WO2023074288A1 - 車両用表示装置 - Google Patents

車両用表示装置 Download PDF

Info

Publication number
WO2023074288A1
WO2023074288A1 PCT/JP2022/037234 JP2022037234W WO2023074288A1 WO 2023074288 A1 WO2023074288 A1 WO 2023074288A1 JP 2022037234 W JP2022037234 W JP 2022037234W WO 2023074288 A1 WO2023074288 A1 WO 2023074288A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye
optical path
display device
angle
Prior art date
Application number
PCT/JP2022/037234
Other languages
English (en)
French (fr)
Inventor
剛 中村
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2023074288A1 publication Critical patent/WO2023074288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a vehicle display device.
  • Patent Document 1 discloses means for generating left and right viewpoint images related to vehicle information, means for synthesizing the left and right viewpoint images by arranging them alternately in units of pixels, and synthesizing the synthesized image. and means for displaying the composite image displayed on the screen by a slit barrier provided in front of the screen and separating it into images for left and right viewpoints.
  • a vehicular information display device is disclosed in which a stereo image can be observed by viewing the displayed images for the left and right viewpoints.
  • An object of the present invention is to provide a vehicular display device capable of improving the visibility of a virtual image while suppressing complication of the device.
  • a vehicular display device of the present invention is arranged between an image display device that displays an image, a reflective surface that faces an eye point of a vehicle, and the image display device.
  • the left-eye optical path is an optical path that guides the display light of the image display device to the left-eye position of the eyepoint
  • the right-eye optical path is an optical path that guides the display light to the right-eye position of the eyepoint.
  • An optical path leading to a position, a convergence angle corresponding to the optical path lengths of the left-eye optical path and the right-eye optical path is a first angle
  • the optical system visually recognizes an image of the display light from the eye point. It is characterized in that it is configured such that the convergence angle at the time is smaller than the first angle.
  • a vehicle display device has an optical system that forms a left-eye optical path and a right-eye optical path.
  • a convergence angle corresponding to the optical path lengths of the left-eye optical path and the right-eye optical path is the first angle.
  • the optical system is configured to make a convergence angle smaller than the first angle when viewing an image of display light from an eye point. Since the convergence angle is smaller than the first angle, the user feels that the virtual image is displayed in front of the imaging position.
  • FIG. 1 is a diagram showing a vehicle display device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a superimposed image.
  • FIG. 3 is a diagram of double images.
  • FIG. 4 is a diagram showing the left eye optical path of the embodiment.
  • FIG. 5 is a diagram showing the left eye optical path and right eye optical path of the embodiment.
  • FIG. 6 is a diagram showing positions where rays to the left eye and rays to the right eye intersect.
  • FIG. 7 is a diagram showing the convergence angle of the embodiment.
  • FIG. 8 is a schematic configuration diagram of a vehicle display device according to a first modification of the embodiment.
  • FIG. 9 is an explanatory diagram of the convergence angle according to the first modified example of the embodiment.
  • FIG. 10 is a diagram showing optical paths where light rays intersect in front of the imaging position.
  • a vehicle display device according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • this invention is not limited by this embodiment.
  • components in the following embodiments include those that can be easily assumed by those skilled in the art or substantially the same components.
  • FIG. 1 is a diagram showing a vehicle display device according to an embodiment
  • FIG. 2 is a diagram showing an example of a superimposed image
  • FIG. 3 is a diagram of a double image
  • FIG. 5 is a diagram showing the left eye optical path and the right eye optical path of the embodiment
  • FIG. 6 is a diagram showing the position where the light ray to the left eye and the light ray to the right eye intersect
  • FIG. 7 is the vergence of the embodiment
  • FIG. 4 is a diagram showing corners;
  • the vehicle display device 1 of the present embodiment is mounted on a vehicle 100 such as an automobile.
  • the vehicle display device 1 has an image display device 2 and an optical system 3 .
  • the optical system 3 guides the display light DL of the image display device 2 toward the reflecting surface 110 a of the windshield 110 .
  • the driver 200 visually recognizes the virtual image Vi by the display light DL reflected by the reflecting surface 110a.
  • the windshield 110 is configured so that the display light DL is reflected by the reflective surface 110 a and the driver 200 can visually recognize the foreground of the vehicle 100 .
  • the optical system 3 of this embodiment is configured such that the left-eye image 51 and the right-eye image 52 are laterally displaced at the imaging position Xf.
  • the left-eye image 51 and the right-eye image 52 are common images displayed on the display surface of the image display device 2 .
  • the illustrated optical system 3 causes a ray entering the left eye and a ray entering the right eye to intersect at an intersection position Xv ahead of the imaging position Xf.
  • the driver 200 feels as if the virtual image Vi is displayed at the crossing position Xv ahead.
  • the vehicular display device 1 of the present embodiment suppresses a deviation in the sense of distance between the object and the virtual image Vi to improve visibility when displaying the virtual image Vi superimposed on the object in front. can be done.
  • the image display device 2 is a device that generates and displays an image, and is, for example, a liquid crystal display device such as a TFT-LCD (Thin Film Transistor-Liquid Crystal Display).
  • the image display device 2 has, for example, a backlight unit for projecting image display light.
  • the image display device 2 of this embodiment can display at least the superimposed image 50 .
  • a superimposed image 50 is an image superimposed on the object 6 and displayed.
  • the target object 6 is, for example, a moving body such as a pedestrian positioned in front of the vehicle 100, an obstacle in front of the vehicle 100, a road surface in front of the vehicle 100, or the like.
  • the vehicle 100 includes sensors and cameras that detect the object 6 .
  • the controller of the vehicle display device 1 determines the superimposed image 50 based on the information about the detected object 6 .
  • the control unit of the vehicular display device 1 determines display parameters such as the shape, position, color, and brightness of the superimposed image 50, for example.
  • the image display device 2 displays the superimposed image 50 according to the determined display parameters.
  • the superimposed image 50 may be displayed so as to overlap the object 6 when viewed from the eyepoint EP, or may be displayed so as to be adjacent to the object 6 .
  • the eyepoint EP is, for example, a position assumed in advance as the eye position of the driver 200 .
  • the imaging position Xf of the superimposed image 50 is a position in front of the position Xb of the object 6 .
  • the superimposed image 50 may shift left and right and appear double as shown in FIG.
  • the vehicular display device 1 of the present embodiment can bring the intersection position Xv closer to the position Xb of the object 6 . Therefore, the occurrence of double images is suppressed, and the visibility of the superimposed image 50 is improved.
  • the optical system 3 has an aspherical mirror 30 as an optical component.
  • the aspherical mirror 30 has a concave reflecting surface 30a.
  • the shape of the reflecting surface 30a is a free-form surface.
  • the reflective surface 30 a reflects the image toward the reflective surface 110 a of the windshield 110 while enlarging the image on the image display device 2 .
  • the shape of reflective surface 30a is designed to correct image distortion due to reflection from reflective surface 110a.
  • the reflective surface 30a forms a left-eye optical path PL and a right-eye optical path PR.
  • the left-eye optical path PL is the optical path of the display light DL from the image display device 2 toward the left-eye position EL of the eyepoint EP via the reflecting surfaces 30a and 110a.
  • the driver 200 visually recognizes the left-eye image 51 with the display light DL on the left-eye optical path PL.
  • the right-eye optical path PR is the optical path of the display light DL from the image display device 2 toward the right-eye position ER of the eyepoint EP via the reflecting surfaces 30a and 110a.
  • the driver 200 visually recognizes the right-eye image 52 with the display light DL on the right-eye optical path PR.
  • FIG. 4 shows the left eye optical path PL.
  • the aspherical mirror 30 is arranged on the front side X1 in the longitudinal direction X of the vehicle with respect to the image display device 2 .
  • Display light DL projected from the display surface 2 a of the image display device 2 is reflected toward the windshield 110 by the reflecting surface 30 a of the aspherical mirror 30 .
  • Reflective surface 110a of windshield 110 reflects display light DL toward rear side X2 to generate reflected light 7L directed toward left eye position EL of eyepoint EP.
  • the left eye of the driver 200 visually recognizes the left-eye image 51 with the reflected light 7L.
  • FIG. 5 shows the right eye optical path PR in addition to the left eye optical path PL.
  • Reflective surface 110a of windshield 110 reflects display light DL to generate reflected light 7R directed toward right eye position ER of eyepoint EP.
  • the right eye of the driver 200 visually recognizes the right eye image 52 with the reflected light 7R.
  • the optical system 3 is configured, for example, such that the imaging positions Xf of the left-eye image 51 and the right-eye image 52 match.
  • the imaging position Xf is a position where the left-eye image 51 and the right-eye image 52 are formed, and is a position determined corresponding to the optical path lengths of the left-eye optical path PL and the right-eye optical path PR.
  • the optical system 3 of this embodiment is configured such that the optical path length of the left eye optical path PL and the optical path length of the right eye optical path PR are equal.
  • the left-eye image 51 and the right-eye image 52 are shifted left and right at the imaging position Xf.
  • the left-eye image 51 is located on the left side of the right-eye image 52 as viewed from the eyepoint EP.
  • the image center 51c of the left-eye image 51 is located on the left side relative to the image center 52c of the right-eye image 52.
  • the light beams directed to the left eye position EL and the light beams directed to the right eye position ER do not intersect at the imaging position Xf.
  • the two rays intersect at an intersection position Xv on the front side X1 of the imaging position Xf.
  • a light ray 70L directed to the left eye position EL and a light ray 70R directed to the right eye position ER intersect at the intersection position Xv.
  • the visual axis of the left eye when viewing the left eye image 51 from the left eye position EL and the visual axis of the right eye when viewing the right eye image 52 from the right eye position ER intersect at the intersection position Xv.
  • the intersection position Xv is a position ahead of the imaging position Xf when viewed from the eyepoint EP.
  • the intersection position Xv is determined according to the amount of deviation between the left-eye image 51 and the right-eye image 52 in the image horizontal direction.
  • FIG. 7 shows the first angle ⁇ 1 and the convergence angle (hereinafter simply referred to as "convergence angle ⁇ 0") corresponding to the deviation amount.
  • the first angle ⁇ 1 is a convergence angle corresponding to the optical path lengths of the left-eye optical path PL and the right-eye optical path PR.
  • FIG. 7 shows the distance Lf corresponding to the optical path lengths of the left-eye optical path PL and the right-eye optical path PR.
  • the distance Lf is the distance from the eyepoint EP to the imaging position Xf where the left-eye image 51 and the right-eye image 52 are imaged.
  • the convergence angle when viewing a real image at a distance Lf from the eyepoint EP is the first angle ⁇ 1. That is, the first angle ⁇ 1 is the convergence angle when the light beam entering the left eye and the light beam entering the right eye intersect at the imaging position Xf.
  • the convergence angle ⁇ 0 is the convergence angle corresponding to the deviation between the left-eye image 51 and the right-eye image 52 in the image horizontal direction. More specifically, the convergence angle ⁇ 0 is the convergence angle of the virtual image Vi when viewing the left-eye image 51 from the left-eye position EL and viewing the right-eye image 52 from the right-eye position ER.
  • the optical system 3 of this embodiment is configured to make the convergence angle ⁇ 0 smaller than the first angle ⁇ 1. Therefore, the driver 200 feels that the virtual image Vi is displayed in front of the imaging position Xf.
  • the visibility of the virtual image Vi can be improved.
  • the convergence angle ⁇ 0 is close to the convergence angle ⁇ b when the object 6 is gazed at. Therefore, the difference in sense of distance between the object 6 and the superimposed image 50 when viewed from the eye point EP becomes small. Also, the occurrence of a double image when the object 6 is focused is suppressed.
  • the visibility of the virtual image Vi is improved not only when the virtual image Vi is superimposed on a specific object.
  • the angle of convergence when viewing the scene in front becomes closer to the angle of convergence ⁇ 0 when viewing the virtual image Vi. Therefore, when the focus is on the scene in front, the virtual image Vi is unlikely to become a double image.
  • the optical system 3 may be designed, for example, to harmonize the convergence angle ⁇ b and the convergence angle ⁇ 0 when visually recognizing the object 6. As an example, if the convergence angle ⁇ 0 is too small, the crossing position Xv will be ahead of the position Xb of the object 6, and the driver 200 may feel uncomfortable. Therefore, the optical system 3 may be designed so that the intersection position Xv is not ahead of the position Xb of the object 6 when viewed from the eyepoint EP.
  • the convergence angle ⁇ 0 may be equal to or greater than the limit value ⁇ b1.
  • the convergence angle ⁇ 0 is selected from a range in which the first angle ⁇ 1 is the maximum value and the limit value ⁇ b1 is the minimum value.
  • the optical system 3 may be designed so that the convergence angle ⁇ 0 is closer to the limit value ⁇ b1 in this range.
  • the convergence angle ⁇ 0 may be, for example, an angle closer to the limit value ⁇ b1 than the intermediate value between the first angle ⁇ 1 and the limit value ⁇ b1.
  • the vehicle display device 1 of this embodiment has the image display device 2 and the optical system 3 .
  • the optical system 3 is arranged between the reflecting surface 110 a facing the eye point EP of the vehicle 100 and the image display device 2 .
  • the optical system 3 forms a left eye optical path PL and a right eye optical path PR.
  • the left eye optical path PL is an optical path that guides the display light DL of the image display device 2 to the left eye position EL of the eye point EP.
  • the right eye optical path PR is an optical path that guides the display light DL of the image display device 2 to the right eye position ER of the eye point EP.
  • the convergence angle corresponding to the optical path lengths of the left-eye optical path PL and the right-eye optical path PR is the first angle ⁇ 1.
  • the optical system 3 is configured to make the convergence angle ⁇ 0 smaller than the first angle ⁇ 1 when viewing an image of the display light DL from the eyepoint EP.
  • the vehicular display device 1 of the present embodiment can make it appear that the image formed by the display light DL is displayed in front of the imaging position Xf. Further, the vehicular display device 1 of the present embodiment does not require such a complicated configuration as to generate the image for the left viewpoint and the image for the right viewpoint. Therefore, the vehicular display device 1 of the present embodiment can improve the visibility of the virtual image Vi while suppressing complication of the device.
  • the vehicular display device 1 of the present embodiment reduces the difference between the convergence angle when the driver 200 is gazing at the foreground and the convergence angle ⁇ 0 when the virtual image Vi by the vehicular display device 1 is viewed. be able to. Further, the vehicular display device 1 of the present embodiment can reduce the convergence angle ⁇ 0 without extending the optical path length. Therefore, both the improvement in the visibility of the virtual image Vi and the downsizing of the apparatus are achieved.
  • the optical system 3 of this embodiment has a concave aspherical mirror 30 arranged between the image display device 2 and the reflecting surface 110a.
  • the shape of the aspherical mirror 30 is such that the left-eye optical path PL and the right-eye optical path PR are formed such that the convergence angle ⁇ 0 when viewing an image of the display light DL from the eyepoint EP is smaller than the first angle ⁇ 1.
  • the aspherical mirror 30 can have the function of image magnification and the function of image distortion correction.
  • the image display device 2 of this embodiment displays a superimposed image 50 to be superimposed on the object 6 in front of the vehicle 100 .
  • the optical system 3 makes the convergence angle ⁇ 0 smaller than the first angle ⁇ 1 when viewing the superimposed image 50 from the eyepoint EP. Therefore, when the driver 200 visually recognizes the object 6, the superimposed image 50 is less likely to become a double image.
  • the aspherical mirror 30 does not have to have the magnifying function or the distortion correcting function.
  • the optical system 3 may have a mirror having a magnifying function and a distortion correcting function in addition to the aspherical mirror 30 forming the left eye optical path PL and the right eye optical path PR.
  • the optical components that form the left-eye optical path PL and the right-eye optical path PR are not limited to the aspherical mirror 30.
  • the optical system 3 may, for example, comprise one or more lenses forming a left-eye optical path PL and a right-eye optical path PR. This lens may be provided instead of the aspherical mirror 30, or may be provided together with the aspherical mirror 30 to form the left eye optical path PL and the right eye optical path PR.
  • FIG. 8 is a schematic configuration diagram of a vehicle display device according to the first modification of the embodiment
  • FIG. 9 is an explanatory diagram of the convergence angle according to the first modification of the embodiment.
  • the difference from the above embodiment is, for example, that a meter image 53 is displayed in addition to the superimposed image 50 .
  • the meter image 53 is an image showing the running state of the vehicle 100 .
  • Meter image 53 is typically an image indicating the running speed of vehicle 100 .
  • the meter image 53 may be an image indicating the rotational speed of the engine, an image indicating the running load of the vehicle 100, or the like.
  • the meter image 53 is displayed below the superimposed image 50 when viewed from the eyepoint EP.
  • the image display device 2 displays a superimposed image 50 and a meter image 53.
  • the image display device 2 displays, for example, the superimposed image 50 and the meter image 53 on different regions of one display surface 2a.
  • Display light DL output from image display device 2 includes display light DL1 for superimposed image 50 and display light DL2 for meter image 53 .
  • the reflecting surface 30a of the aspherical mirror 30 has a first area 30b and a second area 30c.
  • the first area 30b is an area that reflects the display light DL1 of the superimposed image 50 .
  • the second area 30 c is an area that reflects the display light DL ⁇ b>2 of the meter image 53 .
  • the first region 30b is configured to form a left eye optical path PL and a right eye optical path PR.
  • the first region 30b forms the same left-eye optical path PL and right-eye optical path PR as in the above embodiment.
  • the left-eye image 51 and the right-eye image 52 of the superimposed image 50 are shifted left and right at the imaging position Xf.
  • the light ray 70L traveling toward the left eye position EL along the left eye optical path PL and the light ray 70R traveling along the right eye optical path PR toward the right eye position ER do not intersect at the imaging position Xf, but at the forward intersection position Xv. cross. Therefore, the convergence angle ⁇ 0 when viewing the left-eye image 51 and the right-eye image 52 from the eyepoint EP is smaller than the first angle ⁇ 1.
  • a left-eye optical path PL1 and a right-eye optical path PR1 formed by the second region 30c are shown on the left side of FIG.
  • Driver 200 visually recognizes meter image 53 with light ray 71L directed toward left eye position EL along left eye optical path PL1 and light ray 71R directed toward right eye position ER along right eye optical path PR1.
  • the light ray 71L and the light ray 71R intersect at a position before the intersecting position Xv of the superimposed image 50 . Therefore, the convergence angle ⁇ 2 when viewing the meter image 53 from the eye point EP is larger than the convergence angle ⁇ 0 when viewing the superimposed image 50 .
  • the shape of the second region 30c of the aspherical mirror 30 is designed so that the convergence angle ⁇ 2 of the meter image 53 is larger than the convergence angle ⁇ 0 of the superimposed image 50. Therefore, the driver 200 feels that the meter image 53 is displayed in front of the superimposed image 50 .
  • the vehicular display device 1 according to the present modification can allow the driver 200 to visually recognize the superimposed image 50 and the meter image 53 with an appropriate sense of distance.
  • the illustrated ray 71L and ray 71R intersect at the imaging position Xf.
  • the convergence angle ⁇ 2 when viewing the meter image 53 is, for example, equal to the first angle ⁇ 1.
  • the second area 30c may be configured such that the convergence angle ⁇ 2 when viewing the meter image 53 is larger than the first angle ⁇ 1.
  • FIG. 10 shows optical paths that intersect light rays before the imaging position Xf.
  • the left-eye optical path PL1 and the right-eye optical path PR1 shown in FIG. 10 cause the light beam 71L and the light beam 71R to intersect at a position Xw before the imaging position Xf.
  • the left-eye image 54 and the right-eye image 55 of the meter image 53 are shifted in the horizontal direction of the image.
  • the left eye image 54 is positioned to the right of the right eye image 55 . Therefore, the driver 200 feels that the meter image 53 is displayed at a position Xw in front of the imaging position Xf.
  • the image display device 2 displays the meter image 53 indicating the running state of the vehicle 100 .
  • the meter image 53 is displayed below the superimposed image 50 when viewed from the eyepoint EP.
  • the convergence angle ⁇ 2 when viewing the meter image 53 from the eye point EP is greater than the convergence angle ⁇ 0 when viewing the superimposed image 50 from the eye point EP. Therefore, the vehicular display device 1 according to the first modification can display the superimposed image 50 and the meter image 53 with an appropriate sense of distance to the eyepoint EP.
  • the aspherical mirror 30 may be divided into a plurality of mirrors.
  • the optical system 3 may have a first mirror with a first area 30b and a second mirror with a second area 30c.
  • a first region 30 b of the first mirror forms a left eye optical path PL and a right eye optical path PR for the superimposed image 50 .
  • a second region 30c of the second mirror forms a left-eye optical path PL1 and a right-eye optical path PR1 for the meter image 53.
  • the optical system 3 may have, for example, lenses forming left eye optical paths PL, PL1 and right eye optical paths PR, PR1.
  • This lens may be provided in place of the aspherical mirror 30, or may be provided together with the aspherical mirror 30 to form the left eye optical path PL, PL1 and the right eye optical path PR, PR1.
  • Vehicle Display Device 2 Image Display Device 2a: Display Surface 3: Optical System 6: Object 7L, 7R: Reflected Light 30: Aspherical Mirror 30a: Reflective Surface 30b: First Area 30c: Third Two areas 50: superimposed image 51: left eye image 51c: image center 52: right eye image 52c: image center 53: meter image 54: left eye image 55: right eye image 70L, 70R: rays 71L, 71R: rays 100: Vehicle 110: Windshield 110a: Reflective surface 200: Driver DL, DL1, DL2: Display light EP: Eye point EL: Left eye position ER: Right eye position PL, PL1: Left eye optical path PR, PR1: Right-eye optical path X: Vehicle longitudinal direction X1: Front side X2: Rear side Xf: Imaging position Xv: Crossing position Vi: Virtual image ⁇ 0: Convergence angle ⁇ 1: First angle ⁇ 2: Convergence angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

車両用表示装置は、画像を表示する画像表示装置と、車両のアイポイントと対向する反射面と、画像表示装置との間に配置されており、左目光路および右目光路を形成する光学系と、を備え、左目光路は、画像表示装置の表示光をアイポイントEPの左目位置ELに導く光路であり、右目光路は、表示光をアイポイントの右目位置ERに導く光路であり、左目光路および右目光路の光路長に対応する輻輳角は、第一の角度θ1であり、光学系は、アイポイントから表示光による画像を視認するときの輻輳角θ0を第一の角度θ1よりも小さくするように構成されている。

Description

車両用表示装置
 本発明は、車両用表示装置に関する。
 従来、虚像を表示する車両用表示装置がある。特許文献1には、車両用情報に係る左,右視点用の各画像を発生する手段と、その左,右視点用の各画像を画素単位で交互に並べて合成する手段と、その合成画像をスクリーンに写し出して、そのスクリーンの前面に設けられたスリットバリアにより、スクリーンに表示されている合成画像を左,右視点用の各画像に分離して表示する手段とによって構成され、その分離して表示されている左,右視点用の各画像をみることによってステレオ画像を観察できるようにした車両用情報表示装置が開示されている。
特許第3194024号公報
 車両用表示装置において、装置の複雑化を抑制しつつ虚像の視認性を向上できることが望まれている。例えば、アイポイントから見た場合の虚像までの距離感を前景や対象物までの距離感に近づけることができれば、虚像の視認性が向上する。一方で、特許文献1のように左視点用の画像および右視点用の画像を生成する場合、装置が複雑化してしまう。
 本発明の目的は、装置の複雑化を抑制しつつ虚像の視認性を向上できる車両用表示装置を提供することである。
 本発明の車両用表示装置は、画像を表示する画像表示装置と、車両のアイポイントと対向する反射面と、前記画像表示装置との間に配置されており、左目光路および右目光路を形成する光学系と、を備え、前記左目光路は、前記画像表示装置の表示光を前記アイポイントの左目位置に導く光路であり、前記右目光路は、前記表示光を前記アイポイントの右目位置に導く光路であり、前記左目光路および前記右目光路の光路長に対応する輻輳角は、第一の角度であり、前記光学系は、前記アイポイントから前記表示光による画像を視認するときの輻輳角を前記第一の角度よりも小さくするように構成されていることを特徴とする。
 本発明に係る車両用表示装置は、左目光路および右目光路を形成する光学系を有する。左目光路および右目光路の光路長に対応する輻輳角は、第一の角度である。光学系は、アイポイントから表示光による画像を視認するときの輻輳角を第一の角度よりも小さくするように構成されている。輻輳角が第一の角度よりも小さいことで、ユーザは、虚像が結像位置よりも前方に表示されているように感じる。本発明に係る車両用表示装置によれば、装置の複雑化を抑制しつつ虚像の視認性を向上できるという効果を奏する。
図1は、実施形態に係る車両用表示装置を示す図である。 図2は、重畳画像の一例を示す図である。 図3は、二重像の図である。 図4は、実施形態の左目光路を示す図である。 図5は、実施形態の左目光路および右目光路を示す図である。 図6は、左目への光線と右目への光線とが交差する位置を示す図である。 図7は、実施形態の輻輳角を示す図である。 図8は、実施形態の第1変形例に係る車両用表示装置の概略構成図である。 図9は、実施形態の第1変形例に係る輻輳角の説明図である。 図10は、結像位置よりも手前において光線を交差させる光路を示す図ある。
 以下に、本発明の実施形態に係る車両用表示装置につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
[実施形態]
 図1から図7を参照して、実施形態について説明する。本実施形態は、車両用表示装置に関する。図1は、実施形態に係る車両用表示装置を示す図、図2は、重畳画像の一例を示す図、図3は、二重像の図、図4は、実施形態の左目光路を示す図、図5は、実施形態の左目光路および右目光路を示す図、図6は、左目への光線と右目への光線とが交差する位置を示す図、図7は、実施形態の輻輳角を示す図である。
 図1に示すように、本実施形態の車両用表示装置1は、自動車等の車両100に搭載される。車両用表示装置1は、画像表示装置2および光学系3を有する。光学系3は、画像表示装置2の表示光DLをウインドシールド110の反射面110aに向けて導く。ドライバ200は、反射面110aによって反射された表示光DLによって虚像Viを視認する。ウインドシールド110は、反射面110aによって表示光DLを反射すると共に、ドライバ200が車両100の前景を視認できるように構成されている。
 本実施形態の光学系3は、結像位置Xfにおいて左目画像51と右目画像52とが左右にずれるように構成されている。左目画像51および右目画像52は、画像表示装置2の表示面に表示される共通の画像である。例示された光学系3は、結像位置Xfよりも前方の交差位置Xvにおいて左目に入る光線と右目に入る光線とを交差させる。その結果、ドライバ200にとって虚像Viが前方の交差位置Xvに表示されているかのように感じられる。本実施形態の車両用表示装置1は、虚像Viを前方の対象物に重畳させて表示する場合に、対象物と虚像Viとの間の距離感のずれを抑制して視認性を向上させることができる。
 画像表示装置2は、画像を生成して表示する装置であり、例えば、TFT-LCD(Thin Film Transistor-Liquid Crystal Display)等の液晶表示装置である。画像表示装置2は、例えば、画像の表示光を投影するためのバックライトユニットを有する。本実施形態の画像表示装置2は、少なくとも重畳画像50を表示することができる。
 図2には、重畳画像50の一例が示されている。重畳画像50は対象物6に重畳させて表示される画像である。対象物6は、例えば、車両100の前方に位置する歩行者等の移動体、車両100の前方の障害物、車両100の前方の路面等である。車両100は、対象物6を検出するセンサやカメラを備えている。車両用表示装置1の制御部は、検出された対象物6に関する情報に基づいて重畳画像50を決定する。
 車両用表示装置1の制御部は、例えば、重畳画像50の形状、位置、色、輝度等の表示パラメータを決定する。画像表示装置2は、決定された表示パラメータに従って重畳画像50を表示する。重畳画像50は、アイポイントEPから見て対象物6と重畳するように表示されてもよく、対象物6に隣接するように表示されてもよい。なお、アイポイントEPは、例えば、ドライバ200の目の位置として予め想定された位置である。
 重畳画像50の結像位置Xfは、対象物6の位置Xbよりも手前の位置である。この場合、対象物6に目の焦点を合わせたときに、図3に示すように重畳画像50が左右にずれて二重に見えてしまうことがある。これに対して、本実施形態の車両用表示装置1は、交差位置Xvを対象物6の位置Xbに近づけることができる。よって、二重像の発生が抑制され、重畳画像50の視認性が向上する。
 図1に示すように、光学系3は、光学部品である非球面ミラー30を有する。非球面ミラー30は、凹状の反射面30aを有する。反射面30aの形状は、自由曲面である。反射面30aは、画像表示装置2の画像を拡大しながらウインドシールド110の反射面110aに向けて反射する。反射面30aの形状は、反射面110aで反射されることによる画像の歪みを補正するように設計されている。
 反射面30aは、左目光路PLおよび右目光路PRを形成する。左目光路PLは、画像表示装置2から反射面30aおよび反射面110aを経由してアイポイントEPの左目位置ELへ向かう表示光DLの光路である。ドライバ200は、左目光路PLの表示光DLによって左目画像51を視認する。右目光路PRは、画像表示装置2から反射面30aおよび反射面110aを経由してアイポイントEPの右目位置ERへ向かう表示光DLの光路である。ドライバ200は、右目光路PRの表示光DLによって右目画像52を視認する。
 図4には、左目光路PLが示されている。非球面ミラー30は、画像表示装置2に対して車両前後方向Xの前側X1に配置されている。画像表示装置2の表示面2aから投影される表示光DLは、非球面ミラー30の反射面30aによってウインドシールド110に向けて反射される。ウインドシールド110の反射面110aは、後側X2に向けて表示光DLを反射し、アイポイントEPの左目位置ELへ向かう反射光7Lを生成する。ドライバ200の左目は、反射光7Lによって左目画像51を視認する。
 図5には、左目光路PLに加えて右目光路PRが示されている。ウインドシールド110の反射面110aは、表示光DLを反射し、アイポイントEPの右目位置ERへ向かう反射光7Rを生成する。ドライバ200の右目は、反射光7Rによって右目画像52を視認する。光学系3は、例えば、左目画像51および右目画像52の結像位置Xfが一致するように構成される。結像位置Xfは、左目画像51および右目画像52が結像する位置であり、左目光路PLの光路長および右目光路PRの光路長に対応して決まる位置である。本実施形態の光学系3は、左目光路PLの光路長および右目光路PRの光路長が等しくなるように構成されている。
 図5に示すように、結像位置Xfにおいて、左目画像51と右目画像52とが左右にずれている。左目画像51は、アイポイントEPから見て右目画像52に対して左側に位置している。例えば、左目画像51の画像中心51cは、右目画像52の画像中心52cに対して相対的に左側に位置している。よって、アイポイントEPから表示面2aに表示されている画像の同一点を見る場合に、左目位置ELに向かう光線と、右目位置ERに向かう光線とが結像位置Xfで交差しない。二つの光線は、結像位置Xfよりも前側X1の交差位置Xvにおいて交差する。
 図6に示すように、左目位置ELに向かう光線70Lと、右目位置ERに向かう光線70Rとは交差位置Xvにおいて交差する。言い換えると、左目位置ELから左目画像51を視認する場合の左目の視軸と、右目位置ERから右目画像52を視認する場合の右目の視軸とは交差位置Xvにおいて交差する。交差位置Xvは、アイポイントEPから見て結像位置Xfよりも前方の位置である。交差位置Xvは、画像横方向における左目画像51と右目画像52とのずれ量に応じて決まる。
 図7には、第一の角度θ1、およびずれ量に応じた輻輳角(以下、単に「輻輳角θ0」と称する。)が示されている。第一の角度θ1は、左目光路PLおよび右目光路PRの光路長に対応する輻輳角である。図7には、左目光路PLおよび右目光路PRの光路長に応じた距離Lfが示されている。距離Lfは、アイポイントEPから左目画像51および右目画像52が結像する結像位置Xfまでの距離である。アイポイントEPから距離Lfの位置にある実像を視認する場合の輻輳角は、第一の角度θ1となる。つまり、第一の角度θ1は、左目に入る光線と右目に入る光線とが結像位置Xfで交差する場合の輻輳角である。
 輻輳角θ0は、画像横方向における左目画像51と右目画像52とのずれに応じた輻輳角である。より詳しくは、輻輳角θ0は、左目画像51を左目位置ELから視認し、かつ右目画像52を右目位置ERから視認する場合の虚像Viの輻輳角である。本実施形態の光学系3は、輻輳角θ0を第一の角度θ1よりも小さくするように構成されている。よって、ドライバ200は、虚像Viが結像位置Xfよりも前方に表示されているように感じる。
 これにより、虚像Viの視認性を向上させることができる。例えば、対象物6に重ねて重畳画像50を表示する場合に、輻輳角θ0が対象物6を注視する場合の輻輳角θbに近い角度となる。よって、アイポイントEPから見た場合の対象物6と重畳画像50との間の距離感の差が小さくなる。また、対象物6に焦点を合わせた場合の二重像の発生が抑制される。
 また、虚像Viを特定の対象物に重畳させる場合に限らず、虚像Viの視認性が向上する。例えば、前方の光景を視認する場合の輻輳角と虚像Viを視認する場合の輻輳角θ0とが近くなる。よって、前方の光景に焦点を合わせている場合に、虚像Viが二重像となりにくい。
 光学系3は、例えば、対象物6を視認するときの輻輳角θbと輻輳角θ0とを調和させるように設計されてもよい。一例として、輻輳角θ0を小さくし過ぎると、交差位置Xvが対象物6の位置Xbよりも前方となってしまい、ドライバ200が違和感を覚える可能性がある。そこで、光学系3は、アイポイントEPから見て交差位置Xvが対象物6の位置Xbよりも前方とならないように設計されてもよい。
 例えば、車両用表示装置1において、重畳画像50を表示する場合の対象物6までの最短距離Lminが定められているとする。この場合、最短距離Lminに対応する輻輳角θbの値を限界値θb1としたときに、輻輳角θ0が限界値θb1以上とされてもよい。
 この場合、輻輳角θ0は、第一の角度θ1を最大値とし、限界値θb1を最小値とした範囲から選択される。光学系3は、この範囲において、輻輳角θ0が限界値θb1により近い値となるように設計されてもよい。輻輳角θ0は、例えば、第一の角度θ1と限界値θb1との中間値よりも限界値θb1に近い角度とされてもよい。
 以上説明したように、本実施形態の車両用表示装置1は、画像表示装置2と、光学系3と、を有する。光学系3は、車両100のアイポイントEPと対向する反射面110aと、画像表示装置2との間に配置されている。光学系3は、左目光路PLおよび右目光路PRを形成する。左目光路PLは、画像表示装置2の表示光DLをアイポイントEPの左目位置ELに導く光路である。右目光路PRは、画像表示装置2の表示光DLをアイポイントEPの右目位置ERに導く光路である。
 左目光路PLおよび右目光路PRの光路長に対応する輻輳角は、第一の角度θ1である。光学系3は、アイポイントEPから表示光DLによる画像を視認するときの輻輳角θ0を第一の角度θ1よりも小さくするように構成されている。本実施形態の車両用表示装置1は、表示光DLによる画像が結像位置Xfよりも前方に表示されているように認識させることができる。また、本実施形態の車両用表示装置1は、左視点用の画像および右視点用の画像を生成するような複雑な構成を要しない。よって、本実施形態の車両用表示装置1は、装置の複雑化を抑制しつつ虚像Viの視認性を向上させることができる。
 例えば、本実施形態の車両用表示装置1は、ドライバ200が前景を注視しているときの輻輳角と、車両用表示装置1による虚像Viを視認するときの輻輳角θ0との差を小さくすることができる。また、本実施形態の車両用表示装置1は、光路長を伸ばすこと無く輻輳角θ0を小さくすることができる。よって、虚像Viの視認性向上と装置の小型化とが両立される。
 本実施形態の光学系3は、画像表示装置2と反射面110aとの間に配置された凹状の非球面ミラー30を有する。非球面ミラー30の形状は、アイポイントEPから表示光DLによる画像を視認するときの輻輳角θ0を第一の角度θ1よりも小さくするように左目光路PLおよび右目光路PRを形成する形状である。非球面ミラー30は、画像拡大の機能、および画像の歪み補正の機能を有することができる。非球面ミラー30に輻輳角θ0を所望の角度とする機能を与えることで、部品数の増加が抑制される。
 本実施形態の画像表示装置2は、車両100の前方の対象物6に対して重畳させる重畳画像50を表示する。光学系3は、アイポイントEPから重畳画像50を視認するときの輻輳角θ0を第一の角度θ1よりも小さくする。よって、ドライバ200が対象物6を視認するときに重畳画像50が二重像となりにくい。
 なお、非球面ミラー30は、拡大機能や歪み補正の機能を有していなくてもよい。この場合、光学系3は、左目光路PLおよび右目光路PRを形成する非球面ミラー30とは別に、拡大機能や歪み補正の機能を有するミラーを有していてもよい。
 左目光路PLおよび右目光路PRを形成する光学部品は、非球面ミラー30には限定されない。光学系3は、例えば、左目光路PLおよび右目光路PRを形成する一つまたは複数のレンズを有していてもよい。このレンズは、非球面ミラー30に代えて設けられてもよく、非球面ミラー30と共に設けられて左目光路PLおよび右目光路PRを形成してもよい。
[実施形態の第1変形例]
 実施形態の第1変形例について説明する。図8は、実施形態の第1変形例に係る車両用表示装置の概略構成図、図9は、実施形態の第1変形例に係る輻輳角の説明図である。実施形態の第1変形例において、上記実施形態と異なる点は、例えば、重畳画像50に加えてメータ画像53を表示する点である。
 メータ画像53は、車両100の走行状態を示す画像である。メータ画像53は、典型的には車両100の走行速度を示す画像である。メータ画像53は、機関の回転速度を示す画像や、車両100の走行負荷を示す画像等であってもよい。メータ画像53は、アイポイントEPから見て重畳画像50よりも下方に表示される。
 図8に示すように、画像表示装置2は、重畳画像50およびメータ画像53を表示する。画像表示装置2は、例えば、一つの表示面2aの異なる領域に重畳画像50およびメータ画像53を表示する。画像表示装置2から出力される表示光DLは、重畳画像50の表示光DL1、およびメータ画像53の表示光DL2を含む。
 非球面ミラー30の反射面30aは、第一領域30b、および第二領域30cを有する。第一領域30bは、重畳画像50の表示光DL1を反射する領域である。第二領域30cは、メータ画像53の表示光DL2を反射する領域である。第一領域30bは、左目光路PLおよび右目光路PRを形成するように構成されている。
 第一領域30bは、上記実施形態と同様の左目光路PLおよび右目光路PRを形成する。図9の右側に示すように、重畳画像50の左目画像51および右目画像52は、結像位置Xfにおいて左右にずれている。言い換えると、左目光路PLに沿って左目位置ELに向かう光線70Lと、右目光路PRに沿って右目位置ERに向かう光線70Rとが結像位置Xfでは交差せず、前方の交差位置Xvにおいて交差する。従って、アイポイントEPから左目画像51および右目画像52を視認するときの輻輳角θ0は、第一の角度θ1よりも小さな角度である。
 図9の左側には、第二領域30cによって形成される左目光路PL1および右目光路PR1が示されている。ドライバ200は、左目光路PL1に沿って左目位置ELに向かう光線71L、および右目光路PR1に沿って右目位置ERに向かう光線71Rによってメータ画像53を視認する。光線71Lおよび光線71Rは、重畳画像50の交差位置Xvよりも手前の位置において交差する。よって、アイポイントEPからメータ画像53を視認するときの輻輳角θ2は、重畳画像50を視認するときの輻輳角θ0よりも大きい。
 非球面ミラー30の第二領域30cの形状は、メータ画像53の輻輳角θ2を重畳画像50の輻輳角θ0と比較して大きな角度とするように設計される。よって、ドライバ200は、メータ画像53が重畳画像50と比較して手前に表示されているように感じる。本変形例に係る車両用表示装置1は、重畳画像50およびメータ画像53のそれぞれを適切な距離感でドライバ200に視認させることができる。
 例示された光線71Lおよび光線71Rは、結像位置Xfにおいて交差する。この場合、メータ画像53を視認するときの輻輳角θ2は、例えば、第一の角度θ1と等しくなる。
 なお、第二領域30cは、メータ画像53を視認するときの輻輳角θ2を第一の角度θ1よりも大きな角度とするように構成されてもよい。図10には、結像位置Xfよりも手前において光線を交差させる光路が示されている。図10に示す左目光路PL1および右目光路PR1は、光線71Lおよび光線71Rを結像位置Xfよりも手前の位置Xwにおいて交差させる。
 結像位置Xfにおいて、メータ画像53の左目画像54および右目画像55は、画像横方向にずれている。左目画像54は、右目画像55に対して右側に位置する。よって、ドライバ200は、メータ画像53が結像位置Xfよりも手前の位置Xwに表示されているように感じる。
 以上説明したように、実施形態の第1変形例に係る画像表示装置2は、車両100の走行状態を示すメータ画像53を表示する。メータ画像53は、アイポイントEPから見て重畳画像50よりも下方に表示される。アイポイントEPからメータ画像53を視認するときの輻輳角θ2は、アイポイントEPから重畳画像50を視認するときの輻輳角θ0よりも大きい。よって、第1変形例に係る車両用表示装置1は、アイポイントEPに対して適切な距離感で重畳画像50およびメータ画像53を表示することができる。
 なお、非球面ミラー30は、複数のミラーに分かれていてもよい。例えば、光学系3は、第一領域30bを有する第一ミラーと、第二領域30cを有する第二ミラーとを有していてもよい。第一ミラーの第一領域30bは、重畳画像50のための左目光路PLおよび右目光路PRを形成する。第二ミラーの第二領域30cは、メータ画像53のための左目光路PL1および右目光路PR1を形成する。
 光学系3は、例えば、左目光路PL,PL1および右目光路PR,PR1を形成するレンズを有していてもよい。このレンズは、非球面ミラー30に代えて設けられてもよく、非球面ミラー30と共に設けられて左目光路PL,PL1および右目光路PR,PR1を形成してもよい。
 上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行することができる。
 1 車両用表示装置
 2:画像表示装置、 2a:表示面、 3:光学系
 6:対象物
 7L,7R:反射光
 30:非球面ミラー、 30a:反射面、 30b:第一領域、 30c:第二領域
 50:重畳画像、 51:左目画像、 51c:画像中心
 52:右目画像、 52c:画像中心、 53:メータ画像
 54:左目画像、 55:右目画像
 70L,70R:光線、 71L,71R:光線
 100:車両、 110:ウインドシールド、 110a:反射面
 200:ドライバ
 DL,DL1,DL2:表示光
 EP:アイポイント、 EL:左目位置、 ER:右目位置
 PL,PL1:左目光路、 PR,PR1:右目光路
 X:車両前後方向、 X1:前側、 X2:後側、 Xf:結像位置
 Xv:交差位置
 Vi:虚像
 θ0:輻輳角、 θ1:第一の角度、 θ2:輻輳角

Claims (4)

  1.  画像を表示する画像表示装置と、
     車両のアイポイントと対向する反射面と、前記画像表示装置との間に配置されており、左目光路および右目光路を形成する光学系と、
     を備え、
     前記左目光路は、前記画像表示装置の表示光を前記アイポイントの左目位置に導く光路であり、
     前記右目光路は、前記表示光を前記アイポイントの右目位置に導く光路であり、
     前記左目光路および前記右目光路の光路長に対応する輻輳角は、第一の角度であり、
     前記光学系は、前記アイポイントから前記表示光による画像を視認するときの輻輳角を前記第一の角度よりも小さくするように構成されている
     ことを特徴とする車両用表示装置。
  2.  前記光学系は、前記画像表示装置と前記反射面との間に配置された凹状の非球面ミラーを有し、
     前記非球面ミラーの形状は、前記アイポイントから前記表示光による画像を視認するときの輻輳角を前記第一の角度よりも小さくするように前記左目光路および前記右目光路を形成する形状である
     請求項1に記載の車両用表示装置。
  3.  前記画像表示装置は、前記車両の前方の対象物に対して重畳させる重畳画像を表示し、
     前記光学系は、前記アイポイントから前記重畳画像を視認するときの輻輳角を前記第一の角度よりも小さくする
     請求項1または2に記載の車両用表示装置。
  4.  前記画像表示装置は、更に、前記車両の走行状態を示すメータ画像を表示し、
     前記メータ画像は、前記アイポイントから見て前記重畳画像よりも下方に表示され、
     前記アイポイントから前記メータ画像を視認するときの輻輳角は、前記アイポイントから前記重畳画像を視認するときの輻輳角よりも大きい
     請求項3に記載の車両用表示装置。
PCT/JP2022/037234 2021-10-26 2022-10-05 車両用表示装置 WO2023074288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021174460A JP2023064280A (ja) 2021-10-26 2021-10-26 車両用表示装置
JP2021-174460 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023074288A1 true WO2023074288A1 (ja) 2023-05-04

Family

ID=86159861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037234 WO2023074288A1 (ja) 2021-10-26 2022-10-05 車両用表示装置

Country Status (2)

Country Link
JP (1) JP2023064280A (ja)
WO (1) WO2023074288A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031618A (ja) * 2004-07-21 2006-02-02 Denso Corp 車両用表示装置およびその表示方法
JP2007292956A (ja) * 2006-04-24 2007-11-08 Denso Corp 表示装置
WO2015190157A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 虚像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031618A (ja) * 2004-07-21 2006-02-02 Denso Corp 車両用表示装置およびその表示方法
JP2007292956A (ja) * 2006-04-24 2007-11-08 Denso Corp 表示装置
WO2015190157A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 虚像表示装置

Also Published As

Publication number Publication date
JP2023064280A (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
JP7515229B2 (ja) 映像表示システム、映像表示方法、及び、プログラム
US10162175B2 (en) Dual head-up display apparatus
EP3444139B1 (en) Image processing method and image processing device
WO2014174575A1 (ja) 車両用ヘッドアップディスプレイ装置
WO2012036098A1 (ja) ヘッドアップディスプレイ
WO2017138297A1 (ja) 画像表示装置及び画像表示方法
US11106045B2 (en) Display system, movable object, and design method
CA2821601A1 (en) Environment image display apparatus for transport machine
EP3543767B1 (en) Virtual image display device
WO2022209439A1 (ja) 虚像表示装置
JP2021067909A (ja) 立体表示装置及びヘッドアップディスプレイ装置
WO2020009217A1 (ja) ヘッドアップディスプレイ装置
US11604360B2 (en) Head-up display
JP7354846B2 (ja) ヘッドアップディスプレイ装置
WO2023074288A1 (ja) 車両用表示装置
JPH07143524A (ja) 車載用ステレオ画像表示装置
JP7223283B2 (ja) 画像処理ユニット及びそれを備えるヘッドアップディスプレイ装置
KR20180046567A (ko) 차량용 헤드 업 디스플레이 제어 장치 및 방법
WO2018101170A1 (ja) 表示装置、及び、電子ミラー
WO2019188581A1 (ja) 表示制御装置、ヘッドアップディスプレイ装置
WO2019176448A1 (ja) 情報表示装置
WO2020171045A1 (ja) ヘッドアップディスプレイ装置、表示制御装置、及び表示制御プログラム
EP3534202B1 (en) Virtual image display device
WO2024171814A1 (ja) 画像投影装置
JP7111070B2 (ja) ヘッドアップディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE