WO2016158942A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2016158942A1
WO2016158942A1 PCT/JP2016/060107 JP2016060107W WO2016158942A1 WO 2016158942 A1 WO2016158942 A1 WO 2016158942A1 JP 2016060107 W JP2016060107 W JP 2016060107W WO 2016158942 A1 WO2016158942 A1 WO 2016158942A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal aligning
aligning agent
mass
Prior art date
Application number
PCT/JP2016/060107
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 巴
秀則 石井
達也 結城
早紀 相馬
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680031582.7A priority Critical patent/CN107615147A/en
Priority to JP2017510019A priority patent/JP6700619B2/en
Priority to KR1020177030447A priority patent/KR102591734B1/en
Publication of WO2016158942A1 publication Critical patent/WO2016158942A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • the liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates.
  • the liquid crystal alignment film can be configured by forming a polymer film on a substrate.
  • a highly heat-resistant and highly reliable polyimide film or the like can be used.
  • a method for forming a polymer film to be a liquid crystal alignment film on a substrate a liquid crystal alignment agent containing components is used for forming the polymer film, and the coating film is formed on the substrate to form a liquid crystal alignment film.
  • a method for obtaining a molecular film is known.
  • butyl cellosolve has been pointed out to be toxic and has a problem that it is not preferable for use. Therefore, there has been a demand for a liquid crystal aligning agent containing another solvent that can reduce the amount of butyl cellosolve used in place of or in combination with butyl cellosolve while maintaining high printability.
  • an object of the present invention is to provide a liquid crystal aligning agent having high printability and excellent safety in use, a liquid crystal alignment film using the liquid crystal aligning agent, and a liquid crystal display element.
  • the present invention includes the following 1. ⁇ 7. Is a summary.
  • a liquid crystal aligning agent used for forming a polyimide film by coating on a substrate and subjecting to a heat treatment represented by a tetracarboxylic acid derivative and the following formulas (YA-1) to (YA-20)
  • Boc (Boc group) represents a tert-butoxycarbonyl group.
  • the content of the compound represented by the formula (1) in the solvent is 5% by mass or more.
  • the content of the compound represented by the formula (2) in the solvent is 10% by mass or more.
  • a liquid crystal display element comprising the liquid crystal alignment film described in 1.
  • liquid crystal aligning agent having high printability and excellent safety in use, and a liquid crystal alignment film and a liquid crystal display element using the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention comprises a tetracarboxylic acid derivative and a specific diamine (at least one diamine selected from the group consisting of compounds represented by formula (YA-1) to formula (YA-20) described later). It contains at least one polymer selected from the group consisting of a polyimide precursor obtained by reacting the contained diamine component and a polyimide obtained by imidizing it. Examples of the polyimide precursor include polyamic acid and polyamic acid ester. And the liquid crystal aligning agent of this invention contains the at least 1 type of solvent chosen from the group which consists of a compound represented by following formula (1) and following formula (2).
  • liquid crystal aligning agent of the present invention a polyimide precursor, polyimide, a diamine compound having a specific structure essential for polymerization thereof, and a solvent, which are components that can be contained in the liquid crystal aligning agent of the present invention, will be described. And the liquid crystal aligning agent of this invention comprised including them is demonstrated.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention points out a polyamic acid and polyamic acid ester, and has a structural unit represented by following formula (3).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 may each independently have a hydrogen atom or a substituent.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • the temperature at which imidization proceeds increases as the number of carbon atoms in the alkyl group increases. Therefore, R 1 is particularly preferably a methyl group from the viewpoint of ease of imidization by heat.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a substituent. Examples thereof include alkynyl groups having 2 to 10 carbon atoms. Specific examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group. Etc.
  • alkenyl group having 2 to 10 carbon atoms examples include those in which one or more CH—CH structures present in the above alkyl group are replaced with a C ⁇ C structure.
  • alkynyl group having 2 to 10 carbon atoms examples include those obtained by replacing one or more CH 2 —CH 2 structures present in the alkyl group with a C ⁇ C structure, specifically, an ethynyl group, Examples thereof include 1-propynyl group and 2-propynyl group.
  • the alkyl group having 1 to 10 carbon atoms, the alkenyl group having 2 to 10 carbon atoms, and the alkynyl group having 2 to 10 carbon atoms may have a substituent, and further, a ring structure is formed by the substituent. Also good.
  • the formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, Examples thereof include an alkyl group, an alkenyl group, and an alkynyl group.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the above-mentioned other substituents.
  • the organooxy group that is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the Rs may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the aforementioned alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent.
  • thioester group a structure represented by —C (S) O—R or OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
  • Examples of the aryl group that is a substituent include the same aryl groups as described above. This aryl group may be further substituted with the above-mentioned other substituents.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the above-mentioned other substituents.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as those described above. This alkenyl group may be further substituted with the above-mentioned other substituents.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as those described above. This alkynyl group may be further substituted with the above-mentioned other substituents.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • the structure of X 1 is not particularly limited as long as it is a tetravalent organic group, and two or more kinds may be mixed. If Specific examples of X 1, include X-1 ⁇ X-47 shown below. Among these, from the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X -21, X-25, X-26, X-27, X-28, X-32 or X-47 are preferred.
  • Y 1 corresponds to the structure of the diamine component used in the present invention.
  • the diamine component used in the present invention contains a specific diamine (at least one diamine selected from the group consisting of compounds represented by formula (YA-1) to formula (YA-20) described later). Therefore, Y 1 has a structure corresponding to the specific diamine. However, it is not always necessary that Y 1 has a structure corresponding to the specific diamine. A part of Y 1 may contain a structure corresponding to a diamine other than the specific diamine (other diamine). Specific examples of Y 1 including the case where other diamines are used in combination include the following Y-1 to Y-108, but are not limited thereto.
  • Y 1 examples include Y-7, Y-8, Y-13, Y-18, Y-19, Y-42, Y from the viewpoints of diamine reactivity and polymer solubility.
  • -43, Y-45, Y-55, Y-59, Y-74, Y-78, Y-79, Y-80, Y-81, or Y-82 are preferred, and Y-19 (for example, described later) Diamine (YA-8)), Y-42 (for example, diamine (YA-5) described later), Y-43 (for example, diamine (YA-1) described later), Y-45 (for example)
  • Y-74 for example, corresponding to diamine (YA-9) described later
  • Y-81 for example, corresponding to diamine (YA-12) described later
  • Y-82 for example, corresponding to diamine (YA-3) described later
  • the diamine component used in the present invention contains at least one diamine selected from the group consisting of compounds represented by the following formula (YA-1) to the following formula (YA-20).
  • a part of Y 1 may contain a structure corresponding to another diamine, that is, the diamine component used in the present invention may contain another diamine.
  • Diamines providing Y 1 other than Y-1 to Y-108 can also be used as other diamines within the scope of the present invention. Specific examples of other diamines are shown below (YB-1 to YB-7). Other diamines are not limited to the following.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention is preferably a polyimide precursor having at least one of primary amine, secondary amine, carboxylic acid and urea group, and at least one of primary amine and urea group.
  • a polyimide precursor having two is more preferable.
  • the polyamic acid which is a polyimide precursor having the structural unit represented by the above formula (3) is obtained by a reaction between a tetracarboxylic dianhydride which is a tetracarboxylic acid derivative and a diamine component.
  • a known synthesis method can be used.
  • the synthesis method is a method in which a tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the generated polyamic acid dissolves.
  • the organic solvent here may contain at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2). Specific examples of the organic solvent that can be used are listed below.
  • solvents may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • the tetracarboxylic dianhydride or diamine component When the tetracarboxylic dianhydride or diamine component is composed of multiple types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further mixed with individually reacted low molecular weight substances. It is good also as a high molecular weight body by making it react.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyamic acid ester which is a polyimide precursor having the structural unit represented by the above formula (3) is a method of (A), (B) or (C) shown below using a tetracarboxylic acid derivative and a diamine compound. Can be manufactured.
  • a polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be manufactured by.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times with respect to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 hours to It can be produced by reacting for 15 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times by mole with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 mol times relative to the diamine component.
  • the production method (C) is particularly preferable because a high molecular weight polyamic acid ester can be obtained with good reproducibility.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, purified polyamic acid ester powder can be obtained by drying at room temperature or by heating.
  • the polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid, which is a polyimide precursor.
  • the imidization reaction for dehydrating and cyclizing the polyimide precursor is generally thermal imidization or chemical imidation, but chemical imidation in which the imidization reaction proceeds at a relatively low temperature may reduce the molecular weight of the resulting polyimide. Less likely to occur.
  • Chemical imidization can be performed by stirring the polyimide precursor in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the reaction temperature at this time is ⁇ 20 to 250 ° C., preferably 0 to 180 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the polyimide precursor, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the polyimide precursor. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
  • Examples of basic catalysts used for imidization include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • an organic solvent the solvent used at the time of the above-mentioned polyamic acid polymerization reaction can be used.
  • the imidation rate by chemical imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the added catalyst remains in the solution. Therefore, in order to use it for the liquid crystal aligning agent of the present invention, this polyimide solution is put into a poor solvent which is being stirred. It is preferable to use the polyimide after precipitation. Although it does not specifically limit as a poor solvent used for precipitation collection
  • the polyimide precipitated by adding it to a poor solvent can be recovered by filtration, washing, and drying at normal temperature or under reduced pressure at room temperature or by heating. By further dissolving the powder in a good solvent and reprecipitating it 2 to 10 times, the polyimide can be purified. When impurities cannot be completely removed by a single precipitation recovery operation, it is preferable to repeat this purification step. Mixing or sequentially using, for example, three or more kinds of poor solvents such as alcohols, ketones and hydrocarbons as the poor solvent in the repeated purification step is preferable because the purification efficiency is further increased.
  • poor solvents such as alcohols, ketones and hydrocarbons
  • the imidation ratio of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited. What is necessary is just to set to arbitrary values in consideration of the solubility of a polyimide.
  • the molecular weight of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but if the molecular weight of the polyimide is too small, the strength of the resulting coating film may be insufficient, and conversely, the molecular weight of the polyimide is too large. And the viscosity of the liquid crystal aligning agent manufactured may become high too much, and the workability
  • a compound other than the above (other compounds) may be added to the liquid crystal aligning agent of the present invention as long as the effects of the present invention are not impaired.
  • the crosslinkable compound is intended to increase the hardness and density of the dielectric and conductive material, and further to the liquid crystal alignment film. May be added.
  • Examples of other compounds include compounds having a blocked isocyanate group described in Japanese Patent Application No. 2014-053902.
  • a compound having a blocked isocyanate group has a blocked isocyanate group in which the isocyanate group (—NCO) is blocked by a protective group in the molecule, and when exposed to a high temperature during heating and baking during the formation of a liquid crystal alignment film, the protective group (block The portion) is dissociated by thermal dissociation, and a crosslinking reaction proceeds with a polymer such as polyimide constituting the liquid crystal alignment film through the generated isocyanate group.
  • numerator is mentioned.
  • R 2 represents an organic group in the block part.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt
  • the said resin component is a resin component containing the at least 1 sort (s) of polymer chosen from the group which consists of said polyimide precursor and a polyimide.
  • the content of the resin component in the liquid crystal aligning agent is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and still more preferably 3% by mass to 10% by mass.
  • all of the resin components may be the above-mentioned polymers, or other polymers may be mixed.
  • the content of the polymer other than the above-mentioned polymer in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • the organic solvent used for the liquid crystal aligning agent of the present invention contains at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2). According to this, a liquid crystal aligning agent can be comprised without using the butyl cellosolve to which toxicity is pointed out, or reducing the usage-amount of a butyl cellosolve. Therefore, it becomes a liquid crystal aligning agent excellent in safety.
  • the liquid crystal aligning agent of the present invention containing at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2) seems to be confirmed in the examples described later. In addition, it has high printability.
  • the content of the compound represented by the above formula (1) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is preferably 5% by mass or more.
  • substrate for example by inkjet printing.
  • a liquid crystal aligning agent in which the compound represented by the above formula (1) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is 5% by mass or more is used. It is preferable to configure.
  • the compound represented by the above formula (1) is called dipropylene glycol monomethyl ether or the like.
  • the compound represented by the above formula (1) has a relatively simple structure and is easily available.
  • the compound represented by the above formula (2) is called propylene glycol monobutyl ether or the like.
  • the content of the compound represented by the above formula (2) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is preferably 10% by mass or more. In this case, it becomes easy to suitably form a coating film on the substrate by, for example, ink jet printing or flexographic printing. Conversely, when forming a coating film by flexographic printing as well as inkjet printing, the compound represented by the above formula (2) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is 10% by mass or more. It is preferable to constitute a certain liquid crystal aligning agent.
  • the organic solvent used for the liquid crystal aligning agent may contain a solvent (other solvent) other than the solvent represented by the above formula (1) and the above formula (2). Specific examples of other solvents are listed below.
  • the liquid crystal aligning agent may contain butyl cellosolve. Even if the liquid crystal aligning agent contains butyl cellosolve, the amount of the butyl cellosolve used is reduced by the amount containing at least one solvent selected from the group consisting of the compounds represented by formula (1) and formula (2). it can.
  • the liquid crystal aligning agent of the present invention may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
  • the poor solvent may be used alone or in combination.
  • the content thereof is preferably 5% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like described in Japanese Patent Application No. 2014-053902. .
  • the ratio of the surfactant used is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. is there.
  • Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds described in Japanese Patent Application No. 2014-053902.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation of the liquid crystal alignment film formed may be lowered.
  • the liquid crystal aligning agent of the present invention has a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone (poor solvent)
  • BCS Butyl cellosolve (ethylene glycol monobutyl ether)
  • DPM Dipropylene glycol monomethyl ether (formula (1) above)
  • PB Propylene glycol monobutyl ether (formula (2) above)
  • the liquid crystal aligning agent of the present invention can be formed into a coating film by preferably filtering before applying to the substrate, applying to the substrate, drying by pre-baking, and then baking by heating. And a liquid crystal aligning film can be formed by rubbing this coating-film surface.
  • a highly transparent substrate can be used.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used in addition to a glass substrate.
  • the liquid crystal aligning agent of this invention it is preferable to form a liquid crystal aligning film using the board
  • an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum may be used for the electrode. it can.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention on a substrate include an inkjet printing method and a flexographic printing method.
  • a liquid crystal aligning agent contains the solvent represented by the said Formula (1) at least.
  • a liquid crystal aligning agent contains the solvent represented by the said Formula (2) at least.
  • examples of the coating method of the present invention include screen printing, offset printing, dip method, roll coater method, slit coater method, spinner method, and spray method, and these may be used depending on the purpose.
  • the step of drying by pre-baking after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to heating and baking is not constant for each substrate, or when heating and baking is not performed immediately after application, It is preferable to include a drying step.
  • the drying by this pre-bake should just evaporate the solvent to such an extent that the coating film shape does not deform
  • the drying means is not particularly limited. As a specific example, a method of drying on a hot plate at 50 ° C. to 120 ° C., preferably 80 ° C. to 120 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes is preferable.
  • the substrate coated with the liquid crystal aligning agent can be baked at a temperature of 120 ° C. to 350 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • baking is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal display element, such as sealing agent curing.
  • the thickness of the coating film after baking is preferably 10 nm to 200 nm, more preferably 50 nm to 100 nm.
  • an existing rubbing apparatus can be used for the rubbing treatment of the coating surface formed on the substrate as described above.
  • the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • conditions for the rubbing treatment generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and an indentation amount of 0.1 to 1.0 mm are used. Thereafter, residues generated by rubbing are removed by ultrasonic cleaning using pure water, alcohol, or the like.
  • the liquid crystal aligning agent of the present invention can produce a liquid crystal display by a known method using the substrate with the liquid crystal aligning film after the liquid crystal aligning film is formed on the substrate by the above method.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • An example of a method for manufacturing a liquid crystal display element is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and they are preferably sandwiched by spacers of 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m, and the rubbing direction is an arbitrary angle of 0 ° to 270 °. Install it so that the surrounding area is fixed with a sealant.
  • liquid crystal is injected between the substrates and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after dropping the liquid crystal.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone (poor solvent)
  • PB Propylene glycol monobutyl ether (formula (2) above)
  • BCS Butyl cellosolve (ethylene glycol monobutyl ether)
  • DPM Dipropylene glycol monomethyl ether (formula (1) above)
  • DA-2 4,4′-diaminodiphenylamine (formula (YA-2))
  • DA-3 4,4′-diaminodiphenylmethane (formula (YA-5))
  • DA-5 3,5-diaminobenzoic acid (formula (YA-19))
  • DA-6 p-phenylenediamine (formula (YA-7))
  • DA-7 N, N-diallylamino-2,4-diaminobenzene (diamine corresponding to formula (Y-15))
  • DA-8 1,3-diamino-4
  • CA-1 pyromellitic dianhydride
  • CA-2 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • CA-3 3,4-dicarboxy-1,2,3,4-tetrahydro- 1-Naphthalene succinic dianhydride
  • CA-4 Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • equation using the integrated value. Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 1 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 19.1 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 5.60 g of NMP solution and 18.6 g of PB were added and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1) having a concentration of 6.0% by mass.
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • the liquid crystal aligning agent (A-1) and the liquid crystal aligning agent (B-1) are mixed in a mass ratio of 20:80 to obtain a liquid crystal aligning agent (C-1) having a concentration of 6.0% by mass. It was.
  • Example 2 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 19.1 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 5.60 g of NMP solution containing, 9.30 g of PB and 9.30 of BCS were added and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-2) having a concentration of 6.0% by mass. .
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • the liquid crystal aligning agent (A-2) and the liquid crystal aligning agent (B-2) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-2) having a concentration of 6.0% by mass. It was.
  • Example 3 Into a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the liquid crystal aligning agent (C-1) obtained in Example 1 was collected, 28.5 g of NMP and 7.14 g of PB were added, and a magnetic stirrer was added. By stirring for 2 hours, a liquid crystal aligning agent (C-3) having a concentration of 3.5% by mass was obtained.
  • Example 4 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 48.0 g of NMP, 24.4 g of GBL, 3-aminopropyltrimethyl Add 5.60 g of NMP solution containing 1% by mass of ethoxysilane, 24.0 g of BCS, and 8.00 g of DPM, and stir with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A -3) was obtained.
  • the liquid crystal aligning agent (A-3) and the liquid crystal aligning agent (B-3) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-4) having a concentration of 3.5% by mass. It was.
  • Example 5 In a 200 mL Erlenmeyer flask containing a stirrer, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 48.0 g of NMP, 8.40 g of GBL, 3-aminopropyltrimethyl Add 5.60 g of NMP solution containing 1% by mass of ethoxysilane, 33.6 g of BCS, and 14.4 g of DPM, and stir for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A -4) was obtained.
  • the liquid crystal aligning agent (A-4) and the liquid crystal aligning agent (B-4) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-5) having a concentration of 3.5% by mass. It was.
  • Example 6 The liquid crystal aligning agent (A-4) obtained in Example 5 and the liquid crystal aligning agent (B-4) were mixed in an amount to give a mass ratio of 30:70, and the liquid crystal aligning agent having a concentration of 3.5% by mass ( C-6) was obtained.
  • the liquid crystal aligning agents obtained in the examples and comparative examples of the present invention were pressure filtered through a membrane filter having a pore size of 1 ⁇ m, and a simple printing machine S15 type (manufactured by Nissha Printing Co., Ltd.) was used. It was applied to the chrome surface. Then, after heating for 1 minute on an 80 degreeC hotplate and removing a solvent, it baked for 20 minutes in 230 degreeC IR type oven.
  • the coating film was visually observed under a sodium lamp, and the case where almost no printing unevenness was observed was evaluated as “good ( ⁇ mark)”, and the case where printing unevenness was observed was evaluated as “bad ( ⁇ mark)”.
  • the liquid crystal aligning agents obtained in the examples and comparative examples of the present invention were pressure filtered through a membrane filter having a pore diameter of 1 ⁇ m, and a glass substrate with an ITO electrode was used using HIS-200 (manufactured by Hitachi Plant Technology). It applied to the ITO surface. Then, after heating for 1 minute on an 80 degreeC hotplate and removing a solvent, it baked for 20 minutes in 230 degreeC IR type oven.
  • the coating film was observed with a microscope having a magnification of 5 times, and the case where almost no coating unevenness was observed was evaluated as “good ( ⁇ mark)”, and the case where coating unevenness was observed was evaluated as “bad ( ⁇ mark)”.
  • Table 2 shows the results of evaluation of printability and inkjet applicability when the liquid crystal aligning agents obtained in Examples and Comparative Examples are used.
  • the liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention does not use butyl cellosolve, which has been pointed out to be toxic, or reduces the amount of butyl cellosolve used. Therefore, it is a liquid crystal aligning agent excellent in safety.
  • the liquid crystal aligning agent of the present invention also has high printability and ink jet coatability, as confirmed in the above examples.

Abstract

A liquid crystal alignment agent used to form a polyimide film by being applied to a substrate and heat treated, the liquid crystal alignment agent containing: at least one species of polymer selected from the group consisting of a polyimide precursor obtained by reacting a tetracarboxylic acid derivative and a diamine component containing a specific diamine, and a polyimide obtained by imidization of the polyimide precursor; and at least one species of solvent selected from the group consisting of the compounds represented by formula (1) and formula (2).

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
 液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板等において、液晶分子の配向を一定方向に制御するための膜である。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。 The liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates.
 液晶配向膜は、基板上に高分子膜を形成して構成することができる。高分子膜としては、高耐熱性で高信頼性のポリイミド膜等を使用することができる。
 基板上に液晶配向膜となる高分子膜を形成する方法としては、高分子膜形成のため成分を含む液晶配向剤を使用し、基板上にその塗膜を形成して液晶配向膜となる高分子膜を得る方法が知られている。
The liquid crystal alignment film can be configured by forming a polymer film on a substrate. As the polymer film, a highly heat-resistant and highly reliable polyimide film or the like can be used.
As a method for forming a polymer film to be a liquid crystal alignment film on a substrate, a liquid crystal alignment agent containing components is used for forming the polymer film, and the coating film is formed on the substrate to form a liquid crystal alignment film. A method for obtaining a molecular film is known.
 液晶配向膜の作製の工程において、液晶配向剤を基板に塗布する場合、工業的にはフレキソ印刷法やインクジェット印刷法等で行うことが多い。その際、塗布溶液の溶媒として、良溶媒とともに、液晶配向剤を基板に塗布する際の液晶配向剤の塗布性(印刷性)を良好にするため、ブチルセロソルブに代表される貧溶媒が併用されることがある(例えば、特許文献1や特許文献2参照)。 In the process of producing a liquid crystal alignment film, when a liquid crystal aligning agent is applied to a substrate, it is often industrially performed by a flexographic printing method or an ink jet printing method. At that time, a poor solvent typified by butyl cellosolve is used in combination with a good solvent as a solvent for the coating solution in order to improve the applicability (printability) of the liquid crystal aligning agent when applying the liquid crystal aligning agent to the substrate. (For example, refer to Patent Document 1 and Patent Document 2).
特開2010-97188号公報JP 2010-97188 A 特開2010-156934号公報JP 2010-156934 A
 しかしながら、ブチルセロソルブには毒性が指摘されており、使用上あまり好ましくないという問題があった。そのため、高い印刷性を維持しつつ、ブチルセロソルブに代わる、又は併用によりブチルセロソルブの使用量を低減できる他の溶媒を含んだ液晶配向剤が求められていた。 However, butyl cellosolve has been pointed out to be toxic and has a problem that it is not preferable for use. Therefore, there has been a demand for a liquid crystal aligning agent containing another solvent that can reduce the amount of butyl cellosolve used in place of or in combination with butyl cellosolve while maintaining high printability.
 本発明は、このような事情に鑑み、印刷性が高く、使用上の安全性に優れる液晶配向剤及び該液晶配向剤を用いた液晶配向膜及び液晶表示素子を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a liquid crystal aligning agent having high printability and excellent safety in use, a liquid crystal alignment film using the liquid crystal aligning agent, and a liquid crystal display element.
 本発明は、下記の1.~7.を要旨とするものである。 The present invention includes the following 1. ~ 7. Is a summary.
 1.基板上に塗布し、加熱処理を施すことでポリイミド膜を形成するのに用いられる液晶配向剤であって、テトラカルボン酸誘導体と下記式(YA-1)~下記式(YA-20)で表される化合物からなる群から選ばれる少なくとも1種のジアミンを含有するジアミン成分とを反応させて得られるポリイミド前駆体及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体と、下記式(1)及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒と、を含有することを特徴とする液晶配向剤。尚、式中のBoc(Boc基)は、tert-ブトキシカルボニル基を表している。 1. A liquid crystal aligning agent used for forming a polyimide film by coating on a substrate and subjecting to a heat treatment, represented by a tetracarboxylic acid derivative and the following formulas (YA-1) to (YA-20) At least one polymer selected from the group consisting of a polyimide precursor obtained by reacting with a diamine component containing at least one diamine selected from the group consisting of the above compounds, and a polyimide obtained by imidizing it. And at least one solvent selected from the group consisting of compounds represented by the following formula (1) and the following formula (2). In the formula, Boc (Boc group) represents a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 2.前記溶媒における前記式(1)で表される化合物の含有量は5質量%以上であることを特徴とする上記の1.に記載の液晶配向剤。 2. The content of the compound represented by the formula (1) in the solvent is 5% by mass or more. Liquid crystal aligning agent as described in.
 3.前記溶媒における前記式(2)で表される化合物の含有量は10質量%以上であることを特徴とする上記の1.又は2.に記載の液晶配向剤。 3. The content of the compound represented by the formula (2) in the solvent is 10% by mass or more. Or 2. Liquid crystal aligning agent as described in.
 4.前記塗布がインクジェット印刷であることを特徴とする上記の1.~3.の何れか一つに記載の液晶配向剤。 4. The above-mentioned 1. characterized in that the application is inkjet printing. ~ 3. The liquid crystal aligning agent as described in any one of these.
 5.前記塗布がフレキソ印刷であることを特徴とする上記の1.~3.の何れか一つに記載の液晶配向剤。 5. The above-mentioned 1. characterized in that the application is flexographic printing. ~ 3. The liquid crystal aligning agent as described in any one of these.
 6.上記の1.~5.の何れか一つに記載の液晶配向剤を基板に塗布し、加熱処理を施すことで得られることを特徴とする液晶配向膜。 6. Above 1. ~ 5. A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of the above to a substrate and subjecting it to a heat treatment.
 7.上記の6.に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 7. Above 6. A liquid crystal display element comprising the liquid crystal alignment film described in 1.
 本発明により、印刷性が高く、使用上の安全性に優れた液晶配向剤及び該液晶配向剤を用いた液晶配向膜及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a liquid crystal aligning agent having high printability and excellent safety in use, and a liquid crystal alignment film and a liquid crystal display element using the liquid crystal aligning agent.
 以下、本発明をより詳細に説明する。
 本発明の液晶配向剤は、テトラカルボン酸誘導体と特定のジアミン(後述する式(YA-1)~式(YA-20)で表される化合物からなる群から選ばれる少なくとも1種のジアミン)を含有するジアミン成分とを反応させて得られるポリイミド前駆体及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する。ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステル等が含まれる。そして、本発明の液晶配向剤は、下記式(1)及び下記式(2)で表される化合物からなる群から選ばれる少なくとも一種の溶媒を含有する。
Hereinafter, the present invention will be described in more detail.
The liquid crystal aligning agent of the present invention comprises a tetracarboxylic acid derivative and a specific diamine (at least one diamine selected from the group consisting of compounds represented by formula (YA-1) to formula (YA-20) described later). It contains at least one polymer selected from the group consisting of a polyimide precursor obtained by reacting the contained diamine component and a polyimide obtained by imidizing it. Examples of the polyimide precursor include polyamic acid and polyamic acid ester. And the liquid crystal aligning agent of this invention contains the at least 1 type of solvent chosen from the group which consists of a compound represented by following formula (1) and following formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 以下では、本発明の液晶配向剤に含有可能な成分である、ポリイミド前駆体、ポリイミド、その重合に必須な特定構造のジアミン化合物及び溶媒について説明をする。そして、それらを含有して構成される本発明の液晶配向剤について説明する。 Hereinafter, a polyimide precursor, polyimide, a diamine compound having a specific structure essential for polymerization thereof, and a solvent, which are components that can be contained in the liquid crystal aligning agent of the present invention, will be described. And the liquid crystal aligning agent of this invention comprised including them is demonstrated.
 <ポリイミド前駆体>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、ポリアミック酸及びポリアミック酸エステルを指し、下記式(3)で表される構造単位を有する。
<Polyimide precursor>
The polyimide precursor contained in the liquid crystal aligning agent of this invention points out a polyamic acid and polyamic acid ester, and has a structural unit represented by following formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(3)において、Rは、水素原子又は炭素数1~5のアルキル基であり、A、Aは、各々独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、炭素数2~10のアルケニル基若しくは炭素数2~10のアルキニル基である。 In the above formula (3), R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A 1 and A 2 may each independently have a hydrogen atom or a substituent. An alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.
 上記式(3)において、Rは、水素原子又は炭素数1~5、好ましくは1~2のアルキル基である。ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、Rは、熱によるイミド化のしやすさの観点から、メチル基が特に好ましい。 In the above formula (3), R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms. In the polyamic acid ester, the temperature at which imidization proceeds increases as the number of carbon atoms in the alkyl group increases. Therefore, R 1 is particularly preferably a methyl group from the viewpoint of ease of imidization by heat.
 上記式(3)において、A及びAは、各々独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、炭素数2~10のアルケニル基若しくは炭素数2~10のアルキニル基が挙げられる。上記炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基等が挙げられる。上記炭素数2~10のアルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。上記炭素数2~10のアルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、具体的には、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。 In the above formula (3), A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a substituent. Examples thereof include alkynyl groups having 2 to 10 carbon atoms. Specific examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group. Etc. Examples of the alkenyl group having 2 to 10 carbon atoms include those in which one or more CH—CH structures present in the above alkyl group are replaced with a C═C structure. Group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Examples of the alkynyl group having 2 to 10 carbon atoms include those obtained by replacing one or more CH 2 —CH 2 structures present in the alkyl group with a C≡C structure, specifically, an ethynyl group, Examples thereof include 1-propynyl group and 2-propynyl group.
 上記の炭素数1~10のアルキル基、炭素数2~10のアルケニル基及び炭素数2~10のアルキニル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。尚、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。 The alkyl group having 1 to 10 carbon atoms, the alkenyl group having 2 to 10 carbon atoms, and the alkynyl group having 2 to 10 carbon atoms may have a substituent, and further, a ring structure is formed by the substituent. Also good. The formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
 この置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。 Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, Examples thereof include an alkyl group, an alkenyl group, and an alkynyl group.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述の他の置換基が更に置換していてもよい。 Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the above-mentioned other substituents.
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等が挙げられる。 The organooxy group that is a substituent can have a structure represented by OR. The R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基等が挙げられる。 As the organothio group which is a substituent, a structure represented by —S—R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述のアルキル基、アルケニル基、アルキニル基、アリール基等も例示できる。これらのRには前述の置換基が更に置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基等が挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The Rs may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述のアルキル基、アルケニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。 The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the aforementioned alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 置換基であるエステル基としては、-C(O)O-R、又はOC(O)-Rで表される構造を示すことができる。このRとしては、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又はOC(S)-Rで表される構造を示すことができる。このRとしては、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。
As the ester group which is a substituent, a structure represented by —C (O) O—R or OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent.
As the thioester group as a substituent, a structure represented by —C (S) O—R or OC (S) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the aforementioned substituent.
 置換基であるリン酸エステル基としては、-OP(O)-(OR)で表される構造を示すことができる。このRは同一でも異なってもよく、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述の置換基が更に置換していてもよい。 The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。Rは同一でも異なってもよく、前述のアルキル基、アルケニル基、アルキニル基、アリール基等を例示できる。これらのRには前述の置換基が更に置換していてもよい。 The amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure represented can be shown. R may be the same or different, and examples thereof include the aforementioned alkyl group, alkenyl group, alkynyl group, and aryl group. These Rs may be further substituted with the aforementioned substituent.
 置換基であるアリール基としては、前述のアリール基と同じものを挙げることができる。このアリール基には前述の他の置換基が更に置換していてもよい。置換基であるアルキル基としては、前述のアルキル基と同じものを挙げることができる。このアルキル基には前述の他の置換基が更に置換していてもよい。置換基であるアルケニル基としては、前述のアルケニル基と同じものを挙げることができる。このアルケニル基には前述の他の置換基が更に置換していてもよい。置換基であるアルキニル基としては、前述のアルキニル基と同じものを挙げることができる。このアルキニル基には前述の他の置換基が更に置換していてもよい。 Examples of the aryl group that is a substituent include the same aryl groups as described above. This aryl group may be further substituted with the above-mentioned other substituents. Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the above-mentioned other substituents. Examples of the alkenyl group as a substituent include the same alkenyl groups as those described above. This alkenyl group may be further substituted with the above-mentioned other substituents. Examples of the alkynyl group that is a substituent include the same alkynyl groups as those described above. This alkynyl group may be further substituted with the above-mentioned other substituents.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。 In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
 上記式(3)において、Xは、4価の有機基であれば、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。Xの具体例を示すならば、以下に示すX-1~X-47が挙げられる。なかでも、モノマーの入手性から、Xは、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28、X-32又はX-47が好ましい。 In the above formula (3), the structure of X 1 is not particularly limited as long as it is a tetravalent organic group, and two or more kinds may be mixed. If Specific examples of X 1, include X-1 ~ X-47 shown below. Among these, from the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X -21, X-25, X-26, X-27, X-28, X-32 or X-47 are preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(3)において、Yは、本発明で使用されるジアミン成分の構造に対応する。本発明で使用されるジアミン成分は、特定のジアミン(後述する式(YA-1)~式(YA-20)で表される化合物からなる群から選ばれる少なくとも1種のジアミン)を含有しているので、Yは、当該特定のジアミンに対応した構造となる。ただし、Yの全てが、当該特定のジアミンに対応した構造となっている必要は必ずしもない。Yの一部に、当該特定のジアミン以外のジアミン(その他のジアミン)に対応した構造が含まれていてもよい。その他のジアミンを併用した場合も含め、Yの具体例としては、下記のY-1~Y-108が挙げられるが、これらに限定されるものではない。これらの中でも、Yの具体例としては、ジアミンの反応性及びポリマーの溶解性の観点から、Y-7、Y-8、Y-13、Y-18、Y-19、Y-42,Y-43、Y-45、Y-55、Y-59、Y-74、Y-78、Y-79、Y-80、Y-81、又はY-82が好ましく、Y-19(例えば、後述のジアミン(YA-8)に対応)、Y-42(例えば、後述のジアミン(YA-5)に対応)、Y-43(例えば、後述のジアミン(YA-1)に対応)、Y-45(例えば、後述のジアミン(YA-2)に対応)、Y-74(例えば、後述のジアミン(YA-9)に対応)、Y-81(例えば、後述のジアミン(YA-12)に対応)又はY-82(例えば、後述のジアミン(YA-3)に対応)がより好ましい。 In the above formula (3), Y 1 corresponds to the structure of the diamine component used in the present invention. The diamine component used in the present invention contains a specific diamine (at least one diamine selected from the group consisting of compounds represented by formula (YA-1) to formula (YA-20) described later). Therefore, Y 1 has a structure corresponding to the specific diamine. However, it is not always necessary that Y 1 has a structure corresponding to the specific diamine. A part of Y 1 may contain a structure corresponding to a diamine other than the specific diamine (other diamine). Specific examples of Y 1 including the case where other diamines are used in combination include the following Y-1 to Y-108, but are not limited thereto. Among these, specific examples of Y 1 include Y-7, Y-8, Y-13, Y-18, Y-19, Y-42, Y from the viewpoints of diamine reactivity and polymer solubility. -43, Y-45, Y-55, Y-59, Y-74, Y-78, Y-79, Y-80, Y-81, or Y-82 are preferred, and Y-19 (for example, described later) Diamine (YA-8)), Y-42 (for example, diamine (YA-5) described later), Y-43 (for example, diamine (YA-1) described later), Y-45 (for example) For example, corresponding to diamine (YA-2) described later), Y-74 (for example, corresponding to diamine (YA-9) described later), Y-81 (for example, corresponding to diamine (YA-12) described later) or Y-82 (for example, corresponding to diamine (YA-3) described later) is more preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 そして、本発明で使用されるジアミン成分は、下記式(YA-1)~下記式(YA-20)で表される化合物からなる群から選ばれる少なくとも1種のジアミンを含有する。上記の通り、Yの一部に、その他のジアミンに対応した構造が含まれていてもよく、すなわち、本発明で使用されるジアミン成分には、その他のジアミンが含まれていてもよい。Y-1~Y-108以外のYを与えるジアミンも、本発明の範囲内で、その他のジアミンとして使用可能である。その他のジアミンの具体例を下記に例示する(YB-1~YB-7)。その他のジアミンは、下記に限定されない。 The diamine component used in the present invention contains at least one diamine selected from the group consisting of compounds represented by the following formula (YA-1) to the following formula (YA-20). As described above, a part of Y 1 may contain a structure corresponding to another diamine, that is, the diamine component used in the present invention may contain another diamine. Diamines providing Y 1 other than Y-1 to Y-108 can also be used as other diamines within the scope of the present invention. Specific examples of other diamines are shown below (YB-1 to YB-7). Other diamines are not limited to the following.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 本発明の液晶配向剤に含まれるポリイミド前駆体としては、一級アミン、二級アミン、カルボン酸及びウレア基のうちの少なくとも一つを有するポリイミド前駆体が好ましく、一級アミン、ウレア基のうち少なくとも一つを有するポリイミド前駆体がより好ましい。 The polyimide precursor contained in the liquid crystal aligning agent of the present invention is preferably a polyimide precursor having at least one of primary amine, secondary amine, carboxylic acid and urea group, and at least one of primary amine and urea group. A polyimide precursor having two is more preferable.
 <ポリイミド前駆体の製造方法―ポリアミック酸の製造>
 上記式(3)で表される構造単位を有するポリイミド前駆体であるポリアミック酸は、テトラカルボン酸誘導体であるテトラカルボン酸二無水物とジアミン成分との反応により得られる。
<Production Method of Polyimide Precursor-Production of Polyamic Acid>
The polyamic acid which is a polyimide precursor having the structural unit represented by the above formula (3) is obtained by a reaction between a tetracarboxylic dianhydride which is a tetracarboxylic acid derivative and a diamine component.
 テトラカルボン酸二無水物とジアミン成分との反応により、ポリアミック酸を得るにあたっては、公知の合成方法を用いることができる。その合成方法は、テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 In obtaining a polyamic acid by the reaction of tetracarboxylic dianhydride and a diamine component, a known synthesis method can be used. The synthesis method is a method in which a tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
 テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。ここでの有機溶媒は、上記式(1)及び上記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒を含んでいてもよい。使用可能な有機溶媒の具体例を以下に挙げる。 The organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the generated polyamic acid dissolves. The organic solvent here may contain at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2). Specific examples of the organic solvent that can be used are listed below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropiate Lenglycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropio Acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3- Examples thereof include ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
 これら例示された溶媒は、単独で使用しても、混合して使用してもよい。更に、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。 These exemplified solvents may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
 有機溶媒中の水分は重合反応を阻害し、更には生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。 Since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法等が挙げられ、これらの何れの方法を用いてもよい。テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When the tetracarboxylic dianhydride and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. When the tetracarboxylic dianhydride or diamine component is composed of multiple types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further mixed with individually reacted low molecular weight substances. It is good also as a high molecular weight body by making it react.
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度は、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミック酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 In the polymerization reaction of polyamic acid, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
 <ポリイミド前駆体の製造方法―ポリアミック酸エステルの製造>
 上記式(3)で表される構造単位を有するポリイミド前駆体であるポリアミック酸エステルは、テトラカルボン酸誘導体及びジアミン化合物を用いて、次に示す(A)、(B)又は(C)の方法で製造することができる。
<Production Method of Polyimide Precursor-Production of Polyamic Acid Ester>
The polyamic acid ester which is a polyimide precursor having the structural unit represented by the above formula (3) is a method of (A), (B) or (C) shown below using a tetracarboxylic acid derivative and a diamine compound. Can be manufactured.
 (A)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって製造することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって製造することができる。
(A) When manufacturing from polyamic acid A polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be manufactured by.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2モル当量~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of production is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
 (B)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
(B) When manufacturing by reaction with tetracarboxylic-acid diester dichloride and diamine Polyamic acid ester can be manufactured from tetracarboxylic-acid diester dichloride and diamine.
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2モル倍~4モル倍であることが好ましい。
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times with respect to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of production is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
 (C)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。
(C) When manufacturing from tetracarboxylic-acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine.
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3時間~15時間反応させることによって製造することができる。 Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 hours to It can be produced by reacting for 15 hours.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等が使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2モル倍~3モル倍であることが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2モル倍~4モル倍が好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times by mole with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0モル倍~1.0モル倍が好ましい。 In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 mol times relative to the diamine component.
 上記の3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルを再現性よく得るため、上記(C)の製造方法が特に好ましい。上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温又は加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。 Among the above-mentioned three polyamic acid ester production methods, the production method (C) is particularly preferable because a high molecular weight polyamic acid ester can be obtained with good reproducibility. The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, purified polyamic acid ester powder can be obtained by drying at room temperature or by heating.
 <ポリイミド>
 本発明に用いられるポリイミドは、ポリイミド前駆体である、前記したポリアミック酸エステル又はポリアミック酸をイミド化することによって製造することができる。ポリイミド前駆体を脱水閉環させるイミド化反応は、熱イミド化又は化学的イミド化が一般的であるが、比較的低温でイミド化反応が進行する化学的イミド化が、得られるポリイミドの分子量低下が起こりにくく好ましい。
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid, which is a polyimide precursor. The imidization reaction for dehydrating and cyclizing the polyimide precursor is generally thermal imidization or chemical imidation, but chemical imidation in which the imidization reaction proceeds at a relatively low temperature may reduce the molecular weight of the resulting polyimide. Less likely to occur.
 化学的イミド化は、ポリイミド前駆体を有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。このときの反応温度は-20~250℃、好ましくは0~180℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリイミド前駆体の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はポリイミド前駆体の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒や酸無水物の量が少ないと反応が十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。 Chemical imidization can be performed by stirring the polyimide precursor in an organic solvent in the presence of a basic catalyst and an acid anhydride. The reaction temperature at this time is −20 to 250 ° C., preferably 0 to 180 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the polyimide precursor, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the polyimide precursor. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
 イミド化に用いる塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。 Examples of basic catalysts used for imidization include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。有機溶媒としては前述のポリアミック酸重合反応時に用いる溶媒を使用することができる。化学的イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy. As an organic solvent, the solvent used at the time of the above-mentioned polyamic acid polymerization reaction can be used. The imidation rate by chemical imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 このようにして得られたポリイミド溶液は、添加した触媒が溶液内に残存しているので、本発明の液晶配向剤に用いるためには、このポリイミド溶液を、攪拌している貧溶媒に投入し、ポリイミドを沈殿回収して使用するのが好ましい。ポリイミドの沈殿回収に用いる貧溶媒としては特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が例示できる。貧溶媒に投入することにより沈殿したポリイミドは濾過・洗浄して回収した後、常圧あるいは減圧下で、常温あるいは加熱乾燥してパウダーとすることができる。このパウダーを更に良溶媒に溶解して、再沈殿する操作を2~10回繰り返すと、ポリイミドを精製することもできる。一度の沈殿回収操作では不純物が除ききれないときは、この精製工程を繰り返し行うことが好ましい。繰り返し精製工程を行う際の貧溶媒として例えばアルコール類、ケトン類、炭化水素類等の3種類以上の貧溶媒を混合もしくは順次用いることで、より一層精製の効率が上がるので好ましい。 In the polyimide solution thus obtained, the added catalyst remains in the solution. Therefore, in order to use it for the liquid crystal aligning agent of the present invention, this polyimide solution is put into a poor solvent which is being stirred. It is preferable to use the polyimide after precipitation. Although it does not specifically limit as a poor solvent used for precipitation collection | recovery of a polyimide, Methanol, acetone, hexane, a butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene etc. can be illustrated. The polyimide precipitated by adding it to a poor solvent can be recovered by filtration, washing, and drying at normal temperature or under reduced pressure at room temperature or by heating. By further dissolving the powder in a good solvent and reprecipitating it 2 to 10 times, the polyimide can be purified. When impurities cannot be completely removed by a single precipitation recovery operation, it is preferable to repeat this purification step. Mixing or sequentially using, for example, three or more kinds of poor solvents such as alcohols, ketones and hydrocarbons as the poor solvent in the repeated purification step is preferable because the purification efficiency is further increased.
 本発明の液晶配向剤に含有されるポリイミドのイミド化率は特に限定されない。ポリイミドの溶解性を考慮し任意の値に設定すればよい。本発明の液晶配向剤に含有されるポリイミドの分子量は特に限定されないが、ポリイミドの分子量は小さ過ぎると、得られる塗膜の強度が不十分となる場合があり、逆にポリイミドの分子量が大き過ぎると、製造される液晶配向剤の粘度が高くなり過ぎて、塗膜形成時の作業性、塗膜の均一性が悪くなる場合がある。従って、本発明の液晶配向剤に用いるポリイミドの重量平均分子量は2,000~500,000が好ましく、より好ましくは5,000~300,000である。 The imidation ratio of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited. What is necessary is just to set to arbitrary values in consideration of the solubility of a polyimide. The molecular weight of the polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but if the molecular weight of the polyimide is too small, the strength of the resulting coating film may be insufficient, and conversely, the molecular weight of the polyimide is too large. And the viscosity of the liquid crystal aligning agent manufactured may become high too much, and the workability | operativity at the time of coating-film formation and the uniformity of a coating film may worsen. Accordingly, the weight average molecular weight of the polyimide used for the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
 <その他の化合物>
 本発明の液晶配向剤には、本発明の効果が損なわれない範囲であれば、上記以外の化合物(その他の化合物)を添加してもよい。例えば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
<Other compounds>
A compound other than the above (other compounds) may be added to the liquid crystal aligning agent of the present invention as long as the effects of the present invention are not impaired. For example, for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, the crosslinkable compound is intended to increase the hardness and density of the dielectric and conductive material, and further to the liquid crystal alignment film. May be added.
 その他の化合物としては、例えば、特願2014-053902号に記載のブロックイソシアネート基を有する化合物が挙げられる。ブロックイソシアネート基を有する化合物は、イソシアネート基(-NCO)が保護基によりブロックされたブロックイソシアネート基を分子中に有し、液晶配向膜形成時の加熱焼成に際して高温に曝されると保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基を介して、液晶配向膜を構成するポリイミド等の重合体との間で架橋反応が進行するものである。例えば、式(4)で表される基を分子中に有する化合物が挙げられる。 Examples of other compounds include compounds having a blocked isocyanate group described in Japanese Patent Application No. 2014-053902. A compound having a blocked isocyanate group has a blocked isocyanate group in which the isocyanate group (—NCO) is blocked by a protective group in the molecule, and when exposed to a high temperature during heating and baking during the formation of a liquid crystal alignment film, the protective group (block The portion) is dissociated by thermal dissociation, and a crosslinking reaction proceeds with a polymer such as polyimide constituting the liquid crystal alignment film through the generated isocyanate group. For example, the compound which has group represented by Formula (4) in a molecule | numerator is mentioned.
Figure JPOXMLDOC01-appb-C000033
(式(4)中、Rはブロック部の有機基を表す。)
Figure JPOXMLDOC01-appb-C000033
(In formula (4), R 2 represents an organic group in the block part.)
 <液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記のポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含む樹脂成分である。樹脂成分の液晶配向剤中の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、更に好ましくは3質量%~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt | dissolved in the organic solvent. Here, the said resin component is a resin component containing the at least 1 sort (s) of polymer chosen from the group which consists of said polyimide precursor and a polyimide. The content of the resin component in the liquid crystal aligning agent is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and still more preferably 3% by mass to 10% by mass.
 尚、本発明において、前記の樹脂成分は、全てが上記の重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における上記の重合体以外の他の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。 In the present invention, all of the resin components may be the above-mentioned polymers, or other polymers may be mixed. In that case, the content of the polymer other than the above-mentioned polymer in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
 本発明の液晶配向剤に用いる有機溶媒は、上記式(1)及び上記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒を含む。これによれば、毒性が指摘されているブチルセロソルブを使用せず、又はブチルセロソルブの使用量を低減して、液晶配向剤を構成することができる。従って、安全性に優れた液晶配向剤となる。その上、上記式(1)及び上記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒を含む本発明の液晶配向剤は、後述の実施例でも確かめられているように、高い印刷性も有している。 The organic solvent used for the liquid crystal aligning agent of the present invention contains at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2). According to this, a liquid crystal aligning agent can be comprised without using the butyl cellosolve to which toxicity is pointed out, or reducing the usage-amount of a butyl cellosolve. Therefore, it becomes a liquid crystal aligning agent excellent in safety. In addition, the liquid crystal aligning agent of the present invention containing at least one solvent selected from the group consisting of the compounds represented by the above formula (1) and the above formula (2) seems to be confirmed in the examples described later. In addition, it has high printability.
 ここで、有機溶媒(液晶配向剤に用いる有機溶媒)における上記式(1)で表される化合物の含有量は5質量%以上であることが好ましい。この場合、例えばインクジェット印刷により、基板上に塗膜を好適に形成しやすくなる。逆に言えば、インクジェット印刷によって塗膜を形成する場合には、有機溶媒(液晶配向剤に用いる有機溶媒)における上記式(1)で表される化合物が5質量%以上である液晶配向剤を構成することが好ましい。 Here, the content of the compound represented by the above formula (1) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is preferably 5% by mass or more. In this case, it becomes easy to form a coating film suitably on a board | substrate, for example by inkjet printing. In other words, when a coating film is formed by inkjet printing, a liquid crystal aligning agent in which the compound represented by the above formula (1) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is 5% by mass or more is used. It is preferable to configure.
 上記式(1)で表される化合物は、ジプロピレングリコールモノメチルエーテル等と称される。上記式(1)で表される化合物は比較的単純な構造を有しており、入手も容易である。 The compound represented by the above formula (1) is called dipropylene glycol monomethyl ether or the like. The compound represented by the above formula (1) has a relatively simple structure and is easily available.
 上記式(2)で表される化合物は、プロピレングリコールモノブチルエーテル等と称される。有機溶媒(液晶配向剤に用いる有機溶媒)における上記式(2)で表される化合物の含有量は10質量%以上であることが好ましい。この場合、例えばインクジェット印刷やフレキソ印刷により、基板上に塗膜を好適に形成しやすくなる。逆に言えば、インクジェット印刷は勿論、フレキソ印刷によって塗膜を形成する場合には、有機溶媒(液晶配向剤に用いる有機溶媒)における上記式(2)で表される化合物が10質量%以上である液晶配向剤を構成することが好ましい。 The compound represented by the above formula (2) is called propylene glycol monobutyl ether or the like. The content of the compound represented by the above formula (2) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is preferably 10% by mass or more. In this case, it becomes easy to suitably form a coating film on the substrate by, for example, ink jet printing or flexographic printing. Conversely, when forming a coating film by flexographic printing as well as inkjet printing, the compound represented by the above formula (2) in the organic solvent (organic solvent used for the liquid crystal aligning agent) is 10% by mass or more. It is preferable to constitute a certain liquid crystal aligning agent.
 液晶配向剤に用いる有機溶媒は、上記式(1)及び上記式(2)で表される溶媒以外の溶媒(その他の溶媒)を含んでいてもよい。その他の溶媒の具体例を以下に挙げる。 The organic solvent used for the liquid crystal aligning agent may contain a solvent (other solvent) other than the solvent represented by the above formula (1) and the above formula (2). Specific examples of other solvents are listed below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy- - and methyl-2-pentanone and the like. These may be used alone or in combination.
 使用上あまり好ましくはないが、液晶配向剤は、ブチルセロソルブを含んでいてもよい。液晶配向剤がブチルセロソルブを含んでいたとしても、上記式(1)及び上記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒を含む分、該ブチルセロソルブの使用量を低減できる。 Although not preferred in use, the liquid crystal aligning agent may contain butyl cellosolve. Even if the liquid crystal aligning agent contains butyl cellosolve, the amount of the butyl cellosolve used is reduced by the amount containing at least one solvent selected from the group consisting of the compounds represented by formula (1) and formula (2). it can.
 本発明の液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等である。 The liquid crystal aligning agent of the present invention may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、例えば、特願2014-053902号に記載のものが挙げられる。 Specific examples of solvents (poor solvents) that improve film thickness uniformity and surface smoothness include, for example, those described in Japanese Patent Application No. 2014-053902.
 貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合、その含有量は、液晶配向剤に含まれる溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。 The poor solvent may be used alone or in combination. When the above solvent is used, the content thereof is preferably 5% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、例えば、特願2014-053902号に記載のフッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。 Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like described in Japanese Patent Application No. 2014-053902. .
 界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。 The ratio of the surfactant used is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. is there.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、例えば、特願2014-053902号に記載の官能性シラン含有化合物やエポキシ基含有化合物等が挙げられる。 Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds described in Japanese Patent Application No. 2014-053902.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向剤に含有される樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると形成される液晶配向膜の液晶配向性が低下する場合がある。 When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation of the liquid crystal alignment film formed may be lowered.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。 In addition to the above, the liquid crystal aligning agent of the present invention has a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, as long as the effects of the present invention are not impaired. Further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
 以上を踏まえ、本発明の液晶配向剤で使用可能な溶媒及びその組成比の一例を挙げると、例えば、下表の通りとなる。勿論、本発明の液晶配向剤で使用可能な溶媒及びその組成比は、下表に限定されない。 Based on the above, examples of solvents and composition ratios that can be used in the liquid crystal aligning agent of the present invention are as shown in the following table. Of course, the solvent which can be used with the liquid crystal aligning agent of this invention, and its composition ratio are not limited to the following table | surface.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 (良溶媒)
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 (貧溶媒)
 BCS:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
 DPM:ジプロピレングリコールモノメチルエーテル(上記式(1))
 PB:プロピレングリコールモノブチルエーテル(上記式(2))
(Good solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone (poor solvent)
BCS: Butyl cellosolve (ethylene glycol monobutyl ether)
DPM: Dipropylene glycol monomethyl ether (formula (1) above)
PB: Propylene glycol monobutyl ether (formula (2) above)
 <液晶配向膜>
 本発明の液晶配向剤は、好ましくは、基板に塗布する前に濾過した後、基板に塗布し、プリベークによる乾燥、次いで、加熱焼成をすることで塗膜とすることができる。そして、この塗膜面をラビング処理することにより、液晶配向膜を形成することができる。
<Liquid crystal alignment film>
The liquid crystal aligning agent of the present invention can be formed into a coating film by preferably filtering before applying to the substrate, applying to the substrate, drying by pre-baking, and then baking by heating. And a liquid crystal aligning film can be formed by rubbing this coating-film surface.
 本発明の液晶配向剤を基板に塗布する場合、使用する基板としては、透明性の高い基板を使用することができる。そうした基板としては、例えば、ガラス基板の他、アクリル基板やポリカーボネート基板等のプラスチック基板を用いることができる。液晶表示素子の製造において本発明の液晶配向剤を用いる場合、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用い、液晶配向膜を形成することが好ましい。また、反射型の液晶表示素子を製造する場合は、片側の基板のみにならばシリコンウエハ等の不透明な基板でも使用でき、この場合の電極はアルミニウム等の光を反射する材料を使用することもできる。 When applying the liquid crystal aligning agent of the present invention to a substrate, a highly transparent substrate can be used. As such a substrate, for example, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used in addition to a glass substrate. When using the liquid crystal aligning agent of this invention in manufacture of a liquid crystal display element, it is preferable to form a liquid crystal aligning film using the board | substrate with which the ITO (Indium Tin Oxide) electrode etc. for a liquid crystal drive were formed. In the case of manufacturing a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum may be used for the electrode. it can.
 本発明の液晶配向剤を基板上に塗布する方法としては、例えば、インクジェット印刷法又はフレキソ印刷法が挙げられる。上記のように、インクジェット印刷法を用いて基板上に塗膜を形成する場合には、液晶配向剤が少なくとも上記式(1)で表される溶媒を含有することが好ましい。また、フレキソ印刷法を用いて基板上に塗膜を形成する場合には、液晶配向剤が少なくとも上記式(2)で表される溶媒を含有することが好ましい。その他、本発明の塗布方法としては、スクリーン印刷、オフセット印刷、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法等があり、目的に応じてこれらを用いてもよい。 Examples of the method for applying the liquid crystal aligning agent of the present invention on a substrate include an inkjet printing method and a flexographic printing method. As mentioned above, when forming a coating film on a board | substrate using an inkjet printing method, it is preferable that a liquid crystal aligning agent contains the solvent represented by the said Formula (1) at least. Moreover, when forming a coating film on a board | substrate using a flexographic printing method, it is preferable that a liquid crystal aligning agent contains the solvent represented by the said Formula (2) at least. In addition, examples of the coating method of the present invention include screen printing, offset printing, dip method, roll coater method, slit coater method, spinner method, and spray method, and these may be used depending on the purpose.
 液晶配向剤を塗布した後のプリベークによる乾燥の工程は、必ずしも必要とされないが、塗布後から加熱焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに加熱焼成されない場合には、乾燥工程を含める方が好ましい。このプリベークによる乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよい。 The step of drying by pre-baking after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to heating and baking is not constant for each substrate, or when heating and baking is not performed immediately after application, It is preferable to include a drying step. The drying by this pre-bake should just evaporate the solvent to such an extent that the coating film shape does not deform | transform by conveyance of a board | substrate.
 乾燥手段については特に限定されない。具体例を挙げるならば、50℃~120℃、好ましくは80℃~120℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が好ましい。 The drying means is not particularly limited. As a specific example, a method of drying on a hot plate at 50 ° C. to 120 ° C., preferably 80 ° C. to 120 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes is preferable.
 液晶配向剤を塗布した基板の焼成は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブン等の加熱手段により、120℃~350℃の温度で行うことができる。ただし、液晶表示素子の製造工程で必要とされる、シール剤硬化等の熱処理温度より、10℃以上高い温度で焼成することが好ましい。 The substrate coated with the liquid crystal aligning agent can be baked at a temperature of 120 ° C. to 350 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. However, baking is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal display element, such as sealing agent curing.
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10nm~200nm、より好ましくは50nm~100nmである。 If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 10 nm to 200 nm, more preferably 50 nm to 100 nm.
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロン等が挙げられる。ラビング処理の条件としては、一般的に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコール等を用いて超音波洗浄によりラビングにより生じた残渣が除去される。 For the rubbing treatment of the coating surface formed on the substrate as described above, an existing rubbing apparatus can be used. Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon. As conditions for the rubbing treatment, generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and an indentation amount of 0.1 to 1.0 mm are used. Thereafter, residues generated by rubbing are removed by ultrasonic cleaning using pure water, alcohol, or the like.
 本発明の液晶配向剤は、上記した方法により基板上に液晶配向膜を形成した後は、その液晶配向膜付き基板を用い、公知の方法で液晶表示を製造することができる。 The liquid crystal aligning agent of the present invention can produce a liquid crystal display by a known method using the substrate with the liquid crystal aligning film after the liquid crystal aligning film is formed on the substrate by the above method.
 <液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶表示素子の作製方法の一例は、以下の通りである。まず、液晶配向膜の形成された1対の基板を用意し、それらを、好ましくは1μm~30μm、より好ましくは2μm~10μmのスペーサーを挟んで、ラビング方向が0°~270°の任意の角度となるように設置して周囲をシール剤で固定する。次いで、基板間に液晶を注入して封止する。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後に液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法等が例示できる。
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
An example of a method for manufacturing a liquid crystal display element is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and they are preferably sandwiched by spacers of 1 μm to 30 μm, more preferably 2 μm to 10 μm, and the rubbing direction is an arbitrary angle of 0 ° to 270 °. Install it so that the surrounding area is fixed with a sealant. Next, liquid crystal is injected between the substrates and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after dropping the liquid crystal.
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。尚、化合物、溶媒の略号は、以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples. In addition, the symbol of a compound and a solvent is as follows.
 (良溶媒)
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 (貧溶媒)
 PB:プロピレングリコールモノブチルエーテル(上記式(2))
 BCS:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
 DPM:ジプロピレングリコールモノメチルエーテル(上記式(1))
(Good solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone (poor solvent)
PB: Propylene glycol monobutyl ether (formula (2) above)
BCS: Butyl cellosolve (ethylene glycol monobutyl ether)
DPM: Dipropylene glycol monomethyl ether (formula (1) above)
 (ジアミン)
 DA-1:1,5-ビス(4-アミノフェノキシ)ペンタン(式(YA-9:n=5))
 DA-2:4,4’-ジアミノジフェニルアミン(式(YA-2))
 DA-3:4,4’-ジアミノジフェニルメタン(式(YA-5))
 DA-4:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(式(Y-86:n=6)に対応するジアミン)
 DA-5:3,5-ジアミノ安息香酸(式(YA-19))
 DA-6:p-フェニレンジアミン(式(YA-7))
 DA-7:N,N-ジアリルアミノ-2,4-ジアミノベンゼン(式(Y-15)に対応するジアミン)
 DA-8:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(式(Y-92:n=6)に対応するジアミン)
(Diamine)
DA-1: 1,5-bis (4-aminophenoxy) pentane (formula (YA-9: n = 5))
DA-2: 4,4′-diaminodiphenylamine (formula (YA-2))
DA-3: 4,4′-diaminodiphenylmethane (formula (YA-5))
DA-4: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (diamine corresponding to the formula (Y-86: n = 6))
DA-5: 3,5-diaminobenzoic acid (formula (YA-19))
DA-6: p-phenylenediamine (formula (YA-7))
DA-7: N, N-diallylamino-2,4-diaminobenzene (diamine corresponding to formula (Y-15))
DA-8: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (diamine corresponding to the formula (Y-92: n = 6))
 (テトラカルボン酸二水和物)
 CA-1:ピロメリット酸二無水物
 CA-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 CA-3:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
 CA-4:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
(Tetracarboxylic acid dihydrate)
CA-1: pyromellitic dianhydride CA-2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride CA-3: 3,4-dicarboxy-1,2,3,4-tetrahydro- 1-Naphthalene succinic dianhydride CA-4: Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
 [ポリイミドのイミド化率の測定]
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
[Measurement of imidization ratio of polyimide]
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
 (合成例1)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-1を17.7g(62.0mmol)量り取り、NMPを139g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を12.9g(59.2mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、窒素雰囲気下、50℃で20時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。
(Synthesis Example 1)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 17.7 g (62.0 mmol) of DA-1 was weighed, 139 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 12.9 g (59.2 mmol) of CA-1 was added, NMP was further added so that the solid concentration was 12% by mass, and 20% at 50 ° C. in a nitrogen atmosphere. The mixture was stirred for a time to obtain a polyamic acid solution (PAA-1).
 (合成例2)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-2を7.97g(40.0mmol)量り取り、NMPを98.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.96g(35.5mmol)添加し、更にNMPを35.9g加えて、窒素を送りながら水冷下で3時間撹拌した。次に、DA-3を1.98g(10.0mmol)、NMPを17.9g加えて攪拌し溶解させた後、CA-3を3.00g(10.0mmol)、NMPを26.9g加えて、窒素を送りながら水冷下で3時間撹拌し、ポリアミック酸溶液(PAA-2)を得た。
(Synthesis Example 2)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 7.97 g (40.0 mmol) of DA-2 was weighed, 98.6 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 6.96 g (35.5 mmol) of CA-2 was added, 35.9 g of NMP was further added, and the mixture was stirred under water cooling for 3 hours while feeding nitrogen. Next, 1.98 g (10.0 mmol) of DA-3 and 17.9 g of NMP were added and stirred to dissolve, then 3.00 g (10.0 mmol) of CA-3 and 26.9 g of NMP were added. The mixture was stirred for 3 hours under cooling with water while feeding nitrogen, to obtain a polyamic acid solution (PAA-2).
 (実施例1)
 撹拌子の入った200mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を50.0g分取し、NMPを19.1g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を5.60g、PBを18.6g加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(A-1)を得た。
(Example 1)
In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 19.1 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 5.60 g of NMP solution and 18.6 g of PB were added and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1) having a concentration of 6.0% by mass.
 撹拌子の入った200mL三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA-2)を50.0g分取し、NMPを10.5g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を4.90g、PBを16.3g加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(B-1)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, 10.5 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 4.90 g of NMP solution and 16.3 g of PB were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-1) having a concentration of 6.0% by mass.
 この液晶配向剤(A-1)と液晶配向剤(B-1)を質量比が20:80となる分量で混合し、濃度が6.0質量%の液晶配向剤(C-1)を得た。 The liquid crystal aligning agent (A-1) and the liquid crystal aligning agent (B-1) are mixed in a mass ratio of 20:80 to obtain a liquid crystal aligning agent (C-1) having a concentration of 6.0% by mass. It was.
 (実施例2)
 撹拌子の入った200mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を50.0g分取し、NMPを19.1g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を5.60g、PBを9.30g、BCSを9.30加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(A-2)を得た。
(Example 2)
In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 19.1 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 5.60 g of NMP solution containing, 9.30 g of PB and 9.30 of BCS were added and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-2) having a concentration of 6.0% by mass. .
 撹拌子の入った200mL三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA-2)を50.0g分取し、NMPを10.5g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を4.90g、PBを8.18g、BCSを8.18g加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(B-2)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, 10.5 g of NMP, and 1% by mass of 3-aminopropyltriethoxysilane. 4.90 g of NMP solution containing, 8.18 g of PB and 8.18 g of BCS were added and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (B-2) having a concentration of 6.0% by mass. .
 この液晶配向剤(A-2)と液晶配向剤(B-2)を質量比が20:80となる分量で混合し、濃度が6.0質量%の液晶配向剤(C-2)を得た。 The liquid crystal aligning agent (A-2) and the liquid crystal aligning agent (B-2) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-2) having a concentration of 6.0% by mass. It was.
 (実施例3)
 撹拌子の入った200mL三角フラスコに、実施例1で得られた液晶配向剤(C-1)を50.0g分取し、NMPを28.5g、PBを7.14g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(C-3)を得た。
(Example 3)
Into a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the liquid crystal aligning agent (C-1) obtained in Example 1 was collected, 28.5 g of NMP and 7.14 g of PB were added, and a magnetic stirrer was added. By stirring for 2 hours, a liquid crystal aligning agent (C-3) having a concentration of 3.5% by mass was obtained.
 (実施例4)
 撹拌子の入った200mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を50.0g分取し、NMPを48.0g、GBLを24.4g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を5.60g、BCSを24.0g、DPMを8.00g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(A-3)を得た。
Example 4
In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 48.0 g of NMP, 24.4 g of GBL, 3-aminopropyltrimethyl Add 5.60 g of NMP solution containing 1% by mass of ethoxysilane, 24.0 g of BCS, and 8.00 g of DPM, and stir with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A -3) was obtained.
 撹拌子の入った200mL三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA-2)を50.0g分取し、NMPを42.0g、GBLを15.1g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を4.90g、BCSを21.0g、DPMを7.00g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(B-3)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, 42.0 g of NMP, 15.1 g of GBL, 3-aminopropyltrimethyl 4.90 g of NMP solution containing 1% by mass of ethoxysilane, 21.0 g of BCS, and 7.00 g of DPM were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B -3) was obtained.
 この液晶配向剤(A-3)と液晶配向剤(B-3)を質量比が20:80となる分量で混合し、濃度が3.5質量%の液晶配向剤(C-4)を得た。 The liquid crystal aligning agent (A-3) and the liquid crystal aligning agent (B-3) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-4) having a concentration of 3.5% by mass. It was.
 (実施例5)
 撹拌子の入った200mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を50.0g分取し、NMPを48.0g、GBLを8.40g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を5.60g、BCSを33.6g、DPMを14.4g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(A-4)を得た。
(Example 5)
In a 200 mL Erlenmeyer flask containing a stirrer, 50.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 48.0 g of NMP, 8.40 g of GBL, 3-aminopropyltrimethyl Add 5.60 g of NMP solution containing 1% by mass of ethoxysilane, 33.6 g of BCS, and 14.4 g of DPM, and stir for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A -4) was obtained.
 撹拌子の入った200mL三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA-2)を50.0g分取し、NMPを42.0g、GBLを1.10g、3-アミノプロピルトリエトキシシランを1質量%含むNMP溶液を4.90g、BCSを29.4g、DPMを12.6g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(B-4)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 50.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, 42.0 g of NMP, 1.10 g of GBL, 3-aminopropyltrimethyl 4.90 g of NMP solution containing 1% by mass of ethoxysilane, 29.4 g of BCS, and 12.6 g of DPM were added and stirred for 2 hours with a magnetic stirrer, and the liquid crystal aligning agent (B -4) was obtained.
 この液晶配向剤(A-4)と液晶配向剤(B-4)を質量比が20:80となる分量で混合し、濃度が3.5質量%の液晶配向剤(C-5)を得た。 The liquid crystal aligning agent (A-4) and the liquid crystal aligning agent (B-4) are mixed in an amount of 20:80 to obtain a liquid crystal aligning agent (C-5) having a concentration of 3.5% by mass. It was.
 (実施例6)
 実施例5で得られた液晶配向剤(A-4)と液晶配向剤(B-4)を質量比が30:70となる分量で混合し、濃度が3.5質量%の液晶配向剤(C-6)を得た。
(Example 6)
The liquid crystal aligning agent (A-4) obtained in Example 5 and the liquid crystal aligning agent (B-4) were mixed in an amount to give a mass ratio of 30:70, and the liquid crystal aligning agent having a concentration of 3.5% by mass ( C-6) was obtained.
 (比較例1)
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-4を6.79g(17.8mmol)、DA-5を2.17g(14.3mmol)、DA-6を0.39g(3.61mmol)量り取り、NMPを29.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、CA-4を6.25g(25.0mmol)添加した後、窒素雰囲気下、80℃で5時間撹拌させた。次に、CA-2を2.10g(10.7mmol)、NMPを23.9g加えて、窒素を送りながら40℃で6時間撹拌し、ポリアミック酸溶液(PAA-3)を得た。
(Comparative Example 1)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 6.79 g (17.8 mmol) of DA-4, 2.17 g (14.3 mmol) of DA-5, and 0.39 g of DA-6 ( 3.61 mmol), 29.2 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 6.25 g (25.0 mmol) of CA-4 was added, and then stirred at 80 ° C. for 5 hours under a nitrogen atmosphere. Next, 2.10 g (10.7 mmol) of CA-2 and 23.9 g of NMP were added, and the mixture was stirred at 40 ° C. for 6 hours while feeding nitrogen, to obtain a polyamic acid solution (PAA-3).
 撹拌子の入った200mL三角フラスコに、このポリアミック酸溶液(PAA-3)を30.0g分取し、NMPを68.0g、PBを24.5g加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(C-7)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 30.0 g of this polyamic acid solution (PAA-3) was taken, 68.0 g of NMP and 24.5 g of PB were added, and the mixture was stirred with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (C-7) having a concentration of 6.0% by mass was obtained.
 (合成例3)
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-5を2.11g(13.9mmol)、DA-7を1.41g(6.94mmol)、DA-8を5.47g(13.9mmol)量り取り、NMPを27.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、CA-4を4.34g(17.3mmol)添加した後、窒素雰囲気下、80℃で5時間撹拌させた。次に、CA-2を3.40g(17.3mmol)、NMPを22.6g加えて、窒素を送りながら40℃で6時間撹拌し、ポリアミック酸溶液(PAA-4)を得た。
(Synthesis Example 3)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 2.11 g (13.9 mmol) of DA-5, 1.41 g (6.94 mmol) of DA-7, and 5.47 g of DA-8 ( 13.9 mmol) was weighed, 27.6 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 4.34 g (17.3 mmol) of CA-4 was added, followed by stirring at 80 ° C. for 5 hours under a nitrogen atmosphere. Next, 3.40 g (17.3 mmol) of CA-2 and 22.6 g of NMP were added, and the mixture was stirred at 40 ° C. for 6 hours while feeding nitrogen, to obtain a polyamic acid solution (PAA-4).
 撹拌子の入った200mL三角フラスコに、このポリアミック酸溶液(PAA-4)を40.0g分取し、無水酢酸を8.85g、ピリジンを6.25g加え、90℃で3.5時間反応させた。この反応溶液を1000mlのメタノール中に投入し、得られた沈殿物を濾別しメタノールで洗浄した後、100℃で減圧乾燥しポリイミド粉末(PI-1)を得た。このポリイミド粉末(PI-1)のイミド化率は78%であった。 Into a 200 mL Erlenmeyer flask containing a stir bar, 40.0 g of this polyamic acid solution (PAA-4) was taken, added 8.85 g of acetic anhydride and 6.25 g of pyridine, and reacted at 90 ° C. for 3.5 hours. It was. This reaction solution was poured into 1000 ml of methanol, and the resulting precipitate was filtered off, washed with methanol, and dried under reduced pressure at 100 ° C. to obtain polyimide powder (PI-1). The imidation ratio of this polyimide powder (PI-1) was 78%.
 撹拌子の入った100mL三角フラスコに、このポリイミド粉末(PI-1)を2.56g分取し、NMPを18.7g加えて、70℃にて24時間攪拌して溶解させ、ポリイミド溶液(PI-2)を得た。 In a 100 mL Erlenmeyer flask containing a stirrer, 2.56 g of this polyimide powder (PI-1) was taken, 18.7 g of NMP was added, and stirred at 70 ° C. for 24 hours to dissolve. -2) was obtained.
 (比較例2)
 撹拌子の入った100mL三角フラスコに、合成例3で得られたポリイミド溶液(PI-2)を15.0g分取し、NMPを9.00g、PBを6.00g加え、マグネチックスターラーで2時間撹拌して、濃度が6.0質量%の液晶配向剤(C-8)を得た。
(Comparative Example 2)
Into a 100 mL Erlenmeyer flask containing a stir bar, 15.0 g of the polyimide solution (PI-2) obtained in Synthesis Example 3 was fractioned, 9.00 g of NMP and 6.00 g of PB were added, and 2 times with a magnetic stirrer. By stirring for a while, a liquid crystal aligning agent (C-8) having a concentration of 6.0% by mass was obtained.
 (比較例3)
 撹拌子の入った100mL三角フラスコに、比較例2で得られた液晶配向剤(C-8)を15.0g分取し、NMPを8.57g、PBを2.14g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(C-9)を得た。
(Comparative Example 3)
Into a 100 mL Erlenmeyer flask containing a stir bar, 15.0 g of the liquid crystal aligning agent (C-8) obtained in Comparative Example 2 was collected, 8.57 g of NMP and 2.14 g of PB were added, and a magnetic stirrer was added. By stirring for 2 hours, a liquid crystal aligning agent (C-9) having a concentration of 3.5% by mass was obtained.
 (比較例4)
 撹拌子の入った100mL三角フラスコに、合成例3で得られたポリイミド溶液(PI-2)を15.0g分取し、NMPを15.4g、GBLを10.7g、BCSを7.71g、DPMを2.57g加え、マグネチックスターラーで2時間撹拌して、濃度が3.5質量%の液晶配向剤(C-10)を得た。
(Comparative Example 4)
In a 100 mL Erlenmeyer flask containing a stirrer, 15.0 g of the polyimide solution (PI-2) obtained in Synthesis Example 3 was collected, 15.4 g of NMP, 10.7 g of GBL, 7.71 g of BCS, 2.57 g of DPM was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (C-10) having a concentration of 3.5% by mass.
 [印刷性の評価]
 本発明の実施例及び比較例で得られた液晶配向剤を細孔径1μmのメンブランフィルタで加圧濾過し、簡易印刷機S15型(日本写真印刷製)を用いて、クロムが付いたガラス基板のクロム面に塗布した。その後、80℃のホットプレート上で1分間加熱して溶媒を除去した後、230℃のIR式オーブンで20分間焼成を行った。
[Evaluation of printability]
The liquid crystal aligning agents obtained in the examples and comparative examples of the present invention were pressure filtered through a membrane filter having a pore size of 1 μm, and a simple printing machine S15 type (manufactured by Nissha Printing Co., Ltd.) was used. It was applied to the chrome surface. Then, after heating for 1 minute on an 80 degreeC hotplate and removing a solvent, it baked for 20 minutes in 230 degreeC IR type oven.
 この塗膜をナトリウムランプの下で目視観察し、印刷ムラがほとんど観察されなかった場合を「良好(○印)」、印刷ムラが観察された場合を「不良(×印)」として評価した。 The coating film was visually observed under a sodium lamp, and the case where almost no printing unevenness was observed was evaluated as “good (◯ mark)”, and the case where printing unevenness was observed was evaluated as “bad (× mark)”.
 [インクジェット塗布性の評価]
 本発明の実施例及び比較例で得られた液晶配向剤を細孔径1μmのメンブランフィルタで加圧濾過し、HIS-200(日立プラントテクノロジー社製)を用いて、ITO電極が付いたガラス基板のITO面に塗布した。その後、80℃のホットプレート上で1分間加熱して溶媒を除去した後、230℃のIR式オーブンで20分間焼成を行った。
[Evaluation of inkjet coating properties]
The liquid crystal aligning agents obtained in the examples and comparative examples of the present invention were pressure filtered through a membrane filter having a pore diameter of 1 μm, and a glass substrate with an ITO electrode was used using HIS-200 (manufactured by Hitachi Plant Technology). It applied to the ITO surface. Then, after heating for 1 minute on an 80 degreeC hotplate and removing a solvent, it baked for 20 minutes in 230 degreeC IR type oven.
 この塗膜を倍率5倍の顕微鏡で観察し、塗布ムラがほとんど観察されなかった場合を「良好(○印)」、塗布ムラが観察された場合を「不良(×印)」として評価した。 The coating film was observed with a microscope having a magnification of 5 times, and the case where almost no coating unevenness was observed was evaluated as “good (◯ mark)”, and the case where coating unevenness was observed was evaluated as “bad (× mark)”.
 表2に、実施例及び比較例で得られた液晶配向剤を用いた際の、印刷性の評価及びインクジェット塗布性の評価の結果を示す。 Table 2 shows the results of evaluation of printability and inkjet applicability when the liquid crystal aligning agents obtained in Examples and Comparative Examples are used.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 本発明の液晶配向剤を用いて形成された液晶配向膜は、毒性が指摘されているブチルセロソルブを使用せず、又はブチルセロソルブの使用量を低減している。従って、安全性に優れた液晶配向剤となっている。その上、本発明の液晶配向剤は、上記の実施例でも確かめられているように、高い印刷性及びインクジェット塗布性も有している。 The liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention does not use butyl cellosolve, which has been pointed out to be toxic, or reduces the amount of butyl cellosolve used. Therefore, it is a liquid crystal aligning agent excellent in safety. In addition, the liquid crystal aligning agent of the present invention also has high printability and ink jet coatability, as confirmed in the above examples.

Claims (7)

  1.  基板上に塗布し、加熱処理を施すことでポリイミド膜を形成するのに用いられる液晶配向剤であって、
     テトラカルボン酸誘導体と下記式(YA-1)~下記式(YA-20)で表される化合物からなる群から選ばれる少なくとも1種のジアミンを含有するジアミン成分とを反応させて得られるポリイミド前駆体及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体と、
     下記式(1)及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種の溶媒と、を含有すること
     を特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    A liquid crystal aligning agent used to form a polyimide film by applying on a substrate and performing a heat treatment,
    A polyimide precursor obtained by reacting a tetracarboxylic acid derivative with a diamine component containing at least one diamine selected from the group consisting of compounds represented by the following formulas (YA-1) to (YA-20) And at least one polymer selected from the group consisting of polyimides obtained by imidizing the same, and
    A liquid crystal aligning agent comprising: at least one solvent selected from the group consisting of compounds represented by the following formula (1) and the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  2.  前記溶媒における前記式(1)で表される化合物の含有量は5質量%以上であることを特徴とする請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the compound represented by the formula (1) in the solvent is 5% by mass or more.
  3.  前記溶媒における前記式(2)で表される化合物の含有量は10質量%以上であることを特徴とする請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein the content of the compound represented by the formula (2) in the solvent is 10% by mass or more.
  4.  前記塗布がインクジェット印刷であることを特徴とする請求項1~3の何れか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the coating is ink jet printing.
  5.  前記塗布がフレキソ印刷であることを特徴とする請求項1~3の何れか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the coating is flexographic printing.
  6.  請求項1~5の何れか一項に記載の液晶配向剤を基板に塗布し、加熱処理を施すことで得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of claims 1 to 5 to a substrate and subjecting it to a heat treatment.
  7.  請求項6に記載の液晶配向膜を具備することを特徴とする液晶表示素子。  A liquid crystal display element comprising the liquid crystal alignment film according to claim 6.
PCT/JP2016/060107 2015-03-30 2016-03-29 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2016158942A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680031582.7A CN107615147A (en) 2015-03-30 2016-03-29 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
JP2017510019A JP6700619B2 (en) 2015-03-30 2016-03-29 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
KR1020177030447A KR102591734B1 (en) 2015-03-30 2016-03-29 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070077 2015-03-30
JP2015-070077 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158942A1 true WO2016158942A1 (en) 2016-10-06

Family

ID=57007185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060107 WO2016158942A1 (en) 2015-03-30 2016-03-29 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6700619B2 (en)
KR (1) KR102591734B1 (en)
CN (1) CN107615147A (en)
TW (1) TW201708317A (en)
WO (1) WO2016158942A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082975A1 (en) * 2017-10-26 2019-05-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN111263913A (en) * 2017-10-25 2020-06-09 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180936A (en) * 2018-09-28 2019-01-11 天津市天缘电工材料股份有限公司 A kind of intrinsic black polyamide thin film and preparation method thereof and purposes
CN114058384A (en) * 2021-11-26 2022-02-18 深圳市道尔顿电子材料有限公司 Polyimide photo-alignment agent solution and preparation method thereof, photo-alignment film and liquid crystal box

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024885A1 (en) * 2012-08-06 2014-02-13 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
WO2014084309A1 (en) * 2012-11-29 2014-06-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014189128A1 (en) * 2013-05-23 2014-11-27 日産化学工業株式会社 Treatment agent for liquid crystal orientation, liquid crystal orientation film, and liquid crystal display device
JP2015210364A (en) * 2014-04-25 2015-11-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668904B2 (en) 2008-09-18 2015-02-12 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2010156934A (en) 2008-12-02 2010-07-15 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
CN104737069B (en) * 2012-08-30 2018-08-10 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal display element for using the aligning agent for liquid crystal
KR102159410B1 (en) * 2013-03-14 2020-09-23 제이엔씨 주식회사 Liquid crystal aligning agents and liquid crystal display devices
JP6213281B2 (en) * 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024885A1 (en) * 2012-08-06 2014-02-13 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
WO2014084309A1 (en) * 2012-11-29 2014-06-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014189128A1 (en) * 2013-05-23 2014-11-27 日産化学工業株式会社 Treatment agent for liquid crystal orientation, liquid crystal orientation film, and liquid crystal display device
JP2015210364A (en) * 2014-04-25 2015-11-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263913A (en) * 2017-10-25 2020-06-09 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2019082975A1 (en) * 2017-10-26 2019-05-02 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2019082975A1 (en) * 2017-10-26 2020-12-17 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7276666B2 (en) 2017-10-26 2023-05-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
TW201708317A (en) 2017-03-01
CN107615147A (en) 2018-01-19
KR20170131548A (en) 2017-11-29
JP6700619B2 (en) 2020-05-27
JPWO2016158942A1 (en) 2018-01-25
KR102591734B1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN107615145B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6919574B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP6064900B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JPWO2015072554A1 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6146315B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060360A1 (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
WO2018092811A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2013039168A1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6700619B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
WO2013081067A1 (en) Liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
JP6152849B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP6638645B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
WO2018117240A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2016129506A1 (en) Liquid crystal orientation agent
JP6558543B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6508040B2 (en) Liquid crystal aligning agent for horizontal electric field drive
WO2017094898A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element employing same
WO2019107518A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030447

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16772823

Country of ref document: EP

Kind code of ref document: A1