WO2023074350A1 - ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス - Google Patents

ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス Download PDF

Info

Publication number
WO2023074350A1
WO2023074350A1 PCT/JP2022/037866 JP2022037866W WO2023074350A1 WO 2023074350 A1 WO2023074350 A1 WO 2023074350A1 JP 2022037866 W JP2022037866 W JP 2022037866W WO 2023074350 A1 WO2023074350 A1 WO 2023074350A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
polyamic acid
mol
polyimide
diamine
Prior art date
Application number
PCT/JP2022/037866
Other languages
English (en)
French (fr)
Inventor
博文 中山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023074350A1 publication Critical patent/WO2023074350A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to polyamic acids, polyamic acid compositions, polyimides, polyimide films, laminates, methods for producing laminates, and electronic devices.
  • the present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and substitute materials for members currently using glass.
  • TFT thin film transistor
  • various electronic elements such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements.
  • Polyimide has sufficient heat resistance to adapt to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices. be.
  • Aromatic polyimides are generally colored yellowish brown due to intramolecular conjugation and formation of charge transfer (CT) complexes. Transparency is not required, and conventional aromatic polyimides have been used. However, in cases where the light emitted from the display element passes through the substrate, such as in transparent displays, bottom-emission organic EL, and liquid crystal displays, and in smartphones, etc., where full-screen displays (notchless) are required, sensors and When the camera module is arranged on the back surface of the substrate, the substrate is also required to have high optical properties (more specifically, transparency, etc.).
  • CT charge transfer
  • Patent Documents 1 and 2 In order to reduce the coloring of polyimide, a technique for suppressing the formation of a CT complex using an aliphatic monomer (Patent Documents 1 and 2), and a technique for improving transparency by using a monomer having a fluorine atom (Patent Document 3) )It has been known. Also, in order to obtain a low CTE polyimide, a polyimide having a naphthalene skeleton with high planarity has been studied (Patent Document 4).
  • JP 2016-29177 A JP 2012-41530 A JP 2014-70139 A WO2016/166961
  • Patent Documents 1 and 2 have high transparency and a low CTE, but because they have an aliphatic structure, they have a low thermal decomposition temperature and are difficult to apply to high-temperature processes when forming electronic elements.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a polyimide having excellent heat resistance and high transmittance for light with a wavelength of 400 nm, and a polyamic acid as a precursor thereof. Another object of the present invention is to provide a product or member that is produced using the polyimide and polyamic acid and that requires heat resistance and transparency. In particular, it is an object of the present invention to provide a product or member in which the polyimide film of the present invention is formed on the surface of an inorganic material such as glass, metal, metal oxide, or single crystal silicon.
  • the present invention includes the following aspects.
  • a polyamic acid having a tetracarboxylic dianhydride residue and a diamine residue The tetracarboxylic dianhydride residue, 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride residue a 4,4′-oxydiphthalic anhydride residue, and spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1, containing one or more residues selected from the group consisting of 3,7,9-tetronic residues and a 2,3,6,7-naphthalenetetracarboxylic dianhydride residue, the diamine residue comprises a 2,2′-bis(trifluoromethyl)benzidine residue, The content of the 2,3,6,7-naphthalenetetracarboxylic dianhydr
  • the diamine residue different from the 2,2′-bis(trifluoromethyl)benzidine residue is 4-aminophenyl-4-aminobenzoate residue, 9,9-bis(4-aminophenyl)fluorene and 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether residue, the polyamic acid according to [2] above.
  • the content of diamine residues different from the 2,2'-bis(trifluoromethyl)benzidine residues is 1 mol% or more and 50 mol% or less with respect to the total amount of the diamine residues.
  • the content of the 3,3',4,4'-biphenyltetracarboxylic dianhydride residue is 30 mol% or more and 50 mol% of the total amount of the tetracarboxylic dianhydride residue.
  • the average value of the lowest unoccupied molecular orbital level of the tetracarboxylic dianhydride forming the tetracarboxylic dianhydride residue and the average value of the highest occupied molecular orbital level of the diamine forming the diamine residue is 2.25 eV or more, the polyamic acid according to any one of the above [1] to [5].
  • a polyimide which is an imidized polyamic acid according to any one of [1] to [6].
  • a laminate comprising a support and the polyimide film according to any one of [13] to [15].
  • [17] A method for producing a laminate having a support and a polyimide film, By coating the polyamic acid composition according to any one of [7] to [10] on a support, a coating film containing the polyamic acid is formed, and the coating film is heated to form the polyamide A method for producing a laminate by imidating an acid.
  • An electronic device comprising the polyimide film according to any one of [13] to [15] and an electronic element disposed on the polyimide film.
  • the polyimide produced using the polyamic acid according to the present invention has excellent heat resistance and high transmittance of light with a wavelength of 400 nm. Therefore, the polyimide produced using the polyamic acid according to the present invention is suitable as a material for electronic devices that require heat resistance and transparency.
  • a “structural unit” refers to a repeating unit that constitutes a polymer.
  • a “polyamic acid” is a polymer containing a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as “structural unit (1)").
  • a 1 represents a tetracarboxylic dianhydride residue (tetravalent organic group derived from tetracarboxylic dianhydride)
  • a 2 represents a diamine residue (divalent organic group derived from diamine organic group).
  • the content of the structural unit (1) with respect to all structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol%. 100 mol % or more, more preferably 80 mol % or more and 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
  • 1% weight loss temperature is the measurement temperature when the weight of polyimide at a measurement temperature of 150°C is taken as the reference (100% by weight), and the weight is reduced by 1% by weight with respect to the reference weight.
  • the method for measuring the 1% weight loss temperature is the same method as in Examples described later or a method based thereon.
  • Plasticizer refers to a material that exists as a liquid during the imidization of at least a portion of polyamic acid.
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • a tetracarboxylic dianhydride may be described as an "acid dianhydride”.
  • the components, functional groups, and the like exemplified in this specification may be used alone or in combination of two or more.
  • Polyamic acid according to the present embodiment (hereinafter sometimes referred to as "polyamic acid (1)”) has a tetracarboxylic dianhydride residue and a diamine residue.
  • the tetracarboxylic dianhydride residue is 3,3′,4,4′-biphenyltetracarboxylic dianhydride residue, 9,9-bis(3,4-dicarboxyphenyl ) fluorene dianhydride residue, 4,4′-oxydiphthalic anhydride residue, and spiro[11H-difuro[3,4-b:3′,4′-i]xanthene-11,9′-[9H ]fluorene]-1,3,7,9-tetrone residues and 2,3,6,7-naphthalenetetracarboxylic acid dianhydride residues.
  • the polyamic acid (1) contains, as tetracarboxylic dianhydride residues, 3,3′,4,4′-biphenyltetracarboxylic dianhydride residues, 9,9-bis(3,4-di carboxyphenyl)fluorene dianhydride residue, 4,4′-oxydiphthalic anhydride residue, and spiro[11H-difuro[3,4-b:3′,4′-i]xanthene-11,9′- [9H]fluorene]-1,3,7,9-tetrone residue and one or more residues selected from the group consisting of 2,3,6,7-naphthalenetetracarboxylic acid dianhydride residue include.
  • the diamine residue includes a 2,2'-bis(trifluoromethyl)benzidine residue. That is, polyamic acid (1) contains a 2,2'-bis(trifluoromethyl)benzidine residue as a diamine residue.
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride residue is 3,3′,4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as “BPDA” ) is the partial structure derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride residue is 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (hereinafter referred to as "BPAF” is a partial structure derived from The 4,4'-oxydiphthalic anhydride residue is a partial structure derived from 4,4'-oxydiphthalic anhydride (hereinafter sometimes referred to as "ODPA").
  • Spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7,9-tetrone residue is spiro[11H- Diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7,9-tetrone (hereinafter sometimes referred to as “SFDA” ) is the partial structure derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride residue is a portion derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (hereinafter sometimes referred to as "NTCDA”) Structure.
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • the 2,2'-bis(trifluoromethyl)benzidine residue is a partial structure derived from 2,2'-bis(trifluoromethyl)benzidine (hereinafter sometimes referred to as "TFMB").
  • the SFDA residue is a tetravalent organic group represented by the following chemical formula (2).
  • the content of NTCDA residues is 5 mol% or more and 90 mol% or less with respect to the total amount of tetracarboxylic dianhydride residues. Furthermore, in polyamic acid (1), the content of TFMB residues is 50 mol% or more relative to the total amount of diamine residues.
  • polyimides obtained from polyamic acids having NTCDA residues and TFMB residues have a high 1% weight loss temperature (TD1) (excellent heat resistance) and a low CTE due to their rigid structures.
  • TD1 excellent heat resistance
  • internal stress hereinafter sometimes simply referred to as "internal stress”
  • Polyimide using NTCDA as an acid dianhydride monomer has a transmittance of light with a wavelength of 400 nm (hereinafter referred to as "400 nm transmittance" compared to polyimide using pyromellitic dianhydride as an acid dianhydride monomer. ) tend to be higher.
  • the 400 nm transmittance of polyimide obtained from polyamic acid having only NTCDA residue as tetracarboxylic dianhydride residue and only TFMB residue as diamine residue is used for applications requiring high transparency. is insufficient.
  • one or more residues selected from the group consisting of BPDA residues, BPAF residues, ODPA residues and SFDA residues (hereinafter referred to as "specific acid dianhydride residues" may be described), an NTCDA residue, and a TFMB residue, and the content of the NTCDA residue and the TFMB residue is a polyimide obtained from a polyamic acid (polyamic acid (1)) having a specific range , and found that the 400 nm transmittance is high while being excellent in heat resistance.
  • the content of the NTCDA residue is 5 mol% or more and 90 mol% or less with respect to the total amount of the tetracarboxylic dianhydride residue, and the content of the TFMB residue The ratio is 50 mol % or more with respect to the total amount of diamine residues.
  • the content of the NTCDA residue is preferably 10 mol % or more, more preferably 15 mol % or more, and even more preferably 20 mol % or more.
  • the content of NTCDA residues is 85 mol% or less with respect to the total amount of tetracarboxylic dianhydride residues constituting polyamic acid (1). preferably 80 mol % or less.
  • the content of the specific acid dianhydride residue is the total amount of the tetracarboxylic acid dianhydride residue constituting the polyamic acid (1).
  • it is preferably 10 mol % or more and 95 mol % or less, more preferably 10 mol % or more and 90 mol % or less, and even more preferably 10 mol % or more and 80 mol % or less.
  • the "content rate of specific acid dianhydride residues" is the total content of multiple types of specific acid dianhydride residues. represents
  • a BPDA residue is preferable as the specific acid dianhydride residue in order to obtain a polyimide with superior heat resistance.
  • the specific acid dianhydride residue is preferably one or more residues selected from the group consisting of BPAF residues, ODPA residues and SFDA residues.
  • the specific acid dianhydride residue is preferably one or more residues selected from the group consisting of BPAF residues and SFDA residues.
  • the content of one or more residues selected from the group consisting of BPAF residues and SFDA residues is preferably 10 mol% or more and 50 mol% or less, relative to the total amount of tetracarboxylic dianhydride residues constituting the polyamic acid (1), and 20 mol% or more and 50 It is more preferably mol % or less, and even more preferably 30 mol % or more and 50 mol % or less.
  • the content of the BPDA residue must be less than the tetracarboxylic acid dicarboxylic acid constituting the polyamic acid (1). It is preferably 5 mol% or more and 90 mol% or less, more preferably 5 mol% or more and 70 mol% or less, and 5 mol% or more and 50 mol% or less, relative to the total amount of the anhydride residue. is more preferred.
  • the content of the BPAF residue must be less than the tetracarboxylic acid dicarboxylic acid constituting the polyamic acid (1). It is preferably 1 mol% or more and 50 mol% or less, more preferably 1 mol% or more and 40 mol% or less, and 1 mol% or more and 30 mol% or less, relative to the total amount of the anhydride residue. is more preferred.
  • the content of the ODPA residue must be less than the tetracarboxylic acid dicarboxylic acid constituting the polyamic acid (1). It is preferably 5 mol% or more and 30 mol% or less, more preferably 5 mol% or more and 20 mol% or less, and 5 mol% or more and 10 mol% or less, relative to the total amount of the anhydride residue. is more preferred.
  • the content of the SFDA residue must be less than the tetracarboxylic acid dicarboxylic acid constituting the polyamic acid (1). It is preferably 1 mol% or more and 50 mol% or less, more preferably 1 mol% or more and 40 mol% or less, and 1 mol% or more and 30 mol% or less, relative to the total amount of the anhydride residue. is more preferred.
  • the content of TFMB residues is 55 mol% or more with respect to the total amount of diamine residues constituting polyamic acid (1). is preferably 60 mol% or more, more preferably 65 mol% or more, even more preferably 70 mol% or more, 75 mol% or more, 80 mol% or more, 85 mol % or more, 90 mol % or more, 95 mol % or more, or 100 mol %.
  • acid dianhydrides other than NTCDA and specific acid dianhydrides may be used as monomers within a range that does not impair its performance.
  • acid dianhydrides other than NTCDA and specific acid dianhydrides include pyromellitic dianhydride, p-phenylenebis(trimellitate anhydride), and 1,2,5,6-naphthalenetetracarboxylic dianhydride.
  • the total content of NTCDA residues and specific acid dianhydride residues is a tetracarboxylic acid dianhydride that constitutes polyamic acid (1) It is preferably 70 mol% or more, more preferably 75 mol% or more, still more preferably 80 mol% or more, and even more preferably 85 mol% or more, relative to the total amount of the residue. Preferably, it may be 90 mol % or more, 95 mol % or more, or 100 mol %.
  • a diamine other than TFMB may be used as a monomer within a range that does not impair its performance.
  • diamines other than TFMB include p-phenylenediamine, 4-aminophenyl-4-aminobenzoate (hereinafter sometimes referred to as “BAAB”), 9,9-bis(4-aminophenyl)fluorene ( hereinafter sometimes referred to as “BAFL”), 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether (hereinafter sometimes referred to as “6FODA”), 1,4- cyclohexanediamine, 4,4'-diaminobenzanilide, m-phenylenediamine, 4,4'-oxydianiline, 3,4'-oxydianiline, N,N'-bis(4-aminophenyl)terephthalamide, 4,4'-diaminodiphenylsul
  • BAAB 4-aminopheny
  • any As the diamine residue is preferably a residue derived from diamine of ⁇ 5.20 eV or less, and a residue derived from diamine of ⁇ 5.30 eV or less. More preferred are residues, more preferred are those derived from diamines of -5.40 eV or less, and even more preferred are those derived from diamines of -5.50 eV or less.
  • the polyamic acid (1) has an arbitrary diamine residue
  • the polyamic acid (1) in order to obtain a polyimide with a higher 400 nm transmittance, has a HOMO of ⁇ 5.20 eV or less as an arbitrary diamine residue. It is preferred to have only diamine-derived residues.
  • the optional diamine residue is preferably a diamine-derived residue with a HOMO of ⁇ 6.20 eV or more.
  • diamine-derived residues with a HOMO of -5.20 eV or less examples include BAAB residues, BAFL residues, 6FODA residues, and the like. That is, when polyamic acid (1) has an optional diamine residue, in order to obtain a polyimide with a higher 400 nm transmittance, the optional diamine residue is a group consisting of BAAB residue, BAFL residue and 6FODA residue One or more selected residues are preferred.
  • the polyamic acid (1) when the polyamic acid (1) has an optional diamine residue, in order to obtain a polyimide with a higher 400 nm transmittance, the polyamic acid (1) may contain, as optional diamine residues, a BAAB residue, a BAFL residue and It is preferred to have only one or more residues selected from the group consisting of 6FODA residues.
  • the content of the arbitrary diamine residue (when having multiple types of arbitrary diamine residues is preferably 1 mol% or more and 50 mol% or less, and 1 mol% or more and 40 mol% or less with respect to the total amount of diamine residues constituting the polyamic acid (1). is more preferably 1 mol% or more and 30 mol% or less, even more preferably 1 mol% or more and 20 mol% or less, 1 mol% or more and 15 mol% or less or 5 mol% or more and 15 mol % or less.
  • the polyamic acid (1) has an arbitrary diamine residue, and the content of the arbitrary diamine residue (the total content when there are multiple types of arbitrary diamine residues) is the diamine residue constituting the polyamic acid (1) When it is 1 mol% or more and 50 mol% or less with respect to the total amount of the groups, in order to obtain a polyimide having excellent heat resistance, the content of the BPDA residue is the tetracarboxylic dianhydride that constitutes the polyamic acid (1). It is preferably 30 mol % or more and 50 mol % or less with respect to the total amount of the residue.
  • the lowest unoccupied orbital level of the tetracarboxylic dianhydride that forms the tetracarboxylic dianhydride residue in the polyamic acid (1) (hereinafter referred to as "LUMO"
  • the difference between the average value of HOMO of the diamine that forms the diamine residue in polyamic acid (1) and the average value of HOMO (hereinafter sometimes referred to as “average level difference”) is , is preferably 2.25 eV or more, more preferably 2.30 eV or more, still more preferably 2.35 eV or more, and may be 2.40 eV or more.
  • Both the LUMO of the tetracarboxylic dianhydride and the HOMO of the diamine are values calculated by density functional theory (DFT).
  • Average LUMO of tetracarboxylic dianhydride is obtained by multiplying the LUMO of NTCDA by the mole fraction of NTCDA and the LUMO of the specific acid dianhydride by the mole fraction of the specific acid dianhydride.
  • the numerical value (when using multiple types of specific acid dianhydrides, each numerical value) and the LUMO of other acid dianhydrides used as needed were multiplied by the mole fraction of other acid dianhydrides. It is a value obtained by summing up numerical values (each numerical value when multiple kinds of other acid dianhydrides are used).
  • the "average HOMO value of diamine” is also calculated by the same method as the above-described "average LUMO value of tetracarboxylic dianhydride".
  • the average level difference is preferably 2.80 eV or less, more preferably 2.70 eV or less. It is more preferably 60 eV or less.
  • the polyamic acid (1) preferably satisfies the following condition 1, and more preferably satisfies the following condition 2. It is more preferable to satisfy condition 3 below.
  • Condition 1 The content of NTCDA residues is 10 mol% or more and 90 mol% or less with respect to the total amount of tetracarboxylic dianhydride residues constituting polyamic acid (1), and the content of TFMB residues is 90 mol % or more and 100 mol % or less with respect to the total amount of diamine residues constituting the polyamic acid (1).
  • Condition 2 Condition 1 above is satisfied, and the specific acid dianhydride residue is one or more residues selected from the group consisting of BPAF residues and SFDA residues.
  • Condition 3 Content of one or more residues that satisfy Condition 2 above and are selected from the group consisting of BPAF residues and SFDA residues (when both BPAF residues and SFDA residues are present, their total content ratio) is 10 mol % or more and 50 mol % or less with respect to the total amount of tetracarboxylic dianhydride residues constituting polyamic acid (1).
  • Polyamic acid (1) can be synthesized by a known general method, and can be obtained, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent.
  • An example of a specific method for synthesizing polyamic acid (1) will be described.
  • a diamine solution is prepared by dissolving or dispersing a diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen.
  • the tetracarboxylic dianhydride is added to the diamine solution after dissolving it in an organic solvent or dispersing it in a slurry state, or in a solid state.
  • the substance amount of the diamine when using multiple types of diamines, the substance amount of each diamine
  • the substance amount of the tetracarboxylic dianhydride When using multiple types of tetracarboxylic dianhydrides, the amount of each tetracarboxylic dianhydride is adjusted to obtain the desired polyamic acid (polymer of diamine and tetracarboxylic dianhydride ) can be obtained.
  • the molar fraction of each residue in polyamic acid (1) matches, for example, the molar fraction of each monomer (diamine and tetracarboxylic dianhydride) used in synthesizing polyamic acid (1).
  • Polyamic acid (1) containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained by blending two types of polyamic acids.
  • the temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the polyamic acid (1) are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower.
  • the reaction time for the synthetic reaction of polyamic acid (1) is, for example, in the range of 10 minutes or more and 30 hours or less.
  • the organic solvent used for synthesizing polyamic acid (1) is preferably a solvent capable of dissolving the tetracarboxylic dianhydride and diamine used, and more preferably a solvent capable of dissolving polyamic acid (1) to be produced.
  • organic solvents used for synthesizing polyamic acid (1) include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; diphenylsulfone and tetramethylsulfone.
  • Sulfone-based solvents such as; N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 3-methoxy-N , N-dimethylpropanamide (MPA), hexamethylphosphoric triamide and other amide solvents; ⁇ -butyrolactone and other ester solvents; chloroform, methylene chloride and other halogenated alkyl solvents; benzene, toluene and other aromatic carbonization Hydrogen-based solvents; phenolic solvents such as phenol and cresol; ketone-based solvents such as cyclopentanone; Ether-based solvents such as cresol methyl ether are included.
  • DMAC N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • NMP N,N-diethylacetamide
  • NMP N-methyl-2-pyr
  • the organic solvent used in the synthetic reaction of the polyamic acid (1) consists of amide solvents, ketone solvents, ester solvents and ether solvents.
  • amide solvents more specifically, DMF, DMAC, NMP, MPA, etc.
  • the synthetic reaction of polyamic acid (1) is preferably carried out in an inert gas atmosphere such as argon or nitrogen.
  • the weight average molecular weight of the polyamic acid (1) is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less, depending on the application. More preferably, it is in the range of 30,000 or more and 200,000 or less. If the weight-average molecular weight is 10,000 or more, polyamic acid (1) or polyimide obtained using polyamic acid (1) can be easily formed into a coating film or a polyimide film (film). On the other hand, when the weight-average molecular weight is 1,000,000 or less, it exhibits sufficient solubility in a solvent, so a coating film or polyimide film having a smooth surface and a uniform thickness using a polyamic acid composition described later is obtained.
  • the weight average molecular weight used here means a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
  • a method for controlling the molecular weight of the polyamic acid (1) a method of using either an acid dianhydride or a diamine in excess, a monofunctional acid anhydride such as phthalic anhydride or aniline, or an amine A method of quenching the reaction by reacting is included.
  • a polyimide film having sufficient strength can be obtained if the molar ratio of these charged is between 0.95 and 1.05.
  • the molar ratio of the charge is the ratio of the total amount of diamines used in the synthesis of polyamic acid (1) to the total amount of acid dianhydrides used in the synthesis of polyamic acid (1) (total amount of diamines amount/total substance amount of acid dianhydride). Further, by terminal-capping with phthalic anhydride, maleic anhydride, aniline, or the like, coloring of the polyimide obtained using the polyamic acid (1) can be further reduced.
  • the polyamic acid composition according to the present embodiment contains polyamic acid (1) and an organic solvent.
  • the organic solvent contained in the polyamic acid composition according to the present embodiment include the organic solvents exemplified as the organic solvent that can be used in the synthesis reaction of the polyamic acid (1), such as amide solvents and ketone solvents. , ester solvents and ether solvents are preferable, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferable.
  • the reaction solution solution after reaction itself may be used as the polyamic acid composition according to the present embodiment.
  • the solid polyamic acid (1) obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare the polyamic acid composition according to the present embodiment.
  • the content of polyamic acid (1) in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
  • the polyamic acid composition according to the present embodiment may contain an imidization accelerator and/or a dehydration catalyst in order to shorten the heating time and develop properties.
  • a tertiary amine can be used as the imidization accelerator.
  • a heterocyclic tertiary amine is preferred as the tertiary amine.
  • Preferable specific examples of heterocyclic tertiary amines include pyridine, picoline, quinoline, isoquinoline and imidazoles.
  • Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
  • the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • imidazoles are preferable.
  • imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure).
  • the imidazoles that can be added to the polyamic acid composition according to the present embodiment are not particularly limited. imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like.
  • 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
  • the content of the imidazole is preferably 0.005 mol or more and 0.1 mol or less, and 0.01 mol or more and 0.08 mol or less, relative to 1 mol of the amide group of the polyamic acid (1). is more preferably 0.015 mol or more and 0.050 mol or less.
  • amide group of polyamic acid (1) refers to an amide group produced by a polymerization reaction of diamine and tetracarboxylic dianhydride.
  • the method of mixing polyamic acid (1) and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of polyamic acid (1), it is preferable to add imidazoles to polyamic acid (1) after polymerization. At this time, the imidazole may be added as it is to the polyamic acid (1), or the imidazole may be dissolved in a solvent in advance and this solution may be added to the polyamic acid (1). Not restricted.
  • the polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing polyamic acid (1) after polymerization (solution after reaction).
  • additives may be added as additives to the polyamic acid composition according to the present embodiment.
  • additives include plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, and sensitizers.
  • the fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., inorganic fine particles made of colloidal silica, carbon, layered silicate, etc. They may have a porous structure or a hollow structure.
  • the function and form of the fine particles are not particularly limited, and may be, for example, pigments, fillers, or fibrous particles.
  • the colored polyimide had an imidization reaction temperature of 300°C. At an imidization reaction temperature of 350°C, the imidation was 90% or more, and nearly 100%. However, a clear difference in the imidization rate was observed.
  • the driving force during the dehydration ring closure from polyamic acid to polyimide by thermal imidization is largely due to the molecular motion caused by heat and the plasticizing effect of the solvent. should be treated.
  • a rigid acid dianhydride such as NTCDA
  • TFMB TFMB
  • the resulting polyimide has a glass transition temperature exceeding 400° C., and sometimes the glass transition temperature is higher than the heat treatment temperature during film formation. Therefore, in the imidization reaction between a rigid acid dianhydride such as NTCDA and TFMB, the imidization may not proceed completely.
  • the plasticizer As a plasticizer that can be used in this embodiment, a material that dissolves in the solvent used for imidizing the polyamic acid (1) is preferable. Moreover, the plasticizer preferably does not volatilize at low temperatures in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization. Therefore, the boiling point of the plasticizer is preferably 50°C or higher, more preferably 100°C or higher, and even more preferably 150°C or higher. Moreover, the plasticizer preferably does not have a decomposition temperature below the boiling point in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization.
  • the amount of plasticizer is preferably 10 parts by weight or less with respect to 100 parts by weight of polyamic acid (1).
  • the amount of the plasticizer is 0.001 weight per 100 parts by weight of the polyamic acid (1) from the viewpoint of imparting sufficient molecular mobility to the polyamic acid (1) and avoiding decomposition of the plasticizer itself. parts by weight or more and 10 parts by weight or less, more preferably 0.01 parts by weight or more and 10 parts by weight or less, still more preferably 0.01 parts by weight or more and 8 parts by weight or less, and 0.1 parts by weight Part or more and 6 parts by weight or less is even more preferable.
  • the plasticizer should be selected from the group consisting of phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glycols, and aliphatic dibasic acid esters. It is preferable to use one or more of the phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glycols, and aliphatic dibasic acid esters. It is preferable to use one or more of the phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glycols, and aliphatic dibasic acid esters. It is preferable to use one or more of the group consisting of phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glycols, and aliphatic dibasic acid esters. It is preferable to use one or more of the phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glycols, and aliphatic dibasic acid esters. It is preferable to use one or more of the phosphorus-containing compounds (phosphorus-containing compounds), polyalkylene glyco
  • Phosphorus-containing compounds include compounds represented by the following general formulas (3-1) to (3-10).
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom, a monovalent organic group or a polyvalent organic group
  • R 8 is , represents a polyvalent organic group
  • n represents the degree of polymerization.
  • Preferred examples of phosphorus-containing compounds include phosphoric acid compounds, phosphorous acid compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine compounds, phosphine oxide compounds, phosphorane compounds, phosphazene compounds, and the like.
  • the phosphorus-containing compound may be an ester of the compounds listed above or a condensate thereof, may contain a cyclic structure, or may form a salt with an amine or the like. Further, some of these phosphorus-containing compounds have a tautomeric relationship, such as a phosphorous acid-based compound and a phosphonic acid-based compound, but they may exist in either state.
  • phosphoric acid compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri(2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris(isopropylphenyl ) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyl oxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-meth
  • phosphorous acid compounds include triphenylphosphite, trisnonylphenylphosphite, tricresylphosphite, triethylphosphite, triisobutylphosphite, tris(2-ethylhexyl)phosphite and tridecylphosphite.
  • trilauryl phosphite tris (tridecyl) phosphite, diphenyl phosphite, diethyl phosphite, dibutyl phosphite, dimethyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphites, trilauryl trithiophosphite, diethyl hydrogen phosphite, bis(2-ethylhexyl) hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, diphenyl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite, bis (decyl) pentaerythritol diphosphite, bis (tride
  • condensates include condensed phosphate esters.
  • specific examples of the condensed phosphate include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly(di-2,6-xylyl) phosphate, hydroquinone poly(2,6-xylyl) phosphate, and the like.
  • Commercially available condensed phosphate esters include, for example, "CR-733S” manufactured by Daihachi Chemical Industry Co., Ltd., "CR-741” manufactured by Daihachi Chemical Industry Co., Ltd., "PX-200” manufactured by Daihachi Chemical Industry Co., Ltd., and ADEKA. and "FP-600” manufactured by K.K.
  • phosphazene-based compounds include phenoxycyclophosphazene (“FP-110” manufactured by Fushimi Pharmaceutical Co., Ltd.), cyclic cyanophenoxyphosphazene (“FP-300” manufactured by Fushimi Pharmaceutical Co., Ltd.), and the like.
  • polyalkylene glycol examples include polypropylene glycol and polyethylene glycol.
  • aliphatic dibasic acid esters include dibutyl adipate, diisobutyl adipate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis[2-(2-butoxyethoxy)ethyl]adipate, bis(2- ethylhexyl)azelate, dibutyl sebacate, bis(2-ethylhexyl) sebacate, diethyl succinate and the like.
  • the plasticizer may be a low-molecular-weight organic compound or a thermoplastic resin as long as it exhibits a plasticizing effect.
  • the low-molecular-weight organic compounds include organic compounds having a molecular weight of about 1,000 or less, such as phenolic compounds; Phthalimide compounds; maleimide compounds such as N,Np-phenylenebismaleimide and 2,2'-(ethylenedioxy)bis(ethylmaleimide).
  • the thermoplastic resin include polyimide and polyamide having an asymmetric structure.
  • the polyamic acid composition according to the present embodiment can contain a silane coupling agent in order to exhibit appropriate adhesion to the support.
  • a silane coupling agent known ones can be used without particular limitation, but compounds containing an amino group are particularly preferred from the viewpoint of reactivity with polyamic acid (1).
  • the mixing ratio of the silane coupling agent to 100 parts by weight of polyamic acid (1) is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.10 parts by weight or less. more preferably 0.01 parts by weight or more and 0.05 parts by weight or less.
  • the polyimide according to this embodiment is an imidized product of polyamic acid (1) described above.
  • the polyimide according to this embodiment can be obtained by a known method, and the production method is not particularly limited. An example of a method for imidating the polyamic acid (1) to obtain the polyimide according to the present embodiment will be described below. Imidation is carried out by dehydration and ring closure of polyamic acid (1). This dehydration ring closure can be carried out by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method.
  • imidization of polyamic acid (1) to polyimide can take any ratio of 1% or more and 100% or less. That is, a partially imidized polyamic acid (1) may be synthesized.
  • the dehydration ring closure of the polyamic acid (1) may be performed by heating the polyamic acid (1).
  • the method of heating the polyamic acid (1) is not particularly limited, but for example, the polyamic acid composition according to the present embodiment is applied onto a support such as a glass substrate, a metal plate, or a PET film (polyethylene terephthalate film). After that, the polyamic acid (1) may be heat-treated at a temperature in the range of 40°C or higher and 500°C or lower. According to this method, a laminate according to the present embodiment, which has a support and a polyimide film (specifically, a polyimide film containing an imidized product of polyamic acid (1)) disposed on the support, is obtained. be done.
  • a polyimide film specifically, a polyimide film containing an imidized product of polyamic acid (1)
  • the polyamic acid composition is directly put into a container that has been subjected to release treatment such as coating with a fluororesin, and the polyamic acid composition is heated and dried under reduced pressure to effect dehydration ring closure of the polyamic acid (1).
  • release treatment such as coating with a fluororesin
  • Polyimide can be obtained by dehydration ring closure of polyamic acid (1) by these techniques.
  • the heating time for each of the above treatments varies depending on the amount of the polyamic acid composition to be subjected to dehydration ring closure and the heating temperature, but is generally in the range of 1 minute or more and 300 minutes or less after the treatment temperature reaches the maximum temperature. It is preferable to
  • the polyimide film according to the present embodiment (specifically, the polyimide film containing the imidized product of polyamic acid (1)) is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature (heat resistance) that can withstand the TFT manufacturing process. Therefore, it is suitable as a transparent substrate material for flexible displays.
  • the content of polyimide (specifically, imidized polyamic acid (1)) in the polyimide film according to the present embodiment is, for example, 70% by weight or more, and 80% by weight or more with respect to the total amount of the polyimide film. is preferable, more preferably 90% by weight or more, and may be 100% by weight.
  • Components other than polyimide in the polyimide film include, for example, the additives described above (more specifically, fine particles and the like).
  • An electronic device (more specifically, a flexible device or the like) according to this embodiment has a polyimide film according to this embodiment and an electronic element directly or indirectly arranged on this polyimide film.
  • an inorganic substrate such as glass is used as a support, and a polyimide film is formed thereon.
  • an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film.
  • the process of forming a TFT is generally carried out in a wide temperature range of 150° C. or higher and 650° C. or lower. is formed, and in some cases, a-Si or the like is further crystallized by a laser or the like.
  • the 1% weight loss temperature of polyimide is preferably 500° C. or higher because there is a possibility that a barrier film (to be described later) and electronic elements may peel off.
  • the upper limit of the 1% weight loss temperature of polyimide is preferably 600° C., for example, although the higher the better.
  • the 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, NTCDA residues, BPDA residues, etc.).
  • an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film.
  • SiOx film silicon oxide film
  • SiNx film silicon nitride film
  • the polyimide and the inorganic film are separated from each other. Therefore, in addition to the 1% weight loss temperature of the polyimide being 500° C. or higher, the weight loss rate when the polyimide is kept isothermally at a temperature within the range of 400° C. or higher and 450° C. or lower must be less than 1%. desirable.
  • the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, there is a possibility that misalignment or the like may occur during the formation of the electronic device. It is more preferably 350° C. or higher, still more preferably 400° C. or higher, and even more preferably 420° C. or higher.
  • the upper limit of Tg of polyimide is preferably 500° C., although the higher the better.
  • the coefficient of thermal expansion of the glass substrate is generally smaller than that of resin, internal stress is generated between the glass substrate and the polyimide film.
  • the laminated body including the polyimide film expands in the TFT formation process at a high temperature and then shrinks when cooled to room temperature.
  • the internal stress between the polyimide film and the glass substrate is preferably 40 MPa or less, more preferably 35 MPa or less, still more preferably 30 MPa or less, and even more preferably 25 MPa or less.
  • the method for measuring the internal stress is the same method as in Examples described later or a method based thereon.
  • the polyimide film may peel off during the formation of the electronic device, or the yield may decrease when the polyimide film is peeled off after the electronic device is formed.
  • floating refers to the adhesion between the polyimide film and other material layers (more specifically, glass substrates, barrier films, etc.) due to secondary components and residual solvents generated during imidization. Refers to a state in which a defect has occurred.
  • floating include a state in which the polyimide film is lifted from the glass substrate, a state in which a portion of the polyimide film is destroyed and delamination occurs between the polyimide film and another material layer, and a barrier from the polyimide film. A state in which the film is lifted may be mentioned.
  • a polyimide film obtained from a polyamic acid having BPDA residues and BAAB residues has densely packed molecular chains and poor outgassing properties. is likely to occur.
  • polyamic acid having a BPAF residue or an SFDA residue can achieve both good outgassing properties and a high glass transition temperature due to its bulky structure.
  • the polyimide according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates.
  • an electronic device (more specifically, an electronic device having electronic elements formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled off from the support. often adopted.
  • alkali-free glass is preferably used as the material of the support.
  • the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coated film-containing laminate comprising a coated film containing polyamic acid (1) and the support.
  • the coated film-containing layered product is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower.
  • the heating time at this time is, for example, 3 minutes or more and 120 minutes or less.
  • a multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes.
  • the coating film-containing laminate is heated, for example, at a maximum temperature of 200° C. or higher and 500° C. or lower.
  • the heating time (heating time at the maximum temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from the low temperature to the maximum temperature.
  • the heating rate is preferably 2° C./min or more and 10° C./min or less, more preferably 4° C./min or more and 10° C./min or less.
  • the maximum temperature is preferably in the range of 250° C. or higher and 450° C. or lower. When the maximum temperature is 250° C.
  • imidization proceeds sufficiently, and when the maximum temperature is 450° C. or lower, thermal deterioration and coloration of the polyimide can be suppressed. Also, any temperature may be maintained for any length of time until the maximum temperature is reached.
  • the imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to develop higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. is preferred.
  • the heating device known devices such as a hot air oven, an infrared oven, a vacuum oven, an inert oven, and a hot plate can be used.
  • Polyamic acid (1) in the coating film is imidized through these steps, and a laminate of a support and a polyimide film (a film containing an imidized product of polyamic acid (1)) (that is, according to the present embodiment) laminate) can be obtained.
  • a known method can be used to peel off the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a driving roll or a robot. Furthermore, a method of providing a peeling layer between a support and a polyimide film, a method of forming a silicon oxide film on a support having a large number of grooves, forming a polyimide film using the silicon oxide film as a base layer, and forming a polyimide film on the support It is also possible to adopt a method of exfoliating the polyimide film by infiltrating a silicon oxide etchant between the film and the silicon oxide film. Alternatively, a method of separating the polyimide film by laser light irradiation may be employed.
  • the transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000.
  • the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more.
  • the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0%. It is more preferably below, and may be 0%.
  • Haze can be adjusted, for example, by changing the content of TFMB residues in polyamic acid (1).
  • polyimide films are required to have high transmittance over the entire wavelength range. often colored.
  • the polyimide film is less colored.
  • the yellowness index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It can be 0. YI can be measured according to JIS K7373-2006.
  • the polyimide film with reduced coloration and imparted with transparency is suitable for transparent substrates such as glass substitutes, and substrates on which a sensor or camera module is provided on the back surface.
  • the transmittance of blue light (light near the wavelength of 470 nm) is high. is required to have high light transmittance (400 nm transmittance).
  • the 400 nm transmittance of the polyimide film is preferably 40% or more, more preferably 45% or more.
  • the upper limit of the 400 nm transmittance of the polyimide film is not particularly limited, and may be 100%.
  • the top emission method in which light is extracted from the front surface of the TFT
  • the bottom emission method in which light is extracted from the back surface of the TFT.
  • the top-emission method is easy to increase the aperture ratio because the light is not blocked by the TFT, and high-definition image quality can be obtained. Characteristic. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency to adopt the bottom emission method, which is easy to manufacture, for large displays. Since the polyimide film according to this embodiment has a low YI and excellent heat resistance, it can be applied to either of the above light extraction methods.
  • a polyamic acid composition is applied to a support such as a glass substrate, heated to imidize, an electronic element or the like is formed, and then the polyimide film is peeled off, the support and the like are used.
  • Adhesion means adhesion strength.
  • the manufacturing process of peeling off the polyimide film on which the electronic elements and the like are formed from the support after forming the electronic elements on the polyimide film on the support if the adhesion between the polyimide film and the support is excellent, the electronic element etc. can be formed or implemented more accurately.
  • the peel strength between the support and the polyimide film should be as high as possible from the viewpoint of improving productivity.
  • the peel strength is preferably 0.05 N/cm or more, more preferably 0.1 N/cm or more.
  • the polyimide film when peeling the polyimide film from the laminate of the support and the polyimide film, the polyimide film is often peeled off from the support by laser irradiation.
  • the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or longer, more preferably 330 nm or longer.
  • the cutoff wavelength of the polyimide film is preferably 390 nm or less.
  • the cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, more preferably 330 nm or more and 380 nm or less, from the viewpoint of achieving both transparency (low degree of yellowness) and workability of laser peeling.
  • the term "cutoff wavelength" as used herein means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
  • the polyamic acid composition and polyimide according to the present embodiment may be used as they are for coating and molding processes for producing products and members, but the molded product molded in the form of a film is further subjected to coating and other treatments. It can also be used as a material for For use in coating or molding processes, the polyamic acid composition or polyimide, optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, a non-polymeric binder, A composition comprising polyamic acid (1) or polyimide may be prepared by blending the resin and other ingredients.
  • inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film according to this embodiment.
  • the method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering, vacuum deposition, and ion plating, and CVD methods.
  • the polyimide film according to the present embodiment In addition to heat resistance, low thermal expansion, and transparency, the polyimide film according to the present embodiment generates little internal stress when forming a laminate with a glass substrate, ensuring adhesion with inorganic materials during high-temperature processes. Therefore, it is preferably used in fields and products where these properties are useful.
  • the polyimide film according to the present embodiment can be used for liquid crystal display devices, organic EL devices, image display devices such as electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like. It is more preferable to use it as a substitute material for parts where glass is currently used.
  • the thickness of the polyimide film is, for example, 1 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the polyimide film can be measured using a laser hologram.
  • the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, imidizing it by heating, forming an electronic element or the like, and then peeling off the polyimide film for batch-type device fabrication. It can be suitably used for the process. Therefore, in the present embodiment, the production of an electronic device including the step of applying a polyamic acid composition on a support, imidizing it by heating, and forming an electronic element or the like on a polyimide film formed on the support A method is also included. Moreover, the method for producing such an electronic device may further include a step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
  • Total light transmittance (TT) For the polyimide film peeled from each laminate obtained in Examples and Comparative Examples described later, using an integrating sphere haze meter ("HM-150N” manufactured by Murakami Color Research Laboratory Co., Ltd.), JIS K7361-1: 1997 Total light transmittance (TT) was measured by the method described in .
  • TD1 1% weight loss temperature
  • Glass transition temperature (Tg) A polyimide film having a width of 3 mm and a length of 10 mm was sampled from each laminate obtained in Examples and Comparative Examples, which will be described later, and used as a sample for Tg measurement. Using a thermal analysis device ("TMA/SS7100" manufactured by Hitachi High-Tech Science), a load of 98.0 mN was applied to the sample, the temperature was raised from 20 ° C. to 470 ° C. at 10 ° C./min, and the temperature and strain amount (elongation ) to obtain the TMA curve. The temperature at the inflection point of the obtained TMA curve (the temperature corresponding to the peak in the differential curve of the TMA curve) was defined as the glass transition temperature (Tg).
  • TMA/SS7100 manufactured by Hitachi High-Tech Science
  • NMP N-methyl-2-pyrrolidone
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BPDA 3,3',4,4'-biphenyltetracarboxylic acid
  • ODPA 4,4'-oxydiphthalic anhydride
  • DODA 4,4'-dioxydiphthalic anhydride
  • SFDA spiro[11H - diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7,9-tetrone
  • TFMB 2,2′-bis(trifluoro methyl)benzidine
  • BAAB 4-aminophenyl-4-aminobenzoate
  • BAFL 9,9-bis(4-aminophenyl)
  • Example 1 A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 40.0 g of NMP as an organic solvent for polymerization. 5.272 g of TFMB was then added to the flask and dissolved while stirring the flask contents. After adding 3.973 g of NTCDA and 0.755 g of BPAF to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25° C. to obtain a polyamic acid composition.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 1) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Example 2 A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 40.0 g of NMP as an organic solvent for polymerization. 5.272 g of TFMB was then added to the flask and dissolved while stirring the flask contents. After adding 3.973 g of NTCDA and 0.755 g of BPAF to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25°C. Then, TPPi as a plasticizer was added to the contents of the flask to obtain a polyamic acid composition.
  • the amount of TPPi added was 1 part by weight per 100 parts by weight of polyamic acid in the contents of the flask.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 2) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Examples 3 to 30 and Comparative Examples 1 to 7 Examples 3 to 6 and 8 were prepared in the same manner as in Example 1 except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Tables 3 and 4. , 10 to 27 and 29, and laminates of Comparative Examples 1 to 7, respectively.
  • the same method as in Example 2 except that the acid dianhydride used and its charging ratio, the diamine used and its charging ratio, and the type of plasticizer were as shown in Tables 3 and 4, Laminates of Examples 7, 9, 28 and 30 were obtained, respectively.
  • the total substance amount of the acid dianhydride when preparing the polyamic acid composition was the same as in Examples 1 and 2.
  • the total substance amount of diamines in preparing polyamic acid compositions was the same as in Examples 1 and 2.
  • Tables 3 and 4 show the monomers and plasticizers used for Examples 1 to 30 and Comparative Examples 1 to 7, respectively.
  • "-" means that the component was not used.
  • the numerical values in the "acid dianhydride” column are the content of each acid dianhydride relative to the total amount of acid dianhydride used (unit: mol %).
  • the numerical values in the "diamine” column are the content of each diamine relative to the total amount of diamines used (unit: mol %).
  • the numerical value in the "Plasticizer” column is the amount of plasticizer (unit: parts by weight) per 100 parts by weight of polyamic acid. Further, in all of Examples 1 to 30 and Comparative Examples 1 to 7, the molar fraction of each residue of polyamic acid in the prepared polyamic acid composition was different from each monomer (diamine and tetracarboxylic dianhydride).
  • Table 5 shows the average level difference and physical property measurement results for Examples 1 to 30 and Comparative Examples 1 to 7. In Table 5, "-" means not measured.
  • the polyamic acid in the polyamic acid composition prepared in Examples 1 to 30 contains one or more residues selected from the group consisting of BPDA residues, BPAF residues, ODPA residues and SFDA residues, and NTCDA residues and TFMB residues.
  • the content of NTCDA residues was 5 mol% or more and 90 mol% or less with respect to the total amount of tetracarboxylic dianhydride residues. rice field.
  • the content of TFMB residues was 50 mol% or more based on the total amount of diamine residues.
  • Examples 1 to 30 the 400 nm transmittance was 40% or more. Therefore, the polyimides obtained in Examples 1 to 30 had high transmittance for light with a wavelength of 400 nm. In Examples 1-30, TD1 was above 500°C. Therefore, the polyimides obtained in Examples 1 to 30 were excellent in heat resistance.
  • the content of NTCDA residues in the polyamic acid composition prepared in Comparative Example 1 exceeded 90 mol% relative to the total amount of tetracarboxylic dianhydride residues.
  • the polyamic acids in the polyamic acid compositions prepared in Comparative Examples 2, 4, 6 and 7 did not have NTCDA residues.
  • the polyamic acids in the polyamic acid compositions prepared in Comparative Examples 3 and 5 had a content of TFMB residues of less than 50 mol % with respect to the total amount of diamine residues.
  • Comparative Examples 1 to 7 As shown in Table 5, in Comparative Examples 1 to 7, the 400 nm transmittance was less than 40%. Therefore, the polyimides obtained in Comparative Examples 1 to 7 did not have high transmittance for light with a wavelength of 400 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリアミド酸は、テトラカルボン酸二無水物残基及びジアミン残基を有する。テトラカルボン酸二無水物残基は、3,3',4,4'-ビフェニルテトラカルボン酸二無水物残基、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基、4,4'-オキシジフタル酸無水物残基、及びスピロ[11H-ジフロ[3,4-b:3',4'-i]キサンテン-11,9'-[9H]フルオレン]-1,3,7,9-テトロン残基からなる群より選択される一種以上の残基と、2,3,6,7-ナフタレンテトラカルボン酸二無水物残基とを含む。ジアミン残基は、2,2'-ビス(トリフルオロメチル)ベンジジン残基を含む。2,3,6,7-ナフタレンテトラカルボン酸二無水物残基の含有率が5モル%以上90モル%以下である。2,2'-ビス(トリフルオロメチル)ベンジジン残基の含有率が50モル%以上である。

Description

ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
 本発明は、ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイスに関する。本発明は、更に、ポリイミドを用いた電子デバイス材料、薄膜トランジスタ(TFT)基板、フレキシブルディスプレイ基板、カラーフィルター、印刷物、光学材料、画像表示装置(より具体的には、液晶表示装置、有機EL、電子ペーパー等)、3Dディスプレイ、太陽電池、タッチパネル、透明導電膜基板、及び現在ガラスが使用されている部材の代替材料に関する。
 液晶ディスプレイ、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、フレキシブル化が進んでいる。これらのデバイスではガラス基板に代えてポリイミドが基板材料として用いられている。
 これらのデバイスでは、基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されており、これらの電子素子の形成には高温プロセスが必要である。ポリイミドは、高温プロセスに適応できるだけの十分な耐熱性を有しており、熱膨張係数(CTE)もガラス基板や電子素子と近いため、内部応力が生じにくく、フレキシブルディスプレイ等の基板材料に好適である。
 一般的に芳香族ポリイミドは分子内共役や電荷移動(CT)錯体の形成により黄褐色に着色しているが、トップエミッション型の有機EL等では、基板の反対側から光を取り出すため、基板に透明性は求められず、従前の芳香族ポリイミドが用いられてきた。しかし、透明ディスプレイやボトムエミッション型の有機EL、液晶ディスプレイのように表示素子から発せられる光が基板を通って出射されるような場合や、スマートフォン等を全面ディスプレイ(ノッチレス)にするためにセンサーやカメラモジュールを基板の背面に配置する場合には、基板にも高い光学特性(より具体的には、透明性等)が求められるようになってきた。
 このような背景から、既存の芳香族ポリイミドと同等の耐熱性を有しつつ、着色が低減され、透明性に優れる材料が求められている。
 ポリイミドの着色を低減させるために、脂肪族系モノマーを用いてCT錯体の形成を抑える技術(特許文献1及び2)、及びフッ素原子を有するモノマーを用いることで透明性を高める技術(特許文献3)が知られている。また、低CTEのポリイミドを得るために、平面性の高いナフタレン骨格を有するポリイミドが検討されている(特許文献4)。
特開2016-29177号公報 特開2012-41530号公報 特開2014-70139号公報 国際公開第2016/166961号
 特許文献1及び2に記載のポリイミドは、透明性が高く、CTEも低いが、脂肪族構造を有するため熱分解温度が低く、電子素子を形成する際の高温プロセスに適用することは難しい。
 また、透明性が求められる用途においては、色再現性等の観点から、特に青色光(波長470nm付近の光)の透過率が高いことが求められ、実用的には波長400nmの光の透過率が高いことが求められる。本発明者の検討により、特許文献3及び4に記載のポリイミドは、波長400nmの光の透過率が比較的低いことが判明した。
 特許文献1~4に記載の技術では、耐熱性に優れつつ、波長400nmの光の透過率が高いポリイミドを得ることは難しい。
 本発明は、上記実情に鑑みて成し遂げられたものであり、耐熱性に優れつつ、波長400nmの光の透過率が高いポリイミド及びその前駆体としてのポリアミド酸を提供することを目的とする。更に、当該ポリイミド及びポリアミド酸を用いて製造された、耐熱性及び透明性が要求される製品又は部材を提供することも目的とする。特に、本発明のポリイミド膜が、ガラス、金属、金属酸化物、単結晶シリコン等の無機物表面に形成された製品又は部材を提供することを目的とする。
<本発明の態様>
 本発明には、以下の態様が含まれる。
[1]テトラカルボン酸二無水物残基及びジアミン残基を有するポリアミド酸であって、
 前記テトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基、4,4’-オキシジフタル酸無水物残基、及びスピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン残基からなる群より選択される一種以上の残基と、2,3,6,7-ナフタレンテトラカルボン酸二無水物残基とを含み、
 前記ジアミン残基は、2,2’-ビス(トリフルオロメチル)ベンジジン残基を含み、
 前記2,3,6,7-ナフタレンテトラカルボン酸二無水物残基の含有率が、前記テトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下であり、
 前記2,2’-ビス(トリフルオロメチル)ベンジジン残基の含有率が、前記ジアミン残基の全量に対して、50モル%以上である、ポリアミド酸。
[2]前記ジアミン残基が前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基を含む場合、前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基は、最高被占軌道準位が-5.20eV以下のジアミン由来の残基である、前記[1]に記載のポリアミド酸。
[3]前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基は、4-アミノフェニル-4-アミノベンゾエート残基、9,9-ビス(4-アミノフェニル)フルオレン残基、及び2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル残基からなる群より選択される一種以上の残基である、前記[2]に記載のポリアミド酸。
[4]前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基の含有率が、前記ジアミン残基の全量に対して、1モル%以上50モル%以下である、前記[2]又は[3]に記載のポリアミド酸。
[5]前記3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基の含有率が、前記テトラカルボン酸二無水物残基の全量に対して、30モル%以上50モル%以下である、前記[4]に記載のポリアミド酸。
[6]前記テトラカルボン酸二無水物残基を形成するテトラカルボン酸二無水物の最低空軌道準位の平均値と、前記ジアミン残基を形成するジアミンの最高被占軌道準位の平均値との差が、2.25eV以上である、前記[1]~[5]のいずれか一つに記載のポリアミド酸。
[7]前記[1]~[6]のいずれか一つに記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。
[8]更に可塑剤を含有する、前記[7]に記載のポリアミド酸組成物。
[9]前記可塑剤の量が、前記ポリアミド酸100重量部に対して、0.001重量部以上10重量部以下である、前記[8]に記載のポリアミド酸組成物。
[10]前記可塑剤がリンを含む、前記[8]又は[9]に記載のポリアミド酸組成物。
[11]前記[1]~[6]のいずれか一つに記載のポリアミド酸のイミド化物であるポリイミド。
[12]1%重量減少温度が500℃以上である、前記[11]に記載のポリイミド。
[13]前記[11]又は[12]に記載のポリイミドを含むポリイミド膜。
[14]波長400nmの光の透過率が40%以上である、前記[13]に記載のポリイミド膜。
[15]ヘイズが1.0%以下である、前記[13]又は[14]に記載のポリイミド膜。
[16]支持体と、前記[13]~[15]のいずれか一つに記載のポリイミド膜とを有する積層体。
[17]支持体とポリイミド膜とを有する積層体の製造方法であって、
 前記[7]~[10]のいずれか一つに記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
[18]前記[13]~[15]のいずれか一つに記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。
 本発明に係るポリアミド酸を用いて製造されるポリイミドは、耐熱性に優れつつ、波長400nmの光の透過率が高い。そのため、本発明に係るポリアミド酸を用いて製造されるポリイミドは、耐熱性及び透明性が要求される電子デバイスの材料として好適である。
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。
 まず、本明細書中で使用される用語について説明する。「構造単位」とは、重合体を構成する繰り返し単位のことをいう。「ポリアミド酸」は、下記一般式(1)で表される構造単位(以下、「構造単位(1)」と記載することがある)を含む重合体である。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Aは、テトラカルボン酸二無水物残基(テトラカルボン酸二無水物由来の4価の有機基)を表し、Aは、ジアミン残基(ジアミン由来の2価の有機基)を表す。
 ポリアミド酸を構成する全構造単位に対する構造単位(1)の含有率は、例えば50モル%以上100モル%以下であり、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上100モル%以下であり、更に好ましくは80モル%以上100モル%以下であり、更により好ましくは90モル%以上100モル%以下であり、100モル%であってもよい。
 「1%重量減少温度」は、測定温度150℃におけるポリイミドの重量を基準(100重量%)とし、上記基準の重量に対して1重量%減少した際の測定温度である。1%重量減少温度の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。
 「可塑剤」とは、ポリアミド酸の少なくとも一部のイミド化時に液体で存在する材料をさす。
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。また、テトラカルボン酸二無水物を「酸二無水物」と記載することがある。また、本明細書に例示の成分や官能基等は、特記しない限り、単独で用いてもよく、二種以上を併用してもよい。
<本発明の好適な実施形態>
 本実施形態に係るポリアミド酸(以下、「ポリアミド酸(1)」と記載することがある)は、テトラカルボン酸二無水物残基及びジアミン残基を有する。
 ポリアミド酸(1)において、テトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基、4,4’-オキシジフタル酸無水物残基、及びスピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン残基からなる群より選択される一種以上の残基と、2,3,6,7-ナフタレンテトラカルボン酸二無水物残基とを含む。つまり、ポリアミド酸(1)は、テトラカルボン酸二無水物残基として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基、4,4’-オキシジフタル酸無水物残基、及びスピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン残基からなる群より選択される一種以上の残基と、2,3,6,7-ナフタレンテトラカルボン酸二無水物残基とを含む。
 また、ポリアミド酸(1)において、ジアミン残基は、2,2’-ビス(トリフルオロメチル)ベンジジン残基を含む。つまり、ポリアミド酸(1)は、ジアミン残基として、2,2’-ビス(トリフルオロメチル)ベンジジン残基を含む。
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と記載することがある)由来の部分構造である。9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基は、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(以下、「BPAF」と記載することがある)由来の部分構造である。4,4’-オキシジフタル酸無水物残基は、4,4’-オキシジフタル酸無水物(以下、「ODPA」と記載することがある)由来の部分構造である。スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン残基は、スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン(以下、「SFDA」と記載することがある)由来の部分構造である。2,3,6,7-ナフタレンテトラカルボン酸二無水物残基は、2,3,6,7-ナフタレンテトラカルボン酸二無水物(以下、「NTCDA」と記載することがある)由来の部分構造である。2,2’-ビス(トリフルオロメチル)ベンジジン残基は、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、「TFMB」と記載することがある)由来の部分構造である。なお、SFDA残基は、下記化学式(2)で表される4価の有機基である。
Figure JPOXMLDOC01-appb-C000002
 また、ポリアミド酸(1)において、NTCDA残基の含有率は、テトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下である。更に、ポリアミド酸(1)において、TFMB残基の含有率は、ジアミン残基の全量に対して、50モル%以上である。
 一般に、NTCDA残基とTFMB残基とを有するポリアミド酸から得られるポリイミドは、それらの剛直な構造に由来して、1%重量減少温度(TD1)が高く(耐熱性に優れ)、CTEが低い上、支持体上にポリイミド膜を形成して積層体を得る際に発生する内部応力(以下、単に「内部応力」と記載することがある)を低減できる。NTCDAを酸二無水物モノマーとして使用したポリイミドは、ピロメリット酸二無水物を酸二無水物モノマーとして使用したポリイミドに比べ、波長400nmの光の透過率(以下、「400nm透過率」と記載することがある)が高くなる傾向がある。しかし、テトラカルボン酸二無水物残基としてNTCDA残基のみを有し、かつジアミン残基としてTFMB残基のみを有するポリアミド酸から得られるポリイミドの400nm透過率は、高い透明性が要求される用途としては不十分である。
 本発明者は、鋭意検討した結果、BPDA残基、BPAF残基、ODPA残基及びSFDA残基からなる群より選択される一種以上の残基(以下、「特定酸二無水物残基」と記載することがある)と、NTCDA残基と、TFMB残基とを有し、かつNTCDA残基及びTFMB残基の含有率が特定範囲のポリアミド酸(ポリアミド酸(1))から得られるポリイミドが、耐熱性に優れつつ、400nm透過率が高くなることを見いだした。具体的には、ポリアミド酸(1)では、NTCDA残基の含有率が、テトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下であり、TFMB残基の含有率が、ジアミン残基の全量に対して、50モル%以上である。
 ガラス転移温度(Tg)を高めることにより耐熱性に優れるポリイミドを得るためには、NTCDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、10モル%以上であることが好ましく、15モル%以上であることがより好ましく、20モル%以上であることが更に好ましい。また、内部応力を低減できるポリイミドを得るためには、NTCDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、85モル%以下であることが好ましく、80モル%以下であることがより好ましい。
 耐熱性に優れつつ、400nm透過率がより高いポリイミドを得るためには、特定酸二無水物残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、10モル%以上95モル%以下であることが好ましく、10モル%以上90モル%以下であることがより好ましく、10モル%以上80モル%以下であることが更に好ましい。なお、ポリアミド酸(1)が特定酸二無水物残基を複数種有する場合、「特定酸二無水物残基の含有率」とは、複数種の特定酸二無水物残基の合計含有率を表す。
 耐熱性により優れるポリイミドを得るためには、特定酸二無水物残基としては、BPDA残基が好ましい。透明性により優れるポリイミドを得るためには、特定酸二無水物残基としては、BPAF残基、ODPA残基及びSFDA残基からなる群より選ばれる一種以上の残基が好ましい。
 400nm透過率がより高いポリイミドを得るためには、特定酸二無水物残基としては、BPAF残基及びSFDA残基からなる群より選ばれる一種以上の残基が好ましい。また、400nm透過率がより高いポリイミドを得るためには、BPAF残基及びSFDA残基からなる群より選ばれる一種以上の残基の含有率(BPAF残基及びSFDA残基の両方を有する場合は、それらの合計含有率)が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、10モル%以上50モル%以下であることが好ましく、20モル%以上50モル%以下であることがより好ましく、30モル%以上50モル%以下であることが更に好ましい。
 ポリアミド酸(1)がBPDA残基を有する場合、透明性を高めつつ、耐熱性により優れるポリイミドを得るためには、BPDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下であることが好ましく、5モル%以上70モル%以下であることがより好ましく、5モル%以上50モル%以下であることが更に好ましい。
 ポリアミド酸(1)がBPAF残基を有する場合、耐熱性を高めつつ、透明性により優れるポリイミドを得るためには、BPAF残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、1モル%以上50モル%以下であることが好ましく、1モル%以上40モル%以下であることがより好ましく、1モル%以上30モル%以下であることが更に好ましい。
 ポリアミド酸(1)がODPA残基を有する場合、耐熱性を高めつつ、透明性により優れるポリイミドを得るためには、ODPA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、5モル%以上30モル%以下であることが好ましく、5モル%以上20モル%以下であることがより好ましく、5モル%以上10モル%以下であることが更に好ましい。
 ポリアミド酸(1)がSFDA残基を有する場合、耐熱性を高めつつ、透明性により優れるポリイミドを得るためには、SFDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、1モル%以上50モル%以下であることが好ましく、1モル%以上40モル%以下であることがより好ましく、1モル%以上30モル%以下であることが更に好ましい。
 耐熱性により優れつつ、400nm透過率がより高いポリイミドを得るためには、TFMB残基の含有率が、ポリアミド酸(1)を構成するジアミン残基の全量に対して、55モル%以上であることが好ましく、60モル%以上であることがより好ましく、65モル%以上であることが更に好ましく、70モル%以上であることが更により好ましく、75モル%以上、80モル%以上、85モル%以上、90モル%以上、95モル%以上又は100モル%であってもよい。
 ポリアミド酸(1)を合成する際は、その性能を損なわない範囲で、NTCDA及び特定酸二無水物以外の酸二無水物をモノマーとして用いてもよい。NTCDA及び特定酸二無水物以外の酸二無水物としては、例えば、ピロメリット酸二無水物、p-フェニレンビス(トリメリテート無水物)、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-ジオキシジフタル酸無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、2’-オキソジスピロ[ビシクロ[2.2.1]ヘプタン-2,1’-シクロペンタン-3’,2’’-ビシクロ[2.2.1]ヘプタン]-5,6:5’’,6’’-テトラカルボン酸二無水物及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。
 耐熱性により優れつつ、400nm透過率がより高いポリイミドを得るためには、NTCDA残基及び特定酸二無水物残基の合計含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、70モル%以上であることが好ましく、75モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、85モル%以上であることが更により好ましく、90モル%以上、95モル%以上又は100モル%であってもよい。
 ポリアミド酸(1)を合成する際は、その性能を損なわない範囲で、TFMB以外のジアミンをモノマーとして用いてもよい。TFMB以外のジアミンとしては、例えば、p-フェニレンジアミン、4-アミノフェニル-4-アミノベンゾエート(以下、「BAAB」と記載することがある)、9,9-ビス(4-アミノフェニル)フルオレン(以下、「BAFL」と記載することがある)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(以下、「6FODA」と記載することがある)、1,4-シクロヘキサンジアミン、4,4’-ジアミノベンズアニリド、m-フェニレンジアミン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ジアミノジフェニルスルホン、m-トリジン、o-トリジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、3,5-ジアミノ安息香酸、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、4,4’-メチレンビス(シクロヘキサンアミン)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。
 ポリアミド酸(1)が、TFMB残基とは異なるジアミン残基(以下、「任意ジアミン残基」と記載することがある)を有する場合、400nm透過率がより高いポリイミドを得るためには、任意ジアミン残基としては、最高被占軌道準位(以下、「HOMO」と記載することがある)が、-5.20eV以下のジアミン由来の残基が好ましく、-5.30eV以下のジアミン由来の残基がより好ましく、-5.40eV以下のジアミン由来の残基が更に好ましく、-5.50eV以下のジアミン由来の残基が更により好ましい。また、ポリアミド酸(1)が任意ジアミン残基を有する場合、400nm透過率が更に高いポリイミドを得るためには、ポリアミド酸(1)が、任意ジアミン残基として、HOMOが-5.20eV以下のジアミン由来の残基のみを有することが好ましい。ポリアミド酸(1)を合成する際のモノマーの反応性を高めるためには、任意ジアミン残基としては、HOMOが-6.20eV以上のジアミン由来の残基が好ましい。
 HOMOが-5.20eV以下のジアミン由来の残基としては、例えば、BAAB残基、BAFL残基、6FODA残基等が挙げられる。つまり、ポリアミド酸(1)が任意ジアミン残基を有する場合、400nm透過率がより高いポリイミドを得るためには、任意ジアミン残基としては、BAAB残基、BAFL残基及び6FODA残基からなる群より選ばれる一種以上の残基が好ましい。また、ポリアミド酸(1)が任意ジアミン残基を有する場合、400nm透過率が更に高いポリイミドを得るためには、ポリアミド酸(1)が、任意ジアミン残基として、BAAB残基、BAFL残基及び6FODA残基からなる群より選ばれる一種以上の残基のみを有することが好ましい。
 ポリアミド酸(1)が任意ジアミン残基を有する場合、耐熱性に優れつつ、400nm透過率がより高いポリイミドを得るためには、任意ジアミン残基の含有率(任意ジアミン残基を複数種有する場合は、合計含有率)が、ポリアミド酸(1)を構成するジアミン残基の全量に対して、1モル%以上50モル%以下であることが好ましく、1モル%以上40モル%以下であることがより好ましく、1モル%以上30モル%以下であることが更に好ましく、1モル%以上20モル%以下であることが更により好ましく、1モル%以上15モル%以下又は5モル%以上15モル%以下であってもよい。
 ポリアミド酸(1)が任意ジアミン残基を有し、かつ任意ジアミン残基の含有率(任意ジアミン残基を複数種有する場合は、合計含有率)が、ポリアミド酸(1)を構成するジアミン残基の全量に対して1モル%以上50モル%以下である場合、耐熱性により優れるポリイミドを得るためには、BPDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して30モル%以上50モル%以下であることが好ましい。
 400nm透過率がより高いポリイミドを得るためには、ポリアミド酸(1)中のテトラカルボン酸二無水物残基を形成するテトラカルボン酸二無水物の最低空軌道準位(以下、「LUMO」と記載することがある)の平均値と、ポリアミド酸(1)中のジアミン残基を形成するジアミンのHOMOの平均値との差(以下、「平均準位差」と記載することがある)が、2.25eV以上であることが好ましく、2.30eV以上であることがより好ましく、2.35eV以上であることが更に好ましく、2.40eV以上であってもよい。なお、上記テトラカルボン酸二無水物のLUMO及びジアミンのHOMOは、いずれも密度汎関数法(DFT)により算出された値である。また、平均準位差は、式「平均準位差=テトラカルボン酸二無水物のLUMOの平均値-ジアミンのHOMOの平均値」に従って算出される値である。
 「テトラカルボン酸二無水物のLUMOの平均値」は、NTCDAのLUMOにNTCDAのモル分率を乗じた数値と、特定酸二無水物のLUMOに特定酸二無水物のモル分率を乗じた数値(複数種の特定酸二無水物を使用した場合は、各々の数値)と、必要に応じて使用する他の酸二無水物のLUMOに他の酸二無水物のモル分率を乗じた数値(複数種の他の酸二無水物を使用した場合は、各々の数値)とを合計した値である。例えば、後述する実施例1の場合、NTCDA(LUMO:-3.80eV)を90モル%使用し、特定酸二無水物であるBPAF(LUMO:-3.19eV)を10モル%使用しているため、実施例1で使用したテトラカルボン酸二無水物のLUMOの平均値は、(-3.80)×0.9+(-3.19)×0.1=-3.739eVとなる。「ジアミンのHOMOの平均値」についても、上記「テトラカルボン酸二無水物のLUMOの平均値」の算出方法と同様の方法で算出する。
 ポリアミド酸(1)を合成する際のモノマーの反応性を高めるためには、上記平均準位差が、2.80eV以下であることが好ましく、2.70eV以下であることがより好ましく、2.60eV以下であることが更に好ましい。
 耐熱性に更に優れつつ、波長400nmの光の透過率が更に高いポリイミドを得るためには、ポリアミド酸(1)は、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましい。
 条件1:NTCDA残基の含有率が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して10モル%以上90モル%以下であり、かつTFMB残基の含有率が、ポリアミド酸(1)を構成するジアミン残基の全量に対して90モル%以上100モル%以下である。
 条件2:上記条件1を満たし、かつ特定酸二無水物残基が、BPAF残基及びSFDA残基からなる群より選ばれる一種以上の残基である。
 条件3:上記条件2を満たし、かつBPAF残基及びSFDA残基からなる群より選ばれる一種以上の残基の含有率(BPAF残基及びSFDA残基の両方を有する場合は、それらの合計含有率)が、ポリアミド酸(1)を構成するテトラカルボン酸二無水物残基の全量に対して、10モル%以上50モル%以下である。
 ポリアミド酸(1)は、公知の一般的な方法にて合成することができ、例えば、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得ることができる。ポリアミド酸(1)の具体的な合成方法の一例について説明する。まず、アルゴン、窒素等の不活性ガス雰囲気中において、ジアミンを、有機溶媒中に溶解又はスラリー状に分散させて、ジアミン溶液を調製する。そして、テトラカルボン酸二無水物を、有機溶媒に溶解又はスラリー状に分散させた状態とした後、あるいは固体の状態で、上記ジアミン溶液中に添加する。
 ジアミンとテトラカルボン酸二無水物とを用いてポリアミド酸を合成する場合、ジアミンの物質量(ジアミンを複数種使用する場合は、各ジアミンの物質量)と、テトラカルボン酸二無水物の物質量(テトラカルボン酸二無水物を複数種使用する場合は、各テトラカルボン酸二無水物の物質量)とを調整することで、所望のポリアミド酸(ジアミンとテトラカルボン酸二無水物との重合体)を得ることができる。ポリアミド酸(1)中の各残基のモル分率は、例えば、ポリアミド酸(1)の合成に使用する各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致する。また、二種のポリアミド酸をブレンドすることによって、複数種のテトラカルボン酸二無水物残基及び複数種のジアミン残基を含有するポリアミド酸(1)を得ることもできる。ジアミンとテトラカルボン酸二無水物との反応、即ち、ポリアミド酸(1)の合成反応の温度条件は、特に限定されないが、例えば20℃以上150℃以下の範囲である。ポリアミド酸(1)の合成反応の反応時間は、例えば10分以上30時間以下の範囲である。
 ポリアミド酸(1)の合成に使用する有機溶媒は、使用するテトラカルボン酸二無水物及びジアミンを溶解可能な溶媒が好ましく、生成するポリアミド酸(1)を溶解可能な溶媒がより好ましい。ポリアミド酸(1)の合成に使用する有機溶媒としては、例えば、テトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア系溶媒;ジメチルスルホキシドのようなスルホキシド系溶媒;ジフェニルスルホン、テトラメチルスルホンのようなスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、3-メトキシ-N,N-ジメチルプロパンアミド(MPA)、ヘキサメチルリン酸トリアミド等のアミド系溶媒;γ-ブチロラクトン等のエステル系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて二種以上を適宜組み合わせて用いてもよい。ポリアミド酸(1)の溶解性及び反応性を高めるためには、ポリアミド酸(1)の合成反応に使用する有機溶媒としては、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。また、ポリアミド酸(1)の合成反応は、アルゴンや窒素等の不活性ガス雰囲気下で行うことが好ましい。
 ポリアミド酸(1)の重量平均分子量は、その用途にもよるが、10,000以上1,000,000以下の範囲であることが好ましく、20,000以上500,000以下の範囲であることがより好ましく、30,000以上200,000以下の範囲であることが更に好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸(1)、又はポリアミド酸(1)を用いて得られるポリイミドを、塗布膜又はポリイミド膜(フィルム)とすることが容易となる。一方、重量平均分子量が1,000,000以下であると、溶媒に対して十分な溶解性を示すため、後述するポリアミド酸組成物を用いて表面が平滑で厚みが均一な塗布膜又はポリイミド膜が得られる。ここで用いている重量平均分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)を用いて測定したポリエチレンオキシド換算値のことをいう。
 また、ポリアミド酸(1)の分子量を制御する方法として、酸二無水物とジアミンのどちらかを過剰にする方法や、フタル酸無水物やアニリンのような一官能性の酸無水物やアミンと反応させることで反応をクエンチさせる方法が挙げられる。酸二無水物とジアミンのどちらかを過剰にして重合する場合、これらの仕込みモル比が0.95から1.05の間であれば、十分な強度を有するポリイミド膜を得ることができる。なお、上記仕込みモル比は、ポリアミド酸(1)の合成に使用した酸二無水物の合計物質量に対する、ポリアミド酸(1)の合成に使用したジアミンの合計物質量の比(ジアミンの合計物質量/酸二無水物の合計物質量)である。また、フタル酸無水物、マレイン酸無水物、アニリン等で末端封止することで、ポリアミド酸(1)を用いて得られるポリイミドの着色をより低減することもできる。
 本実施形態に係るポリアミド酸組成物は、ポリアミド酸(1)と、有機溶媒とを含有する。本実施形態に係るポリアミド酸組成物に含まれる有機溶媒としては、上記ポリアミド酸(1)の合成反応に使用可能な有機溶媒として例示した有機溶媒を挙げることができ、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。上述した方法でポリアミド酸(1)を得た場合、反応溶液(反応後の溶液)自体を本実施形態に係るポリアミド酸組成物としてもよい。また、反応溶液から溶媒を除去して得られた固体のポリアミド酸(1)を、有機溶媒に溶解して、本実施形態に係るポリアミド酸組成物を調製してもよい。なお、本実施形態に係るポリアミド酸組成物中のポリアミド酸(1)の含有率は、特に制限されないが、例えばポリアミド酸組成物全量に対して1重量%以上80重量%以下である。
 また、本実施形態に係るポリアミド酸組成物は、加熱時間の短縮や特性発現のために、イミド化促進剤及び/又は脱水触媒を含んでいてもよい。
 上記イミド化促進剤としては、特に限定されないが、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンが好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、ピコリン、キノリン、イソキノリン、イミダゾール類等を挙げることができる。上記脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等を好ましい具体例として挙げることができる。
 加熱時間の短縮の観点及び特性発現の観点から、イミド化促進剤の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。また、加熱時間の短縮の観点及び特性発現の観点から、脱水触媒の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。
 イミド化促進剤としては、イミダゾール類が好ましい。なお、本明細書中においてイミダゾール類とは、1,3-ジアゾール環(1,3-ジアゾール環構造)を有する化合物をさす。本実施形態に係るポリアミド酸組成物に添加できるイミダゾール類としては、特に限定されないが、例えば、1H-イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。これらの中では、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましく、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾールがより好ましい。
 イミダゾール類の含有量は、ポリアミド酸(1)のアミド基1モルに対して、0.005モル以上0.1モル以下であることが好ましく、0.01モル以上0.08モル以下であることがより好ましく、0.015モル以上0.050モル以下であることが更に好ましい。イミダゾール類を0.005モル以上含有させることでポリイミドの膜強度及び透明性を向上させることができ、イミダゾール類の含有量を0.1モル以下とすることで、ポリアミド酸(1)の保存安定性を維持しつつ、耐熱性を向上させることができる。なお、本明細書中において、「ポリアミド酸(1)のアミド基」とは、ジアミンとテトラカルボン酸二無水物との重合反応によって生成したアミド基をさす。
 ポリアミド酸(1)とイミダゾール類との混合方法は特に制限されない。ポリアミド酸(1)の分子量制御の容易性の観点から、重合後のポリアミド酸(1)にイミダゾール類を添加することが好ましい。このとき、イミダゾール類をそのままポリアミド酸(1)に添加してもよいし、あらかじめイミダゾール類を溶媒に溶解しておき、この溶液をポリアミド酸(1)に添加してもよく、添加方法は特に制限されない。重合後のポリアミド酸(1)を含む溶液(反応後の溶液)にイミダゾール類を添加して、本実施形態に係るポリアミド酸組成物を調製してもよい。
 本実施形態に係るポリアミド酸組成物には、添加剤として、様々な有機若しくは無機の低分子化合物、又は高分子化合物を配合してもよい。添加剤としては、例えば、可塑剤、酸化防止剤、染料、界面活性剤、レベリング剤、シリコーン、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等からなる有機微粒子や、コロイダルシリカ、カーボン、層状珪酸塩等からなる無機微粒子等が含まれ、それらは多孔質構造や中空構造であってもよい。また、微粒子の機能及び形態は、特に限定されず、例えば、顔料であっても、フィラーであってもよく、繊維状粒子であってもよい。
 本実施形態に係るポリアミド酸組成物に配合することができる上記可塑剤の効果について説明する。一般に、透明なポリイミド膜を得ようとする場合、原理的にはHOMOとLUMOのバンドギャップの大きなポリイミドを設計すればよいため、電子供与性の低いTFMBは透明なポリイミド膜を得るために効果的である。一方で、電子供与性の低いTFMBは、求核性が低くなるため反応速度が遅く、イミド化速度も遅いことが予想される。イミド化率に関して本発明者が検討したところ、以下の知見が得られた。即ち、BPDAとp-フェニレンジアミンとから得られる一般的な有色ポリイミドと、PMDAやBPDAとTFMBとから得られる透明ポリイミドのイミド化率を比較したところ、有色ポリイミドは、イミド化反応温度300℃で90%以上、イミド化反応温度350℃で100%近くイミド化していたが、透明ポリイミドでは、イミド化反応温度300℃で75%程度、イミド化反応温度350℃でも80%程度しかイミド化しておらず、イミド化速度に明確な差が見られた。
 一般に、熱イミド化によりポリアミド酸からポリイミドに脱水閉環する際のドライビングフォースは、熱による分子運動と溶媒による可塑効果によるものが大きく、完全にイミド化させるためには、ポリイミドのガラス転移温度以上で処理することが望ましい。しかし、NTCDA等の剛直な酸二無水物とTFMBとの組み合わせでは、得られるポリイミドのガラス転移温度が400℃を超え、ガラス転移温度がフィルム化時の熱処理温度よりも高いこともある。よって、NTCDA等の剛直な酸二無水物とTFMBとのイミド化反応では、イミド化が完全に進行していない可能性がある。このため、例えばポリイミド膜を用いた高温プロセス(例えばTFT素子の脱水素化処理等)において、ポリイミド膜中の未反応箇所のイミド化が進行し、ポリイミド膜からの低分子量成分の生成によるアウトガス(例えばフッ化水素等)が発生し、バリア膜の剥がれやTFTの腐食等が発生する可能性がある。これに対し、ポリアミド酸組成物に可塑剤を配合することでポリアミド酸(1)のイミド化の際に十分な分子運動が付与され、イミド化が完全に進行するだけでなく、ポリアミド酸(1)の解重合も抑制され、アウトガス(特に、フッ化水素)の発生を抑制することができる。更に、ポリアミド酸組成物に可塑剤を配合することで、ポリアミド酸(1)に分子運動が付与されることにより溶媒も除去されやすくなり、フィルム(ポリイミド膜)中の残存溶媒量が減少し、フィルムの着色も低減される。
 本実施形態で使用可能な可塑剤としては、ポリアミド酸(1)のイミド化時に使用する溶媒に溶解する材料が好ましい。また、可塑剤は、イミド化の際、ポリアミド酸(1)に十分な分子運動性を付与させるために、低温で揮発しないことが好ましい。よって、可塑剤の沸点は、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることが更に好ましい。また、可塑剤は、イミド化の際、ポリアミド酸(1)に十分な分子運動性を付与させるために、沸点以下において分解温度を持たないことが好ましい。
 可塑剤の量は、可塑剤自身の分解を避ける観点から、100重量部のポリアミド酸(1)に対して、10重量部以下であることが好ましい。また、可塑剤の量は、ポリアミド酸(1)に十分な分子運動性を付与しつつ可塑剤自身の分解を避ける観点から、100重量部のポリアミド酸(1)に対して、0.001重量部以上10重量部以下であることが好ましく、0.01重量部以上10重量部以下であることがより好ましく、0.01重量部以上8重量部以下であることが更に好ましく、0.1重量部以上6重量部以下であることが更により好ましい。
 高温プロセスで使用する際のフッ化水素の発生をより抑制するためには、可塑剤としては、リンを含む化合物(リン含有化合物)、ポリアルキレングリコール及び脂肪族二塩基酸エステルからなる群より選ばれる一種以上が好ましい。
 リン含有化合物としては、下記一般式(3-1)~(3-10)で表される化合物が挙げられる。下記一般式(3-1)~(3-10)において、R、R及びRは、各々独立に、水素原子、1価の有機基又は多価の有機基を表し、Rは、多価の有機基を表し、nは、重合度を表す。
Figure JPOXMLDOC01-appb-C000003
 リン含有化合物の好ましい例としては、リン酸系化合物、亜リン酸系化合物、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィン系化合物、ホスフィンオキシド系化合物、ホスホラン系化合物、ホスファゼン系化合物等が挙げられる。リン含有化合物は、上記列挙した化合物のエステル体やその縮合体であってもよく、環状構造を含んでいてもよく、アミン等と塩を形成していてもよい。また、これらのリン含有化合物の中には、亜リン酸系化合物とホスホン酸系化合物のように互変異性の関係にあるものも存在するが、どちらの状態で存在していてもよい。
 リン酸系化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、トリス(β-クロロプロピル)ホスフェート等が挙げられる。
 亜リン酸系化合物の具体例としては、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリエチルホスファイト、トリイソブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、ジフェニルホスファイト、ジエチルホスファイト、ジブチルホスファイト、ジメチルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、ジエチルハイドロゲンホスファイト、ビス(2-エチルヘキシル)ハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト、テトラフェニルジプロピレングリコールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリイソデシルホスファイト、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン等が挙げられる。
 上記縮合体としては、縮合リン酸エステルが挙げられる。縮合リン酸エステルの具体例としては、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート等が挙げられる。縮合リン酸エステルの市販品としては、例えば、大八化学工業社製「CR-733S」、大八化学工業社製「CR-741」、大八化学工業社製「PX-200」、ADEKA社製「FP-600」等が挙げられる。
 ホスファゼン系化合物の具体例としては、フェノキシシクロホスファゼン(伏見製薬所社製「FP-110」)、環状シアノフェノキシホスファゼン(伏見製薬所社製「FP-300」)等が挙げられる。
 ポリアルキレングリコールの具体例としては、ポリプロピレングリコール、ポリエチレングリコール等が挙げられる。
 脂肪族二塩基酸エステルの具体例としては、ジブチルアジペート、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、ビス(2-エチルヘキシル)アゼレート、ジブチルセバケート、ビス(2-エチルヘキシル)セバケート、ジエチルサクシネート等が挙げられる。
 また、可塑剤は、可塑化効果を発揮するものであれば、低分子有機化合物や熱可塑性樹脂であっても構わない。上記低分子有機化合物としては、分子量が1,000以下程度の有機化合物が挙げられ、例えば、フェノール系化合物;フタルイミド、N-フェニルフタルイミド、N-グリシジルフタルイミド、N-ヒドロキシフタルイミド、シクロヘキシルチオフタルイミド等のフタルイミド系化合物;N,N-p-フェニレンビスマレイミド、2,2’-(エチレンジオキシ)ビス(エチルマレイミド)等のマレイミド系化合物が挙げられる。上記熱可塑性樹脂としては、非対称構造を有するポリイミドやポリアミド等が挙げられる。
 また、本実施形態に係るポリアミド酸組成物には、支持体との適切な密着性を発現させるために、シランカップリング剤を含有させることができる。シランカップリング剤の種類は、公知のものを特に制限なく使用できるが、ポリアミド酸(1)との反応性の観点からアミノ基を含有する化合物が特に好ましい。
 100重量部のポリアミド酸(1)に対するシランカップリング剤の配合割合は、0.01重量部以上0.50重量部以下であることが好ましく、0.01重量部以上0.10重量部以下であることがより好ましく、0.01重量部以上0.05重量部以下であることが更に好ましい。シランカップリング剤の配合割合を0.01重量部以上とすることで、支持体に対する剥離抑制効果が十分に発揮され、シランカップリング剤の配合割合を0.50重量部以下とすることで、ポリアミド酸(1)の分子量低下が抑制されるため、ポリイミド膜の脆化を抑制できる。
 本実施形態に係るポリイミドは、上述したポリアミド酸(1)のイミド化物である。本実施形態に係るポリイミドは、公知の方法にて得ることができ、その製造方法は、特に制限されない。以下、ポリアミド酸(1)をイミド化して本実施形態に係るポリイミドを得る方法の一例について説明する。イミド化は、ポリアミド酸(1)を脱水閉環することによって行われる。この脱水閉環は、共沸溶媒を用いた共沸法、熱的手法又は化学的手法によって行うことができる。また、ポリアミド酸(1)からポリイミドへのイミド化は、1%以上100%以下の任意の割合をとることができる。つまり、一部がイミド化されたポリアミド酸(1)を合成してもよい。特に加熱昇温によりイミド化する場合は、ポリアミド酸(1)からポリイミドへの閉環反応とポリアミド酸(1)の加水分解が同時に進行しており、ポリイミドにした時の分子量がポリアミド酸(1)の分子量よりも低くなる可能性があるため、後述するポリイミド膜を形成する前に、ポリアミド酸組成物中のポリアミド酸(1)の一部をあらかじめイミド化しておくことが機械特性向上の観点から好ましい。本明細書では、一部がイミド化したポリアミド酸も、「ポリアミド酸」と記載することがある。
 ポリアミド酸(1)の脱水閉環は、ポリアミド酸(1)を加熱して行えばよい。ポリアミド酸(1)を加熱する方法は特に制限されないが、例えば、ガラス基板、金属板、PETフィルム(ポリエチレンテレフタレートフィルム)等の支持体上に、上述した本実施形態に係るポリアミド酸組成物を塗布した後、温度40℃以上500℃以下の範囲内でポリアミド酸(1)の熱処理を行えばよい。この方法によれば、支持体と、この支持体上に配置されたポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)とを有する、本実施形態に係る積層体が得られる。あるいは、フッ素系樹脂によるコーティング等の離型処理を施した容器に直接ポリアミド酸組成物を入れ、当該ポリアミド酸組成物を減圧下で加熱・乾燥することによって、ポリアミド酸(1)の脱水閉環を行うこともできる。これらの手法によるポリアミド酸(1)の脱水閉環により、ポリイミドを得ることができる。なお、上記各処理の加熱時間は、脱水閉環を行うポリアミド酸組成物の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分以上300分以下の範囲とすることが好ましい。
 本実施形態に係るポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)は、無色透明で黄色度が低く、TFT作製工程に耐えうるガラス転移温度(耐熱性)を有していることから、フレキシブルディスプレイの透明基板材料に適している。本実施形態に係るポリイミド膜中のポリイミド(詳しくは、ポリアミド酸(1)のイミド化物)の含有率は、ポリイミド膜全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。ポリイミド膜中のポリイミド以外の成分としては、例えば、上述した添加剤(より具体的には、微粒子等)が挙げられる。
 本実施形態に係る電子デバイス(より具体的には、フレキシブルデバイス等)は、本実施形態に係るポリイミド膜と、このポリイミド膜上に直接的又は間接的に配置された電子素子とを有する。フレキシブルディスプレイ用として本実施形態に係る電子デバイスを製造する場合、まず、ガラス等の無機基材を支持体として、その上にポリイミド膜を形成する。そして、ポリイミド膜上にTFT等の電子素子を配置(形成)することにより、支持体上に電子デバイスを形成する。TFTを形成する工程は、一般的に150℃以上650℃以下の広い温度領域で実施されるが、実際に所望の性能を達成するためには300℃以上で酸化物半導体層やa-Si層を形成し、場合によっては更にレーザー等でa-Si等を結晶化させることもある。
 この際、ポリイミド膜の熱分解温度が低い場合、電子素子形成中にアウトガスが発生し、昇華物としてオーブン内に付着し、炉内汚染の原因となったり、ポリイミド膜上に形成した無機膜(後述するバリア膜等)や電子素子が剥離したりする可能性があるため、ポリイミドの1%重量減少温度は500℃以上であることが好ましい。ポリイミドの1%重量減少温度の上限は、高ければ高いほどよいが、例えば600℃である。1%重量減少温度は、例えば、剛直な構造を有する残基(より具体的には、NTCDA残基、BPDA残基等)の含有率を変更することにより、調整できる。更に詳細に説明すると、TFT形成前に、ポリイミド膜上にバリア膜として酸化シリコン膜(SiOx膜)や窒化シリコン膜(SiNx膜)等の無機膜を形成する。この際、ポリイミドの耐熱性が低い場合やイミド化が完全に進行していない場合、あるいは残存溶媒が多い場合には、無機膜積層後の高温プロセスでポリイミドの分解ガス等の揮発成分に起因してポリイミドと無機膜とが剥離する場合がある。このため、ポリイミドの1%重量減少温度が500℃以上であることに加え、ポリイミドを400℃以上450℃以下の範囲内の温度で等温保持した際の重量減少率が1%未満であることが望ましい。
 また、ポリイミドのガラス転移温度(Tg)がプロセス温度よりも著しく低い場合は、電子素子形成中に位置ずれ等が生じる可能性があるため、ポリイミドのTgは、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることが更に好ましく、420℃以上であることが更により好ましい。ポリイミドのTgの上限は、高ければ高いほどよいが、例えば500℃である。また、一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、ガラス基板とポリイミド膜との間に内部応力が発生する。支持体として用いたガラス基板や電子素子と、ポリイミド膜との積層体の内部応力が高ければ、ポリイミド膜を含む積層体が、高温のTFT形成工程で膨張した後、常温まで冷却する際に収縮し、ガラス基板の反りや破損、ポリイミド膜のガラス基板からの剥離等の問題が生じる。そのため、ポリイミド膜とガラス基板の間の内部応力が、40MPa以下であることが好ましく、35MPa以下であることがより好ましく、30MPa以下であることが更に好ましく、25MPa以下であることが更により好ましい。内部応力の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。
 ポリイミド膜と支持体(例えばガラス基板)との界面に浮きがあると、電子素子の形成中にポリイミド膜が剥がれたり、電子素子を形成した後、ポリイミド膜を剥離する際の歩留まり低下を引き起こす恐れがある。なお、「浮き」とは、イミド化時に発生する副成分や残存溶媒に起因して、ポリイミド膜と他の材料層(より具体的には、ガラス基板、バリア膜等)との間で密着性不良が生じた状態をさす。具体的な「浮き」としては、ガラス基板からポリイミド膜が浮き上がった状態、ポリイミド膜の一部が破壊されてポリイミド膜と他の材料層との間において層間剥離が生じた状態、ポリイミド膜からバリア膜が浮き上がった状態等が挙げられる。一般に、BPDA残基とBAAB残基とを有するポリアミド酸から得られるポリイミド膜は、分子鎖が密にパッキングしており、ガス抜け性が悪いため、支持体(例えばガラス基板)との界面において浮きが発生しやすい。本発明者の検討により、ポリアミド酸の分子鎖中又は末端に、かさ高い構造や柔らかい構造を導入することで、浮きを防止できることが判明した。なかでもBPAF残基やSFDA残基を有するポリアミド酸によれば、そのかさ高い構造に由来して、良好なガス抜け性と高いガラス転移温度を両立することができる。
 本実施形態に係るポリイミドは、TFT基板やタッチパネル基板等のディスプレイ基板の材料として好適に用いることができる。ポリイミドを上記用途に用いる際、上述したように支持体上に電子デバイス(詳しくは、ポリイミド膜上に電子素子が形成された電子デバイス)を形成した後、ポリイミド膜を支持体から剥離する方法を採用する場合が多い。また、支持体の材料としては、無アルカリガラスが好適に用いられる。以下、ポリイミド膜と支持体との積層体の製造方法の一例について詳述する。
 まず、支持体上に本実施形態に係るポリアミド酸組成物を塗布(流延)し、ポリアミド酸(1)を含む塗布膜と、支持体とからなる塗布膜含有積層体を形成する。次に、塗布膜含有積層体を、例えば温度40℃以上200℃以下の条件で加熱する。この際の加熱時間は、例えば3分以上120分以下である。なお、塗布膜含有積層体を、温度50℃にて30分加熱した後、温度100℃にて30分加熱する等のように、多段階の加熱工程を設けてもよい。次に、塗布膜中のポリアミド酸(1)のイミド化を進めるため、塗布膜含有積層体を、例えば、最高温度200℃以上500℃以下の条件で加熱する。この際の加熱時間(最高温度での加熱時間)は、例えば1分以上300分以下である。このとき、低温から最高温度まで徐々に昇温することが好ましい。昇温速度は、2℃/分以上10℃/分以下であることが好ましく、4℃/分以上10℃/分以下であることがより好ましい。また、最高温度は250℃以上450℃以下の範囲であることが好ましい。最高温度が250℃以上であれば、十分にイミド化が進行し、最高温度が450℃以下であれば、ポリイミドの熱劣化や着色を抑制できる。また、最高温度に到達するまでに任意の温度で任意の時間保持してもよい。イミド化反応は、空気下、減圧下、又は窒素等の不活性ガス中で行うことができるが、より高い透明性を発現させるためには、減圧下、又は窒素等の不活性ガス中で行うことが好ましい。また、加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、イナートオーブン、ホットプレート等の公知の装置を用いることができる。これらの工程を経て塗布膜中のポリアミド酸(1)がイミド化され、支持体と、ポリイミド膜(ポリアミド酸(1)のイミド化物を含む膜)との積層体(即ち、本実施形態に係る積層体)を得ることができる。
 得られた支持体とポリイミド膜との積層体からポリイミド膜を剥離する方法は、公知の方法を用いることができる。例えば、手で引き剥がしてもよいし、駆動ロール、ロボット等の機械装置を用いて引き剥がしてもよい。更には、支持体とポリイミド膜との間に剥離層を設ける方法や、多数の溝を有する支持体上に酸化シリコン膜を形成し、酸化シリコン膜を下地層としてポリイミド膜を形成し、支持体と酸化シリコン膜との間に酸化シリコンのエッチング液を浸潤させることによって、ポリイミド膜を剥離する方法を採用することもできる。また、レーザー光の照射によってポリイミド膜を分離させる方法を採用することもできる。
 ポリイミド膜の透明性は、JIS K7361-1:1997に従った全光線透過率(TT)、及びJIS K7136-2000に従ったヘイズで評価することができる。高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜の全光線透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。また、高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜のヘイズは、1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることが更に好ましく、0%であってもよい。ヘイズは、例えばポリアミド酸(1)中のTFMB残基の含有率を変更することにより、調整できる。高い透明性が要求される用途においては、ポリイミド膜は全波長領域で透過率が高いことが要求されるが、ポリイミド膜は短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の着色が低減されていることが好ましい。具体的には、高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の黄色度(YI)は、25以下であることが好ましく、20以下であることがより好ましく、0であってもよい。YIは、JIS K7373-2006に従い測定することができる。このように、着色が低減され、透明性が付与されたポリイミド膜は、ガラス代替用途等の透明基板や、背面にセンサーやカメラモジュールが設けられる基板に好適である。
 また、上述したように、透明性が求められる用途においては、色再現性等の観点から、特に青色光(波長470nm付近の光)の透過率が高いことが求められ、実用的には波長400nmの光の透過率(400nm透過率)が高いことが求められる。色再現性等の観点から、ポリイミド膜の400nm透過率は、40%以上であることが好ましく、45%以上であることがより好ましい。ポリイミド膜の400nm透過率の上限は、特に限定されず、100%であってもよい。
 また、フレキシブルディスプレイの光取り出し方式には、TFTの表面側から光を取り出すトップエミッション方式とTFTの裏面側から光を取り出すボトムエミッション方式の二種類がある。トップエミッション方式は、TFTに光が遮られないため開口率を上げやすく、高精細な画質が得られるという特徴があり、ボトムエミッション方式はTFTと画素電極との位置合わせが容易で製造しやすいといった特徴がある。TFTが透明であればボトムエミッション方式においても、開口率を向上させることが可能となるため、大型ディスプレイには製造が容易なボトムエミッション方式が採用される傾向がある。本実施形態に係るポリイミド膜は、YIが低く、耐熱性にも優れているため、上記どちらの光取り出し方式にも適用できる。
 また、ガラス基板等の支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスにおいては、支持体とポリイミド膜との間の密着性に優れることが好ましい。ここでいう密着性とは、密着強度を意味する。支持体上のポリイミド膜に電子素子等を形成した後に、支持体から、電子素子等が形成されたポリイミド膜を剥がすという作製プロセスにおいて、ポリイミド膜と支持体との密着性に優れると、電子素子等をより正確に形成又は実装することができる。支持体上にポリイミド膜を介して電子素子等を配置する製造プロセスにおいて、生産性向上の観点から、支持体とポリイミド膜との間のピール強度は高ければ高いほどよい。具体的には、上記ピール強度は、0.05N/cm以上であることが好ましく、0.1N/cm以上であることがより好ましい。
 上述したような製造プロセスにおいて、支持体とポリイミド膜との積層体からポリイミド膜を剥離する際、レーザー照射によって支持体からポリイミド膜を剥離する場合が多い。この場合、ポリイミド膜にレーザー光を吸収させる必要があるため、ポリイミド膜のカットオフ波長は、剥離に使用するレーザー光の波長よりも長波長であることが求められる。レーザー剥離には、波長308nmのXeClエキシマレーザーが用いられることが多いため、ポリイミド膜のカットオフ波長は、312nm以上であることが好ましく、330nm以上であることがより好ましい。一方、カットオフ波長が長波長であると、ポリイミド膜が黄色に着色する傾向があるため、ポリイミド膜のカットオフ波長は、390nm以下であることが好ましい。透明性(低黄色度合)とレーザー剥離の加工性とを両立させる観点から、ポリイミド膜のカットオフ波長は、320nm以上390nm以下であることが好ましく、330nm以上380nm以下であることがより好ましい。なお、本明細書中におけるカットオフ波長とは、紫外-可視分光光度計によって測定される、透過率が0.1%以下になる波長のことを意味する。
 本実施形態に係るポリアミド酸組成物及びポリイミドは、そのまま製品や部材を作製するためのコーティングや成形プロセスに使用してもよいが、フィルム状に成形された成形物に更にコーティング等の処理を行うための材料として用いることもできる。コーティング又は成形プロセスに使用するために、ポリアミド酸組成物又はポリイミドを、必要に応じて有機溶媒に溶解又は分散させ、更に、必要に応じて光硬化性成分、熱硬化性成分、非重合性バインダー樹脂及びその他の成分を配合して、ポリアミド酸(1)又はポリイミドを含む組成物を調製してもよい。
 本実施形態に係るポリイミド膜の表面には、金属酸化物薄膜や透明電極等の各種無機薄膜を形成してもよい。これら無機薄膜の製膜方法としては、特に限定されるものではなく、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法や、CVD法が挙げられる。
 本実施形態に係るポリイミド膜は、耐熱性、低熱膨張性、透明性に加えて、ガラス基板と積層体を形成した際に生じる内部応力が小さく、高温プロセス中で無機材料との密着性を確保できるため、これらの特性が有効とされる分野及び製品に使用されることが好ましい。例えば、本実施形態に係るポリイミド膜は、液晶表示装置、有機EL、電子ペーパー等の画像表示装置、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、3Dディスプレイ、タッチパネル、透明導電膜基板、太陽電池等に使用されることが好ましく、更には現在ガラスが使用されている部分の代替材料とすることがより好ましい。これらの用途において、ポリイミド膜の厚みは、例えば1μm以上200μm以下であり、5μm以上100μm以下であることが好ましい。ポリイミド膜の厚みは、レーザホロゲージを用いて測定することができる。
 また、本実施形態に係るポリアミド酸組成物は、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスに好適に用いることができる。従って、本実施形態には、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、支持体上に形成されたポリイミド膜上に電子素子等を形成する工程を含む電子デバイスの製造方法も含まれる。また、かかる電子デバイスの製造方法は、更に、支持体から、電子素子等が形成されたポリイミド膜を剥がす工程を含んでいてもよい。
 以下、本発明の実施例について説明するが、本発明の範囲が下記実施例に限定されるものではない。
<物性の測定方法>
 まず、ポリイミド(ポリイミド膜)の物性の測定方法について説明する。
[400nm透過率]
 後述する実施例及び比較例で得られた各積層体中のポリイミド膜について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長400nmの光の透過率(400nm透過率)を測定した。400nm透過率が40%以上の場合、「波長400nmの光の透過率が高い」と評価した。一方、400nm透過率が40%未満の場合、「波長400nmの光の透過率が高くない」と評価した。
[黄色度(YI)]
 後述する実施例及び比較例で得られた各積層体中のポリイミド膜について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長200nm以上800nm以下の光の透過率を測定し、JIS K7373-2006に記載の式から、ポリイミド膜の黄色度(YI)を算出した。
[全光線透過率(TT)]
 後述する実施例及び比較例で得られた各積層体から剥離したポリイミド膜について、積分球式ヘイズメーター(村上色彩技術研究所社製「HM-150N」)を用いて、JIS K7361-1:1997に記載の方法により全光線透過率(TT)を測定した。
[ヘイズ]
 後述する実施例及び比較例で得られた各積層体から剥離したポリイミド膜について、積分球式ヘイズメーター(村上色彩技術研究所社製「HM-150N」)を用いて、JIS K7136-2000に記載の方法によりヘイズを測定した。
[内部応力]
 あらかじめ反り量を計測していたコーニング社製のガラス基板(材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体を得た。ポリイミド膜の吸水の影響を排除するために、積層体を120℃で10分乾燥させた後、温度25℃の窒素雰囲気下における積層体の反り量を、薄膜応力測定装置(ケーエルエー・テンコール社製「FLX-2320-S」)を用いて測定した。そして、ポリイミド膜形成前のガラス基板の反り量及び積層体の反り量から、ストーニーの式によりガラス基板とポリイミド膜との間で発生した内部応力を算出した。
[1%重量減少温度(TD1)]
 後述する実施例及び比較例で得られた各ポリイミド膜(詳しくは、重量が10mgとなるように各積層体からサンプリングしたポリイミド膜)を測定用の試料とし、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製「TG/DTA7200」)を用いて、窒素雰囲気下、20℃/分の条件で25℃から650℃まで昇温し、測定温度150℃での試料重量を基準として、この基準の重量に対して1重量%減少した際の測定温度を、1%重量減少温度(TD1)とした。TD1が500℃以上の場合、「耐熱性に優れている」と評価した。一方、TD1が500℃未満の場合、「耐熱性に優れていない」と評価した。
[ガラス転移温度(Tg)]
 後述する実施例及び比較例で得られた各積層体から幅3mmかつ長さ10mmの大きさにサンプリングしたポリイミド膜を、Tg測定用の試料として用いた。熱分析装置(日立ハイテクサイエンス社製「TMA/SS7100」)を用いて、試料に98.0mNの荷重をかけ、10℃/分で20℃から470℃まで昇温し、温度と歪量(伸び)をプロットしてTMA曲線を得た。得られたTMA曲線の変曲点の温度(TMA曲線の微分曲線におけるピークに対応する温度)をガラス転移温度(Tg)とした。
<ポリイミド膜の作製>
 以下、実施例及び比較例のポリイミド膜(積層体)の作製方法について説明する。以下において、化合物及び試薬類を下記の略称で記載している。なお、ポリイミド膜の作製に使用するポリアミド酸組成物の調製は、いずれも窒素雰囲気下で行った。また、モノマーとして使用した各酸二無水物のLUMO(DFTによる計算値)を表1に示し、モノマーとして使用した各ジアミンのHOMO(DFTによる計算値)を表2に示す。
NMP:N-メチル-2-ピロリドン
NTCDA:2,3,6,7-ナフタレンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物
ODPA:4,4’-オキシジフタル酸無水物
DODA:4,4’-ジオキシジフタル酸無水物
SFDA:スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
BAAB:4-アミノフェニル-4-アミノベンゾエート
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
6FODA:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル
PDA:p-フェニレンジアミン
PX-200:大八化学工業社製のレゾルシノールポリ(ジ-2,6-キシリル)ホスフェート
TPPi:トリフェニルホスファイト
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[実施例1]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、40.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、5.272gのTFMBをフラスコに入れて溶解させた。次いで、フラスコ内容物に、3.973gのNTCDA及び0.755gのBPAFを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌し、ポリアミド酸組成物を得た。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例1の積層体)を得た。
[実施例2]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、40.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、5.272gのTFMBをフラスコに入れて溶解させた。次いで、フラスコ内容物に、3.973gのNTCDA及び0.755gのBPAFを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌した。次いで、フラスコ内容物に、可塑剤としてのTPPiを添加して、ポリアミド酸組成物を得た。TPPiの添加量は、フラスコ内容物中のポリアミド酸100重量部に対して1重量部であった。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例2の積層体)を得た。
[実施例3~30及び比較例1~7]
 使用した酸二無水物及びその仕込み割合、並びに使用したジアミン及びその仕込み割合を、表3及び表4に示すとおりとしたこと以外は、実施例1と同じ方法により、実施例3~6、8、10~27及び29、並びに比較例1~7の積層体をそれぞれ得た。また、使用した酸二無水物及びその仕込み割合、使用したジアミン及びその仕込み割合、並びに可塑剤の種類を、表3及び表4に示すとおりとしたこと以外は、実施例2と同じ方法により、実施例7、9、28及び30の積層体をそれぞれ得た。なお、実施例3~30及び比較例1~7のいずれについても、ポリアミド酸組成物を調製する際の酸二無水物の合計物質量は、実施例1及び2と同じであった。また、実施例3~30及び比較例1~7のいずれについても、ポリアミド酸組成物を調製する際のジアミンの合計物質量は、実施例1及び2と同じであった。
 実施例1~30及び比較例1~7のそれぞれについて、使用したモノマー及び可塑剤を表3及び表4に示す。なお、表3及び表4において、「-」は、当該成分を使用しなかったことを意味する。また、表3及び表4において、「酸二無水物」の欄の数値は、使用した酸二無水物の全量に対する各酸二無水物の含有率(単位:モル%)である。表3及び表4において、「ジアミン」の欄の数値は、使用したジアミンの全量に対する各ジアミンの含有率(単位:モル%)である。表3及び表4において、「可塑剤」の欄の数値は、ポリアミド酸100重量部に対する可塑剤の量(単位:重量部)である。また、実施例1~30及び比較例1~7のいずれについても、調製したポリアミド酸組成物中のポリアミド酸の各残基のモル分率は、ポリアミド酸の合成に使用した各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致していた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<物性の測定結果>
 実施例1~30及び比較例1~7のそれぞれについて、平均準位差及び物性の測定結果を、表5に示す。なお、表5において、「-」は、測定しなかったことを意味する。
Figure JPOXMLDOC01-appb-T000008
 実施例1~30において調製したポリアミド酸組成物中のポリアミド酸は、BPDA残基、BPAF残基、ODPA残基及びSFDA残基からなる群より選択される一種以上の残基と、NTCDA残基と、TFMB残基とを含んでいた。実施例1~30において調製したポリアミド酸組成物中のポリアミド酸では、NTCDA残基の含有率が、テトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下であった。実施例1~30において調製したポリアミド酸組成物中のポリアミド酸では、TFMB残基の含有率が、ジアミン残基の全量に対して、50モル%以上であった。
 表5に示すように、実施例1~30では、400nm透過率が40%以上であった。よって、実施例1~30で得られたポリイミドは、波長400nmの光の透過率が高かった。実施例1~30では、TD1が500℃超であった。よって、実施例1~30で得られたポリイミドは、耐熱性に優れていた。
 比較例1において調製したポリアミド酸組成物中のポリアミド酸は、NTCDA残基の含有率が、テトラカルボン酸二無水物残基の全量に対して、90モル%を超えていた。比較例2、4、6及び7において調製したポリアミド酸組成物中のポリアミド酸は、NTCDA残基を有していなかった。比較例3及び5において調製したポリアミド酸組成物中のポリアミド酸は、TFMB残基の含有率が、ジアミン残基の全量に対して、50モル%未満であった。
 表5に示すように、比較例1~7では、400nm透過率が40%未満であった。よって、比較例1~7で得られたポリイミドは、波長400nmの光の透過率が高くなかった。
 以上の結果から、本発明によれば、耐熱性に優れつつ、波長400nmの光の透過率が高いポリイミドが得られることが示された。

 

Claims (18)

  1.  テトラカルボン酸二無水物残基及びジアミン残基を有するポリアミド酸であって、
     前記テトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物残基、4,4’-オキシジフタル酸無水物残基、及びスピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン残基からなる群より選択される一種以上の残基と、2,3,6,7-ナフタレンテトラカルボン酸二無水物残基とを含み、
     前記ジアミン残基は、2,2’-ビス(トリフルオロメチル)ベンジジン残基を含み、
     前記2,3,6,7-ナフタレンテトラカルボン酸二無水物残基の含有率が、前記テトラカルボン酸二無水物残基の全量に対して、5モル%以上90モル%以下であり、
     前記2,2’-ビス(トリフルオロメチル)ベンジジン残基の含有率が、前記ジアミン残基の全量に対して、50モル%以上である、ポリアミド酸。
  2.  前記ジアミン残基が前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基を含む場合、前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基は、最高被占軌道準位が-5.20eV以下のジアミン由来の残基である、請求項1に記載のポリアミド酸。
  3.  前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基は、4-アミノフェニル-4-アミノベンゾエート残基、9,9-ビス(4-アミノフェニル)フルオレン残基、及び2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル残基からなる群より選択される一種以上の残基である、請求項2に記載のポリアミド酸。
  4.  前記2,2’-ビス(トリフルオロメチル)ベンジジン残基とは異なるジアミン残基の含有率が、前記ジアミン残基の全量に対して、1モル%以上50モル%以下である、請求項2に記載のポリアミド酸。
  5.  前記3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基の含有率が、前記テトラカルボン酸二無水物残基の全量に対して、30モル%以上50モル%以下である、請求項4に記載のポリアミド酸。
  6.  前記テトラカルボン酸二無水物残基を形成するテトラカルボン酸二無水物の最低空軌道準位の平均値と、前記ジアミン残基を形成するジアミンの最高被占軌道準位の平均値との差が、2.25eV以上である、請求項1に記載のポリアミド酸。
  7.  請求項1に記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。
  8.  更に可塑剤を含有する、請求項7に記載のポリアミド酸組成物。
  9.  前記可塑剤の量が、前記ポリアミド酸100重量部に対して、0.001重量部以上10重量部以下である、請求項8に記載のポリアミド酸組成物。
  10.  前記可塑剤がリンを含む、請求項8に記載のポリアミド酸組成物。
  11.  請求項1に記載のポリアミド酸のイミド化物であるポリイミド。
  12.  1%重量減少温度が500℃以上である、請求項11に記載のポリイミド。
  13.  請求項11に記載のポリイミドを含むポリイミド膜。
  14.  波長400nmの光の透過率が40%以上である、請求項13に記載のポリイミド膜。
  15.  ヘイズが1.0%以下である、請求項13に記載のポリイミド膜。
  16.  支持体と、請求項13に記載のポリイミド膜とを有する積層体。
  17.  支持体とポリイミド膜とを有する積層体の製造方法であって、
     請求項7に記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
  18.  請求項13に記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。

     
PCT/JP2022/037866 2021-10-25 2022-10-11 ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス WO2023074350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173740 2021-10-25
JP2021173740 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074350A1 true WO2023074350A1 (ja) 2023-05-04

Family

ID=86157900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037866 WO2023074350A1 (ja) 2021-10-25 2022-10-11 ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス

Country Status (2)

Country Link
TW (1) TW202328294A (ja)
WO (1) WO2023074350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117430812A (zh) * 2023-12-21 2024-01-23 明士(北京)新材料开发有限公司 一种光敏聚酰胺酸酯树脂、树脂组合物及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216039A (ja) * 1992-02-05 1993-08-27 Canon Inc 液晶素子
JP2011141448A (ja) * 2010-01-07 2011-07-21 Kaneka Corp 光学補償フィルム、光学補償用積層体、光学補償用偏光板、及び液晶表示装置
WO2014129464A1 (ja) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
WO2016148150A1 (ja) * 2015-03-17 2016-09-22 田岡化学工業株式会社 新規なテトラカルボン酸二無水物、並びに該酸二無水物から得られるポリイミド及びポリイミド共重合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216039A (ja) * 1992-02-05 1993-08-27 Canon Inc 液晶素子
JP2011141448A (ja) * 2010-01-07 2011-07-21 Kaneka Corp 光学補償フィルム、光学補償用積層体、光学補償用偏光板、及び液晶表示装置
WO2014129464A1 (ja) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
WO2016148150A1 (ja) * 2015-03-17 2016-09-22 田岡化学工業株式会社 新規なテトラカルボン酸二無水物、並びに該酸二無水物から得られるポリイミド及びポリイミド共重合体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117430812A (zh) * 2023-12-21 2024-01-23 明士(北京)新材料开发有限公司 一种光敏聚酰胺酸酯树脂、树脂组合物及应用
CN117430812B (zh) * 2023-12-21 2024-03-19 明士(北京)新材料开发有限公司 一种光敏聚酰胺酸酯树脂、树脂组合物及应用

Also Published As

Publication number Publication date
TW202328294A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
JP6516048B2 (ja) ポリイミド前駆体、及びポリイミド
CN110028666B (zh) 聚酰亚胺前体和含有其的树脂组合物
TWI690572B (zh) 剝離層形成用組成物
JP2019506478A (ja) 接着力が向上したポリアミック酸組成物及びこれを含むポリイミドフィルム
KR102117151B1 (ko) 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
TWI728163B (zh) 聚醯胺酸、聚醯胺酸溶液、聚醯亞胺、聚醯亞胺膜、積層體及可撓性裝置、與聚醯亞胺膜之製造方法
JP7292260B2 (ja) ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
TWI735550B (zh) 聚醯胺酸、聚醯胺酸溶液、聚醯亞胺、及聚醯亞胺基板與其等之製造方法
WO2021261177A1 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
WO2022045207A1 (ja) ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
JP6687442B2 (ja) ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用
TW201900729A (zh) 聚醯胺酸、聚醯胺酸溶液、聚醯亞胺、聚醯亞胺膜、積層體及可撓性裝置,與聚醯亞胺膜之製造方法
JP7317123B2 (ja) 新規なジカルボニル化合物を含むポリアミド酸組成物の製造方法、ポリアミド酸組成物、これを用いたポリアミド-イミドフィルムの製造方法及びその製造方法によって製造されたポリアミド-イミドフィルム
WO2023074350A1 (ja) ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
WO2023157790A1 (ja) ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
WO2022054766A1 (ja) 重合体組成物、ワニス、及びポリイミドフィルム
JP2023123900A (ja) ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、電子デバイス、ポリイミド膜および積層体の製造方法
CN116057109B (zh) 聚合物组合物、清漆、和聚酰亚胺薄膜
WO2023276888A1 (ja) ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
JP2022044020A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
WO2022255174A1 (ja) ポリアミド酸組成物、ポリイミド、その積層体、フレキシブルデバイス、および積層体の製造方法。
WO2023063202A1 (ja) ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
WO2023248810A1 (ja) ポリアミド酸組成物、ポリイミドの製造方法、積層体の製造方法及び電子デバイスの製造方法
TW202409147A (zh) 聚醯胺酸組合物、聚醯亞胺之製造方法、積層體之製造方法及電子裝置之製造方法
JP2022145217A (ja) ポリアミド酸組成物、ポリイミド、その積層体、フレキシブルデバイス、および積層体の製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023556285

Country of ref document: JP

Kind code of ref document: A