WO2012002501A1 - Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film - Google Patents

Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film Download PDF

Info

Publication number
WO2012002501A1
WO2012002501A1 PCT/JP2011/065072 JP2011065072W WO2012002501A1 WO 2012002501 A1 WO2012002501 A1 WO 2012002501A1 JP 2011065072 W JP2011065072 W JP 2011065072W WO 2012002501 A1 WO2012002501 A1 WO 2012002501A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
acid
added
Prior art date
Application number
PCT/JP2011/065072
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 野田
正人 森内
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201180040348.8A priority Critical patent/CN103154808B/en
Priority to JP2012522697A priority patent/JP5761188B2/en
Priority to KR1020127033756A priority patent/KR101824279B1/en
Publication of WO2012002501A1 publication Critical patent/WO2012002501A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film using the same, and a liquid crystal display element.
  • the liquid crystal alignment film is a constituent member of a liquid crystal display element widely used as a display device, and plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film used industrially is formed from a liquid crystal alignment treatment agent comprising a polyamic acid (also referred to as polyamic acid) which is a polyimide precursor or a polyimide solution.
  • a liquid crystal alignment treatment agent is applied to a substrate, heated and fired, and then subjected to an alignment treatment. Surface treatment by rubbing, or alignment in which liquid crystal is aligned parallel or inclined with respect to the substrate surface. Processing.
  • a liquid crystal alignment process using a photoreaction has been proposed as an alignment process method instead of the rubbing method.
  • a method of imparting liquid crystal alignment ability by forming a polymer film having a specific site causing a photoreaction such as polyvinyl cinnamate on the substrate surface and irradiating with polarized or non-polarized radiation ( The photo-alignment method) is known.
  • uniform liquid crystal alignment can be realized without generating static electricity or dust, and viewing angle can be improved by alignment division (see Patent Documents 1 and 2).
  • the liquid crystal alignment film needs to have a function of tilting and aligning liquid crystal molecules at a predetermined angle (pretilt angle) with respect to the substrate surface (See Patent Document 15).
  • pretilt angle a liquid crystal alignment film using a polyamic acid having an alkyl side chain, a side chain of a steroid skeleton, a side chain having a ring structure, polyimide, or the like is known (Patent Documents 3 and 4). 5).
  • the pretilt angle is usually given by irradiation with radiation whose incident direction to the substrate surface is inclined normal to the substrate (see Patent Document 1).
  • the main liquid crystal alignment film is formed of a liquid crystal alignment treatment agent composed of a polyimide precursor polyamic acid or a polyimide solution, but the preparation of a liquid crystal alignment film using a solution containing a soluble polyimide.
  • the method has an advantage that good characteristics can be obtained as a liquid crystal alignment film even when firing at a relatively low temperature.
  • a polyimide containing a large amount of diamine having a side chain is used, there is a problem that the coating and film forming properties on the substrate are deteriorated.
  • the amount of the side chain is reduced by using a small amount of a diamine having a ring structure in the side chain that can obtain a relatively high pretilt angle in a small amount (for example, see Patent Document 5), and the substrate is supplied.
  • a method for improving the applicability of the coating is also performed.
  • Diamines having a ring structure in the side chain are often poorly soluble in polar solvents such as N-methylpyrrolidone (hereinafter also referred to as NMP), causing problems such as variations in the quality of the resulting polymer. It can happen.
  • NMP N-methylpyrrolidone
  • polymers having side chains including cinnamate groups are often used, and for vertical alignment, it is necessary to introduce a diamine having another side chain. is there.
  • side chains are often hydrophobic, and the affinity with polar solvents that have high wettability to the substrate is reduced, so polymers with many side chain sites can be coated and formed on the substrate. Have the problem of getting worse.
  • liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • a backlight having a large calorific value may be used, and high stability with respect to the backlight is required.
  • the voltage holding ratio which is one of the electrical characteristics
  • a seizure defect linear seizure
  • a highly reliable liquid crystal display element cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time.
  • an object of the present invention is to provide a liquid crystal alignment treatment agent in which the polymer contained in the liquid crystal alignment treatment agent has good handling properties, excellent coating properties, and high reliability.
  • the present invention provides a diamine having a side chain that is capable of providing a liquid crystal aligning agent having good solubility in a solvent used for obtaining a polymer and excellent printability, and is exposed to light irradiation.
  • an object of the present invention is to provide a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed.
  • the present invention has the following gist.
  • (1) Selected from the group consisting of a polyimide precursor obtained by reaction of a diamine component containing a diamine of the following formula [1] and a tetracarboxylic dianhydride, and a polyimide obtained by imidizing the polyimide precursor.
  • a liquid crystal aligning agent comprising at least one polymer.
  • X is an organic group represented by the following formula [2]
  • Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring.
  • 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.
  • A represents an organic group which can be removed by heat
  • B 1 represents —CH 2 —, —O—
  • n represents 0 or 1 and the bonding direction of X is not limited.
  • [—S 4 —R 3 —] is represented by the following formula [4], and either C 1 or C 2 has the structure of the formula [4]
  • the liquid crystal aligning agent according to any one of 1) to (4).
  • B 2 represents a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, and R 10 represents carbon.
  • R 10 represents carbon.
  • the structure of the olefin of formula [4] may be either E or Z.
  • the bond indicated by the broken line is the bond of C 1 of formula [2] Benzene ring or carbonyl carbon to which C 2 is bonded.
  • a liquid crystal display device comprising the liquid crystal alignment film according to (11) or (12).
  • X is an organic group represented by the following formula [2]
  • Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring.
  • P and q are independently 0 or 1;
  • C 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.
  • A represents an organic group which can be removed by heat
  • B 1 represents —CH 2 —, —O—, —NH— and —S— represent a divalent organic group selected
  • n represents 0 or 1
  • the bonding direction of X is not limited.
  • the diamine used as a raw material for the liquid crystal alignment treatment agent of the present invention has very high solubility in a polar solvent such as NMP and has good handling during polymerization.
  • a polyamic acid obtained from such a diamine, or the polyamic acid The liquid crystal aligning agent containing polyimide obtained by imidizing is excellent in coating and film forming properties, and further becomes a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation.
  • the diamine described above can provide a liquid crystal aligning agent suitable for the photo-alignment method.
  • the diamine used as a raw material for the liquid crystal aligning agent of the present invention is a diamine represented by the following formula [1] (hereinafter also referred to as the diamine of the present invention).
  • the diamine of the present invention has a phenylenediamine skeleton protected in the side chain structure by a thermally leaving group such as a tertiary butoxycarbonyl group (hereinafter also referred to as a Boc group).
  • a thermally leaving group such as a tertiary butoxycarbonyl group (hereinafter also referred to as a Boc group).
  • an amino group is a highly reactive organic group, so it is difficult to exist as it is as a part of the diamine side chain as it is, but the amino group can be made reactive by protecting it with a thermal leaving group. Can be reduced.
  • the amino group protected with a heat-leaving group is heated at about 150 ° C. or higher, the heat-leaving group is deprotected and can be converted into an amino group.
  • amino groups are highly reactive organic groups and are known to react with functional sites such as unsaturated bonds, carboxylic acids, carboxylic anhydrides, epoxy compounds, and carbonyl groups.
  • a carbonyl-containing linking group such as an amide bond or an ester bond
  • it is more intramolecular than between diamine molecules. Reaction becomes easy to occur, and heterocyclic rings such as an imidazole ring, an oxazole ring, and a thiazole ring can be formed.
  • the diamine of the present invention forms a heterocyclic ring by reacting the amino group generated by the heat treatment in the baking process of the liquid crystal aligning agent in the molecule, thereby generating a rigid side chain.
  • the chain structure functions as a good induction site for the pretilt angle.
  • the polyamic acid or polyimide using the diamine of the present invention is less prone to film scraping during rubbing treatment, and even when exposed to high temperature, backlight irradiation, etc. for a long time, the voltage holding ratio decreases and the ion density increases. Is difficult to wake up.
  • the diamine of the present invention has a bulky Boc group as a thermally desorbable group, the solubility in an organic solvent (particularly a polar solvent such as NMP) at the time of (condensation) polymerization of the diamine is very high. Good handling during polymerization.
  • the polyimide precursor obtained using the diamine of the present invention and the liquid crystal alignment treatment agent using polyimide are excellent in coating and film forming properties, and the liquid crystal in which the decrease in voltage holding ratio is suppressed even when exposed to light irradiation. An alignment film can be obtained, and the liquid crystal alignment treatment agent can also be used in a photo-alignment method.
  • the diamine of the present invention has a side chain represented by the following formula [A].
  • X is an organic group represented by the following formula [2]
  • Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring
  • p and q are independently 0 or 1 represents an integer of 1 and S 1 and S 2 each independently represents a single bond or a divalent linking group.
  • S 1 is a single bond
  • S 2 is a single bond.
  • R 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.
  • DA represents a phenylenediamine skeleton.
  • C 1 and C 2 independently represent a single bond or a divalent organic group
  • A represents an organic group that can be removed by heat
  • B 1 represents —CH 2 —, —O—, — NH— and —S— represent a divalent organic group selected
  • n represents 0 or 1.
  • C 1 of X may be bonded to the Y 1 side or may be bonded to the C 1 side.
  • DA has a phenylenediamine skeleton, and thus can be a diamine having a wide side chain amount and side chain density.
  • the molecular weight of the diamine skeleton is large, the molecular weight of the diamine increases, and the amount of monomer required for the polymer increases, making it difficult to use industrially.
  • the diamine skeleton is an aliphatic diamine, the reactivity becomes too high, and problems such as precipitation due to salt formation and gelation occur during the preparation of the polymer.
  • the amino group of the phenylenediamine skeleton is preferably a primary amino group, but may be a secondary amino group, for example, an alkyl group having a relatively low molecular weight such as a methyl group, an ethyl group, a propyl group, or a butyl group. May be substituted with an amino group.
  • the side chain site in the formula [1] is represented by the following formula [5], and this site is a part that determines the expression and the size of the pretilt angle. It is possible to obtain a preferable size of the corner.
  • Y 1 and Y 2 are each independently a benzene ring or a cyclohexane ring.
  • the benzene ring and the cyclohexane ring may have a substituent if necessary.
  • bonding position of a substituent 1, 4-substitution is preferable in both a benzene ring and a cyclohexane ring.
  • p and q independently represent an integer of 0 or 1.
  • the cyclohexane ring preferably has a trans structure (so-called chair type).
  • S 1 and S 2 are each independently a single bond or a divalent linking group.
  • S 1 is a single bond
  • q 0, S 2 is a single bond.
  • Specific examples of S 1 and S 2 are shown in (S-1) to (S-11), but are not limited thereto.
  • R 4 and R 5 are independently a hydrogen atom or a carbon number of 1 to 20, preferably 1 15 to 15 monovalent hydrocarbon groups.
  • the monovalent hydrocarbon group is an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group or a decyl group; a cycloalkyl such as a cyclopentyl group or a cyclohexyl group.
  • bicycloalkyl group such as bicyclohexyl group
  • vinyl group 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-, 2- or 3-butenyl group, hexenyl
  • An alkenyl group such as a group; an aryl group such as a phenyl group, a xylyl group, a tolyl group, a biphenyl group and a naphthyl group; and an aralkyl group such as a benzyl group, a phenylethyl group and a phenylcyclohexyl group.
  • Some or all of the hydrogen atoms of these monovalent hydrocarbon groups are halogen atoms, hydroxyl groups, thiol groups, amino groups, phosphate ester groups, ester groups, carboxyl groups, phosphate groups, thioester groups, amides.
  • R 4 and R 5 have a bulky structure such as an aromatic ring or an alicyclic structure, the liquid crystal orientation may be reduced, or the monomer may become viscous and difficult to handle.
  • An alkyl group such as an ethyl group, a propyl group, or a butyl group, or a hydrogen atom is preferable, and a hydrogen atom is more preferable.
  • Particularly preferred S 1 and S 2 are a single bond, —O—, —NHCO—, or —COO—.
  • R 1 represents a hydrogen atom, a fluorine atom, an alkyl group or a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.
  • the alkyl group and the fluoroalkyl group may be linear or branched, and may form a condensed ring structure like a steroid group.
  • R 1 is an alkyl group, it is preferably a straight chain and may have an appropriate substituent. From the viewpoint of ease of synthesis and availability, R 1 is preferably an alkyl group.
  • the number of carbon atoms of the alkyl group of R 1 is not particularly limited.
  • R 1 when p and q are 0, that is, when there is no ring structure, the ability to develop a pretilt angle is low. It is preferable that R 1 has 5 to 18 carbon atoms, and more preferably 7 to 15 carbon atoms. In addition, when a benzene ring or a cyclohexane ring is introduced, the ability to develop a pretilt angle is improved. Therefore, R 1 is preferably an alkyl group having a small number of carbon atoms. Preferable carbon number of R 1 is 1 to 12, more preferably 3 to 10.
  • the structure represented by the formula [5] has [5-1] to [5-3], [5-8], [5-14] to [5]. ⁇ 19], [5-20], [5-44], [5-45] and the like are preferable, and [5-1], [5-2], [5-8] and the like are more preferable.
  • the bonding position of the amino group in the benzene ring is not limited. Specific amino group positions include 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions, 3, 4 positions, or 3, positions relative to the side chain substitution position. 5 positions.
  • the 2,4, 2,5, or 3,5 positions are preferred.
  • the positions 2 and 4 (Formula 1-1) or the positions 3 and 5 (Formula 1-2) are preferable.
  • the diamine of the present invention deprotects a heat-eliminable group such as a Boc group during firing, generates an amino group, and the resulting amino group undergoes a nucleophilic attack on the carbonyl carbon to form a complex. A thermal cyclization reaction occurs to form a ring.
  • C 1 and C 2 independently represent a single bond or a divalent organic group
  • A represents an organic group that can be removed by heat
  • B 1 represents —CH 2 —, —O—, — NH— and —S— represent a divalent organic group selected
  • n represents 0 or 1
  • the direction of the bond portion of X is not limited.
  • the thermally desorbable group represented by A in the above formula [2] is the firing temperature of the liquid crystal aligning agent of the present invention, preferably 150 ° C. or more, more preferably 170 to 300 ° C., particularly preferably 180.
  • the organic group is not particularly limited as long as it is an organic group that can be removed by heat at ⁇ 250 ° C.
  • Examples of the thermal leaving group include carbamate-based organic groups represented by benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, tertiary butoxycarbonyl group (Boc group) and the like. It is done.
  • the Boc group is particularly preferred because it has a high efficiency of desorption by heat, desorbs at a relatively low temperature, and is a harmless gas when desorbed.
  • B 1 in the formula [2] represents a divalent organic group selected from —CH 2 —, —O—, —NH—, and —S—, and is not particularly limited. From the viewpoint of the reaction yield and the electric yield of the alignment film, —O— or NH— is particularly preferable.
  • C 1 and C 2 represent a single bond or a divalent organic group.
  • the divalent organic group is not particularly limited and may be variously selected depending on easiness of synthesis and availability of raw materials.
  • C 1 and C 2 are divalent organic groups, they can be represented by the structure represented by the following formula [6].
  • S 3 and S 4 are each independently a single bond or a divalent linking group
  • R 2 and R 3 are independently a single bond or a divalent carbon atom having 1 to 20 carbon atoms. Hydrogen.
  • Specific examples of S 3 and S 4 are the same as those in the above formulas [S-1] to [S-11], but other linking groups may be used.
  • R 2 and R 3 are divalent hydrocarbons having 1 to 20 carbon atoms
  • R 2 and R 3 are divalent hydrocarbons having 1 to 20 carbon atoms
  • specific examples are given below.
  • a part or all of the hydrogen atoms of the divalent hydrocarbon group may be halogen atoms, hydroxyl groups, thiol groups, phosphate ester groups, ester groups, carboxyl groups, phosphate groups, thioester groups, amide groups, nitro groups, May be substituted with an organooxy group, organosilyl group, organothio group, organoamino group, carbamate group, acyl group, alkyl group, cycloalkyl group, bicycloalkyl group, alkenyl group, aryl group, aralkyl group, etc. . Further, these may have a ring structure.
  • R 2 and R 3 the smaller the number of carbon atoms, the more easily the monomer becomes solid, and the stability of the pretilt angle improves when used as a liquid crystal alignment film. Therefore, an alkylene group having 1 to 6 carbon atoms, An alkenylene group having 6 to 6 carbon atoms or an alkynylene group having 1 to 6 carbon atoms is preferable.
  • the binding position of C 1 is preferably 4-position or 5-position when viewed from the substitution position of the amino group protected by the Boc group, but after cyclization in both the 4-position and 5-position. Since the structure is the same, it is not particularly limited.
  • the olefin moiety of formula [4] may be either E-form or Z-form, and the broken line indicating the bond to olefin is the benzene ring to which C 1 of general formula [2] is bonded, or C 2 is bonded. Bonded to the carbonyl carbon.
  • the structure represented by the formula [4] is a site that causes various reactions by light.
  • B 2 represents a divalent organic group selected from a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—. From the viewpoint of availability, —O— or —NH— is particularly preferable.
  • R 10 represents a divalent hydrocarbon having 1 to 6 carbon atoms.
  • the olefin moiety of the formula [4] is preferably E-form in C 1 because of easy synthesis.
  • the formula [2] is synonymous with the cinnamate derivative, it is particularly preferable from the viewpoint of easy photoreaction.
  • the olefin site in C 2 is not particularly limited. Also, if the C 2 comprises a structure that represented by the formula [4], the light reaction activity by cyclized by heat.
  • C 2 has the structure of the formula [4].
  • B 1 represents —O— or NH—
  • C 1 and C 2 each independently represents a single bond or a divalent organic group
  • Y 1 , Y 2 is a benzene ring or a cyclohexyl ring
  • S 1 and S 2 are a single bond or a divalent linking group
  • R 1 represents a proton or an alkyl group having 1 to 22 carbon atoms. Specific examples of the diamine structure are shown below.
  • Substituent X is used for substituted o-phenylenediamine, 2-aminophenol, 2-aminobenzenethiol, etc. (substrate) to protect thermally leaving groups such as Boc groups such as di-tert-butyl dicarbonate.
  • a precursor having a desired structure can be synthesized by allowing the compound to act in a solvent. At this time, the yield and reaction rate can be improved by coexisting a base such as pyridine, 4-dimethylaminopyridine, or triethylamine as necessary.
  • X in the above formula is protected in advance, or is in an inactive substituent group that can be converted later, and a thermal leaving group.
  • a method in which a side chain is introduced into an amino group or a hydroxyl group adjacent to the amino group protected with, then X is converted into an active substituent and the like, and dinitrobenzene is introduced to convert it into a diamine Specific synthesis examples are shown below.
  • An amide bond can be synthesized by a condensation reaction between a carboxylic acid and an amine
  • an ester bond can be synthesized by a condensation reaction between the carboxylic acid and an alcohol or phenol.
  • This reaction is a method of reacting a carboxylic acid halide with an amine, alcohol, or phenol in the presence of a base in a solvent that does not react with carboxylic acid, amine, and alcohol, or with a carboxylic acid in the presence of a condensing agent.
  • the carboxylic acid halide can be obtained by reacting the carboxylic acid with an appropriate halogenating agent.
  • the carboxylic acid halide used is preferably a carboxylic acid chloride, for example, carboxylic acid chloride.
  • Carboxylic acid chloride is obtained by reacting carboxylic acid with a chlorinating agent.
  • chlorinating agents include thionyl chloride, phosphonyl chloride, sulfuryl chloride, oxalyl chloride, phosphorus trichloride, diphosphorus pentachloride, etc., but thionyl chloride, chloride, etc. are versatile and easy to remove. Sulfuryl, oxalyl chloride and the like are preferable, and thionyl chloride and oxalyl chloride are particularly preferable.
  • the solvent used in the above reaction includes N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, chloroform, dichloroethane, dichloromethane, tetrahydrofuran, tetrahydropyran, , 4-dioxane and the like.
  • Bases used in the condensation reaction include organic bases such as pyridine, 4-dimethylaminopyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, N-methylmorpholine, and in some cases, aqueous sodium hydroxide or water.
  • a method using an aqueous solution of an inorganic base such as an aqueous potassium oxide solution (Schotten-Baumann method) is also included.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times moles relative to number of moles of C 1.
  • a preferable C 1 and C 2 structure includes a divalent organic group represented by the following formula [6].
  • S 3 and S 4 are each independently a single bond or a divalent linking group
  • R 2 and R 3 are each independently a single bond or a divalent hydrocarbon having 1 to 20 carbon atoms.
  • Specific examples include diamines of formula [1-c], formula [1-i], and formula [1-h].
  • the diamine of the formula [4-c] can be synthesized according to the above-described method in which the cyclization site is directed to the side chain.
  • the diamines of the formulas [4-i] and [4-h] can be synthesized according to the method in which the cyclization site is directed to the diamine side, but the synthesis method can also be performed by other methods. There is no particular limitation. When an olefin structure is introduced into the diamine, the same effect can be obtained with either the E (trans) isomer or the Z (cis) isomer. When the E-form is synthesized, it can be synthesized by using fumaric acid, and the Z-form can be synthesized by using maleic acid.
  • the ether bond is an alkyl halide or aryl halide and an alcohol in a solvent that does not react with them. It can be obtained by the Williamson ether synthesis method in which the reaction is carried out in the presence of a base. In addition, a method using a palladium catalyst or the like, a method using copper as a catalyst, or the like can be used. A preferred means is selected depending on the substrate to be reacted. The Williamson ether synthesis method is preferable in consideration of post-treatment after reaction and cost.
  • the base to be used is not particularly limited, but an inorganic base such as sodium hydride, potassium hydride, potassium carbonate, sodium hydroxide, sodium alkoxide, potassium alkoxide, or an organic base such as triethylamine, trimethylamine, tributylamine, trioctylamine is used. it can.
  • an inorganic base such as sodium hydride, potassium hydride, potassium carbonate, sodium hydroxide, sodium alkoxide, potassium alkoxide, or an organic base such as triethylamine, trimethylamine, tributylamine, trioctylamine is used. it can.
  • the dinitrobenzene derivative [8] is synthesized, and the target diamine can be obtained by converting the nitro group to an amino group by a normal reduction reaction.
  • the method for reducing the dinitro compound is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, and ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method of performing reduction with hydrogen gas, hydrazine, hydrogen chloride or the like in a solvent such as alcohol. You may use an autoclave etc. as needed.
  • an unsaturated bond site when included in the structure, if palladium carbon, platinum carbon or the like is used, the unsaturated bond site may be reduced and become a saturated bond. Reduction conditions using a transition metal such as tin, tin chloride as a catalyst are preferred.
  • the polymer in the present invention refers to a polyimide precursor, a polyimide obtained by imidizing the polyimide precursor, and polyamide.
  • the polyimide precursor refers to a polyamic acid and a polyamic acid ester.
  • the diamine of this invention can obtain the polyamic acid which has a specific structure in a side chain by making it react with tetracarboxylic acid or its derivative (s), such as tetracarboxylic acid, tetracarboxylic dihalide, and tetracarboxylic dianhydride.
  • polyamic acid ester can be obtained by reaction of tetracarboxylic acid diester dichloride and diamine, or by reacting tetracarboxylic acid diester and diamine in the presence of an appropriate condensing agent and a base.
  • a polyimide having a specific structure in the side chain can be obtained by dehydrating and cyclizing the polyamic acid or heating the polyamic acid ester at a high temperature to promote dealcoholization and cyclization.
  • the polyamic acid of this invention is obtained by reaction of the diamine component containing the diamine represented by Formula [1], and tetracarboxylic dianhydride. Further, the polyamic acid ester of the present invention is obtained by reacting a diamine component containing the diamine represented by the formula [1] and a tetracarboxylic acid diester dichloride in the presence of a base, or by reacting a tetracarboxylic acid diester and a diamine with an appropriate condensing agent. , And in the presence of a base.
  • the polyimide of the present invention can be obtained by dehydrating and ring-closing this polyamic acid or by heating and ring-closing the polyamic acid ester. Any of such polyamic acid, polyamic acid ester, and polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
  • the diamine component (hereinafter also referred to as a diamine component) for obtaining a polyamic acid by reaction with the tetracarboxylic dianhydride, there is no limitation on the content ratio of the diamine represented by the formula [1].
  • the pretilt angle of the liquid crystal increases as the content ratio of the diamine represented by the formula [1] in the diamine component increases.
  • 1 mol% or more of the diamine component is preferably a diamine represented by the formula [1].
  • the content of the diamine represented by the formula [1] in the diamine component used in is preferably 1 to 50 mol%, particularly preferably 5 to 30 mol%.
  • 100 mol% of the diamine component may be a diamine represented by the formula [1]. Since the diamine of the formula [1] greatly reduces the polymerization viscosity of the polymer and the viscosity of the liquid crystal alignment treatment agent, the content for obtaining a required film thickness in flexographic printing or the like is 30 to 70 mol. % Is preferred.
  • Specific examples of diamines other than the diamine represented by formula (1) hereinafter also referred to as other diamines used when the diamine represented by formula (1) is less than 100 mol% in the diamine component. Is as follows.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methyl)
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • diamine compound which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a side chain.
  • diamines represented by the following formulas [DA1] to [DA26] are exemplified.
  • R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • R 6 represents 1 to 22 carbon atoms. It has an alkyl group or a fluorine-containing alkyl group.
  • R 7 represents an alkyl group or alkoxy group having 1 to 22 carbon atoms.
  • R 8 represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • R 9 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a diamine of the general formula [1] in combination with the diamines of the above [DA-1] to [DA-26] because a more stable pretilt angle can be obtained.
  • More preferred diamines that can be used in combination are those represented by the formulas [DA-10] to [DA-26], more preferably diamines of [DA-10] to [DA-16].
  • the preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol% in the diamine component, and is preferably 5 to 30 mol% in terms of printability. Moreover, you may use the following diamine together.
  • diaminosiloxanes represented by the following formula [DA-35] can also be mentioned as other diamines.
  • M is an integer from 1 to 10.
  • Other diamine compounds may be used alone or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is formed.
  • the tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited. Specific examples are given below. Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • the use of aromatic tetracarboxylic dianhydride improves the liquid crystal alignment and reduces the accumulated charge in the liquid crystal cell. This is preferable.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • Tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charges, and the like when the liquid crystal alignment film is formed.
  • the tetracarboxylic acid dialkyl ester that is reacted with the diamine component to obtain the polyamic acid ester of the present invention is not particularly limited. Specific examples are given below.
  • aliphatic tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1, 3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3 , 4-Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1- Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy-1 2,3,4-tetrahydro-1-naphthalene
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl
  • the dicarboxylic acid reacted with the diamine component to obtain the polyamide of the present invention is not particularly limited.
  • Specific examples of the dicarboxylic acid or its aliphatic dicarboxylic acid include malonic acid, succinic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, Examples include pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid, and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylene dicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid,
  • dicarboxylic acid containing a heterocyclic ring examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazole dicarboxylic acid, 2-phenyl-4,5-thiazole dicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • the various dicarboxylic acids described above may have a structure of acid dihalide or acid anhydride. These dicarboxylic acids are preferably dicarboxylic acids that can give a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4 caster-phenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid or these acid dihalides are preferably used.
  • Some of these compounds have isomers, but may be a mixture containing them. Two or more compounds may be used in combination.
  • a known synthesis method can be used. Generally, this is a method in which a dicarboxylic acid and a diamine component are reacted in an organic solvent.
  • ⁇ Synthesis of polyamic acid> As a method for obtaining the polyamic acid of the present invention by reaction of tetracarboxylic dianhydride and a diamine component, a known method can be used. In general, tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction of tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid is soluble. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate,
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. Further, when the tetracarboxylic dianhydride or diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2, preferably 0.9 to 1.1. Is more preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the method for imidizing the polyamic acid include a thermal imidization method in which the polyamic acid solution is heated as it is, and a catalytic imidation method in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and is preferably carried out while removing water generated by the imidization reaction from the system.
  • the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has basicity suitable for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
  • ⁇ Synthesis of polyamic acid ester> As a method of synthesizing a polyamic acid ester, a reaction between a tetracarboxylic acid diester dichloride and a diamine, a method in which a tetracarboxylic acid diester and a diamine are reacted in the presence of an appropriate condensing agent and a base, or a polyamic acid in advance. And a method of esterifying a carboxylic acid in an amic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used.
  • pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride because it can be easily removed and a high molecular weight product can be easily obtained.
  • condensation polymerization is performed in the presence of a condensing agent, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1, 3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazole-1- Yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate, 4- (4,6 -Dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the amount of Lewis acid added is preferably 0.1 to 1.0 times the molar amount of the diamine component.
  • solvent used in the above reaction the same solvent as used for polymerizing the above polyamic acid can be used, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. are preferable from the viewpoint of the solubility of the monomer and polymer. You may use these 1 type or in mixture of 2 or more types.
  • the concentration of the polymer at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to carry out the reaction in a nitrogen atmosphere to prevent outside air from being mixed.
  • ⁇ Recovery of polymer> When recovering the produced polymer from a reaction solution such as polyamic acid, polyamic acid ester, polyimide, etc., it is preferable to add the reaction solution to a poor solvent to cause precipitation.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer deposited in a poor solvent and collected can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the impurities in the polymer can be reduced by repeating the operation 2 to 10 times.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured in (1) is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid-crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which the resin component for forming a resin film melt
  • the resin component contains at least one polymer selected from the polymers of the present invention described above.
  • the content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass. All of the resin components may be the polymer of the present invention, or other polymers may be mixed. In this case, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • examples of such other polymers include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with the tetracarboxylic dianhydride component.
  • the organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone,
  • the liquid crystal aligning agent of this invention may contain components other than the above.
  • examples thereof include compounds that improve the adhesion between the liquid crystal alignment film and the substrate, such as a solvent-rich substance that improves film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied.
  • a solvent-rich substance that improves film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied.
  • the following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
  • the compound for improving the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • phenoplast type additives for the purpose of preventing electrical characteristics from being deteriorated by the backlight. Specific phenoplast type additives are shown below.
  • the amount used is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component. is there. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the dielectric, conductive, A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment in a vertical alignment application or the like after being applied onto a substrate and baked and then subjected to an alignment treatment by rubbing treatment or light irradiation.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate.
  • a material that reflects light such as aluminum can be used for the electrode.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, it is generally performed by a method such as screen printing, offset printing, flexographic printing, or inkjet. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate can be carried out by heating means such as a hot plate at 50 to 300 ° C., preferably 80 to 250 ° C., and the solvent can be evaporated to form a coating film. .
  • the thickness of the coating film formed after baking is disadvantageous in terms of power consumption of the liquid crystal display element if it is too thick, and if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • the thickness is preferably 10 to 100 nm.
  • the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • Step 1 Synthesis of 4-octanamide-2-nitrophenol
  • 15.9 g (103 mmol) of 4-amino-2-nitrophenol, 300 mL of tetrahydrofuran, and 7.9 g (103 mmol) of pyridine were added.
  • the system was cooled to 0 ° C., 16.3 g (103 mmol) of n-octanoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, 50 mL of pure water was added and stirred.
  • Step 3 Synthesis of 4-octanamide-2-tert-butoxycarbonylaminophenol
  • Step 4 Synthesis of 2- (tert-butoxycarbonylamino) -4-octanamidophenyl 3,5-dinitrobenzoate
  • 7.0 g (20.0 mmol) of HC-03-1, 80 mL of tetrahydrofuran, and 1.6 g (20.0 mmol) of pyridine were added.
  • the system was cooled to 0 ° C., 5.5 g (20.0 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature.
  • Step 5 Synthesis of HC-01
  • 2- (tert-butoxycarbonylamino-4-octanamidophenyl) 3,5-dinitrobenzoate 150 mL of tetrahydrofuran, and 5% palladium / carbon were added.
  • 0.6 g was added and stirred at room temperature under a hydrogen atmosphere.
  • palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator.
  • Step 1 Synthesis of 3-tert-butoxycarbonylamino-4-aminonitrobenzene
  • 25.0 g (163 mmol) of 3,4-diaminonitrobenzene, 250 mL of tetrahydrofuran, and 35.6 g (163 mmol) of di-tert-butyl dicarbonate were added and stirred under reflux for 4 hours in a nitrogen atmosphere.
  • the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was washed with methanol and recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 11.8 g of a pale yellow solid (yield 79%).
  • Step 5 Synthesis of HC-02 In a 300 mL four-necked flask, 10.0 g (16.9 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide, 100 mL of tetrahydrofuran, and 10% 1.0 g of palladium carbon was added and stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator.
  • Step 1 Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-dinitrobenzamide
  • a 300 mL four-necked flask 4.10 g (19.4 mmol) of 2,4-dinitrobenzoic acid, 150 mL of dichloromethane, and 20 mL of dimethylformamide were added, the system was cooled to 0 ° C., and 2.46 g of oxalyl chloride ( 19.4 mmol) was slowly added, and the mixture was returned to room temperature and stirred for 2 hours to prepare a 2,4-dinitrobenzoic acid chloride solution.
  • the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with methanol and recrystallized using a mixed solvent of dichloroethane and n-hexane (2: 8) to obtain 6.56 g of a light yellow solid (yield 63%).
  • Step 1 Synthesis of 2-tert-butoxycarbonylamino-4-nitrophenol
  • 12.3 g (79.8 mmol) of 2-amino-4-nitrophenol was added and stirred at room temperature.
  • tetrahydrofuran was added and stirred at room temperature.
  • 4-dimethyl 2.00 g (7.98 mol) of aminopyridine was added and stirred at room temperature.
  • ethyl acetate was added and washed with water and saturated brine.
  • Step 3 Synthesis of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylamino aniline
  • a 300 mL four-necked flask add 8.8 g (20.5 mol) of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminonitrobenzene 2, 100 mL of tetrahydrofuran, and 0.9 g of 5% palladium carbon.
  • the mixture was stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (7: 3) to obtain 6.8 g of a white solid (yield 84%).
  • Step 4 Synthesis of N-4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide
  • a 300 mL four-necked flask 6.8 g (17.1 mmol) of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminoaniline, 100 mL of tetrahydrofuran, and 1.5 g (18.8 mmol) of pyridine added.
  • the system was cooled to 0 ° C., 4.6 g (20.0 mol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature.
  • Step 1 Synthesis of 6-tert-butoxycarbonylamino-m-cresol To a 300 mL four-necked flask was added 6.2 g (50.3 mmol) of 6-amino-m-cresol, 150 mL of tetrahydrofuran, and 14.2 g (55.3 mmol) of di-tert-butyl dicarbonate. Stir. After completion of the reaction, ethyl acetate was added and washed with water and saturated brine. Then, it dried with magnesium sulfate, magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator to obtain 11.2 g of a white solid (yield 99%).
  • Step 3 Synthesis of 4- (4-amylbenzoylamino) -2-tert-butoxycarbonylaminophenol
  • 0.16 g (2.01 mmol) of pyridine were added and stirred at room temperature. After completion of the reaction, the solvent was distilled off with a rotary evaporator, ethyl acetate was added, and the mixture was washed with water and saturated brine.
  • Step 4 Synthesis of 4- (4-Amylbenzoylamino) -2-tert-butoxycarbonylaminophenyl-3,5-dinitrobenzoate
  • a 200 mL four-necked flask 5.00 g (12.5 mmol) of 4-amylbenzoylamino-2-tert-butoxycarbonylaminophenol, 80 mL of tetrahydrofuran, and 0.99 g (12.5 mmol) of pyridine were added.
  • the system was cooled to 0 ° C., 2.9 g (12.5 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature.
  • Step 1 Synthesis of 2- (tert-butoxycarbonylamino) aniline To a 500 mL four-necked flask were added 50.0 g (462 mmol) of O-phenylenediamine, 300 mL of tetrahydrofuran, and 100.8 g (462 mmol) of di-tert-butyl dicarbonate, and the mixture was refluxed for 4 hours under a nitrogen atmosphere.
  • Step 2 Synthesis of 2-butenedioic acid (2Z)-, 3,5-dinitrobenzyl ester
  • 25.0 g (126 mmol) of 3,5-dinitrobenzyl alcohol, 300 mL of chloroform, and 19.1 g (189 mmol) of triethylamine were added, and the system was cooled to 0 ° C. in a nitrogen atmosphere.
  • 14.8 g (151 mmol) of acid was added, stirred for 2 hours, returned to room temperature, and reacted for 6 hours.
  • Step 3 (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate
  • 2Z 2-butenedioic acid
  • 3,5-dinitrobenzyl ester 200 mL
  • THF 2-butenedioic acid
  • 16.9 mmol 16.9 mmol
  • triethylamine 1.71 g (16.9 mmol) of triethylamine.
  • DMT-MM 4-methoxymorpholium chloride n-hydrate
  • Step 1 Synthesis of 2- (2,4-dinitrophenoxy) ethanol
  • 13.6 g (134 mmol) of triethylamine, 50 mL of ethylene glycol, and 150 mL of tetrahydrofuran cool to 10 ° C. under a nitrogen atmosphere, and further add 25.0 g (134 mmol) of 2,4-dinitrofluorobenzene.
  • the mixture was heated to 60 ° C. and reacted for 16 hours.
  • the solvent was removed by a rotary evaporator, ethyl acetate was added, washed with water and saturated brine, and dried over magnesium sulfate.
  • Second step (1) Synthesis of 2-butenedioic acid (2E)-, 2- (2,4-dinitrophenoxy) ethanol ester (method utilizing isomerization reaction from maleic anhydride)
  • 2E 2-butenedioic acid
  • 2- (2,4-dinitrophenoxy) ethanol ester (method utilizing isomerization reaction from maleic anhydride)
  • 2- (2,4-dinitrophenoxy) ethanol was weighed, 200 mL of chloroform and 4.43 g (43.8 mmol) of triethylamine were added, and anhydrous in an ice bath. 5.15 g (52.6 mmol) of maleic acid was added, slowly returned to room temperature, and stirred for 6 hours.
  • Second step (2) Synthesis of 2-butenedioic acid (2E)-, 2- (2,4-dinitrophenoxy) ethanol ester
  • fumaryl chloride 10.0 (65.7 mmol) and chloroform 150 mL
  • 2- (2,4-dinitrophenoxy) ethanol was further cooled.
  • 10.0 g (43.8 mmol) of a dimethylacetamide solution (DMAc 50 mL) and a chloroform solution of 4.43 g (43.8 mmol) of triethylamine were slowly added, stirred for 2 hours, returned to room temperature, and reacted for 1 day.
  • Step 5 Synthesis of HC-10
  • (E)-(2,4-dinitrophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate 9. 68 mmol
  • tetrahydrofuran 50 mL
  • 10% palladium carbon 0.50 g
  • HC-06 4- (4-Amylbenzoylamino) -2-tert-butoxycarbonylamino 3,5-diaminobenzoate
  • HC-07 [4- (4-Amylbenzoylamino) -2- (tert-butoxycarbonylamino) ) Phenyl] 2- (2,4-diaminophenyl) acetamide
  • HC-08 (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2- Enoate
  • HC-09 (E)-(2,4-diaminophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate HC-10: 2- (2, 4-Diaminophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenyl
  • DMT-MM 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride n-hydrate ⁇ organic solvent>
  • NMP N-methyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BC Butyl cellosolve
  • DPM Dipropylene glycol monomethyl ether
  • the molecular weight of the polymer obtained by the polymerization reaction was determined by measuring the polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and the weight average molecular weight as converted values of polyethylene glycol and polyethylene oxide.
  • GPC room temperature gel permeation chromatography
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10 mL / L) Flow rate: 1.0 mL / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol manufactured by Polymer Laboratory (Molecular weight about 12,000, 4,000, 1,000).
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard made by Kusano Kagaku), add 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS mixture), and apply ultrasonic waves. And completely dissolved. 500 MHz proton NMR of this solution was measured with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • the liquid crystal cell was produced as follows.
  • a liquid crystal alignment treatment agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 70 seconds, and then baked on a hot plate at 210 ° C. for 10 minutes to form a coating film having a thickness of 100 nm. I let you.
  • this coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm.
  • a substrate with a film was obtained.
  • the liquid crystal alignment treatment with light was performed by irradiating the coating surface with linearly polarized UV light (UV wavelength: 313 nm, equivalent to 500 mJ) at an angle of 40 ° with respect to the normal line of the plate.
  • a spacer of 6 ⁇ m is sprayed on the surface of the one liquid crystal alignment film, and then a sealant is printed thereon, and another sheet is obtained.
  • the substrates are bonded so that the liquid crystal alignment film faces each other and the rubbing direction is perpendicular (twisted nematic liquid crystal cell), or for those irradiated with UV, the directions of irradiated polarized light are parallel (vertical). Orientation mode), the sealing agent was cured to produce an empty cell.
  • liquid crystal MLC-2003 (Merck) is injected in the twisted nematic cell by vacuum injection, and liquid crystal MLC-6608 (Merck) is injected in the vertical alignment mode, and the injection port is sealed.
  • a twisted nematic liquid crystal cell was obtained.
  • a method for measuring physical properties and evaluating characteristics of each liquid crystal cell produced was described below. The results of the composition of each liquid crystal alignment treatment agent in Examples 1 to 9 and Comparative Examples 1 to 3, the measurement of physical properties of each liquid crystal alignment film, and the evaluation of the characteristics are shown in Tables 2 to 4. .
  • ⁇ Rubbing resistance evaluation> When producing a substrate with a liquid crystal alignment film by the method described in ⁇ Preparation of liquid crystal cell> above, the rubbing conditions are changed by changing the indentation amount to 0.5 mm, and a liquid crystal alignment film for rubbing resistance evaluation is produced. The surface was observed with a confocal laser microscope, and the following evaluation was performed. ⁇ : Scraping and rubbing scratches are not observed. ⁇ : Scraping and rubbing scratches are observed. X: A film
  • ⁇ Measurement of pretilt angle> The twisted nematic liquid crystal cell or antiparallel cell produced by the method described in ⁇ Preparation of liquid crystal cell> above was heated at 105 ° C. for 5 minutes, and then the pretilt angle was measured. The pretilt angle was measured by “Axo Scan” manufactured by Axo Metric, using the Mueller matrix method.
  • VHR voltage holding ratio
  • backlight aging resistance Voltage holding ratio in the initial state of the liquid crystal cell produced by the method described in ⁇ Preparation of liquid crystal cell> and backlight aging (the liquid crystal cell is mounted on the backlight for the LCD panel and driven at 10 V AC for 2 weeks)
  • the subsequent voltage holding ratio was measured.
  • the voltage holding ratio was measured by applying a voltage of 4 V for 60 ⁇ s at a temperature of 90 ° C., measuring the voltage after 16.67 ms, and calculating how much the voltage could be held as the voltage holding ratio.
  • the voltage holding ratio was measured using a voltage holding ratio measuring device (VHR-1) manufactured by Toyo Technica.
  • Example 10 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.72 g (1.50 mmol) of HC-01, and 28.2 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-1) concentration of 15 mass%.
  • PAA-1 polyamic acid
  • PAA-1 polyamic acid
  • a liquid crystal alignment treatment agent-1 was obtained by making a solution with a mass% and BC of 20 mass%.
  • the number average molecular weight of this polyamic acid was 14,300, and the weight average molecular weight was 41,200.
  • Example 11 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-02, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-2) concentration of 15% by mass.
  • PAA-2 polyamic acid
  • PAA-2 polyamic acid
  • a liquid crystal alignment treatment agent-2 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 12,300, and the weight average molecular weight was 26,700.
  • Example 12 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-03, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-3) concentration of 15% by mass.
  • PAA-3 polyamic acid
  • PAA-3 polyamic acid
  • a liquid crystal aligning agent-3 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 9,800, and the weight average molecular weight was 26,900.
  • Example 13 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-04, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-4) concentration of 15 mass%.
  • PAA-4 polyamic acid
  • this polyamic acid (PAA-4) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by weight of polyamic acid (PAA-4) and 74% by weight of NMP. % And BC as a 20% by mass solution to obtain Liquid Crystal Alignment Agent-4.
  • the number average molecular weight of this polyamic acid was 11,300, and the weight average molecular weight was 25,800.
  • Example 14 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.54 g (1.5 mmol) of HC-05, and 27.1 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-5) concentration of 15% by mass.
  • PAA-5 polyamic acid
  • PAA-5 polyamic acid
  • a liquid crystal aligning agent-5 was obtained by making a solution with a mass% and BC of 20 mass%.
  • the number average molecular weight of this polyamic acid was 12,600, and the weight average molecular weight was 30,200.
  • Example 15 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-06, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-6) concentration of 15% by mass.
  • PAA-6 polyamic acid
  • PAA-6 polyamic acid
  • a liquid crystal alignment agent-6 was obtained by making a solution with a mass% of 20% by mass of BC.
  • the number average molecular weight of this polyamic acid was 12,700, and the weight average molecular weight was 27,700.
  • Example 16 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.82 g (1.5 mmol) of HC-07, and 28.7 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-7) concentration of 15% by mass.
  • PAA-7 polyamic acid
  • PAA-7 polyamic acid
  • a liquid crystal aligning agent-7 was obtained by making a solution with a mass% and BC of 20 mass%.
  • the number average molecular weight of this polyamic acid was 10,200, and the weight average molecular weight was 26,500.
  • Example 17 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.71 g (1.5 mmol) of HC-10, and 28.1 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-8) concentration of 15% by mass.
  • PAA-8 polyamic acid
  • PAA-8 polyamic acid
  • a liquid crystal alignment treatment agent-8 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 9,900, and the weight average molecular weight was 23,500.
  • Example 18 As a diamine component, 2.00 g (5.60 mmol) of HC-05 and 17.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 1.08 g (5.49 mmol) of CBDA was added, returned to room temperature, and reacted for 24 hours under a nitrogen atmosphere to obtain a solution having a polyamic acid (PAA-9) concentration of 15 mass%.
  • PAA-9 polyamic acid
  • Example 19 As a diamine component in a 50 mL four-necked flask, 2.00 g (4.70 mol) of HC-08, 0.45 g (1.17 mmol) of PCH-7AB, and 20.3 g of NMP were added and cooled to about 10 ° C. . Next, 1.13 g (5.81 mmol) of CBDA was added, returned to room temperature, and reacted for 24 hours under a nitrogen atmosphere to obtain a solution having a polyamic acid (PAA-10) concentration of 15 mass%.
  • PAA-10 polyamic acid
  • PAA-10 polyamic acid
  • a liquid crystal alignment treatment agent-10 was obtained by making a solution with a mass% and BC of 20 mass%.
  • the number average molecular weight of this polyamic acid was 13,300, and the weight average molecular weight was 428,000.
  • Example 20 As a diamine component in a 50 mL four-necked flask, 2.00 g (4.38 mol) of HC-09, 0.45 g (1.10 mmol) of PCH-7AB, and 19.7 g of NMP were added and cooled to about 10 ° C. . Next, 1.06 g (5.43 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-11) concentration of 15% by mass.
  • PAA-11 polyamic acid
  • PAA-11 polyamic acid
  • 20 g of this polyamic acid (PAA-11) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 20.0 g of NMP and 10.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-11) and 74% of NMP.
  • a liquid crystal alignment treatment agent-11 was obtained in the form of a solution containing 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 10,700, and the weight average molecular weight was 35,300.
  • Example 21 As a diamine component in a 100 mL four-necked flask, 0.307 g (2.52 mmol) of 3-ABA, 0.384 g (1.89 mmol) of 2,4-DAA, and 1.00 g (1.89 mol) of HC-02 And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere.
  • Example 22 As a diamine component in a 100 mL four-necked flask, 3-ABA 0.307 g (2.52 mmol), 2,4-DAA 0.384 g (1.89 mmol), HC-03 1.00 g (1.89 mol) And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-13) concentration of 20 mass%.
  • PAA-13 polyamic acid
  • the number average molecular weight of this polyimide was 9,800, and the weight average molecular weight was 23,500. Further, the imidization ratio was 89%. 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-2), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-2) was 5 mass%, ⁇ -BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-13.
  • Example 23 As a diamine component in a 100 mL four-neck flask, 0.308 g (2.52 mmol) of 3-ABA, 0.384 g (1.89 mmol) of 2,4-DAA, and 1.00 g (0.89 mol) of HC-04 And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere.
  • Example 24 As a diamine component in a 100 mL four-necked flask, 3-ABA 0.308 g (2.52 mmol), 2,4-DAA 0.384 g (1.89 mmol), HC-06 1.00 g (0.89 mol) And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-15) concentration of 20 mass%.
  • PAA-15 polyamic acid
  • the number average molecular weight of this polyimide was 13,200, and the weight average molecular weight was 29,400. Moreover, the imidation ratio was 85%. 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-4), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-4) was 5 mass%, ⁇ -BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-15.
  • Example 25 As a diamine component in a 100 mL four-neck flask, 0.298 g (2.44 mmol) of 3-ABA, 0.372 g (1.83 mmol) of 2,4-DAA, and 1.00 g (0.83 mol) of HC-04 And 12.0 g of NMP were added and cooled to about 10 ° C. Next, 0.399 g (1.83 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere.
  • 0.933 g (4.76 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-16) concentration of 20 mass%.
  • PAA-16 polyamic acid
  • the reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid.
  • the precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-5).
  • the number average molecular weight of this polyimide was 10,700, and the weight average molecular weight was 22,800.
  • the imidation ratio was 87%.
  • 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-5), and the mixture was stirred at 50 ° C. for 20 hours.
  • the polyimide was completely dissolved at the end of stirring.
  • ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours.
  • Polyimide (SPI-5) was 5 mass%
  • ⁇ -BL was 65 mass%
  • BC was A liquid crystal aligning agent-16 having 15% by mass and DPM of 15% by mass was obtained.
  • Example 26 In a 100 mL four-necked flask, 2.37 g (9.12 mmol) of CBDE, 0.813 g (7.52 mmol) of p-PDA, 1.00 g (1.88 mmol) of HC-02, and 30 NMP were used as diamine components. 0.7g and 0.475 g (4.70 mmol) of triethylamine were added and cooled to about 10 ° C. Next, 7.80 g (28.2 mmol) of DMT-MM was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid ester (PAE-1) concentration of 12 mass%.
  • PAE-1 polyamic acid ester
  • polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (PAE-1) was 5 mass%, ⁇ -BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-17.
  • this polyamic acid (PAA-17) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-17) and 74% of NMP.
  • a liquid crystal alignment agent-18 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 18,300, and the weight average molecular weight was 43,200.
  • this polyamic acid (PAA-18) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-18), and 74% of NMP.
  • a liquid crystal alignment agent-19 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 97,000, and the weight average molecular weight was 19,200.
  • the precipitated solid was recovered, further dispersed and washed twice with 150 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-6).
  • the number average molecular weight of this polyimide was 10,700, and the weight average molecular weight was 22,800. Moreover, the imidation ratio was 88%.
  • 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-6), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours.
  • Polyimide (SPI-6) was 5 mass%, ⁇ -BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass to obtain a liquid crystal aligning agent-21.
  • polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (PAE-2) was 5 mass%, ⁇ -BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass to obtain a liquid crystal aligning agent-24.
  • Examples 10 to 18 are compared with Comparative Examples 1 and 2, it can be seen that Examples 10 to 18 have improved rubbing resistance, high VHR, and excellent backlight aging resistance.
  • Comparative Example 3 structure in which no cyclization reaction occurs
  • Comparative Example 3 has a smaller pretilt angle than that of Example 17, and improves rubbing resistance and VHR aging resistance. It can be seen that is excellent.
  • Examples 19 and 20 and Comparative Example 6. the development of pretilt was confirmed, indicating that the liquid crystal aligning agent is useful in the photoalignment method.
  • Example 21 to 25 and Comparative Examples 4 and 5 when the liquid crystal alignment treatment agent was printed on the substrate, pinholes and oblique unevenness were confirmed. In Examples 21 to 25, printability was excellent, no such defects were confirmed, pretilt expression was confirmed, and the effect of improving the backlight aging resistance of VHR could be confirmed. .
  • Example 26 and Comparative Example 7 were compared, Example 26 had good printability and resulted in improved rubbing resistance and VHR backlight aging resistance.
  • Step 1 Synthesis of 4- (trans-4-amylcyclohexanecarboxamide) -3- (tert-butoxycarbonylamino) nitrobenzene
  • 5.16 g (20.0 mmol) of trans-4-amylcyclohexanecarboxylic acid was weighed and dissolved by adding 50 mL of THF, and 3.33 g (28.0 mmol) of thionyl chloride in an ice bath. was slowly added dropwise. Thereafter, the temperature was returned to room temperature and reacted for 2 hours to form 4-amylcyclohexanecarboxylic acid chloride.
  • Step 3 Synthesis of 4- (trans-4-amylcyclohexanecarboxylamido) -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide
  • 4.79 g (11.9 mmol) of 4- (trans-4-amylcyclohexanecarboxylamido) -3- (tert-butoxycarbonylamino) aniline
  • 80 mL of tetrahydrofuran and 1.10 g of pyridine.
  • Step 3 Synthesis of 4-[(trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide
  • 5.94 g (12.4 mmol)
  • Example 29 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.81 g (1.5 mmol) of HC-11, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-23) concentration of 15 mass%.
  • PAA-23 polyamic acid
  • Example 30 As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.94 g (1.5 mmol) of HC-12, and 29.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-24) concentration of 15% by mass.
  • PAA-24 polyamic acid
  • this polyamic acid (PAA-24) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-24) and 74% of NMP.
  • a liquid crystal aligning agent-26 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 13,700, and the weight average molecular weight was 28,200.
  • Example 31 As a diamine component, 1.06 g (10.5 mol) of p-PDA, 2.48 g (4.5 mmol) of HC-11, and 36.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.88 g (14.7 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was carried out under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-25) concentration of 15 mass%.
  • PAA-25 polyamic acid
  • this polyamic acid (PAA-25) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-25) and 74% of NMP.
  • a liquid crystal alignment treatment agent-27 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 17,200, and the weight average molecular weight was 38,900.
  • Example 32 As a diamine component, 1.06 g (10.5 mol) of p-PDA, 2.82 g (4.5 mmol) of HC-12, and 38.3 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.88 g (14.7 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-26) concentration of 15% by mass.
  • PAA-26 polyamic acid
  • this polyamic acid (PAA-26) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-26), and 74% of NMP.
  • a liquid crystal aligning agent-28 was obtained by making a solution with 20% by mass and 20% by mass BC.
  • the number average molecular weight of this polyamic acid was 19,600, and the weight average molecular weight was 42,200.
  • the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has high reliability, including a large-screen high-definition liquid crystal television, a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, VA It is useful as a liquid crystal display element, an IPS liquid crystal display element, an OCB liquid crystal display element, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed are: a liquid crystal alignment treatment agent which enables the production of a liquid crystal alignment film that does not undergo the decrease in a voltage holding ratio even when exposed to light; and a novel diamine which can be used for the production of a polymer that can be contained in a liquid crystal alignment treatment agent. The liquid crystal alignment treatment agent comprises at least one polymer selected from the group consisting of a polyimide precursor produced from a diamine represented by formula [1] and a polyimide produced by the imidization of the polyimide precursor. (In formula [1], X represents an organic group represented by formula [2]; Y1 and Y2 independently represent a benzene ring or a cyclohexane ring; p and q independently represent an integer of 0 or 1; S1 and S2 independently represent a single bond or a bivalent linking group, wherein S1 represents a single bond when p is 0 and S2 represents a single bond when q is 0; and R1 represents a hydrogen atom, a fluorine atom, an alkyl or fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.) (In formula [2], C1 and C2 independently represent a single bond or a bivalent organic group; A represents a thermally detachable organic group; B1 represents a bivalent organic group selected from -CH2-, -O-, -NH- and -S-; n represents an integer of 0 or 1; and the direction of the bonding of X is not limited.)

Description

液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
 本発明は、液晶配向処理剤、それを用いた液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film using the same, and a liquid crystal display element.
 液晶配向膜は、表示デバイスとして広く使用されている液晶表示素子の構成部材であり、液晶を一定の方向に配向させる役割を担っている。現在、工業的に使用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸とも言う。)又はポリイミドの溶液からなる液晶配向処理剤から形成される。具体的には、基板に液晶配向処理剤を塗布して加熱・焼成した後、配向処理を行うことにより得られ、ラビングによる表面処理や、基板面に対し液晶を平行又は傾斜させて配向させる配向処理が挙げられる。 The liquid crystal alignment film is a constituent member of a liquid crystal display element widely used as a display device, and plays a role of aligning liquid crystals in a certain direction. Currently, the main liquid crystal alignment film used industrially is formed from a liquid crystal alignment treatment agent comprising a polyamic acid (also referred to as polyamic acid) which is a polyimide precursor or a polyimide solution. Specifically, a liquid crystal alignment treatment agent is applied to a substrate, heated and fired, and then subjected to an alignment treatment. Surface treatment by rubbing, or alignment in which liquid crystal is aligned parallel or inclined with respect to the substrate surface. Processing.
 近年、パネルに用いる基板の大型化、高精細化、低コスト化等により、基板の面積の拡大、凹凸が大きくなる等の傾向がある。このような基板上に配向膜を形成させる際、印刷時にピンホールなどの印刷不良が生じる、ラビング処理では均等な配向処理が困難になり、液晶の配向不良等が起こる等の問題が起こっている。また、液晶配向処理では、現在は主にラビングによる表面処理が行なわれているが、液晶配向膜の欠損が起こり、それによる表示欠陥が生じたり、埃を発生する等の問題がある。 In recent years, there has been a tendency for the substrate area to increase and the unevenness to increase due to the increase in size, definition, and cost of the substrate used in the panel. When forming an alignment film on such a substrate, printing defects such as pinholes occur during printing, uniform alignment processing becomes difficult with rubbing, and liquid crystal alignment defects occur. . Further, in the liquid crystal alignment treatment, the surface treatment is mainly performed by rubbing at present, but there are problems such as a defect in the liquid crystal alignment film, resulting in a display defect and generation of dust.
 一方で、ラビング法に変わる配向処理の方法として、光反応を利用した液晶配向処理が提案されている。具体的には、基板表面にポリビニルシンナメートなどの光反応を起こす特定部位を持った重合体の膜を形成し、偏光又は非偏光の放射線を照射することにより、液晶配向能を付与する方法(光配向法)が知られている。この方法によれば、静電気や埃を発生することなく、均一な液晶配向を実現でき、配向分割による視野角向上なども可能である(特許文献1、2参照)。 On the other hand, a liquid crystal alignment process using a photoreaction has been proposed as an alignment process method instead of the rubbing method. Specifically, a method of imparting liquid crystal alignment ability by forming a polymer film having a specific site causing a photoreaction such as polyvinyl cinnamate on the substrate surface and irradiating with polarized or non-polarized radiation ( The photo-alignment method) is known. According to this method, uniform liquid crystal alignment can be realized without generating static electricity or dust, and viewing angle can be improved by alignment division (see Patent Documents 1 and 2).
 TN(Twisted Nematic)、STN(Super Twisted Nematic)などの液晶セルては、液晶配向膜は、液晶分子を基板面に対して所定の角度(プレチルト角)で傾斜配向させる機能を有する必要がある(特許文献15参照)。プレチルト角を発現させるために、アルキル側鎖、ステロイド骨格の側鎖、環構造を有する側鎖等を有するポリアミック酸、ポリイミドなどを用いた液晶配向膜が知られている(特許文献3、4、5)。光を用いた液晶配向処理では、プレチルト角は、通常、基板面への入射方向が基板法線傾斜した放射線の照射により付与される(特許文献1参照)。 For liquid crystal cells such as TN (Twisted Nematic) and STN (Super Twisted Nematic), the liquid crystal alignment film needs to have a function of tilting and aligning liquid crystal molecules at a predetermined angle (pretilt angle) with respect to the substrate surface ( (See Patent Document 15). In order to develop a pretilt angle, a liquid crystal alignment film using a polyamic acid having an alkyl side chain, a side chain of a steroid skeleton, a side chain having a ring structure, polyimide, or the like is known (Patent Documents 3 and 4). 5). In the liquid crystal alignment process using light, the pretilt angle is usually given by irradiation with radiation whose incident direction to the substrate surface is inclined normal to the substrate (see Patent Document 1).
特開平6-287453号公報JP-A-6-287453 特開平9-297313号公報JP-A-9-297313 特開平05-043687号公報Japanese Patent Laid-Open No. 05-043687 特開平04-281427号公報Japanese Patent Laid-Open No. 04-281427 特開平02-223916号公報Japanese Patent Laid-Open No. 02-223916
 従来、主な液晶配向膜は、上記のように、ポリイミド前駆体であるポリアミド酸又はポリイミドの溶液からなる液晶配向処理剤により形成されるが、可溶性ポリイミドを含む溶液を使用する液晶配向膜の調製方法は、比較的低温の焼成であっても、液晶配向膜として良好な特性を得られるメリットがある。しかし、側鎖を有するジアミンを多く含むポリイミドを使用する場合、基板への塗布・成膜性が悪くなるという問題を有する。
 このような問題を解決するために、少量で比較的高いプレチルト角が得られる環構造を側鎖に有するジアミン(例えば、特許文献5参照)を少量用いることで側鎖の量を減らし、基板への塗布性を向上させる方法も行なわれている。環構造を側鎖に有するジアミンはN-メチルピロリドン(以下、NMPともいう。)のような極性溶媒への溶解性が悪いものが多く、得られる重合体の品質にバラつきが生じるなどの問題が起こる可能性がある。
Conventionally, as described above, the main liquid crystal alignment film is formed of a liquid crystal alignment treatment agent composed of a polyimide precursor polyamic acid or a polyimide solution, but the preparation of a liquid crystal alignment film using a solution containing a soluble polyimide. The method has an advantage that good characteristics can be obtained as a liquid crystal alignment film even when firing at a relatively low temperature. However, when a polyimide containing a large amount of diamine having a side chain is used, there is a problem that the coating and film forming properties on the substrate are deteriorated.
In order to solve such a problem, the amount of the side chain is reduced by using a small amount of a diamine having a ring structure in the side chain that can obtain a relatively high pretilt angle in a small amount (for example, see Patent Document 5), and the substrate is supplied. A method for improving the applicability of the coating is also performed. Diamines having a ring structure in the side chain are often poorly soluble in polar solvents such as N-methylpyrrolidone (hereinafter also referred to as NMP), causing problems such as variations in the quality of the resulting polymer. It can happen.
 また、光配向に用いられる材料においても、シンナメート基などを含む側鎖を持った重合体などが用いられることが多く、また垂直配向用においては更に別の側鎖を有するジアミンを導入する必要がある。一般的に側鎖は疎水性のものが多く、基板への濡れ性が高い極性溶媒などとの親和性が低下するため、側鎖部位を多く有する重合体は、基板への塗布・成膜性が悪くなる問題を有する。 Also, in materials used for photo-alignment, polymers having side chains including cinnamate groups are often used, and for vertical alignment, it is necessary to introduce a diamine having another side chain. is there. In general, side chains are often hydrophobic, and the affinity with polar solvents that have high wettability to the substrate is reduced, so polymers with many side chain sites can be coated and formed on the substrate. Have the problem of getting worse.
 また、近年の液晶表示素子の高性能化に伴って、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、高輝度を得るために、発熱量の大きいバックライトを使用する場合があり、バックライトに対する高い安定性が要求されるようになっている。特に、電気特性の1つである電圧保持率が、バックライトの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼付き不良(線焼付き)が発生しやすく、信頼性の高い液晶表示素子を得ることができなくなる。したがって、液晶配向膜では、初期特性が良好なことに加え、例えば、光照射に長時間曝された後であっても、電圧保持率が低下しにくいことが求められている。 Also, along with the recent improvement in performance of liquid crystal display elements, liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels. In such applications, in order to obtain high luminance, a backlight having a large calorific value may be used, and high stability with respect to the backlight is required. In particular, if the voltage holding ratio, which is one of the electrical characteristics, is reduced by the light irradiation of the backlight, a seizure defect (linear seizure) that is one of the display defects of the liquid crystal display element is likely to occur. A highly reliable liquid crystal display element cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time.
 本発明は、上記の状況を鑑み、液晶配向処理剤に含まれる重合体のハンドリング性が良好で、塗布性に優れ、高い信頼性が得られる液晶配向処理剤を提供することを目的とする。また、本発明は、重合体を得る際に用いる溶媒への溶解性が良好で、印刷性に優れる液晶配向処理剤の提供が可能な側鎖を有するジアミンの提供、及び光の照射に曝されても電圧保持率の低下が抑制された液晶配向膜を提供することにある。 In view of the above situation, an object of the present invention is to provide a liquid crystal alignment treatment agent in which the polymer contained in the liquid crystal alignment treatment agent has good handling properties, excellent coating properties, and high reliability. In addition, the present invention provides a diamine having a side chain that is capable of providing a liquid crystal aligning agent having good solubility in a solvent used for obtaining a polymer and excellent printability, and is exposed to light irradiation. However, an object of the present invention is to provide a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed.
 本発明者は、上記目的を達成するために鋭意研究を行った結果、本発明を完成するに至った。即ち、本発明は以下の要旨を有する。
(1)下記式[1]のジアミンを含有するジアミン成分とテトラカルボン酸二無水物との反応で得られる、ポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000015
(式中、Xは下記式[2]で表される有機基であり、Y、Yは、独立してベンゼン環又はシクロヘキサン環を表す。p、qは、独立して0又は1の整数を表し、S、Sは、独立して単結合又は二価の連結基を表し、p=0のときSは単結合、q=0のときSは単結合である。Rは水素原子、フッ素原子、炭素数1~22のアルキル基、炭素数1~22のフルオロアルキル基又はステロイド基を表す。)
Figure JPOXMLDOC01-appb-C000016
(式中、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-から選ばれる二価の有機基を表し、nは0又は1を表し、Xの結合方向は限定されない。)
As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. That is, the present invention has the following gist.
(1) Selected from the group consisting of a polyimide precursor obtained by reaction of a diamine component containing a diamine of the following formula [1] and a tetracarboxylic dianhydride, and a polyimide obtained by imidizing the polyimide precursor. A liquid crystal aligning agent comprising at least one polymer.
Figure JPOXMLDOC01-appb-C000015
(In the formula, X is an organic group represented by the following formula [2], Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring. P and q are independently 0 or 1; S 1 and S 2 each independently represents a single bond or a divalent linking group, and when p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.)
Figure JPOXMLDOC01-appb-C000016
(Wherein C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group which can be removed by heat, and B 1 represents —CH 2 —, —O—, Represents a divalent organic group selected from —NH— and —S—, n represents 0 or 1, and the bonding direction of X is not limited.)
(2)前記ジアミン成分中の式[1]のジアミンの含有量が、5~95mol%である上記(1)に記載の液晶配向処理剤。
(3)前記式[2]のAが、式[3]で表される第三級ブトキシカルボニル基である上記(1)又は(2)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000017
(4)前記式[2]のC、Cが下記式[6]で表される二価の有機基である上記(1)~(3)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000018
(式中、S、Sは、独立して二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の二価の炭化水素基である。)
(5)前記式[6]の[-S-R-]が、下記式[4]で表され、かつC、Cのどちらか一方が式[4]の構造を有する上記(1)~(4)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000019
(式中、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-から選ばれる二価の有機基を表し、R10は炭素数1~6の二価の炭化水素を表す。式[4]のオレフィンの構造はE体、Z体のどちらでもよい。破線で示される結合は、式[2]のCが結合しているベンゼン環、又はCが結合しているカルボニル炭素に連結する。)
(2) The liquid crystal aligning agent according to the above (1), wherein the content of the diamine of the formula [1] in the diamine component is 5 to 95 mol%.
(3) The liquid crystal aligning agent according to the above (1) or (2), wherein A in the formula [2] is a tertiary butoxycarbonyl group represented by the formula [3].
Figure JPOXMLDOC01-appb-C000017
(4) The liquid crystal aligning agent according to any one of (1) to (3), wherein C 1 and C 2 in the formula [2] are divalent organic groups represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000018
(In the formula, S 3 and S 4 are each independently a divalent linking group, and R 2 and R 3 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. )
(5) In the above formula [6], [—S 4 —R 3 —] is represented by the following formula [4], and either C 1 or C 2 has the structure of the formula [4] The liquid crystal aligning agent according to any one of 1) to (4).
Figure JPOXMLDOC01-appb-C000019
(Wherein B 2 represents a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, and R 10 represents carbon. Represents a divalent hydrocarbon of formula 1 to 6. The structure of the olefin of formula [4] may be either E or Z. The bond indicated by the broken line is the bond of C 1 of formula [2] Benzene ring or carbonyl carbon to which C 2 is bonded.)
(6)前記式[2]において、n=0である上記(1)~(4)のいずれかに記載の液晶配向処理剤。
(7)前記式[2]において、Cが単結合である上記(1)~(5)のいずれに記載の液晶配向処理剤。
(8)前記式[2]において、Bが-O-又はNH-である上記(1)~(7)のいずれかに記載の液晶配向処理剤。
(9)前記式[4]において、Bが-O-又はNH-である上記(5)に記載の液晶配向処理剤。
(6) The liquid crystal aligning agent according to any one of (1) to (4), wherein n = 0 in the formula [2].
(7) The liquid crystal aligning agent according to any one of (1) to (5), wherein in the formula [2], C 1 is a single bond.
(8) The liquid crystal aligning agent according to any one of (1) to (7), wherein in the formula [2], B 1 is —O— or NH—.
(9) The liquid crystal aligning agent according to the above (5), wherein in the formula [4], B 2 is —O— or NH—.
(10)前記式[1]で表されるジアミンが、下記式[1-a]~[1-k]のいずれかの化合物である上記(1)~(9)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(10) The liquid crystal according to any one of (1) to (9), wherein the diamine represented by the formula [1] is a compound of any one of the following formulas [1-a] to [1-k]. Alignment treatment agent.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(11)上記(1)~(10)のいずれかに記載の液晶配向処理剤を用いた液晶配向膜。
(12)上記(1)~(10)のいずれかに記載の液晶配向処理剤を用いた液晶配向膜であり、光照射により配向処理を行う液晶配向膜。
(13)上記(11)又は(12)に記載の液晶配向膜を具備した液晶表示素子。
(11) A liquid crystal alignment film using the liquid crystal aligning agent according to any one of (1) to (10).
(12) A liquid crystal alignment film using the liquid crystal alignment treatment agent according to any one of (1) to (10), wherein the alignment process is performed by light irradiation.
(13) A liquid crystal display device comprising the liquid crystal alignment film according to (11) or (12).
(14)下記式[1]で表される構造を有するジアミン。
Figure JPOXMLDOC01-appb-C000022
(式中、Xは下記式[2]で表される有機基であり、Y、Yは、独立してベンゼン環又はシクロヘキサン環を表す。p、qは、独立して0又は1の整数を表し、S、Sは、独立して単結合又は二価の連結基を表し、p=0のときSは単結合、q=0のときSは単結合である。Rは水素原子、フッ素原子、炭素数1~22のアルキル基、炭素数1~22のフルオロアルキル基、又はステロイド基を表す。)
Figure JPOXMLDOC01-appb-C000023
(式中、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-選ばれる二価の有機基を表し、nは0又は1を表し、Xの結合方向は限定されない。
(14) A diamine having a structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000022
(In the formula, X is an organic group represented by the following formula [2], Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring. P and q are independently 0 or 1; S 1 and S 2 each independently represents a single bond or a divalent linking group, and when p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.)
Figure JPOXMLDOC01-appb-C000023
(Wherein C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group which can be removed by heat, and B 1 represents —CH 2 —, —O—, —NH— and —S— represent a divalent organic group selected, n represents 0 or 1, and the bonding direction of X is not limited.
(15)式[2]において、Aが式[3]で表される第三級ブトキシカルボニル基である上記(14)に記載のジアミン。
Figure JPOXMLDOC01-appb-C000024
(16)式[2]において、C、Cが下記式[6]で表される二価の有機基である上記(14)又は(15)に記載のジアミン。
Figure JPOXMLDOC01-appb-C000025
(式[6]中、S、Sは、独立して二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の二価の炭化水素基である。)
(15) The diamine according to (14), wherein in formula [2], A is a tertiary butoxycarbonyl group represented by formula [3].
Figure JPOXMLDOC01-appb-C000024
(16) The diamine according to (14) or (15), wherein in formula [2], C 1 and C 2 are divalent organic groups represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000025
(In the formula [6], S 3 and S 4 are independently a divalent linking group, and R 2 and R 3 are independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. .)
(17)前記式[6]の[-S-R-]が、下記式[4]で表され、かつC、Cのどちらか一方が式[4]の構造を有する上記(14)~(16)のいずれかに記載のジアミン。
Figure JPOXMLDOC01-appb-C000026
(式中、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-選ばれる二価の有機基を表し、R10は炭素数1~6の二価の炭化水素を表す。式[4]のオレフィンの構造はE体、Z体のどちらでもよい。破線で示される結合は、式[2]のCが結合しているベンゼン環、又はCが結合しているカルボニル炭素に連結される。)
(17) In the above formula [6], [—S 4 —R 3 —] is represented by the following formula [4], and either C 1 or C 2 has the structure of the formula [4] The diamine according to any one of 14) to (16).
Figure JPOXMLDOC01-appb-C000026
(Wherein B 2 represents a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, a divalent organic group selected, and R 10 represents the number of carbon atoms. divalent structures olefin hydrocarbons representing the. formula [4] E of 1-6 bond represented by either good. dashed Z member is attached is C 1 of the formula [2] Linked to benzene ring or carbonyl carbon to which C 2 is bonded.)
(18)下記式[1-a]~[1-k]のいずれかで表されるジアミン。
Figure JPOXMLDOC01-appb-C000028
(19)上記(14)~(18)のいずれかに記載のジアミンを原料として得られる、ポリアミド、ポリアミック酸、又は該ポリアミック酸をイミド化して得られるポリイミド。
(18) A diamine represented by any one of the following formulas [1-a] to [1-k].
Figure JPOXMLDOC01-appb-C000028
(19) Polyamide, polyamic acid, or polyimide obtained by imidizing the polyamic acid, obtained using the diamine according to any one of (14) to (18) as a raw material.
 本発明の液晶配向処理剤の原料として使用されるジアミンは、NMPなどの極性溶媒における溶解性が非常に高く、重合時のハンドリングが良好であり、かかるジアミンから得られるポリアミック酸、又は該ポリアミック酸をイミド化して得られるポリイミドを含有する液晶配向処理剤は塗布・成膜性に優れ、さらに、光の照射に曝されても電圧保持率の低下が抑制された液晶配向膜となる。また、上記のジアミンは光配向法にも適する液晶配向処理剤の提供も可能とする。 The diamine used as a raw material for the liquid crystal alignment treatment agent of the present invention has very high solubility in a polar solvent such as NMP and has good handling during polymerization. A polyamic acid obtained from such a diamine, or the polyamic acid The liquid crystal aligning agent containing polyimide obtained by imidizing is excellent in coating and film forming properties, and further becomes a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to light irradiation. In addition, the diamine described above can provide a liquid crystal aligning agent suitable for the photo-alignment method.
<本発明のジアミン>
 本発明の液晶配向処理剤の原料として使用されるジアミンは、上記のように、下記の式[1]で表わされるジアミン(以下、本発明のジアミンともいう。)である。
Figure JPOXMLDOC01-appb-C000029
<Diamine of the present invention>
As described above, the diamine used as a raw material for the liquid crystal aligning agent of the present invention is a diamine represented by the following formula [1] (hereinafter also referred to as the diamine of the present invention).
Figure JPOXMLDOC01-appb-C000029
 本発明のジアミンは、側鎖構造に、第三級ブトキシカルボニル基(以下Boc基ともいう。)などの熱脱離性基で保護されたフェニレンジアミン骨格を有する。通常、アミノ基は反応性に富む有機基であるため、そのままではジアミンの側鎖の一部として存在することは困難であるが、熱脱離性基で保護することによりアミノ基の反応性を低下させることができる。また、熱脱離性基で保護されたアミノ基は、約150℃以上で加熱すると熱脱離性基が脱保護されアミノ基に変化させることができる。 The diamine of the present invention has a phenylenediamine skeleton protected in the side chain structure by a thermally leaving group such as a tertiary butoxycarbonyl group (hereinafter also referred to as a Boc group). Usually, an amino group is a highly reactive organic group, so it is difficult to exist as it is as a part of the diamine side chain as it is, but the amino group can be made reactive by protecting it with a thermal leaving group. Can be reduced. In addition, when the amino group protected with a heat-leaving group is heated at about 150 ° C. or higher, the heat-leaving group is deprotected and can be converted into an amino group.
 また、アミノ基は反応性の高い有機基であり、不飽和結合、カルボン酸、カルボン酸無水物、エポキシ化合物、カルボニル基などの官能部位と反応することが知られている。一方で、下図に示したように、アミド結合、エステル結合などのカルボニルを含む結合基と近接して熱脱離性基で保護したアミノ基を配置させると、ジアミンの分子間よりも分子内で反応が起こりやすくなり、イミダゾール環、オキサゾール環、チアゾール環などの複素環を形成させることができる。 Also, amino groups are highly reactive organic groups and are known to react with functional sites such as unsaturated bonds, carboxylic acids, carboxylic anhydrides, epoxy compounds, and carbonyl groups. On the other hand, as shown in the figure below, when an amino group protected with a heat-eliminable group is placed in close proximity to a carbonyl-containing linking group such as an amide bond or an ester bond, it is more intramolecular than between diamine molecules. Reaction becomes easy to occur, and heterocyclic rings such as an imidazole ring, an oxazole ring, and a thiazole ring can be formed.
 これにより、本発明のジアミンは、液晶配向処理剤の焼成過程における熱処理よる脱離より生じたアミノ基を分子内で反応させることにより複素環を形成させ、リジッドな側鎖を生成させ、この側鎖構造がプレチルト角の良好な誘発部位として機能することになる。
Figure JPOXMLDOC01-appb-C000030
Thereby, the diamine of the present invention forms a heterocyclic ring by reacting the amino group generated by the heat treatment in the baking process of the liquid crystal aligning agent in the molecule, thereby generating a rigid side chain. The chain structure functions as a good induction site for the pretilt angle.
Figure JPOXMLDOC01-appb-C000030
 また、熱脱離性基が外れたアミノ基は、そのすべてが環化反応に用いられるわけではなく、一部は分子間反応にも用いられ、膜強度の向上や、重合体中の低分子成分と架橋することにより信頼性の向上に寄与する。かくして、本発明のジアミンを用いたポリアミック酸やポリイミドは、ラビング処理時の膜削れが起こり難く、長期間の高温、バックライト照射などに曝されても、電圧保持率の低下やイオン密度の増加が起こしにくいものとなる。
 さらに、本発明のジアミンは、熱脱離性基として、嵩高いBoc基などを有するため、ジアミンを(縮)重合する際の有機溶媒、特に、NMPなどの極性溶媒に対する溶解性が非常に高く、重合時のハンドリングが良好である。
 また、本発明のジアミンを用いて得られるポリイミド前駆体やポリイミドを用いた液晶配向処理剤は塗布・成膜性に優れ、光の照射に曝されても電圧保持率の低下が抑制された液晶配向膜が得られ、さらに、液晶配向処理剤は、光配向法においても使用することができる。
In addition, not all of the amino groups from which the thermal leaving group is removed are used in the cyclization reaction, and some of them are also used in the intermolecular reaction, improving the film strength and reducing the low molecular weight in the polymer. It contributes to the improvement of reliability by crosslinking with the component. Thus, the polyamic acid or polyimide using the diamine of the present invention is less prone to film scraping during rubbing treatment, and even when exposed to high temperature, backlight irradiation, etc. for a long time, the voltage holding ratio decreases and the ion density increases. Is difficult to wake up.
Furthermore, since the diamine of the present invention has a bulky Boc group as a thermally desorbable group, the solubility in an organic solvent (particularly a polar solvent such as NMP) at the time of (condensation) polymerization of the diamine is very high. Good handling during polymerization.
In addition, the polyimide precursor obtained using the diamine of the present invention and the liquid crystal alignment treatment agent using polyimide are excellent in coating and film forming properties, and the liquid crystal in which the decrease in voltage holding ratio is suppressed even when exposed to light irradiation. An alignment film can be obtained, and the liquid crystal alignment treatment agent can also be used in a photo-alignment method.
 本発明のジアミンは、下記式[A]で表される側鎖を有している。
Figure JPOXMLDOC01-appb-C000031
 式[A]中、Xは下記式[2]で表される有機基であり、Y、Yは、独立してベンゼン環又はシクロヘキサン環を表し、p、qは、独立して0又は1の整数を表し、S、S、は、独立して単結合又は二価の連結基を表し、p=0のときSは単結合、q=0のときSは単結合であり、Rは水素原子、フッ素原子、炭素数1~22のアルキル基、炭素数1~22のフルオロアルキル基、又はステロイド基を表す。式中、DAはフェニレンジアミン骨格を表す。
The diamine of the present invention has a side chain represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000031
In formula [A], X is an organic group represented by the following formula [2], Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring, and p and q are independently 0 or 1 represents an integer of 1 and S 1 and S 2 each independently represents a single bond or a divalent linking group. When p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. R 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group. In the formula, DA represents a phenylenediamine skeleton.
Figure JPOXMLDOC01-appb-C000032
 ここで、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-選ばれる二価の有機基を表し、nは0又は1を表す。Xの結合方向、すなわち、上記〔A〕において、XのCは、Y側に結合していてもよく、また、C側に結合していてもよい。
Figure JPOXMLDOC01-appb-C000032
Here, C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group that can be removed by heat, and B 1 represents —CH 2 —, —O—, — NH— and —S— represent a divalent organic group selected, and n represents 0 or 1. In the bonding direction of X, that is, in the above [A], C 1 of X may be bonded to the Y 1 side or may be bonded to the C 1 side.
 本発明のジアミンでは、DAはフェニレンジアミン骨格を有し、これにより、幅広い側鎖量や側鎖密度のジアミンにすることができる。しかし、ジアミン骨格の分子量が大きい場合などは、ジアミンの分子量が大きくなってしまい、重合体に必要となるモノマー量が多くなり、工業的に使用し難い。また、ジアミン骨格が脂肪族ジアミンの場合には、反応性が高くなりすぎ、重合体の調製時に塩形成による析出やゲル化などの問題が生じる。
 フェニレンジアミン骨格の有するアミノ基は、第一級アミノ基が好ましいが、第二級アミノ基であってもよく、例えばメチル基、エチル基、プロピル基、ブチル基などの比較的分子量の小さなアルキル基がアミノ基に置換されていてもよい。
In the diamine of the present invention, DA has a phenylenediamine skeleton, and thus can be a diamine having a wide side chain amount and side chain density. However, when the molecular weight of the diamine skeleton is large, the molecular weight of the diamine increases, and the amount of monomer required for the polymer increases, making it difficult to use industrially. Further, when the diamine skeleton is an aliphatic diamine, the reactivity becomes too high, and problems such as precipitation due to salt formation and gelation occur during the preparation of the polymer.
The amino group of the phenylenediamine skeleton is preferably a primary amino group, but may be a secondary amino group, for example, an alkyl group having a relatively low molecular weight such as a methyl group, an ethyl group, a propyl group, or a butyl group. May be substituted with an amino group.
 本発明のジアミンは、式[1]中の側鎖部位は下記式[5]で表され、この部位は、プレチルト角の発現、その大きさを決定する部分であり、最適化することによりプレチルト角の好ましい大きさを得ることが可能となる。
Figure JPOXMLDOC01-appb-C000033
 式[5]中、Y、Yは、独立してベンゼン環、又はシクロへキサン環である。ベンゼン環、及びシクロへキサン環は、必要に応じて置換基を有していてもよい。また、置換基の結合位置は、ベンゼン環、及びシクロヘキサン環のいずれもが、1,4置換が好ましい。p、qは、独立して0又は1の整数を表す。シクロヘキサン環は、トランス構造(いわゆるイス型)が好ましい。
In the diamine of the present invention, the side chain site in the formula [1] is represented by the following formula [5], and this site is a part that determines the expression and the size of the pretilt angle. It is possible to obtain a preferable size of the corner.
Figure JPOXMLDOC01-appb-C000033
In formula [5], Y 1 and Y 2 are each independently a benzene ring or a cyclohexane ring. The benzene ring and the cyclohexane ring may have a substituent if necessary. Moreover, as for the coupling | bonding position of a substituent, 1, 4-substitution is preferable in both a benzene ring and a cyclohexane ring. p and q independently represent an integer of 0 or 1. The cyclohexane ring preferably has a trans structure (so-called chair type).
 式[5]中、S、Sは、独立して単結合又は二価の連結基であり、p=0のときSは単結合、q=0のときSは単結合である。
 S、Sの具体例を、(S-1)~(S-11)に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000034
In formula [5], S 1 and S 2 are each independently a single bond or a divalent linking group. When p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. .
Specific examples of S 1 and S 2 are shown in (S-1) to (S-11), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000034
 上記式(S-5)~(S-8)、(S-10)、及び(S-11)において、R、Rは、独立して水素原子又は炭素数1~20、好ましくは1~15の1価の炭化水素基である。
 ここで、1価の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-、2-、又は3-ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等のアラルキル基などが挙げられる。
In the above formulas (S-5) to (S-8), (S-10), and (S-11), R 4 and R 5 are independently a hydrogen atom or a carbon number of 1 to 20, preferably 1 15 to 15 monovalent hydrocarbon groups.
Here, the monovalent hydrocarbon group is an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group or a decyl group; a cycloalkyl such as a cyclopentyl group or a cyclohexyl group. Group: bicycloalkyl group such as bicyclohexyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-, 2- or 3-butenyl group, hexenyl An alkenyl group such as a group; an aryl group such as a phenyl group, a xylyl group, a tolyl group, a biphenyl group and a naphthyl group; and an aralkyl group such as a benzyl group, a phenylethyl group and a phenylcyclohexyl group.
 なお、これらの1価の炭化水素基の水素原子の一部又は全部は、ハロゲン原子、水酸基、チオール基、アミノ基、リン酸エステル基、エステル基、カルボキシル基、リン酸基、チオエステル基、アミド基、ニトロ基、オルガノオキシ基、オルガノシリル基、オルガノチオ基、オルガノアミノ基、カルバミン酸エステル基、アシル基、アルキル基、シクロアルキル基、ビシクロアルキル基、アルケニル基、アリール基、アラルキル基などで置換されていてもよい。また、これらは環状構造であってもよい。
 R、Rは、芳香環や脂環構造などの嵩高い構造であると、液晶配向性を低下させたり、モノマーの形状が粘体状になり、扱いにくくなる可能性があるため、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、又は水素原子が好ましく、水素原子がより好ましい。特に好ましいS、Sは、単結合、-O-、-NHCO-、又は-COO-、である。
Some or all of the hydrogen atoms of these monovalent hydrocarbon groups are halogen atoms, hydroxyl groups, thiol groups, amino groups, phosphate ester groups, ester groups, carboxyl groups, phosphate groups, thioester groups, amides. Group, nitro group, organooxy group, organosilyl group, organothio group, organoamino group, carbamate group, acyl group, alkyl group, cycloalkyl group, bicycloalkyl group, alkenyl group, aryl group, aralkyl group, etc. May be. Further, these may have a ring structure.
When R 4 and R 5 have a bulky structure such as an aromatic ring or an alicyclic structure, the liquid crystal orientation may be reduced, or the monomer may become viscous and difficult to handle. , An alkyl group such as an ethyl group, a propyl group, or a butyl group, or a hydrogen atom is preferable, and a hydrogen atom is more preferable. Particularly preferred S 1 and S 2 are a single bond, —O—, —NHCO—, or —COO—.
 式[5]中、Rは水素原子、フッ素原子、炭素数1~22を有する、アルキル基若しくはフルオロアルキル基、又はステロイド基を表す。アルキル基、フルオロアルキル基は直鎖状又は分岐状でもよく、ステロイド基のように縮環構造を形成していてもよい。Rがアルキル基の場合、直鎖状が好ましく、また、適宜の置換基を有していてもよい。合成のし易さや入手性の点では、Rはアルキル基が好ましい。 Rのアルキル基の炭素数は特に限定されないが、式[5]中、p、qが0のとき、すなわち環構造が無い場合、プレチルト角の発現能は低くなるため、長鎖アルキル基であることが好ましく、好ましいRの炭素数は5~18であり、より好ましくは7~15である。
 また、ベンゼン環やシクロへキサン環を導入した場合、プレチルト角の発現能は向上するため、Rは炭素数の少ないアルキル基が好ましい。好ましいRの炭素数は、1~12であり、より好ましくは3~10である。
In the formula [5], R 1 represents a hydrogen atom, a fluorine atom, an alkyl group or a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group. The alkyl group and the fluoroalkyl group may be linear or branched, and may form a condensed ring structure like a steroid group. When R 1 is an alkyl group, it is preferably a straight chain and may have an appropriate substituent. From the viewpoint of ease of synthesis and availability, R 1 is preferably an alkyl group. The number of carbon atoms of the alkyl group of R 1 is not particularly limited. However, in the formula [5], when p and q are 0, that is, when there is no ring structure, the ability to develop a pretilt angle is low. It is preferable that R 1 has 5 to 18 carbon atoms, and more preferably 7 to 15 carbon atoms.
In addition, when a benzene ring or a cyclohexane ring is introduced, the ability to develop a pretilt angle is improved. Therefore, R 1 is preferably an alkyl group having a small number of carbon atoms. Preferable carbon number of R 1 is 1 to 12, more preferably 3 to 10.
 式[5]で表される構造の好ましい具体例を以下に示す。
Figure JPOXMLDOC01-appb-T000035
Preferred specific examples of the structure represented by the formula [5] are shown below.
Figure JPOXMLDOC01-appb-T000035
 合成のし易さや原料の入手性の点から、式[5]で表される構造は、[5-1]~[5-3]、[5-8]、[5-14]~[5-19]、[5-20]、[5-44]、[5-45]等が好ましく、特に[5-1]、[5-2]、[5-8]等がより好ましい。
 式[1]中のジアミノベンゼン骨格において、ベンゼン環におけるアミノ基の結合位置は限定されない。具体的なアミノ基の位置としては、側鎖の置換位置に対し2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、又は3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。合成の容易性も加味すると、2,4の位置(式1-1)、又は3,5の位置(式1-2)が好ましい。 
Figure JPOXMLDOC01-appb-C000036
From the viewpoint of ease of synthesis and availability of raw materials, the structure represented by the formula [5] has [5-1] to [5-3], [5-8], [5-14] to [5]. −19], [5-20], [5-44], [5-45] and the like are preferable, and [5-1], [5-2], [5-8] and the like are more preferable.
In the diaminobenzene skeleton in the formula [1], the bonding position of the amino group in the benzene ring is not limited. Specific amino group positions include 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions, 3, 4 positions, or 3, positions relative to the side chain substitution position. 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, the 2,4, 2,5, or 3,5 positions are preferred. Considering the ease of synthesis, the positions 2 and 4 (Formula 1-1) or the positions 3 and 5 (Formula 1-2) are preferable.
Figure JPOXMLDOC01-appb-C000036
 本発明のジアミンは、上記のように、焼成時にBoc基などの熱脱離性基の脱保護化を行ない、アミノ基を生じさせ、生成したアミノ基がカルボニル炭素に求核攻撃することにより複素環を形成する、熱環化反応を起こす。このため、本発明のジアミンには下記式[2]に示す構造がジアミンに含まれる。
Figure JPOXMLDOC01-appb-C000037
 ここで、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-選ばれる二価の有機基を表し、nは0又は1を表し、Xの結合部の方向は限定されない。
 上記式[2]中のAで表示される熱脱離性基は、本発明の液晶配向処理剤の焼成温度である、好ましくは150℃以上、より好ましくは170~300℃、特に好ましくは180~250℃において、熱による脱離が可能な有機基であれば特に限定はされない。
 熱脱離性基としては、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、第三級ブトキシカルボニル基(Boc基)などに代表されるカルバメート系の有機基が挙げられる。熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体である点から、Boc基が特に好ましい。
As described above, the diamine of the present invention deprotects a heat-eliminable group such as a Boc group during firing, generates an amino group, and the resulting amino group undergoes a nucleophilic attack on the carbonyl carbon to form a complex. A thermal cyclization reaction occurs to form a ring. For this reason, the structure shown to following formula [2] is contained in the diamine of this invention.
Figure JPOXMLDOC01-appb-C000037
Here, C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group that can be removed by heat, and B 1 represents —CH 2 —, —O—, — NH— and —S— represent a divalent organic group selected, n represents 0 or 1, and the direction of the bond portion of X is not limited.
The thermally desorbable group represented by A in the above formula [2] is the firing temperature of the liquid crystal aligning agent of the present invention, preferably 150 ° C. or more, more preferably 170 to 300 ° C., particularly preferably 180. The organic group is not particularly limited as long as it is an organic group that can be removed by heat at ˜250 ° C.
Examples of the thermal leaving group include carbamate-based organic groups represented by benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, tertiary butoxycarbonyl group (Boc group) and the like. It is done. The Boc group is particularly preferred because it has a high efficiency of desorption by heat, desorbs at a relatively low temperature, and is a harmless gas when desorbed.
 一般式[2]の好ましい例として、下記の式[2-1]~[2-16]にを示す。
 また、式[2]中のBは、-CH-、-O-、-NH-、及び-S-から選ばれる二価の有機基を表し、特に限定されないが、入手性、環化反応の収率、配向膜の電気得性などの点では、-O-又はNH-が特に好ましい。
 式[2]中のnについては、焼成によりBoc基がはずれてアミノ基が生じたした際、n=0のときは5員環複素環を形成し、n=1のときは6員環複素環を形成することができる。しかし、n=1の場合、アミノ基とカルボニル基の炭素の距離が遠のき、環化反応が起こりにくくなるため、環化反応の効率の点ではn=0が好ましい。
As preferred examples of the general formula [2], the following formulas [2-1] to [2-16] are shown.
B 1 in the formula [2] represents a divalent organic group selected from —CH 2 —, —O—, —NH—, and —S—, and is not particularly limited. From the viewpoint of the reaction yield and the electric yield of the alignment film, —O— or NH— is particularly preferable.
As for n in the formula [2], when the Boc group is removed and an amino group is generated by firing, a 5-membered heterocyclic ring is formed when n = 0, and a 6-membered heterocyclic group is formed when n = 1. Rings can be formed. However, when n = 1, the distance between the carbon of the amino group and the carbonyl group is long, and the cyclization reaction hardly occurs. Therefore, n = 0 is preferable from the viewpoint of the efficiency of the cyclization reaction.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式[2]中、C、Cは、単結合、又は二価の有機基を表す。二価の有機基であれば特に限定はされず、合成のし易さや原料の入手性などにより種々選択される。C、Cが二価の有機基の場合、以下に示す式[6]で表される構造で表すことができる。
Figure JPOXMLDOC01-appb-C000040
 式[6]中、S、Sは、独立して単結合又は二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の二価の炭化水素である。
 S、Sの具体例は、前記式[S-1]~[S-11]と同様であるが、これ以外の連結基であってもよい。
In formula [2], C 1 and C 2 represent a single bond or a divalent organic group. The divalent organic group is not particularly limited and may be variously selected depending on easiness of synthesis and availability of raw materials. When C 1 and C 2 are divalent organic groups, they can be represented by the structure represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000040
In the formula [6], S 3 and S 4 are each independently a single bond or a divalent linking group, and R 2 and R 3 are independently a single bond or a divalent carbon atom having 1 to 20 carbon atoms. Hydrogen.
Specific examples of S 3 and S 4 are the same as those in the above formulas [S-1] to [S-11], but other linking groups may be used.
 式[6]中、R、Rが炭素数1~20の2価の炭化水素である場合、具体例を以下に挙げる。
 例えば、メチレン基、1,1-エチレン基、1,2-エチレン基、1,1-プロピレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、2,3-ブチレン基、1,6-へキシレン基、1,8-オクチレン基、1,10-デシレン基等のアルキレン基;1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,1-シクロへキシレン基、1,2-シクロへキシレン基、1,4-シクロへキシレン基等のシクロアルキレン基;1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基、1,2-エテニレン-1,2-ヘプチレン基、1,2-エテニレン-1,2-デシレン基等のアルケニレン基;エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基、エチニレン-1,2-ヘプチレン基、エチニレン-1,2-デシレン基等のアルキニレン基;1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,2-ナフチレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,3-ナフチレン基、2,6-ナフチレン基、3-フェニル-1,2-フェニレン基、2,2’-ジフェニレン基、2,2’-ジナフト-1,1’-イル基等のアリーレン基;1,2-フェニレンメチレン基、1,3-フェニレンメチレン基、1,4-フェニレンメチレン基、1,2-フェニレン-1,1-エチレン基、1,2-フェニレン-1,2-エチレン基、1,2-フェニレン-1,2-プロピレン基、1,2-フェニレン-1,3-プロピレン基、1,2-フェニレン-1,4-ブチレン基、1,2-フェニレン-1,2-ブチレン基、1,2-フェニレン-1,2-ヘキシレン基、メチレン―1,2-フェニレンメチレン基、メチレン―1,3-フェニレンメチレン基、メチレン―1,4-フェニレンメチレン基等のアリーレン基とアルキレン基からなる二官能炭化水素基が挙げられる。
In the formula [6], when R 2 and R 3 are divalent hydrocarbons having 1 to 20 carbon atoms, specific examples are given below.
For example, methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,1-propylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4 Alkylene groups such as -butylene group, 2,3-butylene group, 1,6-hexylene group, 1,8-octylene group and 1,10-decylene group; 1,2-cyclopropylene group, 1,2-cyclohexane Cycloalkylene such as butylene, 1,3-cyclobutylene, 1,2-cyclopentylene, 1,1-cyclohexylene, 1,2-cyclohexylene, 1,4-cyclohexylene Group: 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1-ethylene group, , 2-Ethenylene-1,2-ethylene 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1,4-butylene group, 1,2-ethenylene-1,2- Alkenylene groups such as butylene, 1,2-ethenylene-1,2-heptylene, 1,2-ethenylene-1,2-decylene; ethynylene, ethynylenemethylene, ethynylene-1,1-ethylene, Ethynylene-1,2-ethylene group, ethynylene-1,2-propylene group, ethynylene-1,3-propylene group, ethynylene-1,4-butylene group, ethynylene-1,2-butylene group, ethynylene-1,2 Alkynylene groups such as -heptylene group, ethynylene-1,2-decylene group, etc .; 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthylene Group, 1,4-naphthylene group, 1,5-naphthylene group, 2,3-naphthylene group, 2,6-naphthylene group, 3-phenyl-1,2-phenylene group, 2,2′-diphenylene group, 2 Arylene groups such as 1,2′-dinaphth-1,1′-yl group; 1,2-phenylenemethylene group, 1,3-phenylenemethylene group, 1,4-phenylenemethylene group, 1,2-phenylene-1, 1-ethylene group, 1,2-phenylene-1,2-ethylene group, 1,2-phenylene-1,2-propylene group, 1,2-phenylene-1,3-propylene group, 1,2-phenylene- 1,4-butylene group, 1,2-phenylene-1,2-butylene group, 1,2-phenylene-1,2-hexylene group, methylene-1,2-phenylenemethylene group, methylene-1,3-phenylene Methylene group, methyle And a bifunctional hydrocarbon group composed of an arylene group such as chloro-1,4-phenylenemethylene group and an alkylene group.
 なお、上記2価炭化水素基の水素原子の一部又は全部は、ハロゲン原子、水酸基、チオール基、リン酸エステル基、エステル基、カルボキシル基、リン酸基、チオエステル基、アミド基、ニトロ基、オルガノオキシ基、オルガノシリル基、オルガノチオ基、オルガノアミノ基、カルバミン酸エステル基、アシル基、アルキル基、シクロアルキル基、ビシクロアルキル基、アルケニル基、アリール基、アラルキル基などで置換されていてもよい。また、これらは環状構造であってもよい。
 R、Rは、炭素数が少ないほうが、モノマーが固体になりやすく、液晶配向膜として用いた際、プレチルト角の安定性が向上するため、炭素数1~6のアルキレン基、炭素数1~6のアルケニレン基、又は炭素数1~6のアルキニレン基が好ましい。
 式[6]中、Cの結合位置としては、Boc基で保護されたアミノ基の置換位置から見て4位、又は5位が好ましいが、4位、5位のどちらにおいても環化後の構造は同じになるため、特に限定されない。
In addition, a part or all of the hydrogen atoms of the divalent hydrocarbon group may be halogen atoms, hydroxyl groups, thiol groups, phosphate ester groups, ester groups, carboxyl groups, phosphate groups, thioester groups, amide groups, nitro groups, May be substituted with an organooxy group, organosilyl group, organothio group, organoamino group, carbamate group, acyl group, alkyl group, cycloalkyl group, bicycloalkyl group, alkenyl group, aryl group, aralkyl group, etc. . Further, these may have a ring structure.
In R 2 and R 3 , the smaller the number of carbon atoms, the more easily the monomer becomes solid, and the stability of the pretilt angle improves when used as a liquid crystal alignment film. Therefore, an alkylene group having 1 to 6 carbon atoms, An alkenylene group having 6 to 6 carbon atoms or an alkynylene group having 1 to 6 carbon atoms is preferable.
In the formula [6], the binding position of C 1 is preferably 4-position or 5-position when viewed from the substitution position of the amino group protected by the Boc group, but after cyclization in both the 4-position and 5-position. Since the structure is the same, it is not particularly limited.
 また、式[6]において、[-S-R-]の構造が下記式[4]で表され、かつC、Cのどちらか一方が式[4]の構造を有する場合、光配向法で使用することが可能な構造となる。
Figure JPOXMLDOC01-appb-C000041
 ここで、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-から選ばれる二価の有機基を表し、R10は炭素数1~6の二価の炭化水素を表す。
In the formula [6], when the structure of [—S 4 —R 3 —] is represented by the following formula [4] and either C 1 or C 2 has the structure of the formula [4]: The structure can be used in the photo-alignment method.
Figure JPOXMLDOC01-appb-C000041
Here, B 2 represents a divalent organic group selected from a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, and R 10 represents the number of carbon atoms. 1 to 6 divalent hydrocarbons are represented.
 式[4]のオレフィン部位は、E体、Z体のどちらでもよく、オレフィンへの結合を示す破線は、一般式[2]のCが結合しているベンゼン環、又はCが結合しているカルボニル炭素に結合している。
 式[4]で表される構造が、光によって種々の反応を起こす部位となる。式中、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-から選ばれる二価の有機基を表し、合成の容易さや原料の入手性の点では-O-、又は-NH-が特に好ましい。R10は炭素数1~6の二価の炭化水素を示す。
 式[4]のオレフィン部位は、Cでは、合成のし易さからE体が好ましい。この場合、式[2]はシンナメート誘導体と同義となるため、光反応のしやすさから特に好ましい。
 一方、Cにおけるオレフィン部位は特に限定はされない。また、Cが式[4]で表させる構造を含む場合、熱により環化することで光反応活性となる。逆に環化していない場合においては、光反応は起こりにくく、モノマーやそれを用いた液晶配向処理剤や液晶配向膜は、紫外線による劣化などの影響が従来のシンナメート系よりも少なくなることが考えられ、そのような点では、Cが式[4]の構造であるものがより好ましい。
The olefin moiety of formula [4] may be either E-form or Z-form, and the broken line indicating the bond to olefin is the benzene ring to which C 1 of general formula [2] is bonded, or C 2 is bonded. Bonded to the carbonyl carbon.
The structure represented by the formula [4] is a site that causes various reactions by light. In the formula, B 2 represents a divalent organic group selected from a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—. From the viewpoint of availability, —O— or —NH— is particularly preferable. R 10 represents a divalent hydrocarbon having 1 to 6 carbon atoms.
The olefin moiety of the formula [4] is preferably E-form in C 1 because of easy synthesis. In this case, since the formula [2] is synonymous with the cinnamate derivative, it is particularly preferable from the viewpoint of easy photoreaction.
On the other hand, the olefin site in C 2 is not particularly limited. Also, if the C 2 comprises a structure that represented by the formula [4], the light reaction activity by cyclized by heat. On the other hand, when it is not cyclized, the photoreaction is unlikely to occur, and it is considered that the monomer, the liquid crystal alignment treatment agent and the liquid crystal alignment film using the monomer, are less affected by ultraviolet rays and the like than the conventional cinnamate system. In such a point, it is more preferable that C 2 has the structure of the formula [4].
 式[2]の好ましい具体例として、下記式[2-17]~[2-32]を示す。
Figure JPOXMLDOC01-appb-C000042
As preferred specific examples of the formula [2], the following formulas [2-17] to [2-32] are shown.
Figure JPOXMLDOC01-appb-C000042
 式[2-17]~[2-20]及び[2-25]~[2-28]は、焼成時に下記に示す式[2-33]~[2-40]に変化し、これによりシンナメートと同様の効果を得ることができると考えられる。
Figure JPOXMLDOC01-appb-C000043
Formulas [2-17] to [2-20] and [2-25] to [2-28] are changed to formulas [2-33] to [2-40] shown below upon firing, whereby cinnamate It is considered that the same effect can be obtained.
Figure JPOXMLDOC01-appb-C000043
 以下に特に好ましいジアミンの構造を示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Although the structure of especially preferable diamine is shown below, it is not limited to these.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 式[7-1]~[7-6]において、Bは-O-又はNH-を表し、C、Cは、独立して単結合又は二価の有機基を表し、Y、Yは、ベンゼン環又はシクロへキシル環であり、S、Sは、単結合又は二価の連結基であり、p、qは0又は1の整数を表し、p=0のときSは単結合であり、q=0のときはSは単結合であり、Rはプロトン、又は炭素数1~22のアルキル基を表す。
 ジアミンの構造の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
In the formulas [7-1] to [7-6], B 1 represents —O— or NH—, C 1 and C 2 each independently represents a single bond or a divalent organic group, Y 1 , Y 2 is a benzene ring or a cyclohexyl ring, S 1 and S 2 are a single bond or a divalent linking group, p and q represent 0 or an integer of 1, and when p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond, and R 1 represents a proton or an alkyl group having 1 to 22 carbon atoms.
Specific examples of the diamine structure are shown below.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
<本発明のジアミンの合成>
Figure JPOXMLDOC01-appb-C000049
 置換基Xが、置換されたo-フェニレンジアミン、2-アミノフェノール、2-アミノベンゼンチオールなど(基質)に、二炭酸ジtert-ブチルなどのBoc基などの熱脱離性基の保護に用いる化合物を溶媒中で作用させることにより目的の構造の前駆体が合成できる。このとき、必要に応じてピリジン、4-ジメチルアミノピリジン、トリエチルアミンなどの塩基を共存させることで収率や反応速度を向上させることができる。一方、これらの塩基を共存させて反応させると、熱脱離性基がアミノ基に対し2ユニット導入されたものや、熱脱離性基が水酸基に導入された生成物になってしまうため、反応させる基質に対して、より適合した条件を採用するのが好ましい。
<Synthesis of diamine of the present invention>
Figure JPOXMLDOC01-appb-C000049
Substituent X is used for substituted o-phenylenediamine, 2-aminophenol, 2-aminobenzenethiol, etc. (substrate) to protect thermally leaving groups such as Boc groups such as di-tert-butyl dicarbonate. A precursor having a desired structure can be synthesized by allowing the compound to act in a solvent. At this time, the yield and reaction rate can be improved by coexisting a base such as pyridine, 4-dimethylaminopyridine, or triethylamine as necessary. On the other hand, if these bases are allowed to coexist and react with each other, two units of the heat-eliminable group are introduced into the amino group or a product in which the heat-eliminable group is introduced into the hydroxyl group, It is preferable to adopt conditions more suitable for the substrate to be reacted.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 式[2]で表される部位、すなわち環化が起こる部位をジアミノベンゼン側に向けたい場合は、Xが未置換、又は側鎖状の置換基であるものを入手し、上記の手法でアミノ基を熱脱離性基で保護し、ジニトロベンゼンを導入しジアミンに変換する方法が挙げられる。以下に具体的な合成例を示す。
Figure JPOXMLDOC01-appb-C000051
When it is desired to direct the site represented by the formula [2], that is, the site where cyclization occurs to the diaminobenzene side, obtain a compound in which X is an unsubstituted or side chain substituent, Examples include a method in which a group is protected with a thermally leaving group, and dinitrobenzene is introduced to convert it into a diamine. Specific synthesis examples are shown below.
Figure JPOXMLDOC01-appb-C000051
 一方、環化が起こる部位を側鎖側に向けたい場合、上記式のXは予め保護しておくか、又は後に変換できるような不活性な置換基の状態にしておき、熱脱離性基で保護されたアミノ基に近接するアミノ基や水酸基に側鎖を導入し、その後Xを活性な置換基などに変換し、ジニトロベンゼンを導入し、ジアミンに変換する方法が挙げられる。以下に具体的な合成例を示す。
Figure JPOXMLDOC01-appb-C000052
 カルボン酸とアミンとの縮合反応でアミド結合、カルボン酸とアルコールやフェノールとを縮合反応させることでエステル結合が合成できる。この反応は、カルボン酸、アミン、及びアルコールと反応しない溶媒中にて、塩基の存在下、カルボン酸ハライドと、アミン、アルコール、又はフェノールとを反応させる方法、又は縮合剤存在下、カルボン酸と、アミン、アルコール、又はフェノールとを反応させる方法、で得ることができる。
On the other hand, when it is desired to direct the site where cyclization occurs to the side chain side, X in the above formula is protected in advance, or is in an inactive substituent group that can be converted later, and a thermal leaving group. And a method in which a side chain is introduced into an amino group or a hydroxyl group adjacent to the amino group protected with, then X is converted into an active substituent and the like, and dinitrobenzene is introduced to convert it into a diamine. Specific synthesis examples are shown below.
Figure JPOXMLDOC01-appb-C000052
An amide bond can be synthesized by a condensation reaction between a carboxylic acid and an amine, and an ester bond can be synthesized by a condensation reaction between the carboxylic acid and an alcohol or phenol. This reaction is a method of reacting a carboxylic acid halide with an amine, alcohol, or phenol in the presence of a base in a solvent that does not react with carboxylic acid, amine, and alcohol, or with a carboxylic acid in the presence of a condensing agent. , A method of reacting with amine, alcohol, or phenol.
 カルボン酸ハライドは、カルボン酸を適当なハロゲン化剤と反応させることで得ることができる。汎用性の点から、使用されるカルボン酸ハライドは、カルボン酸塩化物、例えば、カルボン酸クロリドが好ましい。カルボン酸クロリドはカルボン酸と塩素化剤とを反応させることで得られる。塩素化剤の例としては、塩化チオニル、塩化ホスホニル、塩化スルフリル、塩化オキサリル、三塩化リン、五塩化二リンなどが挙げられるが、汎用性、除去のし易さなどの点で塩化チオニル、塩化スルフリル、塩化オキサリルなどが好ましく、特に塩化チオニル、又は塩化オキサリルが好ましい。 The carboxylic acid halide can be obtained by reacting the carboxylic acid with an appropriate halogenating agent. From the viewpoint of versatility, the carboxylic acid halide used is preferably a carboxylic acid chloride, for example, carboxylic acid chloride. Carboxylic acid chloride is obtained by reacting carboxylic acid with a chlorinating agent. Examples of chlorinating agents include thionyl chloride, phosphonyl chloride, sulfuryl chloride, oxalyl chloride, phosphorus trichloride, diphosphorus pentachloride, etc., but thionyl chloride, chloride, etc. are versatile and easy to remove. Sulfuryl, oxalyl chloride and the like are preferable, and thionyl chloride and oxalyl chloride are particularly preferable.
 また、上記の反応に用いる溶媒としてはN-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、クロロホルム、ジクロロエタン、ジクロロメタン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどが挙げられる。縮合反応の際に用いられる塩基としてはピリジン、4-ジメチルアミノピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン、N-メチルモルホルリンなどの有機塩基や、場合によっては水酸化ナトリウム水溶液や水酸化カリウム水溶液などの無機塩基水溶液を用いる(ショッテン・バウマン法)方法も挙げられる。 The solvent used in the above reaction includes N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, chloroform, dichloroethane, dichloromethane, tetrahydrofuran, tetrahydropyran, , 4-dioxane and the like. Bases used in the condensation reaction include organic bases such as pyridine, 4-dimethylaminopyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, N-methylmorpholine, and in some cases, aqueous sodium hydroxide or water. A method using an aqueous solution of an inorganic base such as an aqueous potassium oxide solution (Schotten-Baumann method) is also included.
 縮合剤存在下にて縮合反応させる場合、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物などの縮合剤が使用できる。 When the condensation reaction is performed in the presence of a condensing agent, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3 , 5-Triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) ) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, 4- (4,6- Dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride, n-hydrate, etc. There can be used.
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は、Cのモル数に対して0.1~1.0倍モルが好ましい。
 一般式[2]のC、Cで表される連結基において、好ましいC、Cの構造としては、下記式[6]で表す二価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000053
In the method using the condensing agent, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0.1 to 1.0 times moles relative to number of moles of C 1.
In the linking group represented by C 1 and C 2 in the general formula [2], a preferable C 1 and C 2 structure includes a divalent organic group represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000053
 ここで、S、Sは、独立して単結合又は二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の2価の炭化水素である。具体例としては、式[1-c]、式[1-i]、式[1-h]のジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000054
Here, S 3 and S 4 are each independently a single bond or a divalent linking group, and R 2 and R 3 are each independently a single bond or a divalent hydrocarbon having 1 to 20 carbon atoms. . Specific examples include diamines of formula [1-c], formula [1-i], and formula [1-h].
Figure JPOXMLDOC01-appb-C000054
 式[4-c]のジアミンは、上記した環化部位が側鎖向きとなる手法に準じて合成することができる。
Figure JPOXMLDOC01-appb-C000055
The diamine of the formula [4-c] can be synthesized according to the above-described method in which the cyclization site is directed to the side chain.
Figure JPOXMLDOC01-appb-C000055
 式[4-i]及び式[4-h]のジアミンの合成においては、上記した環化部位がジアミン側向きとなる方法に準じて合成できるが、合成法はそれ以外の方法でも可能なため、特に限定されない。
 ジアミン中にオレフィン構造を導入する場合、E(トランス)体とZ(シス)の構造異性体のどちらでも同様な効果が得られる。E体を合成する場合はフマル酸を用いることで合成でき、Z体はマレイン酸を用いることで合成できる。E体の合成法としては、Z体の異性化反応を利用して合成する方法もあり、フマル酸を経由する合成法よりも選択性に優れ、収率良く合成できるため、E体、Z体に関わらずマレイン酸を用いる方法が好ましい。
In the synthesis of the diamines of the formulas [4-i] and [4-h], they can be synthesized according to the method in which the cyclization site is directed to the diamine side, but the synthesis method can also be performed by other methods. There is no particular limitation.
When an olefin structure is introduced into the diamine, the same effect can be obtained with either the E (trans) isomer or the Z (cis) isomer. When the E-form is synthesized, it can be synthesized by using fumaric acid, and the Z-form can be synthesized by using maleic acid. There is also a method of synthesizing the E isomer by utilizing the isomerization reaction of the Z isomer, which is superior to the synthesis method via fumaric acid and can be synthesized with high yield. Regardless, the method using maleic acid is preferred.
 式[4-i]、及び式[4-h]のジアミン合成例において、エーテル結合を形成させる工程があるが、エーテル結合はアルキルハライド又はアリールハライドとアルコールとを、それらと反応しない溶媒中で塩基存在下にて反応させるウィリアムソン・エーテル合成法にて得ることができる。他にパラジウム触媒などを用いた方法、銅を触媒に用いる方法などでも得ることができる。反応させる基質により好ましい手段が選択される。反応後の後処理やコスト面を考慮するとウィリアムソン・エーテル合成法が好ましい。用いる塩基は特に限定しないが、水素化ナトリウム、水素化カリウム、炭酸カリウム、水酸化ナトリウム、ナトリウムアルコキシド、カリウムアルコキシドなどの無機塩基、又はトリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどの有機塩基を使用できる。 In the diamine synthesis examples of the formula [4-i] and the formula [4-h], there is a step of forming an ether bond, but the ether bond is an alkyl halide or aryl halide and an alcohol in a solvent that does not react with them. It can be obtained by the Williamson ether synthesis method in which the reaction is carried out in the presence of a base. In addition, a method using a palladium catalyst or the like, a method using copper as a catalyst, or the like can be used. A preferred means is selected depending on the substrate to be reacted. The Williamson ether synthesis method is preferable in consideration of post-treatment after reaction and cost. The base to be used is not particularly limited, but an inorganic base such as sodium hydride, potassium hydride, potassium carbonate, sodium hydroxide, sodium alkoxide, potassium alkoxide, or an organic base such as triethylamine, trimethylamine, tributylamine, trioctylamine is used. it can.
 上記した合成法などを用いることにより、ジニトロベンゼン誘導体[8]を合成し、通常の還元反応にてニトロ基をアミノ基に変換することにより目的とするジアミンを得ることができる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコールなどの溶媒中で、水素ガス、ヒドラジン、塩化水素などによって還元を行う方法がある。必要に応じてオートクレープなどを用いてもよい。一方で、構造に不飽和結合部位を含む場合、パラジウムカーボン、白金カーボンなどを用いると不飽和結合部位が還元されてしまい、飽和結合となってしまう恐れがあるため、好ましい条件としては、還元鉄、錫、塩化錫などの遷移金属を触媒として用いる還元条件が好ましい。
Figure JPOXMLDOC01-appb-C000056
By using the synthesis method described above and the like, the dinitrobenzene derivative [8] is synthesized, and the target diamine can be obtained by converting the nitro group to an amino group by a normal reduction reaction. The method for reducing the dinitro compound is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, and ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method of performing reduction with hydrogen gas, hydrazine, hydrogen chloride or the like in a solvent such as alcohol. You may use an autoclave etc. as needed. On the other hand, when an unsaturated bond site is included in the structure, if palladium carbon, platinum carbon or the like is used, the unsaturated bond site may be reduced and become a saturated bond. Reduction conditions using a transition metal such as tin, tin chloride as a catalyst are preferred.
Figure JPOXMLDOC01-appb-C000056
<本発明の重合体>
 本発明における重合体とは、ポリイミド前駆体、該ポリイミド前駆体をイミド化して得られるポリイミド、ポリアミドを指す。ここで、ポリイミド前駆体とは、ポリアミック酸及びポリアミック酸エステルを指す。本発明のジアミンは、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸二無水物など、テトラカルボン酸又はその誘導体と反応させることで側鎖に特定の構造を有するポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドとジアミンとの反応や、テトラカルボン酸ジエステルとジアミンを適当な縮合剤、及び塩基の存在下にて反応させることによりポリアミック酸エステルを得ることができる。更には、上記ポリアミック酸を脱水閉環させる、又はポリアミック酸エステルを高温で加熱し、脱アルコールを促し、閉環させることにより側鎖に特定の構造を有するポリイミドを得ることができる。
<Polymer of the present invention>
The polymer in the present invention refers to a polyimide precursor, a polyimide obtained by imidizing the polyimide precursor, and polyamide. Here, the polyimide precursor refers to a polyamic acid and a polyamic acid ester. The diamine of this invention can obtain the polyamic acid which has a specific structure in a side chain by making it react with tetracarboxylic acid or its derivative (s), such as tetracarboxylic acid, tetracarboxylic dihalide, and tetracarboxylic dianhydride. Moreover, polyamic acid ester can be obtained by reaction of tetracarboxylic acid diester dichloride and diamine, or by reacting tetracarboxylic acid diester and diamine in the presence of an appropriate condensing agent and a base. Furthermore, a polyimide having a specific structure in the side chain can be obtained by dehydrating and cyclizing the polyamic acid or heating the polyamic acid ester at a high temperature to promote dealcoholization and cyclization.
<ポリアミック酸、及びポリアミック酸エステル>
 本発明のポリアミック酸は、式[1]で表されるジアミンを含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られる。また、本発明のポリアミック酸エステルは、式[1]で表されるジアミンを含有するジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基存在下で反応させる、又はテトラカルボン酸ジエステルとジアミンを適当な縮合剤、及び塩基の存在下にて反応させることによって得られる。本発明のポリイミドは、このポリアミック酸を脱水閉環させる、あるいはポリアミック酸エステルを加熱閉環させることにより得られる。かかるポリアミック酸、ポリアミック酸エステル及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
<Polyamic acid and polyamic acid ester>
The polyamic acid of this invention is obtained by reaction of the diamine component containing the diamine represented by Formula [1], and tetracarboxylic dianhydride. Further, the polyamic acid ester of the present invention is obtained by reacting a diamine component containing the diamine represented by the formula [1] and a tetracarboxylic acid diester dichloride in the presence of a base, or by reacting a tetracarboxylic acid diester and a diamine with an appropriate condensing agent. , And in the presence of a base. The polyimide of the present invention can be obtained by dehydrating and ring-closing this polyamic acid or by heating and ring-closing the polyamic acid ester. Any of such polyamic acid, polyamic acid ester, and polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
 上記テトラカルボン酸二無水物との反応によりポリアミック酸を得るためのジアミン成分(以下、ジアミン成分ともいう)において、式[1]で表されるジアミンの含有割合に制限はない。上記ポリアミック酸又はポリイミドを用いて得られる本発明の液晶配向膜は、上記ジアミン成分における式[1]で表されるジアミンの含有割合が多くなるほど、液晶のプレチルト角が大きくなる。
 液晶のプレチルト角を大きくするという目的では、ジアミン成分の1mol%以上が式[1]で表されるジアミンであることが好ましい。式[1]の側鎖構造や液晶の配向モードにより好ましい含有量は異なるため、好ましい含有量は必ずしも設定できないが、TNモード、OCBモードなどにおいては水平配向規制力も加味する必要があるため、重合に用いられるジアミン成分における式[1]で表されるジアミンの含有割合は、1~50mol%が好ましく、特に好ましくは5~30mol%が好ましい。
In the diamine component (hereinafter also referred to as a diamine component) for obtaining a polyamic acid by reaction with the tetracarboxylic dianhydride, there is no limitation on the content ratio of the diamine represented by the formula [1]. In the liquid crystal alignment film of the present invention obtained using the polyamic acid or polyimide, the pretilt angle of the liquid crystal increases as the content ratio of the diamine represented by the formula [1] in the diamine component increases.
For the purpose of increasing the pretilt angle of the liquid crystal, 1 mol% or more of the diamine component is preferably a diamine represented by the formula [1]. Since the preferred content differs depending on the side chain structure of the formula [1] and the alignment mode of the liquid crystal, the preferred content cannot always be set. However, in the TN mode, the OCB mode, etc., it is necessary to take into account the horizontal alignment regulating force, so The content of the diamine represented by the formula [1] in the diamine component used in is preferably 1 to 50 mol%, particularly preferably 5 to 30 mol%.
 液晶を垂直に配向させるという目的では、ジアミン成分の100mol%が式[1]で表されるジアミンであってもよい。式[1]のジアミンは重合体の重合粘度を大きく低下させ、液晶配向処理剤の粘度が低くなってしまうことから、フレキソ印刷などにおいて、所要の膜厚を得るための含有量は30~70mol%が好ましい。
 上記ジアミン成分において、式(1)で表されるジアミンが100mol%未満の場合に使用される、式(1)で表されるジアミン以外のジアミン(以下、その他のジアミンともいう。)の具体例は、以下の通りである。
For the purpose of vertically aligning the liquid crystal, 100 mol% of the diamine component may be a diamine represented by the formula [1]. Since the diamine of the formula [1] greatly reduces the polymerization viscosity of the polymer and the viscosity of the liquid crystal alignment treatment agent, the content for obtaining a required film thickness in flexographic printing or the like is 30 to 70 mol. % Is preferred.
Specific examples of diamines other than the diamine represented by formula (1) (hereinafter also referred to as other diamines) used when the diamine represented by formula (1) is less than 100 mol% in the diamine component. Is as follows.
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamino-3,3′-dimethyldiphenylmethane, 2,2′-diaminostilbene, 4,4′-diaminostilbene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,5-bis (4-aminophenoxy) ) Benzoic acid, 4,4′-bis (4-aminophenoxy) bibenzyl, 2,2-bis [(4-aminophenoxy) methyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] Hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (3-aminophenyl) Enoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 1,1-bis (4-aminophenyl) cyclohexane, α, α′-bis (4-aminophenyl) -1,4- Diisopropylbenzene, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4 ′ -Diaminodiphenylamine, 2,4-diaminodiphenylamine, 1,8-diaminonaphthalene, 1,5-diaminonaphthalene, 1,5-diaminoanthraquinone, 1,3-diaminopyrene, 1,6-diaminopyrene, 1,8- Diaminopyrene, 2,7-diaminofluorene, 1,3-bis (4-aminophenyl) tetramethyldisi Xanthone, benzidine, 2,2'-dimethylbenzidine, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane 1,5-bis (4-aminophenyl) pentane, 1,6-bis (4-aminophenyl) hexane, 1,7-bis (4-aminophenyl) heptane, 1,8-bis (4-aminophenyl) ) Octane, 1,9-bis (4-aminophenyl) nonane, 1,10-bis (4-aminophenyl) decane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4- Aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane 1,8-bis (4-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, di (4-aminophenyl) propane-1, 3-dioate, di (4-aminophenyl) butane-1,4-dioate, di (4-aminophenyl) pentane-1,5-dioate, di (4-aminophenyl) hexane-1,6-dioate, di (4-aminophenyl) heptane-1,7-dioate, di (4-aminophenyl) octane-1,8-dioate, di (4-aminophenyl) nonane-1,9-dioate, di (4-aminophenyl) ) Decane-1,10-dioate, 1,3-bis [4- (4-aminophenoxy) phenoxy] propane, 1,4-bis [4- (4-aminopheno) Phenoxy] butane, 1,5-bis [4- (4-aminophenoxy) phenoxy] pentane, 1,6-bis [4- (4-aminophenoxy) phenoxy] hexane, 1,7-bis [4- (4-aminophenoxy) phenoxy] heptane, 1,8-bis [4- (4-aminophenoxy) phenoxy] octane, 1,9-bis [4- (4-aminophenoxy) phenoxy] nonane, 1,10- And bis [4- (4-aminophenoxy) phenoxy] decane.
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。 Examples of aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methylaminopentyl) aniline, 4- (5-methylaminopentyl) aniline, 2- (6-aminonaphthyl) methylamine, 3- (6-aminonaphthyl) methylamine, 2- (6 -Aminonaphthyl) ethylamine, 3- (6-aminonaphthyl) ethylamine and the like.
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
Examples of heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino Examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminooctadecane, and 1,2-bis (3-aminopropoxy) ethane.
 側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミン化合物を併用してもよい。具体的には、下記の式[DA1]~[DA26]で示されるジアミンを例示される。
Figure JPOXMLDOC01-appb-C000057
(Rは、炭素数1~22を有する、アルキル基若しくはフッ素含有アルキル基である。)
You may use together the diamine compound which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a side chain. Specifically, diamines represented by the following formulas [DA1] to [DA26] are exemplified.
Figure JPOXMLDOC01-appb-C000057
(R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000058
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1~22を有する、アルキル基若しくはフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000058
(S 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—, and R 6 represents 1 to 22 carbon atoms. It has an alkyl group or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000059

(Sは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000059

(S 6 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 7 represents an alkyl group or alkoxy group having 1 to 22 carbon atoms. A fluorine-containing alkyl group or a fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000060
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1~22を有する、アルキル基、アルコキシ基、フッ素含有アルキル基若しくはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000060
(S 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —. R 8 represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000061
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000061
(S 8 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O — Represents — or —NH—, and R 9 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
(R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
(R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 光により配向処理する場合においては、一般式[1]のジアミンと上記[DA-1]~[DA-26]のジアミンを併用させることで、さらに安定したプレチルト角を得ることができるため好ましい。併用できるより好ましいジアミンとしては、式[DA-10]~[DA-26]が好ましく、より好ましくは[DA-10]~[DA-16]のジアミンである。これらのジアミンの好ましい含有量は、特に限定はされないが、ジアミン成分中の5~50mol%が好ましく、印刷性の点では5~30mol%が好ましい。
 また、以下のジアミンを併用させてもよい。
In the case of aligning with light, it is preferable to use a diamine of the general formula [1] in combination with the diamines of the above [DA-1] to [DA-26] because a more stable pretilt angle can be obtained. More preferred diamines that can be used in combination are those represented by the formulas [DA-10] to [DA-26], more preferably diamines of [DA-10] to [DA-16]. The preferred content of these diamines is not particularly limited, but is preferably 5 to 50 mol% in the diamine component, and is preferably 5 to 30 mol% in terms of printability.
Moreover, you may use the following diamine together.
Figure JPOXMLDOC01-appb-C000067
(mは0~3の整数であり、式[DA-34]中、nは1~5の整数である)。
 式[DA-27]、式[DA-28]等のジアミンを含有させることにより、液晶配向膜とした際の電圧保持特性を向上させることができ、式[DA-29]~[DA-34]のジアミンは蓄積電化の低減に効果がある。
Figure JPOXMLDOC01-appb-C000067
(M is an integer of 0 to 3, and n is an integer of 1 to 5 in the formula [DA-34]).
By containing a diamine of formula [DA-27], formula [DA-28] or the like, the voltage holding characteristic when a liquid crystal alignment film is formed can be improved. Formulas [DA-29] to [DA-34 ] Is effective in reducing the accumulation of electricity.
 さらに、下記の式[DA-35]で示されるようなジアミノシロキサンなども、その他のジアミンとして挙げることができる。
Figure JPOXMLDOC01-appb-C000068
(mは、1~10の整数である。)
 その他のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Furthermore, diaminosiloxanes represented by the following formula [DA-35] can also be mentioned as other diamines.
Figure JPOXMLDOC01-appb-C000068
(M is an integer from 1 to 10.)
Other diamine compounds may be used alone or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is formed.
 本発明のポリアミド酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物などが挙げられる。
The tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited. Specific examples are given below.
Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyltetra Carboxylic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic dianhydride , Tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7,8-dianhydride, hexacyclo [6.6.0.1 2 , 7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dianhydride, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2 3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride and the like.
 更に、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。
Furthermore, in addition to the tetracarboxylic dianhydride having the alicyclic structure or aliphatic structure, the use of aromatic tetracarboxylic dianhydride improves the liquid crystal alignment and reduces the accumulated charge in the liquid crystal cell. This is preferable.
Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用することができる。
 本発明のポリアミド酸エステルを得るためにジアミン成分と反応させるテトラカルボン酸ジアルキルエステルは特に限定されない。その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体例としては、1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。
Tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charges, and the like when the liquid crystal alignment film is formed.
The tetracarboxylic acid dialkyl ester that is reacted with the diamine component to obtain the polyamic acid ester of the present invention is not particularly limited. Specific examples are given below.
Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1, 3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3 , 4-Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1- Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy-1 2,3,4-tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8-tetra Carboxylic acid dialkyl ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentyl acetic acid dialkyl ester, cis-3,7-dibutylcycloocta-1,5-diene -1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7,8- Dialkyl ester, hexacyclo [6.6.0.1 2,7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2, Examples include 3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester.
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。 Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl es Le and the like.
<ポリアミドの合成>
 本発明のポリアミドを得るためにジアミン成分と反応させるジカルボン酸は特に限定されない。ジカルボン酸又はその誘導体の脂肪族ジカルボン酸の具体例としては、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸、スベリン酸等を挙げることができる。
<Synthesis of polyamide>
The dicarboxylic acid reacted with the diamine component to obtain the polyamide of the present invention is not particularly limited. Specific examples of the dicarboxylic acid or its aliphatic dicarboxylic acid include malonic acid, succinic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, Examples include pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid, and suberic acid.
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファ-酸等を挙げることができる。 Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid. Acid, 3,4-diphenyl-1,2-cyclobutanedicarboxylic acid, 2,4-diphenyl-1,3-cyclobutanedicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4- (2-nor Lunene) dicarboxylic acid, norbornene-2,3-dicarboxylic acid, bicyclo [2.2.2] octane-1,4-dicarboxylic acid, bicyclo [2.2.2] octane-2,3-dicarboxylic acid, 2, 5-dioxo-1,4-bicyclo [2.2.2] octane dicarboxylic acid, 1,3-adamantane dicarboxylic acid, 4,8-dioxo-1,3-adamantane dicarboxylic acid, 2,6-spiro [3. 3] Heptanedicarboxylic acid, 1,3-adamantanediacetic acid, camphoric acid and the like.
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4'-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4"-タ-フェニルジカルボン酸、4,4'-ジフェニルメタンジカルボン酸、4,4'-ジフェニルエタンジカルボン酸、4,4'-ジフェニルプロパンジカルボン酸、4,4'-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4'-ジフェニルエーテルジカルボン酸、4,4'-ビベンジルジカルボン酸、4,4'-スチルベンジカルボン酸、4,4'-トランジカルボン酸、4,4'-カルボニル二安息香酸、4,4'-スルホニル二安息香酸、4,4'-ジチオ二安息香酸、p-フェニレン二酢酸、3,3'-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3'-[4,4'-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4'-[4,4'-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4'-[4,4'-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等を挙げることができる。 As aromatic dicarboxylic acids, o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylene dicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4'-diphenyl Lopandicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-bibenzyldicarboxylic acid, 4,4'-stilbene dicarboxylic acid, 4,4'-tolane Dicarboxylic acid, 4,4′-carbonyldibenzoic acid, 4,4′-sulfonyldibenzoic acid, 4,4′-dithiodibenzoic acid, p-phenylenediacetic acid, 3,3′-p-phenylenedipropionic acid 4-carboxycinnamic acid, p-phenylenediacrylic acid, 3,3 ′-[4,4 ′-(methylenedi-p-phenylene)] dipropionic acid, 4,4 ′-[4,4 ′-(oxydi) -P-phenylene)] dipropionic acid, 4,4 '-[4,4'-(oxydi-p-phenylene)] butyric acid, (isopropylidenedi-p-phenylenedioxy) dibutyric acid, bis (p- Cal And boxyphenyl) dimethylsilane.
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
 上記の各種ジカルボン酸は、酸ジハライドあるい酸無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4'-ビフェニルジカルボン酸、4,4'-ジフェニルメタンジカルボン酸、4,4'-ジフェニルエタンジカルボン酸、4,4'-ジフェニルプロパンジカルボン酸、4,4'-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4、4鋳タ-フェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸又はこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。
 ジカルボン酸とジアミン成分との反応により、本発明のポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的にはジカルボン酸とジアミン成分とを有機溶媒中で反応させる方法である。
Examples of the dicarboxylic acid containing a heterocyclic ring include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazole dicarboxylic acid, 2-phenyl-4,5-thiazole dicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
The various dicarboxylic acids described above may have a structure of acid dihalide or acid anhydride. These dicarboxylic acids are preferably dicarboxylic acids that can give a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules. Among these, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4 caster-phenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid or these acid dihalides are preferably used. Some of these compounds have isomers, but may be a mixture containing them. Two or more compounds may be used in combination.
In obtaining the polyamide of the present invention by reaction of a dicarboxylic acid and a diamine component, a known synthesis method can be used. Generally, this is a method in which a dicarboxylic acid and a diamine component are reacted in an organic solvent.
<ポリアミック酸の合成>
 テトラカルボン酸二無水物とジアミン成分との反応により、本発明のポリアミック酸を得る方法は、既知の手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
<Synthesis of polyamic acid>
As a method for obtaining the polyamic acid of the present invention by reaction of tetracarboxylic dianhydride and a diamine component, a known method can be used. In general, tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
The organic solvent used for the reaction of tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid is soluble. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropion , 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy -N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いるのが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。
Further, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
When the tetracarboxylic dianhydride and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. Further, when the tetracarboxylic dianhydride or diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
 その際の重合温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は、0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミド酸の分子量は大きくなる。
In this case, the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
In the polyamic acid polymerization reaction, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2, preferably 0.9 to 1.1. Is more preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
<ポリイミドの合成>
 本発明のポリイミドは、前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化法、及びポリアミド酸の溶液に触媒を添加する触媒イミド化法が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うのが好ましい。
<Synthesis of polyimide>
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
Examples of the method for imidizing the polyamic acid include a thermal imidization method in which the polyamic acid solution is heated as it is, and a catalytic imidation method in which a catalyst is added to the polyamic acid solution.
The temperature at which the polyamic acid is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and is preferably carried out while removing water generated by the imidization reaction from the system.
 ポリアミド酸の触媒イミド化は、ポリアミド酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適した塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間等を調節することにより制御することができる。 The catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has basicity suitable for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
<ポリアミック酸エステルの合成>
 ポリアミック酸エステルを合成する方法としては、テトラカルボン酸ジエステルジクロリドとジアミンとの反応や、テトラカルボン酸ジエステルとジアミンを適当な縮合剤、及び塩基の存在下にて反応させる方法、又は、予めポリアミック酸を重合し、高分子反応を利用してアミック酸中のカルボン酸をエステル化する方法が挙げられる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
<Synthesis of polyamic acid ester>
As a method of synthesizing a polyamic acid ester, a reaction between a tetracarboxylic acid diester dichloride and a diamine, a method in which a tetracarboxylic acid diester and a diamine are reacted in the presence of an appropriate condensing agent and a base, or a polyamic acid in advance. And a method of esterifying a carboxylic acid in an amic acid using a polymer reaction.
Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにはピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいということから、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 縮合剤存在下にて縮合重合を行なう場合、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物などの縮合剤が使用できる。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. However, pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride because it can be easily removed and a high molecular weight product can be easily obtained.
When the condensation polymerization is performed in the presence of a condensing agent, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1, 3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazole-1- Yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate, 4- (4,6 -Dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride n-hydrate and other condensing agents can be used wear.
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は、ジアミン成分に対して0.1~1.0倍モル量であることが好ましい。
 上記の反応に用いる溶媒は、上記したポリアミック酸を重合する際に用いられる溶媒と同じものが使用でき、モノマー及び重合体の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で反応を行ない、外気の混入を防ぐのが好ましい。
In the method using the condensing agent, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The amount of Lewis acid added is preferably 0.1 to 1.0 times the molar amount of the diamine component.
As the solvent used in the above reaction, the same solvent as used for polymerizing the above polyamic acid can be used, and N-methyl-2-pyrrolidone, γ-butyrolactone, etc. are preferable from the viewpoint of the solubility of the monomer and polymer. You may use these 1 type or in mixture of 2 or more types. The concentration of the polymer at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to carry out the reaction in a nitrogen atmosphere to prevent outside air from being mixed.
<重合体の回収>
 ポリアミック酸、ポリアミック酸エステル、ポリイミド等の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させるのが好ましい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿し、回収する操作を、2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の液晶配向処理剤に含有される重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
<Recovery of polymer>
When recovering the produced polymer from a reaction solution such as polyamic acid, polyamic acid ester, polyimide, etc., it is preferable to add the reaction solution to a poor solvent to cause precipitation. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer deposited in a poor solvent and collected can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent, reprecipitated, and recovered, the impurities in the polymer can be reduced by repeating the operation 2 to 10 times. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
The molecular weight of the polymer contained in the liquid crystal aligning agent of the present invention is determined by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability during coating film formation, and the uniformity of the coating film. The weight average molecular weight measured in (1) is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体から選ばれる少なくとも一種の重合体を含む。樹脂成分の液晶配向処理剤中の含有量は、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
 樹脂成分は、全てが本発明の重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における前記他の重合体の含有量は0.5~15質量%、好ましくは1~10質量%である。
 かかる他の重合体は、例えば、テトラカルボン酸ニ無水物成分と反応させるジアミン成分として、特定ジアミン化合物以外のジアミン化合物を使用して得られるポリアミド酸又はポリイミドなどが挙げられる。
<Liquid crystal aligning agent>
The liquid-crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which the resin component for forming a resin film melt | dissolved in the organic solvent. Here, the resin component contains at least one polymer selected from the polymers of the present invention described above. The content of the resin component in the liquid crystal aligning agent is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
All of the resin components may be the polymer of the present invention, or other polymers may be mixed. In this case, the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
Examples of such other polymers include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with the tetracarboxylic dianhydride component.
 本発明の液晶配向処理剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
The organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Such as methyl-2-pentanone and the like. These may be used alone or in combination.
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。その例としては、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒多物質など、液晶配向膜と基板との密着性を向上させる化合物などである。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記溶媒を用いる場合は、液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
The liquid crystal aligning agent of this invention may contain components other than the above. Examples thereof include compounds that improve the adhesion between the liquid crystal alignment film and the substrate, such as a solvent-rich substance that improves film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied.
The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octane Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1 -Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- Low 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester Examples include solvents having surface tension.
These poor solvents may be used alone or in combination. When the solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal alignment treatment agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物、エポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane.
 更に、基板と膜の密着性向上に加え、バックライトによる電気特性低下などを防ぐ目的で、以下のようなフェノプラスト系の添加剤を含有させることが好ましい。具体的なフェノプラスト系添加剤を以下に示す。
Figure JPOXMLDOC01-appb-C000069
Furthermore, in addition to improving the adhesion between the substrate and the film, it is preferable to contain the following phenoplast type additives for the purpose of preventing electrical characteristics from being deteriorated by the backlight. Specific phenoplast type additives are shown below.
Figure JPOXMLDOC01-appb-C000069
 基板との密着性を向上させる化合物を使用する場合、その使用量は、樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率、導電性などの電気特性を変化させる目的で、誘電体、導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物等を添加してもよい。
When a compound that improves the adhesion to the substrate is used, the amount used is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component. is there. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In the liquid crystal alignment treatment agent of the present invention, in addition to the above, within the range that does not impair the effects of the present invention, the dielectric, conductive, A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
<液晶配向膜及び液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をし、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板、ポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどの方法で行うが一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment in a vertical alignment application or the like after being applied onto a substrate and baked and then subjected to an alignment treatment by rubbing treatment or light irradiation. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light such as aluminum can be used for the electrode.
The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, it is generally performed by a method such as screen printing, offset printing, flexographic printing, or inkjet. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で行い、溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
Firing after applying the liquid crystal aligning agent on the substrate can be carried out by heating means such as a hot plate at 50 to 300 ° C., preferably 80 to 250 ° C., and the solvent can be evaporated to form a coating film. . The thickness of the coating film formed after baking is disadvantageous in terms of power consumption of the liquid crystal display element if it is too thick, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以下に実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明の解釈は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the interpretation of the present invention is not limited to these examples.
<実施例1>
2-(Tert-ブトキシカルボニルアミノ)-4-オクタナミドフェニル 3,5-ジアミノベンゾエート(HC-01)の合成
<Example 1>
Synthesis of 2- (tert-butoxycarbonylamino) -4-octanamidophenyl 3,5-diaminobenzoate (HC-01)
第1工程
4-オクタナミド-2-ニトロフェノールの合成
Figure JPOXMLDOC01-appb-C000071

 500mL(ミリリットル)の四口フラスコに、4-アミノ-2-ニトロフェノールを15.9g(103mmol)、テトラヒドロフランを300mL、及びピリジンを7.9g(103mmol)加えた。系内を冷却して0℃にし、n-オクタノイルクロリドを16.3g(103mmol)加え、室温で攪拌した。反応終了後、純水を50mL加えて攪拌した後、反応終了後、酢酸エチルを加えて有機層を分離し、有機層を水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。得られた固体を酢酸エチルとn-ヘキサンの混合溶媒(3:7(体積比、以下同様である。))を用いて再結晶を行い、薄黄色の固体27.0gを得た(収率94%)。
Step 1 Synthesis of 4-octanamide-2-nitrophenol
Figure JPOXMLDOC01-appb-C000071

To a 500 mL (milliliter) four-necked flask, 15.9 g (103 mmol) of 4-amino-2-nitrophenol, 300 mL of tetrahydrofuran, and 7.9 g (103 mmol) of pyridine were added. The system was cooled to 0 ° C., 16.3 g (103 mmol) of n-octanoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, 50 mL of pure water was added and stirred. After completion of the reaction, ethyl acetate was added to separate the organic layer, and the organic layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The obtained solid was recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7 (volume ratio, the same applies hereinafter)) to obtain 27.0 g of a light yellow solid (yield) 94%).
第2工程
4-オクタナミド-2-アミノフェノールの合成
Figure JPOXMLDOC01-appb-C000072
 500mLの四口フラスコに、N-(3-ニトロ-4-ヒドロキシフェニル)オクタナミドを15.0g(53.5mmol)、エタノールを40mL、及び5%パラジウムカーボンを1.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、白色固体13.0gを得た(収率97%)。
Second Step 4-Synthesis of Octanamide-2-aminophenol
Figure JPOXMLDOC01-appb-C000072
To a 500 mL four-necked flask, 15.0 g (53.5 mmol) of N- (3-nitro-4-hydroxyphenyl) octanamide, 40 mL of ethanol, and 1.0 g of 5% palladium carbon were added, and the room temperature was kept under a hydrogen atmosphere. And stirred. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 13.0 g of a white solid (yield 97%).
第3工程
4-オクタナミド -2-tert-ブトキシカルボニルアミノフェノールの合成
Figure JPOXMLDOC01-appb-C000073
 300mLの四口フラスコに、N-(3-アミノ-4-ヒドロキシフェニル)オクタナミドを12.5g(49.9mmol)、テトラヒドロフランを200mL、二炭酸ジ-tert-ブチルを11.9g(54.9mmol)、及び4-ジメチルアミノピリジンを0.61g(4.99mmol)加えて、室温で攪拌した。反応終了後、酢酸エチルを加え、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3(体積比、以下の実施例においても同じである。)にて精製し、酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、白色固体16.5gを得た(収率94%)。
Step 3 Synthesis of 4-octanamide-2-tert-butoxycarbonylaminophenol
Figure JPOXMLDOC01-appb-C000073
In a 300 mL four-necked flask, 12.5 g (49.9 mmol) of N- (3-amino-4-hydroxyphenyl) octanamide, 200 mL of tetrahydrofuran, and 11.9 g (54.9 mmol) of di-tert-butyl dicarbonate And 0.61 g (4.99 mmol) of 4-dimethylaminopyridine were added and stirred at room temperature. After completion of the reaction, ethyl acetate was added and washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 3 (volume ratio, the same in the following examples)), and a mixed solvent of ethyl acetate and n-hexane (1: 9) was used. Was used for recrystallization to obtain 16.5 g of white solid (yield 94%).
第4工程
 2-(tert-ブトキシカルボニルアミノ)-4-オクタナミドフェニル 3,5-ジニトロベンゾエートの合成
Figure JPOXMLDOC01-appb-C000074
 300mLの四口フラスコに、HC-03-1を7.0g(20.0mmol)、テトラヒドロフランを80mL、及びピリジンを1.6g(20.0mmol)加えた。系内を冷却して0℃にし、3,5-ジニトロベンゾイルクロリドを5.5g(20.0mmol)加えて、室温で攪拌した。反応終了後、10質量%炭酸カリウム水溶液を加えて、pHを8~9にし、酢酸エチルを加えて有機層を分離し、有機層を水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)にて精製し、酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、薄黄色固体5.9gを得た(収率54%)。
Step 4 Synthesis of 2- (tert-butoxycarbonylamino) -4-octanamidophenyl 3,5-dinitrobenzoate
Figure JPOXMLDOC01-appb-C000074
To a 300 mL four-necked flask, 7.0 g (20.0 mmol) of HC-03-1, 80 mL of tetrahydrofuran, and 1.6 g (20.0 mmol) of pyridine were added. The system was cooled to 0 ° C., 5.5 g (20.0 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, 10 mass% potassium carbonate aqueous solution was added to adjust the pH to 8-9, ethyl acetate was added to separate the organic layer, and the organic layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4) and recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 5.9 g of a pale yellow solid. Obtained (yield 54%).
第5工程
HC-01の合成
Figure JPOXMLDOC01-appb-C000075
 500mLの四口フラスコに、2-(tert-ブトキシカルボニルアミノ-4-オクタナミドフェニル)3,5-ジニトロベンゾエートを5.9g(10.8mmol)、テトラヒドロフランを150mL、及び5%パラジウム/カーボンを0.6g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、灰色の固体5.2gを得た(収率99%)。得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-01であることを確認した。
 なお、本発明の実施例における化合物の同定は、H-NMR(Hの核磁気共鳴、Varian社製、機種:INOVA400)により行った。
H NMR (400 MHz,[D]-DMSO):δ9.92 (s,1H),8.73 (s,1H),7.89 (s,1H),7.40-7.43 (d,1H),6.99-7.01 (d,1H),6.58 (s,2H),6.09 (s,1H),5.04 (s,4H),2.27-2.31 (t,2H),1.56-1.60 (t,2H),1.40 (s,9H),1.25-1.29 (m,8H),0.85-0.88 (t,3H)
Step 5 Synthesis of HC-01
Figure JPOXMLDOC01-appb-C000075
In a 500 mL four-necked flask, 5.9 g (10.8 mmol) of 2- (tert-butoxycarbonylamino-4-octanamidophenyl) 3,5-dinitrobenzoate, 150 mL of tetrahydrofuran, and 5% palladium / carbon were added. 0.6 g was added and stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 5.2 g of a gray solid (yield 99%). The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-01.
The compounds in the examples of the present invention were identified by 1 H-NMR ( 1 H nuclear magnetic resonance, Varian, model: INOVA400).
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 9.92 (s, 1H), 8.73 (s, 1H), 7.89 (s, 1H), 7.40-7.43 ( d, 1H), 6.99-7.01 (d, 1H), 6.58 (s, 2H), 6.09 (s, 1H), 5.04 (s, 4H), 2.27-2 .31 (t, 2H), 1.56-1.60 (t, 2H), 1.40 (s, 9H), 1.25-1.29 (m, 8H), 0.85-0.88 (T, 3H)
<実施例2>
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンズアミドの合成(HC-02)の合成
Figure JPOXMLDOC01-appb-C000076
<Example 2>
Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 3,5-diaminobenzamide (HC-02)
Figure JPOXMLDOC01-appb-C000076
第1工程
3-tert-ブトキシカルボニルアミノ-4-アミノニトロベンゼンの合成
Figure JPOXMLDOC01-appb-C000077
 300mLの四口フラスコに、3,4-ジアミノニトロベンゼン25.0g(163mmol)、テトラヒドロフランを250mL、及び二炭酸ジ-tert-ブチル35.6g(163mmol)を加えて、窒素雰囲気4時間還流攪拌した。反応終了後、ロータリーエバポレーターで溶媒を除去し、得られた固体をメタノールにて洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(5:5)を用いて再結晶を行い、黄色固体33.8gを得た(収率82%)。
Step 1 Synthesis of 3-tert-butoxycarbonylamino-4-aminonitrobenzene
Figure JPOXMLDOC01-appb-C000077
To a 300 mL four-necked flask, 25.0 g (163 mmol) of 3,4-diaminonitrobenzene, 250 mL of tetrahydrofuran, and 35.6 g (163 mmol) of di-tert-butyl dicarbonate were added and stirred under reflux for 4 hours in a nitrogen atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator, and the resulting solid was washed with methanol and recrystallized using a mixed solvent of ethyl acetate and n-hexane (5: 5) to obtain 33.8 g of a yellow solid. (Yield 82%).
第2工程
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノニトロベンゼンの合成
Figure JPOXMLDOC01-appb-C000078
 300mLの四口フラスコに、4-アミル安息香酸を18.3g(95.0mmol)、テトラヒドロフラン150mL、及びジメチルホルムアミド20mLを加え、系内を冷却して0℃にし、塩化チオニルを14.1g(119mmol)加え、室温に戻して2時間攪拌し、4-アミル安息香酸クロリド溶液を調製した。一方で500mLの四口フラスコに、3-tert-ブトキシカルボニルアミノ-4-アミノニトロベンゼンを20.0g(79.0mmol)、テトラヒドロフラン100mL、及びピリジンを7.5g(95.0mmol)加え、系内を冷却して0℃にし、先で調製した4-アミル安息香酸クロリド溶液をゆっくり滴下し、室温で攪拌した。反応終了後、ロータリーエバポレーターで溶媒を除去し、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールにて洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、黄色固体24.7gを得た(収率73%)。
Second Step Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminonitrobenzene
Figure JPOXMLDOC01-appb-C000078
To a 300 mL four-necked flask, 18.3 g (95.0 mmol) of 4-amylbenzoic acid, 150 mL of tetrahydrofuran and 20 mL of dimethylformamide were added, the system was cooled to 0 ° C., and 14.1 g (119 mmol) of thionyl chloride. The mixture was returned to room temperature and stirred for 2 hours to prepare a 4-amylbenzoic acid chloride solution. On the other hand, 20.0 g (79.0 mmol) of 3-tert-butoxycarbonylamino-4-aminonitrobenzene, 100 mL of tetrahydrofuran, and 7.5 g (95.0 mmol) of pyridine were added to a 500 mL four-necked flask. The solution was cooled to 0 ° C., and the 4-amylbenzoic acid chloride solution prepared above was slowly added dropwise and stirred at room temperature. After completion of the reaction, the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was washed with methanol and recrystallized using a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 24.7 g of a yellow solid (yield 73%).
第3工程
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノ アニリンの合成
Figure JPOXMLDOC01-appb-C000079
 500mLの四口フラスコに、N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノニトロベンゼンを20.0g(46.8mmol)、テトラヒドロフランを200mL、及び10%パラジウムカーボンを2.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行い、アセトンにて再溶解し、活性炭を加え室温でしばらく攪拌した後、活性炭を濾過し、アセトンを留去し、真空乾燥することで、薄黄緑色のガラス状固体17.7gを得た(収率95%)。
Third Step N-4- (4-Amylbenzoylamino) -3-tert-butoxycarbonylamino Synthesis of aniline
Figure JPOXMLDOC01-appb-C000079
In a 500 mL four-necked flask, 20.0 g (46.8 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminonitrobenzene, 200 mL of tetrahydrofuran, and 2.0 g of 10% palladium carbon In addition, the mixture was stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon is removed by filtration, the solvent is distilled off using a rotary evaporator, redissolved in acetone, activated carbon is added and stirred for a while at room temperature, and then the activated carbon is filtered and acetone is distilled off. By vacuum drying, 17.7 g of a light yellowish green glassy solid was obtained (yield 95%).
第4工程
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンズアミドの合成
Figure JPOXMLDOC01-appb-C000080
 300mLの四口フラスコに、N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノアニリンを10.0g(25.2mmol)、テトラヒドロフラン150mL、ジメチルホルムアミドを20mL、及びピリジンを2.4g(30.2mmol)加えた。系内を冷却して0℃にし、3,5-ジニトロベンゾイルクロリドを5.8g(25.2mmol)加えて、室温で攪拌した。反応終了後、ロータリーエバポレーターにて溶媒を除去し、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールにて洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(3:7)を用いて再結晶を行い、薄黄色固体11.8gを得た(収率79%)。
Fourth Step Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide
Figure JPOXMLDOC01-appb-C000080
In a 300 mL four-necked flask, 10.0 g (25.2 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminoaniline, 150 mL of tetrahydrofuran, 20 mL of dimethylformamide, and 2.2 of pyridine. 4 g (30.2 mmol) was added. The system was cooled to 0 ° C., 5.8 g (25.2 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was washed with methanol and recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 11.8 g of a pale yellow solid (yield 79%).
第5工程
HC-02の合成
Figure JPOXMLDOC01-appb-C000081
 300mLの四口フラスコに、N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンズアミドを10.0g(16.9mmol)、テトラヒドロフランを100mL、及び10%パラジウムカーボンを1.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(3:7)を用いて再結晶を行い、さらにn-ヘキサンで分散洗浄することにより、白色の固体8.6gを得た(収率96%)。目得られた固体のH-NMRの結果を以下に示す。この結果から、目的物のHC-02であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ10.0(s,1H),9.71(s,1H),8.62(s,1H),8.01(d,1H),7.89―7.87(d,2H),7.54-7.52(dd,1H),7.42-7.40(d,1H),7.37-7.35(d,2H),6.30 (d,2H),6.00-5.90 (t,1H),4.96 (s-br,4H),2.68-2.64 (m,2H),1.64-1.57(m,2H),1.45(s,9H),1.39-1.17(m,4H),0.89-0.85(t,3H)
Step 5 Synthesis of HC-02
Figure JPOXMLDOC01-appb-C000081
In a 300 mL four-necked flask, 10.0 g (16.9 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide, 100 mL of tetrahydrofuran, and 10% 1.0 g of palladium carbon was added and stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7), and further dispersed and washed with n-hexane to obtain 8.6 g of a white solid (yield 96%). . The results of 1 H-NMR of the obtained solid are shown below. From this result, it was confirmed that the target product was HC-02.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 10.0 (s, 1H), 9.71 (s, 1H), 8.62 (s, 1H), 8.01 (d, 1H) , 7.89-7.87 (d, 2H), 7.54-7.52 (dd, 1H), 7.42-7.40 (d, 1H), 7.37-7.35 (d, 2H), 6.30 (d, 2H), 6.00-5.90 (t, 1H), 4.96 (s-br, 4H), 2.68-2.64 (m, 2H), 1 .64-1.57 (m, 2H), 1.45 (s, 9H), 1.39-1.17 (m, 4H), 0.89-0.85 (t, 3H)
<実施例3>
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 2,4-ジアミノベンズアミドの合成(HC-03)
Figure JPOXMLDOC01-appb-C000082
<Example 3>
Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-diaminobenzamide (HC-03)
Figure JPOXMLDOC01-appb-C000082
第1工程
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 2,4-ジニトロベンズアミドの合成
Figure JPOXMLDOC01-appb-C000083
 300mLの四口フラスコに、2,4-ジニトロ安息香酸を4.10g(19.4mmol)、ジクロロメタン150mL、及びジメチルホルムアミド20mLを加え、系内を冷却して0℃にし、塩化オキサリル2.46g(19.4mmol)をゆっくり加え、室温に戻して2時間攪拌し、2,4-ジニトロ安息香酸クロリド溶液を調製した。一方で500mLの四口フラスコに、4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノアニリンを7.00g(17.6mmol)、テトラヒドロフラン100mL、及びピリジンを2.09g(26.4mmol)加え、系内を冷却して0℃にし、先で調製した2,4-ジニトロ安息香酸クロリド溶液をゆっくり滴下し、窒素雰囲気下40℃にて攪拌した。反応終了後、ロータリーエバポレーターで溶媒を除去し、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールにて分散洗浄し、ジクロロエタンとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、薄黄色固体6.56gを得た(収率63%)。
Step 1 Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-dinitrobenzamide
Figure JPOXMLDOC01-appb-C000083
To a 300 mL four-necked flask, 4.10 g (19.4 mmol) of 2,4-dinitrobenzoic acid, 150 mL of dichloromethane, and 20 mL of dimethylformamide were added, the system was cooled to 0 ° C., and 2.46 g of oxalyl chloride ( 19.4 mmol) was slowly added, and the mixture was returned to room temperature and stirred for 2 hours to prepare a 2,4-dinitrobenzoic acid chloride solution. Meanwhile, in a 500 mL four-necked flask, 7.00 g (17.6 mmol) of 4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminoaniline, 100 mL of tetrahydrofuran, and 2.09 g (26.4 mmol) of pyridine were added. The system was cooled to 0 ° C., and the 2,4-dinitrobenzoic acid chloride solution prepared above was slowly added dropwise and stirred at 40 ° C. in a nitrogen atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with methanol and recrystallized using a mixed solvent of dichloroethane and n-hexane (2: 8) to obtain 6.56 g of a light yellow solid (yield 63%).
第2工程
N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 2,4-ジアミノベンズアミドの合成
Figure JPOXMLDOC01-appb-C000084
 300mLの四口フラスコに、N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 2,4-ジニトロベンズアミドを6.00g(10.2mmol)、テトラヒドロフランを100mL、及び10%パラジウムカーボンを0.60g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールと2-プロパノールの混合溶媒で分散洗浄し、その後酢酸エチルとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、薄黄色の固体4.88gを得た(収率90%)。目得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-02であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ10.4(s,1H),9.56(s,1H),8.63(s,1H),8.01(d,1H),7.89―7.87(d,2H),7.54-7.52(dd,1H),7.42-7.40(d,1H),7.37-7.35(d,1H),7.28(d,1)、6.72 (d,1H),6.75(d,1H),6.40(s-br,2H),5.84 (s,1H),5.44(s-br,2H),2.68-2.64(m,2H),1.64-1.57(m,2H),1.45(s,9H),1.39-1.17(m,4H),0.89-0.85(t,3H)
Second Step Synthesis of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-diaminobenzamide
Figure JPOXMLDOC01-appb-C000084
In a 300 mL four-necked flask, 6.00 g (10.2 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-dinitrobenzamide, 100 mL of tetrahydrofuran, and 10% 0.60 g of palladium carbon was added and stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with a mixed solvent of methanol and 2-propanol, and then recrystallized using a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 4.88 g of a light yellow solid (yield). Rate 90%). The results of 1 H-NMR of the individual obtained are shown below. From this result, it was confirmed that the target product was HC-02.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 10.4 (s, 1H), 9.56 (s, 1H), 8.63 (s, 1H), 8.01 (d, 1H) 7.89-7.87 (d, 2H), 7.54-7.52 (dd, 1H), 7.42-7.40 (d, 1H), 7.37-7.35 (d, 1H), 7.28 (d, 1), 6.72 (d, 1H), 6.75 (d, 1H), 6.40 (s-br, 2H), 5.84 (s, 1H), 5.44 (s-br, 2H), 2.68-2.64 (m, 2H), 1.64-1.57 (m, 2H), 1.45 (s, 9H), 1.39- 1.17 (m, 4H), 0.89-0.85 (t, 3H)
<実施例4>
N-4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンズアミドの合成(HC-04)の合成
Figure JPOXMLDOC01-appb-C000085
<Example 4>
Synthesis of N-4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminophenyl 3,5-diaminobenzamide (HC-04)
Figure JPOXMLDOC01-appb-C000085
第1工程
2-tert-ブトキシカルボニルアミノ-4-ニトロフェノールの合成
Figure JPOXMLDOC01-appb-C000086
 300mLの四口フラスコに、2-アミノ-4-ニトロフェノールを12.3g(79.8mmol)、テトラヒドロフランを250mL、二炭酸ジ-tert-ブチルを14.2g(87.9mol)、及び4-ジメチルアミノピリジンを2.00g(7.98mol)加えて、室温で攪拌した。反応終了後、酢酸エチルを加え、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)にて精製し、酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、薄黄色固体15.0gを得た(収率73%)。
Step 1 Synthesis of 2-tert-butoxycarbonylamino-4-nitrophenol
Figure JPOXMLDOC01-appb-C000086
In a 300 mL four-necked flask, 12.3 g (79.8 mmol) of 2-amino-4-nitrophenol, 250 mL of tetrahydrofuran, 14.2 g (87.9 mol) of di-tert-butyl dicarbonate, and 4-dimethyl 2.00 g (7.98 mol) of aminopyridine was added and stirred at room temperature. After completion of the reaction, ethyl acetate was added and washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1) and recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 15.0 g of a pale yellow solid. Obtained (yield 73%).
第2工程
4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノ ニトロベンゼンの合成
Figure JPOXMLDOC01-appb-C000087
 200mLの四口フラスコに、4-アミル安息香酸を6.4g(32.8mol)、及びテトラヒドロフラン60mL加えて、系内を冷却して0℃にし、塩化チオニルを4.3g(35.3mol)加え、室温に戻して1時間攪拌し、4-アミル安息香酸クロリド溶液を調製した。一方で500mL四口フラスコに、2-tert-ブトキシカルボニルアミノ-4-ニトロフェノールを6.3g(25.2mmol)、テトラヒドロフラン60mL、及びピリジンを4.0g(50.4mmol)加え、系内を冷却して0℃にし、先ほど調製した4-アミル安息香酸クロリド溶液をゆっくり滴下し、室温で攪拌した。反応終了後、10質量%炭酸カリウム水溶液を加えて、pHを8~9にした。酢酸エチルを加えて有機層を分離し、有機層を水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(7:3)を用いて再結晶を行い、黄色固体6.9gを得た(収率64%)。
Second Step Synthesis of 4- (4-Amylbenzoyloxy) -3-tert-butoxycarbonylamino nitrobenzene
Figure JPOXMLDOC01-appb-C000087
To a 200 mL four-necked flask, 6.4 g (32.8 mol) of 4-amylbenzoic acid and 60 mL of tetrahydrofuran were added, the system was cooled to 0 ° C., and 4.3 g (35.3 mol) of thionyl chloride was added. The mixture was returned to room temperature and stirred for 1 hour to prepare a 4-amylbenzoic acid chloride solution. Meanwhile, 6.3 g (25.2 mmol) of 2-tert-butoxycarbonylamino-4-nitrophenol, 60 mL of tetrahydrofuran, and 4.0 g (50.4 mmol) of pyridine were added to a 500 mL four-necked flask, and the system was cooled. The temperature was then brought to 0 ° C., and the 4-amylbenzoic acid chloride solution prepared earlier was slowly added dropwise and stirred at room temperature. After completion of the reaction, 10% by mass potassium carbonate aqueous solution was added to adjust the pH to 8-9. Ethyl acetate was added to separate the organic layer, and the organic layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (7: 3) to obtain 6.9 g of a yellow solid (yield 64%).
第3工程
4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノ アニリンの合成
Figure JPOXMLDOC01-appb-C000088
 300mLの四口フラスコに、4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノニトロベンゼン2を8.8g(20.5mol)、テトラヒドロフランを100mL、及び5%パラジウムカーボンを0.9g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(7:3)を用いて再結晶を行い、白色固体6.8gを得た(収率84%)。
Step 3 Synthesis of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylamino aniline
Figure JPOXMLDOC01-appb-C000088
To a 300 mL four-necked flask, add 8.8 g (20.5 mol) of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminonitrobenzene 2, 100 mL of tetrahydrofuran, and 0.9 g of 5% palladium carbon. The mixture was stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (7: 3) to obtain 6.8 g of a white solid (yield 84%).
第4工程
N-4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンズアミドの合成
Figure JPOXMLDOC01-appb-C000089
 300mLの四口フラスコに、4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノアニリンを6.8g(17.1mmol)、テトラヒドロフランを100mL、及びピリジンを1.5g(18.8mmol)加えた。系内を冷却して0℃にし、3,5-ジニトロベンゾイルクロリドを4.6g(20.0mol)加えて、室温で攪拌した。反応終了後、10質量%炭酸カリウム水溶液を加えて、pHを8~9にした。酢酸エチルを加えて有機層を分離し、有機層を水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(3:7)を用いて再結晶を行い、薄黄色固体11.0g
を得た(収率99%)。
Step 4 Synthesis of N-4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide
Figure JPOXMLDOC01-appb-C000089
In a 300 mL four-necked flask, 6.8 g (17.1 mmol) of 4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminoaniline, 100 mL of tetrahydrofuran, and 1.5 g (18.8 mmol) of pyridine added. The system was cooled to 0 ° C., 4.6 g (20.0 mol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, 10% by mass potassium carbonate aqueous solution was added to adjust the pH to 8-9. Ethyl acetate was added to separate the organic layer, and the organic layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 11.0 g of a pale yellow solid.
(Yield 99%).
第5工程
HC-04の合成
Figure JPOXMLDOC01-appb-C000090
 300mLの四口フラスコに、N-4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンズアミドを11.0g(18.6mmol)、テトラヒドロフランを100mL、及び5%パラジウムカーボンを1.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、灰色の固体9.7gを得た(収率98%)。目得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-04であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ9.99 (s,1H),8.88 (s,1H),7.99-8.01 (m,3H),7.48-7.51 (d,1H),7.34-7.38 (d,2H),7.10-7.11 (d,1H),6.26 (s,2H),5.96 (s,1H),4.93 (s-br,4H),2.63-2.67 (t,2H),1.55-1.59 (t,2H),1.22-1.34 (m,13H),0.81-0.84 (t,3H),
Synthesis of the fifth step HC-04
Figure JPOXMLDOC01-appb-C000090
In a 300 mL four-necked flask, 11.0 g (18.6 mmol) of N-4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzamide, 100 mL of tetrahydrofuran, and 5% 1.0 g of palladium carbon was added and stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 9.7 g of a gray solid (yield 98%). The results of 1 H-NMR of the individual obtained are shown below. From this result, it was confirmed that it was the target product, HC-04.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 9.99 (s, 1H), 8.88 (s, 1H), 799-8.01 (m, 3H), 7.48- 7.51 (d, 1H), 7.34-7.38 (d, 2H), 7.10-7.11 (d, 1H), 6.26 (s, 2H), 5.96 (s, 1H), 4.93 (s-br, 4H), 2.63-2.67 (t, 2H), 1.55-1.59 (t, 2H), 1.22-1.34 (m, 13H), 0.81-0.84 (t, 3H),
<実施例5> 2-メチル-6-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンゾエート(HC-05)の合成
Figure JPOXMLDOC01-appb-C000091
Example 5 Synthesis of 2-methyl-6-tert-butoxycarbonylaminophenyl 3,5-diaminobenzoate (HC-05)
Figure JPOXMLDOC01-appb-C000091
第1工程
6-tert-ブトキシカルボニルアミノ-m-クレゾールの合成
Figure JPOXMLDOC01-appb-C000092
 300mLの四口フラスコに、6-アミノ-m-クレゾールを6.2g(50.3mmol)、テトラヒドロフランを150mL、及び二炭酸ジ-tert-ブチルを14.2g(55.3mmol)加えて、室温で攪拌した。反応終了後、酢酸エチルを加え、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行い、白色固体11.2gを得た(収率99%)。
Step 1 Synthesis of 6-tert-butoxycarbonylamino-m-cresol
Figure JPOXMLDOC01-appb-C000092
To a 300 mL four-necked flask was added 6.2 g (50.3 mmol) of 6-amino-m-cresol, 150 mL of tetrahydrofuran, and 14.2 g (55.3 mmol) of di-tert-butyl dicarbonate. Stir. After completion of the reaction, ethyl acetate was added and washed with water and saturated brine. Then, it dried with magnesium sulfate, magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator to obtain 11.2 g of a white solid (yield 99%).
第2工程
3-メチル-6-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンゾエート
Figure JPOXMLDOC01-appb-C000093
 300mLの四口フラスコに、6-tert-ブトキシカルボニルアミノ-m-クレゾールを11.2g(50.2mmol)、テトラヒドロフランを200mL、及びピリジンを4.0g(50.2mmol)加えた。系内を冷却して0℃にし、3,5-ジニトロベンゾイルクロリドを11.5g(50.2mmol)加えて、室温で攪拌した。反応終了後、反応溶液をメタノールと水の混合溶媒(9:1)に注ぎ、固体を析出させ、固体を濾過した。次いで、固体を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、黄色固体20.2gを得た(収率97%)。
Second Step 3-Methyl-6-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzoate
Figure JPOXMLDOC01-appb-C000093
To a 300 mL four-necked flask, 11.2 g (50.2 mmol) of 6-tert-butoxycarbonylamino-m-cresol, 200 mL of tetrahydrofuran, and 4.0 g (50.2 mmol) of pyridine were added. The system was cooled to 0 ° C., 11.5 g (50.2 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, the reaction solution was poured into a mixed solvent of methanol and water (9: 1) to precipitate a solid, and the solid was filtered. Subsequently, the solid was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 20.2 g of a yellow solid (yield 97%).
第3工程
HC-05の合成
Figure JPOXMLDOC01-appb-C000094
 300mLの四口フラスコに、3-メチル-6-tert-ブトキシカルボニルアミノフェニル 3,5-ジニトロベンゾエートを10.0g(24.0mmol)、テトラヒドロフランを100mL、及び5%パラジウム/カーボンを1.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、灰色の固体8.7gを得た(収率99%)。目得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-05であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ8.63 (s,1H),7.43-7.45 (d,2H),6.99-7.02 (d,1H),6.93 (s,1H),6.57 (s,2H),6.08 (s,1H),5.04 (s,4H),2.27 (s,1H),1.37 (s,9H)
Synthesis of the third step HC-05
Figure JPOXMLDOC01-appb-C000094
To a 300 mL four-necked flask, add 10.0 g (24.0 mmol) of 3-methyl-6-tert-butoxycarbonylaminophenyl 3,5-dinitrobenzoate, 100 mL of tetrahydrofuran, and 1.0 g of 5% palladium / carbon. And stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 8.7 g of a gray solid (yield 99%). The results of 1 H-NMR of the individual obtained are shown below. From this result, it was confirmed that it was the target product, HC-05.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 8.63 (s, 1H), 7.43-7.45 (d, 2H), 6.99-7.02 (d, 1H), 6.93 (s, 1H), 6.57 (s, 2H), 6.08 (s, 1H), 5.04 (s, 4H), 2.27 (s, 1H), 1.37 (s , 9H)
<実施例6>
4-(4-アミルベンゾイルアミノ)-2-tert-ブトキシカルボニルアミノ 3,5-ジアミノベンゾエート(HC-06)の合成
Figure JPOXMLDOC01-appb-C000095
<Example 6>
Synthesis of 4- (4-amylbenzoylamino) -2-tert-butoxycarbonylamino 3,5-diaminobenzoate (HC-06)
Figure JPOXMLDOC01-appb-C000095
第1工程
4-(4-アミルベンゾイルアミノ)-2-ニトロフェノールの合成
Figure JPOXMLDOC01-appb-C000096
 200mLの四口フラスコに、4-アミル安息香酸を12.5g(64.9mmol)、テトラヒドロフラン100mL、及びDMF(N,N-ジメチルホルムアミド)20mLを加え、系内を冷却して0℃にし、塩化チオニルを7.80g(65.5mol)加え、60℃で2時間攪拌し、4-アミル安息香酸クロリド溶液を調製した。一方で300mLの四口フラスコに、4-アミノ-2-ニトロフェノールを10.0g(64.9mmol)、テトラヒドロフランを150mL、及びピリジンを6.3g(64.9mmol)加え、系内を冷却して0℃にし、先に調製した4-アミル安息香酸クロリド溶液をゆっくり加え、室温に戻し窒素雰囲気下で1日攪拌させた。反応終了後、エバポレーターで溶媒を留去し、酢酸エチルを加え、純水を50mL加えて攪拌した後有機層を分離し、有機層を水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をカラムクロマトグラフィー法(酢酸エチルとn-ヘキサンの混合溶媒(8:2)を用いて精製を行い、再び酢酸エチルとn-ヘキサンの混合溶媒(2:8)で分散洗浄することにより、黄色の固体15.6gを得た(収率73%)。
First Step Synthesis of 4- (4-Amylbenzoylamino) -2-nitrophenol
Figure JPOXMLDOC01-appb-C000096
To a 200 mL four-necked flask, 12.5 g (64.9 mmol) of 4-amylbenzoic acid, 100 mL of tetrahydrofuran, and 20 mL of DMF (N, N-dimethylformamide) are added, and the system is cooled to 0 ° C. 7.80 g (65.5 mol) of thionyl was added and stirred at 60 ° C. for 2 hours to prepare a 4-amylbenzoic acid chloride solution. On the other hand, 10.0 g (64.9 mmol) of 4-amino-2-nitrophenol, 150 mL of tetrahydrofuran and 6.3 g (64.9 mmol) of pyridine were added to a 300 mL four-necked flask, and the system was cooled. The temperature was brought to 0 ° C., and the 4-amylbenzoic acid chloride solution prepared previously was slowly added, and the mixture was returned to room temperature and stirred for 1 day under a nitrogen atmosphere. After completion of the reaction, the solvent was removed by an evaporator, ethyl acetate was added, 50 mL of pure water was added and stirred, the organic layer was separated, and the organic layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was purified by column chromatography (mixed solvent of ethyl acetate and n-hexane (8: 2), and again dispersed and washed with a mixed solvent of ethyl acetate and n-hexane (2: 8). 15.6 g of a yellow solid was obtained (73% yield).
第2工程
4-(4-アミルベンゾイルアミノ)-2-アミノフェノールの合成
Figure JPOXMLDOC01-appb-C000097
 200mLの四口フラスコに、4-(4-アミルベンゾイルアミノ)-2-ニトロフェノールを10.0g(30.5mol)、テトラヒドロフランを100mL、及び10%パラジウムカーボンを1.0g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行い、アセトンにて再溶解させ、活性炭を加え攪拌した。その後、濾過により活性炭を取り除き、濾液からロータリーエバポレーターを用いて溶媒留去を行うことで薄茶色アメ状固体8.4gを得た(収率93%)。
Second Step Synthesis of 4- (4-Amylbenzoylamino) -2-aminophenol
Figure JPOXMLDOC01-appb-C000097
To a 200 mL four-necked flask, 10.0 g (30.5 mol) of 4- (4-amylbenzoylamino) -2-nitrophenol, 100 mL of tetrahydrofuran, and 1.0 g of 10% palladium carbon were added. Stir at room temperature. After completion of the reaction, palladium carbon was removed by filtration, the solvent was distilled off using a rotary evaporator, redissolved with acetone, and activated carbon was added and stirred. Thereafter, the activated carbon was removed by filtration, and the solvent was distilled off from the filtrate using a rotary evaporator to obtain 8.4 g of a light brown candy-like solid (yield 93%).
第3工程
4-(4-アミルベンゾイルアミノ)-2-tert-ブトキシカルボニルアミノフェノールの合成
Figure JPOXMLDOC01-appb-C000098
 200mLの四口フラスコに、4-(4-アミルベンゾイルアミノ)-2-アミノフェノールを 6.0g(20.1mmol)、テトラヒドロフランを100mL、二炭酸ジ-tert-ブチルを4.4g(20.1mmol)、及びピリジンを0.16g(2.01mmol)加えて、室温で攪拌した。反応終了後、ロータリーエバポレーターにより溶媒を留去し、酢酸エチルを加え、水、及び、飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(3:7)を用いて再結晶を行い、白色固体5.8gを得た(収率72%)。
Step 3 Synthesis of 4- (4-amylbenzoylamino) -2-tert-butoxycarbonylaminophenol
Figure JPOXMLDOC01-appb-C000098
In a 200 mL four-necked flask, 6.0 g (20.1 mmol) of 4- (4-amylbenzoylamino) -2-aminophenol, 100 mL of tetrahydrofuran, and 4.4 g (20.1 mmol) of di-tert-butyl dicarbonate. ) And 0.16 g (2.01 mmol) of pyridine were added and stirred at room temperature. After completion of the reaction, the solvent was distilled off with a rotary evaporator, ethyl acetate was added, and the mixture was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 5.8 g of a white solid (yield 72%).
第4工程
4-(4-アミルベンゾイルアミノ)-2-tert-ブトキシカルボニルアミノフェニル-3,5-ジニトロベンゾエートの合成
Figure JPOXMLDOC01-appb-C000099
 200mLの四口フラスコに、4-アミルベンゾイルアミノ-2-tert-ブトキシカルボニルアミノフェノールを5.00g(12.5mmol)、テトラヒドロフランを80mL、及びピリジンを0.99g(12.5mmol)加えた。系内を冷却して0℃にし、3,5-ジニトロベンゾイルクロリドを2.9g(12.5mmol)加えて、室温で攪拌した。反応終了後、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、水、及び、飽和食塩水で順次洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールと2-プロパノールの混合溶媒(3:7)にて分散洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、薄黄色固体5.09gを得た(収率90%)。
Step 4 Synthesis of 4- (4-Amylbenzoylamino) -2-tert-butoxycarbonylaminophenyl-3,5-dinitrobenzoate
Figure JPOXMLDOC01-appb-C000099
To a 200 mL four-necked flask, 5.00 g (12.5 mmol) of 4-amylbenzoylamino-2-tert-butoxycarbonylaminophenol, 80 mL of tetrahydrofuran, and 0.99 g (12.5 mmol) of pyridine were added. The system was cooled to 0 ° C., 2.9 g (12.5 mmol) of 3,5-dinitrobenzoyl chloride was added, and the mixture was stirred at room temperature. After completion of the reaction, ethyl acetate was added, and the mixture was washed successively with 10% by mass aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with a mixed solvent of methanol and 2-propanol (3: 7) and recrystallized using a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 5.09 g of a pale yellow solid. Obtained (yield 90%).
第5工程
HC-06の合成
Figure JPOXMLDOC01-appb-C000100
 100mLの四口フラスコに、4-(4-アミルベンゾイルアミノ)-2-tert-ブトキシカルボニルアミノ 3,5-ジニトロベンゾエートを4.52g(7.59mmol)、1,4-ジオキサンを50mL、及び10%パラジウムカーボンを0.45g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をジクロロエタンとn-ヘキサンの混合溶媒(5:5)を用いて再結晶を行い、薄灰色の固体3.62gを得た(収率90%)。得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-07であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ9.82 (s,1H),8.73 (s,1H),7.96-7.85 (dd,3H),7.40-7.43 (d,1H),7.37-7.35(d,2H)、6.99-7.01 (d,1H),6.54 (s,2H),6.12 (s,1H),4.99 (s-br,4H),2.68-2.64 (m,2H),1.65-1.56(m,2H),1.46(s,9H),1.37-1.16(m,4H),0.88-0.84(t,3H)
Synthesis of the fifth step HC-06
Figure JPOXMLDOC01-appb-C000100
In a 100 mL four-necked flask, 4.52 g (7.59 mmol) of 4- (4-amylbenzoylamino) -2-tert-butoxycarbonylamino 3,5-dinitrobenzoate, 50 mL of 1,4-dioxane, and 10 0.45 g of% palladium carbon was added and stirred at room temperature in a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of dichloroethane and n-hexane (5: 5) to obtain 3.62 g of a light gray solid (yield 90%). The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-07.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 9.82 (s, 1H), 8.73 (s, 1H), 7.96-7.85 (dd, 3H), 7.40- 7.43 (d, 1H), 7.37-7.35 (d, 2H), 6.99-7.01 (d, 1H), 6.54 (s, 2H), 6.12 (s, 1H), 4.99 (s-br, 4H), 2.68-2.64 (m, 2H), 1.65 to 1.56 (m, 2H), 1.46 (s, 9H), 1 .37-1.16 (m, 4H), 0.88-0.84 (t, 3H)
<実施例7>
[4-(4-アミルベンゾイルアミノ)-2-(tert-ブトキシカルボニルアミノ)フェニル] 2-(2,4-ジアミノフェニル)アセトアミド(HC-07)の合成
Figure JPOXMLDOC01-appb-C000101
<Example 7>
[4- (4-Amylbenzoylamino) -2- (tert-butoxycarbonylamino) phenyl] Synthesis of 2- (2,4-diaminophenyl) acetamide (HC-07)
Figure JPOXMLDOC01-appb-C000101
第1工程
[4-(4-アミルベンゾイルアミノ)-3-(tert-ブトキシカルボニルアミノ)フェニル] (2,4-ジニトロフェニル)アセトアミドの合成
Figure JPOXMLDOC01-appb-C000102
 100mLの四口フラスコに、2,4-ジニトロフェニル酢酸を3.0g(12.3mmol)、ジクロロメタン50mL、及びジメチルホルムアミド5mLを加え、系内を冷却して0℃にし、塩化オキサリル1.6g(12.3mmol)をゆっくり加え、室温に戻して2時間攪拌し、2,4-ジニトロフェニル酢酸クロリド溶液を調製した。一方で200mLの四口フラスコに、N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノ アニリンを4.5g(11.2mmol)、ジクロロメタン50mL、及びピリジンを1.1g(13.4mmol)加え、系内を冷却して0℃にし、先で調製した2,4-ジニトロ安息香酸クロリド溶液をゆっくり滴下し、窒素雰囲気下、室温で攪拌した。反応終了後、ロータリーエバポレーターで溶媒を除去し、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、水、及び飽和食塩水で順次洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールにて分散洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、薄黄色固体5.2gを得た(収率77%)。
First Step [4- (4-Amylbenzoylamino) -3- (tert-butoxycarbonylamino) phenyl] Synthesis of (2,4-dinitrophenyl) acetamide
Figure JPOXMLDOC01-appb-C000102
To a 100 mL four-necked flask, 3.0 g (12.3 mmol) of 2,4-dinitrophenylacetic acid, 50 mL of dichloromethane, and 5 mL of dimethylformamide were added, the system was cooled to 0 ° C., and 1.6 g of oxalyl chloride ( 12.3 mmol) was slowly added, and the mixture was returned to room temperature and stirred for 2 hours to prepare a 2,4-dinitrophenylacetic acid chloride solution. Meanwhile, in a 200 mL four-necked flask, 4.5 g (11.2 mmol) of N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylamino aniline, 50 mL of dichloromethane, and 1.1 g (13 4 mmol), the system was cooled to 0 ° C., and the 2,4-dinitrobenzoic acid chloride solution prepared above was slowly added dropwise and stirred at room temperature under a nitrogen atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed successively with a 10% by mass aqueous sodium hydrogen carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with methanol, and recrystallized using a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 5.2 g of light yellow solid (yield 77%).
第2工程
HC-07の合成
Figure JPOXMLDOC01-appb-C000103
 100mLの四口フラスコに、N-[4-(4-アミルベンゾイルアミノ)-3-(tert-ブトキシカルボニルアミノ)フェニル] (2,4-ジニトロフェニル)アセトアミドを4.5g(7.43mmol)、1,4-ジオキサンを50mL、及び酸化白金を0.45g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過により酸化白金を除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣酢酸エチルとn-ヘキサンの混合溶媒(5:5)を用いて再結晶を行い、薄茶色の固体3.6gを得た(収率89%)。得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-07であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ9.98(s,1H),9.67(s,1H),8.68(s,1H),8.00(d,1H),7.85―7.83(d,2H),7.53-7.50(m,1H),7.32-7.28(m,2H),7.22(d,2H),6.43-6.40 (d,1H),6.00-5.90 (d,1H),4.96 (s-br,2H),3.52(s-br,2H),3.08(s,2H),2.67-2.65 (m,2H),1.62-1.55(m,2H),1.46(s,9H),1.39-1.17(m,4H),0.89-0.85(t,3H)
Synthesis of the second step HC-07
Figure JPOXMLDOC01-appb-C000103
In a 100 mL four-necked flask, 4.5 g (7.43 mmol) of N- [4- (4-amylbenzoylamino) -3- (tert-butoxycarbonylamino) phenyl] (2,4-dinitrophenyl) acetamide, 50 mL of 1,4-dioxane and 0.45 g of platinum oxide were added, and the mixture was stirred at room temperature in a hydrogen atmosphere. After completion of the reaction, platinum oxide was removed by filtration, and the solvent was distilled off using a rotary evaporator. Recrystallization was performed using a mixed solvent of residual ethyl acetate and n-hexane (5: 5) to obtain 3.6 g of a light brown solid (yield 89%). The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-07.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 9.98 (s, 1H), 9.67 (s, 1H), 8.68 (s, 1H), 8.00 (d, 1H) 7.85-7.83 (d, 2H), 7.53-7.50 (m, 1H), 7.32-7.28 (m, 2H), 7.22 (d, 2H), 6 .43-6.40 (d, 1H), 6.00-5.90 (d, 1H), 4.96 (s-br, 2H), 3.52 (s-br, 2H), 3.08 (S, 2H), 2.67-2.65 (m, 2H), 1.62-1.55 (m, 2H), 1.46 (s, 9H), 1.39-1.17 (m , 4H), 0.89-0.85 (t, 3H)
<実施例8>
(Z)-3,5-ジニトロベンジル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート(HC-08)の合成
Figure JPOXMLDOC01-appb-C000104
<Example 8>
Synthesis of (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate (HC-08)
Figure JPOXMLDOC01-appb-C000104
第1工程
2-(tert-ブトキシカルボニルアミノ)アニリンの合成
Figure JPOXMLDOC01-appb-C000105
500mLの四口フラスコにO-フェニレンジアミン50.0g(462mmol)、テトラヒドロフラン300mL、及び二炭酸ジ-tert-ブチル100.8g(462mmol)を加え、窒素雰囲気下で4時間還流させた。反応終了後、ロータリーエバポレーターで溶媒を除去し、得られた個体をメタノールで分散洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(3:7)で再結晶し、薄茶色固体77.0g(収率80%)を得た。
Step 1 Synthesis of 2- (tert-butoxycarbonylamino) aniline
Figure JPOXMLDOC01-appb-C000105
To a 500 mL four-necked flask were added 50.0 g (462 mmol) of O-phenylenediamine, 300 mL of tetrahydrofuran, and 100.8 g (462 mmol) of di-tert-butyl dicarbonate, and the mixture was refluxed for 4 hours under a nitrogen atmosphere. After completion of the reaction, the solvent was removed with a rotary evaporator, and the resulting solid was dispersed and washed with methanol and recrystallized with a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 77.0 g (yield) of a light brown solid. 80%).
第2工程
2-ブテン二酸(2Z)-,3,5-ジニトロベンジルエステルの合成
Figure JPOXMLDOC01-appb-C000106
 500mLの四口フラスコに3,5-ジニトロベンジルアルコール25.0g(126mmol)、クロロホルム300mL、及びトリエチルアミン19.1g(189mmol)を加え、窒素雰囲気下にて系内を0℃に冷却し、無水マレイン酸14.8g(151mmol)を加え2時間攪拌し、室温に戻し6時間反応させた。反応終了後、再び10℃まで冷却し、10質量%炭酸水素ナトリウム水溶液を200mL加え1時間攪拌した後、水層を分離し、水層をジクロロエタンにて洗浄し、再度10℃に冷却し、10質量%塩酸水溶液を加えてpHを4~5とし、白色の固体を析出させた。得られた固体を酢酸エチルにて溶解し、抽出した後、酢酸エチル層を水、及び飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をエタノールにて分散洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(3:7)で再結晶させることにより、白色の固体32.1g(収率86%)を得た。
Step 2 Synthesis of 2-butenedioic acid (2Z)-, 3,5-dinitrobenzyl ester
Figure JPOXMLDOC01-appb-C000106
To a 500 mL four-necked flask, 25.0 g (126 mmol) of 3,5-dinitrobenzyl alcohol, 300 mL of chloroform, and 19.1 g (189 mmol) of triethylamine were added, and the system was cooled to 0 ° C. in a nitrogen atmosphere. 14.8 g (151 mmol) of acid was added, stirred for 2 hours, returned to room temperature, and reacted for 6 hours. After completion of the reaction, the mixture was cooled again to 10 ° C., 200 mL of 10% by weight aqueous sodium hydrogen carbonate solution was added and stirred for 1 hour, the aqueous layer was separated, the aqueous layer was washed with dichloroethane, cooled again to 10 ° C., 10 A mass% aqueous hydrochloric acid solution was added to adjust the pH to 4 to 5, and a white solid was precipitated. The obtained solid was dissolved in ethyl acetate and extracted, and then the ethyl acetate layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with ethanol and recrystallized with a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 32.1 g (yield 86%) of a white solid.
第3工程
(Z)-3,5-ジニトロベンジル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエートの合成
Figure JPOXMLDOC01-appb-C000107
 300mLの四口フラスコに、2-ブテン二酸(2Z)-,3,5-ジニトロベンジルエステル10.00g(33.7mmol)を測り取り、THFを200mL、トリエチルアミンを1.71g(16.9mmol)、及び4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物(DMT-MM)を13.99g(50.6mmol)加え、室温で30分攪拌した後、2-(tert-ブトキシカルボニルアミノ)アニリン7.67g(36.8mmol)を少しづつ加え、窒素雰囲気下、室温で6時間反応させた。
 反応終了後、反応溶液をロータリーエバポレーターにて濃縮し、酢酸エチルを200ml加え、50℃で1時間攪拌した後、不溶物を濾過し、水、飽和食塩水の順番に洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールにて再結晶して、薄黄色の固体14.59(収率89%)を得た。
Step 3 (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate
Figure JPOXMLDOC01-appb-C000107
In a 300 mL four-necked flask, weigh 10.00 g (33.7 mmol) of 2-butenedioic acid (2Z)-, 3,5-dinitrobenzyl ester, 200 mL of THF, and 1.71 g (16.9 mmol) of triethylamine. , And 13.99 g (50.6 mmol) of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride n-hydrate (DMT-MM) were added at room temperature. After stirring for 30 minutes, 7.67 g (36.8 mmol) of 2- (tert-butoxycarbonylamino) aniline was added little by little, and the mixture was reacted at room temperature for 6 hours under a nitrogen atmosphere.
After completion of the reaction, the reaction solution was concentrated on a rotary evaporator, 200 ml of ethyl acetate was added, and the mixture was stirred at 50 ° C. for 1 hour, and then insoluble matters were filtered and washed with water and saturated brine in this order. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized from methanol to obtain a light yellow solid 14.59 (yield 89%).
第4工程
HC-08の合成
Figure JPOXMLDOC01-appb-C000108
 300mLの四口フラスコに(Z)-3,5-ジニトロベンジル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート10.0g(20.6mmol)、還元鉄11.5g(200mmol)、10質量%塩化アンモニウム水溶液107g(塩化アンモニウム200mmol)、及びトルエン150mLを加え、メカニカルスターラーにて窒素雰囲気下、70℃で1日攪拌しながら反応させた。反応終了後、酢酸エチルを加えた後、鉄を濾過し、濾液の有機層を水、飽和食塩水にて洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、有機層に活性炭を加え、しばらく攪拌した。その後、濾過により活性炭を除き、ロータリーエバポレーターにて溶媒を留去した。精製はカラムクロマトグラフィー(酢酸エチルとジクロロエタンの混合溶媒(3:7))にて行い、減圧下で乾燥し、薄黄色のガラス状固体8.0g(収率91%)を得た。
 得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-08であることを確認した。
H NMR (400 MHz,CDCl):δ8.78(s-br,1H),7.56-7.53(d,1H),7.38-7.37(dd,1H),7.20-7.12(m,2H),7.04-6.92(q,2H),6.93(s-br,1H),6.10(d,2H),5.98-5.97 (t,1H),5.01(s,2H),3.63(s-br,4H),1.51(s,9H)
Synthesis of the fourth step HC-08
Figure JPOXMLDOC01-appb-C000108
In a 300 mL four-necked flask, 10.0 g (20.6 mmol) of (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate, reduced iron 11.5 g (200 mmol), 10 mass% ammonium chloride aqueous solution 107 g (ammonium chloride 200 mmol), and toluene 150 mL were added, and the mixture was reacted with stirring at 70 ° C. for 1 day in a nitrogen atmosphere with a mechanical stirrer. After completion of the reaction, ethyl acetate was added, iron was filtered, and the organic layer of the filtrate was washed with water and saturated brine. Then, it dried with magnesium sulfate, magnesium sulfate was removed by filtration, activated carbon was added to the organic layer, and it stirred for a while. Thereafter, the activated carbon was removed by filtration, and the solvent was distilled off with a rotary evaporator. Purification was performed by column chromatography (a mixed solvent of ethyl acetate and dichloroethane (3: 7)) and dried under reduced pressure to obtain 8.0 g (yield 91%) of a pale yellow glassy solid.
The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-08.
1 H NMR (400 MHz, CDCl 3 ): δ 8.78 (s-br, 1H), 7.56-7.53 (d, 1H), 7.38-7.37 (dd, 1H), 7. 20-7.12 (m, 2H), 7.04-6.92 (q, 2H), 6.93 (s-br, 1H), 6.10 (d, 2H), 5.98-5. 97 (t, 1H), 5.01 (s, 2H), 3.63 (s-br, 4H), 1.51 (s, 9H)
<実施例9>
(E)-(2,4-ジアミノフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート(HC-09)及び
2-(2,4-ジアミノフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブタノエート(HC-10)の合成
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
<Example 9>
(E)-(2,4-Diaminophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate (HC-09) and 2- (2,4-diamino) Synthesis of phenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobutanoate (HC-10)
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
第1工程
2-(2,4-ジニトロフェノキシ)エタノールの合成
Figure JPOXMLDOC01-appb-C000111
 300mLの四口フラスコに、トリエチルアミン13.6g(134mmol)、エチレングリコール50mL、及びテトラヒドロフラン150mLを加え、窒素雰囲気下で10℃に冷却し、さらに2,4-ジニトロフルオロベンゼン25.0g(134mmol)を加え、60℃に加熱し、16時間反応させた。反応終了後、ロータリーエバポレーターにより溶媒を除去し、酢酸エチルを加え、水、飽和食塩水にて洗浄した後、硫酸マグネシウムで乾燥した。その後、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターにより溶媒留去を行った。メタノールと2-プロパノールの混合溶媒(3:7)にて再結晶を行い、n-ヘキサンにて分散洗浄することにより、白色固体26.0g(収率85%)を得た。
Step 1 Synthesis of 2- (2,4-dinitrophenoxy) ethanol
Figure JPOXMLDOC01-appb-C000111
To a 300 mL four-necked flask, add 13.6 g (134 mmol) of triethylamine, 50 mL of ethylene glycol, and 150 mL of tetrahydrofuran, cool to 10 ° C. under a nitrogen atmosphere, and further add 25.0 g (134 mmol) of 2,4-dinitrofluorobenzene. In addition, the mixture was heated to 60 ° C. and reacted for 16 hours. After completion of the reaction, the solvent was removed by a rotary evaporator, ethyl acetate was added, washed with water and saturated brine, and dried over magnesium sulfate. Thereafter, magnesium sulfate was removed by filtration, and the solvent was distilled off by a rotary evaporator. Recrystallization was performed with a mixed solvent of methanol and 2-propanol (3: 7), and the mixture was dispersed and washed with n-hexane to obtain 26.0 g (yield 85%) of a white solid.
第2工程(1)
2-ブテン二酸(2E)-,2-(2,4-ジニトロフェノキシ)エタノールエステルの合成(無水マレイン酸から異性化反応を利用した方法)
Figure JPOXMLDOC01-appb-C000112
 300mLの四口フラスコに2-(2,4-ジニトロフェノキシ)エタノール10.0g(43.8mmol)を測り取り、クロロホルム200mL、及びトリエチルアミン4.43g(43.8mmol)を加え、氷浴中で無水マレイン酸を5.15g(52.6mmol)加え、ゆっくり室温に戻し、6時間攪拌した。反応終了後酢酸エチルを100mL加え、10質量%塩酸水溶液、水、及び飽和食塩水で順次洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を1,4-ジオキサン200mLに溶解させ、塩酸を1.00g加え、100℃にて2時間攪拌した。その後、ロータリーエバポレーターにて溶媒を留去し、酢酸エチルとヘキサンの混合溶媒(7:3)にて再結晶を行い、白色の固体12.86g(収率90%)を得た。
Second step (1)
Synthesis of 2-butenedioic acid (2E)-, 2- (2,4-dinitrophenoxy) ethanol ester (method utilizing isomerization reaction from maleic anhydride)
Figure JPOXMLDOC01-appb-C000112
To a 300 mL four-necked flask, 10.0 g (43.8 mmol) of 2- (2,4-dinitrophenoxy) ethanol was weighed, 200 mL of chloroform and 4.43 g (43.8 mmol) of triethylamine were added, and anhydrous in an ice bath. 5.15 g (52.6 mmol) of maleic acid was added, slowly returned to room temperature, and stirred for 6 hours. After completion of the reaction, 100 mL of ethyl acetate was added, and the mixture was washed successively with a 10 mass% hydrochloric acid aqueous solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dissolved in 200 mL of 1,4-dioxane, 1.00 g of hydrochloric acid was added, and the mixture was stirred at 100 ° C. for 2 hours. Then, the solvent was distilled off with a rotary evaporator, and recrystallization was performed with a mixed solvent of ethyl acetate and hexane (7: 3) to obtain 12.86 g (yield 90%) of a white solid.
第2工程(2)
2-ブテン二酸(2E)-,2-(2,4-ジニトロフェノキシ)エタノールエステルの合成
Figure JPOXMLDOC01-appb-C000113
 300mLの四口フラスコにフマリルクロリド10.0(65.7mmol)、及びクロロホルム150mLを加え、窒素雰囲気下にて系内を0℃に冷却し、さらに2-(2,4-ジニトロフェノキシ)エタノール10.0g(43.8mmol)のジメチルアセトアミド溶液(DMAc50mL)、及びトリエチルアミン4.43g(43.8mmol)のクロロホルム溶液をゆっくり加え2時間攪拌し、室温に戻し1日反応させた。反応終了後、水50mLを加え、再び10℃まで冷却し、10質量%炭酸水素ナトリウム水溶液を100mL加え1時間攪拌し、水層を分離し、水層を酢酸エチルにて洗浄した。その後、10℃に冷却した後、10質量%塩酸水溶液を加えてpHを4~5とし、白色の固体を析出させた。得られた固体を酢酸エチルに溶解し、抽出した後、酢酸エチル層を水、及び飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をエタノールにて分散洗浄し、酢酸エチルとn-ヘキサンの混合溶媒(2:8)で再結晶させることにより、白色の固体12.1g(収率85%)を得た。
Second step (2)
Synthesis of 2-butenedioic acid (2E)-, 2- (2,4-dinitrophenoxy) ethanol ester
Figure JPOXMLDOC01-appb-C000113
To a 300 mL four-necked flask were added fumaryl chloride 10.0 (65.7 mmol) and chloroform 150 mL, and the system was cooled to 0 ° C. in a nitrogen atmosphere, and 2- (2,4-dinitrophenoxy) ethanol was further cooled. 10.0 g (43.8 mmol) of a dimethylacetamide solution (DMAc 50 mL) and a chloroform solution of 4.43 g (43.8 mmol) of triethylamine were slowly added, stirred for 2 hours, returned to room temperature, and reacted for 1 day. After completion of the reaction, 50 mL of water was added, the mixture was cooled again to 10 ° C., 100 mL of a 10% by mass aqueous sodium hydrogen carbonate solution was added and stirred for 1 hour, the aqueous layer was separated, and the aqueous layer was washed with ethyl acetate. Thereafter, after cooling to 10 ° C., a 10 mass% hydrochloric acid aqueous solution was added to adjust the pH to 4 to 5, and a white solid was precipitated. The obtained solid was dissolved in ethyl acetate and extracted, and then the ethyl acetate layer was washed with water and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was dispersed and washed with ethanol and recrystallized with a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 12.1 g (yield 85%) of a white solid.
第3工程
(E)-(2,4-ジニトロフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエートの合成
Figure JPOXMLDOC01-appb-C000114
 200mLの四口フラスコに2-ブテン二酸(2E)-,2-(2,4-ジニトロフェノキシ)エタノールエステル10.0g(30.7mmol)、クロロホルム100mL、及びDMF30mLを加え、さらに窒素雰囲気下、0℃にて、ゆっくり塩化オキサリル4.3g(33.8mmol)を加えた後、室温に戻し、2時間攪拌した。次いで、2-(tert-ブトキシカルボニルアミノ)アニリン9.6g(46.1mmol)を加え、窒素雰囲気下、室温で24時間反応させた。反応終了後、酢酸エチルを加えて有機層を分離し、有機層を水、10質量%塩酸水溶液、10質量%炭酸水素ナトリウム水溶液、水、及び飽和食塩水の順番に洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(3:7)にて再結晶し、エタノールにて分散洗浄した後、薄黄色の固体12.1g(収率76%)を得た。
Step 3 (E)-(2,4-dinitrophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate
Figure JPOXMLDOC01-appb-C000114
To a 200 mL four-necked flask was added 10.0 g (30.7 mmol) of 2-butenedioic acid (2E)-, 2- (2,4-dinitrophenoxy) ethanol ester, 100 mL of chloroform, and 30 mL of DMF, and further under a nitrogen atmosphere, After slowly adding 4.3 g (33.8 mmol) of oxalyl chloride at 0 ° C., the mixture was returned to room temperature and stirred for 2 hours. Subsequently, 9.6 g (46.1 mmol) of 2- (tert-butoxycarbonylamino) aniline was added, and the mixture was reacted at room temperature for 24 hours under a nitrogen atmosphere. After completion of the reaction, ethyl acetate was added to separate the organic layer, and the organic layer was washed sequentially with water, 10% by mass hydrochloric acid aqueous solution, 10% by mass sodium hydrogen carbonate aqueous solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized with a mixed solvent of ethyl acetate and n-hexane (3: 7) and dispersed and washed with ethanol to obtain 12.1 g of light yellow solid (yield 76%).
第4工程
HC-09の合成
Figure JPOXMLDOC01-appb-C000115
 200mLの四口フラスコに(E)-(2,4-ジニトロフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート5.0g(9.68mmol)、還元鉄5.4g(96.8mmol)、10質量%塩化アンモニウム水溶液51.8g(塩化アンモニウム96.8mmol)、及びトルエン70mLを加え、メカニカルスターラーにて窒素雰囲気下、70℃で1日攪拌しながら反応させた。反応終了後、酢酸エチルを加え、鉄を濾過し、濾液の有機層を水、及び飽和食塩水にて洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、有機層に活性炭を加え、しばらく攪拌した。その後、濾過により活性炭を除き、ロータリーエバポレーターにて溶媒を留去した。精製はカラムクロマトグラフィー(酢酸エチルとジクロロエタンの混合溶媒(5:5))にて行い、減圧下で乾燥し、薄黄色のガラス状固体3.5g(収率80%)を得た。
 得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-09であることを確認した。
H NMR (400 MHz,CDCl):δ8.80(s-br,1H),7.61-7.59(d,1H),7.40-7.38(d,1H),7.21-7.14(m,2H),6.99(s-br,1H),6.94-6.81(q,2H),6.69-6.67(d,1H),6.15-6.13(d,1H)、6.09-6.07(dd,1H),4.54-4.52(t,2H),4.21-4.19(t,2H),3.66(s-br,4H),1.52(s,9H)
Synthesis of the fourth step HC-09
Figure JPOXMLDOC01-appb-C000115
In a 200 mL four-necked flask, 5.0 g (9.68 mmol) of (E)-(2,4-dinitrophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate Then, 5.4 g (96.8 mmol) of reduced iron, 51.8 g (ammonium chloride 96.8 mmol) of 10 mass% ammonium chloride aqueous solution and 70 mL of toluene were added, and the mixture was stirred at 70 ° C. for 1 day in a nitrogen atmosphere with a mechanical stirrer. It was made to react. After completion of the reaction, ethyl acetate was added, iron was filtered, and the organic layer of the filtrate was washed with water and saturated brine. Then, it dried with magnesium sulfate, magnesium sulfate was removed by filtration, activated carbon was added to the organic layer, and it stirred for a while. Thereafter, the activated carbon was removed by filtration, and the solvent was distilled off with a rotary evaporator. Purification was performed by column chromatography (mixed solvent of ethyl acetate and dichloroethane (5: 5)) and dried under reduced pressure to obtain 3.5 g of light yellow glassy solid (yield 80%).
The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-09.
1 H NMR (400 MHz, CDCl 3 ): δ 8.80 (s-br, 1H), 7.61-7.59 (d, 1H), 7.40-7.38 (d, 1H), 7. 21-7.14 (m, 2H), 6.99 (s-br, 1H), 6.94-6.81 (q, 2H), 6.69-6.67 (d, 1H), 6. 15-6.13 (d, 1H), 6.09-6.07 (dd, 1H), 4.54-4.52 (t, 2H), 4.21-4.19 (t, 2H), 3.66 (s-br, 4H), 1.52 (s, 9H)
第5工程
HC-10の合成
Figure JPOXMLDOC01-appb-C000116
 300mLの四口フラスコに、(E)-(2,4-ジニトロフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエートを5.0g(9.68mmol)、テトラヒドロフランを50mL、及び10%パラジウムカーボンを0.50g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、次いで、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を、酢酸エチルとn-ヘキサンの混合溶媒(2:8)を用いて再結晶を行い、白色の固体4.00gを得た(収率90%)。
 得られた個体のH-NMRの結果を以下に示す。この結果から、目的物のHC-09であることを確認した。
H NMR (400 MHz,CDCl):δ8.21(s-br,1H),7.43-7.42(d,1H),7.37-7.36(d,1H),7.16-7.08(m,3H),6.57-6.56(d,1H),6.05-6.03(d,1H)、5.97-5.96(dd,1H),4.38-4.35(t,2H),4.14-4.11(t,2H),3.22(s-br,4H),2.76-2.74(t,2H),2.59-2.56(t,2H),1.46(s,9H)
Step 5 Synthesis of HC-10
Figure JPOXMLDOC01-appb-C000116
In a 300 mL four-necked flask, 5.0 g of (E)-(2,4-dinitrophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate (9. 68 mmol), tetrahydrofuran (50 mL), and 10% palladium carbon (0.50 g) were added, and the mixture was stirred at room temperature in a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and then the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (2: 8) to obtain 4.00 g of a white solid (yield 90%).
The results of 1 H-NMR of the obtained individual are shown below. From this result, it was confirmed that it was the target product, HC-09.
1 H NMR (400 MHz, CDCl 3 ): δ 8.21 (s-br, 1H), 7.43-7.42 (d, 1H), 7.37-7.36 (d, 1H), 7. 16-7.08 (m, 3H), 6.57-6.56 (d, 1H), 6.05-6.03 (d, 1H), 5.97-5.96 (dd, 1H), 4.38-4.35 (t, 2H), 4.14-4.11 (t, 2H), 3.22 (s-br, 4H), 2.76-2.74 (t, 2H), 2.59-2.56 (t, 2H), 1.46 (s, 9H)
<液晶配向膜の特性評価>
本明細書で使用した化合物の略号は、以下のとおりである。
<テトラカルボン酸二無水物>
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
CBDE:1,2,3,4-シクロブタンテトラカルボン酸ジメチルエステル
Figure JPOXMLDOC01-appb-C000117
<Characteristic evaluation of liquid crystal alignment film>
The abbreviations of the compounds used in the present specification are as follows.
<Tetracarboxylic dianhydride>
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride PMDA: pyromellitic dianhydride CBDE: 1,2,3,4-cyclobutanetetracarboxylic acid dimethyl ester
Figure JPOXMLDOC01-appb-C000117
<ジアミン>
 p-PDA:p-フェニレンジアミン
 3-ABA:3-アミノベンジルアミン
 2,4-DAA:N,N-ジアリルアミノ 2,4-ジアミノベンゼン
 C14DAB:4-テトラデシルオキシ-1,3-ジアミノベンゼン
 C16DAB:4-ヘキサデシルオキシ-1,3-ジアミノベンゼン
 CAB-2:N-(4-(トランス-4-n-ヘプチルシクロヘキシル)ベンゾイル)アミノ 2,4-ジアミノベンゼン
 PCH-7AB:N-(4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ)2,4-ジアミノベンゼン
 m-TDA:m-トリル 3,5-ジアミノベンゾエート
 HC-01:2-(Tert-ブトキシカルボニルアミノ)-4-オクタナミドフェニル 3,5-ジアミノベンゾエート
 HC-02:N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンズアミド
 HC-03:N-4-(4-アミルベンゾイルアミノ)-3-tert-ブトキシカルボニルアミノフェニル 2,4-ジアミノベンズアミド
 HC-04:N-4-(4-アミルベンゾイルオキシ)-3-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンズアミド
HC-05:2-メチル-6-tert-ブトキシカルボニルアミノフェニル 3,5-ジアミノベンゾエート
<Diamine>
p-PDA: p-phenylenediamine 3-ABA: 3-aminobenzylamine 2,4-DAA: N, N-diallylamino 2,4-diaminobenzene C14DAB: 4-tetradecyloxy-1,3-diaminobenzene C16DAB : 4-hexadecyloxy-1,3-diaminobenzene CAB-2: N- (4- (trans-4-n-heptylcyclohexyl) benzoyl) amino 2,4-diaminobenzene PCH-7AB: N- (4- (Trans-4-n-heptylcyclohexyl) phenoxy) 2,4-diaminobenzene m-TDA: m-tolyl 3,5-diaminobenzoate HC-01: 2- (tert-butoxycarbonylamino) -4-octanamide Phenyl 3,5-diaminobenzoate HC-02: N-4- (4-amino Rubenzoylamino) -3-tert-butoxycarbonylaminophenyl 3,5-diaminobenzamide HC-03: N-4- (4-amylbenzoylamino) -3-tert-butoxycarbonylaminophenyl 2,4-diaminobenzamide HC -04: N-4- (4-amylbenzoyloxy) -3-tert-butoxycarbonylaminophenyl 3,5-diaminobenzamide HC-05: 2-methyl-6-tert-butoxycarbonylaminophenyl 3,5-diamino Benzoate
 HC-06:4-(4-アミルベンゾイルアミノ)-2-tert-ブトキシカルボニルアミノ 3,5-ジアミノベンゾエート
 HC-07:[4-(4-アミルベンゾイルアミノ)-2-(tert-ブトキシカルボニルアミノ)フェニル] 2-(2,4-ジアミノフェニル)アセトアミド
 HC-08:(Z)-3,5-ジニトロベンジル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート
 HC-09:(E)-(2,4-ジアミノフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブト-2-エノエート
 HC-10:2-(2,4-ジアミノフェノキシ)エチル 4-(2-(tert-ブトキシカルボニルアミノ)フェニルアミノ)-4-オクソブタノエート
 HC-11:4-(トランス-4-アミルシクロヘキサンカルボキシアミノ)-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジアミノベンズアミド
 HC-12:4-[4-(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジアミノベンズアミド
HC-06: 4- (4-Amylbenzoylamino) -2-tert-butoxycarbonylamino 3,5-diaminobenzoate HC-07: [4- (4-Amylbenzoylamino) -2- (tert-butoxycarbonylamino) ) Phenyl] 2- (2,4-diaminophenyl) acetamide HC-08: (Z) -3,5-dinitrobenzyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2- Enoate HC-09: (E)-(2,4-diaminophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenylamino) -4-oxobut-2-enoate HC-10: 2- (2, 4-Diaminophenoxy) ethyl 4- (2- (tert-butoxycarbonylamino) phenyl Mino) -4-oxobutanoate HC-11: 4- (trans-4-amylcyclohexanecarboxyamino) -3- (tert-butoxycarbonylamino) phenyl 3,5-diaminobenzamide HC-12: 4- [4 -(Trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) phenyl 3,5-diaminobenzamide
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
<縮合剤>
 DMT-MM:4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 BC:ブチルセロソルブ
 DPM:ジプロピレングリコールモノメチルエーテル
<Condensation agent>
DMT-MM: 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride n-hydrate <organic solvent>
NMP: N-methyl-2-pyrrolidone γ-BL: γ-butyrolactone BC: Butyl cellosolve DPM: Dipropylene glycol monomethyl ether
<分子量の測定>
 重合反応により得られた重合体の分子量は、該ポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシドの換算値として、数平均分子量と重量平均分子量を算出した。
 GPC装置:Shodex社製 (GPC-101)
 カラム:Shodex社製 (KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及び、重合体ラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<Measurement of molecular weight>
The molecular weight of the polymer obtained by the polymerization reaction was determined by measuring the polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and the weight average molecular weight as converted values of polyethylene glycol and polyethylene oxide.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10 mL / L)
Flow rate: 1.0 mL / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol manufactured by Polymer Laboratory (Molecular weight about 12,000, 4,000, 1,000).
<イミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、日本電子データム社製のNMR測定器(JNW-ECA500)にて測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。

  イミド化率(%)=(1-α・x/y)×100

 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
The imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard made by Kusano Kagaku), add 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS mixture), and apply ultrasonic waves. And completely dissolved. 500 MHz proton NMR of this solution was measured with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.

Imidization rate (%) = (1−α · x / y) × 100

In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<液晶セルの作製>
 実施例及び比較例で調製した液晶配向処理剤について、以下のようにして液晶セルを作製した。
 液晶配向処理剤を透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、210℃のホットプレート上で10分間焼成を行い、膜厚100nmの塗膜を形成させた。ラビングによる液晶配向処理について、この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。光による液晶配向処理については、この塗膜面に直線偏光UV光線(UV波長313nm、500mJ相当)を、プレートの法線に対して40°傾け照射することにより行なった。
<Production of liquid crystal cell>
About the liquid crystal aligning agent prepared by the Example and the comparative example, the liquid crystal cell was produced as follows.
A liquid crystal alignment treatment agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 70 seconds, and then baked on a hot plate at 210 ° C. for 10 minutes to form a coating film having a thickness of 100 nm. I let you. For the liquid crystal alignment treatment by rubbing, this coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm. A substrate with a film was obtained. The liquid crystal alignment treatment with light was performed by irradiating the coating surface with linearly polarized UV light (UV wavelength: 313 nm, equivalent to 500 mJ) at an angle of 40 ° with respect to the normal line of the plate.
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い、ラビング方向が直行するようにして張り合わせる(ツイストネマティック液晶セル)、又はUV照射したものに関しては、照射した偏光の方向が平行となるようにして張り合わせ(垂直配向モード)、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ツイストネマティックセルにおいては液晶MLC-2003(メルク社製)を注入し、垂直配向モードにおいては液晶MLC-6608(メルク社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
 作製した各液晶セルの物性の測定、及び特性の評価の方法を以下に記述した。
 なお、実施例1~9、及び比較例1~3における各液晶配向処理剤の組成、各液晶配向膜についての物性の測定、及び特性の評価等の結果は、表2~表4に示した。
After preparing two substrates with a liquid crystal alignment film subjected to the liquid crystal alignment treatment in this manner, a spacer of 6 μm is sprayed on the surface of the one liquid crystal alignment film, and then a sealant is printed thereon, and another sheet is obtained. The substrates are bonded so that the liquid crystal alignment film faces each other and the rubbing direction is perpendicular (twisted nematic liquid crystal cell), or for those irradiated with UV, the directions of irradiated polarized light are parallel (vertical). Orientation mode), the sealing agent was cured to produce an empty cell. In this empty cell, liquid crystal MLC-2003 (Merck) is injected in the twisted nematic cell by vacuum injection, and liquid crystal MLC-6608 (Merck) is injected in the vertical alignment mode, and the injection port is sealed. Thus, a twisted nematic liquid crystal cell was obtained.
A method for measuring physical properties and evaluating characteristics of each liquid crystal cell produced was described below.
The results of the composition of each liquid crystal alignment treatment agent in Examples 1 to 9 and Comparative Examples 1 to 3, the measurement of physical properties of each liquid crystal alignment film, and the evaluation of the characteristics are shown in Tables 2 to 4. .
<ラビング耐性評価>
 上記の<液晶セルの作製>に記載の方法で液晶配向膜付き基板を作製する際、ラビング条件の押し込み量を0.5mmに変更して行い、ラビング耐性評価用の液晶配向膜を作製し、表面を共焦点レーザー顕微鏡にて観察し、下記の評価を行った。
 ○:削れカスやラビング傷が観察されない。
 △:削れカスやラビング傷が観察される。
 ×:膜が剥離する又は目視でラビング傷が観察される。
<Rubbing resistance evaluation>
When producing a substrate with a liquid crystal alignment film by the method described in <Preparation of liquid crystal cell> above, the rubbing conditions are changed by changing the indentation amount to 0.5 mm, and a liquid crystal alignment film for rubbing resistance evaluation is produced. The surface was observed with a confocal laser microscope, and the following evaluation was performed.
○: Scraping and rubbing scratches are not observed.
Δ: Scraping and rubbing scratches are observed.
X: A film | membrane peels or a rubbing damage | wound is observed visually.
<プレチルト角の測定>
 上記の<液晶セルの作製>に記載の方法で作製したツイストネマティック液晶セル、又はアンチパラレルセルを105℃で5分間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社製の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。
<Measurement of pretilt angle>
The twisted nematic liquid crystal cell or antiparallel cell produced by the method described in <Preparation of liquid crystal cell> above was heated at 105 ° C. for 5 minutes, and then the pretilt angle was measured. The pretilt angle was measured by “Axo Scan” manufactured by Axo Metric, using the Mueller matrix method.
<電圧保持率(VHR)及びバックライトエージング耐性の測定>
 上記の<液晶セルの作製>に記載の方法で作製した液晶セルの初期状態の電圧保持率、及びバックライトエージング(LCDパネル用バックライトに液晶セルを乗せ、2週間AC10Vにて駆動させた)後の電圧保持率の測定を行なった。電圧保持率の測定は、90℃の温度下で4Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には、東陽テクニカ社製の電圧保持率測定装置(VHR-1)を使用した。
<Measurement of voltage holding ratio (VHR) and backlight aging resistance>
Voltage holding ratio in the initial state of the liquid crystal cell produced by the method described in <Preparation of liquid crystal cell> and backlight aging (the liquid crystal cell is mounted on the backlight for the LCD panel and driven at 10 V AC for 2 weeks) The subsequent voltage holding ratio was measured. The voltage holding ratio was measured by applying a voltage of 4 V for 60 μs at a temperature of 90 ° C., measuring the voltage after 16.67 ms, and calculating how much the voltage could be held as the voltage holding ratio. The voltage holding ratio was measured using a voltage holding ratio measuring device (VHR-1) manufactured by Toyo Technica.
(実施例10)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-01を0.72g(1.50mmol)、及びNMPを28.2g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下、24時間反応させ、ポリアミック酸(PAA-1)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-1)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-1)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-1を得た。このポリアミック酸の数平均分子量は14,300、重量平均分子量は41,200であった。
(Example 10)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.72 g (1.50 mmol) of HC-01, and 28.2 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-1) concentration of 15 mass%.
30 g of this polyamic acid (PAA-1) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-1) and 74% of NMP. A liquid crystal alignment treatment agent-1 was obtained by making a solution with a mass% and BC of 20 mass%. The number average molecular weight of this polyamic acid was 14,300, and the weight average molecular weight was 41,200.
(実施例11)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-02を0.80g(1.5mmol)、及びNMPを28.6g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-2)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-2)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-2)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-2を得た。このポリアミック酸の数平均分子量は12,300、重量平均分子量は26,700であった。
(Example 11)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-02, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-2) concentration of 15% by mass.
30 g of this polyamic acid (PAA-2) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-2) and 74% of NMP. A liquid crystal alignment treatment agent-2 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 12,300, and the weight average molecular weight was 26,700.
(実施例12)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-03を0.80g(1.5mmol)、及びNMPを28.6g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-3)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-3)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-3)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-3を得た。このポリアミック酸の数平均分子量は9,800、重量平均分子量は26,900であった。
(Example 12)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-03, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-3) concentration of 15% by mass.
30 g of this polyamic acid (PAA-3) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-3) and 74% of NMP. A liquid crystal aligning agent-3 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 9,800, and the weight average molecular weight was 26,900.
(実施例13)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-04を0.80g(1.5mmol)、及びNMPを28.6g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-4)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-4)溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-4)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-4を得た。このポリアミック酸の数平均分子量は11,300、重量平均分子量は25,800であった。
(Example 13)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-04, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-4) concentration of 15 mass%.
30 g of this polyamic acid (PAA-4) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by weight of polyamic acid (PAA-4) and 74% by weight of NMP. % And BC as a 20% by mass solution to obtain Liquid Crystal Alignment Agent-4. The number average molecular weight of this polyamic acid was 11,300, and the weight average molecular weight was 25,800.
(実施例14)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-05を0.54g(1.5mmol)、及びNMPを27.1g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-5)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-5)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-5)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-5を得た。このポリアミック酸の数平均分子量は12,600、重量平均分子量は30,200であった。
(Example 14)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.54 g (1.5 mmol) of HC-05, and 27.1 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-5) concentration of 15% by mass.
30 g of this polyamic acid (PAA-5) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-5), and 74% of NMP. A liquid crystal aligning agent-5 was obtained by making a solution with a mass% and BC of 20 mass%. The number average molecular weight of this polyamic acid was 12,600, and the weight average molecular weight was 30,200.
(実施例15)
 50mL四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-06を0.80g(1.5mmol)、及びNMPを28.6g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-6)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-6)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-6)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-6を得た。このポリアミック酸の数平均分子量は12,700、重量平均分子量は27,700であった。
(Example 15)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.80 g (1.5 mmol) of HC-06, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-6) concentration of 15% by mass.
30 g of this polyamic acid (PAA-6) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-6), and 74% of NMP. A liquid crystal alignment agent-6 was obtained by making a solution with a mass% of 20% by mass of BC. The number average molecular weight of this polyamic acid was 12,700, and the weight average molecular weight was 27,700.
(実施例16)
 50mL四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-07を0.82g(1.5mmol)、及びNMPを28.7g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-7)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-7)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-7)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-7を得た。このポリアミック酸の数平均分子量は10,200、重量平均分子量は26,500であった。
(Example 16)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.82 g (1.5 mmol) of HC-07, and 28.7 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-7) concentration of 15% by mass.
30 g of this polyamic acid (PAA-7) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-7) and 74% of NMP. A liquid crystal aligning agent-7 was obtained by making a solution with a mass% and BC of 20 mass%. The number average molecular weight of this polyamic acid was 10,200, and the weight average molecular weight was 26,500.
(実施例17)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-10を0.71g(1.5mmol)、及びNMPを28.1g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-8)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-8)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-8)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-8を得た。このポリアミック酸の数平均分子量は9,900、重量平均分子量は23,500であった。
(Example 17)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.71 g (1.5 mmol) of HC-10, and 28.1 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-8) concentration of 15% by mass.
30 g of this polyamic acid (PAA-8) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-8) and 74% of NMP. A liquid crystal alignment treatment agent-8 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 9,900, and the weight average molecular weight was 23,500.
(実施例18)
 50mLの四口フラスコにジアミン成分として、HC-05を2.00g(5.60mmol)、及びNMPを17.4g加え、約10℃に冷却した。次いでCBDAを1.08g(5.49mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-9)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-9)の溶液15gを50mLの三角フラスコに移し、NMPを15.0g、BCを7.5g加えて希釈し、ポリアミック酸(PAA-9)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-9を得た。このポリアミック酸の数平均分子量は21,200、重量平均分子量は50,900であった。
(Example 18)
As a diamine component, 2.00 g (5.60 mmol) of HC-05 and 17.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 1.08 g (5.49 mmol) of CBDA was added, returned to room temperature, and reacted for 24 hours under a nitrogen atmosphere to obtain a solution having a polyamic acid (PAA-9) concentration of 15 mass%.
15 g of this polyamic acid (PAA-9) solution was transferred to a 50 mL Erlenmeyer flask, diluted by adding 15.0 g of NMP and 7.5 g of BC, and diluted to 6% by mass of polyamic acid (PAA-9) and 74% of NMP. A liquid crystal alignment agent-9 was obtained by making a solution with a mass% and BC of 20 mass%. The number average molecular weight of this polyamic acid was 21,200, and the weight average molecular weight was 50,900.
(実施例19)
 50mLの四口フラスコにジアミン成分として、HC-08を2.00g(4.70mol)、PCH-7ABを0.45g(1.17mmol)、及びNMPを20.3g加え、約10℃に冷却した。次いでCBDAを1.13g(5.81mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-10)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-10)の溶液20gを100mLの三角フラスコに移し、NMPを20.0g、BCを10.0g加えて希釈し、ポリアミック酸(PAA-10)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-10を得た。このポリアミック酸の数平均分子量は13,300、重量平均分子量は428,00であった。
(Example 19)
As a diamine component in a 50 mL four-necked flask, 2.00 g (4.70 mol) of HC-08, 0.45 g (1.17 mmol) of PCH-7AB, and 20.3 g of NMP were added and cooled to about 10 ° C. . Next, 1.13 g (5.81 mmol) of CBDA was added, returned to room temperature, and reacted for 24 hours under a nitrogen atmosphere to obtain a solution having a polyamic acid (PAA-10) concentration of 15 mass%.
20 g of this polyamic acid (PAA-10) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 20.0 g of NMP and 10.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-10), and 74% of NMP. A liquid crystal alignment treatment agent-10 was obtained by making a solution with a mass% and BC of 20 mass%. The number average molecular weight of this polyamic acid was 13,300, and the weight average molecular weight was 428,000.
(実施例20)
 50mLの四口フラスコにジアミン成分として、HC-09を2.00g(4.38mol)、PCH-7ABを0.45g(1.10mmol)、及びNMPを19.7g加え、約10℃に冷却した。次いでCBDAを1.06g(5.43mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-11)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-11)の溶液20gを100mLの三角フラスコに移し、NMPを20.0g、BCを10.0g加えて希釈し、ポリアミック酸(PAA-11)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-11を得た。このポリアミック酸の数平均分子量は10,700、重量平均分子量は35,300であった。
(Example 20)
As a diamine component in a 50 mL four-necked flask, 2.00 g (4.38 mol) of HC-09, 0.45 g (1.10 mmol) of PCH-7AB, and 19.7 g of NMP were added and cooled to about 10 ° C. . Next, 1.06 g (5.43 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-11) concentration of 15% by mass.
20 g of this polyamic acid (PAA-11) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 20.0 g of NMP and 10.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-11) and 74% of NMP. A liquid crystal alignment treatment agent-11 was obtained in the form of a solution containing 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 10,700, and the weight average molecular weight was 35,300.
(実施例21)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.307g(2.52mmol)、2,4-DAAを0.384g(1.89mmol)、HC-02を1.00g(1.89mol)、及びNMPを12.3g加え、約10℃に冷却した。次いでPMDAを0.412g(1.89mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらに、CBDAを0.964g(4.91mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-12)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-12)の溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸1.96gとピリジン0.84gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-1)の黄褐色粉末を得た。このポリイミドの数平均分子量は11,200、重量平均分子量は30,800であった。また、イミド化率は89%であった。
 ポリイミド(SPI-1)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-1)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-12を得た。
(Example 21)
As a diamine component in a 100 mL four-necked flask, 0.307 g (2.52 mmol) of 3-ABA, 0.384 g (1.89 mmol) of 2,4-DAA, and 1.00 g (1.89 mol) of HC-02 And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-12) concentration of 20 mass%.
To 15.0 g of a polyamic acid (PAA-12) solution, 22.5 g of NMP was added for dilution, and 1.96 g of acetic anhydride and 0.84 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-1). The number average molecular weight of this polyimide was 11,200, and the weight average molecular weight was 30,800. Further, the imidization ratio was 89%.
To 2.00 g of polyimide (SPI-1), 18.0 g of γ-BL was added and stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-1) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-12.
(実施例22)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.307g(2.52mmol)、2,4-DAAを0.384g(1.89mmol)、HC-03を1.00g(1.89mol)、及びNMPを12.3g加え、約10℃に冷却した。次いでPMDAを0.412g(1.89mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらに、CBDAを0.964g(4.91mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-13)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-13)溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸1.96gとピリジン0.84gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-2)の橙色粉末を得た。このポリイミドの数平均分子量は9,800、重量平均分子量は23,500であった。また、イミド化率は89%であった。
 ポリイミド(SPI-2)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-2)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-13を得た。
(Example 22)
As a diamine component in a 100 mL four-necked flask, 3-ABA 0.307 g (2.52 mmol), 2,4-DAA 0.384 g (1.89 mmol), HC-03 1.00 g (1.89 mol) And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-13) concentration of 20 mass%.
To 15.0 g of a polyamic acid (PAA-13) solution, 22.5 g of NMP was added for dilution, and 1.96 g of acetic anhydride and 0.84 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain an orange powder of polyimide (SPI-2). The number average molecular weight of this polyimide was 9,800, and the weight average molecular weight was 23,500. Further, the imidization ratio was 89%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-2), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-2) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-13.
(実施例23)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.308g(2.52mmol)、2,4-DAAを0.384g(1.89mmol)、HC-04を1.00g(0.89mol)、及びNMPを12.3g加え、約10℃に冷却した。次いでPMDAを0.412g(1.89mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらに、CBDAを0.964g(4.91mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-14)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-14)の溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸1.96gとピリジン0.84gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-3)の黄褐色粉末を得た。このポリイミドの数平均分子量は11,800、重量平均分子量は25,100であった。また、イミド化率は88%であった。
 ポリイミド(SPI-3)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-3)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-14を得た。
(Example 23)
As a diamine component in a 100 mL four-neck flask, 0.308 g (2.52 mmol) of 3-ABA, 0.384 g (1.89 mmol) of 2,4-DAA, and 1.00 g (0.89 mol) of HC-04 And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-14) concentration of 20 mass%.
To 15.0 g of a polyamic acid (PAA-14) solution, 22.5 g of NMP was added for dilution, and 1.96 g of acetic anhydride and 0.84 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-3). The number average molecular weight of this polyimide was 11,800, and the weight average molecular weight was 25,100. Moreover, the imidation ratio was 88%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-3), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-3) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-14.
(実施例24)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.308g(2.52mmol)、2,4-DAAを0.384g(1.89mmol)、HC-06を1.00g(0.89mol)、及びNMPを12.3g加え、約10℃に冷却した。次いでPMDAを0.412g(1.89mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらに、CBDAを0.964g(4.91mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-15)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-15)の溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸1.96gとピリジン0.84gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-4)の黄褐色粉末を得た。このポリイミドの数平均分子量は13,200、重量平均分子量は29,400であった。また、イミド化率は85%であった。
 ポリイミド(SPI-4)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-4)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-15を得た。
(Example 24)
As a diamine component in a 100 mL four-necked flask, 3-ABA 0.308 g (2.52 mmol), 2,4-DAA 0.384 g (1.89 mmol), HC-06 1.00 g (0.89 mol) And 12.3 g of NMP were added and cooled to about 10 ° C. Next, 0.412 g (1.89 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.964 g (4.91 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-15) concentration of 20 mass%.
To 15.0 g of a polyamic acid (PAA-15) solution, 22.5 g of NMP was added for dilution, and 1.96 g of acetic anhydride and 0.84 g of pyridine were further added, followed by reaction at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-4). The number average molecular weight of this polyimide was 13,200, and the weight average molecular weight was 29,400. Moreover, the imidation ratio was 85%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-4), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-4) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-15.
(実施例25)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.298g(2.44mmol)、2,4-DAAを0.372g(1.83mmol)、HC-04を1.00g(0.83mol)、及びNMPを12.0g加え、約10℃に冷却した。次いでPMDAを0.399g(1.83mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらにCBDAを0.933g(4.76mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-16)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-16)の溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸1.94gとピリジン0.83gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-5)の黄褐色粉末を得た。このポリイミドの数平均分子量は10,700、重量平均分子量は22,800であった。また、イミド化率は87%であった。
 ポリイミド(SPI-5)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-5)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-16を得た。
(Example 25)
As a diamine component in a 100 mL four-neck flask, 0.298 g (2.44 mmol) of 3-ABA, 0.372 g (1.83 mmol) of 2,4-DAA, and 1.00 g (0.83 mol) of HC-04 And 12.0 g of NMP were added and cooled to about 10 ° C. Next, 0.399 g (1.83 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 0.933 g (4.76 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-16) concentration of 20 mass%.
To 15.0 g of a polyamic acid (PAA-16) solution, 22.5 g of NMP was added for dilution, and 1.94 g of acetic anhydride and 0.83 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-5). The number average molecular weight of this polyimide was 10,700, and the weight average molecular weight was 22,800. The imidation ratio was 87%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-5), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-5) was 5 mass%, γ-BL was 65 mass%, and BC was A liquid crystal aligning agent-16 having 15% by mass and DPM of 15% by mass was obtained.
(実施例26)
 100mLの四口フラスコにCBDEを2.37g(9.12mmol)、ジアミン成分として、p-PDAを0.813g(7.52mmol)、HC-02を1.00g(1.88mmol)、NMPを30.7g、及びトリエチルアミンを0.475g(4.70mmol)加え、約10℃に冷却した。次いでDMT-MMを7.80g(28.2mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸エステル(PAE-1)の濃度が12質量%の溶液を得た。
 このポリアミック酸(PAE-1)の溶液にNMPを34.9g加え、約10℃に冷やしたメタノール500mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール300mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリアミック酸エステル(PAE-1)の白色粉末を得た。このポリアミック酸エステルの数平均分子量は15,300、重量平均分子量は38,800であった。
 ポリアミック酸エステル(PAE-1)2.00gに、γ―BLを18.0g加え、室温で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ―BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(PAE-1)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の液晶配向処理剤-17を得た。
(Example 26)
In a 100 mL four-necked flask, 2.37 g (9.12 mmol) of CBDE, 0.813 g (7.52 mmol) of p-PDA, 1.00 g (1.88 mmol) of HC-02, and 30 NMP were used as diamine components. 0.7g and 0.475 g (4.70 mmol) of triethylamine were added and cooled to about 10 ° C. Next, 7.80 g (28.2 mmol) of DMT-MM was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid ester (PAE-1) concentration of 12 mass%.
To this polyamic acid (PAE-1) solution, 34.9 g of NMP was added and slowly poured into 500 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 300 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a white powder of polyamic acid ester (PAE-1). The number average molecular weight of this polyamic acid ester was 15,300, and the weight average molecular weight was 38,800.
18.0 g of γ-BL was added to 2.00 g of polyamic acid ester (PAE-1), and the mixture was stirred at room temperature for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (PAE-1) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass, thereby obtaining a liquid crystal aligning agent-17.
(比較例1)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.45g(13.5mol)、C16DABを0.52g(1.50mmol)、及びNMPを28.2g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-17)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-17)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-17)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-18を得た。このポリアミック酸の数平均分子量は18,300、重量平均分子量は43,200であった。
(Comparative Example 1)
As a diamine component, 1.45 g (13.5 mol) of p-PDA, 0.52 g (1.50 mmol) of C16DAB, and 28.2 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-17) concentration of 15% by mass.
30 g of this polyamic acid (PAA-17) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-17) and 74% of NMP. A liquid crystal alignment agent-18 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 18,300, and the weight average molecular weight was 43,200.
(比較例2)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.45g(13.5mol)、CAB-2を0.64g(1.50mmol)、及びNMPを28.2g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-18)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-18)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-18)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-19を得た。このポリアミック酸の数平均分子量は97,00、重量平均分子量は19,200であった。
(Comparative Example 2)
As a diamine component, 1.45 g (13.5 mol) of p-PDA, 0.64 g (1.50 mmol) of CAB-2, and 28.2 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-18) concentration of 15% by mass.
30 g of this polyamic acid (PAA-18) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-18), and 74% of NMP. A liquid crystal alignment agent-19 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 97,000, and the weight average molecular weight was 19,200.
(比較例3)
 50mLの四口フラスコにジアミン成分として、mTDAを2.00g(8.26mmol)、及びNMPを20.3加え、約10℃に冷却した。次いでCBDAを1.59g(8.09mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-19)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-19)の溶液15gを50mLの三角フラスコに移し、NMPを15.0g、BCを7.5g加えて希釈し、ポリアミック酸(PAA-19)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-20を得た。このポリアミック酸の数平均分子量は22,000、重量平均分子量は49,600であった。
(Comparative Example 3)
To a 50 mL four-necked flask, as a diamine component, 2.00 g (8.26 mmol) of mTDA and 20.3 of NMP were added and cooled to about 10 ° C. Next, 1.59 g (8.09 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-19) concentration of 15% by mass.
15 g of this polyamic acid (PAA-19) solution was transferred to a 50 mL Erlenmeyer flask, diluted by adding 15.0 g of NMP and 7.5 g of BC, and diluted to 6% by mass of polyamic acid (PAA-19) and 74% of NMP. A liquid crystal alignment agent-20 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 22,000, and the weight average molecular weight was 49,600.
(比較例4)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.508g(4.16mmol)、2,4-DAAを0.634g(3.12mmol)、C14DABを1.00g(3.12mmol)、及びNMPを17.7g加え、約10℃に冷却した。次いでPMDAを0.680g(3.12mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらにCBDAを1.59g(8.11mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-20)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-20)の溶液20.0gに、NMPを30.0g加えて希釈し、さらに無水酢酸3.01gとピリジン1.29gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール200mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール150mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-6)の黄褐色粉末を得た。このポリイミドの数平均分子量は10,700、重量平均分子量は22,800であった。また、イミド化率は88%であった。
 ポリイミド(SPI-6)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-6)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の溶液とし、液晶配向処理剤-21を得た。
(Comparative Example 4)
As a diamine component in a 100 mL four-necked flask, 0.508 g (4.16 mmol) of 3-ABA, 0.634 g (3.12 mmol) of 2,4-DAA, 1.00 g (3.12 mmol) of C14DAB, and 17.7 g of NMP was added and cooled to about 10 ° C. Next, 0.680 g (3.12 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 1.59 g (8.11 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-20) concentration of 20 mass%.
30.0 g of NMP was added to 20.0 g of a solution of polyamic acid (PAA-20) for dilution, and 3.01 g of acetic anhydride and 1.29 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 200 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was recovered, further dispersed and washed twice with 150 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellowish brown powder of polyimide (SPI-6). The number average molecular weight of this polyimide was 10,700, and the weight average molecular weight was 22,800. Moreover, the imidation ratio was 88%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-6), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-6) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass to obtain a liquid crystal aligning agent-21.
(比較例5)
 100mLの四口フラスコにジアミン成分として、3-ABAを0.386g(3.16mmol)、2,4-DAAを0.482g(2.37mmol)、CAB-2を1.00g(2.37mmol)、及びNMPを14.4g加え、約10℃に冷却した。次いでPMDAを0.517g(2.37mmol)加え、室温に戻し、窒素雰囲気下で1時間時間反応させた。さらにCBDAを1.21g(6.16mmol)加え、室温で、窒素雰囲気下で16時間反応させ、ポリアミック酸(PAA-21)の濃度が20質量%の溶液を得た。
 ポリアミック酸(PAA-21)の溶液15.0gに、NMPを22.5g加えて希釈し、さらに無水酢酸2.10gとピリジン0.90gを加え、50℃で3時間反応させた。この反応溶液を室温程度まで冷却後、約10℃に冷やしたメタノール150mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール100mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリイミド(SPI-7)の黄橙色粉末を得た。このポリイミドの数平均分子量は9,900、重量平均分子量は28,800であった。また、イミド化率は91%であった。
 ポリイミド(SPI-7)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(SPI-7)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の溶液とし、液晶配向処理剤-22を得た。
(Comparative Example 5)
As a diamine component in a 100 mL four-necked flask, 0.386 g (3.16 mmol) of 3-ABA, 0.482 g (2.37 mmol) of 2,4-DAA, and 1.00 g (2.37 mmol) of CAB-2 And 14.4 g of NMP were added and cooled to about 10 ° C. Next, 0.517 g (2.37 mmol) of PMDA was added, the temperature was returned to room temperature, and the reaction was performed for 1 hour in a nitrogen atmosphere. Further, 1.21 g (6.16 mmol) of CBDA was added and reacted at room temperature in a nitrogen atmosphere for 16 hours to obtain a solution having a polyamic acid (PAA-21) concentration of 20 mass%.
To 15.0 g of a solution of polyamic acid (PAA-21), 22.5 g of NMP was added for dilution, and 2.10 g of acetic anhydride and 0.90 g of pyridine were further added and reacted at 50 ° C. for 3 hours. The reaction solution was cooled to about room temperature and then slowly poured into 150 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 100 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a yellow-orange powder of polyimide (SPI-7). The number average molecular weight of this polyimide was 9,900, and the weight average molecular weight was 28,800. Moreover, the imidation ratio was 91%.
12.00 g of γ-BL was added to 2.00 g of polyimide (SPI-7), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-7) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass to obtain a liquid crystal aligning agent-22.
(比較例6)
 50mLの四口フラスコにジアミン成分として、m-PDAを1.00g(9.28mol)、PCH-7ABを0.883g(2.32mmol)、及びNMPを23.3g加え、約10℃に冷却した。次いでCBDAを2.23g(11.4mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-22)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-22)の溶液20gを100mLの三角フラスコに移し、NMPを20.0g、BCを10.0g加えて希釈し、ポリアミック酸(PAA-22)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-23を得た。このポリアミック酸の数平均分子量は16,300、重量平均分子量は40,200であった。
(Comparative Example 6)
As a diamine component, 1.00 g (9.28 mol) of m-PDA, 0.883 g (2.32 mmol) of PCH-7AB and 23.3 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.23 g (11.4 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-22) concentration of 15 mass%.
20 g of this polyamic acid (PAA-22) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 20.0 g of NMP and 10.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-22) and 74% of NMP. A liquid crystal alignment agent-23 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 16,300, and the weight average molecular weight was 40,200.
(比較例7)
 100mLの四口フラスコにCBDEを2.98g(11.4mmol)、ジアミン成分として、p-PDAを1.02g(9.44mmol)、CAB-2を1.00g(2.36mmol)、NMPを36.6g、及びトリエチルアミンを0.60g(5.90mmol)加え、約10℃に冷却した。次いでDMT-MMを9.80g(35.4mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸エステル(PAE-2)の濃度が12質量%の溶液を得た。
 このポリアミック酸(PAE-2)の溶液にNMPを41.7g加え、約10℃に冷やしたメタノール500mL中に攪拌しながらゆっくり注ぎ、固体を析出させた。析出した固体を回収し、さらに、メタノール300mLで計2回分散洗浄し、100℃で減圧乾燥して、ポリアミック酸エステル(PAE-2)の薄桃色粉末を得た。このポリアミック酸エステルの数平均分子量は13,200、重量平均分子量は35,700であった。
 ポリアミック酸エステル(PAE-2)2.00gに、γ―BLを18.0g加え、室温で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ―BL8.0g、BC6.0g、及びDPM6.0gを加え、50℃で20時間攪拌し、ポリイミド(PAE-2)が5質量%、γ-BLが65質量%、BCが15質量%、DPMが15質量%の溶液とし、液晶配向処理剤-24を得た。
(Comparative Example 7)
In a 100 mL four-necked flask, 2.98 g (11.4 mmol) of CBDE, 1.02 g (9.44 mmol) of p-PDA, 1.00 g (2.36 mmol) of CAB-2, and 36 NMP were used as diamine components. 0.6 g and triethylamine (0.60 g, 5.90 mmol) were added, and the mixture was cooled to about 10 ° C. Next, 9.80 g (35.4 mmol) of DMT-MM was added, returned to room temperature, and reacted for 24 hours under a nitrogen atmosphere to obtain a solution having a polyamic acid ester (PAE-2) concentration of 12 mass%.
41.7 g of NMP was added to this polyamic acid (PAE-2) solution, and slowly poured into 500 mL of methanol cooled to about 10 ° C. with stirring to precipitate a solid. The precipitated solid was collected, further dispersed and washed twice with 300 mL of methanol, and dried under reduced pressure at 100 ° C. to obtain a light pink powder of polyamic acid ester (PAE-2). The number average molecular weight of this polyamic acid ester was 13,200, and the weight average molecular weight was 35,700.
18.0 g of γ-BL was added to 2.00 g of polyamic acid ester (PAE-2), and the mixture was stirred at room temperature for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, γ-BL 8.0 g, BC 6.0 g, and DPM 6.0 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (PAE-2) was 5 mass%, γ-BL was 65 mass%, BC Was 15% by mass and DPM was 15% by mass to obtain a liquid crystal aligning agent-24.
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
 実施例10~18と比較例1、2とを対比した場合、実施例10~18ては、ラビング耐性が向上し、VHRが高く、バックライトエージング耐性に優れることがわかる。
 実施例17と比較例3とを対比した場合、比較例3(環化反応の起こらない構造)では、実施例17に比べて、プレチルト角は小さいく、ラビング耐性、及びVHRのエージング耐性の向上においても優れていることがわかる。
 実施例19、20及び比較例6を対比した場合、。実施例19、20では、プレチルト発現が確認され、液晶配向処理剤が光配向法で有用であることがわかる。
 実施例21~25、及び比較例4、5とを対比した場合、比較例4、5では、液晶配向処理剤を基板上に印刷した際、ピンホールや斜方ムラなどが確認されたが、実施例21~25では、印刷性に優れそのような欠陥は確認されず、また、プレチルト発現も確認され、VHRのバックライトエージング耐性の向上の効果も確認できた。。
 実施例26と比較例7とを対比した場合、実施例26では、印刷性が良好であり、ラビング耐性、及びVHRのバックライトエージング耐性が向上する結果が得られた。
When Examples 10 to 18 are compared with Comparative Examples 1 and 2, it can be seen that Examples 10 to 18 have improved rubbing resistance, high VHR, and excellent backlight aging resistance.
When Example 17 and Comparative Example 3 are compared, Comparative Example 3 (structure in which no cyclization reaction occurs) has a smaller pretilt angle than that of Example 17, and improves rubbing resistance and VHR aging resistance. It can be seen that is excellent.
When comparing Examples 19 and 20 and Comparative Example 6. In Examples 19 and 20, the development of pretilt was confirmed, indicating that the liquid crystal aligning agent is useful in the photoalignment method.
When comparing Examples 21 to 25 and Comparative Examples 4 and 5, in Comparative Examples 4 and 5, when the liquid crystal alignment treatment agent was printed on the substrate, pinholes and oblique unevenness were confirmed. In Examples 21 to 25, printability was excellent, no such defects were confirmed, pretilt expression was confirmed, and the effect of improving the backlight aging resistance of VHR could be confirmed. .
When Example 26 and Comparative Example 7 were compared, Example 26 had good printability and resulted in improved rubbing resistance and VHR backlight aging resistance.
<実施例27>
4-(トランス-4-アミルシクロヘキサンカルボキシアミノ)-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジアミノベンズアミドの合成(HC-11)の合成
Figure JPOXMLDOC01-appb-C000124
<Example 27>
Synthesis of 4- (trans-4-amylcyclohexanecarboxyamino) -3- (tert-butoxycarbonylamino) phenyl 3,5-diaminobenzamide (HC-11)
Figure JPOXMLDOC01-appb-C000124
第1工程
4-(トランス-4-アミルシクロヘキサンカルボキシアミド)-3-(tert-ブトキシカルボニルアミノ) ニトロベンゼンの合成
Figure JPOXMLDOC01-appb-C000125
 100mLの枝つきナスフラスコに、トランス-4-アミルシクロヘキサンカルボン酸5.16g(20.0mmol)を測り取り、THF50mLを加えて溶解させ、氷浴中にて塩化チオニル3.33g(28.0mmol)の50質量%THF溶液をゆっくり滴下した。その後、室温に戻して、2時間反応させ、4-アミルシクロヘキサンカルボン酸クロリドを生成させた。
Step 1 Synthesis of 4- (trans-4-amylcyclohexanecarboxamide) -3- (tert-butoxycarbonylamino) nitrobenzene
Figure JPOXMLDOC01-appb-C000125
In a 100 mL branched eggplant flask, 5.16 g (20.0 mmol) of trans-4-amylcyclohexanecarboxylic acid was weighed and dissolved by adding 50 mL of THF, and 3.33 g (28.0 mmol) of thionyl chloride in an ice bath. Was slowly added dropwise. Thereafter, the temperature was returned to room temperature and reacted for 2 hours to form 4-amylcyclohexanecarboxylic acid chloride.
 一方で200mLの四口フラスコに3-tert-ブトキシカルボニルアミノ-4-アミノニトロベンゼンを5.07g(20.0mmol)測り取り、THF50.0mLとトリエチルアミン4.05g(40.0mmol)を加え、氷浴にて10℃以下にし、窒素雰囲気下にて、先に調製した4-アミルシクロヘキサンカルボン酸クロリドを滴下した。その後、室温に戻し、窒素雰囲気下で24時間反応させた。
 反応終了後、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、酢酸水、純水、及び飽和食塩水で順次洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(6:4)を用いて再結晶を行い、黄白色固体5.31gを得た(収率61%)。
On the other hand, 5.07 g (20.0 mmol) of 3-tert-butoxycarbonylamino-4-aminonitrobenzene was measured into a 200 mL four-necked flask, and 50.0 mL of THF and 4.05 g (40.0 mmol) of triethylamine were added thereto. The temperature was adjusted to 10 ° C. or lower at 4 ° C., and 4-amylcyclohexanecarboxylic acid chloride prepared previously was added dropwise under a nitrogen atmosphere. Then, it returned to room temperature and made it react under nitrogen atmosphere for 24 hours.
After completion of the reaction, ethyl acetate was added, and the mixture was washed successively with 10% by mass aqueous sodium hydrogen carbonate solution, acetic acid water, pure water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (6: 4) to obtain 5.31 g of a yellowish white solid (yield 61%).
第2工程
4-(トランス-4-アミルシクロヘキサンカルボキシアミド)-3-(tert-ブトキシカルボニルアミノ) アニリンの合成
Figure JPOXMLDOC01-appb-C000126
 100mLの四口フラスコに、4-(トランス-4-アミルシクロヘキシルカルボキシルアミド)-3-(tert-ブトキシカルボニルアミノ) ニトロベンゼンを4.28g(9.88mmol)、テトラヒドロフランを50mL、純水を50mL、及び塩化スズを9.48g(50.0mmol)加え、窒素雰囲気下で24時間還流させた。反応終了後、酢酸エチルを100mL加え、10質量%炭酸水素ナトリウム水溶液を加え、析出物を濾過により除去した。その後、濾液の有機層を分離し、純水、飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥させた。無水硫酸ナトリウムを濾過により除去し、ロータリーエバポレーターにより溶媒を除去して、黄色の固体3.95gを得た(収率99%)。
Second Step 4- (trans-4-amylcyclohexanecarboxamide) -3- (tert-butoxycarbonylamino) aniline synthesis
Figure JPOXMLDOC01-appb-C000126
In a 100 mL four-necked flask, 4- (trans-4-amylcyclohexylcarboxylamido) -3- (tert-butoxycarbonylamino) nitrobenzene 4.28 g (9.88 mmol), tetrahydrofuran 50 mL, pure water 50 mL, and 9.48 g (50.0 mmol) of tin chloride was added and refluxed for 24 hours under a nitrogen atmosphere. After completion of the reaction, 100 mL of ethyl acetate was added, a 10% by mass aqueous sodium hydrogen carbonate solution was added, and the precipitate was removed by filtration. Thereafter, the organic layer of the filtrate was separated, washed with pure water and saturated brine, and dried over anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, and the solvent was removed by a rotary evaporator to obtain 3.95 g of a yellow solid (yield 99%).
第3工程
4-(トランス-4-アミルシクロヘキサンカルボキシルアミド)-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジニトロベンズアミドの合成
Figure JPOXMLDOC01-appb-C000127
 200mLの四口フラスコに、4-(トランス-4-アミルシクロヘキサンカルボキシルアミド)-3-(tert-ブトキシカルボニルアミノ)アニリンを4.79g(11.9mmol)、テトラヒドロフランを80mL、及びピリジンを1.10g(13.9mmol)加え、窒素雰囲気下、氷浴中10℃以下で、さらに3,5-ジニトロ安息香酸クロリド3.22g(14.0mmol)の10質量%THF溶液をゆっくり滴下し、室温に戻してから24時間反応させた。系内を冷却して0℃にし、さらに3,5-ジニトロベンゾイルクロリドを5.8g(14.0mmol)加えて、室温で攪拌した。反応終了後、ロータリーエバポレーターにて溶媒を除去し、酢酸エチルを加え、10質量%炭酸ナトリウム水溶液、水、及び飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、薄黄色固体5.26gを得た(収率74%)。
Step 3 Synthesis of 4- (trans-4-amylcyclohexanecarboxylamido) -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide
Figure JPOXMLDOC01-appb-C000127
In a 200 mL four-necked flask, 4.79 g (11.9 mmol) of 4- (trans-4-amylcyclohexanecarboxylamido) -3- (tert-butoxycarbonylamino) aniline, 80 mL of tetrahydrofuran, and 1.10 g of pyridine. (13.9 mmol) was added, and a 10 mass% THF solution of 3.22 g (14.0 mmol) of 3,5-dinitrobenzoic acid chloride was slowly added dropwise in an ice bath at 10 ° C. or lower in a nitrogen atmosphere, and the mixture was returned to room temperature. The reaction was allowed to proceed for 24 hours. The system was cooled to 0 ° C., 5.8 g (14.0 mmol) of 3,5-dinitrobenzoyl chloride was further added, and the mixture was stirred at room temperature. After completion of the reaction, the solvent was removed with a rotary evaporator, ethyl acetate was added, and the mixture was washed with a 10 mass% aqueous sodium carbonate solution, water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 5.26 g of light yellow solid (yield 74%).
第4工程
HC-11の合成
Figure JPOXMLDOC01-appb-C000128
 300mLの四口フラスコに、4-(トランス-4-アミルシクロヘキサンカルボキシルアミド)-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジニトロベンズアミドを5.00g(8.37mmol)、テトラヒドロフランを30mL、エタノールを30mL、及び5%パラジウムカーボンを0.50g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、その後n-ヘキサンで分散洗浄して、灰色の固体4.20gを得た(収率93%)。
 得られた固体のH-NMRの結果を以下に示す。この結果から、目的物のHC-10であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ9.94(s,1H),9.22(s,1H),8.34(s,1H),8.34-7.93(d,1H),7.48―7.7.46(dd,1H),7.32-7.30(d,1H),7.28(d,2H),5.99-5.97 (t,1H),4.93 (s-br,4H),2.29 (m,1H),1.88-1.81(m,4H),1.47(s,9H)1.47-1.40(m、2H),1.31-1.16(m,9H),0.94-0.91(m、2H)0.89-0.85(t,3H)
Synthesis of the fourth step HC-11
Figure JPOXMLDOC01-appb-C000128
To a 300 mL four-necked flask, 5.00 g (8.37 mmol) of 4- (trans-4-amylcyclohexanecarboxylamido) -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide, 30 mL of tetrahydrofuran, 30 mL of ethanol and 0.50 g of 5% palladium carbon were added, and the mixture was stirred at room temperature in a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9), and then dispersed and washed with n-hexane to obtain 4.20 g of a gray solid (yield 93%).
The results of 1 H-NMR of the obtained solid are shown below. From this result, it was confirmed that it was the target product, HC-10.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 9.94 (s, 1H), 9.22 (s, 1H), 8.34 (s, 1H), 8.34-7.93 ( d, 1H), 7.48-7.746 (dd, 1H), 7.32-7.30 (d, 1H), 7.28 (d, 2H), 5.99-5.97 ( t, 1H), 4.93 (s-br, 4H), 2.29 (m, 1H), 1.88-1.81 (m, 4H), 1.47 (s, 9H) 1.47- 1.40 (m, 2H), 1.31-1.16 (m, 9H), 0.94-0.91 (m, 2H) 0.89-0.85 (t, 3H)
<実施例28>
4-[4-(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジアミノベンズアミドの合成(HC-12)の合成
Figure JPOXMLDOC01-appb-C000129
<Example 28>
Synthesis of 4- [4- (trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) phenyl 3,5-diaminobenzamide (HC-12)
Figure JPOXMLDOC01-appb-C000129
第1工程
4-[(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-tert-ブトキシカルボニルアミノ ニトロベンゼンの合成
Figure JPOXMLDOC01-appb-C000130
 100mLの枝つきナスフラスコに、4-(トランス-4-ペンチルシクロヘキシル)安息香酸5.07g(22.0mmol)を測り取り、THF50mL、及びDMFを1mL加え、氷浴中にて塩化チオニル3.33g(28.0mmol)をゆっくり滴下し、室温に戻して、2時間反応させ、4-(トランス-4-ペンチルシクロヘキシル)安息香酸クロリドを生成させた。
First Step Synthesis of 4-[(trans-4-pentylcyclohexyl) benzamide] -3-tert-butoxycarbonylamino nitrobenzene
Figure JPOXMLDOC01-appb-C000130
To a 100 mL eggplant flask with a branch, weigh 5.07 g (22.0 mmol) of 4- (trans-4-pentylcyclohexyl) benzoic acid, add 50 mL of THF and 1 mL of DMF, and 3.33 g of thionyl chloride in an ice bath. (28.0 mmol) was slowly added dropwise, returned to room temperature, and allowed to react for 2 hours to produce 4- (trans-4-pentylcyclohexyl) benzoic acid chloride.
 一方で200mLの四口フラスコに3-tert-ブトキシカルボニルアミノ-4-アミノニトロベンゼンを5.07g(20.0mmol)測り取り、THF50.0mLとトリエチルアミン2.43g(24.0mmol)を加え、氷浴にて10℃以下にし、窒素雰囲気下にて、先に調製した4-(トランス-4-ペンチルシクロヘキシル)安息香酸クロリドを滴下し、室温に戻し、窒素雰囲気下で24時間反応させた。
 反応終了後、酢酸エチルを加え、10質量%炭酸水素ナトリウム水溶液、酢酸水、純水、及び飽和食塩水で洗浄した。その後、硫酸マグネシウムで乾燥し、濾過により硫酸マグネシウムを除き、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(3:7)を用いて再結晶を行い、黄白色固体6.03gを得た(収率60%)。
On the other hand, 5.07 g (20.0 mmol) of 3-tert-butoxycarbonylamino-4-aminonitrobenzene was weighed into a 200 mL four-necked flask, and 50.0 mL of THF and 2.43 g (24.0 mmol) of triethylamine were added to the ice bath. The temperature was lowered to 10 ° C. or lower, and 4- (trans-4-pentylcyclohexyl) benzoic acid chloride prepared previously was added dropwise under a nitrogen atmosphere, returned to room temperature, and allowed to react for 24 hours under a nitrogen atmosphere.
After completion of the reaction, ethyl acetate was added, and the mixture was washed with 10% by mass aqueous sodium hydrogen carbonate solution, acetic acid water, pure water, and saturated brine. Then, it dried with magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (3: 7) to obtain 6.03 g of a yellowish white solid (yield 60%).
第2工程
4-[(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-(tert-ブトキシカルボニルアミノ)アニリンの合成
Figure JPOXMLDOC01-appb-C000131
 200mLの四口フラスコに、4-[(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-(tert-ブトキシカルボニルアミノ)ニトロベンゼンを6.03g(11.8mmol)、テトラヒドロフランを50mL、及び5%パラジウムカーボンを0.60g加え、水素雰囲気下で、室温で24時間攪拌した。反応終了後、パラジウムカーボンを濾過にて除去し、ロータリーエバポレーターにより溶媒を除去し、白色の固体5.94gを得た(収率99%)。
Second Step Synthesis of 4-[(trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) aniline
Figure JPOXMLDOC01-appb-C000131
In a 200 mL four-necked flask, 6.03 g (11.8 mmol) of 4-[(trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) nitrobenzene, 50 mL of tetrahydrofuran, and 5% palladium carbon 0.60 g was added, and the mixture was stirred at room temperature for 24 hours under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was removed by a rotary evaporator to obtain 5.94 g of a white solid (yield 99%).
第3工程
4-[(トランス-4-ペンチルシクロヘキシル)ベンズアミド]-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジニトロベンズアミドの合成
Figure JPOXMLDOC01-appb-C000132
 200mLの四口フラスコに、4-[(トランス-4-ペンチルシクロヘキシル)ベンゾイルアミド]-3-(tert-ブトキシカルボニルアミノ) アニリンを5.94g(12.4mmol)、テトラヒドロフランを80mL、及びピリジンを1.10g(13.9mmol)加え、窒素雰囲気下、氷浴中10℃以下で、3,5-ジニトロ安息香酸クロリド3.22g(14.0mmol)の10質量%THF溶液をゆっくり滴下した。その後、室温に戻し、24時間反応させた。反応終了後、ロータリーエバポレーターにて溶媒を除去し、メタノールで残渣を洗浄した後、酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、薄黄色固体7.82gを得た(収率94%)。
Step 3 Synthesis of 4-[(trans-4-pentylcyclohexyl) benzamide] -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide
Figure JPOXMLDOC01-appb-C000132
In a 200 mL four-necked flask, 5.94 g (12.4 mmol) 4-[(trans-4-pentylcyclohexyl) benzoylamide] -3- (tert-butoxycarbonylamino) aniline, 80 mL tetrahydrofuran, and 1 pyridine. .10 g (13.9 mmol) was added, and a 10 mass% THF solution of 3.22 g (14.0 mmol) of 3,5-dinitrobenzoic acid chloride was slowly added dropwise in an ice bath at 10 ° C. or lower in a nitrogen atmosphere. Then, it returned to room temperature and made it react for 24 hours. After completion of the reaction, the solvent was removed with a rotary evaporator, the residue was washed with methanol, and recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) to obtain 7.82 g of a pale yellow solid. Obtained (yield 94%).
第4工程
HC-11の合成
Figure JPOXMLDOC01-appb-C000133
 300mLの四口フラスコ中、4-[(トランス-4-アミルシクロヘキシル)ベンズアミド)-3-(tert-ブトキシカルボニルアミノ)フェニル 3,5-ジニトロベンズアミド6.00g(8.9mmol)をテトラヒドロフラン60mLに溶解させ、5%パラジウムカーボンを0.60g加え、水素雰囲気下、室温で攪拌した。反応終了後、濾過によりパラジウムカーボンを除去し、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルとn-ヘキサンの混合溶媒(1:9)を用いて再結晶を行い、次いでn-ヘキサンで分散洗浄して、灰色の固体5.45gを得た(収率99%)。
 得られた固体のH-NMRの結果を以下に示す。この結果から、目的物のHC-10であることを確認した。
H NMR (400 MHz,[D]-DMSO):δ10.00(s,1H),9.71(s,1H),8.59(s,1H),8.02-8.01(d,1H),7.89―7.87(d,2H),7.54-7.51(dd,1H),7.41-7.37(dd,3H),6.31-6.30 (d,2H),6.00-5.99(t,1H), 4.94 (s-br,4H),2.60-2.51(t,1H),1.85-1.81(m,4H),1.51-1.45(t,2H)1.45(s、9H),1.32-1.2(m、10H)1.10-1.00(m,2H)0.89-0.86(t,3H)
Synthesis of the fourth step HC-11
Figure JPOXMLDOC01-appb-C000133
In a 300 mL four-necked flask, 6.00 g (8.9 mmol) of 4-[(trans-4-amylcyclohexyl) benzamide) -3- (tert-butoxycarbonylamino) phenyl 3,5-dinitrobenzamide was dissolved in 60 mL of tetrahydrofuran. Then, 0.60 g of 5% palladium carbon was added, and the mixture was stirred at room temperature under a hydrogen atmosphere. After completion of the reaction, palladium carbon was removed by filtration, and the solvent was distilled off using a rotary evaporator. The residue was recrystallized using a mixed solvent of ethyl acetate and n-hexane (1: 9) and then dispersed and washed with n-hexane to obtain 5.45 g of a gray solid (yield 99%).
The results of 1 H-NMR of the obtained solid are shown below. From this result, it was confirmed that it was the target product, HC-10.
1 H NMR (400 MHz, [D 6 ] -DMSO): δ 10.00 (s, 1H), 9.71 (s, 1H), 8.59 (s, 1H), 8.02-8.01 ( d, 1H), 7.89-7.87 (d, 2H), 7.54-7.51 (dd, 1H), 7.41-7.37 (dd, 3H), 6.31-6. 30 (d, 2H), 6.00-5.99 (t, 1H), 4.94 (s-br, 4H), 2.60-2.51 (t, 1H), 1.85-1. 81 (m, 4H), 1.51-1.45 (t, 2H) 1.45 (s, 9H), 1.32-1.2 (m, 10H) 1.10-1.00 (m, 2H) 0.89-0.86 (t, 3H)
(実施例29)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-11を0.81g(1.5mmol)、及びNMPを28.6g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-23)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-23)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-23)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-25を得た。このポリアミック酸の数平均分子量は10,100、重量平均分子量は22,500であった。
(Example 29)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.81 g (1.5 mmol) of HC-11, and 28.6 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was performed in a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-23) concentration of 15 mass%.
30 g of this polyamic acid (PAA-23) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-23) and 74% of NMP. A liquid crystal aligning agent-25 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 10,100, and the weight average molecular weight was 22,500.
(実施例30)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.46g(13.5mol)、HC-12を0.94g(1.5mmol)、及びNMPを29.4g加え、約10℃に冷却した。次いでCBDAを2.79g(14.3mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-24)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-24)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-24)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-26を得た。このポリアミック酸の数平均分子量は13,700、重量平均分子量は28,200であった。
(Example 30)
As a diamine component, 1.46 g (13.5 mol) of p-PDA, 0.94 g (1.5 mmol) of HC-12, and 29.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.79 g (14.3 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-24) concentration of 15% by mass.
30 g of this polyamic acid (PAA-24) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-24) and 74% of NMP. A liquid crystal aligning agent-26 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 13,700, and the weight average molecular weight was 28,200.
(実施例31)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.06g(10.5mol)、HC-11を2.48g(4.5mmol)、及びNMPを36.4g加え、約10℃に冷却した。次いでCBDAを2.88g(14.7mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-25)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-25)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-25)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-27を得た。このポリアミック酸の数平均分子量は17,200、重量平均分子量は38,900であった。
(Example 31)
As a diamine component, 1.06 g (10.5 mol) of p-PDA, 2.48 g (4.5 mmol) of HC-11, and 36.4 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.88 g (14.7 mmol) of CBDA was added, the temperature was returned to room temperature, and the reaction was carried out under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-25) concentration of 15 mass%.
30 g of this polyamic acid (PAA-25) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, and diluted to 6% by mass of polyamic acid (PAA-25) and 74% of NMP. A liquid crystal alignment treatment agent-27 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 17,200, and the weight average molecular weight was 38,900.
(実施例32)
 50mLの四口フラスコにジアミン成分として、p-PDAを1.06g(10.5mol)、HC-12を2.82g(4.5mmol)、及びNMPを38.3g加え、約10℃に冷却した。次いでCBDAを2.88g(14.7mmol)加え、室温に戻し、窒素雰囲気下24時間反応させ、ポリアミック酸(PAA-26)の濃度が15質量%の溶液を得た。
 このポリアミック酸(PAA-26)の溶液30gを100mLの三角フラスコに移し、NMPを30.0g、BCを15.0g加えて希釈し、ポリアミック酸(PAA-26)が6質量%、NMPが74質量%、BCが20質量%の溶液とし、液晶配向処理剤-28を得た。このポリアミック酸の数平均分子量は19,600、重量平均分子量は42,200であった。
(Example 32)
As a diamine component, 1.06 g (10.5 mol) of p-PDA, 2.82 g (4.5 mmol) of HC-12, and 38.3 g of NMP were added to a 50 mL four-necked flask and cooled to about 10 ° C. . Next, 2.88 g (14.7 mmol) of CBDA was added, the temperature was returned to room temperature, and the mixture was reacted under a nitrogen atmosphere for 24 hours to obtain a solution having a polyamic acid (PAA-26) concentration of 15% by mass.
30 g of this polyamic acid (PAA-26) solution was transferred to a 100 mL Erlenmeyer flask, diluted by adding 30.0 g of NMP and 15.0 g of BC, diluted to 6% by mass of polyamic acid (PAA-26), and 74% of NMP. A liquid crystal aligning agent-28 was obtained by making a solution with 20% by mass and 20% by mass BC. The number average molecular weight of this polyamic acid was 19,600, and the weight average molecular weight was 42,200.
 実施例29~32の液晶配向処理剤について上記と同様にして評価を行った。その結果を表5~表8に示す。
Figure JPOXMLDOC01-appb-T000134
The liquid crystal aligning agents of Examples 29 to 32 were evaluated in the same manner as described above. The results are shown in Tables 5-8.
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000135
<側鎖ジアミン溶解性試験>
 モノマーの溶解性を比較する試験として、側鎖ジアミン0.5gに対しNMPを2.0g加え、20℃で1時間攪拌し、20wt%の溶液を調製し、溶解可否を調べた。試験の評価基準は以下の通りである
   すべて溶解:○
   溶け残りがある:×
<Side-chain diamine solubility test>
As a test for comparing the solubility of the monomers, 2.0 g of NMP was added to 0.5 g of the side chain diamine, and the mixture was stirred at 20 ° C. for 1 hour to prepare a 20 wt% solution. The evaluation criteria of the test are as follows: All dissolved: ○
There is unmelted residue: ×
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000137
 本発明の液晶配向処理剤を用いて作製した液晶表示素子は、信頼性が高く、大画面で高精細の液晶テレビを含めて、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、VA液晶表示素子、IPS液晶表示素子、OCB液晶表示素子などとして有用である。
 なお、2010年6月30日に出願された日本特許出願2010-150054号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has high reliability, including a large-screen high-definition liquid crystal television, a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, VA It is useful as a liquid crystal display element, an IPS liquid crystal display element, an OCB liquid crystal display element, and the like.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-150054 filed on June 30, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (19)

  1.  下記式[1]のジアミンを含有するジアミン成分とテトラカルボン酸二無水物との反応で得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xは下記式[2]で表される有機基であり、Y、Yは、独立してベンゼン環又はシクロヘキサン環を表す。p、qは、独立して0又は1の整数を表し、S、Sは、独立して単結合又は二価の連結基を表し、p=0のときSは単結合、q=0のときSは単結合である。Rは水素原子、フッ素原子、炭素数1~22のアルキル基、炭素数1~22のフルオロアルキル基又はステロイド基を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-から選ばれる二価の有機基を表す。nは0又は1である。Xの結合方向は限定されない。)
    At least one selected from the group consisting of a polyimide precursor obtained by reaction of a diamine component containing a diamine of the following formula [1] and tetracarboxylic dianhydride, and a polyimide obtained by imidizing the polyimide precursor. A liquid crystal aligning agent characterized by containing a polymer.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, X is an organic group represented by the following formula [2], Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring. P and q are independently 0 or 1; S 1 and S 2 each independently represents a single bond or a divalent linking group, and when p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.)
    Figure JPOXMLDOC01-appb-C000002

    (Wherein C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group which can be removed by heat, and B 1 represents —CH 2 —, —O—, This represents a divalent organic group selected from —NH— and —S—, where n is 0 or 1. The bonding direction of X is not limited.
  2.  前記ジアミン成分中の式[1]のジアミンの含有量が、5~95mol%である請求項1に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the diamine of the formula [1] in the diamine component is 5 to 95 mol%.
  3.  前記式[2]のAが、式[3]で表される第三級ブトキシカルボニル基である請求項1又は2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    The liquid crystal aligning agent according to claim 1 or 2, wherein A in the formula [2] is a tertiary butoxycarbonyl group represented by the formula [3].
    Figure JPOXMLDOC01-appb-C000003
  4.  前記式[2]のC、Cが下記式[6]で表される二価の有機基である請求項1~3のいずれかに記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    (式中、S、Sは、独立して二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の二価の炭化水素基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein C 1 and C 2 in the formula [2] are divalent organic groups represented by the following formula [6].
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, S 3 and S 4 are each independently a divalent linking group, and R 2 and R 3 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. )
  5.  前記式[6]の[-S-R-]が、下記式[4]で表され、かつC、Cのどちらか一方が式[4]の構造を有する請求項1~4のいずれかに記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-から選ばれる二価の有機基を表し、R10は炭素数1~6の二価の炭化水素を表す。式[4]のオレフィンの構造はE体、Z体のどちらでもよい。破線で示される結合は、式[2]のCが結合しているベンゼン環、又はCが結合しているカルボニル炭素に連結する。)
    5. [—S 4 —R 3 —] of the formula [6] is represented by the following formula [4], and either C 1 or C 2 has the structure of the formula [4]. The liquid-crystal aligning agent in any one of.
    Figure JPOXMLDOC01-appb-C000005
    (Wherein B 2 represents a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, and R 10 represents carbon. Represents a divalent hydrocarbon of formula 1 to 6. The structure of the olefin of formula [4] may be either E or Z. The bond indicated by the broken line is the bond of C 1 of formula [2] Benzene ring or carbonyl carbon to which C 2 is bonded.)
  6.  前記式[2]において、n=0である請求項1~4のいずれかに記載の液晶配向処理剤。 In the formula [2], n = 0, The liquid crystal aligning agent according to any one of claims 1 to 4.
  7.  前記式[2]において、Cが単結合である請求項1~5のいずれかに記載の液晶配向処理剤。 6. The liquid crystal aligning agent according to claim 1 , wherein in the formula [2], C 1 is a single bond.
  8.  前記式[2]において、Bが-O-又はNH-である請求項1~7のいずれかに記載の液晶配向処理剤。 8. The liquid crystal aligning agent according to claim 1 , wherein in the formula [2], B 1 is —O— or NH—.
  9.  前記式[4]において、Bが-O-又はNH-である請求項5に記載の液晶配向処理剤。 6. The liquid crystal aligning agent according to claim 5, wherein in the formula [4], B 2 is —O— or NH—.
  10.  前記式[1]で表されるジアミンが、下記式[1-a]~[1-k]のいずれかの化合物である請求項1~9のいずれかに記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    10. The liquid crystal aligning agent according to claim 1, wherein the diamine represented by the formula [1] is a compound of any one of the following formulas [1-a] to [1-k].
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  11.  請求項1~10のいずれかに記載の液晶配向処理剤を用いた液晶配向膜。 A liquid crystal alignment film using the liquid crystal aligning agent according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載の液晶配向処理剤を用いた液晶配向膜であり、光照射により配向処理を行う液晶配向膜。 A liquid crystal alignment film using the liquid crystal alignment treatment agent according to any one of claims 1 to 10, wherein the alignment process is performed by light irradiation.
  13.  請求項11又は12に記載の液晶配向膜を具備した液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 11.
  14.  下記式[1]で表される構造を有するジアミン。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Xは下記式[2]で表される有機基であり、Y、Yは、独立してベンゼン環又はシクロヘキサン環を表す。p、qは、独立して0又は1の整数を表し、S、Sは、独立して単結合又は二価の連結基を表し、p=0のときSは単結合、q=0のときSは単結合である。Rは水素原子、フッ素原子、炭素数1~22のアルキル基、炭素数1~22のフルオロアルキル基、又はステロイド基を表す。)
    Figure JPOXMLDOC01-appb-C000009

    (式中、C、Cは、独立して単結合、又は二価の有機基を表し、Aは熱によって脱離し得る有機基を表し、Bは-CH-、-O-、-NH-、及び-S-から選ばれる二価の有機基を表し、nは0又は1を表し、Xの結合方向は限定されない。
    A diamine having a structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, X is an organic group represented by the following formula [2], Y 1 and Y 2 independently represent a benzene ring or a cyclohexane ring. P and q are independently 0 or 1; S 1 and S 2 each independently represents a single bond or a divalent linking group, and when p = 0, S 1 is a single bond, and when q = 0, S 2 is a single bond. 1 represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a steroid group.)
    Figure JPOXMLDOC01-appb-C000009

    (Wherein C 1 and C 2 independently represent a single bond or a divalent organic group, A represents an organic group which can be removed by heat, and B 1 represents —CH 2 —, —O—, Represents a divalent organic group selected from —NH— and —S—, n represents 0 or 1, and the bonding direction of X is not limited.
  15.  式[2]において、Aが式[3]で表される第三級ブトキシカルボニル基である請求項14に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000010
    The diamine according to claim 14, wherein, in the formula [2], A is a tertiary butoxycarbonyl group represented by the formula [3].
    Figure JPOXMLDOC01-appb-C000010
  16.  式[2]において、C、Cが下記式[6]で表される二価の有機基である請求項14又は15に記載のジアミン。
    Figure JPOXMLDOC01-appb-C000011
    (式中、S、Sは、独立して二価の連結基であり、R、Rは、独立して単結合又は炭素数1~20の二価の炭化水素基である。)
    The diamine according to claim 14 or 15, wherein in the formula [2], C 1 and C 2 are divalent organic groups represented by the following formula [6].
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, S 3 and S 4 are each independently a divalent linking group, and R 2 and R 3 are each independently a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. )
  17.  前記式[6]の[-S-R-]が、下記式[4]で表され、かつC、Cのどちらか一方が式[4]の構造を有する請求項14~16のいずれかに記載のジアミン。
    Figure JPOXMLDOC01-appb-C000012
    (式中、Bは単結合、フェニル基、-CH-、-O-、-NH-、-NR10-、及び-S-から選ばれる二価の有機基を表し、R10は炭素数1~6の二価の炭化水素を表す。式[4]のオレフィンの構造はE体、Z体のどちらでもよい。破線で示される結合は、式[2]のCが結合しているベンゼン環、又はCが結合しているカルボニル炭素に連結される。)
    [-S 4 -R 3- ] in the formula [6] is represented by the following formula [4], and either C 1 or C 2 has the structure of the formula [4]. The diamine in any one of.
    Figure JPOXMLDOC01-appb-C000012
    (Wherein B 2 represents a single bond, a phenyl group, —CH 2 —, —O—, —NH—, —NR 10 —, and —S—, and R 10 represents carbon. Represents a divalent hydrocarbon of formula 1 to 6. The structure of the olefin of formula [4] may be either E or Z. The bond indicated by the broken line is the bond of C 1 of formula [2] Linked to the benzene ring or the carbonyl carbon to which C 2 is attached.)
  18.  下記式[1-a]~[1-k]のいずれかで表されるジアミン。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Diamines represented by any of the following formulas [1-a] to [1-k].
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
  19.  請求項14~18のいずれかに記載のジアミンを原料として得られる、ポリアミド、ポリアミック酸、又は該ポリアミック酸をイミド化して得られるポリイミド。 A polyamide, polyamic acid, or polyimide obtained by imidizing the polyamic acid, obtained using the diamine according to any one of claims 14 to 18 as a raw material.
PCT/JP2011/065072 2010-06-30 2011-06-30 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film WO2012002501A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180040348.8A CN103154808B (en) 2010-06-30 2011-06-30 Aligning agent for liquid crystal, liquid crystal orientation film and use the liquid crystal display cells of this liquid crystal orientation film
JP2012522697A JP5761188B2 (en) 2010-06-30 2011-06-30 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
KR1020127033756A KR101824279B1 (en) 2010-06-30 2011-06-30 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010150054 2010-06-30
JP2010-150054 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002501A1 true WO2012002501A1 (en) 2012-01-05

Family

ID=45402204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065072 WO2012002501A1 (en) 2010-06-30 2011-06-30 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element equipped with the liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JP5761188B2 (en)
KR (1) KR101824279B1 (en)
CN (1) CN103154808B (en)
TW (1) TWI510519B (en)
WO (1) WO2012002501A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024885A1 (en) * 2012-08-06 2014-02-13 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
WO2014104015A1 (en) * 2012-12-25 2014-07-03 日産化学工業株式会社 Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2015199149A1 (en) * 2014-06-25 2015-12-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP2016085413A (en) * 2014-10-28 2016-05-19 Jsr株式会社 Liquid crystal aligning agent, method for manufacturing liquid crystal display element, liquid crystal alignment film, liquid crystal display element, polymer and compound
JP2016206274A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method of the same, liquid crystal display, phase difference film and manufacturing method of the same, polymer, and compound
CN109791332A (en) * 2016-08-03 2019-05-21 日产化学株式会社 The liquid crystal for having the liquid crystal display panel with curve form indicates element and the aligning agent for liquid crystal for it
JP2019211777A (en) * 2018-06-01 2019-12-12 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same
JP2020129059A (en) * 2019-02-08 2020-08-27 Jnc株式会社 Liquid crystal photo-aligning agent, liquid crystal alignment film, liquid crystal display element using the same, and diamine, (meth)acrylate, and polymer
JP2020181104A (en) * 2019-04-25 2020-11-05 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film, and liquid crystal display element using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288682B (en) * 2012-02-25 2016-06-22 浙江华海药业股份有限公司 A kind of method of purification (4-aminophenyl) t-butyl carbamate of simplicity
CN105940343B (en) * 2013-11-28 2019-09-24 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
WO2015119168A1 (en) * 2014-02-05 2015-08-13 日産化学工業株式会社 Liquid-crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
EP3108519B1 (en) * 2014-02-20 2018-06-20 InnovationLab GmbH Conjugated polymers
CN105087018B (en) * 2014-07-21 2018-01-19 中节能万润股份有限公司 Aligning agent for liquid crystal, liquid crystal orientation film and its liquid crystal display cells
WO2018043326A1 (en) * 2016-08-30 2018-03-08 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018092759A1 (en) * 2016-11-15 2018-05-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113227890A (en) * 2018-12-10 2021-08-06 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7371356B2 (en) 2019-06-05 2023-10-31 富士電機株式会社 Motor speed detector and inverter device
CN112209959B (en) * 2020-09-28 2021-07-20 江苏三月科技股份有限公司 Diamine compound for preparing liquid crystal aligning agent and application thereof
CN114561100A (en) * 2020-11-27 2022-05-31 臻鼎科技股份有限公司 Transparent polyimide solution, preparation method thereof, transparent polyimide film and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154208A1 (en) * 2008-06-17 2009-12-23 日産化学工業株式会社 Liquid-crystal alignment material, liquid-crystal display element employing same, and novel diamine
JP2010018807A (en) * 2002-05-31 2010-01-28 Elsicon Inc Hybrid polymer materials for liquid crystal alignment layers
WO2010050523A1 (en) * 2008-10-29 2010-05-06 日産化学工業株式会社 Diamine, polyimide, liquid crystal aligning agent, and liquid crystal alignment film
JP2010106091A (en) * 2008-10-29 2010-05-13 Chisso Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645823B2 (en) 2004-06-18 2011-03-09 Jsr株式会社 Vertical liquid crystal aligning agent and vertical liquid crystal display element
JP5077048B2 (en) 2007-05-02 2012-11-21 Jsr株式会社 Vertical alignment type liquid crystal alignment agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018807A (en) * 2002-05-31 2010-01-28 Elsicon Inc Hybrid polymer materials for liquid crystal alignment layers
WO2009154208A1 (en) * 2008-06-17 2009-12-23 日産化学工業株式会社 Liquid-crystal alignment material, liquid-crystal display element employing same, and novel diamine
WO2010050523A1 (en) * 2008-10-29 2010-05-06 日産化学工業株式会社 Diamine, polyimide, liquid crystal aligning agent, and liquid crystal alignment film
JP2010106091A (en) * 2008-10-29 2010-05-13 Chisso Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024885A1 (en) * 2012-08-06 2014-02-13 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
JPWO2014024885A1 (en) * 2012-08-06 2016-07-25 日産化学工業株式会社 Liquid crystal alignment agent and liquid crystal alignment film using the same
KR20150042227A (en) * 2012-08-06 2015-04-20 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
KR102116155B1 (en) 2012-08-06 2020-05-27 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, and liquid crystal alignment film produced using same
KR20150100743A (en) * 2012-12-25 2015-09-02 닛산 가가쿠 고교 가부시키 가이샤 Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2014104015A1 (en) * 2012-12-25 2014-07-03 日産化学工業株式会社 Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2014104015A1 (en) * 2012-12-25 2017-01-12 日産化学工業株式会社 Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using the same
KR102222792B1 (en) * 2012-12-25 2021-03-03 닛산 가가쿠 가부시키가이샤 Novel diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2015199149A1 (en) * 2014-06-25 2015-12-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR102421827B1 (en) 2014-06-25 2022-07-15 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20170021856A (en) * 2014-06-25 2017-02-28 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN106575061A (en) * 2014-06-25 2017-04-19 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JPWO2015199149A1 (en) * 2014-06-25 2017-04-20 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016085413A (en) * 2014-10-28 2016-05-19 Jsr株式会社 Liquid crystal aligning agent, method for manufacturing liquid crystal display element, liquid crystal alignment film, liquid crystal display element, polymer and compound
JP2016206274A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method of the same, liquid crystal display, phase difference film and manufacturing method of the same, polymer, and compound
CN109791332A (en) * 2016-08-03 2019-05-21 日产化学株式会社 The liquid crystal for having the liquid crystal display panel with curve form indicates element and the aligning agent for liquid crystal for it
CN109791332B (en) * 2016-08-03 2022-04-05 日产化学株式会社 Liquid crystal display element having curved liquid crystal panel and liquid crystal aligning agent used for same
JP2019211777A (en) * 2018-06-01 2019-12-12 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same
JP7287119B2 (en) 2018-06-01 2023-06-06 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same
JP2020129059A (en) * 2019-02-08 2020-08-27 Jnc株式会社 Liquid crystal photo-aligning agent, liquid crystal alignment film, liquid crystal display element using the same, and diamine, (meth)acrylate, and polymer
JP7234673B2 (en) 2019-02-08 2023-03-08 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same, diamine, (meth)acrylate, and polymer
JP2020181104A (en) * 2019-04-25 2020-11-05 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film, and liquid crystal display element using the same
JP7287089B2 (en) 2019-04-25 2023-06-06 Jnc株式会社 Liquid crystal aligning agent for photo-alignment, liquid crystal alignment film and liquid crystal display element using the same

Also Published As

Publication number Publication date
JPWO2012002501A1 (en) 2013-08-29
KR20130088045A (en) 2013-08-07
CN103154808B (en) 2015-08-19
CN103154808A (en) 2013-06-12
TWI510519B (en) 2015-12-01
JP5761188B2 (en) 2015-08-12
TW201215631A (en) 2012-04-16
KR101824279B1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5761188B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
JP6070958B2 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device using the same
JP6447815B2 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using the same
JP6152914B2 (en) Novel dicarboxylic acid anhydride and process for producing the same
JP6249182B2 (en) Polyimide precursor, polyimide, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6314827B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013002345A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JPWO2013161984A1 (en) Diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5842581B2 (en) Novel dicarboxylic acid anhydride and production method, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display device using the same
WO2018043326A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2011155576A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018043325A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2014092170A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6143014B2 (en) Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JP6384663B2 (en) Polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6056754B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JPWO2013002345A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040348.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522697

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033756

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800963

Country of ref document: EP

Kind code of ref document: A1