WO2014024885A1 - Liquid crystal aligning agent, and liquid crystal alignment film produced using same - Google Patents

Liquid crystal aligning agent, and liquid crystal alignment film produced using same Download PDF

Info

Publication number
WO2014024885A1
WO2014024885A1 PCT/JP2013/071262 JP2013071262W WO2014024885A1 WO 2014024885 A1 WO2014024885 A1 WO 2014024885A1 JP 2013071262 W JP2013071262 W JP 2013071262W WO 2014024885 A1 WO2014024885 A1 WO 2014024885A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
crystal aligning
polyamic acid
Prior art date
Application number
PCT/JP2013/071262
Other languages
French (fr)
Japanese (ja)
Inventor
勇歩 野口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201380051562.2A priority Critical patent/CN104685412B/en
Priority to KR1020157005479A priority patent/KR102116155B1/en
Priority to JP2014529512A priority patent/JP6152849B2/en
Publication of WO2014024885A1 publication Critical patent/WO2014024885A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent suitable for application by an ink jet method and having high dimensional stability when applied, and a liquid crystal alignment film obtained from the liquid crystal aligning agent.
  • a so-called polyimide liquid crystal alignment film is widely used, which is obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a solution of soluble polyimide. in use.
  • a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a solution of soluble polyimide.
  • spin coating, dip coating, flexographic printing, and the like are known as film forming methods for such a liquid crystal alignment film.
  • flexographic printing requires various types of resin plates due to differences in the types of liquid crystal panels, complicated plate replacement in the manufacturing process, and deposition on a dummy substrate to stabilize the deposition process. In other words, there are problems such as that the production of the plate contributes to an increase in the manufacturing cost of the liquid crystal display panel.
  • an inkjet method has attracted attention as a new method for applying a liquid crystal alignment film without using a printing plate.
  • the ink jet method is a method in which fine droplets are dropped on a substrate and a film is formed by wetting and spreading of the liquid. Not only the printing plate is not used, but also the printing pattern can be set freely, so that the manufacturing process of the liquid crystal display element can be simplified. In addition, there is an advantage that the waste of the coating liquid is reduced because the film formation on the dummy substrate which is necessary for flexographic printing is not necessary. Application by the inkjet method is expected to reduce the cost of liquid crystal panels and improve production efficiency.
  • the liquid crystal alignment film formed by the ink jet method is required to have small film thickness unevenness inside the coating surface and high film forming accuracy in the peripheral part of the coating.
  • a liquid crystal alignment film formed by an ink-jet method has a trade-off relationship between the uniformity of the film thickness in the coating surface and the film forming accuracy in the periphery of the coating.
  • a material with high in-plane uniformity has poor dimensional stability in the periphery of the coating, and the film protrudes from the set dimensions.
  • the material in which the coating peripheral part is a straight line has poor uniformity in the coated surface.
  • Patent Document 1 In order to improve the film forming accuracy of the coating peripheral part, a method of confining the alignment film in a predetermined range with a structure has been proposed (see Patent Document 1, Patent Document 2, and Patent Document 3). However, these methods have the disadvantage that additional structures are required.
  • An object of the present invention is to form a polyimide-based liquid crystal aligning agent suitable for the ink jet method, which can form a coating film having excellent uniformity of film thickness within the coating surface, linearity and dimensional stability of the coating peripheral portion, and the same.
  • the object is to provide a liquid crystal alignment film.
  • the inventor has conducted research to achieve the above object, and has arrived at the present invention having the following summary.
  • It contains at least one polymer selected from the group consisting of polyimide and a polyimide precursor, and a solvent containing an alkyl cellosolve acetate compound represented by the following formula (1) and dipropylene glycol monomethyl ether.
  • Liquid crystal aligning agent Liquid crystal aligning agent.
  • R 1 is an alkyl group having 1 to 8 carbon atoms.
  • the alkyl cellosolve acetate compound is at least one selected from the group consisting of methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate. 5.
  • the liquid crystal aligning agent according to any one of 1 to 4 above containing 1 to 5% by mass of the polymer. 6). 6.
  • the liquid crystal aligning agent according to any one of 1 to 5 above containing 95 to 99% by mass of the solvent. 7). 7.
  • the liquid crystal aligning agent according to any one of 1 to 7 above having a viscosity of 5 to 20 mPa ⁇ s. 9.
  • a method for forming a liquid crystal alignment film wherein the liquid crystal aligning agent according to any one of 1 to 8 is applied by an inkjet method. 10. 9. A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 8 above, drying and firing. 11. 11. The liquid crystal alignment film as described in 10 above, having a thickness of 5 to 300 nm. 12 12. A liquid crystal display device having the liquid crystal alignment film as described in 10 or 11 above.
  • the liquid crystal aligning agent of the present invention particularly when applied by an ink jet method, is excellent in the uniformity of the film thickness in the coating surface, and is excellent in the linearity and dimensional stability of the peripheral portion of the application. Then, the coating film which has the outstanding characteristic which was difficult to obtain simultaneously is obtained.
  • Such a liquid crystal alignment film of the present invention has excellent characteristics in terms of in-plane uniformity and linearity in the peripheral portion.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention produces
  • the polyamic acid ester and the polyamic acid have the following formula (1) and the following formula (2), respectively.
  • R 1 is an alkyl group having 1 to 5, preferably 1 to 2 carbon atoms.
  • R 1 is particularly preferably a methyl group from the viewpoint of ease of imidization by heat.
  • a 1 and A 2 are each independently a hydrogen atom or an alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms that may have a substituent. is there.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, or alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
  • halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent.
  • This aryl group may be further substituted with the other substituent described above.
  • the organooxy group as a substituent can have a structure represented by —O—R.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group as a substituent can have a structure represented by —S—R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • alkenyl group as a substituent examples include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • alkynyl group that is a substituent examples include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • the reactivity of the amino group and the liquid crystal orientation may be lowered.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • X 1 and X 2 are each independently a tetravalent organic group
  • Y 1 and Y 2 are each independently a divalent organic group.
  • X 1 and X 2 are tetravalent organic groups and are not particularly limited. Two or more kinds of X 1 and X 2 may be mixed in the polyimide precursor. Specific examples of X 1 and X 2 include X-1 to X-46 shown below.
  • X 1 and X 2 are X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X- 19, X-21, X-25, X-26, X-27, X-28, X-32 and the like are preferable.
  • the amount of tetracarboxylic dianhydride having these preferable X 1 and X 2 is preferably 2 to 100 mol%, more preferably 40 to 100 mol% of the total tetracarboxylic dianhydride.
  • Y 1 and Y 2 are each independently a divalent organic group and are not particularly limited. Specific examples of Y 1 and Y 2 include the following Y-1 to Y-104. Two or more kinds of Y 1 and Y 2 may be mixed.
  • the amount of the diamine having a preferable Y 1 as described above is preferably 1 to 100 mol%, more preferably 50 to 100 mol% of the total diamine.
  • Y 1 is Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y- 86, Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, Y-97 and the like are more preferable.
  • Y 1 particularly preferably at least one selected from structures represented by the following formula.
  • Y- 2 is represented by Y-19, Y-23, Y-25, Y-26, Y-27, Y-30, Y-31, Y-32, Y-33, Y-34, Y- 35, Y-36, Y-40, Y-41Y-42, Y-44, Y-45, Y-49, Y-50, Y-51, Y-61 and the like are more preferable.
  • a diamine having the following Y-31 or Y-40 structure is particularly preferred.
  • the amount of the diamine having a preferable Y 2 as described above is preferably 1 to 100 mol%, more preferably 50 to 100 mol% of the total diamine.
  • the polyamic acid ester represented by the above formula (1) is obtained by reaction of any of the tetracarboxylic acid derivatives represented by the following formulas (6) to (8) with the diamine compound represented by the formula (9). be able to.
  • the polyamic acid ester represented by the above formula (1) can be synthesized by the following methods (1) to (3) using the above monomer.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is synthesized by reacting a polyamic acid and an esterifying agent in the presence of a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably for 1 to 4 hours. be able to.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like from the solubility of the polymer, and these may be used alone or in combination.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
  • the solvent used in the reaction is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably prevented from mixing outside air in a nitrogen atmosphere.
  • Polyamic acid ester is compoundable by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine are reacted in the presence of a condensing agent, a base, and a solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol, more preferably 0.2 to 0.8 times mol based on the diamine component.
  • the method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above the polymer can be precipitated by pouring into a poor solvent while stirring well.
  • a purified polyamic acid ester powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
  • the weight average molecular weight of the polyamic acid ester is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000.
  • the number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000.
  • the polyamic acid represented by the above formula (2) can be obtained by a reaction between a tetracarboxylic dianhydride represented by the following formula (10) and a diamine compound represented by the formula (11).
  • tetracarboxylic dianhydride and diamine are reacted in the presence of a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • the solvent used in the reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. Also good.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution.
  • a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the weight average molecular weight of the polyamic acid is preferably 10,000 to 305,000, and more preferably 20,000 to 210,000.
  • the number average molecular weight is preferably 5,000 to 152,500, and more preferably 10,000 to 105,000.
  • the polyimide contained in the liquid crystal aligning agent of the present invention can be obtained by imidizing the above polyimide precursor.
  • the method of imide thermal imidization by heating and catalyst imidization using a catalyst are generally used.
  • the catalyst imidation in which the imidization reaction proceeds at a relatively low temperature is lower in the molecular weight of the resulting polyimide. Is less likely to occur.
  • Catalytic imidation can be carried out in a solvent by stirring the polyamic acid in the presence of a basic catalyst and an acid anhydride, or stirring the polyamic acid ester in the presence of a basic catalyst.
  • the reaction temperature at this time is ⁇ 20 to 250 ° C., preferably 0 to 180 ° C.
  • the higher the reaction temperature the faster the imidization proceeds.
  • the molecular weight of the polyimide may decrease.
  • the amount of the basic catalyst is 1 to 60 moles, preferably 2 to 40 moles per mole of the repeating unit of the polyamic acid or polyamic acid ester.
  • the amount of the acid anhydride for catalytic imidization of the polyamic acid is 2 to 100 moles, preferably 6 to 60 moles per mole of the repeating unit of the polyamic acid. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
  • the basic catalyst used for the catalytic imidation of polyamic acid include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. .
  • Examples of the basic catalyst used for the catalytic imidation of the polyamic acid ester include triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and triethylamine is particularly preferable because of its fast reaction.
  • Examples of acid anhydrides used for catalytic imidization of polyamic acid include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, use of acetic anhydride facilitates purification after completion of the reaction. preferable.
  • the solvent is not limited as long as it dissolves polyamic acid or polyamic acid ester. Specific examples thereof include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2.
  • -Pyrrolidone N-methylcaprolactam
  • dimethyl sulfoxide tetramethyl urea
  • dimethyl sulfone hexamethyl sulfoxide, ⁇ -butyrolactone and the like
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the produced polyimide is obtained by putting the reaction solution into a poor solvent and collecting the produced precipitate.
  • the poor solvent to be used is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polyimide that has been poured into a poor solvent and precipitated is filtered, and then can be powdered by drying at normal temperature or under reduced pressure at normal temperature or under reduced pressure.
  • the polyimide can also be purified by repeating the steps of dissolving the polyimide powder in a solvent and reprecipitating it 2 to 10 times. When the impurities cannot be removed by a single precipitation recovery operation, it is preferable to perform this purification step.
  • the molecular weight of the polyimide is not particularly limited, but is preferably 2,000 to 200,000, more preferably 4,000 to 50,000 in terms of weight average molecular weight from the viewpoint of ease of handling and stability of characteristics when a film is formed. 000.
  • the above molecular weights are all determined by GPC (gel permeation chromatography).
  • End modification of polyimide or polyimide precursor The ends of the polyimide, polyamic acid and polyamic acid ester used in the present invention may be modified. By using a terminal-modified polymer, solubility and coating properties can be improved.
  • the terminal modification can be synthesized by adding an acid anhydride, a monoamine compound, an acid chloride compound, a monoisocyanate compound or the like when synthesizing a polyamic acid or polyamic acid ester.
  • the liquid crystal aligning agent of the present invention is in the form of a solution in which at least one polymer selected from the group consisting of the polyimide precursor and polyimide is dissolved in a solvent.
  • a polyimide precursor such as polyamic acid ester or polyamic acid and a polyimide are synthesized in a solvent
  • the reaction solution obtained may be used. It may be diluted.
  • a polyimide precursor and a polyimide are obtained as a powder, this may be dissolved in a solvent to form a solution.
  • the solvent contained in the liquid crystal aligning agent of the present invention needs to contain an alkyl cellosolve acetate compound. In-plane uniformity is improved by adding alkyl cellosolve acetate.
  • the alkyl cellosolve acetate compound contained in the solvent is preferably a cellosolve acetate compound having an alkyl group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. Preferable examples include at least one selected from the group consisting of methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate. Of these, butyl cellosolve acetate is preferred from the viewpoint of an appropriate boiling point and volatilization rate. When the alkyl chain length of the alkyl cellosolve acetate is too long, the boiling point becomes high, causing a problem that it is difficult to dry in the step of drying the liquid crystal alignment film.
  • the solvent contained in the liquid crystal aligning agent of the present invention needs to contain dipropylene glycol monomethyl ether.
  • dipropylene glycol monomethyl ether By adding dipropylene glycol monomethyl ether, the expansion width from the set dimension is suppressed, and the dimensional stability is improved.
  • the solvent is not particularly limited as long as the polymer can be dissolved uniformly.
  • Specific examples include ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N -Methylcaprolactam, 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Of these, ⁇ -butyrolactone or N-methyl-2-pyrrolidone is preferable from the viewpoint of versatility and solubility.
  • the viscosity of the liquid crystal aligning agent of the present invention is preferably 5 to 20 mPa ⁇ s, particularly preferably 5 to 15 mPa ⁇ s, from the viewpoint of inkjet coating.
  • the content of the solvent in the liquid crystal aligning agent of the present invention is selected in consideration of the above viscosity, and is preferably 95 to 99% by mass, and particularly preferably 96 to 98% by mass.
  • a concentrated solution of the polymer may be prepared in advance and diluted when the liquid crystal aligning agent is used from the concentrated solution.
  • the film thickness of the liquid crystal alignment film becomes too small to obtain a good liquid crystal alignment film, and when the content of the solvent is lower than 95% by mass, the ink jet printing is performed. , Ejectability from the head is deteriorated.
  • the content of the alkyl cellosolve acetate compound in the solvent is preferably 0.5 to 20% by mass, more preferably 0.8 to 10% by mass, and still more preferably 0.9 to 5% by mass.
  • the content is small, the in-plane uniformity and dimensional stability of the ink jet coating film are insufficient, and when the content is too large, the storage stability of the liquid crystal aligning agent during freezing deteriorates.
  • the content of dipropylene glycol monomethyl ether in the solvent is preferably 1 to 30% by mass, more preferably 1 to 15% by mass, and further preferably 1.5 to 6% by mass.
  • the content is small, the dimensional stability of the inkjet coating film becomes insufficient, and when the content is too large, the in-plane uniformity is deteriorated.
  • the content of dipropylene glycol monomethyl ether is preferably the same as or more than the content of the alkyl cellosolve acetate compound, in order to achieve both dimensional stability and in-plane uniformity.
  • the content of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the polyimide film to be formed, but from the viewpoint of forming a uniform and defect-free coating film.
  • the content is preferably 1 to 5% by mass, particularly preferably 2 to 4% by mass.
  • the liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent and a crosslinking agent.
  • the silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon.
  • Existing silane coupling agents are added. If the addition amount of the silane coupling agent is too large, unreacted ones may adversely affect the liquid crystal alignment, and if it is too small, the effect on adhesion will not appear, so the solid content of the polymer in the liquid crystal alignment agent
  • the content is preferably 0.01 to 5.0% by weight, more preferably 0.1 to 1.0% by weight.
  • an imidization accelerator may be added to the liquid crystal aligning agent of the present invention in order to efficiently advance imidization of the polyimide precursor when the coating film is baked.
  • Existing imidation accelerators are used. When adding an imidization accelerator, since imidation may advance by heating, it is preferable to add after diluting with a good solvent and a poor solvent.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque object such as a silicon wafer can be used as long as it is only a substrate on one side, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • an ink jet method As a coating method of the liquid crystal aligning agent of the present invention, an ink jet method, a spin coat method, a printing method, or the like can be used. As described above, the ink jet method is particularly suitable.
  • the coating film formed by applying the liquid crystal aligning agent of the present invention by the ink jet method is excellent in the uniformity of the film thickness in the coating surface, the linearity and the dimensional stability of the coating peripheral part.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • it is dried at 50 to 120 ° C., preferably 60 to 90 ° C. for 1 to 10 minutes, and then 150 to 300 ° C., preferably 180 to 250 ° C. for 5 to 120 ° C. It is fired in minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • the liquid crystal alignment treatment agent of the present invention can be applied as a liquid crystal alignment film without applying an alignment treatment in a vertical alignment application or the like after being applied and baked on a substrate and then subjected to an alignment treatment or the like.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment, and then preparing a liquid crystal cell by a known method Is.
  • the manufacturing method of the liquid crystal cell is not particularly limited.
  • a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 to 30 ⁇ m, more preferably 2 to 2 with the liquid crystal alignment film surface inside.
  • a method is generally employed in which a 10 ⁇ m spacer is placed and then the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
  • the viscosity of the polyamic acid ester and the polyamic acid body solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL (milliliter), cone rotor TE-1 (1 ° 34 ′, R24), measured at a temperature of 25 ° C.
  • the molecular weights of the polyimide, polyamic acid, and polyamic acid ester are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values. (Hereinafter also referred to as Mw) was calculated.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10 mL / L) Flow rate: 1.0 mL / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top) manufactured by Polymer Laboratory Molecular weight (Mp) about 12000, 4000, and 1000). In order to avoid the overlapping of peaks, two samples of 90000, 100000, 12000, and 1000 mixed samples and
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is the proton peak integrated value derived from the NH group of the polyamic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the polyamic acid in the case of the polyamic acid (imidation rate is 0%).
  • Example 1 In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, NMP 0.84 g, GBL 32.6 g, BCA 0.50 g, and DPM 1.25 g were added and stirred to obtain a liquid crystal aligning agent.
  • Example 2 In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.81 g of NMP, 31.8 g of GBL, 1.27 g of BCA and 1.26 g of DPM were added and stirred to obtain a liquid crystal aligning agent.
  • Example 3 In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.47 g of the polyamic acid obtained in Synthesis Example 2, 0.74 g of NMP, 30.6 g of GBL, 1.25 g of BCA, and 2.51 g of DPM were added and stirred to obtain a liquid crystal aligning agent.
  • Coating substrate 100 mm ⁇ 100 mm ITO substrate Coating area: 72 mm ⁇ 80 mm Coating conditions: 15 ⁇ m resolution, stage speed 40 mm / sec, frequency 2000 Hz, pulse width 9.6 ⁇ sec, appropriate amount 42 pl, pitch width 60 ⁇ m, pitch length 141 ⁇ m, applied voltage: 15 V, and nozzle gap 0.5 mm, coating film
  • drying was performed at a drying temperature of 50 ° C. and a drying time of 2 minutes (hot plate), and baking was performed at a main baking temperature of 230 ° C. and a main baking time of 30 minutes (IR oven).
  • liquid crystal aligning agent of the present invention and the liquid crystal alignment film using the same are widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-174317 filed on August 6, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

Provided is a liquid crystal aligning agent, from which a coating film having excellent thickness uniformity in a coating surface and excellent linearity and dimensional stability in a periphery of a coated part can be produced, and which is suitable particularly for the coating by an ink-jet method. A liquid crystal aligning agent characterized by comprising at least one polymer selected from the group consisting of polyimide and a polyimide precursor and a solvent comprising an alkyl cellosolve acetate compound represented by formula (1) and dipropylene glycol monomethyl ether. (In the formula, R1 represents an alkyl group having 1 to 8 carbon atoms.)

Description

液晶配向剤、及びそれを用いた液晶配向膜Liquid crystal alignment agent and liquid crystal alignment film using the same
 本発明は、インクジェット法による塗布に適し、なおかつ、塗布した際の寸法安定性の高い液晶配向剤、及び該液晶配向剤から得られる液晶配向膜に関する。 The present invention relates to a liquid crystal aligning agent suitable for application by an ink jet method and having high dimensional stability when applied, and a liquid crystal alignment film obtained from the liquid crystal aligning agent.
 液晶配向膜としては、ポリアミック酸(ポリアミド酸とも言われる。)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤を塗布し、焼成した、いわゆるポリイミド系の液晶配向膜が広く使用されている。
 かかる液晶配向膜の成膜法としては、一般に、スピンコート、ディップコート、フレキソ印刷などが知られている。実際にはフレキソ印刷による塗布が多い。
 しかしながら、フレキソ印刷では液晶パネルの品種違いにより様々な樹脂版が必要となること、製造工程ではその版交換が煩雑であること、成膜工程を安定させるためにダミー基板への成膜をしなければならないこと、版の製作が液晶表示パネルの製造コスト上昇の一因になることなどの問題がある。
As the liquid crystal alignment film, a so-called polyimide liquid crystal alignment film is widely used, which is obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a solution of soluble polyimide. in use.
Generally, spin coating, dip coating, flexographic printing, and the like are known as film forming methods for such a liquid crystal alignment film. Actually, there are many applications by flexographic printing.
However, flexographic printing requires various types of resin plates due to differences in the types of liquid crystal panels, complicated plate replacement in the manufacturing process, and deposition on a dummy substrate to stabilize the deposition process. In other words, there are problems such as that the production of the plate contributes to an increase in the manufacturing cost of the liquid crystal display panel.
 そのため、印刷版を用いない新たな液晶配向膜塗布方法として、インクジェット法が注目されている。インクジェット法は、基板に微細な液滴を滴下し、液の濡れ広がりにより成膜する方法である。印刷版を用いないだけでなく、自由に印刷のパターンを設定できるため、液晶表示素子の製造工程が簡素化できる。また、フレキソ印刷で必要であったダミー基板への成膜が不要となることで塗布液の無駄が少ないという利点がある。
 インクジェット法による塗布は、液晶パネルのコストダウン、生産効率の向上が期待される。
For this reason, an inkjet method has attracted attention as a new method for applying a liquid crystal alignment film without using a printing plate. The ink jet method is a method in which fine droplets are dropped on a substrate and a film is formed by wetting and spreading of the liquid. Not only the printing plate is not used, but also the printing pattern can be set freely, so that the manufacturing process of the liquid crystal display element can be simplified. In addition, there is an advantage that the waste of the coating liquid is reduced because the film formation on the dummy substrate which is necessary for flexographic printing is not necessary.
Application by the inkjet method is expected to reduce the cost of liquid crystal panels and improve production efficiency.
 インクジェット法により形成される液晶配向膜は、塗布面内部の膜厚ムラが小さく、かつ塗布周辺部の成膜精度が高いことが要求される。一般的にインクジェット法により成膜した液晶配向膜は、塗布面内での膜厚の均一性と、塗布周辺部の成膜精度がトレードオフの関係にある。通常、面内均一性の高い材料は、塗布周辺部の寸法安定性が悪く、設定した寸法から、膜がはみ出してしまう。一方、塗布周辺部が直線となる材料は、塗布面内均一性が悪くなってしまう。
 上記塗布周辺部の成膜精度を高めるため、構造物によって配向膜を所定の範囲に閉じ込める方法が提案されている(特許文献1、特許文献2、及び特許文献3参照)。
 しかしながら、これらの方法は追加の構造物が必要になるという欠点を有する。
The liquid crystal alignment film formed by the ink jet method is required to have small film thickness unevenness inside the coating surface and high film forming accuracy in the peripheral part of the coating. In general, a liquid crystal alignment film formed by an ink-jet method has a trade-off relationship between the uniformity of the film thickness in the coating surface and the film forming accuracy in the periphery of the coating. Usually, a material with high in-plane uniformity has poor dimensional stability in the periphery of the coating, and the film protrudes from the set dimensions. On the other hand, the material in which the coating peripheral part is a straight line has poor uniformity in the coated surface.
In order to improve the film forming accuracy of the coating peripheral part, a method of confining the alignment film in a predetermined range with a structure has been proposed (see Patent Document 1, Patent Document 2, and Patent Document 3).
However, these methods have the disadvantage that additional structures are required.
日本特開2004-361623号公報Japanese Unexamined Patent Publication No. 2004-361623 日本特開2008-145461号公報Japanese Unexamined Patent Publication No. 2008-145461 日本特開2010-281925号公報Japanese Unexamined Patent Publication No. 2010-281925
 本発明の目的は、塗布面内の膜厚の均一性、塗布周辺部の直線性及び寸法安定性に優れる塗布膜を形成できる、インクジェット法に適するポリイミド系の液晶配向剤、及びそれを用いた液晶配向膜を提供することにある。 An object of the present invention is to form a polyimide-based liquid crystal aligning agent suitable for the ink jet method, which can form a coating film having excellent uniformity of film thickness within the coating surface, linearity and dimensional stability of the coating peripheral portion, and the same. The object is to provide a liquid crystal alignment film.
 本発明者は、上記の目的を達成すべく研究を重ねたところ、以下を要旨とする本発明に到達した。
1.ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体と、下記式(1)で表されるアルキルセロソルブアセテート化合物及びジプロピレングリコールモノメチルエーテルを含む溶媒と、を含有することを特徴とする液晶配向剤。
The inventor has conducted research to achieve the above object, and has arrived at the present invention having the following summary.
1. It contains at least one polymer selected from the group consisting of polyimide and a polyimide precursor, and a solvent containing an alkyl cellosolve acetate compound represented by the following formula (1) and dipropylene glycol monomethyl ether. Liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-C000002
 (Rは炭素数1~8のアルキル基である。)
2.前記ポリイミド前駆体が、ポリアミック酸エステル及びポリアミック酸からなる群から選ばれる少なくとも1種を含有する上記1に記載の液晶配向剤。
3.前記溶媒が、N-メチルピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種を含有する上記1又は2に記載の液晶配向剤。
4.前記アルキルセロソルブアセテート化合物が、メチルセロソルブアセテート、エチルセロソルブアセテート、及びブチルセロソルブアセテートからなる群から選ばれる少なくとも1種である上記1~3のいずれかに記載の液晶配向剤。
5.前記重合体を1~5質量%含有する、上記1~4のいずれかに記載の液晶配向剤。
6.前記溶媒を95~99質量%含有する、上記1~5のいずれかに記載の液晶配向剤。
7.前記溶媒が、アルキルセロソルブアセテート化合物を0.5~20質量%、ジプロピレングリコールモノメチルエーテルを1~30質量%含有する、上記1~6のいずれかに記載の液晶配向剤。
8.粘度が5~20mPa・sである上記1~7のいずれかに記載の液晶配向剤。
9.上記1~8のいずれかに記載の液晶配向剤をインクジェット法により塗布する液晶配向膜の形成方法。
10.上記1~8のいずれかに記載の液晶配向剤を塗布して、乾燥し、焼成して得られる液晶配向膜。
11.膜厚が5~300nmである上記10に記載の液晶配向膜。
12.上記10又は11に記載の液晶配向膜を有する液晶表示素子。
Figure JPOXMLDOC01-appb-C000002
(R 1 is an alkyl group having 1 to 8 carbon atoms.)
2. 2. The liquid crystal aligning agent according to 1 above, wherein the polyimide precursor contains at least one selected from the group consisting of a polyamic acid ester and a polyamic acid.
3. 3. The liquid crystal aligning agent according to 1 or 2 above, wherein the solvent contains at least one selected from the group consisting of N-methylpyrrolidone and γ-butyrolactone.
4). 4. The liquid crystal aligning agent according to any one of 1 to 3, wherein the alkyl cellosolve acetate compound is at least one selected from the group consisting of methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate.
5. 5. The liquid crystal aligning agent according to any one of 1 to 4 above, containing 1 to 5% by mass of the polymer.
6). 6. The liquid crystal aligning agent according to any one of 1 to 5 above, containing 95 to 99% by mass of the solvent.
7). 7. The liquid crystal aligning agent according to any one of 1 to 6 above, wherein the solvent contains 0.5 to 20% by mass of an alkyl cellosolve acetate compound and 1 to 30% by mass of dipropylene glycol monomethyl ether.
8). 8. The liquid crystal aligning agent according to any one of 1 to 7 above, having a viscosity of 5 to 20 mPa · s.
9. 9. A method for forming a liquid crystal alignment film, wherein the liquid crystal aligning agent according to any one of 1 to 8 is applied by an inkjet method.
10. 9. A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 8 above, drying and firing.
11. 11. The liquid crystal alignment film as described in 10 above, having a thickness of 5 to 300 nm.
12 12. A liquid crystal display device having the liquid crystal alignment film as described in 10 or 11 above.
 本発明の液晶配向剤を、特に、インクジェット法により塗布した場合、塗布面内の膜厚の均一性に優れ、また、塗布周辺部の直線性及び寸法安定性に優れるという、従来の液晶配向剤では、両立して得られ難かった優れた特性を有する塗布膜が得られる。かかる本発明の液晶配向膜は、面内均一性と周辺部の直線性の点で優れた特性を有する。 The liquid crystal aligning agent of the present invention, particularly when applied by an ink jet method, is excellent in the uniformity of the film thickness in the coating surface, and is excellent in the linearity and dimensional stability of the peripheral portion of the application. Then, the coating film which has the outstanding characteristic which was difficult to obtain simultaneously is obtained. Such a liquid crystal alignment film of the present invention has excellent characteristics in terms of in-plane uniformity and linearity in the peripheral portion.
<ポリイミド前駆体>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、これをイミド化することによりポリイミドを生成するものであり、ポリアミック酸エステル及び/又はポリアミック酸を意味する。
 ポリアミック酸エステル及びポリアミック酸は、それぞれ、下記式(1)及び下記式(2)を有する。
<Polyimide precursor>
The polyimide precursor contained in the liquid crystal aligning agent of this invention produces | generates a polyimide by imidating this, and means a polyamic acid ester and / or a polyamic acid.
The polyamic acid ester and the polyamic acid have the following formula (1) and the following formula (2), respectively.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、R1は、炭素数1~5、好ましくは1~2のアルキル基である。ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、R1は、熱によるイミド化のしやすさの観点から、メチル基が特に好ましい。
 式(1)及び式(2)において、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10の、アルキル基、アルケニル基、若しくはアルキニル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
In the above formula (1), R 1 is an alkyl group having 1 to 5, preferably 1 to 2 carbon atoms. In the polyamic acid ester, the temperature at which imidization proceeds increases as the number of carbon atoms in the alkyl group increases. Therefore, R 1 is particularly preferably a methyl group from the viewpoint of ease of imidization by heat.
In Formula (1) and Formula (2), A 1 and A 2 are each independently a hydrogen atom or an alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms that may have a substituent. is there.
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
Examples of the alkenyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH═CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、若しくはアルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。 The above alkyl group, alkenyl group, or alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基などを挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
Examples of such substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、-O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
The organooxy group as a substituent can have a structure represented by —O—R. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。
 このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
The organothio group as a substituent can have a structure represented by —S—R.
Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。
 このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The acyl group as a substituent can have a structure represented by —C (O) —R.
Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
The amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure represented can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
 上記式(1)及び式(2)において、X及びX2は、それぞれ独立して4価の有機基であり、Y及びYは、それぞれ独立して2価の有機基である。
 X及びXは4価の有機基であり、特に限定されるものではない。ポリイミド前駆体中、X及びXは2種類以上が混在していてもよい。X及びXの具体例を示すならば、以下に示すX-1~X-46が挙げられる。
In the above formulas (1) and (2), X 1 and X 2 are each independently a tetravalent organic group, and Y 1 and Y 2 are each independently a divalent organic group.
X 1 and X 2 are tetravalent organic groups and are not particularly limited. Two or more kinds of X 1 and X 2 may be mixed in the polyimide precursor. Specific examples of X 1 and X 2 include X-1 to X-46 shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 なかでも、X及びXは、モノマーの入手性から、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28、X-32などが好ましい。
 これらの好ましいX及びXを有するテトラカルボン酸二無水物の使用量は、全テトラカルボン酸二無水物の2~100モル%が好ましく、より好ましくは40~100モル%である。
Among these, X 1 and X 2 are X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X- 19, X-21, X-25, X-26, X-27, X-28, X-32 and the like are preferable.
The amount of tetracarboxylic dianhydride having these preferable X 1 and X 2 is preferably 2 to 100 mol%, more preferably 40 to 100 mol% of the total tetracarboxylic dianhydride.
 上記式(1)及び式(2)において、Y及びYは、それぞれ独立して、2価の有機基であり、特に限定されるものではない。Y及びYの具体例を示すと、下記のY-1~Y-104が挙げられる。Y及びYとしては、2種類以上が混在していてもよい。 In the above formulas (1) and (2), Y 1 and Y 2 are each independently a divalent organic group and are not particularly limited. Specific examples of Y 1 and Y 2 include the following Y-1 to Y-104. Two or more kinds of Y 1 and Y 2 may be mixed.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 なかでも、直線性の高いジアミンをポリアミック酸又はポリアミック酸エステルに導入し、良好な液晶配向性を得るためには、Yとして、Y-7、Y-10、Y-11、Y-12、Y-13、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-41、Y-42、Y-43、Y-44、Y-45、Y-46、Y-48、Y-61、Y-63、Y-64、Y-71、Y-72、Y-73、Y-74、Y-75、Y-98などを有するジアミンが好ましい。
 上記のような、好ましいYを有するジアミンの使用量は、全ジアミンの1~100モル%が好ましく、より好ましくは50~100モル%である。
 なかでも、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンを、ポリアミック酸エステルに導入することが好ましい。この場合、Yとしては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、Y-97などがより好ましい。
 なかでも、Yとしては、下式で表される構造から選ばれる少なくとも1種類が特に好ましい。
Among them, in order to introduce a highly linear diamine to the polyamic acid or polyamic acid ester to obtain a good liquid crystal alignment property, as Y 1, Y-7, Y -10, Y-11, Y-12, Y-13, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-41, Y-42, Y-43, Y-44, Y-45, Y- Diamines having 46, Y-48, Y-61, Y-63, Y-64, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98 and the like are preferred.
The amount of the diamine having a preferable Y 1 as described above is preferably 1 to 100 mol%, more preferably 50 to 100 mol% of the total diamine.
Among them, when it is desired to increase the pretilt angle, it is preferable to introduce a diamine having a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester. . In this case, Y 1 is Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y- 86, Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, Y-97 and the like are more preferable.
Among these, as Y 1, particularly preferably at least one selected from structures represented by the following formula.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 ヘテロ原子を有する構造、多環芳香族構造、又はビフェニル骨格を有するジアミンをポリアミック酸に導入し、ポリアミック酸又はポリアミック酸エステルの体積抵抗率を低くすることで、直流電圧の蓄積による残像を低減するためには、Yとして、Y-19、Y-23、Y-25、Y-26、Y-27、Y-30、Y-31、Y-32、Y-33、Y-34、Y-35、Y-36、Y-40、Y-41Y-42、Y-44、Y-45、Y-49、Y-50、Y-51、Y-61などがより好ましい。
 特に好ましくは、下記のY-31、又はY-40の構造を有するジアミンである。
 上記のような、好ましいYを有するジアミンの使用量は、全ジアミンの1~100モル%が好ましく、より好ましくは50~100モル%である。
By introducing a diamine having a heteroatom structure, a polycyclic aromatic structure, or a biphenyl skeleton into a polyamic acid, the volume resistivity of the polyamic acid or polyamic acid ester is lowered, thereby reducing afterimages due to DC voltage accumulation. For this purpose, Y- 2 is represented by Y-19, Y-23, Y-25, Y-26, Y-27, Y-30, Y-31, Y-32, Y-33, Y-34, Y- 35, Y-36, Y-40, Y-41Y-42, Y-44, Y-45, Y-49, Y-50, Y-51, Y-61 and the like are more preferable.
Particularly preferred is a diamine having the following Y-31 or Y-40 structure.
The amount of the diamine having a preferable Y 2 as described above is preferably 1 to 100 mol%, more preferably 50 to 100 mol% of the total diamine.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
<ポリアミック酸エステルの製造方法>
 上記式(1)で表されるポリアミック酸エステルは、下記式(6)~(8)で表されるテトラカルボン酸誘導体のいずれかと、式(9)で表されるジアミン化合物との反応によって得ることができる。
<Method for producing polyamic acid ester>
The polyamic acid ester represented by the above formula (1) is obtained by reaction of any of the tetracarboxylic acid derivatives represented by the following formulas (6) to (8) with the diamine compound represented by the formula (9). be able to.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(X、Y、R、A及びAは、それぞれ上記式(1)中の定義と同じである。)
Figure JPOXMLDOC01-appb-C000024
(X 1 , Y 1 , R 1 , A 1 and A 2 are the same as defined in the above formula (1).)
 上記式(1)で表されるポリアミック酸エステルは、上記モノマーを用いて、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~4モル当量がより好ましい。
The polyamic acid ester represented by the above formula (1) can be synthesized by the following methods (1) to (3) using the above monomer.
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, it is synthesized by reacting a polyamic acid and an esterifying agent in the presence of a solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably for 1 to 4 hours. be able to.
The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
The solvent used in the reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone or the like from the solubility of the polymer, and these may be used alone or in combination.
The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。
Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and a solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
 反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で、外気の混入を防ぐのが好ましい。
The solvent used in the reaction is preferably N-methyl-2-pyrrolidone, γ-butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably prevented from mixing outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンとを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び溶媒の存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When synthesize | combining by reaction with tetracarboxylic-acid diester and diamine Polyamic acid ester is compoundable by polycondensing tetracarboxylic-acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine are reacted in the presence of a condensing agent, a base, and a solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、0.2~0.8倍モルがより好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液においては、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することにより、精製されたポリアミック酸エステルの粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 ポリアミック酸エステルの重量平均分子量は、好ましくは5,000~300,000であり、より好ましくは、10,000~200,000である。また、数平均分子量は、好ましくは、2,500~150,000であり、より好ましくは、5,000~100,000である。
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol, more preferably 0.2 to 0.8 times mol based on the diamine component.
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the method (1) or (2) is particularly preferable.
In the polyamic acid ester solution obtained as described above, the polymer can be precipitated by pouring into a poor solvent while stirring well. A purified polyamic acid ester powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
The weight average molecular weight of the polyamic acid ester is preferably 5,000 to 300,000, and more preferably 10,000 to 200,000. The number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 100,000.
<ポリアミック酸の製造方法>
 上記式(2)で表されるポリアミック酸は、下記式(10)で表されるテトラカルボン酸二無水物と式(11)で表されるジアミン化合物との反応によって得ることができる。
<Method for producing polyamic acid>
The polyamic acid represented by the above formula (2) can be obtained by a reaction between a tetracarboxylic dianhydride represented by the following formula (10) and a diamine compound represented by the formula (11).
Figure JPOXMLDOC01-appb-C000025
(X、Y、A及びAは、それぞれ上記式(2)中の定義と同じである。)
Figure JPOXMLDOC01-appb-C000025
(X 2 , Y 2 , A 1 and A 2 are the same as defined in the above formula (2).)
 具体的には、テトラカルボン酸二無水物とジアミンとを溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら、貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することにより、精製されたポリアミック酸の粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 ポリアミック酸の重量平均分子量は、好ましくは10,000~305,000であり、より好ましくは、20,000~210,000である。また、数平均分子量は、好ましくは、5,000~152,500であり、より好ましくは、10,000~105,000である。
<ポリイミド>
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of a solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
The solvent used in the reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. Also good.
The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. In addition, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
The weight average molecular weight of the polyamic acid is preferably 10,000 to 305,000, and more preferably 20,000 to 210,000. The number average molecular weight is preferably 5,000 to 152,500, and more preferably 10,000 to 105,000.
<Polyimide>
 本発明の液晶配向剤に含有されるポリイミドは、上記のポリイミド前駆体をイミド化することによって得られる。かかるイミドの方法としては、加熱による熱イミド化、触媒を使用する触媒イミド化が一般的であるが、比較的低温でイミド化反応が進行する触媒イミド化の方が、得られるポリイミドの分子量低下が起こりにくく好ましい。 The polyimide contained in the liquid crystal aligning agent of the present invention can be obtained by imidizing the above polyimide precursor. As the method of imide, thermal imidization by heating and catalyst imidization using a catalyst are generally used. However, the catalyst imidation in which the imidization reaction proceeds at a relatively low temperature is lower in the molecular weight of the resulting polyimide. Is less likely to occur.
 触媒イミド化は、溶媒中において、ポリアミック酸を塩基性触媒と酸無水物の存在下で攪拌するか、又はポリアミック酸エステルを塩基性触媒の存在下で攪拌することにより行うことができる。このときの反応温度は―20~250℃、好ましくは0~180℃である。ポリアミック酸の触媒イミド化においては、反応温度が高い方がイミド化は速く進行するが、高すぎるとポリイミドの分子量が低下する場合がある。
 塩基性触媒の量はポリアミック酸又はポリアミック酸エステルの繰り返し単位1モルに対して、1~60モル倍、好ましくは2~40モル倍である。
 ポリアミック酸を触媒イミド化するための酸無水物の量は、ポリアミック酸の繰り返し単位1モルに対して2~100モル倍、好ましくは6~60モル倍である。
 塩基性触媒や酸無水物の量が少ないと反応が十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。
 ポリアミック酸の触媒イミド化に用いる塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 ポリアミック酸エステルの触媒イミド化に用いる塩基性触媒としては、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもトリエチルアミンは反応が速いことから特に好ましい。
Catalytic imidation can be carried out in a solvent by stirring the polyamic acid in the presence of a basic catalyst and an acid anhydride, or stirring the polyamic acid ester in the presence of a basic catalyst. The reaction temperature at this time is −20 to 250 ° C., preferably 0 to 180 ° C. In the catalytic imidation of polyamic acid, the higher the reaction temperature, the faster the imidization proceeds. However, when the reaction temperature is too high, the molecular weight of the polyimide may decrease.
The amount of the basic catalyst is 1 to 60 moles, preferably 2 to 40 moles per mole of the repeating unit of the polyamic acid or polyamic acid ester.
The amount of the acid anhydride for catalytic imidization of the polyamic acid is 2 to 100 moles, preferably 6 to 60 moles per mole of the repeating unit of the polyamic acid.
If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
Examples of the basic catalyst used for the catalytic imidation of polyamic acid include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. .
Examples of the basic catalyst used for the catalytic imidation of the polyamic acid ester include triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and triethylamine is particularly preferable because of its fast reaction.
 また、ポリアミック酸の触媒イミド化に用いる酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 溶媒としては、ポリアミック酸又はポリアミック酸エステルが溶解するものであれば限定されないが、その具体例を挙げるならば、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトンなどを挙げることができる。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
Examples of acid anhydrides used for catalytic imidization of polyamic acid include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, etc. Among them, use of acetic anhydride facilitates purification after completion of the reaction. preferable.
The solvent is not limited as long as it dissolves polyamic acid or polyamic acid ester. Specific examples thereof include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2. -Pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone and the like can be mentioned. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 生成したポリイミドは、上記反応溶液を貧溶媒に投入して、生成した沈殿を回収することで得られる。その際、用いる貧溶媒は特に限定されないが、例えば、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。
 貧溶媒に投入して沈殿させたポリイミドは、濾過した後、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることができる。そのポリイミド粉末を、更に溶媒に溶解して、再沈殿する操作を2~10回繰り返すと、ポリイミドを精製することもできる。一度の沈殿回収操作では不純物が除ききれないときは、この精製工程を行うことが好ましい。
 ポリイミドの分子量は特に制限されないが、取り扱いのしやすさと、膜形成した際の特性の安定性の観点から重量平均分子量で2,000~200,000が好ましく、より好ましくは4,000~50,000である。
 上記の分子量はいずれも、GPC(ゲルパーミエッションクロマトグラフィ)により求めたものである。
The produced polyimide is obtained by putting the reaction solution into a poor solvent and collecting the produced precipitate. In that case, the poor solvent to be used is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
The polyimide that has been poured into a poor solvent and precipitated is filtered, and then can be powdered by drying at normal temperature or under reduced pressure at normal temperature or under reduced pressure. The polyimide can also be purified by repeating the steps of dissolving the polyimide powder in a solvent and reprecipitating it 2 to 10 times. When the impurities cannot be removed by a single precipitation recovery operation, it is preferable to perform this purification step.
The molecular weight of the polyimide is not particularly limited, but is preferably 2,000 to 200,000, more preferably 4,000 to 50,000 in terms of weight average molecular weight from the viewpoint of ease of handling and stability of characteristics when a film is formed. 000.
The above molecular weights are all determined by GPC (gel permeation chromatography).
<ポリイミド又はポリイミド前駆体の末端修飾>
 本発明で用いられるポリイミド、ポリアミック酸及びポリアミック酸エステルの末端は修飾されていてもよい。末端修飾した重合体を用いることにより、溶解性や塗布性などを改善することができる。末端修飾は、ポリアミック酸又はポリアミック酸エステルを合成する際に、酸無水物、モノアミン化合物、酸クロリド化合物、モノイソシアネート化合物などを添加することで合成することができる。
<End modification of polyimide or polyimide precursor>
The ends of the polyimide, polyamic acid and polyamic acid ester used in the present invention may be modified. By using a terminal-modified polymer, solubility and coating properties can be improved. The terminal modification can be synthesized by adding an acid anhydride, a monoamine compound, an acid chloride compound, a monoisocyanate compound or the like when synthesizing a polyamic acid or polyamic acid ester.
<液晶配向剤>
 本発明の液晶配向剤は、上記ポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体が溶媒中に溶解した溶液の形態である。かかる形態を有する限り、例えば、ポリアミック酸エステル、ポリアミック酸などのポリイミド前駆体及びポリイミドを溶媒中で合成した場合には、得られる反応溶液そのものであってもよく、該反応溶液を適宜の溶媒で希釈したものであってもよい。また、ポリイミド前駆体及びポリイミドを粉末として得た場合は、これを溶媒に溶解させて溶液としたものであってもよい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention is in the form of a solution in which at least one polymer selected from the group consisting of the polyimide precursor and polyimide is dissolved in a solvent. As long as it has such a form, for example, when a polyimide precursor such as polyamic acid ester or polyamic acid and a polyimide are synthesized in a solvent, the reaction solution obtained may be used. It may be diluted. Moreover, when a polyimide precursor and a polyimide are obtained as a powder, this may be dissolved in a solvent to form a solution.
 本発明の液晶配向剤に含有される上記溶媒には、アルキルセロソルブアセテート化合物が含まれることが必要である。アルキルセロソルブアセテートを添加することにより、面内均一性が向上する。
 溶媒中に含まれるアルキルセロソルブアセテート化合物としては、炭素数が1~10が好ましく、より好ましくは1~6のアルキル基を有するセロソルブアセテート化合物である。好ましい例としては、メチルセロソルブアセテート、エチルセロソルブアセテート、及びブチルセロソルブアセテートからなる群から選ばれる少なくとも1種が挙げられる。なかでも、適切な沸点と揮発速度の点から、ブチルセロソルブアセテートが好ましい。アルキルセロソルブアセテートのアルキル鎖長が長すぎる場合、沸点が高くなり、液晶配向膜の乾燥工程において、乾燥しにくいという問題が発生する。
The solvent contained in the liquid crystal aligning agent of the present invention needs to contain an alkyl cellosolve acetate compound. In-plane uniformity is improved by adding alkyl cellosolve acetate.
The alkyl cellosolve acetate compound contained in the solvent is preferably a cellosolve acetate compound having an alkyl group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. Preferable examples include at least one selected from the group consisting of methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate. Of these, butyl cellosolve acetate is preferred from the viewpoint of an appropriate boiling point and volatilization rate. When the alkyl chain length of the alkyl cellosolve acetate is too long, the boiling point becomes high, causing a problem that it is difficult to dry in the step of drying the liquid crystal alignment film.
 また、本発明の液晶配向剤に含有される上記溶媒には、ジプロピレングリコールモノメチルエーテルが含まれることが必要である。ジプロピレングリコールモノメチルエーテルを添加することにより、設定寸法からの拡大幅が抑えられ、寸法安定性が向上する。 In addition, the solvent contained in the liquid crystal aligning agent of the present invention needs to contain dipropylene glycol monomethyl ether. By adding dipropylene glycol monomethyl ether, the expansion width from the set dimension is suppressed, and the dimensional stability is improved.
 溶媒としては、重合体が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、γ-ブチロラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。なかでも、γ-ブチロラクトン、又はN-メチル-2-ピロリドンが汎用性、溶解性の点から好ましい。 The solvent is not particularly limited as long as the polymer can be dissolved uniformly. Specific examples include γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N -Methylcaprolactam, 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Of these, γ-butyrolactone or N-methyl-2-pyrrolidone is preferable from the viewpoint of versatility and solubility.
 本発明の液晶配向剤の粘度はインクジェット塗布の点から、好ましくは、5~20mPa・sであり、特に好ましくは5~15mPa・sである。
 本発明の液晶配向剤における溶媒の含有量は、上記の粘度を考慮して選択され、好ましくは95~99質量%であり、特に好ましくは96~98質量%である。この場合、予め、重合体の濃厚溶液を作製し、かかる濃厚溶液から液晶配向剤とする場合に希釈してもよい。溶媒の含有量が99質量%より高い場合、液晶配向膜の膜厚が小さくなり過ぎ、良好な液晶配向膜を得ることができず、溶媒の含有量が95質量%より低い場合、インクジェットの際、ヘッドからの吐出性が悪くなる。
The viscosity of the liquid crystal aligning agent of the present invention is preferably 5 to 20 mPa · s, particularly preferably 5 to 15 mPa · s, from the viewpoint of inkjet coating.
The content of the solvent in the liquid crystal aligning agent of the present invention is selected in consideration of the above viscosity, and is preferably 95 to 99% by mass, and particularly preferably 96 to 98% by mass. In this case, a concentrated solution of the polymer may be prepared in advance and diluted when the liquid crystal aligning agent is used from the concentrated solution. When the content of the solvent is higher than 99% by mass, the film thickness of the liquid crystal alignment film becomes too small to obtain a good liquid crystal alignment film, and when the content of the solvent is lower than 95% by mass, the ink jet printing is performed. , Ejectability from the head is deteriorated.
 溶媒中のアルキルセロソルブアセテート化合物の含有量は、好ましくは、0.5~20質量%、より好ましくは、0.8~10質量%であり、更に好ましくは0.9~5質量%である。少ない含有量では、インクジェット塗布膜の面内均一性、寸法安定性が不十分となり、多すぎる含有量では、液晶配向剤の冷凍時における保存安定性が悪化する。 The content of the alkyl cellosolve acetate compound in the solvent is preferably 0.5 to 20% by mass, more preferably 0.8 to 10% by mass, and still more preferably 0.9 to 5% by mass. When the content is small, the in-plane uniformity and dimensional stability of the ink jet coating film are insufficient, and when the content is too large, the storage stability of the liquid crystal aligning agent during freezing deteriorates.
 溶媒中のジプロピレングリコールモノメチルエーテルの含有量は、好ましくは、1~30質量%、より好ましくは、1~15質量%であり、更に好ましくは1.5~6質量%である。少ない含有量では、インクジェット塗布膜の寸法安定性が不十分となり、多すぎる含有量では、面内均一性が悪化する。 The content of dipropylene glycol monomethyl ether in the solvent is preferably 1 to 30% by mass, more preferably 1 to 15% by mass, and further preferably 1.5 to 6% by mass. When the content is small, the dimensional stability of the inkjet coating film becomes insufficient, and when the content is too large, the in-plane uniformity is deteriorated.
 さらには、ジプロピレングリコールモノメチルエーテルの含有量は、アルキルセロソルブアセテート化合物の含有量と同量か、それ以上とすることが寸法安定性と面内均一性の両立のために好ましい。 Furthermore, the content of dipropylene glycol monomethyl ether is preferably the same as or more than the content of the alkyl cellosolve acetate compound, in order to achieve both dimensional stability and in-plane uniformity.
 一方、本発明の液晶配向剤における重合体の含有量は、形成させようとするポリイミド膜の厚みの設定によっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、好ましくは1~5質量%であり、特に好ましくは2~4質量%である。 On the other hand, the content of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the polyimide film to be formed, but from the viewpoint of forming a uniform and defect-free coating film. The content is preferably 1 to 5% by mass, particularly preferably 2 to 4% by mass.
 本発明の液晶配向剤は、シランカップリング剤や架橋剤などの各種添加剤を含有してもよい。シランカップリング剤は、液晶配向剤が塗布される基板と、そこに形成される液晶配向膜との密着性を向上させる目的で添加される。シランカップリング剤は既存のものが添加される。
 上記シランカップリング剤の添加量は、多すぎると未反応のものが液晶配向性に悪影響を及ぼすことがあり、少なすぎると密着性への効果が現れないため、液晶配向剤におけるポリマーの固形分に対して0.01~5.0重量%が好ましく、0.1~1.0重量%がより好ましい。上記シランカップリング剤を添加する場合は、ポリマーの析出を防ぐために、前記した塗膜均一性を向上させるための溶媒を加える前に添加するのが好ましい。
The liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent and a crosslinking agent. The silane coupling agent is added for the purpose of improving the adhesion between the substrate on which the liquid crystal alignment agent is applied and the liquid crystal alignment film formed thereon. Existing silane coupling agents are added.
If the addition amount of the silane coupling agent is too large, unreacted ones may adversely affect the liquid crystal alignment, and if it is too small, the effect on adhesion will not appear, so the solid content of the polymer in the liquid crystal alignment agent The content is preferably 0.01 to 5.0% by weight, more preferably 0.1 to 1.0% by weight. When adding the said silane coupling agent, in order to prevent precipitation of a polymer, it is preferable to add before adding the solvent for improving the above-mentioned coating-film uniformity.
 また、本発明の液晶配向剤には、塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させるために、イミド化促進剤を添加してもよい。イミド化促進剤としては既存のものが使用される。
 イミド化促進剤を添加する場合は、加熱することでイミド化が進行する可能性があるため、良溶媒及び貧溶媒で希釈した後に加えるのが好ましい。
In addition, an imidization accelerator may be added to the liquid crystal aligning agent of the present invention in order to efficiently advance imidization of the polyimide precursor when the coating film is baked. Existing imidation accelerators are used.
When adding an imidization accelerator, since imidation may advance by heating, it is preferable to add after diluting with a good solvent and a poor solvent.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。また、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の観点から好ましい。
 さらに、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
Further, in the reflection type liquid crystal display element, an opaque object such as a silicon wafer can be used as long as it is only a substrate on one side, and a material that reflects light such as aluminum can be used for the electrode in this case.
 本発明の液晶配向剤の塗布方法としては、インクジェット法、スピンコート法、印刷法などが使用できるが、上記したように、インクジェット法が特に適する。
 本発明の液晶配向剤をインクジェット法により塗布して形成した塗布膜は、塗布面内の膜厚の均一性、塗布周辺部の直線性及び寸法安定性に優れる。
As a coating method of the liquid crystal aligning agent of the present invention, an ink jet method, a spin coat method, a printing method, or the like can be used. As described above, the ink jet method is particularly suitable.
The coating film formed by applying the liquid crystal aligning agent of the present invention by the ink jet method is excellent in the uniformity of the film thickness in the coating surface, the linearity and the dimensional stability of the coating peripheral part.
 本発明の液晶配向剤を塗布した後の乾燥、及び焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃、好ましくは60~90℃で1~10分乾燥させ、その後150~300℃、好ましくは 180~250℃で5~120分焼成される。
 焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the contained solvent, it is dried at 50 to 120 ° C., preferably 60 to 90 ° C. for 1 to 10 minutes, and then 150 to 300 ° C., preferably 180 to 250 ° C. for 5 to 120 ° C. It is fired in minutes.
The thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光配向処理などで配向処理するか、垂直配向用途などでは配向処理無しで、液晶配向膜として用いることができる。 The liquid crystal alignment treatment agent of the present invention can be applied as a liquid crystal alignment film without applying an alignment treatment in a vertical alignment application or the like after being applied and baked on a substrate and then subjected to an alignment treatment or the like.
[液晶表示素子]
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を、液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。
 液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後、液晶を注入する真空法、液晶を滴下した後、封止を行う滴下法などが例示できる。
[Liquid crystal display element]
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment, and then preparing a liquid crystal cell by a known method Is.
The manufacturing method of the liquid crystal cell is not particularly limited. For example, a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 to 30 μm, more preferably 2 to 2 with the liquid crystal alignment film surface inside. A method is generally employed in which a 10 μm spacer is placed and then the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
 以下に実施例を挙げて、さらに、本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。
 実施例及び比較例で用いた化合物における略語は以下のとおりである。
 1,3DMCBDE-Cl:ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート
 BDA:1,2,3,4-ブタンテトラカルボン酸二無水物
 PMDA:ピロメリット酸無水物
 DADPA:4,4’-ジアミノジフェニルアミン
 DBA:3,5-ジアミノ安息香酸
 p-PDA:p-フェニレンジアミン
 DA-A:下記式DA-Aのジアミン
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to these examples.
Abbreviations in the compounds used in Examples and Comparative Examples are as follows.
1,3DMCBDE-Cl: Dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate BDA: 1,2,3,4-butanetetracarboxylic dianhydride PMDA: Pyromellitic anhydride DADDA: 4,4′-diaminodiphenylamine DBA: 3,5-diaminobenzoic acid p-PDA: p-phenylenediamine DA-A: diamine of the following formula DA-A
Figure JPOXMLDOC01-appb-C000026
(溶媒)
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 BCA:ブチルセロソルブアセテート
 BCS:ブチルセロソルブ
 DPM:ジプロピレングリコールモノメチルエーテル
Figure JPOXMLDOC01-appb-C000026
(solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCA: Butyl cellosolve acetate BCS: Butyl cellosolve DPM: Dipropylene glycol monomethyl ether
[粘度]
 ポリアミック酸エステル及びポリアミック酸体の溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of the polyamic acid ester and the polyamic acid body solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL (milliliter), cone rotor TE-1 (1 ° 34 ′, R24), measured at a temperature of 25 ° C.
[分子量の測定]
 ポリイミド、ポリアミック酸、及びポリアミド酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として、数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900000、150000、100000、及び30000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12000、4000、及び1000)。
 測定は、ピークが重なるのを避けるため、900000、100000、12000、及び1000の4種類を混合したサンプル、並びに150000、30000、及び4000の3種類を混合したサンプルの2サンプルを別々に測定した。
[Measurement of molecular weight]
The molecular weights of the polyimide, polyamic acid, and polyamic acid ester are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values. (Hereinafter also referred to as Mw) was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10 mL / L)
Flow rate: 1.0 mL / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top) manufactured by Polymer Laboratory Molecular weight (Mp) about 12000, 4000, and 1000).
In order to avoid the overlapping of peaks, two samples of 90000, 100000, 12000, and 1000 mixed samples and 2 samples of 150,000, 30000, and 4000 mixed samples were measured separately.
[イミド化率の測定]
 ポリイミド粉末20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d6、及び0.05質量%TMS(テトラメチルシラン)混合品)0.53mLを添加し、完全に溶解させた。この溶液を日本電子データム社製のNMR測定器(JNM-ECA500)にて500MHzのプロトンNMRを測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるポリアミック酸のNH基に由来するプロトンピーク積算値とを用い次式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
 上記式において、xはポリアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるポリアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
20 mg of polyimide powder was put into an NMR sample tube, and 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d6 and 0.05 mass% TMS (tetramethylsilane) mixture) was added and completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum.
The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of polyamic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by following Formula using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is the proton peak integrated value derived from the NH group of the polyamic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the polyamic acid in the case of the polyamic acid (imidation rate is 0%). The number ratio of the reference protons.
<合成例1>
 300mL四つ口フラスコに、p-PDA(114.59g,1.06mol)、及びDA-A(44.68g,0.12mol)を入れ、NMP(1814mL)、GBL(5175mL)、及びピリジン(210.1g,2.66mol)を加えて溶解させた。次に、この溶液を撹拌しながら、1,3DMCBDE-Cl(359.85g,1.11mol)を添加し、水冷下4時間反応させた。得られたポリアミド酸溶液に500mLのGBLを加え希釈した。この溶液を47300gのIPAに攪拌しながら投入し、析出した白色沈殿をろ取し、続いて23649gのIPAで5回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末428.0gを得た。収率は96%であった。また、このポリアミド酸エステルの分子量は、Mn=15182であり、Mw=30115であった。
<Synthesis Example 1>
A 300 mL four-necked flask was charged with p-PDA (114.59 g, 1.06 mol) and DA-A (44.68 g, 0.12 mol), and NMP (1814 mL), GBL (5175 mL), and pyridine (210 0.1 g, 2.66 mol) was added and dissolved. Next, while stirring this solution, 1,3DMCBDE-Cl (359.85 g, 1.11 mol) was added and reacted for 4 hours under water cooling. The resulting polyamic acid solution was diluted by adding 500 mL of GBL. This solution was added to 47300 g of IPA with stirring, and the precipitated white precipitate was collected by filtration, washed 5 times with 23649 g of IPA, and dried to obtain 428.0 g of white polyamic acid ester resin powder. . The yield was 96%. Moreover, the molecular weight of this polyamic acid ester was Mn = 15182 and Mw = 30115.
<合成例2> 
 テトラカルボン酸二無水物成分として、BDA(175.94g,0.74mol)、及びPMDA(52.34g,0.20mol)、ジアミン成分として、DADPA(191.28g,0.80mol)、及びDBA(36.52g,0.20mol)を用い、NMP516.9g、及びGBL2068g中、室温で4時間反応させて、ポリアミック酸溶液を得た。このポリアミック酸溶液の分子量は、Mn=15058であり、Mw=35072であった。
<Synthesis Example 2>
As tetracarboxylic dianhydride components, BDA (175.94 g, 0.74 mol) and PMDA (52.34 g, 0.20 mol), and as diamine components, DADPA (191.28 g, 0.80 mol) and DBA ( 36.52 g, 0.20 mol) was reacted in NMP 516.9 g and GBL 2068 g at room temperature for 4 hours to obtain a polyamic acid solution. The molecular weight of this polyamic acid solution was Mn = 15058 and Mw = 35072.
<実施例1>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46g、NMP0.84g、GBL32.6g、BCA0.50g、及びDPM1.25g加え、攪拌して液晶配向剤を得た。
<Example 1>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, NMP 0.84 g, GBL 32.6 g, BCA 0.50 g, and DPM 1.25 g were added and stirred to obtain a liquid crystal aligning agent.
<実施例2>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46g、NMP0.81g、GBL31.8g、BCA1.27g、及びDPM1.26g加え、攪拌して液晶配向剤を得た。
<Example 2>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.81 g of NMP, 31.8 g of GBL, 1.27 g of BCA and 1.26 g of DPM were added and stirred to obtain a liquid crystal aligning agent.
<実施例3>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.47g、NMP0.74g、GBL30.6g、BCA1.25g、及びDPM2.51g加え、攪拌して液晶配向剤を得た。
<Example 3>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.47 g of the polyamic acid obtained in Synthesis Example 2, 0.74 g of NMP, 30.6 g of GBL, 1.25 g of BCA, and 2.51 g of DPM were added and stirred to obtain a liquid crystal aligning agent.
<比較例1>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46g、NMP0.82g、GBL31.9g、及びDPM2.51g加え、攪拌して液晶配向剤を得た。
<Comparative Example 1>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, NMP 0.82 g, GBL 31.9 g, and DPM 2.51 g were added and stirred to obtain a liquid crystal aligning agent.
<比較例2>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46g、NMP0.67g、GBL29.5g、及びDPM5.02g加え、攪拌して液晶配向剤を得た。
<Comparative Example 2>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.67 g of NMP, 29.5 g of GBL, and 5.02 g of DPM were added and stirred to obtain a liquid crystal aligning agent.
<比較例3>
 攪拌子の入った100mL三角フラスコに合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.47gとNMP0.81g、GBL31.8g、及びBCA2.50g加え、攪拌して液晶配向剤を得た。
<Comparative Example 3>
To a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.47 g of polyamic acid obtained in Synthesis Example 2, 0.81 g of NMP, 31.8 g of GBL, and 2.50 g of BCA were added and stirred to obtain a liquid crystal aligning agent.
<比較例4>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46gとNMP0.67g、GBL29.5g、及びBCA5.01g加え、攪拌して液晶配向剤を得た。
<Comparative example 4>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.67 g of NMP, 29.5 g of GBL, and 5.01 g of BCA were added and stirred to obtain a liquid crystal aligning agent.
<比較例5>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.47gとNMP0.80g、GBL31.8g、及びBCS2.51g加え、攪拌して液晶配向剤を得た。
<Comparative Example 5>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.47 g of polyamic acid obtained in Synthesis Example 2, 0.80 g of NMP, 31.8 g of GBL, and 2.51 g of BCS were added and stirred to obtain a liquid crystal aligning agent.
<比較例6>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46gとNMP0.66g、GBL29.5g、及びBCS5.00g加え、攪拌して液晶配向剤を得た。
<Comparative Example 6>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.66 g of NMP, 29.5 g of GBL, and 5.00 g of BCS were added and stirred to obtain a liquid crystal aligning agent.
<比較例7>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46gとNMP0.81g、GBL31.8g、及びBCA1.27g、BCS1.25g加え、攪拌して液晶配向剤を得た。
<Comparative Example 7>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of the polyamic acid obtained in Synthesis Example 2, 0.81 g of NMP, 31.8 g of GBL, 1.27 g of BCA, and 1.25 g of BCS were added and stirred to obtain a liquid crystal aligning agent.
<比較例8>
 攪拌子の入った100mL三角フラスコ中で、合成例1で得られたポリアミック酸エステル0.64gにGBL5.76gを加え、攪拌して溶解させた。次に、合成例2で得られたポリアミック酸8.46gとNMP0.67g、GBL29.5g、及びBCA2.51g、BCS2.51g加え、攪拌して液晶配向剤を得た。
<Comparative Example 8>
In a 100 mL Erlenmeyer flask containing a stir bar, 5.76 g of GBL was added to 0.64 g of the polyamic acid ester obtained in Synthesis Example 1, and dissolved by stirring. Next, 8.46 g of polyamic acid obtained in Synthesis Example 2, 0.67 g of NMP, 29.5 g of GBL, 2.51 g of BCA and 2.51 g of BCS were added and stirred to obtain a liquid crystal aligning agent.
[インクジェット印刷による液晶配向膜の形成]
 実施例1~3及び比較例1~8で得られた各液晶配向剤を使用し、インクジェット印刷による基板への塗布、及び塗布膜の焼成は、下記に示す装置、及び条件で行った。
 なお、実施例1~3及び比較例1~8の各液晶配向剤の粘度は、いずれも、9mPa・sであった。
 装置名:インクジェット印刷による微細パターン塗布装置(日立プラントテクノロジー社製、HIS-200-1H)
 塗布基板:100mm×100mmITO基板
 塗布面積:72mm×80mm
 塗布条件:分解能15μm、ステージ速度40mm/sec、周波数2000Hz、パルス幅9.6μsec、液適量42pl、ピッチ幅60μm、ピッチ長141μm、印加電圧:15V、及びノズルギャップ0.5mmで塗布し、塗布膜は、放置時間30secの後、乾燥温度50℃、乾燥時間2分(ホットプレート)で乾燥し、本焼成温度230℃、本焼成時間30分(IRオーブン)で焼成した。
[Formation of liquid crystal alignment film by inkjet printing]
Using the liquid crystal aligning agents obtained in Examples 1 to 3 and Comparative Examples 1 to 8, application to a substrate by ink jet printing and baking of the applied film were performed with the following apparatuses and conditions.
The viscosity of each liquid crystal aligning agent in Examples 1 to 3 and Comparative Examples 1 to 8 was 9 mPa · s.
Device name: Fine pattern coating device by inkjet printing (HIS-200-1H, manufactured by Hitachi Plant Technologies, Ltd.)
Coating substrate: 100 mm × 100 mm ITO substrate Coating area: 72 mm × 80 mm
Coating conditions: 15 μm resolution, stage speed 40 mm / sec, frequency 2000 Hz, pulse width 9.6 μsec, appropriate amount 42 pl, pitch width 60 μm, pitch length 141 μm, applied voltage: 15 V, and nozzle gap 0.5 mm, coating film After the standing time of 30 sec, drying was performed at a drying temperature of 50 ° C. and a drying time of 2 minutes (hot plate), and baking was performed at a main baking temperature of 230 ° C. and a main baking time of 30 minutes (IR oven).
[膜の評価]
 得られた膜を目視及び光学顕微鏡で観察し、塗布性を確認した。
 設定寸法からの拡大幅:塗布設定寸法72mm×80mmに対して、焼成後の配向膜の寸法をノギスで採寸し、縦横の拡大幅の平均を算出した。
 面内均一性:膜厚ムラが無く塗布面内が均一なものを◎~○、ユズ肌ムラや線状ムラが発生したものを△~×とした。
[Evaluation of membrane]
The obtained film was observed visually and with an optical microscope to confirm the coatability.
Enlarged width from set dimensions: With respect to coating set dimensions of 72 mm x 80 mm, the dimensions of the alignment film after firing were measured with calipers, and the average of the expanded width in the vertical and horizontal directions was calculated.
In-plane uniformity: A film having no film thickness unevenness and having a uniform coating surface was marked with ◎ to ◯, and a film with uneven skin or line-shaped unevenness was marked with △ to x.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 本発明の液晶配向剤及びそれを用いた液晶配向膜は、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。
 なお、2012年8月6日に出願された日本特許出願2012-174317号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of the present invention and the liquid crystal alignment film using the same are widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-174317 filed on August 6, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (12)

  1.  ポリイミド及びポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体と、下記式(1)で表されるアルキルセロソルブアセテート化合物及びジプロピレングリコールモノメチルエーテルを含む溶媒と、
    を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Rは炭素数1~8のアルキル基である。)
    A solvent containing at least one polymer selected from the group consisting of polyimide and polyimide precursor, an alkyl cellosolve acetate compound represented by the following formula (1) and dipropylene glycol monomethyl ether;
    A liquid crystal aligning agent characterized by containing.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 is an alkyl group having 1 to 8 carbon atoms.)
  2.  前記ポリイミド前駆体が、ポリアミック酸エステル及びポリアミック酸からなる群から選ばれる少なくとも1種を含有する請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the polyimide precursor contains at least one selected from the group consisting of a polyamic acid ester and a polyamic acid.
  3.  前記溶媒が、N-メチルピロリドン及びγ-ブチロラクトンからなる群から選ばれる少なくとも1種を含有する請求項1又は2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the solvent contains at least one selected from the group consisting of N-methylpyrrolidone and γ-butyrolactone.
  4.  前記アルキルセロソルブアセテート化合物が、メチルセロソルブアセテート、エチルセロソルブアセテート、及びブチルセロソルブアセテートからなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the alkyl cellosolve acetate compound is at least one selected from the group consisting of methyl cellosolve acetate, ethyl cellosolve acetate, and butyl cellosolve acetate.
  5.  前記重合体を1~5質量%含有する、請求項1~4のいずれかに記載の液晶配向剤。 5. The liquid crystal aligning agent according to claim 1, comprising 1 to 5% by mass of the polymer.
  6.  前記溶媒を95~99質量%含有する、請求項1~5のいずれかに記載の液晶配向剤。 6. The liquid crystal aligning agent according to claim 1, comprising 95 to 99% by mass of the solvent.
  7.  前記溶媒が、アルキルセロソルブアセテート化合物を0.5~20質量%、ジプロピレングリコールモノメチルエーテルを1~30質量%含有する、請求項1~6のいずれかに記載の液晶配向剤。 7. The liquid crystal aligning agent according to claim 1, wherein the solvent contains 0.5 to 20% by mass of an alkyl cellosolve acetate compound and 1 to 30% by mass of dipropylene glycol monomethyl ether.
  8.  5~20mPa・sの粘度を有する請求項1~7のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 7, which has a viscosity of 5 to 20 mPa · s.
  9.  請求項1~8のいずれかに記載の液晶配向剤をインクジェット法により塗布する液晶配向膜の形成方法。 A method for forming a liquid crystal alignment film, wherein the liquid crystal aligning agent according to any one of claims 1 to 8 is applied by an inkjet method.
  10.  請求項1~8のいずれかに記載の液晶配向剤を塗布して、乾燥し、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to claim 1, drying and firing.
  11.  膜厚が5~300nmである請求項10に記載の液晶配向膜。 The liquid crystal alignment film according to claim 10, wherein the film thickness is 5 to 300 nm.
  12.  請求項10又は11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 10.
PCT/JP2013/071262 2012-08-06 2013-08-06 Liquid crystal aligning agent, and liquid crystal alignment film produced using same WO2014024885A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380051562.2A CN104685412B (en) 2012-08-06 2013-08-06 Aligning agent for liquid crystal and the liquid crystal orientation film for having used the aligning agent for liquid crystal
KR1020157005479A KR102116155B1 (en) 2012-08-06 2013-08-06 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
JP2014529512A JP6152849B2 (en) 2012-08-06 2013-08-06 Liquid crystal alignment agent and liquid crystal alignment film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012174317 2012-08-06
JP2012-174317 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024885A1 true WO2014024885A1 (en) 2014-02-13

Family

ID=50068109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071262 WO2014024885A1 (en) 2012-08-06 2013-08-06 Liquid crystal aligning agent, and liquid crystal alignment film produced using same

Country Status (5)

Country Link
JP (1) JP6152849B2 (en)
KR (1) KR102116155B1 (en)
CN (1) CN104685412B (en)
TW (1) TWI626259B (en)
WO (1) WO2014024885A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158942A1 (en) * 2015-03-30 2016-10-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same
KR20190129111A (en) 2017-03-31 2019-11-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313367A (en) * 2016-03-31 2019-02-05 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2018062353A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN108587649B (en) * 2017-12-28 2020-06-09 深圳市华星光电技术有限公司 Auxiliary alignment agent and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527245A (en) * 1991-07-22 1993-02-05 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, liquid crystal oriented film using that, supporting substrate for liquid crystal, and liquid crystal display element
JP2006030961A (en) * 2004-06-18 2006-02-02 Jsr Corp Vertical liquid crystal orientation agent and vertical liquid crystal display element
WO2012002501A1 (en) * 2010-06-30 2012-01-05 日産化学工業株式会社 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film
WO2012133826A1 (en) * 2011-03-31 2012-10-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal alignment film using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156445B2 (en) 2003-06-04 2008-09-24 株式会社 日立ディスプレイズ Manufacturing method of liquid crystal display device
CN101495915B (en) * 2006-07-28 2010-12-15 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal displays made by using the same
JP4869892B2 (en) 2006-12-06 2012-02-08 株式会社 日立ディスプレイズ Liquid crystal display
CN101910929B (en) * 2007-12-28 2012-04-11 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal display device using the same
KR101609590B1 (en) * 2008-10-14 2016-04-06 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal compound, polymerizable liquid crystal composition and oriented film
KR101613757B1 (en) * 2008-11-06 2016-04-19 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent
JP5553531B2 (en) 2009-06-03 2014-07-16 株式会社ジャパンディスプレイ Liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527245A (en) * 1991-07-22 1993-02-05 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, liquid crystal oriented film using that, supporting substrate for liquid crystal, and liquid crystal display element
JP2006030961A (en) * 2004-06-18 2006-02-02 Jsr Corp Vertical liquid crystal orientation agent and vertical liquid crystal display element
WO2012002501A1 (en) * 2010-06-30 2012-01-05 日産化学工業株式会社 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film
WO2012133826A1 (en) * 2011-03-31 2012-10-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal alignment film using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158942A1 (en) * 2015-03-30 2016-10-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20170131548A (en) * 2015-03-30 2017-11-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102591734B1 (en) 2015-03-30 2023-10-19 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20190129111A (en) 2017-03-31 2019-11-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same
JPWO2019026806A1 (en) * 2017-08-02 2020-02-06 旭化成株式会社 Polyimide varnish and method for producing the same
US11702565B2 (en) 2017-08-02 2023-07-18 Asahi Kasei Kabushiki Kaisha Polyimide varnish and method for producing same

Also Published As

Publication number Publication date
KR20150042227A (en) 2015-04-20
KR102116155B1 (en) 2020-05-27
JPWO2014024885A1 (en) 2016-07-25
TW201412824A (en) 2014-04-01
CN104685412B (en) 2018-02-13
TWI626259B (en) 2018-06-11
CN104685412A (en) 2015-06-03
JP6152849B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6064900B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5708636B2 (en) End-modified polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
JP5915523B2 (en) Polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
JP6048143B2 (en) Liquid crystal aligning agent and liquid crystal aligning film containing polyamic acid ester and polyamic acid
JP5761174B2 (en) Polyamic acid ester liquid crystal aligning agent and liquid crystal alignment film using the same
JP6056752B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP6152849B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
WO2011115079A1 (en) Liquid crystal alignment agent for use in photo-alignment process, and liquid crystal alignment film using same
WO2012057337A1 (en) Liquid crystal aligning agent and liquid crystal alignment film
JP6597645B2 (en) Liquid crystal alignment agent
JP5904119B2 (en) LIQUID CRYSTAL ALIGNING AGENT CONTAINING POLYAMIC ACID ESTER WITH MODIFIED TERMINAL AND LIQUID CRYSTAL ALIGNING FILM
WO2014010402A1 (en) Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157005479

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13828115

Country of ref document: EP

Kind code of ref document: A1