WO2019107518A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2019107518A1
WO2019107518A1 PCT/JP2018/044087 JP2018044087W WO2019107518A1 WO 2019107518 A1 WO2019107518 A1 WO 2019107518A1 JP 2018044087 W JP2018044087 W JP 2018044087W WO 2019107518 A1 WO2019107518 A1 WO 2019107518A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
polyimide
crystal aligning
polymer
Prior art date
Application number
PCT/JP2018/044087
Other languages
French (fr)
Japanese (ja)
Inventor
研造 矢田
暁子 杉山
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880076640.7A priority Critical patent/CN111386494B/en
Priority to JP2019557337A priority patent/JP7193782B2/en
Priority to KR1020207016989A priority patent/KR20200088846A/en
Publication of WO2019107518A1 publication Critical patent/WO2019107518A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device.
  • Liquid crystal display devices are known as lightweight, thin and low power consumption display devices.
  • high-definition liquid crystal display devices for mobile phones and tablet-type terminals which have been rapidly increasing their share, have achieved remarkable development that high display quality is required.
  • the liquid crystal display element is configured by sandwiching a liquid crystal layer by a pair of transparent substrates provided with electrodes. And in a liquid crystal display element, the organic film which consists of organic materials is used as a liquid crystal aligning film so that a liquid crystal may be in a desired orientation state between board
  • liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones.
  • an object of the present invention is to provide a liquid crystal aligning agent capable of enhancing the adhesion between a sealing agent and a liquid crystal aligning film and suppressing the occurrence of display unevenness in the vicinity of a frame of a liquid crystal display element under high temperature and high humidity conditions. I assume.
  • the liquid-crystal aligning agent containing a polymer precursor in which a polymer principal chain terminal has a structure of following formula (1), and at least 1 sort (s) of polymer chosen from polyimide.
  • R 1 represents an organic group having 1 to 20 carbon atoms which may contain a photoreactive functional group such as an acryl group or a methyl methacrylate group at its terminal.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film capable of enhancing the adhesion between the sealing agent and the liquid crystal alignment film and suppressing the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions. .
  • the liquid crystal display device having this liquid crystal alignment film can solve the display unevenness in the vicinity of the frame by enhancing the adhesion between the sealing agent and the liquid crystal alignment film, and can be suitably used for a large screen and high definition liquid crystal display.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from a polyimide precursor and a polyimide having a structure of the following formula (1) at the polymer main chain terminal.
  • R 1 represents an organic group having 1 to 20 carbon atoms which may contain a photoreactive functional group such as an acryl group or a methyl methacrylate group at its terminal.
  • R 1 is preferably a group selected from the following structures R-1 to R-10.
  • the compound of the formula (2) include the compounds of Z-1 to Z-10 exemplified below, but Z-1 is more preferable in view of seal adhesion and rubbing resistance, and Z-2 is more preferable. Particularly preferred.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention is obtained from the reaction of a tetracarboxylic acid derivative and a diamine, and the polyimide contained in the liquid crystal aligning agent of the present invention imidizes the polyimide precursor. Obtained by Hereinafter, specific examples of the materials to be used and the production method will be described in detail.
  • tetracarboxylic acid dihalide compounds tetracarboxylic acid dialkyl esters and tetracarboxylic acid dialkyl esters are used as tetracarboxylic acid derivatives used for producing polyimide precursors Ester dihalides are mentioned.
  • tetracarboxylic dianhydrides or derivatives thereof those represented by the following formula (3) are preferable.
  • X 1 is not particularly limited. Preferred specific examples include the following formulas (X1-1) to (X1-44). Among them, (X1-1), (X1-5), (X1-8) and (X1-27) are particularly preferable.
  • R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
  • R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom or a methyl group.
  • Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and sensitivity of photoreaction.
  • the diamine used for manufacture of a polyimide precursor is represented by following formula (4).
  • Each of A 1 and A 2 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • the structure of Y 1 is not particularly limited. Preferred structures include the following (Y-1) to (Y-182).
  • Me represents a methyl group
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • Y 1 is (Y-7), (Y-8), (Y-16), (Y-17), (Y-18), (Y-20), (Y-21). ), (Y-22), (Y-28), (Y-35), (Y-38), (Y-43), (Y-48), (Y-64), (Y-66), (Y-71), (Y-72), (Y-76), (Y-77), (Y-80), (Y-81), (Y-82), (Y-83), (Y) (-156), (Y-159), (Y-160), (Y-161), (Y-162), (Y-168), (Y-169) and (Y-170) are preferable, and in particular, (Y-7), (Y-8), (Y-16), (Y-17), (Y-18), (Y-21), (Y-22), (Y-28), (Y) -38), (Y-64), (Y-66), (Y-72), (Y-76) ), (Y-81), (Y-156), (Y-159), (Y-160), (Y-16
  • the polyamic acid which is a polyimide precursor used for this invention can be manufactured by the method shown below. Specifically, a tetracarboxylic dianhydride and a diamine are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized by Further, during and / or after the polymerization, the compound shown in the above (2) is reacted to obtain a polyimide precursor having a specific structure introduced at the end.
  • the organic solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of solubility of monomers and polymers, and one or more of these may be mixed You may use.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight polymer is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by injecting the reaction solution into a poor solvent while well stirring it. Further, precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid powder by normal temperature or heat drying.
  • the poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
  • the polyamic acid ester which is one of the polyimide precursors used for this invention can be manufactured by the method of (I), (II) or (III) shown below. Further, during and / or after the polymerization, the compound shown in the above (2) is reacted to obtain a polyimide precursor having a specific structure introduced at the end.
  • the polyamic acid ester can be synthesized by esterification of a polyamic acid obtained from tetracarboxylic acid dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized.
  • esterifying agent those which can be easily removed by purification are preferable, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents with respect to 1 mole of the repeating unit of the polyamic acid.
  • the solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the polymer, and these may be used alone or in combination of two or more. Good.
  • the concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
  • Polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours It can be synthesized by reaction.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds mildly.
  • the amount of the base used is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used for the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of monomers and polymers, and these may be used alone or in combination of two or more.
  • the concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent the mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic acid diester and diamine. Specifically, a tetracarboxylic acid diester and a diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for time.
  • the condensing agent examples include triphenyl phosphite, dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triadidi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N And N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 moles per mol of the tetracarboxylic acid die
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base used is preferably 2 to 4 moles per mole of the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding a Lewis acid as an additive.
  • a Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times the molar amount with respect to the diamine component.
  • the method for producing the above (I) or the above (II) is particularly preferable because a high molecular weight polyamic acid ester can be obtained.
  • the solution of the polyamic acid ester obtained as described above can precipitate the polymer by pouring it into a poor solvent while stirring well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
  • the polyimide used in the present invention can be produced by imidizing the above-mentioned polyamic acid or polyamic acid ester.
  • the imidation ratio of the polyimide used in the present invention is not limited to 100%. From the viewpoint of electrical characteristics, 20 to 99% is preferable.
  • chemical imidization which adds a basic catalyst to the polyamic acid solution obtained by dissolving the said polyamic acid ester solution or polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature, and molecular weight reduction of the polymer does not easily occur in the imidization process.
  • Chemical imidization can be carried out by stirring the polyamic acid or polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. Moreover, the polyimide precursor which introduce
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine and trioctylamine. Among them, pyridine is preferable because it has a suitable basicity to allow the reaction to proceed.
  • acetic anhydride trimellitic anhydride, pyromellitic anhydride and the like can be mentioned, and it is preferable to use acetic anhydride among them because purification after completion of the reaction becomes easy.
  • acetylation can be suppressed in the present invention, while acetyl group is formed at the main chain end when acetic anhydride is used.
  • the temperature at which the imidization reaction is carried out is, for example, ⁇ 20 ° C. to 120 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid group, and the amount of the acid anhydride is 1 to 50 moles, preferably 3 to 30 moles of the amic acid group. It is a double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature and reaction time.
  • the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent.
  • the liquid crystal aligning agent of the present invention is used.
  • the solution of the polyimide obtained as mentioned above can precipitate a polymer by inject
  • the poor solvent is not particularly limited, and methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene and the like can be mentioned.
  • the liquid crystal aligning agent of the present invention has the form of a solution in which a polymer containing a specific polymer is dissolved in an organic solvent containing a specific solvent.
  • the molecular weight of the polyimide precursor and the polyimide described in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100, in weight average molecular weight. , 000. Also, the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 weight % Or more is preferable, and from the viewpoint of storage stability of the solution, 10% by weight or less is preferable.
  • the solvent in the liquid crystal aligning agent of the present invention is a solvent that dissolves a polyimide precursor and a polyimide (also referred to as a good solvent) or a solvent that improves the coating properties and surface smoothness of the liquid crystal alignment film when the liquid crystal aligning agent is applied. (Also referred to as a poor solvent) is preferably used. Specific examples of other solvents are listed below, but are not limited to these examples.
  • the good solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide or 4-hydroxy-4-methyl-2-pentanone and the like. be able to.
  • the poor solvent include 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2-propoxyethanol, 2- (2-propoxyethoxy) ethanol, 1-propoxy-2-propanol ethanol, isopropyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3 -Methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3 -Heptanol, 1-octano , 2-octanol, 2-ethyl-1-hexanol, cyclohe
  • R 24 and R 25 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms. However, R 24 + R 25 is an integer greater than 3.
  • the solvents represented by the following [D-1] to the formula [D-3] are preferable.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • Formula [D-3] among, D 3 is an alkyl group having 1 to 4 carbon atoms.
  • the liquid crystal aligning agent of the present invention is at least one kind of substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond may be included.
  • crosslinking compound various known compounds can be used depending on the purpose.
  • the following compounds are preferably used.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to achieve the desired effect, 0.1 to 100 parts by mass is preferable, and 1 to 50 parts by mass is more preferable.
  • the liquid crystal aligning agent of this invention can contain the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
  • a fluorine-type surfactant As a compound which improves the uniformity of the film thickness of a liquid crystal aligning film, and surface smoothness, a fluorine-type surfactant, a silicone type surfactant, a nonion type surfactant etc. are mentioned.
  • the amount of surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 parts by mass, with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning film of this invention is a film
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed, from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if it is only on one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • the liquid crystal aligning agent is generally applied by screen printing, offset printing, flexographic printing or ink jet method, and as the other coating methods, dip method, roll coater method, slit coater, etc. Methods, spinner methods or spray methods are known.
  • the solvent can be evaporated by using a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film.
  • the drying and baking steps after the application of the liquid crystal aligning agent can be performed at any temperature and time. Usually, in order to sufficiently remove the contained solvent, baking is carried out at 50 to 120 ° C. for 1 to 10 minutes, followed by baking at 150 to 300 ° C. for 5 to 120 minutes.
  • the thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, and more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may decrease.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film without application of alignment treatment in a vertical alignment application or the like after being coated and baked on a substrate and then subjected to alignment treatment by rubbing treatment or photo alignment treatment.
  • a known method or apparatus can be used in alignment treatment such as rubbing treatment or light alignment treatment.
  • a liquid crystal display element having a passive matrix structure is described as an example. It may be a liquid crystal display element of an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting an image display.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes, and are patterned to provide a desired image display.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film of SiO 2 -TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is superimposed on one of the substrates so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealing agent.
  • a spacer in the sealing agent it is usually preferable to mix a spacer in the sealing agent, and to disperse the substrate gap control spacer also in the in-plane portion where the sealing agent is not provided.
  • An opening capable of being filled with liquid crystal from the outside is provided in part of the sealing agent.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • the liquid crystal material may be either a positive liquid crystal material or a negative liquid crystal material, preferably a negative liquid crystal material.
  • the polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surface of the two substrates opposite to the liquid crystal layer.
  • ⁇ Tetracarboxylic acid dianhydride> CBDA: 1,2,3,4, -cyclobutanetetracarboxylic acid dianhydride 1,3-DM-CBDA: (1,3-dimethyl) -1,2,3,4-cyclobutanetetracarboxylic acid dianhydride BDA: 1,2,3,4-butanetetracarboxylic acid dianhydride BPDA: 3,3'4,4'-biphenyltetracarboxylic dianhydride
  • DA-1 bis (4-aminophenoxy) ethane
  • DA-2 tert-butyl bis (4-aminophenyl) carbamate
  • DA-3 di-tert-butyl ((adipoyl bis (azanecyl)) bis (3-amino-6) , 1-phenylene)) dicarbamate
  • DA-4 para-phenylenediamine
  • DA-5 5-((4- (4-heptylcyclohexyl) phenoxy) methyl) benzene-1,3-diamine
  • DA-6 4,4 '-(1H-pyrrole-2, 5-Diyl) dianiline
  • DA-7 4,4'-diaminodiphenylamine
  • DA-8 4,4'-diaminodiphenylmethane
  • AD-1 3-glycidoxypropyltriethoxysilane
  • AD-2 N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide
  • the molecular weight and imidation ratio of the polyamic acid, the polyimide precursor and the polyimide were evaluated as follows.
  • the imidation ratio is determined using a proton derived from a structure which does not change before and after imidization as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid appearing around 9.0 to 11.0 ppm. It calculated
  • x is a proton peak integrated value derived from the NH group of the amic acid
  • y is a peak integrated value of the reference proton
  • is the NH group of the amic acid in the case of polyamic acid (imidation ratio is 0%) It is the number ratio of reference protons to one proton.
  • Ethylic isocyanate (0.45 g, 5.2 mmol) is added to polyamic acid solution (a) (30.0 g) and reacted at 20-25 ° C. for 20 hours to introduce a polyimide precursor having a specific structure introduced at the end of polyamic acid (a- 1) A solution was obtained. NMP is added to this polyimide precursor (a-1) solution (30.0 g) to dilute the content of the polyimide precursor (a-1) to 12% by mass, and then acetic anhydride (as an imidization catalyst) 3.52 g) and pyridine (0.91 g) were added and allowed to react at 50 ° C. for 2.5 hours.
  • the reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off.
  • the precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a specific imidized polymer (A-1) having a specific structure introduced at its end.
  • the imidation ratio of this specific polymer (A-1) was 76%.
  • the reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off.
  • the precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a specific imidized polymer (A-2) having a specific structure introduced at its end.
  • the imidation ratio of this specific imidation polymer (A-2) was 76%.
  • Ethyl isothiocyanate (0.53 g, 10.0 mmol) is added to polyamic acid solution (b) (30.0 g), and it reacts at 20-25 degreeC for 20 hours,
  • NMP is added to this polyimide precursor (b-1) solution (30.0 g) to dilute the content of the polyimide precursor (b-1) to 7% by mass, and then acetic anhydride (as an imidization catalyst) 5.47 g) and pyridine (1.70 g) were added and reacted at 40 ° C. for 3.5 hours.
  • the reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off.
  • the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a specific imidized polymer (B-1) having a specific structure introduced at its end.
  • the imidation ratio of this specific imidation polymer (B-1) was 65%.
  • the reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off.
  • the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a specific imidized polymer (B-2) having a specific structure introduced at its end.
  • the imidation ratio of this specific imidation polymer (B-2) was 65%.
  • Synthesis Example 6 NMP is added to the polyamic acid solution (a) (30.0 g) prepared in Synthesis Example 1 to dilute the polyamic acid (a) content to 12% by mass, and then acetic anhydride (3 as an imidization catalyst) .52 g) and pyridine (0.91 g) were added and reacted at 50 ° C. for 2.5 hours.
  • the reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain an imidized polymer (A).
  • the imidation ratio of this imidation polymer (A) was 75%.
  • Synthesis Example 7 After adding NMP to the polyamic acid solution (b) (30.0 g) prepared in Synthesis Example 3 and diluting it to a polyamic acid (b) content of 7% by mass, acetic anhydride (5 47 g) and pyridine (1.70 g) were added and reacted at 40 ° C. for 3.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain an imidized polymer (B). The imidation ratio of this imidation polymer (B) was 65%.
  • Example 1 NMP (36.6 g) was added to the specific imidation polymer (A-1) (5.0 g) obtained in Synthesis Example 1 and dissolved at 70 ° C. for 20 hours with stirring. NMP (25.1 g) and BCS (16.6 g) were added to this solution, and liquid crystal aligning agent [A] was obtained by stirring at 25 ° C. for 2 hours.
  • Example 2 NMP (36.6 g) was added to the specific imidated polymer (A-2) (5.0 g) obtained in Synthesis Example 2 and stirred at 70 ° C. for 20 hours for dissolution. NMP (25.1 g) and BCS (16.6 g) were added to this solution, and liquid crystal aligning agent [B] was obtained by stirring at 25 ° C. for 2 hours.
  • Example 3 NMP (36.6 g) was added to the specific imidated polymer (B-1) (5.0 g) obtained in Synthesis Example 3 and stirred at 70 ° C. for 20 hours for dissolution. NMP (8.4 g) and BCS (33.3 g) were added to this solution, and liquid crystal aligning agent [C] was obtained by stirring at 25 ° C. for 2 hours.
  • Example 4 NMP (36.6 g) was added to the specific imidation polymer (B-2) (5.0 g) obtained in Synthesis Example 4 and stirred at 70 ° C. for 20 hours for dissolution. NMP (8.4 g) and BCS (33.3 g) were added to this solution, and liquid crystal aligning agent [D] was obtained by stirring at 25 ° C. for 2 hours.
  • Example 5 NMP (36.6 g) was added to the specific imidated polymer (A-2) (5.0 g) obtained in Synthesis Example 2 and stirred at 70 ° C. for 20 hours for dissolution. This solution (3.63 g) and the polyamic acid solution (c) (8.5 g) obtained in Synthesis Example 5 were weighed, NMP (2.85 g), GBL (5.36 g), BCS (5.1 g), Add 3-glycidoxypropyltriethoxysilane (0.0145 g), N, N, N ', N'-tetrakis (2-hydroxyethyl) adipinamide (0.043 g) and stir at 25 ° C for 2 hours Thus, a liquid crystal aligning agent [E] was obtained.
  • Comparative Example 4 The seal adhesion of Comparative Example 4 is the result of the seal adhesion (N / mm 2 ) of the ITO substrate and the sealing agent.
  • the liquid crystal alignment agent is filtered through a 1.0 ⁇ m filter, spin-coated on a 30 mm ⁇ 40 mm glass substrate with ITO, dried on an 80 ° C. hot plate for 2 minutes, and baked at 230 ° C. for 20 minutes.
  • a polyimide film having a thickness of 100 nm was obtained.
  • a polyimide film coated substrate and a 30 mm ⁇ 40 mm glass substrate with ITO thus obtained are prepared, and a bead spacer having a diameter of 4 ⁇ m is dispersed on the polyimide film surface of one of the substrates, and then a UV curable seal is produced.
  • the agent was applied in spots. Next, as shown in FIG.
  • bonding was performed such that the sealing agent was positioned at the center of the overlapping portion of the substrates. At that time, the dropping amount of the sealing agent was adjusted so that the diameter of the sealing agent after bonding was about 3 mm.
  • the two bonded substrates were fixed by clips, irradiated with 3 J of UV by a high pressure mercury lamp, and then thermally cured at 120 ° C. for 1 hour to prepare a sample for evaluation of adhesion.
  • the upper and lower substrates are fixed at 5 mm wide by upper and lower substrates using the bench type precision universal testing machine (QC-H42A2-S00) manufactured by Yangshuo Technology Co., Ltd. In the direction, the upper substrate was pulled upward, and the pressure (N) at which the seal peeled was measured. The pressure (N) was divided by the area (mm 2 ) estimated from the measured diameter of the sealing agent, and the normalized value was used as an index of seal adhesion.
  • liquid crystal aligning agents obtained in Examples 1, 2 and 5 and Comparative Examples 1 and 3 were respectively filtered with a filter of 1.0 ⁇ m, and a liquid crystal cell was produced in the following procedure.
  • the liquid crystal aligning agent was spin-coated on a glass substrate with ITO, dried on a hot plate at 80 ° C. for 2 minutes, and fired at 230 ° C. for 20 minutes to obtain a coating having a thickness of 100 nm.
  • This polyimide film is rubbed with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm), and then ultrasonic wave irradiation is performed in pure water for 1 minute, and 80 ° C.
  • Liquid crystal (MLC-3023, manufactured by Merck & Co., Ltd.) is vacuum injected into this cell at normal temperature and the injection port is sealed, and then a metal halide lamp with an illuminance of 140 mW is applied to the obtained liquid crystal cell while applying a voltage of 15 V DC.
  • a wavelength of 325 nm or less was cut using the film, ultraviolet light was irradiated at 5 J / cm 2 in terms of 365 nm, and a liquid crystal cell (PSA cell) in which the alignment direction of the liquid crystal was controlled was obtained.
  • the liquid crystal aligning agent of the present invention can solve display unevenness in the vicinity of the frame by improving the adhesion between the sealing agent and the liquid crystal alignment film in a narrow frame liquid crystal display element capable of securing a large number of display surfaces. It is useful.

Abstract

A liquid crystal alignment agent containing at least one type of polymer selected from a polyimide and a polyimide precursor in which a polymer main chain terminal has a structure represented by formula (1). In the formula, R1 represents a C1-20 organic group which may contain an acrylic group, a methyl methacrylate group, or other photoreactive functional group at a terminal thereof.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display device.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られている。近年では、急速にシェアを拡大してきた携帯電話やタブレット型端末向けの高精細液晶表示素子においても、高い表示品位が求められるほどの目覚ましい発展を遂げている。 Liquid crystal display devices are known as lightweight, thin and low power consumption display devices. In recent years, high-definition liquid crystal display devices for mobile phones and tablet-type terminals, which have been rapidly increasing their share, have achieved remarkable development that high display quality is required.
 液晶表示素子は、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。さらに、上述した理由により、シール剤の位置を、シール剤との接着性が弱い液晶配向膜の端部に接した位置、あるいは液晶配向膜の上部にすることも求められている。このような場合、特に高温高湿条件下での使用では、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近に表示ムラが発生してしまう。
 この問題を解決する為、特定構造の添加剤を用いる液晶配向剤が提案されている(特許文献1参照)。
The liquid crystal display element is configured by sandwiching a liquid crystal layer by a pair of transparent substrates provided with electrodes. And in a liquid crystal display element, the organic film which consists of organic materials is used as a liquid crystal aligning film so that a liquid crystal may be in a desired orientation state between board | substrates. That is, the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate holding the liquid crystal in contact with the liquid crystal, and plays a role of orienting the liquid crystal in a certain direction between the substrates.
In recent years, liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as many display surfaces as possible, it is necessary to narrow the width of the sealing agent used to bond the substrates of the liquid crystal display element as compared with the prior art. Furthermore, for the reason described above, it is also required to position the sealing agent at a position in contact with the end of the liquid crystal alignment film having weak adhesion to the sealing agent, or at the top of the liquid crystal alignment film. In such a case, particularly when used under high temperature and high humidity conditions, water is likely to be mixed in between the sealing agent and the liquid crystal alignment film, and display unevenness occurs in the vicinity of the frame of the liquid crystal display element.
In order to solve this problem, a liquid crystal aligning agent using an additive having a specific structure has been proposed (see Patent Document 1).
WO2015/072554WO2015 / 072554
 しかし近年では、液晶配向膜とシール剤との更なる密着性改善が求められている。 However, in recent years, further improvement in adhesion between the liquid crystal alignment film and the sealing agent is required.
 このうちシール剤からの特性改善では、シール剤と液晶配向膜との密着特性と、シール剤の透湿防止特性はその両立が難しいことが知られており、上記観点から、液晶配向膜からの特性改善が求められている。
 そこで本発明は、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制することのできる液晶配向剤を提供することを目的とする。
Among them, it is known that in the property improvement from the sealing agent, it is difficult to simultaneously achieve the adhesion property between the sealing agent and the liquid crystal alignment film and the moisture permeation preventing property of the sealing agent. Characteristic improvement is required.
Therefore, an object of the present invention is to provide a liquid crystal aligning agent capable of enhancing the adhesion between a sealing agent and a liquid crystal aligning film and suppressing the occurrence of display unevenness in the vicinity of a frame of a liquid crystal display element under high temperature and high humidity conditions. I assume.
 かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.ポリマー主鎖末端が下記式(1)の構造を有するポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤。





Thus, the present invention is based on the above findings and has the following summary.
1. The liquid-crystal aligning agent containing a polymer precursor in which a polymer principal chain terminal has a structure of following formula (1), and at least 1 sort (s) of polymer chosen from polyimide.





Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 Rは、末端にアクリル基、メタクリル酸メチル基などの光反応性の官能基を含有していてもよい炭素数1~20の有機基を表す。 R 1 represents an organic group having 1 to 20 carbon atoms which may contain a photoreactive functional group such as an acryl group or a methyl methacrylate group at its terminal.
 本発明の液晶配向剤を用いることで、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制できる液晶配向膜が得られる。この液晶配向膜を有する液晶表示素子はシール剤と液晶配向膜との接着性を高めることで額縁付近の表示ムラが解決出来るので、大画面で高精細の液晶ディスプレイに好適に利用出来る。 By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film capable of enhancing the adhesion between the sealing agent and the liquid crystal alignment film and suppressing the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions. . The liquid crystal display device having this liquid crystal alignment film can solve the display unevenness in the vicinity of the frame by enhancing the adhesion between the sealing agent and the liquid crystal alignment film, and can be suitably used for a large screen and high definition liquid crystal display.
本発明の液晶配向剤を用いて得られる液晶配向膜の密着性評価を行う際に作製する、評価サンプルの作製方法を表す図である。詳しくは後述する。It is a figure showing the preparation methods of the evaluation sample produced when performing the adhesiveness evaluation of the liquid crystal aligning film obtained using the liquid crystal aligning agent of this invention. Details will be described later.
<末端構造>
 本発明の液晶配向剤は、ポリマー主鎖末端が下記式(1)の構造を有するポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体を含有する。
<Terminal structure>
The liquid crystal aligning agent of the present invention contains at least one polymer selected from a polyimide precursor and a polyimide having a structure of the following formula (1) at the polymer main chain terminal.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 Rは、末端にアクリル基、メタクリル酸メチル基などの光反応性の官能基を含有していてもよい炭素数1~20の有機基を表す。
 ここで、前記Rは、下記のR-1~R-10の構造から選ばれる基であることが好ましい。
R 1 represents an organic group having 1 to 20 carbon atoms which may contain a photoreactive functional group such as an acryl group or a methyl methacrylate group at its terminal.
Here, R 1 is preferably a group selected from the following structures R-1 to R-10.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 このような構造をポリイミド中に導入するには、ポリイミド前駆体の重合中及び重合後に、下記式(2)のような化合物を用いることが好ましい。
In order to introduce such a structure into the polyimide, it is preferable to use a compound such as the following formula (2) during and after the polymerization of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2)の化合物の具体例としては、下記に例示するZ-1~Z-10の化合物が挙げられるが、シール密着性およびラビング耐性の関係からZ-1がより好ましく、Z-2が特に好ましい。 Specific examples of the compound of the formula (2) include the compounds of Z-1 to Z-10 exemplified below, but Z-1 is more preferable in view of seal adhesion and rubbing resistance, and Z-2 is more preferable. Particularly preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<テトラカルボン酸誘導体>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、テトラカルボン酸誘導体と、ジアミンとの反応から得られ、本発明の液晶配向剤に含有されるポリイミドは、前記ポリイミド前駆体をイミド化することにより得られる。以下に、用いられる材料の具体例及び製造方法を詳述する。
 ポリイミド前駆体の製造に用いられるテトラカルボン酸誘導体としては、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 テトラカルボン酸二無水物又はその誘導体としては、なかでも、下記式(3)で表されるものが好ましい。
<Tetracarboxylic acid derivative>
The polyimide precursor contained in the liquid crystal aligning agent of the present invention is obtained from the reaction of a tetracarboxylic acid derivative and a diamine, and the polyimide contained in the liquid crystal aligning agent of the present invention imidizes the polyimide precursor. Obtained by Hereinafter, specific examples of the materials to be used and the production method will be described in detail.
Not only tetracarboxylic acid dianhydrides but also tetracarboxylic acid dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl esters and tetracarboxylic acid dialkyl esters are used as tetracarboxylic acid derivatives used for producing polyimide precursors Ester dihalides are mentioned.
Among the tetracarboxylic dianhydrides or derivatives thereof, those represented by the following formula (3) are preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 Xの構造は特に限定されない。好ましい具体例としては、下記式(X1-1)~(X1-44)が挙げられる。その中でも特に、(X1-1)、(X1-5)、(X1-8)、(X1-27)が好ましい。 The structure of X 1 is not particularly limited. Preferred specific examples include the following formulas (X1-1) to (X1-44). Among them, (X1-1), (X1-5), (X1-8) and (X1-27) are particularly preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015






Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(X1-1)~(X1-4)において、R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基が特に好ましい。
 式(X1-1)の具体例としては、下記式(X1-1-1)~(X1-1-6)が挙げられる。液晶配向性及び光反応の感度の点から、(X1-1-1)が特に好ましい。 







In formulas (X1-1) to (X1-4), R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal alignment, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom or a methyl group.
Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and sensitivity of photoreaction.







Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<ジアミン>    
 ポリイミド前駆体の製造に用いられるジアミンは、下記式(4)で表わされる。
<Diamine>
The diamine used for manufacture of a polyimide precursor is represented by following formula (4).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 A及びAはそれぞれ独立して、水素原子、又は炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。
 Yの構造は特に限定されない。好ましい構造としては以下の(Y-1)~(Y-182)が挙げられる。
Each of A 1 and A 2 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
The structure of Y 1 is not particularly limited. Preferred structures include the following (Y-1) to (Y-182).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021






Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024








Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031








Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034











Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037





Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 上記式中、Meは、メチル基を表し、Rは水素原子または炭素数1~5の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000039
In the above formulae, Me represents a methyl group, and R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 なかでも、Yの構造としては、(Y-7)、(Y-8)、(Y-16)、(Y-17)、(Y-18)、(Y-20),(Y-21)、(Y-22)、(Y-28)、(Y-35)、(Y-38)、(Y-43)、(Y-48)、(Y-64),(Y-66)、(Y-71)、(Y-72)、(Y-76),(Y-77)、(Y-80)、(Y-81)、(Y-82)、(Y-83)、(Y-156)、(Y-159)、(Y-160)、(Y-161)、(Y-162)(Y-168)、(Y-169)、(Y-170)が好ましく、特には、(Y-7)、(Y-8)、(Y-16)、(Y-17)、(Y-18)、(Y-21)、(Y-22)、(Y-28)、(Y-38)、(Y-64)、(Y-66)、(Y-72)、(Y-76)、(Y-81)、(Y-156)、(Y-159)、(Y-160)、(Y-161)、(Y-162)、(Y-168)、(Y-169)、(Y-170)、(Y-171)、(Y-173)、(Y-175)が好ましい。 Among them, the structure of Y 1 is (Y-7), (Y-8), (Y-16), (Y-17), (Y-18), (Y-20), (Y-21). ), (Y-22), (Y-28), (Y-35), (Y-38), (Y-43), (Y-48), (Y-64), (Y-66), (Y-71), (Y-72), (Y-76), (Y-77), (Y-80), (Y-81), (Y-82), (Y-83), (Y) (-156), (Y-159), (Y-160), (Y-161), (Y-162), (Y-168), (Y-169) and (Y-170) are preferable, and in particular, (Y-7), (Y-8), (Y-16), (Y-17), (Y-18), (Y-21), (Y-22), (Y-28), (Y) -38), (Y-64), (Y-66), (Y-72), (Y-76) ), (Y-81), (Y-156), (Y-159), (Y-160), (Y-161), (Y-162), (Y-168), (Y-169), (Y-170), (Y-171), (Y-173) and (Y-175) are preferable.
<ポリアミック酸>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法で製造できる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下、-20℃~150℃、好ましくは0℃~50℃で、30分~24時間、好ましくは1~12時間反応させることによって合成できる。またその重合中及び/又は重合後に、上記(2)に示される化合物を反応させることにより、末端に特定構造を導入したポリイミド前駆体を得られる。
<Polyamic acid>
The polyamic acid which is a polyimide precursor used for this invention can be manufactured by the method shown below. Specifically, a tetracarboxylic dianhydride and a diamine are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized by Further, during and / or after the polymerization, the compound shown in the above (2) is reacted to obtain a polyimide precursor having a specific structure introduced at the end.
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone or γ-butyrolactone in view of solubility of monomers and polymers, and one or more of these may be mixed You may use. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight polymer is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating a polymer by injecting the reaction solution into a poor solvent while well stirring it. Further, precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid powder by normal temperature or heat drying. The poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
<ポリアミック酸エステル>
 本発明に用いられるポリイミド前駆体の一つであるポリアミック酸エステルは、以下に示す(I)、(II)又は(III)の方法で製造できる。またその重合中及び/又は重合後に、上記(2)に示される化合物を反応させることにより、末端に特定構造を導入したポリイミド前駆体を得られる。
<Polyamic acid ester>
The polyamic acid ester which is one of the polyimide precursors used for this invention can be manufactured by the method of (I), (II) or (III) shown below. Further, during and / or after the polymerization, the compound shown in the above (2) is reacted to obtain a polyimide precursor having a specific structure introduced at the end.
(I)ポリアミック酸から製造する場合 
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成できる。
(I) When manufacturing from polyamic acid
The polyamic acid ester can be synthesized by esterification of a polyamic acid obtained from tetracarboxylic acid dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の使用量は、ポリアミック酸の繰り返し単位1モルに対し2~6モル当量が好ましい。 As the esterifying agent, those which can be easily removed by purification are preferable, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 molar equivalents with respect to 1 mole of the repeating unit of the polyamic acid.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。反応液中のポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used for the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the polymer, and these may be used alone or in combination of two or more. Good. The concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained.
(II)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造できる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(II) When manufactured by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, for 30 minutes to 24 hours, preferably 1 to 4 hours It can be synthesized by reaction.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の使用量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対し、2~4倍モルが好ましい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds mildly. The amount of the base used is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。反応液中のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used for the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of monomers and polymers, and these may be used alone or in combination of two or more. The concentration of the polymer in the reaction solution is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, from the viewpoint that precipitation of the polymer hardly occurs and a polymer can be easily obtained. Further, in order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent the mixing of outside air in a nitrogen atmosphere.
(III)テトラカルボン酸ジエステルとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造できる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造できる。
(III) When manufactured by reaction of tetracarboxylic acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic acid diester and diamine. Specifically, a tetracarboxylic acid diester and a diamine in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triadidi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N And N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used. The addition amount of the condensing agent is preferably 2 to 3 moles per mol of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の使用量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base used is preferably 2 to 4 moles per mole of the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。 In the above reaction, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times the molar amount with respect to the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(I)又は上記(II)の製造法が特に好ましい。 Among the three methods for producing the polyamic acid ester, the method for producing the above (I) or the above (II) is particularly preferable because a high molecular weight polyamic acid ester can be obtained.
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The solution of the polyamic acid ester obtained as described above can precipitate the polymer by pouring it into a poor solvent while stirring well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying. The poor solvent is not particularly limited, and water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like can be mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、前記ポリアミック酸又はポリアミック酸エステルをイミド化することにより製造できる。本発明で用いられるポリイミドのイミド化率は100%に限らない。電気特性の観点から20~99%が好ましい。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the above-mentioned polyamic acid or polyamic acid ester. The imidation ratio of the polyimide used in the present invention is not limited to 100%. From the viewpoint of electrical characteristics, 20 to 99% is preferable. When producing a polyimide from polyamic acid ester, chemical imidization which adds a basic catalyst to the polyamic acid solution obtained by dissolving the said polyamic acid ester solution or polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature, and molecular weight reduction of the polymer does not easily occur in the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸又はポリアミック酸エステルを、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。またその際に上記(2)に示される化合物を反応させることにより、末端に特定構造を導入したポリイミド前駆体を得られる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。通常、従来のポリイミドの場合は無水酢酸を用いると主鎖末端としてアセチル基が生成するのに対して、本発明はアセチル化を抑制することができる。 Chemical imidization can be carried out by stirring the polyamic acid or polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. Moreover, the polyimide precursor which introduce | transduced the specific structure at the terminal can be obtained by making the compound shown by said (2) react at that time. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of basic catalysts include pyridine, triethylamine, trimethylamine, tributylamine and trioctylamine. Among them, pyridine is preferable because it has a suitable basicity to allow the reaction to proceed. Further, as the acid anhydride, acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like can be mentioned, and it is preferable to use acetic anhydride among them because purification after completion of the reaction becomes easy. Generally, in the case of conventional polyimide, acetylation can be suppressed in the present invention, while acetyl group is formed at the main chain end when acetic anhydride is used.
 イミド化反応を行うときの温度は、例えば-20℃~120℃であり、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。 The temperature at which the imidization reaction is carried out is, for example, −20 ° C. to 120 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid group, and the amount of the acid anhydride is 1 to 50 moles, preferably 3 to 30 moles of the amic acid group. It is a double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 Since the added catalyst and the like remain in the solution after the imidization reaction of the polyamic acid ester or the polyamic acid, the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Preferably, the liquid crystal aligning agent of the present invention is used.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。 The solution of the polyimide obtained as mentioned above can precipitate a polymer by inject | pouring into a poor solvent, stirring it well. Precipitation is carried out several times, and after washing with a poor solvent, it is possible to obtain a purified polyamic acid ester powder at room temperature or by heating and drying.
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。 The poor solvent is not particularly limited, and methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene and the like can be mentioned.
<液晶配向剤>
 本発明の液晶配向剤は、特定重合体を含む重合体が特定溶媒を含む有機溶媒中に溶解された溶液の形態を有する。本発明に記載のポリイミド前駆体及びポリイミドの分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention has the form of a solution in which a polymer containing a specific polymer is dissolved in an organic solvent containing a specific solvent. The molecular weight of the polyimide precursor and the polyimide described in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100, in weight average molecular weight. , 000. Also, the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上が好ましく、溶液の保存安定性の点からは10重量%以下が好ましい。 The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 weight % Or more is preferable, and from the viewpoint of storage stability of the solution, 10% by weight or less is preferable.
 本発明の液晶配向剤における溶媒は、ポリイミド前駆体及びポリイミドを溶解する溶媒(良溶媒ともいう)や、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)が好ましく用いられる。下記に、その他の溶媒の具体例を挙げるが、これらの例に限定されるものではない。 The solvent in the liquid crystal aligning agent of the present invention is a solvent that dissolves a polyimide precursor and a polyimide (also referred to as a good solvent) or a solvent that improves the coating properties and surface smoothness of the liquid crystal alignment film when the liquid crystal aligning agent is applied. (Also referred to as a poor solvent) is preferably used. Specific examples of other solvents are listed below, but are not limited to these examples.
 良溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ‐ブチロラクトン、γ‐バレロラクトン、1,3-ジメチルイミダゾリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシーN,N-ジメチルプロパンアミド又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
 貧溶媒の具体例としては、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、2-プロポキシエタノール、2-(2-プロポキシエトキシ)エタノール、1-プロポキシ-2-プロパノールエタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、ブチルセロソルブ、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、プロピレングリコールジアセタート、ジイソペンチルエーテル、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジイソブチルケトン、エチルカルビトール等が挙げられる。
 また、貧溶媒としては、下記式で表される溶媒も好ましく用いられる。
Specific examples of the good solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide or 4-hydroxy-4-methyl-2-pentanone and the like. be able to.
Specific examples of the poor solvent include 1-butoxy-2-propanol, 2-butoxy-1-propanol, 2-propoxyethanol, 2- (2-propoxyethoxy) ethanol, 1-propoxy-2-propanol ethanol, isopropyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3 -Methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3 -Heptanol, 1-octano , 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2-ethanediol, 1,2-propanediol, 1 , 3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentane Diol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethy Ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate Tart, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, butyl cellosolve, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (Hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, 1- (butoxyethoxy) prop Nordol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono Butyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, propylene glycol diacetate, diisopentyl ether, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate Tart, diethylene glycol acetate, triethylene glycol Glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, 3-methoxy Methyl propionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, lactate methyl ester, lactate Ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester, diisobutyl ketone, ethyl carbitol and the like can be mentioned.
Moreover, as a poor solvent, the solvent represented by a following formula is also used preferably.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 R24、25はそれぞれ独立して、直鎖又は分岐の、炭素数1~8のアルキル基である。但し、R24+R25は3より大きい整数である。 R 24 and R 25 are each independently a linear or branched alkyl group having 1 to 8 carbon atoms. However, R 24 + R 25 is an integer greater than 3.
 また、貧溶媒としては、液晶配向剤に含まれるポリイミド前駆体及びポリイミドの溶媒への溶解性が高い場合は、下記の[D-1]~式[D-3]で示される溶媒が好ましい。 Further, as the poor solvent, when the solubility of the polyimide precursor and the polyimide contained in the liquid crystal aligning agent in the solvent is high, the solvents represented by the following [D-1] to the formula [D-3] are preferable.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。 In Formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in Formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, Formula [D-3] among, D 3 is an alkyl group having 1 to 4 carbon atoms.
 また、本発明の液晶配向剤は、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含んでいてもよい。 Further, the liquid crystal aligning agent of the present invention is at least one kind of substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. A crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond may be included.
 そのような架橋性化合物は、その目的に応じ種々の公知の化合物を用いることが出来る。好ましく用いられるのは下記の化合物である。









As such a crosslinking compound, various known compounds can be used depending on the purpose. The following compounds are preferably used.









Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、0.1~100質量部が好ましく、より好ましいのは、1~50質量部である。 The content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to achieve the desired effect, 0.1 to 100 parts by mass is preferable, and 1 to 50 parts by mass is more preferable.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を含有することができる。 The liquid crystal aligning agent of this invention can contain the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent, and surface smoothness.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
As a compound which improves the uniformity of the film thickness of a liquid crystal aligning film, and surface smoothness, a fluorine-type surfactant, a silicone type surfactant, a nonion type surfactant etc. are mentioned.
The amount of surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 parts by mass, with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent.
<液晶配向膜、液晶表示素子>
 本発明の液晶配向膜は、上記の液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film, liquid crystal display element>
The liquid crystal aligning film of this invention is a film | membrane obtained by apply | coating said liquid crystal aligning agent to a board | substrate, drying, and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed, from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if it is only on one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
 液晶配向剤の塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的であり、その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などが知られている。 Industrially, the liquid crystal aligning agent is generally applied by screen printing, offset printing, flexographic printing or ink jet method, and as the other coating methods, dip method, roll coater method, slit coater, etc. Methods, spinner methods or spray methods are known.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 After the liquid crystal aligning agent is applied onto the substrate, the solvent can be evaporated by using a heating means such as a hot plate, a thermal circulation type oven or an IR (infrared) type oven to form a liquid crystal alignment film. The drying and baking steps after the application of the liquid crystal aligning agent can be performed at any temperature and time. Usually, in order to sufficiently remove the contained solvent, baking is carried out at 50 to 120 ° C. for 1 to 10 minutes, followed by baking at 150 to 300 ° C. for 5 to 120 minutes. The thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, and more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may decrease.
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や、光配向処理などで配向処理し、また、垂直配向用途などでは配向処理無しで、液晶配向膜として使用できる。ラビング処理や光配向処理などの配向処理では、既知の方法や装置が使用できる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
The liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film without application of alignment treatment in a vertical alignment application or the like after being coated and baked on a substrate and then subjected to alignment treatment by rubbing treatment or photo alignment treatment. A known method or apparatus can be used in alignment treatment such as rubbing treatment or light alignment treatment.
As an example of a method of manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure is described as an example. It may be a liquid crystal display element of an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting an image display.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。 Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes, and are patterned to provide a desired image display. Then, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film of SiO 2 -TiO 2 formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれでもよいが、好ましいのは、ネガ型液晶材料である。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。 Next, a liquid crystal alignment film is formed on each substrate, the other substrate is superimposed on one of the substrates so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealing agent. In order to control the substrate gap, it is usually preferable to mix a spacer in the sealing agent, and to disperse the substrate gap control spacer also in the in-plane portion where the sealing agent is not provided. An opening capable of being filled with liquid crystal from the outside is provided in part of the sealing agent. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. The liquid crystal material may be either a positive liquid crystal material or a negative liquid crystal material, preferably a negative liquid crystal material. Next, the polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surface of the two substrates opposite to the liquid crystal layer.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。 EXAMPLES The present invention will be more specifically described below by way of Examples, but the present invention is not limited thereto. The symbol of the compound in the following and the measuring method of each characteristic are as follows.
<テトラカルボン酸二無水物> 
CBDA:1,2,3,4,-シクロブタンテトラカルボン酸二無水物 
1,3-DM-CBDA:(1,3-ジメチル)―1,2,3,4-シクロブタンテトラカルボン酸二無水物
BDA:1,2,3,4-ブタンテトラカルボン酸二無水物
BPDA:3,3’4,4’-ビフェニルテトラカルボン酸二無水物 
<Tetracarboxylic acid dianhydride>
CBDA: 1,2,3,4, -cyclobutanetetracarboxylic acid dianhydride
1,3-DM-CBDA: (1,3-dimethyl) -1,2,3,4-cyclobutanetetracarboxylic acid dianhydride BDA: 1,2,3,4-butanetetracarboxylic acid dianhydride BPDA: 3,3'4,4'-biphenyltetracarboxylic dianhydride
<ジアミン>
DA-1:ビス(4-アミノフェノキシ)エタン
DA-2:tert-ブチル ビス(4-アミノフェニル)カーバメート
DA-3:ジ-tert-ブチル((アジポイルビス(アザネジイル))ビス(3-アミノ―6,1-フェニレン))ジカルバメート 
DA-4:パラフェニレンジアミン
DA-5:5-((4-(4-ヘプチルシクロヘキシル)フェノキシ)メチル)ベンゼン‐1,3-ジアミン
DA-6:4,4‘-(1H-ピロール-2,5-ジイル)ジアニリン
DA-7:4,4‘-ジアミノジフェニルアミン
DA-8:4,4‘-ジアミノジフェニルメタン







<Diamine>
DA-1: bis (4-aminophenoxy) ethane DA-2: tert-butyl bis (4-aminophenyl) carbamate DA-3: di-tert-butyl ((adipoyl bis (azanecyl)) bis (3-amino-6) , 1-phenylene)) dicarbamate
DA-4: para-phenylenediamine DA-5: 5-((4- (4-heptylcyclohexyl) phenoxy) methyl) benzene-1,3-diamine DA-6: 4,4 '-(1H-pyrrole-2, 5-Diyl) dianiline DA-7: 4,4'-diaminodiphenylamine DA-8: 4,4'-diaminodiphenylmethane







Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
<イソチオシアネート>
SCN-1:エチルイソチオシアネート
SCN-2:アリルイソチオシアネート
<Isothiocyanate>
SCN-1: Ethyl isothiocyanate SCN-2: Allyl isothiocyanate
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
<添加剤>
AD-1:3-グリシドキシプロピルトリエトキシシラン
AD-2:N,N,N‘,N’-テトラキス(2-ヒドロキシエチル)アジピンアミド
<Additives>
AD-1: 3-glycidoxypropyltriethoxysilane AD-2: N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide
<有機溶媒> 
NMP:N-メチル-2-ピロリドン 
BCS:ブチルセロソルブ 
GBL:γ‐ブチロラクトン
<Organic solvent>
NMP: N-methyl-2-pyrrolidone
BCS: Butyl Cellosolve
GBL: γ-butyrolactone
 実施例において、ポリアミック酸、ポリイミド前駆体、ポリイミドに関する分子量やイミド化率、は次のようにして評価した。  In Examples, the molecular weight and imidation ratio of the polyamic acid, the polyimide precursor and the polyimide were evaluated as follows.
<分子量測定> 
 ポリアミック酸及びポリイミドの分子量には、昭和電工社製  常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用いた。測定条件は、以下の通りである。 
カラム温度:50℃ 
溶離液:N,N’-ジメチルホルムアミド(添加剤:臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L) 
流速:1.0ml/分 
検量線作成用標準サンプル:東ソー社製  TSK  標準ポリエチレンオキサイド(分子量  約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製  ポリエチレングリコール(分子量  約12,000、4,000、1,000)
<Molecular weight measurement>
For the molecular weight of polyamic acid and polyimide, a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko K. K. and columns manufactured by Shodex (KD-803, KD-805) were used. The measurement conditions are as follows.
Column temperature: 50 ° C
Eluent: N, N'-dimethylformamide (Additive: 30 mmol / L of lithium bromide-hydrate (LiBr · H2O), 30 mmol / L of phosphoric acid / anhydrous crystal (o-phosphoric acid), tetrahydrofuran (THF) ) 10ml / L)
Flow rate: 1.0 ml / min
Standard samples for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: approximately 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corp., and polyethylene glycol (molecular weight: approximately 12,000, 4 manufactured by Polymer Laboratory) , 000, 1,000)
<イミド化率の測定> 
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製、NMRサンプリングチューブスタンダード  φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液について、日本電子データム社製NMR測定器(JNW-ECA500)を用いて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.0から11.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い、以下の数式(1)によって求めた。 
<Measurement of imidation ratio>
20 mg of polyimide powder is placed in an NMR sample tube (manufactured by Kusano Scientific Co., Ltd., NMR sampling tube standard φ5), and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) is added The solution was sonicated and completely dissolved. For this solution, proton NMR at 500 MHz was measured using an NMR meter (JNW-ECA500) manufactured by Nippon Denshi Datum Co., Ltd. The imidation ratio is determined using a proton derived from a structure which does not change before and after imidization as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid appearing around 9.0 to 11.0 ppm. It calculated | required by the following Numerical formula (1) using an integral value.
イミド化率(%)=(1-α・x/y)×100    ・・・(1)  Imidation ratio (%) = (1−α · x / y) × 100 (1)
 上記式(1)において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula (1), x is a proton peak integrated value derived from the NH group of the amic acid, y is a peak integrated value of the reference proton, and α is the NH group of the amic acid in the case of polyamic acid (imidation ratio is 0%) It is the number ratio of reference protons to one proton.
<合成例1> 
 1,3-DM-CBDA(12.68g,56.6mmol)、DA-2(10.4g,26.1mmol)、DA-3(7.26g,13.1mmol)、DA-1(11.69g,47.9mmol)をNMP(191.48g)中で混合し、40℃で1時間反応させた後、CBDA(3.67g,18.7mmol)とNMP(16.7g)を加え、20-25℃で2時間反応させポリアミック酸溶液(a)を得た。このポリアミック酸溶液(a)の数平均分子量は11440、重量平均分子量は23220であった。
 ポリアミック酸溶液(a)(30.0g)にエチルイソシアネート(0.45g,5.2mmol)を加えて20-25℃で20時間反応させポリアミック酸末端に特定構造を導入したポリイミド前駆体(a―1)溶液を得た。このポリイミド前駆体(a―1)溶液(30.0g)にNMPを加えてポリイミド前駆体(a―1)の含有量が12質量%になるように希釈した後、イミド化触媒として無水酢酸(3.52g)、及びピリジン(0.91g)を加え、50℃で2.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し末端に特定構造を導入した特定イミド化重合体 (A―1)を得た。この特定重合体(A―1)のイミド化率は、76%であった。
Synthesis Example 1
1,3-DM-CBDA (12.68 g, 56.6 mmol), DA-2 (10.4 g, 26.1 mmol), DA-3 (7.26 g, 13.1 mmol), DA-1 (11.69 g) (47.9 mmol) in NMP (191.48 g) and reacted at 40 ° C. for 1 hour, and then CBDA (3.67 g, 18.7 mmol) and NMP (16.7 g) are added, and 20-25 The reaction was carried out for 2 hours at .degree. C. to obtain a polyamic acid solution (a). The number average molecular weight of this polyamic acid solution (a) was 11440, and the weight average molecular weight was 23,220.
Ethylic isocyanate (0.45 g, 5.2 mmol) is added to polyamic acid solution (a) (30.0 g) and reacted at 20-25 ° C. for 20 hours to introduce a polyimide precursor having a specific structure introduced at the end of polyamic acid (a- 1) A solution was obtained. NMP is added to this polyimide precursor (a-1) solution (30.0 g) to dilute the content of the polyimide precursor (a-1) to 12% by mass, and then acetic anhydride (as an imidization catalyst) 3.52 g) and pyridine (0.91 g) were added and allowed to react at 50 ° C. for 2.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a specific imidized polymer (A-1) having a specific structure introduced at its end. The imidation ratio of this specific polymer (A-1) was 76%.
<合成例2>
 合成例1で調製したポリアミック酸溶液(a)(30.0g)にアリルイソチオシアネート(0.51g,5.2mmol)を加えて20-25℃で20時間反応させポリアミック酸末端に特定構造を導入したポリイミド前駆体(a―2)溶液を得た。このポリイミド前駆体(a―2)溶液(30.0g)にNMPを加えてポリイミド前駆体(a―2)の含有量が12質量%になるように希釈した後、イミド化触媒として無水酢酸(3.52g)、及びピリジン(0.91g)を加え、50℃で2.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し末端に特定構造を導入した特定イミド化重合体(A―2)を得た。この特定イミド化重合体(A―2)のイミド化率は、76%であった。
Synthesis Example 2
Allyl isothiocyanate (0.51 g, 5.2 mmol) is added to the polyamic acid solution (a) (30.0 g) prepared in Synthesis Example 1 and reacted at 20-25 ° C. for 20 hours to introduce a specific structure at the end of polyamic acid The obtained polyimide precursor (a-2) solution was obtained. NMP is added to this polyimide precursor (a-2) solution (30.0 g) to dilute the content of the polyimide precursor (a-2) to 12% by mass, and then acetic anhydride (as an imidization catalyst) 3.52 g) and pyridine (0.91 g) were added and allowed to react at 50 ° C. for 2.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain a specific imidized polymer (A-2) having a specific structure introduced at its end. The imidation ratio of this specific imidation polymer (A-2) was 76%.
<合成例3>
 BDA(8.9g,45mmol)、DA-5(14.21g,36.0mmol)、DA-4(5.84g,54.0mmol)をNMP(164.11g)中で混合し、40℃で2時間反応させた後、CBDA(8.65g,44.1mmol)とNMP(49.0g)を加え、40℃で2時間反応させポリアミック酸溶液(b)を得た。このポリアミック酸溶液(b)の数平均分子量は9100、重量平均分子量は34500であった。 ポリアミック酸溶液(b)(30.0g)にエチルイソチオシアネート(0.53g,10.0mmol)を加えて20-25℃で20時間反応させポリアミック酸末端に特定構造を導入したポリイミド前駆体(b―1)溶液を得た。このポリイミド前駆体(b―1)溶液(30.0g)にNMPを加えてポリイミド前駆体(b―1)の含有量が7質量%になるように希釈した後、イミド化触媒として無水酢酸(5.47g)、及びピリジン(1.70g)を加え、40℃で3.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し末端に特定構造を導入した特定イミド化重合体(B―1)を得た。この特定イミド化重合体(B―1)のイミド化率は、65%であった。
Synthesis Example 3
BDA (8.9 g, 45 mmol), DA-5 (14.21 g, 36.0 mmol), DA-4 (5.84 g, 54.0 mmol) are mixed in NMP (164.11 g), 2 at 40 ° C. After being reacted for time, CBDA (8.65 g, 44.1 mmol) and NMP (49.0 g) were added, and reacted at 40 ° C. for 2 hours to obtain a polyamic acid solution (b). The number average molecular weight of this polyamic acid solution (b) was 9,100, and the weight average molecular weight was 34,500. Ethyl isothiocyanate (0.53 g, 10.0 mmol) is added to polyamic acid solution (b) (30.0 g), and it reacts at 20-25 degreeC for 20 hours, The polyimide precursor which introduce | transduced the specific structure into the polyamic acid terminal (b) -1) Obtained a solution. NMP is added to this polyimide precursor (b-1) solution (30.0 g) to dilute the content of the polyimide precursor (b-1) to 7% by mass, and then acetic anhydride (as an imidization catalyst) 5.47 g) and pyridine (1.70 g) were added and reacted at 40 ° C. for 3.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a specific imidized polymer (B-1) having a specific structure introduced at its end. The imidation ratio of this specific imidation polymer (B-1) was 65%.
<合成例4>
 合成例3で調製したポリアミック酸(b)にアリルイソチオシアネート(0.54g,5.4mmol)を加えて20-25℃で20時間反応させポリアミック酸末端に特定構造を導入したポリイミド前駆体(b―2)溶液を得た。このポリイミド前駆体(b―2)溶液(30.0g)にNMPを加えてポリイミド前駆体(b―2)の含有量が7質量%になるように希釈した後、イミド化触媒として無水酢酸(5.47g)、及びピリジン(1.70g)を加え、40℃で3.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し末端に特定構造を導入した特定イミド化重合体(B―2)を得た。この特定イミド化重合体(B―2)のイミド化率は、65%であった。
Synthesis Example 4
Allyl isothiocyanate (0.54 g, 5.4 mmol) is added to the polyamic acid (b) prepared in Synthesis Example 3 and reacted at 20-25 ° C. for 20 hours to introduce a polyimide precursor having a specific structure introduced at the end of the polyamic acid (b) -2) Obtained a solution. NMP is added to this polyimide precursor (b-2) solution (30.0 g) to dilute the content of the polyimide precursor (b-2) to 7% by mass, and then acetic anhydride (as an imidization catalyst) 5.47 g) and pyridine (1.70 g) were added and reacted at 40 ° C. for 3.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a specific imidized polymer (B-2) having a specific structure introduced at its end. The imidation ratio of this specific imidation polymer (B-2) was 65%.
<合成例5>
 CBDA(4.20g,21.4mmol)、DA-7(6.68g,33.5mmol)、DA-6(5.01g,20.1mmol)、DA-8(2.66g,13.4mmol)をNMP(24.65g),GBL(111.38g)中で混合し、40℃で1時間反応させた後、BPDA(11.83g,40.2mmol)とNMP(86.73g)を加え、50℃で15時間反応させポリアミック酸溶液(c)を得た。このポリアミック酸溶液(c)の数平均分子量は9370、重量平均分子量は20690であった。
Synthesis Example 5
CBDA (4.20 g, 21.4 mmol), DA-7 (6.68 g, 33.5 mmol), DA-6 (5.01 g, 20.1 mmol), DA-8 (2.66 g, 13.4 mmol) After mixing in NMP (24.65 g) and GBL (111.38 g) and reacting at 40 ° C. for 1 hour, BPDA (11.83 g, 40.2 mmol) and NMP (86.73 g) are added and 50 ° C. The reaction was carried out for 15 hours to obtain a polyamic acid solution (c). The number average molecular weight of this polyamic acid solution (c) was 9370, and the weight average molecular weight was 20,690.
<合成例6>
 合成例1で調製したポリアミック酸溶液(a)(30.0g)にNMPを加えてポリアミック酸(a)の含有量が12質量%になるように希釈した後、イミド化触媒として無水酢酸(3.52g)、及びピリジン(0.91g)を加え、50℃で2.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しイミド化重合体(A)を得た。このイミド化重合体(A)のイミド化率は、75%であった。
Synthesis Example 6
NMP is added to the polyamic acid solution (a) (30.0 g) prepared in Synthesis Example 1 to dilute the polyamic acid (a) content to 12% by mass, and then acetic anhydride (3 as an imidization catalyst) .52 g) and pyridine (0.91 g) were added and reacted at 50 ° C. for 2.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain an imidized polymer (A). The imidation ratio of this imidation polymer (A) was 75%.
<合成例7>
 合成例3で調製したポリアミック酸溶液(b)(30.0g)にNMPを加えてポリアミック酸(b)の含有量が7質量%になるように希釈した後、イミド化触媒として無水酢酸(5.47g)、及びピリジン(1.70g)を加え、40℃で3.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しイミド化重合体(B)を得た。このイミド化重合体(B)のイミド化率は、65%であった。
Synthesis Example 7
After adding NMP to the polyamic acid solution (b) (30.0 g) prepared in Synthesis Example 3 and diluting it to a polyamic acid (b) content of 7% by mass, acetic anhydride (5 47 g) and pyridine (1.70 g) were added and reacted at 40 ° C. for 3.5 hours. The reaction solution was poured into methanol (300 ml) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain an imidized polymer (B). The imidation ratio of this imidation polymer (B) was 65%.
液晶配向剤の調製:
<実施例1>
 合成例1で得られた特定イミド化重合体(A―1)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(25.1g)、及びBCS(16.6g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[A]を得た。
Preparation of liquid crystal aligning agent:
Example 1
NMP (36.6 g) was added to the specific imidation polymer (A-1) (5.0 g) obtained in Synthesis Example 1 and dissolved at 70 ° C. for 20 hours with stirring. NMP (25.1 g) and BCS (16.6 g) were added to this solution, and liquid crystal aligning agent [A] was obtained by stirring at 25 ° C. for 2 hours.
<実施例2>
 合成例2で得られた特定イミド化重合体(A―2)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(25.1g)、及びBCS(16.6g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[B]を得た。
Example 2
NMP (36.6 g) was added to the specific imidated polymer (A-2) (5.0 g) obtained in Synthesis Example 2 and stirred at 70 ° C. for 20 hours for dissolution. NMP (25.1 g) and BCS (16.6 g) were added to this solution, and liquid crystal aligning agent [B] was obtained by stirring at 25 ° C. for 2 hours.
<実施例3>
 合成例3で得られた特定イミド化重合体(B―1)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(8.4g)、及びBCS(33.3g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[C]を得た。
Example 3
NMP (36.6 g) was added to the specific imidated polymer (B-1) (5.0 g) obtained in Synthesis Example 3 and stirred at 70 ° C. for 20 hours for dissolution. NMP (8.4 g) and BCS (33.3 g) were added to this solution, and liquid crystal aligning agent [C] was obtained by stirring at 25 ° C. for 2 hours.
<実施例4>
 合成例4で得られた特定イミド化重合体(B―2)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(8.4g)、及びBCS(33.3g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[D]を得た。
Example 4
NMP (36.6 g) was added to the specific imidation polymer (B-2) (5.0 g) obtained in Synthesis Example 4 and stirred at 70 ° C. for 20 hours for dissolution. NMP (8.4 g) and BCS (33.3 g) were added to this solution, and liquid crystal aligning agent [D] was obtained by stirring at 25 ° C. for 2 hours.
<実施例5>
 合成例2で得られた特定イミド化重合体(A―2)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液(3.63g)と合成例5で得られたポリアミック酸溶液(c)(8.5g)量り取り、NMP(2.85g)、GBL(5.36g)、BCS(5.1g)、3-グリシドキシプロピルトリエトキシシラン(0.0145g)、N,N,N‘,N’-テトラキス(2-ヒドロキシエチル)アジピンアミド(0.043g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[E]を得た。
Example 5
NMP (36.6 g) was added to the specific imidated polymer (A-2) (5.0 g) obtained in Synthesis Example 2 and stirred at 70 ° C. for 20 hours for dissolution. This solution (3.63 g) and the polyamic acid solution (c) (8.5 g) obtained in Synthesis Example 5 were weighed, NMP (2.85 g), GBL (5.36 g), BCS (5.1 g), Add 3-glycidoxypropyltriethoxysilane (0.0145 g), N, N, N ', N'-tetrakis (2-hydroxyethyl) adipinamide (0.043 g) and stir at 25 ° C for 2 hours Thus, a liquid crystal aligning agent [E] was obtained.
<比較例1>
 合成例6で得られたイミド化重合体(A)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(25.1g)、及びBCS(16.6g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[F]を得た。
Comparative Example 1
NMP (36.6 g) was added to the imidated polymer (A) (5.0 g) obtained in Synthesis Example 6 and stirred at 70 ° C. for 20 hours for dissolution. NMP (25.1 g) and BCS (16.6 g) were added to this solution, and liquid crystal aligning agent [F] was obtained by stirring at 25 ° C. for 2 hours.
<比較例2>
 合成例7で得られたイミド化重合体(B)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液にNMP(8.4g)、及びBCS(33.3g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[G]を得た。
Comparative Example 2
NMP (36.6 g) was added to the imidated polymer (B) (5.0 g) obtained in Synthesis Example 7 and stirred at 70 ° C. for 20 hours for dissolution. NMP (8.4 g) and BCS (33.3 g) were added to this solution, and liquid crystal aligning agent [G] was obtained by stirring at 25 ° C. for 2 hours.
<比較例3>
 合成例6で得られたイミド化重合体(A)(5.0g)にNMP(36.6g)加え70℃にて20時間撹拌して溶解させた。この溶液(3.63g)と合成例5で得られたポリアミック酸溶液(c)(8.5g)量り取り、NMP(2.85g)、GBL(5.36g)、BCS(5.1g)、3-グリシドキシプロピルトリエトキシシラン(0.0145g)、N,N,N‘,N’-テトラキス(2-ヒドロキシエチル)アジピンアミドを加え、25℃にて2時間攪拌することにより、液晶配向剤[H]を得た。
Comparative Example 3
NMP (36.6 g) was added to the imidated polymer (A) (5.0 g) obtained in Synthesis Example 6 and stirred at 70 ° C. for 20 hours for dissolution. This solution (3.63 g) and the polyamic acid solution (c) (8.5 g) obtained in Synthesis Example 5 were weighed, NMP (2.85 g), GBL (5.36 g), BCS (5.1 g), Liquid crystal alignment is achieved by adding 3-glycidoxypropyltriethoxysilane (0.0145 g), N, N, N ', N'-tetrakis (2-hydroxyethyl) adipinamide and stirring at 25 ° C. for 2 hours. An agent [H] was obtained.
<比較例4>
 比較例4のシール密着性は、ITO基板とシール剤のシール密着性(N/mm)の結果である。
Comparative Example 4
The seal adhesion of Comparative Example 4 is the result of the seal adhesion (N / mm 2 ) of the ITO substrate and the sealing agent.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
<密着性評価サンプルの作製>
 液晶配向剤を1.0μmのフィルターで濾過した後、30mm×40mmのITO付きガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥した後、230℃で20分間焼成して、膜厚が100nmのポリイミド膜を得た。このようにして得られたポリイミド膜付基板および30mm×40mmのITO付ガラス基板を用意し、一方の基板のポリイミド膜面上に、直径が4μmのビーズスペーサーを散布した後、UV硬化型のシール剤を点状に塗布した。次いで、図1に示すように基板が重なっている部分の中心にシール剤が位置するように貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が約3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定して高圧水銀ランプでUVを3J照射した後、120℃で1時間熱硬化させて、密着性評価用のサンプルを作製した。
<Preparation of adhesion evaluation sample>
The liquid crystal alignment agent is filtered through a 1.0 μm filter, spin-coated on a 30 mm × 40 mm glass substrate with ITO, dried on an 80 ° C. hot plate for 2 minutes, and baked at 230 ° C. for 20 minutes. A polyimide film having a thickness of 100 nm was obtained. A polyimide film coated substrate and a 30 mm × 40 mm glass substrate with ITO thus obtained are prepared, and a bead spacer having a diameter of 4 μm is dispersed on the polyimide film surface of one of the substrates, and then a UV curable seal is produced. The agent was applied in spots. Next, as shown in FIG. 1, bonding was performed such that the sealing agent was positioned at the center of the overlapping portion of the substrates. At that time, the dropping amount of the sealing agent was adjusted so that the diameter of the sealing agent after bonding was about 3 mm. The two bonded substrates were fixed by clips, irradiated with 3 J of UV by a high pressure mercury lamp, and then thermally cured at 120 ° C. for 1 hour to prepare a sample for evaluation of adhesion.
<密着性の測定>
 作製したサンプルを陽屹科技股▲ふん▼有限公司製の卓上形精密万能試験機(QC-H42A2-S00)にて、上下基板それぞれ端5mm幅の部分を固定した後、下側の基板は下方向へ、上側の基板は上方向へそれぞれ引っ張り、シールが剥離する際の圧力(N)を測定した。計測したシール剤の直径より見積もった面積(mm)で圧力(N)を割り算して規格化した値をシール密着性の指標とした。
<Measurement of adhesion>
The upper and lower substrates are fixed at 5 mm wide by upper and lower substrates using the bench type precision universal testing machine (QC-H42A2-S00) manufactured by Yangshuo Technology Co., Ltd. In the direction, the upper substrate was pulled upward, and the pressure (N) at which the seal peeled was measured. The pressure (N) was divided by the area (mm 2 ) estimated from the measured diameter of the sealing agent, and the normalized value was used as an index of seal adhesion.
<ラビング耐性の評価>
 液晶配向剤を1.0μmのフィルターで濾過した後、30mm×40mmのITO付きガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥した後、230℃で20分間焼成して、膜厚が100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布で1回ラビング(ロール系120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.6mm)した。この膜表面を光学顕微鏡にて観察し、倍率200倍で削れカスの有無と傷の有無を観察した。削れカスや傷が少ないものを「良好」と定義し、多くの削れカスやラビング傷が見られるものを「不良」と定義して評価した。
<Evaluation of rubbing resistance>
The liquid crystal alignment agent is filtered through a 1.0 μm filter, spin-coated on a 30 mm × 40 mm glass substrate with ITO, dried on an 80 ° C. hot plate for 2 minutes, and baked at 230 ° C. for 20 minutes. A polyimide film having a thickness of 100 nm was obtained. This polyimide film was rubbed once with a rayon cloth (roll system 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.6 mm). The surface of the film was observed with an optical microscope, and the presence or absence of scum and scratches was observed at a magnification of 200 times. Those with few scrapes and scratches were defined as "good", and those with many scraps and rubbing scratches were evaluated as "defect".
<液晶セルの作製>
 実施例1、2、5および比較例1、3で得られた液晶配向剤をそれぞれ1.0μmのフィルターで濾過した後、下記の手順にて液晶セルを作製した。液晶配向剤をITO付ガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥した後、230℃で20分間焼成して、膜厚が100nmの塗膜を得た。このポリイミド膜をレーヨン布でラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。このようにして得られた液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサーを設置した後、2枚の基板のラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。このセルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止してアンチパラレル液晶セルとした。
<Fabrication of liquid crystal cell>
The liquid crystal aligning agents obtained in Examples 1, 2 and 5 and Comparative Examples 1 and 3 were respectively filtered with a filter of 1.0 μm, and a liquid crystal cell was produced in the following procedure. The liquid crystal aligning agent was spin-coated on a glass substrate with ITO, dried on a hot plate at 80 ° C. for 2 minutes, and fired at 230 ° C. for 20 minutes to obtain a coating having a thickness of 100 nm. This polyimide film is rubbed with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm), and then ultrasonic wave irradiation is performed in pure water for 1 minute, and 80 ° C. for 10 minutes It was dry. After preparing two substrates with a liquid crystal alignment film obtained in this way and placing a 4 μm spacer on the liquid crystal alignment film surface of one of the substrates, combine the two substrates so that the rubbing directions become antiparallel. The periphery was sealed leaving a liquid crystal injection port, and an empty cell having a cell gap of 4 μm was fabricated. Liquid crystal (MLC-2041, manufactured by Merck & Co., Ltd.) was vacuum injected into this cell at normal temperature, and the inlet was sealed to form an anti-parallel liquid crystal cell.
<液晶セルの作製(PSAセル)>
 実施例3、4および比較例2で得られた液晶配向剤をそれぞれ1.0μmのフィルターで濾過した後、下記の手順にて液晶セルを作製した。液晶配向剤をITO付ガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥した後、230℃で20分間焼成して、膜厚が100nmの塗膜を得た。このようにして得られた液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサーを設置した後、2枚の基板を組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。このセルに液晶(MLC-3023、メルク社製)を常温で真空注入し、注入口を封止した後、得られた液晶セルに、直流15Vの電圧を印加しながら、照度140mWのメタルハライドランプを用いて、325nm以下の波長をカットし、365nm換算で5J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。
<Fabrication of liquid crystal cell (PSA cell)>
Each of the liquid crystal aligning agents obtained in Examples 3 and 4 and Comparative Example 2 was filtered with a filter of 1.0 μm, and a liquid crystal cell was manufactured by the following procedure. The liquid crystal aligning agent was spin-coated on a glass substrate with ITO, dried on a hot plate at 80 ° C. for 2 minutes, and fired at 230 ° C. for 20 minutes to obtain a coating having a thickness of 100 nm. After preparing two substrates with a liquid crystal alignment film obtained in this way, and placing a 4 μm spacer on the liquid crystal alignment film surface of one of the substrates, combine the two substrates and leave the liquid crystal injection port around the periphery. It sealed and produced the empty cell whose cell gap is 4 micrometers. Liquid crystal (MLC-3023, manufactured by Merck & Co., Ltd.) is vacuum injected into this cell at normal temperature and the injection port is sealed, and then a metal halide lamp with an illuminance of 140 mW is applied to the obtained liquid crystal cell while applying a voltage of 15 V DC. A wavelength of 325 nm or less was cut using the film, ultraviolet light was irradiated at 5 J / cm 2 in terms of 365 nm, and a liquid crystal cell (PSA cell) in which the alignment direction of the liquid crystal was controlled was obtained.
<液晶配向性>
 作製した液晶セルの配向状態を偏光顕微鏡にて観察し、配向欠陥がないものを「良好」、配向欠陥があるものを「不良」とした。
<Liquid crystal orientation>
The alignment state of the produced liquid crystal cell was observed with a polarizing microscope, and those having no alignment defect were regarded as “good”, and those having an alignment defect as “defective”.
 本発明の液晶配向剤は、多くの表示面を確保することが出来る狭額縁液晶表示素子において、シール剤と液晶配向膜との接着性を高めることで額縁付近の表示ムラが解決でき、産業上有用である。 The liquid crystal aligning agent of the present invention can solve display unevenness in the vicinity of the frame by improving the adhesion between the sealing agent and the liquid crystal alignment film in a narrow frame liquid crystal display element capable of securing a large number of display surfaces. It is useful.

Claims (7)

  1. ポリマー主鎖末端が下記式(1)の構造を有するポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    は、末端にアクリル基、メタクリル酸メチル基などの光反応性の官能基を含有していてもよい炭素数1~20の有機基を表す。
    The liquid-crystal aligning agent containing a polymer precursor in which a polymer principal chain terminal has a structure of following formula (1), and at least 1 sort (s) of polymer chosen from polyimide.
    Figure JPOXMLDOC01-appb-C000001
    R 1 represents an organic group having 1 to 20 carbon atoms which may contain a photoreactive functional group such as an acryl group or a methyl methacrylate group at its terminal.
  2. 前記Rが、下記のR-1~R-10の構造から選ばれる基である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to claim 1, wherein R 1 is a group selected from the following structures R-1 to R-10.
    Figure JPOXMLDOC01-appb-C000002
  3. 前記ポリイミドが、テトラカルボン酸誘導体成分とジアミン成分との反応で得られるポリイミド前駆体のイミド化物であり、テトラカルボン酸誘導体成分が下記式で表されるテトラカルボン酸二無水物を含有する、請求項1または請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    は、下記から選ばれる4価の有機基を表す。
    Figure JPOXMLDOC01-appb-C000004
    ~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。
    The polyimide is an imidized polyimide precursor obtained by the reaction of a tetracarboxylic acid derivative component and a diamine component, and the tetracarboxylic acid derivative component contains a tetracarboxylic acid dianhydride represented by the following formula. The liquid crystal aligning agent of Claim 1 or Claim 2.
    Figure JPOXMLDOC01-appb-C000003
    X 1 represents a tetravalent organic group selected from the following.
    Figure JPOXMLDOC01-appb-C000004
    R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom It is a monovalent organic group having 1 to 6 carbon atoms, or a phenyl group.
  4. 前記ポリイミドが、テトラカルボン酸誘導体成分とジアミン成分との反応で得られるポリイミド前駆体のイミド化物であり、ポリイミド前駆体の重合中及び/又は重合後の溶液に、下記式(2)の化合物を加えたものである、請求項1から請求項3のいずれか1項に記載のポリイミドの製造方法。
    Figure JPOXMLDOC01-appb-C000005
    は、前記Rと同一である。
    The polyimide is an imidized polyimide precursor obtained by the reaction of a tetracarboxylic acid derivative component and a diamine component, and a compound of the following formula (2) is added to a solution during and / or after polymerization of the polyimide precursor. The method for producing a polyimide according to any one of claims 1 to 3, which is added.
    Figure JPOXMLDOC01-appb-C000005
    R 1 is the same as R 1 above.
  5. 前記式(2)の化合物は、下記に例示するZ-1~Z-10の化合から選択される、請求項4に記載のポリイミドの製造方法。
    Figure JPOXMLDOC01-appb-C000006
    The method for producing a polyimide according to claim 4, wherein the compound of the formula (2) is selected from the compounds of Z-1 to Z-10 exemplified below.
    Figure JPOXMLDOC01-appb-C000006
  6. 請求項1から請求項3のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 The liquid crystal aligning film obtained from the liquid crystal aligning agent of any one of Claims 1-3.
  7. 請求項6に記載の液晶配向膜を具備する液晶表示素子。
     
    The liquid crystal display element which comprises the liquid crystal aligning film of Claim 6.
PCT/JP2018/044087 2017-11-30 2018-11-29 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2019107518A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880076640.7A CN111386494B (en) 2017-11-30 2018-11-29 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2019557337A JP7193782B2 (en) 2017-11-30 2018-11-29 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR1020207016989A KR20200088846A (en) 2017-11-30 2018-11-29 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017231109 2017-11-30
JP2017-231109 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107518A1 true WO2019107518A1 (en) 2019-06-06

Family

ID=66664036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044087 WO2019107518A1 (en) 2017-11-30 2018-11-29 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7193782B2 (en)
KR (1) KR20200088846A (en)
CN (1) CN111386494B (en)
TW (1) TWI744574B (en)
WO (1) WO2019107518A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178406A1 (en) * 2013-05-01 2014-11-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016103011A (en) * 2014-11-12 2016-06-02 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938528B1 (en) * 1996-07-25 2002-11-13 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE NAVY Liquid crystal composition and alignment layer
WO2007052979A1 (en) * 2005-11-07 2007-05-10 Lg Chem. Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
KR101193350B1 (en) * 2007-10-19 2012-10-19 제이에스알 가부시끼가이샤 Liquid crystal-aligning agent, and method for production of liquid crystal alignment film
JP5077583B2 (en) * 2008-03-26 2012-11-21 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
US8741397B2 (en) * 2009-11-09 2014-06-03 Jnc Corporation Liquid crystal display element, liquid crystal composition, aligning agent, method for producing liquid crystal display element, and use of liquid crystal composition
US9475901B2 (en) * 2009-12-08 2016-10-25 Transitions Optical, Inc. Photoalignment materials having improved adhesion
TWI616429B (en) 2010-02-26 2018-03-01 Nissan Chemical Ind Ltd Diamine compound, liquid crystal alignment agent and liquid crystal display element
TWI635164B (en) * 2012-04-24 2018-09-11 迪愛生股份有限公司 Liquid crystal composition containing polymerizable compound and liquid crystal display element using same
JP2015215368A (en) * 2012-09-05 2015-12-03 シャープ株式会社 Polymer for alignment film and liquid crystal display
TWI673300B (en) * 2013-03-29 2019-10-01 日商日產化學工業股份有限公司 Liquid crystal alignment agent containing a polymer having a blocked isocyanate group, liquid crystal alignment film and liquid crystal display element
TWI671333B (en) * 2013-08-21 2019-09-11 日商日產化學工業股份有限公司 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN105723276B (en) 2013-11-15 2019-04-09 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
JP6888241B2 (en) * 2015-04-08 2021-06-16 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal element and method for manufacturing liquid crystal element
JP7114856B2 (en) * 2016-02-15 2022-08-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178406A1 (en) * 2013-05-01 2014-11-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016103011A (en) * 2014-11-12 2016-06-02 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
TW201936789A (en) 2019-09-16
JPWO2019107518A1 (en) 2020-12-10
TWI744574B (en) 2021-11-01
CN111386494B (en) 2023-06-30
CN111386494A (en) 2020-07-07
JP7193782B2 (en) 2022-12-21
KR20200088846A (en) 2020-07-23

Similar Documents

Publication Publication Date Title
JP7276666B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20160081922A (en) Liquid crystal aligning agent, and liquid crystal display element using same
JP5831712B2 (en) Coating liquid for forming polyimide film, liquid crystal aligning agent, polyimide film, liquid crystal aligning film and liquid crystal display element
JP7163920B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20160074520A (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
WO2017119461A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
JP6700619B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP7392646B2 (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
WO2018174091A1 (en) Polymer and liquid crystal alignment agent using same
WO2018117239A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2018038160A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2019065646A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
KR102586311B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2019107518A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7131551B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7448891B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7469744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film using the same, and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2019101196A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2019142927A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
WO2016010084A1 (en) Liquid crystal aligning agent for optical alignment, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016989

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18883206

Country of ref document: EP

Kind code of ref document: A1