782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW201945526A (en) Novel liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024111498A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2024122359A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023013622A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023032784A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038187.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811277

Country of ref document: EP

Kind code of ref document: A1