WO2023074327A1 - 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法 - Google Patents

減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法 Download PDF

Info

Publication number
WO2023074327A1
WO2023074327A1 PCT/JP2022/037685 JP2022037685W WO2023074327A1 WO 2023074327 A1 WO2023074327 A1 WO 2023074327A1 JP 2022037685 W JP2022037685 W JP 2022037685W WO 2023074327 A1 WO2023074327 A1 WO 2023074327A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
pressure reducing
reducing valve
heat exchanger
pipe
Prior art date
Application number
PCT/JP2022/037685
Other languages
English (en)
French (fr)
Inventor
寛之 中野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280068163.6A priority Critical patent/CN118103647A/zh
Publication of WO2023074327A1 publication Critical patent/WO2023074327A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/08Soldered joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to a pressure reducing valve, a heat exchanger, an air conditioner, and a method for manufacturing the heat exchanger.
  • Patent Document 1 describes that when a solenoid valve is attached to a heat exchanger, the joint pipe of the solenoid valve is made of stainless steel to prevent electrolytic corrosion at the joint between the joint pipe and the aluminum refrigerant pipe. .
  • Patent Document 1 due to the low thermal conductivity of stainless steel, when the joint pipe and the refrigerant pipe are joined by brazing, it is difficult to uniformly heat the brazing part in burner brazing. is difficult, and there is a possibility that poor bonding may occur.
  • An object of the present disclosure is to suppress the occurrence of defective joints when brazing an aluminum refrigerant pipe to a joint pipe made of a metal other than aluminum in a pressure reducing valve.
  • a first aspect of the present disclosure includes a valve body (51), a joint pipe (52) having one end connected to the valve body (51), and a joint pipe (52) connected to the other end by welding.
  • a pressure reducing valve (50) comprising a connection member (53).
  • the joint pipe (52) is made of a metal other than aluminum.
  • the connection member (53) is made of aluminum or an aluminum alloy.
  • the connecting member (53) made of aluminum is welded to the tip of the joint pipe (52) made of metal other than aluminum. Therefore, when connecting the aluminum refrigerant pipe (36) to the joint pipe (52), the aluminum connecting member (53) can be brazed to the refrigerant pipe (36). Therefore, the brazing property is improved, so that the occurrence of joint failure can be suppressed.
  • the connecting member (53) has a length of 5 mm or less in the axial direction of the joint pipe (52).
  • the brazed portion between the connection member (53) and the refrigerant pipe (36) can be shortened.
  • the distance from the connecting member (53) to the valve body (51) is 15 mm or more.
  • the joint pipe (52) is made of copper or a copper alloy and coated with a coating film.
  • the joint pipe (52) is made of stainless steel.
  • a sixth aspect of the present disclosure is the pressure reducing valve (50) of any one of the first to fifth aspects, a heat transfer tube (35) made of aluminum or an aluminum alloy, and the heat transfer tube (35)
  • a heat exchanger (30) comprising a refrigerant pipe (36) made of aluminum or an aluminum alloy connected to the refrigerant pipe (36), wherein the refrigerant pipe (36) is connected to the connecting member (53) of the pressure reducing valve (50). brazed to.
  • the aluminum connection member (53) is welded to the tip of the non-aluminum joint pipe (52) in the pressure reducing valve (50). Therefore, the aluminum refrigerant pipe (36) can be brazed to the aluminum connecting member (53). Therefore, the brazing property is improved, so that the occurrence of joint failure can be suppressed. This improves the reliability of the heat exchanger (30).
  • a plurality of the refrigerant pipes (36) are provided, and the plurality of refrigerant pipes (36) are connected to the pressure reducing valve (50) via a flow dividing portion (37). connected with
  • the brazing performance can be improved and the occurrence of joint failure can be suppressed.
  • An eighth aspect of the present disclosure is an air conditioner comprising the heat exchanger (30) of the sixth or seventh aspect.
  • the connecting member (53) made of aluminum is welded to the tip of the joint pipe (52) made of non-aluminum. Therefore, the aluminum refrigerant pipe (36) can be brazed to the aluminum connection member (53). Therefore, the brazing property is improved and the occurrence of defective joints can be suppressed, thereby improving the reliability of the air conditioner (10).
  • a ninth aspect of the present disclosure is a method for manufacturing a heat exchanger (30).
  • the heat exchanger (30) includes a pressure reducing valve (50), a heat transfer tube (35) made of aluminum or an aluminum alloy, and a refrigerant connected to the heat transfer tube (35) and made of aluminum or an aluminum alloy.
  • the pressure reducing valve (50) comprises a valve body (51), a joint pipe (52) one end of which is connected to the valve body (51), and a connection which is welded to the other end of the joint pipe (52).
  • the refrigerant pipe (36) and the connection member (53) of the pressure reducing valve (50) are connected by brazing.
  • the aluminum connection member (53) is welded to the tip of the non-aluminum joint pipe (52) in the pressure reducing valve (50). Therefore, by brazing the aluminum refrigerant pipe (36) to the aluminum connecting member (53), brazing performance is improved. Therefore, the occurrence of defective joints can be suppressed, and the reliability of the heat exchanger (30) is improved.
  • FIG. 1 is a piping system diagram showing a schematic configuration of an air conditioner according to an embodiment.
  • FIG. 2 is a diagram showing the flow of refrigerant in the heat exchanger according to the embodiment.
  • FIG. 3 is a perspective view showing how the pressure reducing valve and the refrigerant pipe are connected according to the embodiment.
  • FIG. 4 is a schematic diagram showing a schematic configuration of the pressure reducing valve according to the embodiment.
  • FIG. 5 is a cross-sectional view showing an example of a connecting member provided in the pressure reducing valve according to the embodiment.
  • FIG. 6 is a perspective view showing a state in which the pressure reducing valve and the refrigerant pipe are connected to each other via the branching portion in the modified example.
  • the air conditioner (10) of this embodiment includes an outdoor unit (11) and an indoor unit (13).
  • the outdoor unit (11) houses an outdoor circuit (20) and an outdoor fan (12).
  • the indoor unit (13) houses an indoor heat exchanger (30) and an indoor fan (14).
  • the outdoor unit (11) and the indoor unit (13) are connected to each other via a liquid side connecting pipe (16) and a gas side connecting pipe (17) to form a refrigerant circuit (15). That is, the air conditioner (10) is a refrigeration cycle device.
  • the outdoor circuit (20) is provided with a compressor (25), a four-way switching valve (26), an outdoor heat exchanger (27), and an expansion valve (28).
  • the discharge pipe and suction pipe of the compressor (25) are connected to the four-way switching valve (26).
  • a gas side end (22) of the outdoor circuit (20) is connected to a four-way switching valve (26).
  • an expansion valve (28) and an outdoor heat exchanger (27) are arranged in order from the liquid side end (21) of the outdoor circuit (20) toward the four-way switching valve (26).
  • One end of a liquid side connecting pipe (16) is connected to the liquid side end (21) of the outdoor circuit (20), and a gas side connecting pipe (17) is connected to the gas side end (22) of the outdoor circuit (20). is connected.
  • the compressor (25) is a fully hermetic compressor.
  • the outdoor heat exchanger (27) is a heat exchanger that exchanges heat between the refrigerant in the refrigerant circuit (15) and the outdoor air.
  • the expansion valve (28) is a so-called electronic expansion valve.
  • the four-way switching valve (26) is a switching valve for switching between cooling operation and heating operation.
  • the indoor heat exchanger (30) includes a first unit (31A), a second unit (31B), and a pressure reducing valve (50).
  • the first unit (31A) and the second unit (31B) are connected via a refrigerant pipe (36) provided with a pressure reducing valve (50).
  • the first unit (31A) and the second unit (31B) are so-called cross-fin heat exchangers that exchange heat between the refrigerant in the refrigerant circuit (15) and room air.
  • the pressure reducing valve (50) may be an electrically operated valve or an electromagnetic valve. The pressure reducing valve (50) switches between a fully open state and a reduced opening state.
  • One end of the gas side pipe (33) is connected to the first unit (31A), and one end of the liquid side pipe (32) is connected to the second unit (31B).
  • the other end of the liquid side pipe (32) is connected to the other end of the liquid side connecting pipe (16), and the other end of the gas side pipe (33) is connected to the other end of the gas side connecting pipe (17). be done.
  • the air conditioner (10) selectively performs cooling operation and heating operation. In each of the cooling operation and the heating operation, the air conditioner (10) performs a refrigeration cycle by circulating the refrigerant in the refrigerant circuit (15).
  • the four-way switching valve (26) is in the state indicated by the solid line in FIG. 1, the outdoor heat exchanger (27) functions as a condenser, and the indoor heat exchanger (30) functions as an evaporator.
  • the first unit (31A) and the second unit (31B) function as evaporators.
  • the indoor unit (13) cools the sucked indoor air in the first unit (31A) and the second unit (31B) of the indoor heat exchanger (30), and blows the cooled indoor air indoors.
  • the four-way switching valve (26) is in the state indicated by the dashed line in Fig. 1, the indoor heat exchanger (30) functions as a condenser, and the outdoor heat exchanger (27) functions as an evaporator.
  • the first unit (31A) and the second unit (31B) function as condensers.
  • the indoor unit (13) heats the sucked indoor air in the first unit (31A) and the second unit (31B) of the indoor heat exchanger (30), and blows out the heated indoor air into the room.
  • the four-way switching valve (26) is in the state indicated by the solid line in FIG. function as Specifically, by fully opening the expansion valve (28) and reducing the degree of opening of the pressure reducing valve (50), the first unit (31A) functions as an evaporator and the second unit (31B) functions as a condenser. function as The indoor unit (13) dehumidifies the sucked indoor air in the first unit (31A) of the indoor heat exchanger (30) and blows out the dehumidified indoor air indoors.
  • the indoor heat exchanger (30) (hereinafter sometimes simply referred to as the heat exchanger (30)) will be described with reference to FIG. 2 , hollow arrows indicate the flow of air, solid arrows indicate the flow of refrigerant during heating, and broken arrows indicate the flow of refrigerant during cooling.
  • the first unit (31A) and the second unit (31B) have multiple fins (34) and multiple heat transfer tubes (35).
  • the plurality of heat transfer tubes (35) have grooves on their inner surfaces.
  • Each of the first unit (31A) and the second unit (31B) has a heat exchange section in which a plurality of heat transfer tubes (35) are inserted through a plurality of fins (34). It is configured by providing a plurality of rows in the flow direction.
  • the first unit (31A) and the second unit (31B) are connected via a refrigerant pipe (36) provided with a pressure reducing valve (50).
  • the pressure reducing valve (50) is provided to allow the first unit (31A) to function as an evaporator and the second unit (31B) to function as a condenser during reheat dehumidification.
  • the heat transfer tube (35) becomes part of the refrigerant circuit (15), and the refrigerant flows inside the heat transfer tube (35).
  • the heat transfer tube (35) transfers the heat of the refrigerant flowing inside to the air flowing outside through the fins (34).
  • the heat transfer area which is the contact surface with the air, is increased, promoting heat exchange between the refrigerant and the air.
  • the fins (34), heat transfer tubes (35), and refrigerant pipes (36) are made of aluminum or an aluminum alloy.
  • the pressure reducing valve (50) has a valve body (51) and a joint pipe (52) one end of which is connected to the valve body (51).
  • the joint pipe (52) may be provided integrally with the valve body (51).
  • a joint pipe (52) formed separately from the valve body (51) may be attached to the valve body (51) by welding or the like.
  • the joint pipe (52) includes a first joint pipe (52A) and a second joint pipe (52B).
  • the first joint pipe (52A) is connected to one of the first unit (31A) or the second unit (31B) through the refrigerant pipe (36), and the second joint pipe (52B) is connected to the second unit through the refrigerant pipe (36). It is connected to the other of the 1st unit (31A) or the 2nd unit (31B).
  • the joint pipe (52) is made of metal other than aluminum.
  • the metal other than aluminum is copper or a copper alloy, or stainless steel.
  • the surface of the joint pipe (52) is coated with a coating film made of, for example, an anti-corrosion coating material.
  • FIG. 4 shows a schematic configuration when the pressure reducing valve (50) is composed of an electromagnetic valve.
  • the valve body (51) mainly includes a refrigerant flow path (51a), a valve body (51b), a movable core (51c), and a fixed core (51d). , and an electromagnetic coil (51e).
  • the refrigerant flow path (51a) connects the pipelines of the first joint pipe (52A) and the second joint pipe (52B).
  • the valve body (51b) opens and closes the refrigerant channel (51a).
  • the movable core (51c) is configured to be movable together with the valve body (51b).
  • the movable core (51c) is composed of an iron core.
  • the fixed core (51d) is fixedly arranged on the opposite side of the valve body (51b) with the movable core (51c) interposed therebetween.
  • the electromagnetic coil (51e) is arranged to surround the movable core (51c) and the fixed core (51d), and controls the movement of the movable core (51c).
  • the movable core (51c) is urged upward (toward the fixed core (51d)) by a coil spring (not shown), and when the electromagnetic coil (51e) is de-energized, the movable core (51c) moves toward the valve. It is positioned upward together with the body (51b) and opens.
  • the electromagnetic coil (51e) is energized, an electromagnetic force is generated, and the electromagnetic force moves the movable core (51c) downward together with the valve body (51b), causing the valve body (51b) to move to the valve seat (51f). Sit down and close the valve.
  • a minute groove (not shown) is provided in the valve seat (51f), and the refrigerant flows through this groove when the valve is closed.
  • the pressure reducing valve (50) has a connection member (53) at the tip of the joint pipe (52) (the end opposite to the valve body (51a)).
  • the refrigerant pipe (36) is brazed to.
  • the connection member (53) is made of aluminum or an aluminum alloy and welded to the joint pipe (52).
  • connection member (53), as shown in FIG. 5, may be bush-shaped and inserted into the distal end of the joint pipe (52).
  • FIG. 5(a) shows a cross-sectional configuration of the connecting member (53) before being inserted into the joint pipe (52), and FIG. ) and its peripheral cross-sectional configuration are shown, respectively.
  • the connecting member (53) shown in FIG. 5(a) is used, the refrigerant pipe (36) is inserted into the connecting member (53) as shown in FIG. 5(b). ).
  • connection member (53) (the length along the pipe axis direction of the joint pipe (52)) may be about 5 mm or less.
  • the distance from the connection member (53) to the valve body (51) (valve body (51a)) may be about 15 mm or more.
  • the pressure reducing valve (50) of the present embodiment is prepared.
  • the pressure reducing valve (50) includes a valve body (51), a joint pipe (52) having one end connected to the valve body (51), and a connection member (53) welded to the other end of the joint pipe (52). ), the joint pipe (52) is made of a metal other than aluminum, and the connecting member (53) is made of aluminum or an aluminum alloy.
  • the pressure reducing valve (50) may be purchased from a vendor or manufactured in-house.
  • the refrigerant pipe (36) and the connecting member (53) of the pressure reducing valve (50) are connected by brazing.
  • the aluminum refrigerant pipe (36) is brazed to the aluminum connection member (53), thereby improving the brazeability.
  • the pressure reducing valve (50) of this embodiment includes a valve body (51), a joint pipe (52) one end of which is connected to the valve body (51), and the other end of the joint pipe (52) connected by welding.
  • the joint pipe (52) is made of a metal other than aluminum, and the connection member (53) is made of aluminum or an aluminum alloy.
  • the pressure reducing valve (50) of the present embodiment when connecting the aluminum refrigerant pipe (36) to the joint pipe (52), the aluminum connection member (53) is brazed to the refrigerant pipe (36). be able to. Therefore, the brazing property is improved, so that the occurrence of joint failure can be suppressed. This improves the reliability of the pressure reducing valve (50).
  • connection member (53) can prevent contact between the joint pipe (52) made of dissimilar metals and the refrigerant pipe (36). Corrosion caused by
  • the aluminum refrigerant pipe (36) can be joined to various forms by, for example, burner (flame) brazing, so joining can be performed at low cost. can.
  • the aluminum connection member (53) is joined to the joint pipe (52) by welding without using brazing material. Therefore, when the aluminum refrigerant pipe (36) is brazed to the connecting member (53), remelting of the joint between the connecting member (53) and the joint pipe (52) can be suppressed.
  • the length of the connection member (53) (the length of the joint pipe (52) in the pipe axis direction) may be 5 mm or less. By doing so, the brazed portion between the connection member (53) and the refrigerant pipe (36) can be shortened.
  • the distance from the connecting member (53) to the valve body (51) may be 15 mm or more. With this configuration, the valve body (51) is less likely to be affected by heat generated when the connecting member (53) is welded to the joint pipe (52).
  • the joint pipe (52) may be made of copper or a copper alloy and coated with a coating film. In this way, electrolytic corrosion at the joint between the joint pipe (52) and the refrigerant pipe (36) can be suppressed.
  • the joint pipe (52) may be made of stainless steel. In this way, electrolytic corrosion at the joint between the joint pipe (52) and the refrigerant pipe (36) can be suppressed.
  • the heat exchanger (30) of the present embodiment includes a pressure reducing valve (50), a heat transfer tube (35) made of aluminum or an aluminum alloy, and a heat transfer tube (35) connected to the heat transfer tube (35) and made of aluminum or an aluminum alloy.
  • the refrigerant pipe (36) is brazed to the connection member (53) of the pressure reducing valve (50).
  • the aluminum connection member (53) is welded to the tip of the non-aluminum joint pipe (52) in the pressure reducing valve (50). Therefore, the aluminum refrigerant pipe (36) can be brazed to the aluminum connecting member (53). Therefore, the brazing property is improved, so that the occurrence of joint failure can be suppressed. This improves the reliability of the heat exchanger (30).
  • the air conditioner (10) of this embodiment includes a heat exchanger (30).
  • the connecting member (53) made of aluminum is attached to the tip of the joint pipe (52) made of non-aluminum. is welded. Therefore, the aluminum refrigerant pipe (36) can be brazed to the aluminum connection member (53). Therefore, the brazing property is improved and the occurrence of defective joints can be suppressed, thereby improving the reliability of the air conditioner (10).
  • the refrigerant pipe (36) and the connection member (53) of the pressure reducing valve (50) are connected by brazing.
  • the connecting member (53) made of aluminum is welded to the tip of the joint pipe (52) made of non-aluminum in the pressure reducing valve (50). Therefore, by brazing the aluminum refrigerant pipe (36) to the aluminum connecting member (53), brazing performance is improved. Therefore, the occurrence of defective joints can be suppressed, and the reliability of the heat exchanger (30) is improved.
  • connection member (53) is formed in a bush shape and inserted into the tip of the joint pipe (52).
  • the installation form is not particularly limited.
  • one refrigerant pipe (36) is connected to one joint pipe (52), but instead of this, as shown in FIG. , a plurality of refrigerant pipes (36) may be connected via the flow dividing portion (37).
  • the flow dividing portion (37) is made of the same material as the refrigerant pipe (36), specifically aluminum or an aluminum alloy. In this way, by brazing the aluminum flow dividing portion (37) to the aluminum connecting member (53) of the pressure reducing valve (50), the brazing performance is improved and the connection is made in the same manner as in the above-described embodiment. It is possible to suppress the occurrence of defects.
  • the flow dividing portion (37) and each refrigerant pipe (36) are joined by brazing.
  • the heat exchanger (30) is applied to the air conditioner (10), which is a refrigerating cycle device, but it goes without saying that the use of the heat exchanger (30) is not particularly limited. .
  • the present disclosure is useful for pressure reducing valves, heat exchangers, air conditioners, and heat exchanger manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Valve Housings (AREA)
  • Multiple-Way Valves (AREA)

Abstract

減圧弁(50)は、弁本体(51)と、弁本体(51)に一端が接続された継手管(52)と、継手管(52)の他端に溶接によって接続された接続部材(53)とを備える。継手管(52)は、アルミニウム以外の金属で構成される。接続部材(53)は、アルミニウム又はアルミニウム合金で構成される。

Description

減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法
 本開示は、減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法に関するものである。
 空気調和装置に用いられる熱交換器においては、素材となる銅の価格高騰が続いていることから、アルミ製の伝熱管や冷媒配管などが用いられるようになってきている。また、再熱除湿を可能とするために、除湿弁を備えた熱交換器の開発が行われている。
 特許文献1には、熱交換器に電磁弁を取り付けるにあたり、電磁弁の継手管をステンレス製として、継手管とアルミ製の冷媒配管との接続箇所における電食を防止することが記載されている。
特開2013-185790号公報
 しかしながら、特許文献1の構成では、ステンレスの熱伝導性が低いことに起因して、継手管と冷媒配管とをロウ付けにより接合する際に、バーナーロウ付けではロウ付け部を均一に加熱することが難しく、接合不良が生じるおそれがある。
 本開示の目的は、減圧弁において、アルミニウム以外の金属で構成された継手管にアルミ製の冷媒配管をロウ付けする際に、接合不良の発生を抑制することにある。
 本開示の第1の態様は、弁本体(51)と、前記弁本体(51)に一端が接続された継手管(52)と、前記継手管(52)の他端に溶接によって接続された接続部材(53)とを備える減圧弁(50)である。前記継手管(52)は、アルミニウム以外の金属で構成される。前記接続部材(53)は、アルミニウム又はアルミニウム合金で構成される。
 第1の態様では、アルミニウム以外の金属で構成された継手管(52)の先端に、アルミ製の接続部材(53)を溶接している。このため、継手管(52)にアルミ製の冷媒配管(36)を接続する際に、アルミ製の接続部材(53)に冷媒配管(36)をロウ付けすることができる。従って、ロウ付け性が向上するので、接合不良の発生を抑制することができる。
 本開示の第2の態様は、第1の態様において、前記継手管(52)の管軸方向における前記接続部材(53)の長さは、5mm以下である。
 第2の態様では、接続部材(53)と冷媒配管(36)とのロウ付け部を短くできる。
 本開示の第3の態様は、第1又は第2の態様において、前記接続部材(53)から前記弁本体(51)までの距離は、15mm以上である。
 第3の態様では、接続部材(53)を継手管(52)に溶接する際の熱が弁本体(51)に影響しにくくなる。
 本開示の第4の態様は、第1~第3の態様のいずれか1つにおいて、前記継手管(52)は、銅又は銅合金で構成されると共に塗膜により被覆される。
 第4の態様では、継手管(52)と冷媒配管(36)との接続箇所における電食を抑制することができる。
 本開示の第5の態様は、第1~第3の態様のいずれか1つにおいて、前記継手管(52)は、ステンレスで構成される。
 第5の態様では、継手管(52)と冷媒配管(36)との接続箇所における電食を抑制することができる。
 本開示の第6の態様は、第1~第5の態様のいずれか1つの減圧弁(50)と、アルミニウム又はアルミニウム合金で構成される伝熱管(35)と、前記伝熱管(35)に接続され、アルミニウム又はアルミニウム合金で構成される冷媒配管(36)とを備える熱交換器(30)であって、前記冷媒配管(36)は、前記減圧弁(50)の前記接続部材(53)にロウ付けされる。
 第6の態様では、減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けすることができる。従って、ロウ付け性が向上するので、接合不良の発生を抑制できる。これにより、熱交換器(30)の信頼性が向上する。
 本開示の第7の態様は、第6の態様において、前記冷媒配管(36)は複数設けられ、複数の前記冷媒配管(36)は、分流部(37)を介して前記減圧弁(50)と接続される。
 第7の態様では、アルミ製の接続部材(53)にアルミ製の分流部(37)をロウ付けすることによって、ロウ付け性を向上させて接合不良の発生を抑制することができる。
 本開示の第8の態様は、第6又は第7の態様の熱交換器(30)を備える空気調和装置である。
 第8の態様では、熱交換器(30)に設けられる減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けできる。従って、ロウ付け性を向上させて接合不良の発生を抑制できるので、空気調和装置(10)の信頼性が向上する。
 本開示の第9の態様は、熱交換器(30)の製造方法である。前記熱交換器(30)は、減圧弁(50)と、アルミニウム又はアルミニウム合金で構成される伝熱管(35)と、前記伝熱管(35)に接続され、アルミニウム又はアルミニウム合金で構成される冷媒配管(36)とを備える。前記減圧弁(50)は、弁本体(51)と、前記弁本体(51)に一端が接続された継手管(52)と、前記継手管(52)の他端に溶接によって接続された接続部材(53)とを備え、前記継手管(52)は、アルミニウム以外の金属で構成され、前記接続部材(53)は、アルミニウム又はアルミニウム合金で構成される。熱交換器(30)の製造方法は、前記冷媒配管(36)と前記減圧弁(50)の前記接続部材(53)とをロウ付けによって接続する。
 第9の態様では、減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けすることによって、ロウ付け性が向上する。従って、接合不良の発生を抑制できるので、熱交換器(30)の信頼性が向上する。
図1は、実施形態に係る空気調和装置の概略構成を示す配管系統図である。 図2は、実施形態に係る熱交換器における冷媒の流れを示す図である。 図3は、実施形態に係る減圧弁と冷媒配管との接続の様子を示す斜視図である。 図4は、実施形態に係る減圧弁の概略構成を示す模式図である。 図5は、実施形態に係る減圧弁に設ける接続部材の一例を示す断面図である。 図6は、変形例において分流部を介して減圧弁と冷媒配管とを接続した様子を示す斜視図である。
 (実施形態)
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。尚、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比又は数を誇張又は簡略化して表す場合がある。
  <空気調和装置>
 図1に示すように、本実施形態の空気調和装置(10)は、室外ユニット(11)と室内ユニット(13)とを備える。室外ユニット(11)には、室外回路(20)及び室外ファン(12)が収容される。室内ユニット(13)には、室内熱交換器(30)及び室内ファン(14)が収容される。室外ユニット(11)と室内ユニット(13)とは、液側連絡管(16)及びガス側連絡管(17)を介して互いに接続され、冷媒回路(15)を構成する。すなわち、空気調和装置(10)は、冷凍サイクル装置である。
   [室外ユニット]
 室外回路(20)には、圧縮機(25)と、四方切換弁(26)と、室外熱交換器(27)と、膨張弁(28)とが設けられる。室外回路(20)では、圧縮機(25)の吐出管及び吸入管が、四方切換弁(26)に接続される。室外回路(20)のガス側端(22)は、四方切換弁(26)に接続される。室外回路(20)では、室外回路(20)の液側端(21)から四方切換弁(26)へ向かって順に、膨張弁(28)と室外熱交換器(27)とが配置される。
 室外回路(20)の液側端(21)には、液側連絡管(16)の一端が接続され、室外回路(20)のガス側端(22)には、ガス側連絡管(17)の一端が接続される。
 圧縮機(25)は、全密閉型の圧縮機である。室外熱交換器(27)は、冷媒回路(15)の冷媒を室外空気と熱交換させる熱交換器である。膨張弁(28)は、いわゆる電子膨張弁である。四方切換弁(26)は、冷房運転と暖房運転を切り換えるための切換弁である。
   [室内ユニット]
 室内熱交換器(30)は、第1ユニット(31A)と、第2ユニット(31B)と、減圧弁(50)とを備える。第1ユニット(31A)と第2ユニット(31B)とは、減圧弁(50)が設けられた冷媒配管(36)を介して接続される。第1ユニット(31A)及び第2ユニット(31B)は、いわゆるクロスフィン熱交換器であって、冷媒回路(15)の冷媒を室内空気と熱交換させる。減圧弁(50)は、電動弁又は電磁弁であってもよい。減圧弁(50)は、全開状態と、開度を小さくした状態とに切り換わる。第1ユニット(31A)には、ガス側管(33)の一端が接続され、第2ユニット(31B)には、液側管(32)の一端が接続される。液側管(32)の他端には、液側連絡管(16)の他端が接続され、ガス側管(33)の他端には、ガス側連絡管(17)の他端が接続される。
   [空気調和装置の運転動作]
 空気調和装置(10)は、冷房運転と暖房運転とを選択的に行う。冷房運転及び暖房運転のそれぞれにおいて、空気調和装置(10)は、冷媒回路(15)で冷媒を循環させて冷凍サイクルを行う。
 冷房運転では、四方切換弁(26)が図1に実線で示す状態になり、室外熱交換器(27)が凝縮器として機能し、室内熱交換器(30)が蒸発器として機能する。具体的には、膨張弁(28)の開度を小さくし、減圧弁(50)を全開とすることによって、第1ユニット(31A)及び第2ユニット(31B)が蒸発器として機能する。室内ユニット(13)は、吸い込んだ室内空気を室内熱交換器(30)の第1ユニット(31A)及び第2ユニット(31B)において冷却し、冷却した室内空気を室内へ吹き出す。
 暖房運転では、四方切換弁(26)が図1に破線で示す状態になり、室内熱交換器(30)が凝縮器として機能し、室外熱交換器(27)が蒸発器として機能する。具体的には、膨張弁(28)の開度を小さくし、減圧弁(50)を全開とすることによって、第1ユニット(31A)及び第2ユニット(31B)が凝縮器として機能する。室内ユニット(13)は、吸い込んだ室内空気を室内熱交換器(30)の第1ユニット(31A)及び第2ユニット(31B)において加熱し、加熱した室内空気を室内へ吹き出す。
 再熱除湿運転では、四方切換弁(26)が図1に実線で示す状態になり、室外熱交換器(27)が凝縮器として機能し、室内熱交換器(30)の一部が蒸発器として機能する。具体的には、膨張弁(28)を全開とし、減圧弁(50)の開度を小さくすることによって、第1ユニット(31A)が蒸発器として機能し、第2ユニット(31B)が凝縮器として機能する。室内ユニット(13)は、吸い込んだ室内空気を室内熱交換器(30)の第1ユニット(31A)において除湿し、除湿した室内空気を室内へ吹き出す。
  <熱交換器>
 室内熱交換器(30)(以下、単に熱交換器(30)ということもある)について、図2を参照しながら説明する。図2において、白抜き矢印は、空気の流れを示し、実線矢印は、暖房時の冷媒の流れを示し、破線矢印は、冷房時の冷媒の流れを示す。
 図2に示す熱交換器(30)において、第1ユニット(31A)及び第2ユニット(31B)は、複数のフィン(34)と、複数の伝熱管(35)とを有する。複数の伝熱管(35)は、管内面に溝を有する。第1ユニット(31A)及び第2ユニット(31B)は、複数のフィン(34)に複数の伝熱管(35)を挿通させてなる熱交換部を、複数のフィン(34)の間を流れる空気の流れ方向に複数列設けて構成される。第1ユニット(31A)と第2ユニット(31B)とは、減圧弁(50)が設けられた冷媒配管(36)を介して接続される。減圧弁(50)は、再熱除湿時に、第1ユニット(31A)を蒸発器、第2ユニット(31B)を凝縮器として機能させるために設けられる。
 伝熱管(35)は、冷媒回路(15)の一部となり、伝熱管(35)の内部を冷媒が流れる。伝熱管(35)は、内部を流れる冷媒の熱を、外部を流れる空気にフィン(34)を介して伝える。これにより、空気との接触面となる伝熱面積を拡げ、冷媒と空気との間の熱交換を促進する。
 フィン(34)、伝熱管(35)、及び冷媒配管(36)は、アルミニウム又はアルミニウム合金で構成される。
  <減圧弁>
 減圧弁(50)は、図3に示すように、弁本体(51)と、弁本体(51)に一端が接続された継手管(52)とを有する。継手管(52)は、弁本体(51)と一体に設けられてもよい。或いは、弁本体(51)と別体で形成された継手管(52)を、溶接等によって弁本体(51)に取り付けてもよい。
 継手管(52)は、第1継手管(52A)及び第2継手管(52B)を含む。第1継手管(52A)は、冷媒配管(36)を通じて第1ユニット(31A)又は第2ユニット(31B)の一方と接続され、第2継手管(52B)は、冷媒配管(36)を通じて第1ユニット(31A)又は第2ユニット(31B)の他方と接続される。
 継手管(52)は、アルミニウム以外の金属で構成される。具体的には、アルミニウム以外の金属は、銅若しくは銅合金、又はステンレスである。継手管(52)が銅又は銅合金で構成される場合、例えば防食用塗装材料からなる塗膜により、継手管(52)の表面を被覆する。
  <減圧弁と冷媒配管との接続>
 図4は、減圧弁(50)が電磁弁で構成された場合の概略構成を示す。図4に示す減圧弁(50)においては、弁本体(51)は、主に、冷媒流路(51a)と、弁体(51b)と、可動コア(51c)と、固定コア(51d)と、電磁コイル(51e)とを有する。冷媒流路(51a)は、第1継手管(52A)及び第2継手管(52B)の各管路を接続する。弁体(51b)は、冷媒流路(51a)の開閉を行う。可動コア(51c)は、弁体(51b)と共に移動可能に構成される。可動コア(51c)は、鉄芯で構成される。固定コア(51d)は、可動コア(51c)を挟んで弁体(51b)の反対側に固定配置される。電磁コイル(51e)は、可動コア(51c)及び固定コア(51d)を囲むように配置され、可動コア(51c)の動作を制御する。
 具体的には、可動コア(51c)は、コイルバネ(図示省略)により上方(固定コア(51d)側)に付勢されており、電磁コイル(51e)の非通電時には可動コア(51c)は弁体(51b)と共に上方に位置して開弁する。電磁コイル(51e)が通電されると、電磁力が発生し、当該電磁力によって可動コア(51c)は弁体(51b)と共に下方に移動し、弁体(51b)が弁座(51f)に着座して閉弁する。弁座(51f)には、微小な溝(図示省略)が設けられており、閉弁時にはこの溝を通して冷媒が流通する。
 図4に示すように、減圧弁(50)は、継手管(52)の先端(弁体(51a)の反対側の端部)に接続部材(53)を有し、当該接続部材(53)に冷媒配管(36)がロウ付けされる。接続部材(53)は、アルミニウム又はアルミニウム合金で構成され、継手管(52)に溶接される。
 接続部材(53)は、図5に示すように、ブッシュ状に形成され、継手管(52)の先端部に内挿されてもよい。図5(a)は、継手管(52)に挿入される前の接続部材(53)の断面構成を、図5(b)は、継手管(52)に挿入された後の接続部材(53)及びその周辺の断面構成を、それぞれ示している。図5(a)に示す接続部材(53)を用いた場合、図5(b)に示すように、冷媒配管(36)は、接続部材(53)に内挿された状態で接続部材(53)にロウ付けされる。
 接続部材(53)の長さ(継手管(52)の管軸方向に沿った長さ)は、5mm程度以下であってもよい。接続部材(53)から弁本体(51)(弁体(51a))までの距離は、15mm程度以上であってもよい。
  <熱交換器の製造方法>
 熱交換器(30)の製造時には、まず、本実施形態の減圧弁(50)を用意する。減圧弁(50)は、弁本体(51)と、弁本体(51)に一端が接続された継手管(52)と、継手管(52)の他端に溶接によって接続された接続部材(53)とを備え、継手管(52)は、アルミニウム以外の金属で構成され、接続部材(53)は、アルミニウム又はアルミニウム合金で構成される。減圧弁(50)は、業者から購入してもよいし、或いは、内製してもよい。
 次に、図4及び図5に示すように、冷媒配管(36)と、減圧弁(50)の接続部材(53)とをロウ付けによって接続する。これにより、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)がロウ付けされるので、ロウ付け性が向上する。
  <実施形態の特徴>
 本実施形態の減圧弁(50)は、弁本体(51)と、弁本体(51)に一端が接続された継手管(52)と、継手管(52)の他端に溶接によって接続された接続部材(53)とを備える。継手管(52)は、アルミニウム以外の金属で構成され、接続部材(53)は、アルミニウム又はアルミニウム合金で構成される。
 本実施形態の減圧弁(50)によると、継手管(52)にアルミ製の冷媒配管(36)を接続する際に、アルミ製の接続部材(53)に冷媒配管(36)をロウ付けすることができる。従って、ロウ付け性が向上するので、接合不良の発生を抑制することができる。これにより、減圧弁(50)の信頼性が向上する。
 また、本実施形態の減圧弁(50)によると、異種金属で構成される継手管(52)と冷媒配管(36)との接触を接続部材(53)によって防止できるので、異種金属同士の接触に起因する腐食を抑制できる。
 また、本実施形態の減圧弁(50)によると、様々な形態のアルミ製の冷媒配管(36)との接合を、例えばバーナー(火炎)ロウ付けにより行うことができるため、低コストで接合ができる。
 また、本実施形態の減圧弁(50)によると、アルミ製の接続部材(53)は、ロウ材を用いることなく溶接によって継手管(52)に接合される。このため、アルミ製の冷媒配管(36)を接続部材(53)にロウ付けする際に、接続部材(53)と継手管(52)との接合部が再溶融することを抑制できる。
 それに対して、従来技術のように、アルミ製の冷媒配管に、銅製の継手管を有する弁を取り付けると、異種金属同士の接触による腐食が問題となる。また、特許文献1に開示されているように、アルミ製の冷媒配管に、ステンレス製の継手管を有する弁を取り付ける場合において、継手管にアルミニウムロウ材を塗布すると、弁へのロウ材の塗布にコストがかかってしまう。さらに、アルミ製の冷媒配管と、ステンレス製の継手管との接合も、異種金属同士の接合であるために容易ではない。具体的には、ステンレスは熱伝導率が低く、バーナーでロウ付け部を均一に加熱することは難しい。また、高周波ロウ付けを行おうとしても、冷媒配管が複雑な形状を有するため、円形の高周波コイルをロウ付け部に設置できないおそれがある。さらに、炉中ロウ付けを行った場合には、熱により弁が破損するおそれがある。
 尚、本実施形態の減圧弁(50)において、接続部材(53)の長さ(継手管(52)の管軸方向の長さ)は、5mm以下であってもよい。このようにすると、接続部材(53)と冷媒配管(36)とのロウ付け部を短くできる。
 また、本実施形態の減圧弁(50)において、接続部材(53)から弁本体(51)までの距離は、15mm以上であってもよい。このようにすると、接続部材(53)を継手管(52)に溶接する際の熱が弁本体(51)に影響しにくくなる。
 また、本実施形態の減圧弁(50)において、継手管(52)は、銅又は銅合金で構成されると共に塗膜により被覆されてもよい。このようにすると、継手管(52)と冷媒配管(36)との接続箇所における電食を抑制することができる。
 また、本実施形態の減圧弁(50)において、継手管(52)は、ステンレスで構成されてもよい。このようにすると、継手管(52)と冷媒配管(36)との接続箇所における電食を抑制することができる。
 本実施形態の熱交換器(30)は、減圧弁(50)と、アルミニウム又はアルミニウム合金で構成される伝熱管(35)と、伝熱管(35)に接続され、アルミニウム又はアルミニウム合金で構成される冷媒配管(36)とを備え、冷媒配管(36)は、減圧弁(50)の接続部材(53)にロウ付けされる。
 本実施形態の熱交換器(30)によると、減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けすることができる。従って、ロウ付け性が向上するので、接合不良の発生を抑制できる。これにより、熱交換器(30)の信頼性が向上する。
 本実施形態の空気調和装置(10)は、熱交換器(30)を備える。
 本実施形態の空気調和装置(10)によると、熱交換器(30)に設けられる減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けできる。従って、ロウ付け性を向上させて接合不良の発生を抑制できるので、空気調和装置(10)の信頼性が向上する。
 本実施形態の熱交換器(30)の製造方法は、冷媒配管(36)と減圧弁(50)の接続部材(53)とをロウ付けによって接続する。
 本実施形態の熱交換器(30)の製造方法によると、減圧弁(50)において、非アルミ製の継手管(52)の先端に、アルミ製の接続部材(53)が溶接されている。このため、アルミ製の接続部材(53)にアルミ製の冷媒配管(36)をロウ付けすることによって、ロウ付け性が向上する。従って、接合不良の発生を抑制できるので、熱交換器(30)の信頼性が向上する。
 (その他の実施形態)
 前記実施形態では、接続部材(53)をブッシュ状に形成し、継手管(52)の先端部に内挿する場合を例示したが、接続部材(53)の形状や継手管(52)への設置形態は、特に限定されるものではない。
 また、前記実施形態では、1つの継手管(52)に1本の冷媒配管(36)を接続したが、これに代えて、図6に示すように、1つの継手管(52)に対して、分流部(37)を介して複数の冷媒配管(36)を接続してもよい。図6において、図3に示す実施形態と同じ構成要素には同じ符号を付す。分流部(37)は、冷媒配管(36)と同じ材質、具体的には、アルミニウム又はアルミニウム合金で構成される。このようにすると、減圧弁(50)におけるアルミ製の接続部材(53)にアルミ製の分流部(37)をロウ付けすることによって、前記実施形態と同様に、ロウ付け性を向上させて接合不良の発生を抑制することができる。分流部(37)と各冷媒配管(36)とは、ロウ付けにより接合される。
 また、前記実施形態では、熱交換器(30)を冷凍サイクル装置である空気調和装置(10)に適用する場合を例示したが、熱交換器(30)の用途が特に限定されないことは言うまでもない。
 また、前記実施形態では、減圧弁(50)を熱交換器(30)に適用する場合を例示したが、減圧弁(50)の用途が特に限定されないことは言うまでもない。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態は、適宜組み合わせたり、置換したりしてもよい。さらに、以上に述べた「第1」、「第2」、…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法について有用である。
  10  空気調和装置
  30  熱交換器
  35  伝熱管
  36  冷媒配管
  37  分流部
  50  減圧弁
  51  弁本体
  52  継手管
  53  接続部材

Claims (9)

  1.  弁本体(51)と、
     前記弁本体(51)に一端が接続された継手管(52)と、
     前記継手管(52)の他端に溶接によって接続された接続部材(53)とを
    備え、
     前記継手管(52)は、アルミニウム以外の金属で構成され、
     前記接続部材(53)は、アルミニウム又はアルミニウム合金で構成される
    減圧弁。
  2.  請求項1の減圧弁(50)において、
     前記継手管(52)の管軸方向における前記接続部材(53)の長さは、5mm以下である
    減圧弁。
  3.  請求項1又2の減圧弁(50)において、
     前記接続部材(53)から前記弁本体(51)までの距離は、15mm以上である
    減圧弁。
  4.  請求項1~3のいずれか1項の減圧弁(50)において、
     前記継手管(52)は、銅又は銅合金で構成されると共に塗膜により被覆される
    減圧弁。
  5.  請求項1~3のいずれか1項の減圧弁(50)において、
     前記継手管(52)は、ステンレスで構成される
    減圧弁。
  6.  請求項1~5のいずれか1項の減圧弁(50)と、
     アルミニウム又はアルミニウム合金で構成される伝熱管(35)と、
     前記伝熱管(35)に接続され、アルミニウム又はアルミニウム合金で構成される冷媒配管(36)と
    を備え、
     前記冷媒配管(36)は、前記減圧弁(50)の前記接続部材(53)にロウ付けされる
    熱交換器。
  7.  請求項6の熱交換器(30)において、
     前記冷媒配管(36)は複数設けられ、
     複数の前記冷媒配管(36)は、分流部(37)を介して前記減圧弁(50)と接続される
    熱交換器。
  8.  請求項6又は7の熱交換器(30)を備える空気調和装置。
  9.  熱交換器(30)の製造方法であって、
     前記熱交換器(30)は、
     減圧弁(50)と、
     アルミニウム又はアルミニウム合金で構成される伝熱管(35)と、
     前記伝熱管(35)に接続され、アルミニウム又はアルミニウム合金で構成される冷媒配管(36)とを備え、
     前記減圧弁(50)は、
     弁本体(51)と、
     前記弁本体(51)に一端が接続された継手管(52)と、
     前記継手管(52)の他端に溶接によって接続された接続部材(53)とを
    備え、
     前記継手管(52)は、アルミニウム以外の金属で構成され、
     前記接続部材(53)は、アルミニウム又はアルミニウム合金で構成され、
     前記冷媒配管(36)と前記減圧弁(50)の前記接続部材(53)とをロウ付けによって接続する、
    熱交換器の製造方法。
PCT/JP2022/037685 2021-10-25 2022-10-07 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法 WO2023074327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068163.6A CN118103647A (zh) 2021-10-25 2022-10-07 减压阀、热交换器、空调装置、以及热交换器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173677 2021-10-25
JP2021173677A JP7315864B2 (ja) 2021-10-25 2021-10-25 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2023074327A1 true WO2023074327A1 (ja) 2023-05-04

Family

ID=86159841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037685 WO2023074327A1 (ja) 2021-10-25 2022-10-07 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法

Country Status (3)

Country Link
JP (1) JP7315864B2 (ja)
CN (1) CN118103647A (ja)
WO (1) WO2023074327A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205573A (en) * 1963-01-31 1965-09-14 Dominick Monaco Method of brazing aluminum to a ferrous metal
JPH08313112A (ja) * 1995-05-22 1996-11-29 Hitachi Ltd 空気調和機
JP2006349274A (ja) * 2005-06-16 2006-12-28 Saginomiya Seisakusho Inc 絞り装置および流量制御弁ならびにこれを組み込んだ空気調和装置
JP2007255850A (ja) * 2006-03-24 2007-10-04 Hoshizaki Electric Co Ltd 冷凍回路
JP2008267689A (ja) * 2007-04-20 2008-11-06 Hitachi Appliances Inc 冷媒分配器
WO2017169320A1 (ja) * 2016-03-31 2017-10-05 株式会社鷺宮製作所 電動弁および冷凍サイクルシステム
JP2018115774A (ja) * 2017-01-16 2018-07-26 日立ジョンソンコントロールズ空調株式会社 熱交換器の接続配管構造、及び、空気調和機
JP2021121762A (ja) * 2019-07-31 2021-08-26 ダイキン工業株式会社 冷媒配管、及び、冷凍装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205573A (en) * 1963-01-31 1965-09-14 Dominick Monaco Method of brazing aluminum to a ferrous metal
JPH08313112A (ja) * 1995-05-22 1996-11-29 Hitachi Ltd 空気調和機
JP2006349274A (ja) * 2005-06-16 2006-12-28 Saginomiya Seisakusho Inc 絞り装置および流量制御弁ならびにこれを組み込んだ空気調和装置
JP2007255850A (ja) * 2006-03-24 2007-10-04 Hoshizaki Electric Co Ltd 冷凍回路
JP2008267689A (ja) * 2007-04-20 2008-11-06 Hitachi Appliances Inc 冷媒分配器
WO2017169320A1 (ja) * 2016-03-31 2017-10-05 株式会社鷺宮製作所 電動弁および冷凍サイクルシステム
JP2018115774A (ja) * 2017-01-16 2018-07-26 日立ジョンソンコントロールズ空調株式会社 熱交換器の接続配管構造、及び、空気調和機
JP2021121762A (ja) * 2019-07-31 2021-08-26 ダイキン工業株式会社 冷媒配管、及び、冷凍装置

Also Published As

Publication number Publication date
CN118103647A (zh) 2024-05-28
JP2023063705A (ja) 2023-05-10
JP7315864B2 (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
US11713926B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2009109062A (ja) 四方切換弁を用いた冷凍サイクル装置
JP6980117B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7315864B2 (ja) 減圧弁、熱交換器、空気調和装置、及び熱交換器の製造方法
JP6223603B2 (ja) 熱交換器および空気調和装置
WO2023074328A1 (ja) 熱交換器、空気調和装置、及び熱交換器の製造方法
WO2016038865A1 (ja) 室外ユニットおよびそれを用いた冷凍サイクル装置
JPWO2010032417A1 (ja) 冷媒加熱装置組立体、およびその取付構造
WO2021084947A1 (ja) プレート型冷媒配管、及び、冷凍装置
JP2019128090A (ja) 熱交換器及び冷凍サイクル装置
WO2021084948A1 (ja) プレート型冷媒配管、及び、冷凍装置
JP6797304B2 (ja) 熱交換器及び空気調和機
JP2017133814A (ja) 熱交換器
JP7436789B2 (ja) プレート型冷媒配管、及び、冷凍装置
JP6940080B2 (ja) 冷媒配管
JP7086504B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2024053318A1 (ja) フィンレス熱交換器およびそれを用いた冷却システム
WO2023053577A1 (ja) 空気調和機
WO2020138245A1 (ja) 冷媒配管、及び、空気調和装置
JP2023013765A (ja) 熱交換器および空気調和機
WO2024089798A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2024053317A1 (ja) フィンレス熱交換器およびそれを用いた冷却システム
WO2020170348A1 (ja) 熱交換器及び冷凍サイクル装置
WO2012172598A1 (ja) 空気調和機の熱交換器
CN114174727A (zh) 冷冻装置及所述冷冻装置的制冷剂配管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE