WO2019082975A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Info

Publication number
WO2019082975A1
WO2019082975A1 PCT/JP2018/039697 JP2018039697W WO2019082975A1 WO 2019082975 A1 WO2019082975 A1 WO 2019082975A1 JP 2018039697 W JP2018039697 W JP 2018039697W WO 2019082975 A1 WO2019082975 A1 WO 2019082975A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
diamine
polyimide
crystal aligning
formula
Prior art date
Application number
PCT/JP2018/039697
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 巴
大輝 山極
早紀 相馬
新平 新津
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2019550283A priority Critical patent/JP7276666B2/en
Priority to KR1020207012497A priority patent/KR102586312B1/en
Priority to CN201880069243.7A priority patent/CN111279255B/en
Publication of WO2019082975A1 publication Critical patent/WO2019082975A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device.
  • the liquid crystal display element is configured by sandwiching a liquid crystal layer by a pair of transparent substrates provided with electrodes. And in a liquid crystal display element, the organic film which consists of organic materials is used as a liquid crystal aligning film so that a liquid crystal may be in a desired orientation state between board
  • the inventors conducted various studies to achieve the above object, and found that the liquid crystal aligning agent having the following constitution is most suitable for achieving the above object, and completed the present invention.
  • a liquid crystal aligning agent containing a polyimide which is a reaction product of a carboxylic acid dianhydride derivative component comprising at least one selected from aliphatic tetracarboxylic acid dianhydrides and alicyclic tetracarboxylic acid dianhydrides and a diamine component.
  • P 1 and P 2 are a phenyl or biphenyl group, and hydrogen on the aromatic ring may be replaced by a methyl group or a fluorine group.
  • Q is a divalent organic group, and n1 and n2 are integers of 0 to 5. However, when at least one of n1 and n2 is 0, Q is an oxygen atom.
  • Preferred specific examples of [A] include diamines of the following formulas [A-1] to [A-6].
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal alignment film which satisfies various properties required for the liquid crystal alignment film and which gives a low pretilt angle of 1 degree or less.
  • the polyimide contained in the liquid crystal aligning agent of the present invention is a tetracarboxylic acid dianhydride derivative component comprising at least one selected from aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride and a specific diamine Is obtained by imidizing a polyimide precursor obtained from a diamine component containing (hereinafter, also referred to as a specific polymer).
  • a specific diamine Is obtained by imidizing a polyimide precursor obtained from a diamine component containing
  • tetracarboxylic acid dihalide compounds tetracarboxylic acid dialkyl esters and tetracarboxylic acid dialkyl esters are used as tetracarboxylic acid derivatives used for producing polyimide precursors Ester dihalides are mentioned.
  • aliphatic and alicyclic tetracarboxylic acid dianhydrides and derivatives thereof those represented by the following formula (4) are preferable.
  • X 1 preferable structures of X 1 include the following formulas (X1-1) to (X1-24).
  • R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
  • R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and a hydrogen atom or a methyl group is preferable.
  • Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and sensitivity of photoreaction.
  • the diamine component used for manufacture of the polyimide contained in the liquid crystal aligning agent of this invention contains at least 1 sort (s) chosen from the diamine of following formula [A].
  • P 1 and P 2 are a phenyl or biphenyl group, and hydrogen on the aromatic ring may be replaced by a methyl group or a fluorine group.
  • Q is a divalent organic group, and n1 and n2 are integers of 0 to 5. However, when at least one of n1 and n2 is 0, Q is an oxygen atom.
  • Q is preferably an oxygen atom, and in this case, the formula [A] is represented as the following [A ′] .
  • X is a divalent organic group selected from the following structures.
  • Each * represents a bond to an oxygen atom.
  • Preferred specific examples of [A] include diamines of the following formulas [A-1] to [A-6]. These may be used alone or in combination of two or more.
  • the preferred content of the diamine of the above formula [A] is preferably 40% to 80%, more preferably 40% to 70%, still more preferably 40% to 60% of the total diamine components.
  • the diamine component used for manufacture of the polyimide contained in the liquid crystal aligning agent of this invention can use various diamine according to the characteristic of the liquid crystal aligning agent calculated
  • Other diamines are represented by the following formula (5).
  • a 1 and A 2 each independently represent a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms is there.
  • the structure of Y 1 is not particularly limited. Preferred structures include the following (Y-1) to (Y-177).
  • Me represents a methyl group
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • D is a thermally leaving group which is preferably desorbed at 150 to 230 ° C., more preferably 180 to 230 ° C. to replace a hydrogen atom.
  • Y including the structure represented by the above formula (6) include (Y-124) and (Y-158) to (Y-163).
  • the polyamic acid which is a polyimide precursor used in the present invention is specified with a tetracarboxylic acid dianhydride derivative component consisting of at least one selected from aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride. It is a polyimide precursor obtained from the diamine component containing a diamine, and can be manufactured by the method shown below.
  • an organic tetracarboxylic acid dianhydride derivative component consisting of at least one selected from aliphatic tetracarboxylic acid dianhydrides and alicyclic tetracarboxylic acid dianhydrides and a diamine component containing a specific diamine It can be synthesized by reacting in the presence of a solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • the organic solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of solubility of monomers and polymers, and one or more of these may be mixed You may use.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight polymer is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring the reaction solution into a poor solvent while well stirring it. Further, precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid powder by normal temperature or heat drying.
  • the poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
  • the polyamic acid ester which is one of the polyimide precursors used for this invention can be manufactured by the method of (I), (II) or (III) shown below.
  • a polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic acid dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized.
  • esterifying agent those which can be easily removed by purification are preferable, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents with respect to 1 mole of the repeating unit of the polyamic acid.
  • the solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the polymer, and these may be used alone or in combination of two or more. Good.
  • the concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
  • Polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours It can be synthesized by reaction.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds mildly.
  • the amount of the base used is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used for the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of monomers and polymers, and these may be used alone or in combination of two or more.
  • the concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent the mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic acid diester and diamine. Specifically, a tetracarboxylic acid diester and a diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for time.
  • the condensing agent examples include triphenyl phosphite, dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triadidi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N And N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 moles per mol of the tetracarboxylic acid die
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base used is preferably 2 to 4 moles per mole of the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding a Lewis acid as an additive.
  • a Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times the molar amount with respect to the diamine component.
  • the method for producing the above (I) or the above (II) is particularly preferable because a high molecular weight polyamic acid ester can be obtained.
  • the solution of the polyamic acid ester obtained as described above can precipitate the polymer by pouring it into a poor solvent while stirring well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
  • the polyimide used in the present invention can be produced by imidizing the above-mentioned polyamic acid or polyamic acid ester.
  • the imidation ratio of the polyimide used in the present invention is preferably 70 to 99% from the viewpoint of the electrical properties.
  • chemical imidization which adds a basic catalyst to the polyamic acid solution obtained by dissolving the said polyamic acid ester solution or polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature, and molecular weight reduction of the polymer does not easily occur in the imidization process.
  • Chemical imidization can be carried out by stirring the polyamic acid or polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine and trioctylamine.
  • pyridine is preferable because it has a suitable basicity to allow the reaction to proceed.
  • acetic anhydride trimellitic anhydride, pyromellitic anhydride and the like can be mentioned, and it is preferable to use acetic anhydride among them because purification after completion of the reaction becomes easy.
  • the temperature at which the imidization reaction is carried out is, for example, ⁇ 20 ° C. to 120 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid group, and the amount of the acid anhydride is 1 to 50 moles, preferably 3 to 30 moles of the amic acid group. It is a double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature and reaction time.
  • the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent.
  • the liquid crystal aligning agent of the present invention is used.
  • the solution of the polyimide obtained as mentioned above can precipitate a polymer by inject
  • the poor solvent is not particularly limited, and methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene and the like can be mentioned.
  • the liquid crystal aligning agent of the present invention has a form of a solution in which a polymer containing a specific polymer is dissolved in an organic solvent.
  • the molecular weight of the polyimide precursor and the polyimide described in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100, in weight average molecular weight. , 000. Also, the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the content of the specific polymer in the liquid crystal aligning agent of the present invention is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass, in the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention may contain, in addition to the specific polymer, a polyamic acid which is a reaction product of an optional tetracarboxylic acid derivative component and an optional diamine component.
  • the proportion is preferably 10 to 900 parts by mass, and more preferably 25 to 700 parts by mass with respect to 100 parts by mass of polyimide.
  • Other polymers may be mixed in all the polymer components in the liquid crystal aligning agent of the present invention.
  • Other polymers include cellulose polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, polysiloxanes, and the like.
  • the content of the other polymer other than that is preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the polyimide and the polyamic acid.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 weight % Or more is preferable, and from the viewpoint of storage stability of the solution, 10% by weight or less is preferable.
  • the solvent in the liquid crystal aligning agent of the present invention is a solvent that dissolves a polyimide precursor and a polyimide (also referred to as a good solvent) or a solvent that improves the coating properties and surface smoothness of the liquid crystal alignment film when the liquid crystal aligning agent is applied. (Also referred to as a poor solvent) is preferably used. Specific examples of other solvents are listed below, but are not limited to these examples.
  • the good solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide or 4-hydroxy-4-methyl-2-pentanone and the like. be able to.
  • the poor solvent include 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2-propoxyethanol, 2- (2-propoxyethoxy) ethanol, 1-propoxy-2-propanol ethanol, isopropyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3 -Methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3 -Heptanol, 1-octano , 2-octanol, 2-ethyl-1-hexanol, cyclohe
  • R 24 and R 25 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms. However, R 24 + R 25 is an integer greater than 3. Further, as the poor solvent, when the solubility of the polyimide precursor and the polyimide contained in the liquid crystal aligning agent in the solvent is high, the solvents represented by the following [D-1] to the formula [D-3] are preferable.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • Formula [D-3] among, D 3 is an alkyl group having 1 to 4 carbon atoms.
  • the liquid crystal aligning agent of the present invention is at least one kind of substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond may be included.
  • crosslinking compound various known compounds can be used depending on the purpose.
  • the following compounds are preferably used.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to achieve the desired effect, 0.1 to 100 parts by mass is preferable, and 1 to 50 parts by mass is more preferable.
  • the liquid crystal aligning agent of this invention can contain the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
  • a fluorine-type surfactant As a compound which improves the uniformity of the film thickness of a liquid crystal aligning film, and surface smoothness, a fluorine-type surfactant, a silicone type surfactant, a nonion type surfactant etc. are mentioned.
  • the amount of surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 parts by mass, with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent.
  • it contains a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, and an imidization accelerator for the purpose of efficiently advancing the imidization by heating the polyimide precursor when baking the coating film. You may
  • the liquid crystal aligning film of this invention is a film
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed, from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if it is only on one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • the liquid crystal aligning agent is generally applied by screen printing, offset printing, flexographic printing or ink jet method, and as the other coating methods, dip method, roll coater method, slit coater, etc. Methods, spinner methods or spray methods are known.
  • the solvent can be evaporated by using a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film.
  • the drying and baking steps after the application of the liquid crystal aligning agent can be performed at any temperature and time. Usually, in order to sufficiently remove the contained solvent, baking is carried out at 50 to 120 ° C. for 1 to 10 minutes, followed by baking at 150 to 300 ° C. for 5 to 120 minutes.
  • the thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, and more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may decrease.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film without application of alignment treatment in a vertical alignment application or the like after being coated and baked on a substrate and then subjected to alignment treatment by rubbing treatment or photo alignment treatment.
  • a known method or apparatus can be used in alignment treatment such as rubbing treatment or light alignment treatment.
  • a liquid crystal display element having a passive matrix structure is described as an example. It may be a liquid crystal display element of an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting an image display.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes, and are patterned to provide a desired image display.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film of SiO 2 -TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is superimposed on one of the substrates so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealing agent.
  • a spacer in the sealing agent it is usually preferable to mix a spacer in the sealing agent, and to disperse the substrate gap control spacer also in the in-plane portion where the sealing agent is not provided.
  • An opening capable of being filled with liquid crystal from the outside is provided in part of the sealing agent.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • the liquid crystal material may be either a positive liquid crystal material or a negative liquid crystal material, preferably a negative liquid crystal material.
  • the polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surface of the two substrates opposite to the liquid crystal layer.
  • the imidation ratio of the polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Scientific Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) The mixture (0.53 ml) was added and sonicated to dissolve completely. This solution was subjected to proton NMR measurement at 500 MHz with an NMR measurement device (JNW-ECA 500) (manufactured by Nippon Denshi Datum Co., Ltd.).
  • the imidation ratio is determined using a proton derived from a structure that does not change before and after imidization as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid appearing around 9.5 ppm to 10.0 ppm It calculated
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%) The ratio of the number of reference protons to.
  • the reaction solution was poured into 2770 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 87%).
  • 40.0 g of the powder of this polyimide is separated in a 500 mL Erlenmeyer flask containing a stirrer, 293 g of NMP is added, and stirred at 70 ° C. for 24 hours for dissolution to obtain a solution SPI-A1 of polyimide.
  • composition example 2 In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.2 mmol) of DA-1, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 24 mmol) Measured, 54.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While the diamine solution was stirred under water cooling, 4.50 g (22.7 mmol) of CA-3 was added, 15.5 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere.
  • the reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 86%).
  • 4.00 g of the powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirring bar, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and then polyimide solution SPI-A2 I got
  • composition example 3 In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.2 mmol) of DA-1, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 24 mmol) Measured, 50.9 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.50 g (22.7 mmol) of CA-3 was added, and 18.0 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere.
  • the reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 86%).
  • 4.00 g of the powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirring bar, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A3 I got
  • composition example 4 In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 4.82 g (16.4 mmol) of DA-1, 3.58 g (8.98 mmol) of DA-2, 2.50 g of DA-3 (4. 49 mmol) Measured, 53.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While the diamine solution was stirred under water cooling, 4.96 g (22.1 mmol) of CA-1 was added, 19.3 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere.
  • the reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 84%).
  • 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and then polyimide solution SPI-A4 I got
  • composition example 5 In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 2.89 g (9.88 mmol) of DA-1, 3.94 g (9.89 mmol) of DA-2, and 2.75 g of DA-3 (4. 94 mmol) and 2.01 g (8.22 mmol) of DA-4 were weighed out, 49.5 g of NMP was added, and the solution was stirred and dissolved while feeding nitrogen. While stirring the diamine solution under water cooling, 4.25 g (21.4 mmol) of CA-3 was added, and 14.7 g of NMP was further added, followed by stirring at 50 ° C. for 1 hour under a nitrogen atmosphere.
  • the reaction solution was poured into 160 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 82%).
  • 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A5 I got
  • the reaction solution was poured into 1040 g of methanol, and the obtained precipitate was separated by filtration.
  • the precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 81%).
  • 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A6 I got
  • Synthesis Example 8 After 30.0 g of the solution PAA-B1 of the polyamic acid obtained in Synthesis Example 1 was separated, 26.2 g of NMP, 2.44 g of acetic anhydride, and 0.630 g of pyridine were added and stirred at room temperature for 30 minutes. The reaction was allowed to proceed at 40 ° C. for 30 minutes. The reaction solution was poured into 150 g of methanol, and the resulting precipitate was filtered off. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 40%).
  • Synthesis Example 12 In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 7.09 g (19.3 mmol) of DA-10, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 25 mmol) Measured, 60.5 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and further 15.2 g of NMP was added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere.
  • Synthesis Example 15 In a 100 mL Erlenmeyer flask containing a stirrer, 30.0 g of the solution of polyamic acid obtained in Synthesis Example 2 is separated, 0.470 g of di-tert-butyl dicarbonate is added, and then reacted at 40 ° C. for 12 hours. The Furthermore, 20.0 g of NMP, 3.85 g of acetic anhydride, and 1.28 g of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 60 ° C. for 4 hours. The reaction solution was poured into 220 g of methanol, and the resulting precipitate was filtered off.
  • Examples 1 to 15 and Comparative Examples 1 to 3 NMP was added to a solution obtained by mixing the solution of polyamic acid obtained in Synthesis Example 1 to 15 and the solution of polyimide in the ratio of polymer 1 and polymer 2 as shown in the following table.
  • GBL, BCS, NMP solution containing 1% by weight of AD-1, and NMP solution containing 10% by weight of AD-2 are added while stirring to obtain the composition shown in the table below, and further stirred at room temperature for 2 hours
  • liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 3 were obtained.
  • a substrate with an electrode was prepared.
  • the substrate is a glass substrate with a size of 30 mm ⁇ 40 mm and a thickness of 1.1 mm.
  • An ITO electrode having a film thickness of 35 nm is formed on the substrate, and the electrode has a stripe pattern of 40 mm long and 10 mm wide.
  • the liquid crystal aligning agent was filtered through a filter with a pore diameter of 1.0 ⁇ m, and then applied to the prepared electrode-equipped substrate by spin coating. After drying on a hot plate at 80 ° C. for 2 minutes, baking was carried out in an IR oven at 230 ° C.
  • Two substrates with this liquid crystal alignment film are prepared, and a spacer of 4 ⁇ m is sprayed on the surface of one liquid crystal alignment film, and then a sealing agent is printed thereon, and the rubbing direction of the other substrate is reverse. And, after bonding so that the film surfaces face each other, the sealing agent was cured to produce an empty cell.
  • a liquid crystal MLC-3019 manufactured by Merck & Co., Ltd.
  • a glass substrate with a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was prepared.
  • an IZO electrode having a solid pattern is formed, which constitutes a counter electrode as a first layer.
  • a SiN (silicon nitride) film formed by the CVD method is formed as a second layer on the first counter electrode.
  • the film thickness of the second SiN film is 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as a third layer is disposed on the second layer SiN film, and two pixels of a first pixel and a second pixel are formed. ing.
  • the size of each pixel is about 10 mm in height and about 5 mm in width.
  • the first opposing electrode and the third pixel electrode are electrically insulated by the action of the second SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of “ ⁇ ” shaped electrode elements whose central portion is bent as shown in FIG. 3 described in JP-A-2014-77845. It has the shape of The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent " ⁇ " shaped electrode elements in the central portion, the shape of each pixel is not rectangular, and the center is the same as the electrode elements. It has a shape resembling a bold " ⁇ " that bends in parts. And each pixel is divided up and down bordering on the central bending part, and has the 1st field of the upper part of a bending part, and the 2nd field of the lower side.
  • the forming directions of the electrode elements of the pixel electrodes constituting them are different. That is, on the basis of the rubbing direction of the liquid crystal alignment film described later, the electrode element of the pixel electrode is formed at an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel The electrode elements of the electrodes are formed at an angle of -10 ° (clockwise).
  • the directions of rotational movement (in-plane switching) in the substrate plane of the liquid crystal induced by voltage application between the pixel electrode and the counter electrode are mutually different. It is configured to be in the opposite direction.
  • the liquid crystal aligning agent is filtered with a filter having a pore diameter of 1.0 ⁇ m, and then an ITO film is formed on the back surface as the electrode-attached substrate and the opposite substrate, and a glass substrate having columnar spacers of 4 ⁇ m in height Each was spin-coated.
  • baking was performed at 230 ° C. for 20 minutes to obtain a polyimide film with a film thickness of 60 nm on each substrate.
  • This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm), and then ultrasonic irradiation is performed for 1 minute in pure water. The resultant was washed, air droplets were removed by air blow, and dried at 80 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Using the two types of substrates with the liquid crystal alignment film, they were combined so that their rubbing directions would be antiparallel, and the periphery was sealed leaving a liquid crystal injection port to produce an empty cell with a cell gap of 3.8 ⁇ m. .
  • Liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was vacuum injected into this empty cell at normal temperature, and then the inlet was sealed to obtain a liquid crystal cell of anti-parallel alignment.
  • the obtained liquid crystal cell constituted an FFS mode liquid crystal display element. Thereafter, the liquid crystal cell was heated at 120 ° C. for 1 hour, allowed to stand at 23 ° C. overnight, and then used for each evaluation described below.
  • Pretilt angle> The pretilt angle in the liquid crystal cell 1 was evaluated using AxoScan Muller matrix polarimeter manufactured by Optometrics.
  • ⁇ Voltage holding ratio> A voltage of 1 V was applied for 60 ⁇ sec at a temperature of 60 ° C. to the liquid crystal cell 1 and the voltage after 50 msec was measured to evaluate how much the voltage could be maintained as a voltage retention rate.
  • this liquid crystal cell After standing overnight at 23 ° C., this liquid crystal cell is placed between two polarizing plates disposed so that the polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied, and the brightness of the transmitted light
  • the arrangement angle of the liquid crystal cell was adjusted so as to minimize.
  • the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is the darkest to the angle at which the first region is the dark is calculated as the angle ⁇ 1.
  • the angle ⁇ 2 was calculated by comparing with the first region. The average value of these ⁇ 1 and ⁇ 2 was defined as the angle ⁇ of the liquid crystal cell, and the smaller this value, the better the liquid crystal alignment was defined and evaluated.
  • liquid crystal display devices using the liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 3 above show the results of the pretilt angle, the voltage holding ratio, and the liquid crystal cell angle ⁇ performed as described above. .
  • the liquid crystal display device using the liquid crystal aligning agent of the embodiment of the present invention has a low pretilt angle, a high voltage holding ratio, and good liquid crystal alignment.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal alignment film which satisfies various properties required for the liquid crystal alignment film and which gives a low pretilt angle of 1 degree or less.

Abstract

A liquid crystal alignment agent containing a polyimide that is a reaction product of a diamine component and a tetracarboxylic acid dianhydride derivative component comprising at least one species selected from an aliphatic tetracarboxylic acid dianhydride and an alicyclic tetracarboxylic acid dianhydride, wherein the diamine component contains at least one species selected from diamines represented by formula [A], and the imidization rate of the polyimide is 70% or greater. In the formula: P1 and P2 are phenyl or biphenyl groups, and a hydrogen atom on an aromatic ring thereof may be substituted with a methyl group or a fluorine group; Q is a divalent organic group, and n1 and n2 are integers of 0 to 5, Q being an oxygen atom when n1 and/or n2 is 0.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device.
 液晶表示素子は、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。更には、液晶配向膜によって、液晶のプレチルト角を制御することができる。主にポリイミドの構造を選択することでプレチルト角を低くする方法(特許文献1、2参照)などが知られている。 The liquid crystal display element is configured by sandwiching a liquid crystal layer by a pair of transparent substrates provided with electrodes. And in a liquid crystal display element, the organic film which consists of organic materials is used as a liquid crystal aligning film so that a liquid crystal may be in a desired orientation state between board | substrates. That is, the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate holding the liquid crystal in contact with the liquid crystal, and plays a role of orienting the liquid crystal in a certain direction between the substrates. Furthermore, the liquid crystal alignment film can control the pretilt angle of the liquid crystal. There is known a method of decreasing the pretilt angle mainly by selecting the structure of polyimide (see Patent Documents 1 and 2).
特開平9-188761号公報JP-A-9-188761 特開平10-123532号公報JP 10-123 532 A
 一方、近年の液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビなどの用途に加えて、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどに液晶表示素子が用いられており、視野角特性の需要からラビング配向膜でも従来よりも低いプレチルト角が要求されるようになっている。
 また、プレチルト角に由来する色味の視野角依存性、いわゆるカラーシフトが問題として指摘されており、本問題を解決するため具体的に1度以下のプレチルト角を有する配向膜が求められている。 
On the other hand, along with applications such as large-screen high-definition liquid crystal TVs with the advancement of liquid crystal display devices in recent years, car navigation systems, meter panels, monitors for surveillance cameras and medical cameras, for example, Liquid crystal display elements are used in the art, and the rubbing alignment film is required to have a lower pretilt angle than in the prior art because of the demand for viewing angle characteristics.
Also, the viewing angle dependency of color derived from the pretilt angle, so-called color shift, is pointed out as a problem, and in order to solve this problem, an alignment film having a pretilt angle of 1 degree or less is specifically required. .
 発明者らは、上記目的達成の為種々検討を重ねた結果、下記構成による液晶配向剤が上記目的達成に最適であることを見出し、本発明を完成させた。 The inventors conducted various studies to achieve the above object, and found that the liquid crystal aligning agent having the following constitution is most suitable for achieving the above object, and completed the present invention.
 かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物から選ばれる少なくとも1種からなるカルボン酸二無水物誘導体成分とジアミン成分との反応物であるポリイミドを含有する液晶配向剤であり、ジアミン成分が、下記式[A]のジアミン(以下、特定ジアミンとも称する)から選ばれる少なくとも1種を含有し、ポリイミドのイミド化率が70%以上である、液晶配向剤。 
Thus, the present invention is based on the above findings and has the following summary.
1. A liquid crystal aligning agent containing a polyimide which is a reaction product of a carboxylic acid dianhydride derivative component comprising at least one selected from aliphatic tetracarboxylic acid dianhydrides and alicyclic tetracarboxylic acid dianhydrides and a diamine component. A liquid crystal aligning agent, wherein the diamine component contains at least one selected from diamines of the following formula [A] (hereinafter, also referred to as specific diamines), and the imidation ratio of the polyimide is 70% or more.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中P、Pはフェニル又はビフェニル基であり芳香環上の水素はメチル基又はフッ素基で置き換えられていてもよい。またQは2価の有機基であり、n1、n2は0から5の整数である。ただし、n1、n2の少なくとも一つが0の場合Qは酸素原子である。
 [A]の好ましい具体例としては、下記式[A-1]~[A-6]のジアミンが挙げられる。
In the formula, P 1 and P 2 are a phenyl or biphenyl group, and hydrogen on the aromatic ring may be replaced by a methyl group or a fluorine group. Q is a divalent organic group, and n1 and n2 are integers of 0 to 5. However, when at least one of n1 and n2 is 0, Q is an oxygen atom.
Preferred specific examples of [A] include diamines of the following formulas [A-1] to [A-6].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の液晶配向剤を用いることで、液晶配向膜に求められる種々の特性を満足するとともに、1度以下の低いプレチルト角を与える液晶配向膜を得ることが出来る。 By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film which satisfies various properties required for the liquid crystal alignment film and which gives a low pretilt angle of 1 degree or less.
<脂肪族、脂環式テトラカルボン酸誘導体>
 本発明の液晶配向剤に含有されるポリイミドは、脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物から選ばれる少なくとも1種からなるテトラカルボン酸二無水物誘導体成分と特定ジアミンを含有するジアミン成分から得られるポリイミド前駆体をイミド化することにより得られる(以下、特定重合体とも称する)。以下に、用いられる材料の具体例及び製造方法を詳述する。
 ポリイミド前駆体の製造に用いられるテトラカルボン酸誘導体としては、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 脂肪族、脂環式テトラカルボン酸二無水物又はその誘導体としては、なかでも、下記式(4)で表されるものが好ましい。
<Aliphatic, alicyclic tetracarboxylic acid derivatives>
The polyimide contained in the liquid crystal aligning agent of the present invention is a tetracarboxylic acid dianhydride derivative component comprising at least one selected from aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride and a specific diamine Is obtained by imidizing a polyimide precursor obtained from a diamine component containing (hereinafter, also referred to as a specific polymer). Hereinafter, specific examples of the materials to be used and the production method will be described in detail.
Not only tetracarboxylic acid dianhydrides but also tetracarboxylic acid dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl esters and tetracarboxylic acid dialkyl esters are used as tetracarboxylic acid derivatives used for producing polyimide precursors Ester dihalides are mentioned.
Among the aliphatic and alicyclic tetracarboxylic acid dianhydrides and derivatives thereof, those represented by the following formula (4) are preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(4)中、Xの好ましい構造は、下記式(X1-1)~(X1-24)が挙げられる。 In the formula (4), preferable structures of X 1 include the following formulas (X1-1) to (X1-24).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(X1-1)~(X1-4)において、R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基が好ましい。
 式(X1-1)の具体例としては、下記式(X1-1-1)~(X1-1-6)が挙げられる。液晶配向性及び光反応の感度の点から、(X1-1-1)が特に好ましい。
In formulas (X1-1) to (X1-4), R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal alignment, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and a hydrogen atom or a methyl group is preferable.
Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and sensitivity of photoreaction.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<特定ジアミン>
 本発明の液晶配向剤に含有されるポリイミドの製造に用いられるジアミン成分は、下記式[A]のジアミンから選ばれる少なくとも1種を含有する。
<Specific diamine>
The diamine component used for manufacture of the polyimide contained in the liquid crystal aligning agent of this invention contains at least 1 sort (s) chosen from the diamine of following formula [A].
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中P、Pはフェニル又はビフェニル基であり芳香環上の水素はメチル基又はフッ素基で置き換えられていてもよい。またQは2価の有機基であり、n1、n2は0から5の整数である。ただし、n1、n2の少なくとも一つが0の場合Qは酸素原子である。 In the formula, P 1 and P 2 are a phenyl or biphenyl group, and hydrogen on the aromatic ring may be replaced by a methyl group or a fluorine group. Q is a divalent organic group, and n1 and n2 are integers of 0 to 5. However, when at least one of n1 and n2 is 0, Q is an oxygen atom.
 ここで、(n1+n2)≧1であり、n1、n2のいずれかが0の場合はQは酸素原子であるのが好ましく、この場合の式[A]は、下記[A´]として表される。 Here, when (n1 + n2) ≧ 1, and either n1 or n2 is 0, Q is preferably an oxygen atom, and in this case, the formula [A] is represented as the following [A ′] .
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中Xは下記構造から選ばれる2価の有機基である。 In the formula, X is a divalent organic group selected from the following structures.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 *はそれぞれ、酸素原子との結合を表す。
 [A]の好ましい具体例としては、下記式[A-1]~[A-6]のジアミンが挙げられる。これらは単独であっても良いし、複数の組み合わせでも良い。
Each * represents a bond to an oxygen atom.
Preferred specific examples of [A] include diamines of the following formulas [A-1] to [A-6]. These may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式[A]のジアミンの好ましい含有量は、全ジアミン成分の40%~80%であることが好ましく、40%~70%がより好ましく、40%~60%が更に好ましい。 The preferred content of the diamine of the above formula [A] is preferably 40% to 80%, more preferably 40% to 70%, still more preferably 40% to 60% of the total diamine components.
<その他のジアミン>
 本発明の液晶配向剤に含有されるポリイミドの製造に用いられるジアミン成分は、上記式[A]のジアミンに加え、求められる液晶配向剤の特性に応じ、種々のジアミンを用いることが出来る。
 その他のジアミンは、下記式(5)で表わされる。
<Other diamines>
In addition to the diamine of said Formula [A], the diamine component used for manufacture of the polyimide contained in the liquid crystal aligning agent of this invention can use various diamine according to the characteristic of the liquid crystal aligning agent calculated | required.
Other diamines are represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(5)中、A及びAはそれぞれ独立して、水素原子、又は炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。
 Yの構造は特に限定されない。好ましい構造としては以下の(Y-1)~(Y-177)が挙げられる。
In the above formula (5), A 1 and A 2 each independently represent a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms is there.
The structure of Y 1 is not particularly limited. Preferred structures include the following (Y-1) to (Y-177).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式中、Meは、メチル基を表し、Rは水素原子または炭素数1~5の炭化水素基を表す。 In the above formulae, Me represents a methyl group, and R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 ポリマーの溶解性が向上するという観点で、任意のYの構造中に下記式(6)で表される構造を含むことが好ましい。 From the viewpoint of improving the solubility of the polymer, it is preferable to include a structure represented by the following formula (6) in the structure of any Y 1 .
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 上記式(6)において、Dは、好ましくは150~230℃、より好ましくは180~230℃で脱離し、水素原子に置き換わる熱脱離性基である。上記式(6)で表される構造を含むYの具体例としては、(Y-124)、(Y-158)~(Y―163)が挙げられる。 In the above formula (6), D is a thermally leaving group which is preferably desorbed at 150 to 230 ° C., more preferably 180 to 230 ° C. to replace a hydrogen atom. Specific examples of Y including the structure represented by the above formula (6) include (Y-124) and (Y-158) to (Y-163).
<ポリアミック酸>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物から選ばれる少なくとも1種からなるテトラカルボン酸二無水物誘導体成分と特定ジアミンを含有するジアミン成分から得られるポリイミド前駆体であり、以下に示す方法で製造できる。
 具体的には、脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物から選ばれる少なくとも1種からなるテトラカルボン酸二無水物誘導体成分と特定ジアミンを含有するジアミン成分とを有機溶媒の存在下、-20℃~150℃、好ましくは0℃~50℃で、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention is specified with a tetracarboxylic acid dianhydride derivative component consisting of at least one selected from aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride. It is a polyimide precursor obtained from the diamine component containing a diamine, and can be manufactured by the method shown below.
Specifically, an organic tetracarboxylic acid dianhydride derivative component consisting of at least one selected from aliphatic tetracarboxylic acid dianhydrides and alicyclic tetracarboxylic acid dianhydrides and a diamine component containing a specific diamine It can be synthesized by reacting in the presence of a solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 12 hours.
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。  The organic solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone or γ-butyrolactone in view of solubility of monomers and polymers, and one or more of these may be mixed You may use. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight polymer is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring the reaction solution into a poor solvent while well stirring it. Further, precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid powder by normal temperature or heat drying. The poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
<ポリアミック酸エステル>
 本発明に用いられるポリイミド前駆体の一つであるポリアミック酸エステルは、以下に示す(I)、(II)又は(III)の方法で製造できる。
<Polyamic acid ester>
The polyamic acid ester which is one of the polyimide precursors used for this invention can be manufactured by the method of (I), (II) or (III) shown below.
(I)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成できる。 
(I) When Produced from Polyamic Acid A polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic acid dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の使用量は、ポリアミック酸の繰り返し単位1モルに対し2~6モル当量が好ましい。  As the esterifying agent, those which can be easily removed by purification are preferable, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 molar equivalents with respect to 1 mole of the repeating unit of the polyamic acid.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。反応液中のポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the polymer, and these may be used alone or in combination of two or more. Good. The concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
(II)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造できる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。 
(II) When manufactured by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours It can be synthesized by reaction.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の使用量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対し、2~4倍モルが好ましい。  As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds mildly. The amount of the base used is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。反応液中のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used for the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of monomers and polymers, and these may be used alone or in combination of two or more. The concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained. Further, in order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent the mixing of outside air in a nitrogen atmosphere.
(III)テトラカルボン酸ジエステルとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造できる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造できる。 
(III) When manufactured by reaction of tetracarboxylic acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic acid diester and diamine. Specifically, a tetracarboxylic acid diester and a diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。  Examples of the condensing agent include triphenyl phosphite, dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triadidi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N And N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used. The addition amount of the condensing agent is preferably 2 to 3 moles per mol of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の使用量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。  As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base used is preferably 2 to 4 moles per mole of the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。  In the above reaction, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times the molar amount with respect to the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(I)または上記(II)の製造法が特に好ましい。  Among the three methods for producing the polyamic acid ester, the method for producing the above (I) or the above (II) is particularly preferable because a high molecular weight polyamic acid ester can be obtained.
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The solution of the polyamic acid ester obtained as described above can precipitate the polymer by pouring it into a poor solvent while stirring well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying. The poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、前記ポリアミック酸又はポリアミック酸エステルをイミド化することにより製造できる。本発明で用いられるポリイミドのイミド化率は電気特性の観点から70~99%が好ましい。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。 
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the above-mentioned polyamic acid or polyamic acid ester. The imidation ratio of the polyimide used in the present invention is preferably 70 to 99% from the viewpoint of the electrical properties. When producing a polyimide from polyamic acid ester, chemical imidization which adds a basic catalyst to the polyamic acid solution obtained by dissolving the said polyamic acid ester solution or polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature, and molecular weight reduction of the polymer does not easily occur in the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸又はポリアミック酸エステルを、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。  Chemical imidization can be carried out by stirring the polyamic acid or polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of basic catalysts include pyridine, triethylamine, trimethylamine, tributylamine and trioctylamine. Among them, pyridine is preferable because it has a suitable basicity to allow the reaction to proceed. Further, as the acid anhydride, acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like can be mentioned, and it is preferable to use acetic anhydride among them because purification after completion of the reaction becomes easy.
 イミド化反応を行うときの温度は、例えば-20℃~120℃であり、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。  The temperature at which the imidization reaction is carried out is, for example, −20 ° C. to 120 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid group, and the amount of the acid anhydride is 1 to 50 moles, preferably 3 to 30 moles of the amic acid group. It is a double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。  Since the added catalyst and the like remain in the solution after the imidization reaction of the polyamic acid ester or the polyamic acid, the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Preferably, the liquid crystal aligning agent of the present invention is used.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。  The solution of the polyimide obtained as mentioned above can precipitate a polymer by inject | pouring into a poor solvent, stirring it well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying.
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。 The poor solvent is not particularly limited, and methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene and the like can be mentioned.
<液晶配向剤>
 本発明の液晶配向剤は、特定重合体を含む重合体が有機溶媒中に溶解された溶液の形態を有する。本発明に記載のポリイミド前駆体及びポリイミドの分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明の液晶配向剤における特定重合体の含有量は、液晶配向剤中、2~10質量%が好ましく、3~8質量%がより好ましい。
 本発明の液晶配向剤には特定重合体以外に、任意のテトラカルボン酸誘導体成分と任意のジアミン成分との反応物であるポリアミック酸を含んでいてもよい。
 また、液晶配向剤が上記ポリアミック酸を含有する場合、その割合は、ポリイミド100質量部に対して、10~900質量部が好ましく、25~700質量部がより好ましい。 
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention has a form of a solution in which a polymer containing a specific polymer is dissolved in an organic solvent. The molecular weight of the polyimide precursor and the polyimide described in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100, in weight average molecular weight. , 000. Also, the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
The content of the specific polymer in the liquid crystal aligning agent of the present invention is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass, in the liquid crystal aligning agent.
The liquid crystal aligning agent of the present invention may contain, in addition to the specific polymer, a polyamic acid which is a reaction product of an optional tetracarboxylic acid derivative component and an optional diamine component.
When the liquid crystal aligning agent contains the above polyamic acid, the proportion is preferably 10 to 900 parts by mass, and more preferably 25 to 700 parts by mass with respect to 100 parts by mass of polyimide.
 本発明の液晶配向剤における全ての重合体成分は、他の重合体が混合されていても良い。それ以外の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、ポリイミドやポリアミック酸の合計100質量部に対して、0.5~15質量部が好ましく、1~10質量部がより好ましい。  Other polymers may be mixed in all the polymer components in the liquid crystal aligning agent of the present invention. Other polymers include cellulose polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, polysiloxanes, and the like. The content of the other polymer other than that is preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the polyimide and the polyamic acid.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上が好ましく、溶液の保存安定性の点からは10重量%以下が好ましい。  The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 weight % Or more is preferable, and from the viewpoint of storage stability of the solution, 10% by weight or less is preferable.
 本発明の液晶配向剤における溶媒は、ポリイミド前駆体及びポリイミドを溶解する溶媒(良溶媒ともいう)や、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)が好ましく用いられる。下記に、その他の溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The solvent in the liquid crystal aligning agent of the present invention is a solvent that dissolves a polyimide precursor and a polyimide (also referred to as a good solvent) or a solvent that improves the coating properties and surface smoothness of the liquid crystal alignment film when the liquid crystal aligning agent is applied. (Also referred to as a poor solvent) is preferably used. Specific examples of other solvents are listed below, but are not limited to these examples.
 良溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ‐ブチロラクトン、γ‐バレロラクトン、1,3-ジメチルイミダゾリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシーN,N-ジメチルプロパンアミド又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
 貧溶媒の具体例としては、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、2-プロポキシエタノール、2-(2-プロポキシエトキシ)エタノール、1-プロポキシ-2-プロパノールエタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、ブチルセロソルブ、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、プロピレングリコールジアセタート、ジイソペンチルエーテル、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジイソブチルケトン、エチルカルビトール等が挙げられる。
 また、貧溶媒としては、下記式で表される溶媒も好ましく用いられる。
Specific examples of the good solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide or 4-hydroxy-4-methyl-2-pentanone and the like. be able to.
Specific examples of the poor solvent include 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2-propoxyethanol, 2- (2-propoxyethoxy) ethanol, 1-propoxy-2-propanol ethanol, isopropyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3 -Methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3 -Heptanol, 1-octano , 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2-ethanediol, 1,2-propanediol, 1 , 3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentane Diol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethy Ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate Tart, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, butyl cellosolve, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (Hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, 1- (butoxyethoxy) prop Nordol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono Butyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, propylene glycol diacetate, diisopentyl ether, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate Tart, diethylene glycol acetate, triethylene glycol Glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, 3-methoxy Methyl propionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, lactate methyl ester, lactate Ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester, diisobutyl ketone, ethyl carbitol and the like can be mentioned.
Moreover, as a poor solvent, the solvent represented by a following formula is also used preferably.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 R24、25はそれぞれ独立して、直鎖又は分岐の、炭素数1~8のアルキル基である。但し、R24+R25は3より大きい整数である。
 また、貧溶媒としては、液晶配向剤に含まれるポリイミド前駆体及びポリイミドの溶媒への溶解性が高い場合は、下記の[D-1]~式[D-3]で示される溶媒が好ましい。
R 24 and R 25 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms. However, R 24 + R 25 is an integer greater than 3.
Further, as the poor solvent, when the solubility of the polyimide precursor and the polyimide contained in the liquid crystal aligning agent in the solvent is high, the solvents represented by the following [D-1] to the formula [D-3] are preferable.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。  In Formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in Formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, Formula [D-3] among, D 3 is an alkyl group having 1 to 4 carbon atoms.
 また、本発明の液晶配向剤は、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含んでいてもよい。  Further, the liquid crystal aligning agent of the present invention is at least one kind of substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. A crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond may be included.
 そのような架橋性化合物は、その目的に応じ種々の公知の化合物を用いることが出来る。好ましく用いられるのは下記の化合物である。 As such a crosslinking compound, various known compounds can be used depending on the purpose. The following compounds are preferably used.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、0.1~100質量部が好ましく、より好ましいのは、1~50質量部である。  The content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to achieve the desired effect, 0.1 to 100 parts by mass is preferable, and 1 to 50 parts by mass is more preferable.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を含有することができる。  The liquid crystal aligning agent of this invention can contain the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent, and surface smoothness.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 また、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤や塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。
As a compound which improves the uniformity of the film thickness of a liquid crystal aligning film, and surface smoothness, a fluorine-type surfactant, a silicone type surfactant, a nonion type surfactant etc. are mentioned.
The amount of surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 parts by mass, with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent.
Also, it contains a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, and an imidization accelerator for the purpose of efficiently advancing the imidization by heating the polyimide precursor when baking the coating film. You may
<液晶配向膜、液晶表示素子>
 本発明の液晶配向膜は、上記の液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。 
<Liquid crystal alignment film, liquid crystal display element>
The liquid crystal aligning film of this invention is a film | membrane obtained by apply | coating said liquid crystal aligning agent to a board | substrate, drying, and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed, from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if it is only on one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
 液晶配向剤の塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的であり、その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などが知られている。  Industrially, the liquid crystal aligning agent is generally applied by screen printing, offset printing, flexographic printing or ink jet method, and as the other coating methods, dip method, roll coater method, slit coater, etc. Methods, spinner methods or spray methods are known.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。  After the liquid crystal aligning agent is applied onto the substrate, the solvent can be evaporated by using a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film. The drying and baking steps after the application of the liquid crystal aligning agent can be performed at any temperature and time. Usually, in order to sufficiently remove the contained solvent, baking is carried out at 50 to 120 ° C. for 1 to 10 minutes, followed by baking at 150 to 300 ° C. for 5 to 120 minutes. The thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, and more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may decrease.
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や、光配向処理などで配向処理し、また、垂直配向用途などでは配向処理無しで、液晶配向膜として使用できる。ラビング処理や光配向処理などの配向処理では、既知の方法や装置が使用できる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。 
The liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film without application of alignment treatment in a vertical alignment application or the like after being coated and baked on a substrate and then subjected to alignment treatment by rubbing treatment or photo alignment treatment. A known method or apparatus can be used in alignment treatment such as rubbing treatment or light alignment treatment.
As an example of a method of manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure is described as an example. It may be a liquid crystal display element of an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting an image display.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。  Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes, and are patterned to provide a desired image display. Then, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film of SiO 2 -TiO 2 formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれでもよいが、好ましいのは、ネガ型液晶材料である。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。 Next, a liquid crystal alignment film is formed on each substrate, the other substrate is superimposed on one of the substrates so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealing agent. In order to control the substrate gap, it is usually preferable to mix a spacer in the sealing agent, and to disperse the substrate gap control spacer also in the in-plane portion where the sealing agent is not provided. An opening capable of being filled with liquid crystal from the outside is provided in part of the sealing agent. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. The liquid crystal material may be either a positive liquid crystal material or a negative liquid crystal material, preferably a negative liquid crystal material. Next, the polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surface of the two substrates opposite to the liquid crystal layer.
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、化合物、溶媒の略号は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
DA-1~DA-12、CA-1~CA-6:下記構造式に示す化合物。
AD-1:3-グリシドキシプロピルトリエトキシシラン
AD-2:下記構造式に示す化合物。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples and the like, but the present invention is not limited to these examples. In addition, the symbol of a compound and a solvent is as follows.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve DA-1 to DA-12, CA-1 to CA-6: compounds represented by the following structural formulas.
AD-1: 3-glycidoxypropyltriethoxysilane AD-2: a compound represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 <粘度>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<Viscosity>
In the synthesis example, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample volume of 1.1 mL, corn rotor TE-1 (1 ° 34 ', R24), temperature 25 Measured in ° C.
<ポリイミドのイミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末30mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。 
<Measurement of imidation ratio of polyimide>
The imidation ratio of the polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Scientific Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) The mixture (0.53 ml) was added and sonicated to dissolve completely. This solution was subjected to proton NMR measurement at 500 MHz with an NMR measurement device (JNW-ECA 500) (manufactured by Nippon Denshi Datum Co., Ltd.). The imidation ratio is determined using a proton derived from a structure that does not change before and after imidization as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid appearing around 9.5 ppm to 10.0 ppm It calculated | required by the following formula using integration value.
 イミド化率(%)=(1-α・x/y)×100 Imidation ratio (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%) The ratio of the number of reference protons to.
(合成例1)
 撹拌装置及び窒素導入管付きの7Lのセパラブルフラスコに、DA-1を225g(3770mmol)、DA-2を167g(419mmol)、DA-3を117g(210mmol)量り取り、NMPを3130g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を204g(910mmol)添加し、さらにNMPを616g加え、窒素雰囲気下40℃で6時間撹拌した。さらに、CA-2を79.0g(402mmol)添加し、さらにNMPを709g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:270mPa・s)PAA-B1を得た。
 撹拌子の入った2L三角フラスコに、このポリアミック酸の溶液を400g分取し、NMPを350g、無水酢酸を32.4g、ピリジンを8.39g加え、室温で30分間撹拌した後、55℃で4時間反応させた。この反応溶液を2770gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:87%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を40.0g分取し、NMPを293g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A1を得た。
Synthesis Example 1
225 g (3770 mmol) of DA-1, 167 g (419 mmol) of DA-2 and 117 g (210 mmol) of DA-3 are added to a 7 L separable flask equipped with a stirrer and a nitrogen introduction tube, and 3130 g of NMP added The solution was stirred for dissolution while feeding. While stirring the diamine solution under water cooling, 204 g (910 mmol) of CA-1 was added, and 616 g of NMP was further added, followed by stirring at 40 ° C. for 6 hours under a nitrogen atmosphere. Further, 79.0 g (402 mmol) of CA-2 was added, and 709 g of NMP was further added, followed by stirring for 2 hours at 23 ° C. under a nitrogen atmosphere to obtain a solution of polyamic acid (viscosity: 270 mPa · s) PAA-B1.
400 g of this polyamic acid solution is separated into a 2 L Erlenmeyer flask containing a stirrer, 350 g of NMP, 32.4 g of acetic anhydride and 8.39 g of pyridine are added, and stirred at room temperature for 30 minutes, then at 55 ° C. It was allowed to react for 4 hours. The reaction solution was poured into 2770 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 87%).
Furthermore, 40.0 g of the powder of this polyimide is separated in a 500 mL Erlenmeyer flask containing a stirrer, 293 g of NMP is added, and stirred at 70 ° C. for 24 hours for dissolution to obtain a solution SPI-A1 of polyimide. The
(合成例2)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を5.62g(19.2mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.24mmol)量り取り、NMPを54.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.50g(22.7mmol)添加し、さらにNMPを15.5g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.26g(11.5mmol)添加し、さらにNMPを6.80g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1300mPa・s)を得た。
 撹拌子の入った100mL三角フラスコに、このポリアミック酸の溶液を27.0g分取し、NMPを18.0g、無水酢酸を2.96g、ピリジンを0.766g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を170gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:86%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を4.00g分取し、NMPを29.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A2を得た。
(Composition example 2)
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.2 mmol) of DA-1, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 24 mmol) Measured, 54.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While the diamine solution was stirred under water cooling, 4.50 g (22.7 mmol) of CA-3 was added, 15.5 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.26 g (11.5 mmol) of CA-2 was added, and 6.80 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1300 mPa · s) .
In a 100 mL Erlenmeyer flask containing a stirrer, 27.0 g of this polyamic acid solution is separated, 18.0 g of NMP, 2.96 g of acetic anhydride, and 0.766 g of pyridine are added and stirred at room temperature for 30 minutes. The reaction was carried out at 55 ° C. for 3 hours. The reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 86%).
Furthermore, 4.00 g of the powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirring bar, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and then polyimide solution SPI-A2 I got
(合成例3)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を5.62g(19.2mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.24mmol)量り取り、NMPを50.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.50g(22.7mmol)添加し、さらにNMPを18.0g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-1を2.63g(11.7mmol)添加し、さらにNMPを9.70g加え、窒素雰囲気下40℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1180mPa・s)を得た。
 撹拌子の入った100mL三角フラスコに、このポリアミック酸の溶液を25.0g分取し、NMPを8.33g、無水酢酸を2.96g、ピリジンを0.766g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を170gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:86%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を4.00g分取し、NMPを29.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A3を得た。
(Composition example 3)
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.2 mmol) of DA-1, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 24 mmol) Measured, 50.9 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.50 g (22.7 mmol) of CA-3 was added, and 18.0 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.63 g (11.7 mmol) of CA-1 was added, and 9.70 g of NMP was further added, and the solution was stirred at 40 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1180 mPa · s) .
In a 100 mL Erlenmeyer flask containing a stirrer, 25.0 g of this polyamic acid solution is separated, 8.33 g of NMP, 2.96 g of acetic anhydride, and 0.766 g of pyridine are added and stirred at room temperature for 30 minutes. The reaction was carried out at 55 ° C. for 3 hours. The reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 86%).
Furthermore, 4.00 g of the powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirring bar, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A3 I got
(合成例4)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を4.82g(16.4mmol)、DA-2を3.58g(8.98mmol)、DA-3を2.50g(4.49mmol)量り取り、NMPを53.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を4.96g(22.1mmol)添加し、さらにNMPを19.3g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-4を1.50g(5.99mmol)添加し、さらにNMPを6.35g加え、窒素雰囲気下40℃で15時間撹拌し、ポリアミック酸の溶液(粘度:427mPa・s)を得た。
 撹拌子の入った100mL三角フラスコに、このポリアミック酸の溶液を30.0g分取し、NMPを15.0g、無水酢酸を2.85g、ピリジンを0.737g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を170gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:84%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を4.00g分取し、NMPを29.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A4を得た。
(Composition example 4)
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 4.82 g (16.4 mmol) of DA-1, 3.58 g (8.98 mmol) of DA-2, 2.50 g of DA-3 (4. 49 mmol) Measured, 53.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While the diamine solution was stirred under water cooling, 4.96 g (22.1 mmol) of CA-1 was added, 19.3 g of NMP was further added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 1.50 g (5.99 mmol) of CA-4 was added, and 6.35 g of NMP was further added, and the solution was stirred at 40 ° C. for 15 hours under a nitrogen atmosphere to obtain a solution of polyamic acid (viscosity: 427 mPa · s) .
In a 100 mL Erlenmeyer flask containing a stirrer, 30.0 g of this polyamic acid solution is separated, 15.0 g of NMP, 2.85 g of acetic anhydride, and 0.737 g of pyridine are added and stirred at room temperature for 30 minutes. The reaction was carried out at 55 ° C. for 3 hours. The reaction solution was poured into 170 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 84%).
Furthermore, 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and then polyimide solution SPI-A4 I got
(合成例5)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を2.89g(9.88mmol)、DA-2を3.94g(9.89mmol)、DA-3を2.75g(4.94mmol)、DA-4を2.01g(8.22mmol)量り取り、NMPを49.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.25g(21.4mmol)添加し、さらにNMPを14.7g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.04g(10.4mmol)添加し、さらにNMPを6.96g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1170mPa・s)を得た。
 撹拌子の入った100mL三角フラスコに、このポリアミック酸の溶液を25.0g分取し、NMPを16.6g、無水酢酸を2.81g、ピリジンを0.728g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を160gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:82%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を4.00g分取し、NMPを29.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A5を得た。
(Composition example 5)
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 2.89 g (9.88 mmol) of DA-1, 3.94 g (9.89 mmol) of DA-2, and 2.75 g of DA-3 (4. 94 mmol) and 2.01 g (8.22 mmol) of DA-4 were weighed out, 49.5 g of NMP was added, and the solution was stirred and dissolved while feeding nitrogen. While stirring the diamine solution under water cooling, 4.25 g (21.4 mmol) of CA-3 was added, and 14.7 g of NMP was further added, followed by stirring at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.04 g (10.4 mmol) of CA-2 was added, and 6.96 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1170 mPa · s) .
In a 100 mL Erlenmeyer flask containing a stirrer, 25.0 g of this polyamic acid solution is separated, 16.6 g of NMP, 2.81 g of acetic anhydride, and 0.728 g of pyridine are added and stirred at room temperature for 30 minutes. The reaction was carried out at 55 ° C. for 3 hours. The reaction solution was poured into 160 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 82%).
Furthermore, 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A5 I got
(合成例6)
 撹拌装置及び窒素導入管付きの300mLのナスフラスコに、DA-2を6.33g(15.8mmol)、DA-3を4.42g(7.94mmol)、DA-8を8.52g(29.1mmol)量り取り、NMPを150g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を7.72g(34.4mmol)添加し、さらにNMPを10.0g加え、窒素雰囲気下40℃で6時間撹拌した。さらに、CA-2を3.38g(17.2mmol)添加し、さらにNMPを10.0g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:190mPa・s)を得た。
 撹拌子の入った500mL三角フラスコに、このポリアミック酸の溶液を150g分取し、NMPを130g、無水酢酸を12.1g、ピリジンを3.13g加え、室温で30分間撹拌した後、55℃で4時間反応させた。この反応溶液を1040gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:81%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を4.00g分取し、NMPを29.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A6を得た。
Synthesis Example 6
In a 300 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 6.33 g (15.8 mmol) of DA-2, 4.42 g (7.94 mmol) of DA-3, and 8.52 g of DA-8 (29. 1 mmol) Measured, 150 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 7.72 g (34.4 mmol) of CA-1 was added, 10.0 g of NMP was further added, and the mixture was stirred at 40 ° C. for 6 hours under a nitrogen atmosphere. Furthermore, 3.38 g (17.2 mmol) of CA-2 was added, and 10.0 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 190 mPa · s) .
150 g of this polyamic acid solution is separated into a 500 mL Erlenmeyer flask containing a stirrer, 130 g of NMP, 12.1 g of acetic anhydride, 3.13 g of pyridine and stirred at room temperature for 30 minutes, then at 55 ° C. It was allowed to react for 4 hours. The reaction solution was poured into 1040 g of methanol, and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 81%).
Furthermore, 4.00 g of powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 29.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A6 I got
(合成例7)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-5を1.12g(4.49mmol)、DA-6を1.49g(7.47mmol)、DA-7を0.590g(2.97mmol)量り取り、NMPを15.5g、GBLを15.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を1.15g(5.86mmol)添加し、さらにNMPを5.00g、GBLを5.00g加え、窒素雰囲気下25℃で1時間撹拌した。さらに、CA-5を2.60g(8.83mmol)添加し、さらにNMPを5.00g、GBLを5.00gを加え、窒素雰囲気下50℃で12時間撹拌し、ポリアミック酸の溶液(粘度:200mPa・s)PAA-A1を得た。
Synthesis Example 7
1.12 g (4.49 mmol) of DA-5, 1.49 g (7.47 mmol) of DA-6, and 0.590 g of DA-7 in a 100 mL recovery type flask equipped with a stirrer and a nitrogen introduction tube. 97 mmol) Measured, 15.5 g of NMP and 15.5 g of GBL were added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 1.15 g (5.86 mmol) of CA-2 was added, and 5.00 g of NMP and 5.00 g of GBL were further added, followed by stirring at 25 ° C. for 1 hour under a nitrogen atmosphere. . Further, 2.60 g (8.83 mmol) of CA-5 is added, 5.00 g of NMP and 5.00 g of GBL are further added, and the solution is stirred at 50 ° C. for 12 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 200 mPa · s) PAA-A1 was obtained.
(合成例8)
 合成例1で得られたポリアミック酸の溶液PAA-B1を30.0g分取し、NMPを26.2g、無水酢酸を2.44g、ピリジンを0.630g加え、室温で30分間撹拌した後、40℃で30分間反応させた。この反応溶液を150gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:40%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を2.00g分取し、NMPを14.6g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-B1を得た。
Synthesis Example 8
After 30.0 g of the solution PAA-B1 of the polyamic acid obtained in Synthesis Example 1 was separated, 26.2 g of NMP, 2.44 g of acetic anhydride, and 0.630 g of pyridine were added and stirred at room temperature for 30 minutes. The reaction was allowed to proceed at 40 ° C. for 30 minutes. The reaction solution was poured into 150 g of methanol, and the resulting precipitate was filtered off. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 40%).
Furthermore, 2.00 g of the powder of this polyimide is taken into a 500 mL Erlenmeyer flask containing a stirrer, 14.6 g of NMP is added, and the solution is stirred for 24 hours at 70 ° C. to dissolve, and a solution SPI-B1 of polyimide I got
(合成例9)
 撹拌装置及び窒素導入管付きの200mLのナスフラスコに、DA-1を8.04g(27.5mmol)、DA-2を5.98g(15.0mmol)、DA-3を4.17g(7.50mmol)量り取り、NMPを111g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を7.29g(32.5mmol)添加し、さらにNMPを22.0g加え、窒素雰囲気下40℃で6時間撹拌した。さらに、CA-6を3.16g(14.5mmol)添加し、さらにNMPを28.5g加え、窒素雰囲気下50℃で12時間撹拌し、ポリアミック酸の溶液(粘度:280mPa・s)を得た。
 撹拌子の入った300mL三角フラスコに、このポリアミック酸の溶液を100g分取し、NMPを87.5g、無水酢酸を8.02g、ピリジンを2.07g加え、室温で30分間撹拌した後、55℃で4時間反応させた。この反応溶液を700gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:82%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を10.0g分取し、NMPを73.3g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-B2を得た。
Synthesis Example 9
In a 200 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 8.04 g (27.5 mmol) of DA-1, 5.98 g (15.0 mmol) of DA-2, and 4.17 g (7. 7) of DA-3. 50 mmol) Measured, 111 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 7.29 g (32.5 mmol) of CA-1 was added, 22.0 g of NMP was further added, and the mixture was stirred at 40 ° C. for 6 hours under a nitrogen atmosphere. Furthermore, 3.16 g (14.5 mmol) of CA-6 was added, and 28.5 g of NMP was further added, and the solution was stirred at 50 ° C. for 12 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 280 mPa · s) .
In a 300 mL Erlenmeyer flask containing a stirrer, 100 g of this polyamic acid solution is added, 87.5 g of NMP, 8.02 g of acetic anhydride, and 2.07 g of pyridine are added, and stirred at room temperature for 30 minutes. The reaction was allowed to proceed for 4 hours. The reaction solution was poured into 700 g of methanol, and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 82%).
Furthermore, 10.0 g of the powder of this polyimide is separated into a 500 mL Erlenmeyer flask containing a stirring bar, 73.3 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-B2 I got
(合成例10)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-8を5.62g(19.3mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.25mmol)量り取り、NMPを54.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.51g(22.8mmol)添加し、さらにNMPを15.5g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.29g(11.7mmol)添加し、さらにNMPを8.30g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1210mPa・s)を得た。
 合成例2と同様に、この得られたポリアミック酸を用いて化学的イミド化を行い、ポリイミドの粉末(イミド化率:83%)を得、さらにNMPに溶解させポリイミドの溶液SPI-A7を得た。
Synthesis Example 10
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.3 mmol) of DA-8, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 25 mmol) Measured, 54.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and 15.5 g of NMP was further added, followed by stirring at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.29 g (11.7 mmol) of CA-2 was added, and 8.30 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1210 mPa · s) .
Chemical imidization is carried out using the obtained polyamic acid in the same manner as in Synthesis Example 2 to obtain a powder of polyimide (imidation ratio: 83%), and it is further dissolved in NMP to obtain a solution SPI-A7 of polyimide. The
(合成例11)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-9を5.62g(19.3mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.25mmol)量り取り、NMPを54.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.51g(22.8mmol)添加し、さらにNMPを15.5g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.33g(11.9mmol)添加し、さらにNMPを8.50g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:900mPa・s)を得た。
 合成例2と同様に、この得られたポリアミック酸を用いて化学的イミド化を行い、ポリイミドの粉末(イミド化率:80%)を得、さらにNMPに溶解させポリイミドの溶液SPI-A8を得た。
Synthesis Example 11
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 5.62 g (19.3 mmol) of DA-9, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 5 g). 25 mmol) Measured, 54.3 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and 15.5 g of NMP was further added, followed by stirring at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.33 g (11.9 mmol) of CA-2 was added, and 8.50 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 900 mPa · s) .
Chemical imidization is carried out using the obtained polyamic acid in the same manner as in Synthesis Example 2 to obtain a powder of a polyimide (imidation ratio: 80%) and further dissolved in NMP to obtain a solution SPI-A8 of the polyimide. The
(合成例12)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-10を7.09g(19.3mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.25mmol)量り取り、NMPを60.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.51g(22.8mmol)添加し、さらにNMPを15.2g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.25g(11.5mmol)添加し、さらにNMPを8.10g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1250mPa・s)を得た。
 合成例2と同様に、この得られたポリアミック酸を用いて化学的イミド化を行い、ポリイミドの粉末(イミド化率:75%)を得、さらにNMPに溶解させポリイミドの溶液SPI-A9を得た。
Synthesis Example 12
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 7.09 g (19.3 mmol) of DA-10, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 25 mmol) Measured, 60.5 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and further 15.2 g of NMP was added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.25 g (11.5 mmol) of CA-2 was added, and 8.10 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1250 mPa · s) .
Chemical imidization is carried out using the obtained polyamic acid in the same manner as in Synthesis Example 2 to obtain a powder of polyimide (imidation ratio: 75%), and it is further dissolved in NMP to obtain a solution SPI-A9 of polyimide. The
(合成例13)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-11を7.40g(19.3mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.25mmol)量り取り、NMPを61.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.51g(22.8mmol)添加し、さらにNMPを15.2g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.30g(11.7mmol)添加し、さらにNMPを8.20g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:980mPa・s)を得た。
 合成例2と同様に、この得られたポリアミック酸を用いて化学的イミド化を行い、ポリイミドの粉末(イミド化率:81%)を得、さらにNMPに溶解させポリイミドの溶液SPI-A10を得た。
Synthesis Example 13
In a 100 mL recovery type flask equipped with a stirrer and a nitrogen inlet tube, 7.40 g (19.3 mmol) of DA-11, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 (5. 25 mmol) Measured, 61.8 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and further 15.2 g of NMP was added, and the mixture was stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. Furthermore, 2.30 g (11.7 mmol) of CA-2 was added, and 8.20 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 980 mPa · s) .
Chemical imidization is carried out using the obtained polyamic acid in the same manner as in Synthesis Example 2 to obtain a powder of a polyimide (imidation ratio: 81%) and further dissolved in NMP to obtain a solution SPI-A10 of the polyimide. The
(合成例14)
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-12を9.17g(19.3mmol)、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.25mmol)量り取り、NMPを69.4g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.51g(22.8mmol)添加し、さらにNMPを14.8g加え、窒素雰囲気下50℃で1時間撹拌した。さらに、CA-2を2.34g(12.0mmol)添加し、さらにNMPを8.30g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(粘度:1030mPa・s)を得た。
 合成例2と同様に、この得られたポリアミック酸を用いて化学的イミド化を行い、ポリイミドの粉末(イミド化率:83%)を得、さらにNMPに溶解させポリイミドの溶液SPI-A11を得た。
Synthesis Example 14
9.17 g (19.3 mmol) of DA-12, 4.18 g (10.5 mmol) of DA-2, and 2.92 g of DA-3 in a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube. 25 mmol) Measured, 69.4 g of NMP was added, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.51 g (22.8 mmol) of CA-3 was added, and 14.8 g of NMP was further added, followed by stirring at 50 ° C. for 1 hour under a nitrogen atmosphere. Further, 2.34 g (12.0 mmol) of CA-2 was added, and 8.30 g of NMP was further added, and the solution was stirred at 23 ° C. for 2 hours under a nitrogen atmosphere to obtain a polyamic acid solution (viscosity: 1030 mPa · s) .
Chemical imidization is carried out using the obtained polyamic acid in the same manner as in Synthesis Example 2 to obtain a powder of polyimide (imidation ratio: 83%), and further, it is dissolved in NMP to obtain a solution SPI-A11 of polyimide. The
(合成例15)
 撹拌子の入った100mL三角フラスコに、合成例2で得られたポリアミック酸の溶液を30.0g分取し、二炭酸ジ-tert-ブチルを0.470g加えた後40℃で12時間反応させた。さらに、NMPを20.0g、無水酢酸を3.85g、ピリジンを1.28g加え、室温で30分間撹拌した後60℃で4時間反応させた。この反応溶液を220gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:90%)を得た。
 さらに、撹拌子の入った500mL三角フラスコに、このポリイミドの粉末を3.50g分取し、NMPを25.6g加えて、70℃にて24時間攪拌して溶解させ、ポリイミドの溶液SPI-A12を得た。
Synthesis Example 15
In a 100 mL Erlenmeyer flask containing a stirrer, 30.0 g of the solution of polyamic acid obtained in Synthesis Example 2 is separated, 0.470 g of di-tert-butyl dicarbonate is added, and then reacted at 40 ° C. for 12 hours. The Furthermore, 20.0 g of NMP, 3.85 g of acetic anhydride, and 1.28 g of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 60 ° C. for 4 hours. The reaction solution was poured into 220 g of methanol, and the resulting precipitate was filtered off. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 80 ° C. to obtain a powder of polyimide (imidation ratio: 90%).
Furthermore, 3.50 g of the powder of this polyimide is separated into a 500 mL Erlenmeyer flask containing a stirrer, 25.6 g of NMP is added, and stirred at 70 ° C. for 24 hours to dissolve, and polyimide solution SPI-A12 I got
(実施例1~15)及び(比較例1~3)
 合成例1~15で得られたポリアミック酸の溶液、及びポリイミドの溶液を、下記の表に示される、ポリマー1及びポリマー2の比率になるように混合して得られる溶液に対して、NMP、GBL、BCS、AD-1を1重量%含むNMP溶液、及びAD-2を10重量%含むNMP溶液を、下記の表に示す組成になるように、攪拌しながら加え、更に室温で2時間撹拌することにより実施例1~15及び比較例1~3の液晶配向剤を得た。
(Examples 1 to 15) and (Comparative Examples 1 to 3)
NMP was added to a solution obtained by mixing the solution of polyamic acid obtained in Synthesis Example 1 to 15 and the solution of polyimide in the ratio of polymer 1 and polymer 2 as shown in the following table. GBL, BCS, NMP solution containing 1% by weight of AD-1, and NMP solution containing 10% by weight of AD-2 are added while stirring to obtain the composition shown in the table below, and further stirred at room temperature for 2 hours Thus, liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 3 were obtained.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 以下に、プレチルト角、電圧保持率を評価するための液晶セル1、液晶配向性を評価するための液晶セル2の作製方法を示す。 Hereinafter, a method of manufacturing the liquid crystal cell 1 for evaluating the pretilt angle and the voltage holding ratio, and the liquid crystal cell 2 for evaluating the liquid crystal alignment property will be described.
[液晶セル1の作製]
 初めに電極付きの基板を準備した。基板は、30mm×40mmの大きさで、厚さが1.1mmのガラス基板である。基板上には膜厚35nmのITO電極が形成されており、電極は縦40mm、横10mmのストライプパターンである。
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから各評価に用いた。
[Production of Liquid Crystal Cell 1]
First, a substrate with an electrode was prepared. The substrate is a glass substrate with a size of 30 mm × 40 mm and a thickness of 1.1 mm. An ITO electrode having a film thickness of 35 nm is formed on the substrate, and the electrode has a stripe pattern of 40 mm long and 10 mm wide.
Next, the liquid crystal aligning agent was filtered through a filter with a pore diameter of 1.0 μm, and then applied to the prepared electrode-equipped substrate by spin coating. After drying on a hot plate at 80 ° C. for 2 minutes, baking was carried out in an IR oven at 230 ° C. for 20 minutes to form a coating film with a film thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotational speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then ultrasonic irradiation is performed for 1 minute in pure water. The resultant was washed, air droplets were removed by air blow, and dried at 80 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with this liquid crystal alignment film are prepared, and a spacer of 4 μm is sprayed on the surface of one liquid crystal alignment film, and then a sealing agent is printed thereon, and the rubbing direction of the other substrate is reverse. And, after bonding so that the film surfaces face each other, the sealing agent was cured to produce an empty cell. A liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour, allowed to stand at 23 ° C. overnight, and then used for each evaluation.
[液晶セル2の作製]
 30mm×35mmの大きさで、厚さが0.7mmの電極付きのガラス基板を準備した。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。 
[Fabrication of liquid crystal cell 2]
A glass substrate with a size of 30 mm × 35 mm and a thickness of 0.7 mm was prepared. On the substrate, an IZO electrode having a solid pattern is formed, which constitutes a counter electrode as a first layer. A SiN (silicon nitride) film formed by the CVD method is formed as a second layer on the first counter electrode. The film thickness of the second SiN film is 500 nm and functions as an interlayer insulating film. A comb-like pixel electrode formed by patterning an IZO film as a third layer is disposed on the second layer SiN film, and two pixels of a first pixel and a second pixel are formed. ing. The size of each pixel is about 10 mm in height and about 5 mm in width. At this time, the first opposing electrode and the third pixel electrode are electrically insulated by the action of the second SiN film.
 第3層目の画素電極は、特開2014-77845号公報に記載の図3に示される、中央部分が屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。  The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of “く” shaped electrode elements whose central portion is bent as shown in FIG. 3 described in JP-A-2014-77845. It has the shape of The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent "字" shaped electrode elements in the central portion, the shape of each pixel is not rectangular, and the center is the same as the electrode elements. It has a shape resembling a bold "字" that bends in parts. And each pixel is divided up and down bordering on the central bending part, and has the 1st field of the upper part of a bending part, and the 2nd field of the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。また、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。  When the first region and the second region of each pixel are compared, the forming directions of the electrode elements of the pixel electrodes constituting them are different. That is, on the basis of the rubbing direction of the liquid crystal alignment film described later, the electrode element of the pixel electrode is formed at an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel The electrode elements of the electrodes are formed at an angle of -10 ° (clockwise). In addition, in the first area and the second area of each pixel, the directions of rotational movement (in-plane switching) in the substrate plane of the liquid crystal induced by voltage application between the pixel electrode and the counter electrode are mutually different. It is configured to be in the opposite direction.
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成し、各基板上に膜厚60nmのポリイミド膜を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。
 上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶MLC-3019(メルク株式会社製)を常温で真空注入した後、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成した。その後、液晶セルを120℃で1時間加熱し、23℃で一晩放置してから下記する各評価に用いた。
Next, the liquid crystal aligning agent is filtered with a filter having a pore diameter of 1.0 μm, and then an ITO film is formed on the back surface as the electrode-attached substrate and the opposite substrate, and a glass substrate having columnar spacers of 4 μm in height Each was spin-coated. Next, after drying for 2 minutes on a hot plate at 80 ° C., baking was performed at 230 ° C. for 20 minutes to obtain a polyimide film with a film thickness of 60 nm on each substrate. This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm), and then ultrasonic irradiation is performed for 1 minute in pure water. The resultant was washed, air droplets were removed by air blow, and dried at 80 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
Using the two types of substrates with the liquid crystal alignment film, they were combined so that their rubbing directions would be antiparallel, and the periphery was sealed leaving a liquid crystal injection port to produce an empty cell with a cell gap of 3.8 μm. . Liquid crystal MLC-3019 (manufactured by Merck & Co., Ltd.) was vacuum injected into this empty cell at normal temperature, and then the inlet was sealed to obtain a liquid crystal cell of anti-parallel alignment. The obtained liquid crystal cell constituted an FFS mode liquid crystal display element. Thereafter, the liquid crystal cell was heated at 120 ° C. for 1 hour, allowed to stand at 23 ° C. overnight, and then used for each evaluation described below.
<プレチルト角>
 オプトメトリクス社製AxoScanミュラーマトリクスポーラリメーターを用い、上記液晶セル1内のプレチルト角を評価した。
<Pretilt angle>
The pretilt angle in the liquid crystal cell 1 was evaluated using AxoScan Muller matrix polarimeter manufactured by Optometrics.
<電圧保持率>
 上記液晶セル1に60℃の温度下で1Vの電圧を60μsec印加し、50msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として評価した。
<Voltage holding ratio>
A voltage of 1 V was applied for 60 μsec at a temperature of 60 ° C. to the liquid crystal cell 1 and the voltage after 50 msec was measured to evaluate how much the voltage could be maintained as a voltage retention rate.
<液晶配向性の評価>
 上記液晶セル2を用い、60℃の恒温環境下、周波数30Hzで9VPPの交流電圧を170時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。 
<Evaluation of liquid crystal alignment>
Using the liquid crystal cell 2, an alternating voltage of 9 VPP was applied at a frequency of 30 Hz for 170 hours in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited, and left at room temperature for a day.
 23℃で一晩放置した後、この液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δθ1として算出し、第2画素でも同様に2領域と第1領域とを比較し角度Δθ2を算出した。これらΔθ1とΔθ2の平均値を液晶セルの角度Δθとし、この値が小さいほど液晶配向性が良好と定義し評価した。  After standing overnight at 23 ° C., this liquid crystal cell is placed between two polarizing plates disposed so that the polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied, and the brightness of the transmitted light The arrangement angle of the liquid crystal cell was adjusted so as to minimize. Then, the rotation angle when the liquid crystal cell is rotated from the angle at which the second region of the first pixel is the darkest to the angle at which the first region is the dark is calculated as the angle Δθ1. The angle Δθ2 was calculated by comparing with the first region. The average value of these Δθ1 and Δθ2 was defined as the angle Δθ of the liquid crystal cell, and the smaller this value, the better the liquid crystal alignment was defined and evaluated.
 上記実施例1~15、及び比較例1~3の各液晶配向剤を使用する液晶表示素子について、上記の通り実施したプレチルト角、電圧保持率及び液晶セルの角度Δθの結果を下記表に示す。 The liquid crystal display devices using the liquid crystal aligning agents of Examples 1 to 15 and Comparative Examples 1 to 3 above show the results of the pretilt angle, the voltage holding ratio, and the liquid crystal cell angle Δθ performed as described above. .
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 本発明の実施例の液晶配向剤を使用する液晶表示素子は、プレチルト角が低く、電圧保持率が高く、かつ液晶配向性が良好であることが判る。 It can be seen that the liquid crystal display device using the liquid crystal aligning agent of the embodiment of the present invention has a low pretilt angle, a high voltage holding ratio, and good liquid crystal alignment.
 本発明の液晶配向剤を用いることで、液晶配向膜に求められる種々の特性を満足するとともに、1度以下の低いプレチルト角を与える液晶配向膜を得ることが出来る。 By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film which satisfies various properties required for the liquid crystal alignment film and which gives a low pretilt angle of 1 degree or less.

Claims (9)

  1. 脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物から選ばれる少なくとも1種からなるテトラカルボン酸二無水物誘導体成分とジアミン成分との反応物であるポリイミドを含有する液晶配向剤であり、ジアミン成分が、下記式[A]のジアミンから選ばれる少なくとも1種を含有し、ポリイミドのイミド化率が70%以上である、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    式中P、Pはフェニル又はビフェニル基であり芳香環上の水素はメチル基又はフッ素基で置き換えられていてもよい。またQは2価の有機基であり、n1、n2は0から5の整数である。ただし、n1、n2の少なくとも一つが0の場合Qは酸素原子である。
    A liquid crystal aligning agent containing a polyimide which is a reaction product of a tetracarboxylic acid dianhydride derivative component composed of at least one selected from aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride and a diamine component It is a liquid crystal aligning agent whose diamine component contains at least 1 sort (s) chosen from diamine of following formula [A], and the imidation ratio of a polyimide is 70% or more.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, P 1 and P 2 are a phenyl or biphenyl group, and hydrogen on the aromatic ring may be replaced by a methyl group or a fluorine group. Q is a divalent organic group, and n1 and n2 are integers of 0 to 5. However, when at least one of n1 and n2 is 0, Q is an oxygen atom.
  2. 前記式[A]のジアミンが、下記式[A-1]~[A-6]から選ばれる少なくとも1種である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to claim 1, wherein the diamine of the formula [A] is at least one selected from the following formulas [A-1] to [A-6].
    Figure JPOXMLDOC01-appb-C000002
  3. 前記式[A]のジアミンが、全ジアミン成分の40%~80%である、請求項1または請求項2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein the diamine of the formula [A] is 40% to 80% of the total diamine component.
  4. 前記ジアミン成分がさらに、その構造中に下記式(6)の構造を有するジアミンを含む、請求項1から請求項3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    上記式(6)において、Dは、150~230℃で脱離し、水素原子に置き換わる熱脱離性基である。
    The liquid crystal aligning agent of any one of Claims 1-3 in which the said diamine component contains the diamine which has a structure of following formula (6) in the structure further.
    Figure JPOXMLDOC01-appb-C000003
    In the above formula (6), D is a thermally releasable group capable of desorbing at 150 to 230 ° C. and replacing a hydrogen atom.
  5. 上記式(6)の構造を有するジアミンが、下記のジアミンから選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    式中nは1から12の整数である。
    The liquid crystal aligning agent of Claim 4 whose diamine which has a structure of the said Formula (6) is at least 1 sort (s) chosen from the following diamine.
    Figure JPOXMLDOC01-appb-C000004
    In the formula, n is an integer of 1 to 12.
  6. 脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物が、下記式(4)で表される、請求項1から請求項5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    式中Xは、下記の構造から選ばれる構造である。
    Figure JPOXMLDOC01-appb-C000006
    The liquid crystal aligning agent of any one of Claim 1 to 5 whose aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride are represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000005
    In the formula, X 1 is a structure selected from the following structures.
    Figure JPOXMLDOC01-appb-C000006
  7. 更に、テトラカルボン酸二無水物誘導体とジアミンとの反応物であるポリアミック酸を含有する、請求項1から請求項6のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, further comprising a polyamic acid which is a reaction product of a tetracarboxylic acid dianhydride derivative and a diamine.
  8. 請求項1から請求項7に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 7.
  9. 請求項8の液晶配向膜を具備する液晶表示素子。 The liquid crystal display element which comprises the liquid crystal aligning film of Claim 8.
PCT/JP2018/039697 2017-10-26 2018-10-25 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2019082975A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019550283A JP7276666B2 (en) 2017-10-26 2018-10-25 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR1020207012497A KR102586312B1 (en) 2017-10-26 2018-10-25 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN201880069243.7A CN111279255B (en) 2017-10-26 2018-10-25 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017207504 2017-10-26
JP2017-207504 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082975A1 true WO2019082975A1 (en) 2019-05-02

Family

ID=66246892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039697 WO2019082975A1 (en) 2017-10-26 2018-10-25 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7276666B2 (en)
KR (1) KR102586312B1 (en)
CN (1) CN111279255B (en)
TW (1) TW201930401A (en)
WO (1) WO2019082975A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040089A1 (en) * 2018-08-20 2020-02-27 日産化学株式会社 Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
WO2021112095A1 (en) * 2019-12-06 2021-06-10 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal display element
KR20210125901A (en) 2020-04-09 2021-10-19 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20220106750A (en) 2019-11-26 2022-07-29 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
KR20220109304A (en) 2021-01-28 2022-08-04 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20230002334A (en) 2020-04-10 2023-01-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2023074391A1 (en) * 2021-10-28 2023-05-04 日産化学株式会社 Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
KR20230109658A (en) 2020-11-19 2023-07-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, polymer manufacturing method, liquid crystal aligning film, liquid crystal display element
KR20240004616A (en) 2021-05-06 2024-01-11 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294281A (en) * 2008-06-03 2009-12-17 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2010250307A (en) * 2009-03-31 2010-11-04 Daxin Material Corp Liquid crystal alignment solution
JP2010282105A (en) * 2009-06-08 2010-12-16 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
CN103074075A (en) * 2011-10-25 2013-05-01 达兴材料股份有限公司 Liquid crystal aligning agent
WO2016158942A1 (en) * 2015-03-30 2016-10-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2017146595A (en) * 2016-02-15 2017-08-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731404A (en) 1995-11-01 1998-03-24 E. I. Du Pont De Nemours And Company Polyimide film from pyromellitic dianhydride and a bis(4-aminophenoxy) aromatic compound as an alignment layer for liquid crystal displays
JP3169062B2 (en) 1996-07-11 2001-05-21 日産化学工業株式会社 Liquid crystal cell alignment agent
KR100902159B1 (en) * 2007-06-13 2009-06-10 한국화학연구원 Low temperature processable substituted alicyclic polyimide photo-alignment layers and method for preparing liquid crystal cells
CN103797408B (en) * 2011-07-12 2019-02-19 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display element
JP6447815B2 (en) * 2012-12-25 2019-01-09 日産化学株式会社 Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using the same
WO2015080185A1 (en) * 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
CN107077032B (en) * 2014-10-20 2021-04-16 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294281A (en) * 2008-06-03 2009-12-17 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2010250307A (en) * 2009-03-31 2010-11-04 Daxin Material Corp Liquid crystal alignment solution
JP2010282105A (en) * 2009-06-08 2010-12-16 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element
CN103074075A (en) * 2011-10-25 2013-05-01 达兴材料股份有限公司 Liquid crystal aligning agent
WO2016158942A1 (en) * 2015-03-30 2016-10-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2017146595A (en) * 2016-02-15 2017-08-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040089A1 (en) * 2018-08-20 2020-02-27 日産化学株式会社 Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
KR20220106750A (en) 2019-11-26 2022-07-29 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
WO2021112095A1 (en) * 2019-12-06 2021-06-10 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal display element
CN114761866A (en) * 2019-12-06 2022-07-15 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for producing liquid crystal display element
KR20210125901A (en) 2020-04-09 2021-10-19 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20230002334A (en) 2020-04-10 2023-01-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20230109658A (en) 2020-11-19 2023-07-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, polymer manufacturing method, liquid crystal aligning film, liquid crystal display element
KR20220109304A (en) 2021-01-28 2022-08-04 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20240004616A (en) 2021-05-06 2024-01-11 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2023074391A1 (en) * 2021-10-28 2023-05-04 日産化学株式会社 Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element

Also Published As

Publication number Publication date
TW201930401A (en) 2019-08-01
JPWO2019082975A1 (en) 2020-12-17
KR102586312B1 (en) 2023-10-06
KR20200066656A (en) 2020-06-10
CN111279255A (en) 2020-06-12
CN111279255B (en) 2023-03-14
JP7276666B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7276666B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6919574B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
KR20160077083A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20160074520A (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
KR20190082293A (en) A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
WO2013157586A1 (en) Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
WO2019022215A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2018135657A1 (en) Liquid crystal aligning agent and method for producing liquid crystal alignment film
WO2018117240A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017170483A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2024037908A (en) Compound
WO2018117239A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI825031B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display elements using the same
WO2019044795A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7448891B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201922853A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7193782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018066607A1 (en) Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102662812B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
WO2021065934A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550283

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207012497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870169

Country of ref document: EP

Kind code of ref document: A1