WO2014010402A1 - Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2014010402A1
WO2014010402A1 PCT/JP2013/067291 JP2013067291W WO2014010402A1 WO 2014010402 A1 WO2014010402 A1 WO 2014010402A1 JP 2013067291 W JP2013067291 W JP 2013067291W WO 2014010402 A1 WO2014010402 A1 WO 2014010402A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid ester
liquid crystal
group
mmol
Prior art date
Application number
PCT/JP2013/067291
Other languages
French (fr)
Japanese (ja)
Inventor
秀則 石井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014524719A priority Critical patent/JPWO2014010402A1/en
Priority to KR20157003131A priority patent/KR20150032325A/en
Priority to CN201380046751.0A priority patent/CN104603683B/en
Publication of WO2014010402A1 publication Critical patent/WO2014010402A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent containing a polyamic acid ester and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • a liquid crystal alignment film a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is used. Mainly used.
  • liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon.
  • Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
  • a liquid crystal alignment film containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid as a liquid crystal alignment film having a short time until an afterimage generated by a DC voltage disappears for example, And Patent Document 1
  • a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material for example, see Patent Document 2.
  • a liquid crystal display element having a liquid crystal alignment film obtained from a liquid crystal aligning agent containing polyamic acid or polyimide as described above has a fast relaxation of residual charges accumulated by a DC voltage.
  • the liquid crystal alignment film has a low transmittance of the resulting film because the nitrogen atoms in the amino group, imino group, and nitrogen-containing heterocycle are oxidized by oxygen in the air.
  • the polyamic acid ester as the polyimide precursor, it has been clarified by the present inventors that the residual charge accumulated by the DC voltage is quickly relaxed and the membrane transmittance is increased.
  • liquid crystal aligning agent containing a polyamic acid ester having an amino group, an imino group, and a nitrogen-containing heterocyclic ring, a liquid crystal alignment film having a high film transmittance and a quick relaxation of residual charges accumulated by a DC voltage Is obtained.
  • liquid crystal alignment agents containing 4,4′-diaminodiphenylamine or a derivative thereof as a diamine and a polyamic acid ester using an aromatic tetracarboxylic derivative as a tetracarboxylic acid derivative methyl ester of aromatic tetracarboxylic acid
  • the solubility of the polymer is poor, and the precipitation of the polymer and clogging of the filter may become a problem.
  • printability is poor and a uniform polyimide film may not be obtained.
  • the present invention provides a liquid crystal alignment film in which a residual charge accumulated by a DC voltage is quickly relaxed and a liquid crystal alignment film having a high film transmittance can be obtained, and the problem of polymer precipitation and the problem of printability can be avoided at the same time.
  • the purpose is to provide an agent.
  • the present inventors used ethyl ester as the aromatic tetracarboxylic acid ester. It has been found that the residual charge accumulated by the direct current voltage can be relaxed quickly and the membrane permeability can be increased, and the problem of polymer precipitation or filter clogging and the problem of printability can be avoided at the same time. .
  • the structural unit represented by the following formula (1) is 30 to 100 mol% with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative, and the structural unit represented by the following formula (2)
  • a liquid crystal aligning agent comprising a polyamic acid ester having 20 to 100 mol% and an organic solvent with respect to 1 mol of all structural units derived from diamine.
  • X 1 is a tetravalent aromatic group
  • R 1 is an ethyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom and an alkyl group having 1 to 5 carbon atoms may be mixed, A 1 and A 2 are each independently a hydrogen atom or a methyl group.
  • the liquid crystal aligning agent of said 1 containing the solvent of lower surface tension than the said organic solvent.
  • X 1 in Formula (1) is a benzene ring, the liquid crystal alignment agent according to Claim 1 or 2. 4). 4. The liquid crystal aligning agent according to any one of 1 to 3 above, wherein R 2 in formula (2) is a hydrogen atom or a methyl group. 5. 5.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is based on a polyamic acid ester structure using 4,4′-diaminodiphenylamine or a derivative thereof as a diamine and an aromatic tetracarboxylic derivative as a tetracarboxylic acid derivative.
  • the residual charge accumulated by the DC voltage of the liquid crystal display element having the liquid crystal alignment film is high.
  • the liquid crystal aligning agent of the present invention employs ethyl ester as an ester, so that the solubility of the polymer is good, there is no problem such as precipitation or filter clogging, and the printing property to the substrate is good. . This is considered to be due to the fact that the alkyl ester portion of the aromatic tetracarboxylic acid derivative is an ethyl group, as described below.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high transmittance and can accelerate the relaxation of the residual charge accumulated by the DC voltage of the liquid crystal display element having the liquid crystal alignment film.
  • the liquid crystal aligning agent of this invention can eliminate simultaneously the problem of precipitation of a containing polymer, the clogging to a filter, and the problem of printability.
  • the polyamic acid ester used for the liquid crystal aligning agent of this invention is a polyimide precursor for obtaining a polyimide, and is a polymer which has the site
  • the polyamic acid ester has a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, but the polyamic acid ester contained in the liquid crystal aligning agent of the present invention has a structural unit represented by the following formula (1). 30 to 100 mol% with respect to 1 mol of all structural units derived from a tetracarboxylic acid derivative, and a structural unit represented by the following formula (2) with respect to 1 mol of all structural units derived from diamine It is a polyamic acid ester having 20 to 100 mol%.
  • X 1 is a tetravalent aromatic group
  • R 1 is an ethyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom and an alkyl group having 1 to 5 carbon atoms may be mixed, and A 1 and A 2 are Each independently represents a hydrogen atom or a methyl group.
  • X 1 is a tetravalent aromatic group.
  • the tetravalent aromatic group is a tetravalent aromatic group selected from a benzene ring and a naphthalene ring, or the two benzene rings are a single bond, oxygen atom, sulfur atom, nitrogen atom, carbonyl, sulfonyl, or
  • a tetravalent aromatic group having a structure bonded through alkylene is preferable, and specific examples are as follows.
  • the structural unit of the formula (1) is preferably 30 to 100 mol%, more preferably 40 to 100 mol based on 1 mol of all structural units derived from the tetracarboxylic acid derivative. %, More preferably 50 to 100 mol%.
  • a 1 and A 2 are each independently a hydrogen atom or a methyl group. Of these, a hydrogen atom is preferable.
  • R 2 specific examples of the alkyl group in R 2 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl.
  • R 2 is preferably a hydrogen atom, an ethyl group or a methyl group, more preferably a hydrogen atom or a methyl group.
  • the structural unit of the formula (2) is preferably 20 to 100 mol%, more preferably 40 to 100 mol%, more preferably 1 mol relative to 1 mol of all structural units derived from diamine. Preferably, it is 60 to 100 mol%.
  • the polyamic acid ester used in the present invention may contain a structural unit represented by the following formula (3) as a structural unit derived from a tetracarboxylic acid derivative.
  • R 3 is an alkyl group having 1 to 5 carbon atoms
  • X is a tetravalent organic group.
  • Specific examples of X include the following X-101 to X-133. Among these, X is X-101, X-102, X-103, X-104, X-105, X-106, X-108, X-116, X-119, X- 121 or X-125 is preferred.
  • alkyl group as R 3 examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl.
  • the proportion of the structural unit represented by the formula (3) in the polyamic acid ester used in the present invention is increased, the effect of the present invention may be impaired, which is not preferable. Accordingly, the proportion of the structural unit represented by the formula (3) is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, and still more preferably 0 to 0 mol per mol of the structural unit of the polyamic acid ester. 50 mol%.
  • the polyamic acid ester used in the present invention may contain a structural unit represented by the following formula (4) as a structural unit derived from diamine.
  • a 3 and A 4 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom having 1 to Or an alkynyl group having 1 to 10 carbon atoms which may have a substituent.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • alkenyl group, alkynyl group and the like are examples of such substituents.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group can have a structure represented by —O—R.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • thioester group which is a substituent
  • a structure represented by —C (S) OR— or —OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented can be shown.
  • Rs may be the same or different, and examples of R include the above-described alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • Y is a divalent organic group, and the structure thereof is not particularly limited, and two or more types may be mixed.
  • Y-1 to Y-118 are given as specific examples.
  • Y is Y-7, Y-21, Y-22, Y-23, Y -25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y-75 Y-98, Y-99, and Y-100 are more preferable.
  • a diamine having a long chain alkyl group, aromatic ring, aliphatic ring, steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester.
  • Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, Y-87 Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, and Y-97 are more preferable.
  • any pretilt angle can be expressed.
  • Y is preferably a diamine having Y-118.
  • n are each independently an integer of 1 to 11
  • m + n is an integer of 2 to 12
  • h is 1 to 3.
  • j is an integer of 0 to 3.
  • the proportion of the structural unit represented by the formula (4) in the polyamic acid ester used in the present invention is increased, the effect of the present invention may be impaired, which is not preferable. Therefore, the proportion of the structural unit represented by the formula (4) is preferably 0 to 80 mol%, more preferably 0 to 60 mol%, still more preferably 0 to 0 mol per mol of the structural unit of the polyamic acid ester. 40 mol%.
  • the polyamic acid ester can be synthesized by the following methods (1) to (3) using a tetracarboxylic acid derivative and a diamine compound.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the synthesis is carried out by reacting the polyamic acid and the esterifying agent in the presence of a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can do.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent added is preferably 2 to 6 molar equivalents, more preferably 2.1 to 3 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of polymer solubility. These may be used alone or in combination of two or more. Also good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and a solvent at ⁇ 20 to 150 ° C., preferably at 0 to 50 ° C., for 30 minutes to 24 hours, preferably for 1 to 4 hours. Can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2.1 to 3 times the amount of tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. Mole is more preferred.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine are reacted in the presence of a condensing agent, base, solvent, etc. at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the amount of the condensing agent added is preferably 2 to 3 moles, more preferably 2.1 to 2.5 moles relative to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 0.1 to 4 times mol, more preferably 0.5 to 3 times mol with respect to the diamine component, from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent external air from being mixed in a nitrogen atmosphere.
  • the reaction proceeds efficiently by adding a Lewis acid as an additive.
  • a Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, and toluene. Of these, water, methanol, ethanol, or 2-propanol is preferable.
  • the liquid crystal aligning agent of the present invention contains a polyamic acid ester having a structural unit represented by the above formula (1), a structural unit represented by the formula (2), and an organic solvent.
  • the weight average molecular weight of the polyamic acid ester having the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is preferably 5,000 to 300,000, more preferably 10, 000-200,000.
  • the number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 10,000.
  • the liquid crystal aligning agent of the present invention is in the form of a solution in which the polyamic acid ester is dissolved in an organic solvent.
  • the resulting reaction solution itself may be used, or the reaction solution may be diluted with another solvent. Good.
  • the polyamic acid ester is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
  • the content (concentration) of the polyamic acid ester (hereinafter also referred to as a polymer) in the liquid crystal aligning agent of the present invention can be changed as appropriate depending on the thickness of the polyimide film to be formed.
  • the content of the polymer component is preferably 0.5% by mass or more with respect to the organic solvent from the viewpoint of forming a coating film free from water, and is preferably 15% by mass or less from the viewpoint of storage stability of the solution. Preferably, it is 1 to 10% by mass.
  • a concentrated solution of the polymer may be prepared in advance, and diluted when such a concentrated solution is used as the liquid crystal alignment agent.
  • the concentration of the concentrated solution of the polymer component is preferably 10 to 30% by mass, and more preferably 10 to 15% by mass.
  • the polymer component powder may be heated when dissolved in an organic solvent to prepare a solution.
  • the heating temperature is preferably 20 to 150 ° C, particularly preferably 20 to 80 ° C.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like.
  • the amount of the low surface tension solvent used is preferably 1 to 50% by mass, more preferably 10 to 30% by mass, based on the total solvent (100% by mass) contained in the liquid crystal aligning agent. If it is 10 mass% or more, it is preferable at the point of the coating-film uniformity to the board
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymers other than polyamic acid esters, and the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film A dielectric or conductive material, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into a liquid crystal alignment film, When firing the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid may be added. ⁇ Liquid crystal alignment film>
  • the liquid crystal alignment film of the present invention is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • it is dried at 50 to 120 ° C. for 1 to 10 minutes, and then baked at 150 to 300 ° C. for 5 to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of methods for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
  • the manufacturing method of the liquid crystal cell is not particularly limited.
  • a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 to 30 ⁇ m, more preferably 2 to 2 with the liquid crystal alignment film surface inside.
  • a method is generally employed in which a 10 ⁇ m spacer is placed and then the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • viscosity As for the viscosity of the polyamic acid solution or the polyamic acid ester solution, an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) was used, the sample amount was 1.1 mL, the cone rotor TE-1 (1 ° 34 ′, R24), the temperature Measured at 25 ° C.
  • the molecular weight of the polyamic acid ester is measured by a GPC (room temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as a polyethylene glycol or polyethylene oxide equivalent value. ) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation, and polymer Polyethylene glycol (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000) manufactured by Laboratory Co., Ltd. In order to avoid overlapping of peaks, the measurement was performed by mixing four types of 900,000
  • Solid concentration measurement The solid content concentration of the polyamic acid ester solution was calculated as follows. Aluminum cup with handle No. 2 (manufactured by ASONE), weighed approximately 1.1 g of the polyamic acid ester solution, heated in an oven DNF400 (manufactured by Yamato) at 200 ° C. for 2 hours, and then allowed to stand at room temperature for 5 minutes to leave the solid content in the aluminum cup. Was weighed. The solid content concentration was calculated from the solid content weight and the original solution weight value.
  • 3.31 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 24.3 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 10.9% by mass.
  • 2.89 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours.
  • 27.9 g of NMP and 24.5 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 3.5% by mass.
  • 3.24 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 23.8 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 11.1% by mass.
  • 2.88 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours.
  • 28.1 g of NMP and 24.4 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 3.5% by mass.
  • 2.19 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 16.1 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 10.3% by mass.
  • 5.30 g of NMP and 9.57 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.5% by mass.
  • 2.29 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 26.4 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 7.4% by mass.
  • 1.81 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 23 hours.
  • 1.92 g of NMP and 12.1 g of BCS were added, and the mixture was stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 4.5% by mass.
  • 3.19 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 32.3 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 8.3% by mass.
  • 2.83 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours.
  • 7.04 g of NMP and 18.9 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 4.5 mass%.
  • 11.7 g of the obtained polyamic acid ester powder was weighed into a 200 mL Erlenmeyer flask containing a stirring bar, 86.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 11.0% by mass.
  • 10.6 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 21 hours.
  • 16.6 g of NMP and 52.8 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
  • the obtained polyamic acid ester powder (4.00 g) was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 29.4 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 11.3% by mass.
  • 3.62 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours.
  • 6.70 g of NMP and 18.2 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
  • 21.9 g of the obtained polyamic acid ester powder was weighed into a 500 mL Erlenmeyer flask containing a stirring bar, 161 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 11.7% by mass.
  • 21.3 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours.
  • 45.5 g of NMP and 106 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
  • 21.7 g of the obtained polyamic acid ester powder was weighed into a 500 mL Erlenmeyer flask containing a stirring bar, 159 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 11.6% by mass.
  • 21.0 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours.
  • 43.1 g of NMP and 104 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
  • 2.87 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 21.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours.
  • the solid content concentration of this polyamic acid ester solution was 10.6% by mass.
  • 2.39 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 25 hours.
  • 8.60 g of NMP and 14.3 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
  • Example 1 The polyamic acid ester solution obtained in Synthesis Example 1 was filtered through a 1.0 ⁇ m filter, and then applied to a glass substrate with an ITO electrode (manufactured by Minerva Electronics, width 380 ⁇ length 320 ⁇ thickness 1.1 (mm)). It was applied by spin coating and left at room temperature for 10 minutes while blowing with a fan. Subsequently, after drying for 5 minutes on a hot plate at a temperature of 50 ° C., the film was baked for 30 minutes in an IR (far infrared heating) furnace at a temperature of 230 ° C. to obtain a transparent and uniform polyimide film having a thickness of 100 nm.
  • ITO electrode manufactured by Minerva Electronics, width 380 ⁇ length 320 ⁇ thickness 1.1 (mm)
  • Example 2 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 2 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 3 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 3 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 4 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 4 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 5 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 5 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 6 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 6 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 7 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 7 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 8 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 8 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 9 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 9 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 10 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 10 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 11 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 11 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 12 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 12 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 13 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 13 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 14 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 14 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Example 15 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 15 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
  • Comparative Example 1 When the polyamic acid ester solution obtained in Comparative Synthesis Example 2 was filtered with a 1.0 ⁇ m filter, it did not pass through the filter.
  • Comparative Example 2 When the polyamic acid ester solution obtained in Comparative Synthesis Example 3 was filtered with a 1.0 ⁇ m filter, filter clogging was observed.
  • Example 4 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Comparative Synthesis Example 5 was used, but a turbid and non-uniform polyimide film was obtained.
  • Example 5 The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Comparative Synthesis Example 6 was used, but a turbid and non-uniform polyimide film was obtained.
  • Table 1 summarizes the results of the synthesis examples, comparative synthesis examples, examples, and comparative examples.
  • the liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it has characteristics such as a small residual charge when a DC voltage is applied and / or a rapid relaxation of the residual charge accumulated by the DC voltage, and the obtained film has a high transmittance.
  • a liquid crystal alignment film is obtained.
  • the obtained liquid crystal alignment film is widely useful for a TN element, an STN element, a TFT liquid crystal element, and a vertical alignment type liquid crystal display element.

Abstract

Provided is a liquid crystal alignment agent whereby the problems of printing properties and precipitation of contained polymers can be simultaneously overcome, and whereby a liquid crystal alignment film can be formed having minimal residual charge when a direct-current voltage is applied, rapid relaxation of residual charge, and high film permeation rate. A liquid crystal alignment agent characterized by containing an organic solvent and a polyamic acid ester having 30-100 mol% of structural units represented by formula (1) with respect to 1 mole of all structural units derived from a tetracarboxylic acid derivative, and 20-100 mol% of structural units represented by formula (2) with respect to 1 mole of all diamine-derived structural units. (In the formulae, X1 is a tetravalent aromatic organic group, R1 is an ethyl group, R2 is a hydrogen atom or a C1-C5 alkyl group, hydrogen atoms and C1-C5 alkyl groups may be mixed, and A1 and A2 are each independently a hydrogen atom or a methyl group.)

Description

ポリアミック酸エステルを含有する液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element containing polyamic acid ester
 本発明は、ポリアミック酸エステルを含有する液晶配向剤、及び該液晶配向剤から得られる液晶配向膜に関する。 The present invention relates to a liquid crystal aligning agent containing a polyamic acid ester and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し、焼成したポリイミド系の液晶配向膜が主として用いられている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. As a liquid crystal alignment film, a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is used. Mainly used.
 液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。 As liquid crystal display elements have become higher in definition, liquid crystal alignment films have high liquid crystal alignment characteristics and stable pretilt angles in addition to the demands for suppressing the decrease in contrast and reducing the afterimage phenomenon. Characteristics such as a voltage holding ratio, suppression of an afterimage generated by AC driving, a small residual charge when a DC voltage is applied, and / or an early relaxation of a residual charge accumulated by a DC voltage are becoming increasingly important.
 ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされてきている。例えば、直流電圧によって発生する残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて、特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した、可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。 Various proposals have been made for polyimide-based liquid crystal alignment films in order to meet the above requirements. For example, a liquid crystal alignment film containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid as a liquid crystal alignment film having a short time until an afterimage generated by a DC voltage disappears (for example, And Patent Document 1), and those using a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material have been proposed (for example, see Patent Document 2).
日本特開平9-316200号公報Japanese Unexamined Patent Publication No. 9-316200 日本特開平10-104633号公報Japanese Unexamined Patent Publication No. 10-104633
 上記のようなポリアミック酸、又はポリイミドを含有する液晶配向剤から得られる液晶配向膜を有する液晶表示素子は、直流電圧により蓄積した残留電荷の緩和が早い。しかしながら、上記の液晶配向膜は、アミノ基、イミノ基、及び含窒素複素環中の窒素原子が空気中の酸素などによって酸化され、得られる膜の透過率が低くなることがわかった。
 一方、ポリイミド前駆体としてポリアミック酸エステルを用いることにより、直流電圧により蓄積した残留電荷の緩和が早く、且つ膜透過率が高くなることが、本発明者らの検討によって明らかとなっている。
A liquid crystal display element having a liquid crystal alignment film obtained from a liquid crystal aligning agent containing polyamic acid or polyimide as described above has a fast relaxation of residual charges accumulated by a DC voltage. However, it has been found that the liquid crystal alignment film has a low transmittance of the resulting film because the nitrogen atoms in the amino group, imino group, and nitrogen-containing heterocycle are oxidized by oxygen in the air.
On the other hand, by using the polyamic acid ester as the polyimide precursor, it has been clarified by the present inventors that the residual charge accumulated by the DC voltage is quickly relaxed and the membrane transmittance is increased.
 すなわち、アミノ基、イミノ基、及び含窒素複素環を有するポリアミック酸エステルを含有する液晶配向剤を用いることにより、直流電圧により蓄積した残留電荷の緩和が早く、且つ膜透過率の高い液晶配向膜が得られる。 That is, by using a liquid crystal aligning agent containing a polyamic acid ester having an amino group, an imino group, and a nitrogen-containing heterocyclic ring, a liquid crystal alignment film having a high film transmittance and a quick relaxation of residual charges accumulated by a DC voltage Is obtained.
 しかし、ジアミンとして4,4‘-ジアミノジフェニルアミン又はその誘導体を用い、テトラカルボン酸誘導体として芳香族テトラカルボン誘導体を用いたポリアミック酸エステルを含有する液晶配向剤のうち、芳香族テトラカルボン酸のメチルエステルを用いたものについては、ポリマーの溶解性が悪く、ポリマーの析出やフィルター目詰まりが問題となる場合がある。
 さらに、炭素数3以上の長鎖アルキル基のエステルを用いたものでは、印刷性が悪く、均一なポリイミド膜が得られない場合がある。
However, among the liquid crystal alignment agents containing 4,4′-diaminodiphenylamine or a derivative thereof as a diamine and a polyamic acid ester using an aromatic tetracarboxylic derivative as a tetracarboxylic acid derivative, methyl ester of aromatic tetracarboxylic acid For those using the polymer, the solubility of the polymer is poor, and the precipitation of the polymer and clogging of the filter may become a problem.
Furthermore, in the case of using an ester of a long-chain alkyl group having 3 or more carbon atoms, printability is poor and a uniform polyimide film may not be obtained.
 本発明は、直流電圧により蓄積した残留電荷の緩和が早く、且つ膜透過率の高い液晶配向膜が得られ、かつ、ポリマーの析出の問題と、印刷性の問題とを同時に回避しうる液晶配向剤を提供することを目的とする。 The present invention provides a liquid crystal alignment film in which a residual charge accumulated by a DC voltage is quickly relaxed and a liquid crystal alignment film having a high film transmittance can be obtained, and the problem of polymer precipitation and the problem of printability can be avoided at the same time. The purpose is to provide an agent.
 本発明者らは、ジアミンとして4,4‘-ジアミノジフェニルアミン又はその誘導体を用い、テトラカルボン酸誘導体として芳香族テトラカルボン誘導体を用いたポリアミック酸エステルにおいて、芳香族テトラカルボン酸のエステルとしてエチルエステルを用いることにより、直流電圧により蓄積した残留電荷の緩和が早く、且つ膜透過率が高くなるとともに、ポリマーの析出又はフィルター目詰まりの問題と、印刷性の問題とを同時に回避しうることを見出した。 In the polyamic acid ester using 4,4′-diaminodiphenylamine or a derivative thereof as a diamine and using an aromatic tetracarboxylic derivative as a tetracarboxylic acid derivative, the present inventors used ethyl ester as the aromatic tetracarboxylic acid ester. It has been found that the residual charge accumulated by the direct current voltage can be relaxed quickly and the membrane permeability can be increased, and the problem of polymer precipitation or filter clogging and the problem of printability can be avoided at the same time. .
 かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.下記式(1)で表される構造単位を、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%有し、かつ、下記式(2)で表される構造単位を、ジアミン由来の全構造単位1モルに対して、20~100モル%有するポリアミック酸エステルと有機溶媒とを含有することを特徴とする液晶配向剤。
Thus, the present invention is based on the above findings and has the following gist.
1. The structural unit represented by the following formula (1) is 30 to 100 mol% with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative, and the structural unit represented by the following formula (2) A liquid crystal aligning agent comprising a polyamic acid ester having 20 to 100 mol% and an organic solvent with respect to 1 mol of all structural units derived from diamine.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、Xは4価の芳香族基であり、Rはエチル基である。 In the formula (1), X 1 is a tetravalent aromatic group, and R 1 is an ethyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(2)において、Rは水素原子又は炭素数1~5のアルキル基であり、水素原子と炭素数1~5のアルキル基とが混在していてもよく、
 A及びAは、それぞれ独立して、水素原子又はメチル基である。
2.さらに、上記有機溶媒よりも低表面張力の溶媒を含有する、上記1に記載の液晶配向剤。
3.式(1)におけるXがベンゼン環である、上記1又は2に記載の液晶配向剤。
4.式(2)におけるRが水素原子又はメチル基である、上記1~3のいずれかに記載の液晶配向剤。
5.式(2)におけるAとAが水素原子である、上記1~4のいずれかに記載の液晶配向剤。
6.前記ポリアミック酸エステルの重量平均分子量が5,000~300,000であり、数平均分子量が2,500~150,000である、上記1~5のいずれかに記載の液晶配向剤。
7.液晶配向剤中におけるポリアミック酸エステルの濃度が、0.5~15質量%である、上記1~6のいずれかに記載の液晶配向剤。
8.上記1~7のいずれかに記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
9.焼成後の膜厚が5~300nmである、上記8に記載の液晶配向膜。
10.上記8又は9に記載の液晶配向膜を有することを特徴とする液晶表示素子。
In the formula (2), R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom and an alkyl group having 1 to 5 carbon atoms may be mixed,
A 1 and A 2 are each independently a hydrogen atom or a methyl group.
2. Furthermore, the liquid crystal aligning agent of said 1 containing the solvent of lower surface tension than the said organic solvent.
3. X 1 in Formula (1) is a benzene ring, the liquid crystal alignment agent according to Claim 1 or 2.
4). 4. The liquid crystal aligning agent according to any one of 1 to 3 above, wherein R 2 in formula (2) is a hydrogen atom or a methyl group.
5. 5. The liquid crystal aligning agent according to any one of 1 to 4 above, wherein A 1 and A 2 in formula (2) are hydrogen atoms.
6). 6. The liquid crystal aligning agent according to any one of 1 to 5 above, wherein the polyamic acid ester has a weight average molecular weight of 5,000 to 300,000 and a number average molecular weight of 2,500 to 150,000.
7). 7. The liquid crystal aligning agent according to any one of 1 to 6 above, wherein the concentration of the polyamic acid ester in the liquid crystal aligning agent is 0.5 to 15% by mass.
8). 8. A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 7 above.
9. 9. The liquid crystal alignment film as described in 8 above, wherein the film thickness after firing is from 5 to 300 nm.
10. 10. A liquid crystal display element comprising the liquid crystal alignment film as described in 8 or 9 above.
 本発明の液晶配向剤から得られる液晶配向膜は、ジアミンとして4,4‘-ジアミノジフェニルアミン又はその誘導体を用い、テトラカルボン酸誘導体として芳香族テトラカルボン誘導体を用いたポリアミック酸エステル構造に基づき、透過率が高く、且つ該液晶配向膜を具備する液晶表示素子の直流電圧により蓄積した残留電荷の緩和が早い。
 また、本発明の液晶配向剤は、エステルとしてエチルエステルを採用したことにより、ポリマーの溶解性が良好であり、析出やフィルター目詰まりなどの問題がなく、且つ基板への印刷性が良好である。これは、次に記載するように、芳香族テトラカルボン酸誘導体のアルキルエステル部分がエチル基であることに起因していると考えられる。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is based on a polyamic acid ester structure using 4,4′-diaminodiphenylamine or a derivative thereof as a diamine and an aromatic tetracarboxylic derivative as a tetracarboxylic acid derivative. The residual charge accumulated by the DC voltage of the liquid crystal display element having the liquid crystal alignment film is high.
Further, the liquid crystal aligning agent of the present invention employs ethyl ester as an ester, so that the solubility of the polymer is good, there is no problem such as precipitation or filter clogging, and the printing property to the substrate is good. . This is considered to be due to the fact that the alkyl ester portion of the aromatic tetracarboxylic acid derivative is an ethyl group, as described below.
 アルキルエステルのアルキル炭素数が多いほど、溶媒への溶解性が高いことは一般的に知られている。一方、ポリマー溶液を基板に塗布する際に、ポリマーの疎水性が高まるほど、基板にはじかれて均一に塗布できないことが知られている。つまり、メチルエステルでは基板への印刷性が良好であるものの、溶解性が不充分であり、炭素数3以上の長鎖アルキルエステルでは溶解性が良好であるものの、基板への印刷性が不充分である。よって、エチルエステルのみが溶解性と印刷性を両立できると考えられる。 It is generally known that the greater the alkyl carbon number of an alkyl ester, the higher the solubility in a solvent. On the other hand, it is known that when a polymer solution is applied to a substrate, the higher the hydrophobicity of the polymer, the more the polymer solution is repelled and cannot be uniformly applied. In other words, although methyl ester has good printability on the substrate, the solubility is insufficient, and long-chain alkyl esters having 3 or more carbon atoms have good solubility, but printability on the substrate is insufficient. It is. Therefore, it is considered that only ethyl ester can achieve both solubility and printability.
 かくして、本発明の液晶配向剤から得られる液晶配向膜は、透過率が高く、且つ前記液晶配向膜を具備する液晶表示素子の直流電圧により蓄積した残留電荷の緩和を早くすることができる。また、本発明の液晶配向剤では、含有ポリマーの析出やフィルターへの目詰まりの問題、印刷性の問題とを同時に解消することができる。 Thus, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high transmittance and can accelerate the relaxation of the residual charge accumulated by the DC voltage of the liquid crystal display element having the liquid crystal alignment film. Moreover, the liquid crystal aligning agent of this invention can eliminate simultaneously the problem of precipitation of a containing polymer, the clogging to a filter, and the problem of printability.
<ポリアミック酸エステル>
 本発明の液晶配向剤に用いられるポリアミック酸エステルは、ポリイミドを得るためのポリイミド前駆体であり、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマーである。
<Polyamic acid ester>
The polyamic acid ester used for the liquid crystal aligning agent of this invention is a polyimide precursor for obtaining a polyimide, and is a polymer which has the site | part which can perform the imidation reaction shown below by heating.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ポリアミック酸エステルは、テトラカルボン酸誘導体由来の構造単位とジアミン由来の構造単位とを有するが、本発明の液晶配向剤に含有するポリアミック酸エステルは、下記式(1)で表される構造単位をテトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%有し、かつ、下記式(2)で表される構造単位を、ジアミン由来の全構造単位1モルに対して、20~100モル%有するポリアミック酸エステルである。 The polyamic acid ester has a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, but the polyamic acid ester contained in the liquid crystal aligning agent of the present invention has a structural unit represented by the following formula (1). 30 to 100 mol% with respect to 1 mol of all structural units derived from a tetracarboxylic acid derivative, and a structural unit represented by the following formula (2) with respect to 1 mol of all structural units derived from diamine It is a polyamic acid ester having 20 to 100 mol%.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)において、Xは4価の芳香族基であり、Rはエチル基である。 In the formula (1), X 1 is a tetravalent aromatic group, and R 1 is an ethyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(2)において、Rは水素原子又は炭素数1~5のアルキル基であり、水素原子と炭素数1~5のアルキル基とが混在していてもよく、A及びAは、それぞれ独立して、水素原子又はメチル基である。 In the formula (2), R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom and an alkyl group having 1 to 5 carbon atoms may be mixed, and A 1 and A 2 are Each independently represents a hydrogen atom or a methyl group.
 式(1)において、Xは4価の芳香族基である。4価の芳香族基としては、ベンゼン環及びナフタレン環から選ばれる4価の芳香族基であるか、又は、2つのベンゼン環が単結合、酸素原子、硫黄原子、窒素原子、カルボニル、スルホニル又はアルキレンを介して結合した構造を有する4価の芳香族基であることが好ましく、具体例を挙げるとすれば、以下の通りである。 In the formula (1), X 1 is a tetravalent aromatic group. The tetravalent aromatic group is a tetravalent aromatic group selected from a benzene ring and a naphthalene ring, or the two benzene rings are a single bond, oxygen atom, sulfur atom, nitrogen atom, carbonyl, sulfonyl, or A tetravalent aromatic group having a structure bonded through alkylene is preferable, and specific examples are as follows.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なかでも、入手性等の観点から、XとしてはX-1が好ましい。
 本発明のポリアミック酸エステルにおいて、式(1)の構造単位は、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%であることが好ましく、より好ましくは40~100モル%、さらに好ましくは50~100モル%である。
Among these, X-1 is preferable as X 1 from the viewpoint of availability.
In the polyamic acid ester of the present invention, the structural unit of the formula (1) is preferably 30 to 100 mol%, more preferably 40 to 100 mol based on 1 mol of all structural units derived from the tetracarboxylic acid derivative. %, More preferably 50 to 100 mol%.
 式(2)において、A及びAは、それぞれ独立して、水素原子又はメチル基である。なかでも、水素原子が好ましい。 In formula (2), A 1 and A 2 are each independently a hydrogen atom or a methyl group. Of these, a hydrogen atom is preferable.
 式(2)において、Rおける上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。
 Rとしては水素原子、エチル基、又はメチル基が好ましく、水素原子、又はメチル基が更に好ましい。
In the formula (2), specific examples of the alkyl group in R 2 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl. Group, n-pentyl group and the like.
R 2 is preferably a hydrogen atom, an ethyl group or a methyl group, more preferably a hydrogen atom or a methyl group.
 本発明のポリアミック酸エステルにおいて、式(2)の構造単位は、ジアミン由来の全構造単位1モルに対して、20~100モル%であることが好ましく、より好ましくは40~100モル%、さらに好ましくは60~100モル%である。 In the polyamic acid ester of the present invention, the structural unit of the formula (2) is preferably 20 to 100 mol%, more preferably 40 to 100 mol%, more preferably 1 mol relative to 1 mol of all structural units derived from diamine. Preferably, it is 60 to 100 mol%.
 本発明に用いられるポリアミック酸エステルは、テトラカルボン酸誘導体由来の構造単位として、下記式(3)で表される構造単位を含んでもよい。 The polyamic acid ester used in the present invention may contain a structural unit represented by the following formula (3) as a structural unit derived from a tetracarboxylic acid derivative.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(3)において、Rは、炭素数1~5のアルキル基であり、Xは4価の有機基である。
 Xの具体例を示すならば、以下に示すX-101~X-133が挙げられる。なかでも、モノマーの入手性から、Xは、X-101、X-102、X-103、X-104、X-105、X-106、X-108、X-116、X-119、X-121又はX-125が好ましい。
In the formula (3), R 3 is an alkyl group having 1 to 5 carbon atoms, and X is a tetravalent organic group.
Specific examples of X include the following X-101 to X-133. Among these, X is X-101, X-102, X-103, X-104, X-105, X-106, X-108, X-116, X-119, X- 121 or X-125 is preferred.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(3)において、Rとしてのアルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。 In the formula (3), specific examples of the alkyl group as R 3 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl. Group, n-pentyl group and the like.
 本発明に用いられるポリアミック酸エステル中の式(3)で表される構造単位の割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(3)で表される構造単位の割合は、ポリアミック酸エステルの構造単位1モルに対して、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~50モル%である。 If the proportion of the structural unit represented by the formula (3) in the polyamic acid ester used in the present invention is increased, the effect of the present invention may be impaired, which is not preferable. Accordingly, the proportion of the structural unit represented by the formula (3) is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, and still more preferably 0 to 0 mol per mol of the structural unit of the polyamic acid ester. 50 mol%.
 また、本発明に用いられるポリアミック酸エステルは、ジアミン由来の構造単位として、下記式(4)で表される構造単位を含んでもよい。 The polyamic acid ester used in the present invention may contain a structural unit represented by the following formula (4) as a structural unit derived from diamine.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(4)において、A及びAは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数1~10のアルケニル基、又は置換基を有してもよい炭素数1~10のアルキニル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
In the formula (4), A 3 and A 4 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom having 1 to Or an alkynyl group having 1 to 10 carbon atoms which may have a substituent.
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
Examples of the alkenyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH═CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、及びアルキニル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基などを挙げることができる。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of such substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
 置換基であるオルガノオキシ基としては、-O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。 As the substituent, the organooxy group can have a structure represented by —O—R. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。 As the organothio group which is a substituent, a structure represented by —S—R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。 The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。 As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。 As the thioester group which is a substituent, a structure represented by —C (S) OR— or —OC (S) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。 The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。窒素原子上のRが2個の場合、Rは同一でも異なってもよく、Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。 The amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure represented can be shown. When two Rs on the nitrogen atom are present, Rs may be the same or different, and examples of R include the above-described alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。 In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 3 and A 4 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
 Yは、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。あえて、その具体例を示すならば、下記のY-1~Y-118が挙げられる。 Y is a divalent organic group, and the structure thereof is not particularly limited, and two or more types may be mixed. For example, the following Y-1 to Y-118 are given as specific examples.
 なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリアミック酸エステルに導入することが好ましく、Yは、Y-7、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-73、Y-74、Y-75、Y-98、Y-99,Y-100がより好ましい。また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリアミック酸エステルに導入することが好ましく、Yとしては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、Y-97がより好ましい。
 これらジアミンを全ジアミンの1~50モル%、好ましくは5~40モル%添加することにより、任意のプレチルト角を発現させることができる。
 また、ラビング耐性を向上させたい場合は、Yは、Y-118を有するジアミンが好ましい。
Among them, in order to obtain good liquid crystal alignment, it is preferable to introduce a highly linear diamine into the polyamic acid ester, where Y is Y-7, Y-21, Y-22, Y-23, Y -25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y-75 Y-98, Y-99, and Y-100 are more preferable. In order to increase the pretilt angle, it is preferable to introduce a diamine having a long chain alkyl group, aromatic ring, aliphatic ring, steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester. Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, Y-87 Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, and Y-97 are more preferable.
By adding 1 to 50 mol%, preferably 5 to 40 mol% of these diamines, any pretilt angle can be expressed.
When it is desired to improve rubbing resistance, Y is preferably a diamine having Y-118.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(Y-109)中、m、nは、それぞれ独立して、1~11の整数であり、m+nは2~12の整数であり、式(Y-114)中、hは1~3の整数であり、式(Y-111)及び(Y-117)中、jは0~3の整数である。 In the formula (Y-109), m and n are each independently an integer of 1 to 11, m + n is an integer of 2 to 12, and in the formula (Y-114), h is 1 to 3. In the formulas (Y-111) and (Y-117), j is an integer of 0 to 3.
 本発明に用いられるポリアミック酸エステル中の式(4)で表される構造単位の割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(4)で表される構造単位の割合は、ポリアミック酸エステルの構造単位1モルに対して、0~80モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%である。
<ポリアミック酸エステルの製造方法>
If the proportion of the structural unit represented by the formula (4) in the polyamic acid ester used in the present invention is increased, the effect of the present invention may be impaired, which is not preferable. Therefore, the proportion of the structural unit represented by the formula (4) is preferably 0 to 80 mol%, more preferably 0 to 60 mol%, still more preferably 0 to 0 mol per mol of the structural unit of the polyamic acid ester. 40 mol%.
<Method for producing polyamic acid ester>
 ポリアミック酸エステルは、テトラカルボン酸誘導体及びジアミン化合物を用いて、以下に示す(1)~(3)の方法で合成することができる。 The polyamic acid ester can be synthesized by the following methods (1) to (3) using a tetracarboxylic acid derivative and a diamine compound.
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the synthesis is carried out by reacting the polyamic acid and the esterifying agent in the presence of a solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can do.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2.1~3モル当量がより好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent added is preferably 2 to 6 molar equivalents, more preferably 2.1 to 3 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone or the like in view of polymer solubility. These may be used alone or in combination of two or more. Also good.
The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and a solvent at −20 to 150 ° C., preferably at 0 to 50 ° C., for 30 minutes to 24 hours, preferably for 1 to 4 hours. Can be synthesized.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2.1~3倍モルがより好ましい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol, preferably 2.1 to 3 times the amount of tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. Mole is more preferred.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、溶媒などの存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When synthesizing polyamic acid ester from tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine are reacted in the presence of a condensing agent, base, solvent, etc. at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましく、2.1~2.5倍モルがより好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The amount of the condensing agent added is preferably 2 to 3 moles, more preferably 2.1 to 2.5 moles relative to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して0.1~4倍モルが好ましく、0.5~3倍モルがより好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 0.1 to 4 times mol, more preferably 0.5 to 3 times mol with respect to the diamine component, from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 また、縮合剤の加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
In order to prevent hydrolysis of the condensing agent, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent external air from being mixed in a nitrogen atmosphere.
 また、上記(1)~(3)の反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。 In addition, in the reactions (1) to (3) above, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。 Among the methods for synthesizing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。なかでも、水、メタノール、エタノール、又は2-プロパノールが好ましい。
<液晶配向剤>
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, and toluene. Of these, water, methanol, ethanol, or 2-propanol is preferable.
<Liquid crystal aligning agent>
 本発明の液晶配向剤は、上記した式(1)で表わされる構造単位と、式(2)で表される構造単位とを有するポリアミック酸エステルと有機溶媒とを含有する。 The liquid crystal aligning agent of the present invention contains a polyamic acid ester having a structural unit represented by the above formula (1), a structural unit represented by the formula (2), and an organic solvent.
 式(1)で表わされる構造単位と式(2)で表される構造単位とを有するポリアミック酸エステルの重量平均分子量は、好ましくは5,000~300,000であり、より好ましくは、10,000~200,000である。また、数平均分子量は、好ましくは、2,500~150,000であり、より好ましくは、5,000~10,000である。 The weight average molecular weight of the polyamic acid ester having the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is preferably 5,000 to 300,000, more preferably 10, 000-200,000. The number average molecular weight is preferably 2,500 to 150,000, and more preferably 5,000 to 10,000.
 本発明の液晶配向剤は、上記のポリアミック酸エステルが有機溶媒中に溶解した溶液の形態である。かかる形態を有する限り、例えば、ポリアミック酸エステルを有機溶媒中で合成した場合には、得られる反応溶液そのものであってもよく、また、この反応溶液を別の溶媒で希釈したものであってもよい。また、ポリアミック酸エステルを粉末として得た場合は、これを有機溶媒に溶解させて溶液としたものであってもよい。 The liquid crystal aligning agent of the present invention is in the form of a solution in which the polyamic acid ester is dissolved in an organic solvent. As long as it has such a form, for example, when the polyamic acid ester is synthesized in an organic solvent, the resulting reaction solution itself may be used, or the reaction solution may be diluted with another solvent. Good. When the polyamic acid ester is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
 本発明の液晶配向剤におけるポリアミック酸エステル(以下、ポリマーともいう。)の含有量(濃度)は、形成させようとするポリイミド膜の厚みの設定によっても適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、有機溶媒に対して、ポリマー成分の含有量は、0.5質量%以上が好ましく、溶液の保存安定性の点からは15質量%以下が好ましく、より好ましくは、1~10質量%である。なお、この場合、予め、ポリマーの濃厚溶液を作製し、かかる濃厚溶液から液晶配向剤とする場合に希釈してもよい。かかるポリマー成分の濃厚溶液の濃度は10~30質量%が好ましく、10~15質量%がより好ましい。
 また、ポリマー成分の粉末を有機溶媒に溶解して溶液を作製する際に加熱してもよい。加熱温度は、20~150℃が好ましく、20~80℃が特に好ましい。
The content (concentration) of the polyamic acid ester (hereinafter also referred to as a polymer) in the liquid crystal aligning agent of the present invention can be changed as appropriate depending on the thickness of the polyimide film to be formed. The content of the polymer component is preferably 0.5% by mass or more with respect to the organic solvent from the viewpoint of forming a coating film free from water, and is preferably 15% by mass or less from the viewpoint of storage stability of the solution. Preferably, it is 1 to 10% by mass. In this case, a concentrated solution of the polymer may be prepared in advance, and diluted when such a concentrated solution is used as the liquid crystal alignment agent. The concentration of the concentrated solution of the polymer component is preferably 10 to 30% by mass, and more preferably 10 to 15% by mass.
Alternatively, the polymer component powder may be heated when dissolved in an organic solvent to prepare a solution. The heating temperature is preferably 20 to 150 ° C, particularly preferably 20 to 80 ° C.
 本発明の液晶配向剤に含有される上記有機溶媒は、ポリマー成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、ポリマー成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。溶媒は2種類以上を併用してもよい。
 上記低表面張力の溶媒の使用量は、液晶配向剤が含有する全溶媒(100質量%)の1~50質量%が好ましく、より好ましくは10~30質量%である。10質量%以上であれば、液晶配向剤の基板への塗膜均一性の点で好ましく、30質量%以下であれば、ポリマー成分の溶解性という点から好ましい。
The liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply | coating a liquid crystal aligning agent to a board | substrate other than the organic solvent for dissolving a polymer component. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1- Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two or more kinds of solvents may be used in combination.
The amount of the low surface tension solvent used is preferably 1 to 50% by mass, more preferably 10 to 30% by mass, based on the total solvent (100% by mass) contained in the liquid crystal aligning agent. If it is 10 mass% or more, it is preferable at the point of the coating-film uniformity to the board | substrate of a liquid crystal aligning agent, and if it is 30 mass% or less, it is preferable from the point of the solubility of a polymer component.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、ポリアミック酸エステル以外のポリマー、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには、塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜>
In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, polymers other than polyamic acid esters, and the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film A dielectric or conductive material, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into a liquid crystal alignment film, When firing the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid may be added.
<Liquid crystal alignment film>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。 The liquid crystal alignment film of the present invention is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50~120℃で1~10分乾燥させ、その後150~300℃で5~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the contained organic solvent, it is dried at 50 to 120 ° C. for 1 to 10 minutes, and then baked at 150 to 300 ° C. for 5 to 120 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。 Examples of methods for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。
 放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。
 前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。
 上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
[液晶表示素子]
As a specific example of the photo-alignment treatment method, the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Is mentioned.
As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2.
The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
[Liquid crystal display element]
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、配向処理を行った後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, performing an alignment treatment, and then preparing a liquid crystal cell by a known method. It is.
 液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を、液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。 The manufacturing method of the liquid crystal cell is not particularly limited. For example, a pair of substrates on which the liquid crystal alignment film is formed is preferably 1 to 30 μm, more preferably 2 to 2 with the liquid crystal alignment film surface inside. A method is generally employed in which a 10 μm spacer is placed and then the periphery is fixed with a sealant, and liquid crystal is injected and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれに限定して解釈されるものではない。
 本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
 DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto.
The abbreviations of the compounds used in the examples and comparative examples, and the measuring methods of the respective properties are as follows.
DBOP: Diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[粘度]
 ポリアミック酸溶液又はポリアミック酸エステル溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
As for the viscosity of the polyamic acid solution or the polyamic acid ester solution, an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) was used, the sample amount was 1.1 mL, the cone rotor TE-1 (1 ° 34 ′, R24), the temperature Measured at 25 ° C.
[分子量]
 ポリアミド酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、又はポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製 (GPC-101)
カラム:Shodex社製 (KD803、及びKD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、及び30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、及び1,000)。
 測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプル、並びに150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[Molecular weight]
The molecular weight of the polyamic acid ester is measured by a GPC (room temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as a polyethylene glycol or polyethylene oxide equivalent value. ) Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation, and polymer Polyethylene glycol (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000) manufactured by Laboratory Co., Ltd.
In order to avoid overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and 3 of 150,000, 30,000, and 4,000. Two samples of mixed samples were measured separately.
[固形分濃度測定]
 ポリアミック酸エステル溶液の固形分濃度の算出は以下のようにして行った。
 持手付アルミカップNo.2(アズワン社製)に、ポリアミック酸エステル溶液をおよそ1.1g量り取り、オーブンDNF400(Yamato社製)で、200℃2時間加熱した後に室温5分間放置し、アルミカップ内に残った固形分の重量を計量した。この固形分重量、及び元の溶液重量の値から固形分濃度を算出した。
[Solid concentration measurement]
The solid content concentration of the polyamic acid ester solution was calculated as follows.
Aluminum cup with handle No. 2 (manufactured by ASONE), weighed approximately 1.1 g of the polyamic acid ester solution, heated in an oven DNF400 (manufactured by Yamato) at 200 ° C. for 2 hours, and then allowed to stand at room temperature for 5 minutes to leave the solid content in the aluminum cup. Was weighed. The solid content concentration was calculated from the solid content weight and the original solution weight value.
(合成例1)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を3.06g(11.8mmol)、及びDE-3を3.88g(12.5mmol)量り取り、NMPを125g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.32g(52.5mmol)、DA-1を1.99g(10.0mmol)、DA-3を2.87g(10.0mmol)、及びDA-5を1.49g(5.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを17.7g加え、水冷下で13時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、87.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、1089gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=24700、Mw=54500であった。
 得られたポリアミック酸エステル粉末3.31gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを24.3g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.9質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.89g加え、温度50℃で20時間攪拌した。更に、NMPを27.9g、及びBCSを24.5g加え、室温で6時間撹拌して、固形分濃度3.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 1)
In a 200 mL four-necked flask containing a stir bar, weigh out 3.06 g (11.8 mmol) of DE-1 and 3.88 g (12.5 mmol) of DE-3, add 125 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.32 g (52.5 mmol) of triethylamine, 1.99 g (10.0 mmol) of DA-1, 2.87 g (10.0 mmol) of DA-3, and 1.49 g (5 of DA-5) 0.0000 mmol) and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 17.7 g of NMP was further added, and the mixture was stirred for 13 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 87.0 mPa · s.
The obtained polyamic acid ester solution was added to 1089 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 24700 and Mw = 54500.
3.31 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 24.3 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.9% by mass. Subsequently, 2.89 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours. Further, 27.9 g of NMP and 24.5 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 3.5% by mass.
(合成例2)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を3.06g(11.8mmol)、及びDE-3を3.88g(12.5mmol)量り取り、NMPを123g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.31g(52.5mmol)、DA-1を1.99g(10.0mmol)、DA-4を2.58g(10.0mmol)、及びDA-5を1.50g(5.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを17.1g加え、水冷下で13時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、75.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、1068gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=24100、Mw=52200であった。
 得られたポリアミック酸エステル粉末3.24gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを23.6g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.9質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.79g加え、温度50℃で20時間攪拌した。更に、NMPを27.0g、及びBCSを23.8g加え、室温で6時間撹拌して固形分濃度3.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 2)
In a 200 mL four-necked flask containing a stir bar, weigh out 3.06 g (11.8 mmol) of DE-1 and 3.88 g (12.5 mmol) of DE-3, add 123 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.31 g (52.5 mmol) of triethylamine, 1.99 g (10.0 mmol) of DA-1, 2.58 g (10.0 mmol) of DA-4, and 1.50 g (5 of DA-5) 0.0000 mmol) and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 17.1 g of NMP was further added, and the mixture was stirred for 13 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 75.0 mPa · s.
The obtained polyamic acid ester solution was added to 1068 g of methanol with stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 24100 and Mw = 52200.
3.24 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stir bar, 23.6 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.9% by mass. Subsequently, 2.79 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours. Further, 27.0 g of NMP and 23.8 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 3.5% by mass.
(合成例3)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を3.06g(11.8mmol)、及びDE-3を3.88g(12.5mmol)量り取り、NMPを120g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.33g(52.5mmol)、DA-1を2.99g(15.0mmol)、DA-4を1.30g(5.00mmol)、及びDA-5を1.49g(5.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを16.8g加え、水冷下で13時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、85.4mPa・sであった。
 得られたポリアミック酸エステル溶液を、1045gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=23300、Mw=47500であった。
 得られたポリアミック酸エステル粉末3.24gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを23.8g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.1質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.88g加え、温度50℃で20時間攪拌した。更に、NMPを28.1g、及びBCSを24.4g加え、室温で6時間撹拌して固形分濃度3.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 3)
In a 200 mL four-necked flask containing a stirring bar, weigh out 3.06 g (11.8 mmol) of DE-1 and 3.88 g (12.5 mmol) of DE-3, add 120 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.33 g (52.5 mmol) of triethylamine, 2.99 g (15.0 mmol) of DA-1, 1.30 g (5.00 mmol) of DA-4, and 1.49 g (5 of DA-5) 0.0000 mmol) and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, and 16.8 g of NMP was further added, followed by stirring for 13 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 85.4 mPa · s.
The obtained polyamic acid ester solution was added to 1045 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 23300 and Mw = 47500.
3.24 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 23.8 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.1% by mass. Subsequently, 2.88 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours. Further, 28.1 g of NMP and 24.4 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 3.5% by mass.
(合成例4)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を1.57g(6.00mmol)、及びDE-3を5.43g(17.5mmol)量り取り、NMPを120g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.32g(52.5mmol)、DA-1を0.99g(5.00mmol)、DA-4を3.23g(12.5mmol)、及びDA-6を1.49g(7.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを16.5g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、26.4mPa・sであった。
 得られたポリアミック酸エステル溶液を、1047gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=14500、Mw=31500であった。
 得られたポリアミック酸エステル粉末4.01gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを29.4g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.9質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を3.50g加え、温度50℃で24時間攪拌した。更に、NMPを5.20g、及びBCSを17.5g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 4)
In a 200 mL four-necked flask containing a stir bar, 1.57 g (6.00 mmol) of DE-1 and 5.43 g (17.5 mmol) of DE-3 were weighed and 120 g of NMP was added and dissolved by stirring. I let you. Subsequently, 5.32 g (52.5 mmol) of triethylamine, 0.99 g (5.00 mmol) of DA-1, 3.23 g (12.5 mmol) of DA-4, and 1.49 g (7 of DA-6) .50 mmol) was added and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, and 16.5 g of NMP was further added, followed by stirring for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 26.4 mPa · s.
The obtained polyamic acid ester solution was added to 1047 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 14500 and Mw = 31500.
4.01 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 29.4 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.9% by mass. Subsequently, 3.50 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours. Further, 5.20 g of NMP and 17.5 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(合成例5)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を1.56g(6.00mmol)、及びDE-3を5.43g(17.5mmol)量り取り、NMPを124g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.31g(52.5mmol)、DA-1を0.99g(5.00mmol)、DA-6を1.49g(7.50mmol)、及びDA-8を3.65g(12.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを55.5g加え、水冷下で18時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、8.6mPa・sであった。
 得られたポリアミック酸エステル溶液を、1079gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10900、Mw=23800であった。
 得られたポリアミック酸エステル粉末2.19gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを16.1g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.3質量%であった。続いて、NMPを5.30g、及びBCSを9.57g加え、室温で6時間撹拌して固形分濃度5.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 5)
In a 200 mL four-necked flask containing a stir bar, 1.56 g (6.00 mmol) of DE-1 and 5.43 g (17.5 mmol) of DE-3 were weighed and 124 g of NMP was added and dissolved by stirring. I let you. Subsequently, 5.31 g (52.5 mmol) of triethylamine, 0.99 g (5.00 mmol) of DA-1, 1.49 g (7.50 mmol) of DA-6, and 3.65 g of DA-8 (12 .50 mmol) was added and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 55.5 g of NMP was further added, and the mixture was stirred for 18 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 8.6 mPa · s.
The obtained polyamic acid ester solution was added to 1079 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10900 and Mw = 23800.
2.19 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 16.1 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.3% by mass. Subsequently, 5.30 g of NMP and 9.57 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.5% by mass.
(合成例6)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を5.86g(22.5mmol)、及びDE-3を7.75g(25.0mmol)量り取り、NMPを240g加え、撹拌して溶解させた。続いて、トリエチルアミンを10.6g(105mmol)、DA-1を2.99g(15.0mmol)、DA-6を2.97g(15.0mmol)、及びDA-8を5.85g(20.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを40.3g(105mmol)添加し、更にNMPを32.5g加え、水冷下で15時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、18.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、2094gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=12000、Mw=25700であった。
 得られたポリアミック酸エステル粉末2.18gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを16.0g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.2質量%であった。続いて、NMPを7.16g、及びBCSを10.3g加え、室温で6時間撹拌して固形分濃度5.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 6)
In a 500 mL four-necked flask containing a stir bar, 5.86 g (22.5 mmol) of DE-1 and 7.75 g (25.0 mmol) of DE-3 were weighed, and 240 g of NMP was added and dissolved by stirring. I let you. Subsequently, 10.6 g (105 mmol) of triethylamine, 2.99 g (15.0 mmol) of DA-1, 2.97 g (15.0 mmol) of DA-6, and 5.85 g (20.0 mmol) of DA-8 ) And stirred to dissolve. While stirring this solution, 40.3 g (105 mmol) of DBOP was added, 32.5 g of NMP was further added, and the mixture was stirred for 15 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 18.0 mPa · s.
The obtained polyamic acid ester solution was added to 2094 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 12000 and Mw = 25700.
2.18 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 16.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of the polyamic acid ester solution was 11.2% by mass. Subsequently, 7.16 g of NMP and 10.3 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.5% by mass.
(合成例7)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を5.86g(22.5mmol)、及びDE-3を7.75g(25.0mmol)量り取り、NMPを240g加え、撹拌して溶解させた。続いて、トリエチルアミンを10.6g(105mmol)、DA-1を3.00g(15.0mmol)、DA-7を2.97g(15.0mmol)、及びDA-8を5.85g(20.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを40.3g(105mmol)添加し、更にNMPを32.6g加え、水冷下で15時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、14.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、2094gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10000、Mw=21600であった。
 得られたポリアミック酸エステル粉末2.19gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを16.1g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.9質量%であった。続いて、NMPを6.60g、及びBCSを10.1g加え、室温で6時間撹拌して固形分濃度5.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 7)
In a 500 mL four-necked flask containing a stir bar, 5.86 g (22.5 mmol) of DE-1 and 7.75 g (25.0 mmol) of DE-3 were weighed, and 240 g of NMP was added and dissolved by stirring. I let you. Subsequently, 10.6 g (105 mmol) of triethylamine, 3.00 g (15.0 mmol) of DA-1, 2.97 g (15.0 mmol) of DA-7, and 5.85 g (20.0 mmol) of DA-8. ) And stirred to dissolve. While stirring this solution, 40.3 g (105 mmol) of DBOP was added, 32.6 g of NMP was further added, and the mixture was stirred for 15 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 14.0 mPa · s.
The obtained polyamic acid ester solution was added to 2094 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10000 and Mw = 21600.
2.19 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 16.1 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.9% by mass. Subsequently, 6.60 g of NMP and 10.1 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid concentration of 5.5% by mass.
(合成例8)
 撹拌子を入れた300mL四つ口フラスコに、DE-1を4.83g(18.6mmol)、及びDE-3を4.34g(14.0mmol)量り取り、NMPを174g加え、撹拌して溶解させた。続いて、トリエチルアミンを7.42g(73.5mmol)、DA-1を1.39g(7.00mmol)、DA-4を3.62g(14.0mmol)、及びDA-5を4.17g(14.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを28.2g(73.5mmol)添加し、更にNMPを23.8g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、31.5mPa・sであった。
 得られたポリアミック酸エステル溶液を、5032gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10500、Mw=25500であった。
 得られたポリアミック酸エステル粉末2.29gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを26.4g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は7.4質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を1.81g加え、温度50℃で23時間攪拌した。更に、NMPを1.92g、及びBCSを12.1g加え、室温で6時間撹拌して固形分濃度4.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 8)
In a 300 mL four-necked flask containing a stir bar, weigh out 4.83 g (18.6 mmol) of DE-1 and 4.34 g (14.0 mmol) of DE-3, add 174 g of NMP, and dissolve by stirring. I let you. Subsequently, 7.42 g (73.5 mmol) of triethylamine, 1.39 g (7.00 mmol) of DA-1, 3.62 g (14.0 mmol) of DA-4, and 4.17 g (14 of DA-5) 0.0 mmol) and stirred to dissolve. While stirring this solution, 28.2 g (73.5 mmol) of DBOP was added, 23.8 g of NMP was further added, and the mixture was stirred for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 31.5 mPa · s.
The obtained polyamic acid ester solution was added to 5032 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10500 and Mw = 25500.
2.29 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 26.4 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 7.4% by mass. Subsequently, 1.81 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 23 hours. Further, 1.92 g of NMP and 12.1 g of BCS were added, and the mixture was stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 4.5% by mass.
(合成例9)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を3.38g(13.0mmol)、及びDE-3を3.10g(10.0mmol)量り取り、NMPを121g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.31g(52.5mmol)、DA-1を1.49g(7.50mmol)、DA-4を2.59g(10.0mmol)、及びDA-5を2.24g(7.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを16.7g加え、水冷下で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、34.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、2463gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10300、Mw=26100であった。
 得られたポリアミック酸エステル粉末3.19gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを32.3g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は8.3質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.83g加え、温度50℃で24時間攪拌した。更に、NMPを7.04g、及びBCSを18.9g加え、室温で6時間撹拌して固形分濃度4.5質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 9)
To a 200 mL four-necked flask containing a stirring bar, weigh out 3.38 g (13.0 mmol) of DE-1 and 3.10 g (10.0 mmol) of DE-3, add 121 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.31 g (52.5 mmol) of triethylamine, 1.49 g (7.50 mmol) of DA-1, 2.59 g (10.0 mmol) of DA-4, and 2.24 g (7 of DA-5) .50 mmol) was added and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 16.7 g of NMP was further added, and the mixture was stirred for 12 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 34.0 mPa · s.
The obtained polyamic acid ester solution was added to 2463 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10300 and Mw = 26100.
3.19 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 32.3 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 8.3% by mass. Subsequently, 2.83 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours. Further, 7.04 g of NMP and 18.9 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 4.5 mass%.
(合成例10)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を2.86g(11.0mmol)、及びDE-3を3.88g(12.5mmol)量り取り、NMPを127g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.01g(49.4mmol)、DA-1を1.50g(7.50mmol)、DA-5を2.24g(7.50mmol)、及びDA-8を2.92g(10.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを18.9g(49.4mmol)添加し、更にNMPを17.9g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、18.8mPa・sであった。
 得られたポリアミック酸エステル溶液を、1090gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10400、Mw=21000であった。
 得られたポリアミック酸エステル粉末4.97gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを36.5g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.8質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を4.30g加え、温度50℃で20時間攪拌した。更に、NMPを16.0g、及びBCSを25.8g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 10)
In a 200 mL four-necked flask containing a stirring bar, weigh 2.86 g (11.0 mmol) of DE-1 and 3.88 g (12.5 mmol) of DE-3, add 127 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.01 g (49.4 mmol) of triethylamine, 1.50 g (7.50 mmol) of DA-1, 2.24 g (7.50 mmol) of DA-5, and 2.92 g (10 of 10) of DA-8. 0.0 mmol) and stirred to dissolve. While stirring this solution, 18.9 g (49.4 mmol) of DBOP was added, and 17.9 g of NMP was further added, followed by stirring for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 18.8 mPa · s.
The obtained polyamic acid ester solution was poured into 1090 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10400 and Mw = 21000.
4.97 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 36.5 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.8% by mass. Subsequently, 4.30 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours. Further, 16.0 g of NMP and 25.8 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(合成例11)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を2.86g(11.0mmol)、及びDE-3を3.88g(12.5mmol)量り取り、NMPを127g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.00g(49.4mmol)、DA-1を1.50g(7.50mmol)、DA-5を2.98g(10.0mmol)、及びDA-8を2.19g(7.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを18.9g(49.4mmol)添加し、更にNMPを17.8g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、20.4mPa・sであった。
 得られたポリアミック酸エステル溶液を、1091gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=11100、Mw=22200であった。
 得られたポリアミック酸エステル粉末5.01gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを36.8g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.8質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を4.33g加え、温度50℃で20時間攪拌した。更に、NMPを16.1g、及びBCSを26.0g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 11)
In a 200 mL four-necked flask containing a stirring bar, weigh 2.86 g (11.0 mmol) of DE-1 and 3.88 g (12.5 mmol) of DE-3, add 127 g of NMP, and dissolve by stirring. I let you. Subsequently, 5.00 g (49.4 mmol) of triethylamine, 1.50 g (7.50 mmol) of DA-1, 2.98 g (10.0 mmol) of DA-5, and 2.19 g (7 of DA-8) .50 mmol) was added and dissolved by stirring. While stirring this solution, 18.9 g (49.4 mmol) of DBOP was added, and 17.8 g of NMP was further added, followed by stirring for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 20.4 mPa · s.
The obtained polyamic acid ester solution was poured into 1091 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 1100 and Mw = 2200.
5.01 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 36.8 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.8% by mass. Subsequently, 4.33 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 20 hours. Furthermore, 16.1 g of NMP and 26.0 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(合成例12)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を2.15g(8.25mmol)、及びDE-3を4.65g(15.0mmol)量り取り、NMPを128g加え、撹拌して溶解させた。続いて、トリエチルアミンを4.94g(48.8mmol)、DA-1を1.50g(7.50mmol)、DA-5を3.74g(12.5mmol)、及びDA-8を1.46g(5.00mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを18.7g(48.8mmol)添加し、更にNMPを17.9g加え、水冷下で20時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、19.1mPa・sであった。
 得られたポリアミック酸エステル溶液を、1096gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=8700、Mw=20000であった。
 得られたポリアミック酸エステル粉末3.78gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを27.7g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.7質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を3.20g加え、温度50℃で23時間攪拌した。更に、NMPを4.26g、及びBCSを16.0g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 12)
In a 200 mL four-necked flask containing a stir bar, 2.15 g (8.25 mmol) of DE-1 and 4.65 g (15.0 mmol) of DE-3 were weighed and 128 g of NMP was added and dissolved by stirring. I let you. Subsequently, 4.94 g (48.8 mmol) of triethylamine, 1.50 g (7.50 mmol) of DA-1, 3.74 g (12.5 mmol) of DA-5, and 1.46 g (5 of DA-8) 0.0000 mmol) and dissolved by stirring. While stirring this solution, 18.7 g (48.8 mmol) of DBOP was added, and 17.9 g of NMP was further added, followed by stirring for 20 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 19.1 mPa · s.
The obtained polyamic acid ester solution was poured into 1096 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 8700 and Mw = 20000.
3.78 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 27.7 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.7% by mass. Subsequently, 3.20 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 23 hours. Further, 4.26 g of NMP and 16.0 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(合成例13)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を9.84g(37.8mmol)、及びDE-3を8.69g(28.0mmol)量り取り、NMPを352g加え、撹拌して溶解させた。続いて、トリエチルアミンを14.0g(138mmol)、DA-1を4.19g(21.0mmol)、DA-5を8.35g(28.0mmol)、及びDA-8を6.14g(21.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを53.0g(138mmol)添加し、更にNMPを48.2g加え、水冷下で14時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、22.6mPa・sであった。
 得られたポリアミック酸エステル溶液を、3028gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10600、Mw=20500であった。
 得られたポリアミック酸エステル粉末11.7gを、撹拌子の入った200mL三角フラスコに量り取り、NMPを86.0g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.0質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を10.6g加え、温度50℃で21時間攪拌した。更に、NMPを16.6g、及びBCSを52.8g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 13)
To a 500 mL four-necked flask containing a stir bar, weigh out 9.84 g (37.8 mmol) of DE-1 and 8.69 g (28.0 mmol) of DE-3, add 352 g of NMP, and dissolve by stirring. I let you. Subsequently, 14.0 g (138 mmol) of triethylamine, 4.19 g (21.0 mmol) of DA-1, 8.35 g (28.0 mmol) of DA-5, and 6.14 g (21.0 mmol) of DA-8 ) And stirred to dissolve. While stirring this solution, 53.0 g (138 mmol) of DBOP was added, 48.2 g of NMP was further added, and the mixture was stirred for 14 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 22.6 mPa · s.
The obtained polyamic acid ester solution was poured into 3028 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10600 and Mw = 20500.
11.7 g of the obtained polyamic acid ester powder was weighed into a 200 mL Erlenmeyer flask containing a stirring bar, 86.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.0% by mass. Subsequently, 10.6 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 21 hours. Further, 16.6 g of NMP and 52.8 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(合成例14)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を11.7g(44.8mmol)、及びDE-3を6.52g(21.0mmol)量り取り、NMPを349g加え、撹拌して溶解させた。続いて、トリエチルアミンを14.0g(138mmol)、DA-1を4.19g(21.0mmol)、DA-5を8.35g(28.0mmol)、及びDA-8を6.14g(21.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを53.0g(138mmol)添加し、更にNMPを47.9g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、26.2mPa・sであった。
 得られたポリアミック酸エステル溶液を、3002gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10300、Mw=20600であった。
 得られたポリアミック酸エステル粉末11.9gを、撹拌子の入った200mL三角フラスコに量り取り、NMPを87.8g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.0質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を10.8g加え、温度50℃で21時間攪拌した。更に、NMPを17.3g、及びBCSを54.0g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 14)
To a 500 mL four-necked flask containing a stir bar, weigh 11.7 g (44.8 mmol) of DE-1 and 6.52 g (21.0 mmol) of DE-3, add 349 g of NMP, and dissolve by stirring. I let you. Subsequently, 14.0 g (138 mmol) of triethylamine, 4.19 g (21.0 mmol) of DA-1, 8.35 g (28.0 mmol) of DA-5, and 6.14 g (21.0 mmol) of DA-8 ) And stirred to dissolve. While stirring this solution, 53.0 g (138 mmol) of DBOP was added, 47.9 g of NMP was further added, and the mixture was stirred for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 26.2 mPa · s.
The obtained polyamic acid ester solution was added to 3002 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10300 and Mw = 20600.
11.9 g of the obtained polyamic acid ester powder was weighed into a 200 mL Erlenmeyer flask containing a stirring bar, 87.8 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.0% by mass. Subsequently, 10.8 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 21 hours. Further, 17.3 g of NMP and 54.0 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(合成例15)
 撹拌子を入れた300mL四つ口フラスコに、DE-1を6.67g(25.6mmol)、及びDE-3を3.73g(12.0mmol)量り取り、NMPを201g加え、撹拌して溶解させた。続いて、トリエチルアミンを8.00g(79.0mmol)、DA-2を2.57g(12.0mmol)、DA-5を4.78g(16.0mmol)、及びDA-8を3.50g(12.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを30.3g(79.0mmol)添加し、更にNMPを27.5g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、21.6mPa・sであった。
 得られたポリアミック酸エステル溶液を、1728gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=9200、Mw=19600であった。
 得られたポリアミック酸エステル粉末2.95gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを21.7g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.0質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.53g加え、温度50℃で26時間攪拌した。更に、NMPを9.90g、及びBCSを15.2g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Synthesis Example 15)
In a 300 mL four-necked flask containing a stirring bar, weigh out 6.67 g (25.6 mmol) of DE-1 and 3.73 g (12.0 mmol) of DE-3, add 201 g of NMP, and dissolve by stirring. I let you. Subsequently, 8.00 g (79.0 mmol) of triethylamine, 2.57 g (12.0 mmol) of DA-2, 4.78 g (16.0 mmol) of DA-5, and 3.50 g (12 of 12) of DA-8 were obtained. 0.0 mmol) and stirred to dissolve. While stirring this solution, 30.3 g (79.0 mmol) of DBOP was added, 27.5 g of NMP was further added, and the mixture was stirred for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 21.6 mPa · s.
The obtained polyamic acid ester solution was poured into 1728 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 9200 and Mw = 19600.
2.95 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 21.7 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.0% by mass. Subsequently, 2.53 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 26 hours. Further, 9.90 g of NMP and 15.2 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(比較合成例1)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を1.56g(6.00mmol)、及びDE-2を4.94g(17.5mmol)量り取り、NMPを115g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.32g(52.5mmol)、DA-1を1.00g(5.00mmol)、DA-4を3.22g(12.5mmol)、及びDA-6を1.49g(7.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを15.8g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、24.0mPa・sであった。
 得られたポリアミック酸エステル溶液を、1010gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=11600、Mw=36200であった。
 得られたポリアミック酸エステル粉末3.96gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを29.1g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.4質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を3.64g加え、温度50℃で24時間攪拌したところ、析出物がみられた。
(Comparative Synthesis Example 1)
In a 200 mL four-necked flask containing a stir bar, 1.56 g (6.00 mmol) of DE-1 and 4.94 g (17.5 mmol) of DE-2 were weighed and 115 g of NMP was added and dissolved by stirring. I let you. Subsequently, 5.32 g (52.5 mmol) of triethylamine, 1.00 g (5.00 mmol) of DA-1, 3.22 g (12.5 mmol) of DA-4, and 1.49 g (7 of DA-6) .50 mmol) was added and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 15.8 g of NMP was further added, and the mixture was stirred for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 24.0 mPa · s.
The obtained polyamic acid ester solution was added to 1010 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 11600 and Mw = 36200.
3.96 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 29.1 g of NMP was added, and the mixture was stirred and dissolved at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.4% by mass. Subsequently, 3.64 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours, and precipitates were observed.
(比較合成例2)
 撹拌子を入れた200mL四つ口フラスコに、DE-1を1.57g(6.00mmol)、及びDE-2を4.94g(17.5mmol)量り取り、NMPを115g加え、撹拌して溶解させた。続いて、トリエチルアミンを5.30g(52.5mmol)、DA-1を1.00g(5.00mmol)、DA-4を3.22g(12.5mmol)、及びDA-7を1.49g(7.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを20.1g(52.5mmol)添加し、更にNMPを15.8g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、17.7mPa・sであった。
 得られたポリアミック酸エステル溶液を、1010gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10300、Mw=26100であった。
 得られたポリアミック酸エステル粉末4.00gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを29.4g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.3質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を3.62g加え、温度50℃で24時間攪拌した。更に、NMPを6.70g、及びBCSを18.2g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Comparative Synthesis Example 2)
In a 200 mL four-necked flask containing a stir bar, 1.57 g (6.00 mmol) of DE-1 and 4.94 g (17.5 mmol) of DE-2 were weighed and 115 g of NMP was added and dissolved by stirring. I let you. Subsequently, 5.30 g (52.5 mmol) of triethylamine, 1.00 g (5.00 mmol) of DA-1, 3.22 g (12.5 mmol) of DA-4, and 1.49 g (7 of DA-7) .50 mmol) was added and dissolved by stirring. While stirring this solution, 20.1 g (52.5 mmol) of DBOP was added, 15.8 g of NMP was further added, and the mixture was stirred for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 17.7 mPa · s.
The obtained polyamic acid ester solution was added to 1010 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10300 and Mw = 26100.
The obtained polyamic acid ester powder (4.00 g) was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 29.4 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.3% by mass. Subsequently, 3.62 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours. Furthermore, 6.70 g of NMP and 18.2 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(比較合成例3)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を8.59g(33.0mmol)、及びDE-2を6.77g(24.0mmol)量り取り、NMPを270g加え、撹拌して溶解させた。続いて、トリエチルアミンを12.8g(126mmol)、DA-1を3.59g(18.0mmol)、DA-4を6.20g(24.0mmol)、及びDA-6を3.57g(18.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを48.3g(126mmol)添加し、更にNMPを37.0g加え、水冷下で18時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、35.8mPa・sであった。
 得られたポリアミック酸エステル溶液を、2378gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=12400、Mw=26200であった。
 得られたポリアミック酸エステル粉末21.9gを、撹拌子の入った500mL三角フラスコに量り取り、NMPを161g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.7質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を21.3g加え、温度50℃で24時間攪拌した。更に、NMPを45.5g、及びBCSを106g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Comparative Synthesis Example 3)
To a 500 mL four-necked flask containing a stirring bar, weigh out 8.59 g (33.0 mmol) of DE-1 and 6.77 g (24.0 mmol) of DE-2, add 270 g of NMP, and dissolve by stirring. I let you. Subsequently, 12.8 g (126 mmol) of triethylamine, 3.59 g (18.0 mmol) of DA-1, 6.20 g (24.0 mmol) of DA-4, and 3.57 g (18.0 mmol) of DA-6. ) And stirred to dissolve. While stirring this solution, 48.3 g (126 mmol) of DBOP was added, 37.0 g of NMP was further added, and the mixture was stirred for 18 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 35.8 mPa · s.
The obtained polyamic acid ester solution was poured into 2378 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 12400 and Mw = 26200.
21.9 g of the obtained polyamic acid ester powder was weighed into a 500 mL Erlenmeyer flask containing a stirring bar, 161 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.7% by mass. Subsequently, 21.3 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours. Further, 45.5 g of NMP and 106 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(比較合成例4)
 撹拌子を入れた500mL四つ口フラスコに、DE-1を8.59g(33.0mmol)、及びDE-2を6.77g(24.0mmol)量り取り、NMPを270g加え、撹拌して溶解させた。続いて、トリエチルアミンを12.8g(126mmol)、DA-1を3.59g(18.0mmol)、DA-4を6.20g(24.0mmol)、及びDA-7を3.57g(18.0mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを48.3g(126mmol)添加し、更にNMPを37.0g加え、水冷下で18時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、25.5mPa・sであった。
 得られたポリアミック酸エステル溶液を、2378gのメタノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=10900、Mw=23900であった。
 得られたポリアミック酸エステル粉末21.7gを、撹拌子の入った500mL三角フラスコに量り取り、NMPを159g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は11.6質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を21.0g加え、温度50℃で24時間攪拌した。更に、NMPを43.1g、及びBCSを104g加え、室温で6時間撹拌して固形分濃度6.0質量%のポリアミック酸エステル溶液を得た。
(Comparative Synthesis Example 4)
To a 500 mL four-necked flask containing a stirring bar, weigh out 8.59 g (33.0 mmol) of DE-1 and 6.77 g (24.0 mmol) of DE-2, add 270 g of NMP, and dissolve by stirring. I let you. Subsequently, 12.8 g (126 mmol) of triethylamine, 3.59 g (18.0 mmol) of DA-1, 6.20 g (24.0 mmol) of DA-4, and 3.57 g (18.0 mmol) of DA-7. ) And stirred to dissolve. While stirring this solution, 48.3 g (126 mmol) of DBOP was added, 37.0 g of NMP was further added, and the mixture was stirred for 18 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 25.5 mPa · s.
The obtained polyamic acid ester solution was poured into 2378 g of methanol while stirring, and the deposited precipitate was separated by filtration. This precipitate was washed with methanol three times and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 10900 and Mw = 23900.
21.7 g of the obtained polyamic acid ester powder was weighed into a 500 mL Erlenmeyer flask containing a stirring bar, 159 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 11.6% by mass. Subsequently, 21.0 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 24 hours. Further, 43.1 g of NMP and 104 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 6.0% by mass.
(比較合成例5)
 撹拌子を入れた100mL四つ口フラスコに、DE-1を0.82g(3.12mmol)、及びDE-4を3.08g(9.10mmol)量り取り、NMPを67.1g加え、撹拌して溶解させた。続いて、トリエチルアミンを2.61g(25.7mmol)、DA-2を0.52g(2.60mmol)、DA-6を0.77g(3.90mmol)、及びDA-8を1.90g(6.50mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを9.84g(25.7mmol)添加し、更にNMPを9.42g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、12.3mPa・sであった。
 得られたポリアミック酸エステル溶液を、575gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=7800、Mw=20000であった。
 得られたポリアミック酸エステル粉末2.87gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを21.1g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.6質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.38g加え、温度50℃で25時間攪拌した。更に、NMPを8.42g、及びBCSを14.3g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Comparative Synthesis Example 5)
In a 100 mL four-necked flask containing a stir bar, 0.82 g (3.12 mmol) of DE-1 and 3.08 g (9.10 mmol) of DE-4 were weighed, and 67.1 g of NMP was added and stirred. And dissolved. Subsequently, 2.61 g (25.7 mmol) of triethylamine, 0.52 g (2.60 mmol) of DA-2, 0.77 g (3.90 mmol) of DA-6, and 1.90 g (6 of DA-8) .50 mmol) was added and dissolved by stirring. While stirring this solution, 9.84 g (25.7 mmol) of DBOP was added, and 9.42 g of NMP was further added, followed by stirring for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 12.3 mPa · s.
The obtained polyamic acid ester solution was added to 575 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 7800 and Mw = 20000.
2.87 g of the resulting polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 21.1 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.6% by mass. Subsequently, 2.38 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 25 hours. Further, 8.42 g of NMP and 14.3 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(比較合成例6)
 撹拌子を入れた100mL四つ口フラスコに、DE-1を1.49g(5.72mmol)、及びDE-4を2.20g(6.50mmol)量り取り、NMPを68.5g加え、撹拌して溶解させた。続いて、トリエチルアミンを2.61g(25.7mmol)、DA-2を0.52g(2.60mmol)、DA-3を1.49g(5.20mmol)、及びDA-8を1.53g(5.20mmol)加え、撹拌して溶解させた。この溶液を撹拌しながら、DBOPを9.83g(25.7mmol)添加し、更にNMPを9.53g加え、水冷下で16時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステル溶液の温度25℃における粘度は、24.3mPa・sであった。
 得られたポリアミック酸エステル溶液を、585gの2-プロパノールに攪拌しながら投入し、析出した沈殿物を濾別した。この沈殿物を2-プロパノールで3回洗浄した後に、温度100℃で減圧乾燥し、ポリアミック酸エステル粉末を得た。このポリアミック酸エステルの分子量はMn=9000、Mw=24500であった。
 得られたポリアミック酸エステル粉末2.87gを、撹拌子の入った100mL三角フラスコに量り取り、NMPを21.0g加え、室温で20時間撹拌して溶解させた。このポリアミック酸エステル溶液の固形分濃度は10.6質量%であった。続いて、3-グリシドキシプロピルメチルジエトキシシランの1.0質量%NMP溶液を2.39g加え、温度50℃で25時間攪拌した。更に、NMPを8.60g、及びBCSを14.3g加え、室温で6時間撹拌して固形分濃度5.0質量%のポリアミック酸エステル溶液を得た。
(Comparative Synthesis Example 6)
In a 100 mL four-necked flask containing a stirring bar, 1.49 g (5.72 mmol) of DE-1 and 2.20 g (6.50 mmol) of DE-4 were weighed, and 68.5 g of NMP was added and stirred. And dissolved. Subsequently, 2.61 g (25.7 mmol) of triethylamine, 0.52 g (2.60 mmol) of DA-2, 1.49 g (5.20 mmol) of DA-3, and 1.53 g (5 of DA-8) 20 mmol) and stirred to dissolve. While stirring this solution, 9.83 g (25.7 mmol) of DBOP was added, and 9.53 g of NMP was further added, followed by stirring for 16 hours under water cooling to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 24.3 mPa · s.
The obtained polyamic acid ester solution was poured into 585 g of 2-propanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed three times with 2-propanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 9000 and Mw = 24500.
2.87 g of the obtained polyamic acid ester powder was weighed into a 100 mL Erlenmeyer flask containing a stirring bar, 21.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 20 hours. The solid content concentration of this polyamic acid ester solution was 10.6% by mass. Subsequently, 2.39 g of a 1.0 mass% NMP solution of 3-glycidoxypropylmethyldiethoxysilane was added and stirred at a temperature of 50 ° C. for 25 hours. Further, 8.60 g of NMP and 14.3 g of BCS were added and stirred at room temperature for 6 hours to obtain a polyamic acid ester solution having a solid content concentration of 5.0% by mass.
(実施例1)
 合成例1で得られたポリアミック酸エステル溶液を、1.0μmのフィルターで濾過した後、ITO電極付きガラス基板(ミネルヴァ電子社製、横380×縦320×厚さ1.1(mm))にスピンコートで塗布し、扇風機で送風しながら室温で10分間放置した。続いて、温度50℃のホットプレート上で5分間乾燥後、温度230℃のIR(遠赤外線加熱)炉で30分間焼成し、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 1)
The polyamic acid ester solution obtained in Synthesis Example 1 was filtered through a 1.0 μm filter, and then applied to a glass substrate with an ITO electrode (manufactured by Minerva Electronics, width 380 × length 320 × thickness 1.1 (mm)). It was applied by spin coating and left at room temperature for 10 minutes while blowing with a fan. Subsequently, after drying for 5 minutes on a hot plate at a temperature of 50 ° C., the film was baked for 30 minutes in an IR (far infrared heating) furnace at a temperature of 230 ° C. to obtain a transparent and uniform polyimide film having a thickness of 100 nm.
(実施例2)
 合成例2で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 2)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 2 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例3)
 合成例3で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 3)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 3 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例4)
 合成例4で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
Example 4
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 4 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例5)
 合成例5で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 5)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 5 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例6)
 合成例6で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 6)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 6 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例7)
 合成例7で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 7)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 7 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例8)
 合成例8で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 8)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 8 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例9)
 合成例9で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
Example 9
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 9 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例10)
 合成例10で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 10)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 10 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例11)
 合成例11で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 11)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 11 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例12)
 合成例12で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
Example 12
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 12 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例13)
 合成例13で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 13)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 13 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例14)
 合成例14で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 14)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 14 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(実施例15)
 合成例15で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行い、膜厚100nmの透明で均一なポリイミド膜を得た。
(Example 15)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Synthesis Example 15 was used to obtain a transparent and uniform polyimide film having a film thickness of 100 nm.
(比較例1)
 比較合成例2で得られたポリアミック酸エステル溶液を1.0μmのフィルターで濾過しようとしたところ、フィルターを通過しなかった。
(Comparative Example 1)
When the polyamic acid ester solution obtained in Comparative Synthesis Example 2 was filtered with a 1.0 μm filter, it did not pass through the filter.
(比較例2)
 比較合成例3で得られたポリアミック酸エステル溶液を1.0μmのフィルターで濾過しようとしたところ、フィルター目詰まりがみられた。
(Comparative Example 2)
When the polyamic acid ester solution obtained in Comparative Synthesis Example 3 was filtered with a 1.0 μm filter, filter clogging was observed.
(比較例3)
 比較合成例4で得られたポリアミック酸エステル溶液を1.0μmのフィルターで濾過しようとしたところ、フィルター目詰まりがみられた。
(Comparative Example 3)
When the polyamic acid ester solution obtained in Comparative Synthesis Example 4 was filtered with a 1.0 μm filter, filter clogging was observed.
(比較例4)
 比較合成例5で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行ったが、濁りのある不均一なポリイミド膜が得られた。
(Comparative Example 4)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Comparative Synthesis Example 5 was used, but a turbid and non-uniform polyimide film was obtained.
(比較例5)
 比較合成例6で得られたポリアミック酸エステル溶液を用いた以外は、実施例1と同様に処理を行ったが、濁りのある不均一なポリイミド膜が得られた。
(Comparative Example 5)
The treatment was performed in the same manner as in Example 1 except that the polyamic acid ester solution obtained in Comparative Synthesis Example 6 was used, but a turbid and non-uniform polyimide film was obtained.
 合成例、比較合成例、実施例、及び比較例の結果を、まとめて表1に示す。 Table 1 summarizes the results of the synthesis examples, comparative synthesis examples, examples, and comparative examples.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表1に示されるように、実施例1~15の液晶配向剤は、いずれも良好な溶解性と印刷性を示した。一方、比較例1~3は、いずれも溶解性が悪く、印刷が出来なかった。
 また、比較例4及び5の液晶配向剤は、溶解性は良好であるものの、印刷性が悪く、均一性のあるポリイミド膜が得られなかった。
As shown in Table 1, all of the liquid crystal aligning agents of Examples 1 to 15 exhibited good solubility and printability. On the other hand, Comparative Examples 1 to 3 were all poorly soluble and could not be printed.
Moreover, although the liquid crystal aligning agent of the comparative examples 4 and 5 had favorable solubility, printing property was bad and the polyimide film with uniformity was not obtained.
 本発明の液晶配向剤を用いることにより、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性を有し、且つ得られる膜の透過率の高い液晶配向膜が得られる。その結果、得られた液晶配向膜は、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。
 なお、2012年7月11日に出願された日本特許出願2012-155676号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
By using the liquid crystal aligning agent of the present invention, it has characteristics such as a small residual charge when a DC voltage is applied and / or a rapid relaxation of the residual charge accumulated by the DC voltage, and the obtained film has a high transmittance. A liquid crystal alignment film is obtained. As a result, the obtained liquid crystal alignment film is widely useful for a TN element, an STN element, a TFT liquid crystal element, and a vertical alignment type liquid crystal display element.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2012-155676 filed on July 11, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

  1.  下記式(1)で表される構造単位を、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%有し、かつ、下記式(2)で表される構造単位を、ジアミン由来の全構造単位1モルに対して、20~100モル%有するポリアミック酸エステルと有機溶媒とを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Xは4価の有機基芳香族基であり、Rはエチル基である。)
    Figure JPOXMLDOC01-appb-C000002
     (式(2)において、Rは水素原子又は炭素数1~5のアルキル基であり、水素原子と炭素数1~5のアルキル基とが混在していてもよく、
     A及びAは、それぞれ独立して、水素原子又はメチル基である。)
    The structural unit represented by the following formula (1) is 30 to 100 mol% with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative, and the structural unit represented by the following formula (2) A liquid crystal aligning agent comprising a polyamic acid ester having 20 to 100 mol% and an organic solvent with respect to 1 mol of all structural units derived from diamine.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), X 1 is a tetravalent organic group aromatic group, and R 1 is an ethyl group.)
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom and an alkyl group having 1 to 5 carbon atoms may be mixed,
    A 1 and A 2 are each independently a hydrogen atom or a methyl group. )
  2.  さらに、上記有機溶媒よりも低表面張力の溶媒を含有する、請求項1に記載の液晶配向剤。 Furthermore, the liquid crystal aligning agent of Claim 1 containing the solvent of lower surface tension than the said organic solvent.
  3.  式(1)におけるXがベンゼン環である請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2 X 1 is a benzene ring in the formula (1).
  4.  式(2)におけるRが水素原子又はメチル基である請求項1~3のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein R 2 in the formula (2) is a hydrogen atom or a methyl group.
  5.  式(2)におけるAとAが水素原子である請求項1~4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein A 1 and A 2 in the formula (2) are hydrogen atoms.
  6.  前記ポリアミック酸エステルの重量平均分子量が5,000~300,000であり、数平均分子量が2,500~150,000である、請求項1~5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the polyamic acid ester has a weight average molecular weight of 5,000 to 300,000 and a number average molecular weight of 2,500 to 150,000.
  7.  液晶配向剤中におけるポリアミック酸エステルの濃度が、0.5~15質量%である、請求項1~6のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the concentration of the polyamic acid ester in the liquid crystal aligning agent is 0.5 to 15% by mass.
  8.  請求項1~7のいずれか1項に記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 7.
  9.  焼成後の膜厚が5~300nmである請求項8に記載の液晶配向膜。 The liquid crystal alignment film according to claim 8, wherein the film thickness after firing is 5 to 300 nm.
  10.  請求項8又は9に記載の液晶配向膜を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 8.
PCT/JP2013/067291 2012-07-11 2013-06-24 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element WO2014010402A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014524719A JPWO2014010402A1 (en) 2012-07-11 2013-06-24 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element containing polyamic acid ester
KR20157003131A KR20150032325A (en) 2012-07-11 2013-06-24 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
CN201380046751.0A CN104603683B (en) 2012-07-11 2013-06-24 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155676 2012-07-11
JP2012-155676 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010402A1 true WO2014010402A1 (en) 2014-01-16

Family

ID=49915868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067291 WO2014010402A1 (en) 2012-07-11 2013-06-24 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JPWO2014010402A1 (en)
KR (1) KR20150032325A (en)
CN (1) CN104603683B (en)
TW (1) TW201407243A (en)
WO (1) WO2014010402A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080185A1 (en) * 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2021065934A1 (en) * 2019-10-04 2021-04-08 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
KR20240004616A (en) 2021-05-06 2024-01-11 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325901B (en) * 2016-12-26 2022-03-22 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186246A (en) * 2010-03-09 2011-09-22 Hitachi Displays Ltd Liquid crystal display device
JP2011256351A (en) * 2010-06-11 2011-12-22 Nissan Chem Ind Ltd Process of producing polyamic acid ester having alicyclic structure
WO2013031857A1 (en) * 2011-08-31 2013-03-07 日産化学工業株式会社 Liquid crystal aligning agent comprising polyamic acid ester, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656541B1 (en) * 2008-12-26 2016-09-09 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5626510B2 (en) * 2009-02-18 2014-11-19 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method
CN102517039A (en) * 2011-10-25 2012-06-27 珠海彩珠实业有限公司 Preparation methods of liquid crystal orientation agent, liquid crystal orientation membrane, and liquid crystal cells thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186246A (en) * 2010-03-09 2011-09-22 Hitachi Displays Ltd Liquid crystal display device
JP2011256351A (en) * 2010-06-11 2011-12-22 Nissan Chem Ind Ltd Process of producing polyamic acid ester having alicyclic structure
WO2013031857A1 (en) * 2011-08-31 2013-03-07 日産化学工業株式会社 Liquid crystal aligning agent comprising polyamic acid ester, liquid crystal alignment film, and liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080185A1 (en) * 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
KR20160090879A (en) * 2013-11-28 2016-08-01 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent and liquid crystal display element using same
JPWO2015080185A1 (en) * 2013-11-28 2017-03-16 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
KR102278973B1 (en) 2013-11-28 2021-07-16 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent and liquid crystal display element using same
WO2021065934A1 (en) * 2019-10-04 2021-04-08 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
KR20240004616A (en) 2021-05-06 2024-01-11 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Also Published As

Publication number Publication date
KR20150032325A (en) 2015-03-25
CN104603683B (en) 2017-05-10
TW201407243A (en) 2014-02-16
JPWO2014010402A1 (en) 2016-06-20
CN104603683A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP6048143B2 (en) Liquid crystal aligning agent and liquid crystal aligning film containing polyamic acid ester and polyamic acid
JP6064900B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP6519583B2 (en) Liquid crystal aligning agent containing polyamic acid ester-polyamic acid copolymer, and liquid crystal aligning film using the same
JP6056752B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
KR101973226B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5998939B2 (en) Liquid crystal aligning agent containing polyamic acid ester and polyamic acid
JP6152849B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5630625B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014010402A1 (en) Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
JP6597645B2 (en) Liquid crystal alignment agent
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
KR20190044642A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6558543B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6524918B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
WO2017094898A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element employing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157003131

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13816947

Country of ref document: EP

Kind code of ref document: A1