WO2023073871A1 - 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器 - Google Patents

電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器 Download PDF

Info

Publication number
WO2023073871A1
WO2023073871A1 PCT/JP2021/039843 JP2021039843W WO2023073871A1 WO 2023073871 A1 WO2023073871 A1 WO 2023073871A1 JP 2021039843 W JP2021039843 W JP 2021039843W WO 2023073871 A1 WO2023073871 A1 WO 2023073871A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage detection
control unit
power conversion
conversion device
Prior art date
Application number
PCT/JP2021/039843
Other languages
English (en)
French (fr)
Inventor
裕一 清水
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/039843 priority Critical patent/WO2023073871A1/ja
Priority to CN202180103516.7A priority patent/CN118140401A/zh
Priority to JP2023555984A priority patent/JPWO2023073871A1/ja
Publication of WO2023073871A1 publication Critical patent/WO2023073871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device.
  • a power conversion device has been proposed in which a DC voltage converted from an AC voltage is supplied as an output voltage from an output terminal to a load (see Patent Document 1, for example).
  • This power conversion device has a rectifier circuit and a boost chopper circuit.
  • the boost chopper circuit has a reactor connected to a rectifier circuit, a smoothing capacitor for reducing pulsation of the output voltage, and a switching element for short-circuiting the reactor.
  • An object of the present disclosure is to provide a power conversion device capable of reducing output voltage pulsation, a motor drive device including the power conversion device, and a refrigeration cycle application device provided with the motor drive device.
  • a power conversion device of the present disclosure is a device that supplies an output voltage from an output terminal to a load, and includes a rectifier circuit that rectifies an AC voltage and outputs the rectified voltage, and the output voltage is supplied between the output terminals. a voltage detection unit that detects the output voltage and outputs a voltage detection value indicating the output voltage; and a control unit, wherein the boost circuit is a reactor connected to the rectifier circuit.
  • a smoothing capacitor that smoothes the rectified voltage to generate the output voltage
  • a switching element that short-circuits the reactor during a conduction period that is an on-state period, and the control unit controls the output
  • the conducting period of the switching element based on the voltage detection value such that a first pulsation frequency, which is the frequency of pulsation of the voltage, is higher than a second pulsation frequency, which is the frequency of pulsation of the rectified voltage. to control.
  • a motor drive device includes the power conversion device described above and an inverter that converts the output voltage into an AC voltage and supplies the AC voltage to the motor.
  • a refrigeration cycle application device of the present disclosure includes the motor drive device described above and a refrigeration cycle device having a motor driven by the motor drive device.
  • FIG. 1 is a diagram showing a configuration of a power converter according to Embodiment 1;
  • FIG. It is a block diagram which shows the structure of the control part of the power converter device of a comparative example. It is a figure which shows the example of the operation
  • 3 is a block diagram showing the configuration of a control section of the power converter according to Embodiment 1;
  • FIG. 4 is a flow chart showing the operation of the control unit of the power converter according to Embodiment 1; 4 is a diagram showing an example of operating waveforms of the power converter according to Embodiment 1;
  • FIG. 9 is a block diagram showing the configuration of a control unit of the power conversion device according to Embodiment 2; 9 is a flow chart showing the operation of the control unit of the power conversion device according to Embodiment 2; FIG. 10 is a diagram showing an example of operating waveforms of the power conversion device according to Embodiment 2; FIG. 10 is a diagram showing configurations of a motor drive device and a refrigerating cycle application device according to Embodiment 3; (A) and (B) are diagrams showing examples of operating waveforms of a motor drive device of a comparative example. (A) and (B) are diagrams showing examples of operation waveforms of the motor drive device according to the third embodiment.
  • a power conversion device, a motor drive device, and a refrigeration cycle application device will be described below with reference to the drawings.
  • the following embodiments are merely examples, and the embodiments can be combined as appropriate and each embodiment can be modified as appropriate.
  • FIG. 1 is a diagram showing the configuration of a power converter 100 according to Embodiment 1.
  • the power converter 100 converts alternating current (AC) supplied from an alternating current power supply (that is, AC power supply) 10 into direct current (DC) and supplies the direct current from output terminals 41 and 42 to a load 50 .
  • Alternating current is, for example, three-phase alternating current.
  • load 50 is assumed to be an inverter. However, load 50 is not limited to an inverter.
  • the inverter can drive the motor. Therefore, the power conversion device 100 and the inverter constitute a motor drive device.
  • the power converter 100 has a rectifier circuit 20 , a booster circuit (a booster chopper circuit in the example of FIG. 1 ) 30 , a voltage detector 40 and a controller 60 .
  • the rectifier circuit 20 rectifies the AC voltage supplied from the AC power supply 10 and outputs the rectified voltage (that is, the voltage before boosting).
  • the booster circuit 30 supplies an output voltage (that is, a boosted voltage) between the output terminals 41 and 42 .
  • the voltage detection unit 40 is a detection circuit that detects the voltage between the output terminals 41 and 42 and outputs a voltage detection value Vdc indicating the output voltage.
  • the booster circuit 30 includes a reactor 31 connected to the rectifier circuit 20, a smoothing capacitor 33 that smoothes the voltage rectified by the rectifier circuit 20 to generate an output voltage, and the reactor 31 during the conduction period that is the ON state period. It has a switching element 32 for short-circuiting and a diode 34 as a backflow prevention element connected between the reactor 31 and the smoothing capacitor 33 .
  • Reactor 31 may be connected to either the input side or the output side of rectifier circuit 20 .
  • the smoothing capacitor 33 and the switching element 32 are connected in parallel. Diode 34 prevents reverse current flow from smoothing capacitor 33 to AC power supply 10 .
  • the control unit 60 outputs a drive signal to the switching element 32 to control the switching element 32 .
  • the switching element 32 is on/off controlled. When the switching element 32 is on, it is a conducting period, and when it is off, it is a non-conducting period.
  • the control unit 60 controls the rectification circuit 20 to rectify the pulsation frequency (also referred to as “first pulsation frequency”), which is the pulsation frequency of the output voltage (that is, boosted voltage) between the output terminals 41 and 42 .
  • the conduction period of the switching element 32 is adjusted so as to be higher than the pulsation frequency (also referred to as “second pulsation frequency”), which is the pulsation frequency of the voltage (that is, the voltage before boosting). , that is, it controls the ON period.
  • the pulsation frequency also referred to as “second pulsation frequency”
  • the switching element 32 is, for example, a semiconductor switching element such as a power transistor, a power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or an IGBT (Insulated Gate Bipolar Transistor).
  • a freewheeling diode (not shown) may be connected in parallel to the switching element 32 for the purpose of suppressing a surge voltage due to switching.
  • the freewheeling diode may be a parasitic diode of the switching element 32, which is a semiconductor switching element.
  • the freewheeling diode may be a MOSFET, and in this case, the MOSFET as the freewheeling diode is turned on at the timing of the freewheeling.
  • the material forming the switching element 32 is not limited to silicon (Si).
  • the switching element 32 may be a wide bandgap semiconductor. Low loss and high-speed switching can be achieved by using silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond as the wide bandgap semiconductor.
  • the control unit 60 controls the output voltage supplied from the output terminals 41 and 42 to the load 50 by on/off controlling the switching element 32 .
  • the control unit 60 adjusts the on/off time of the switching element 32 using proportional integral (PI) control or the like (that is, duty).
  • PI proportional integral
  • PWM pulse width modulation
  • the control unit 60 can be configured by a discrete system of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a microcomputer.
  • the control unit 60 may be a control circuit configured by an electric circuit such as an analog circuit or a digital circuit.
  • FIG. 2 is a block diagram showing the configuration of the control section 60a of the power converter of the comparative example.
  • the power conversion device in FIG. 2 differs from the power conversion device 100 in FIG. 1 in terms of the configuration of the control unit 60a.
  • FIG. 3 is a diagram showing an example of operating waveforms of a power conversion device of a comparative example.
  • the control unit 60a includes an average value calculation unit 61 that calculates the average value Vav of the voltage detection values Vdc, and a PI control unit that performs PI control based on the difference between the average value Vav and the target voltage Vta. 62.
  • a capacitor having a capacitance of about several hundred ⁇ F is used as the smoothing capacitor 33, and as shown in FIG.
  • the duty of the switching element 32 (that is, the ratio of the ON time of the switching element 32 to one control period, which is also called “PWM duty”) is PI-controlled.
  • the terminal voltage of the smoothing capacitor 33 (that is, the output voltage between the output terminals 41 and 42) has a large amplitude pulsation, as indicated by the waveform after boosting.
  • the pulsation frequency which is the pulsation frequency of the terminal voltage of the smoothing capacitor 33, is n times (n is a positive integer) the frequency of the AC voltage input to the rectifier circuit 20.
  • FIG. n is 2 if the AC voltage is single-phase and 6 if it is three-phase.
  • the average value Vav of the terminal voltage of the smoothing capacitor 33 is boosted, the beat phenomenon occurs due to the large pulsation.
  • the voltage peak value (for example, the portion surrounded by the dashed circle in the upper waveform of FIG. 3) becomes excessively high, and may exceed the withstand voltage of the inverter, resulting in destruction of the elements forming the inverter.
  • the control unit 60 controls the first pulsation frequency which is the pulsation frequency of the terminal voltage of the smoothing capacitor 33 (that is, the output voltage between the output terminals 41 and 42). Based on the voltage detection value Vdc, the frequency of the switching element is set to be higher than the second pulsation frequency, which is the pulsation frequency of the voltage before being boosted by the booster circuit 30 (that is, the voltage rectified by the rectifier circuit 20). 32 conduction periods (ie, ON periods). This reduces the peak value of the terminal voltage of the smoothing capacitor 33 .
  • FIG. 4 is a block diagram showing the configuration of the control section 60 of the power converter 100 according to Embodiment 1.
  • the control unit 60 is a PI control unit that adjusts the duty (duty during PI control) so that the average value Vav of the voltage detection value Vdc of the voltage detection unit 40 becomes the predetermined target voltage Vta.
  • 62 and a duty command switching unit 63 that outputs either the output of the PI control unit 62 or a predetermined duty (fixed duty).
  • This fixed duty is also called “low duty” or "first duty”.
  • FIG. 5 is a flow chart showing the operation of the control unit 60 of the power converter 100 according to Embodiment 1.
  • the control unit 60 compares the voltage detection value Vdc of the voltage detection unit 40 with a predetermined threshold value Vth (for example, the target voltage ta or the average value Vav of the voltage detection values Vdc). step S11).
  • Vth for example, the target voltage ta or the average value Vav of the voltage detection values Vdc.
  • Vth for example, the target voltage ta or the average value Vav of the voltage detection values Vdc.
  • the voltage detection value Vdc of the voltage detection unit 40 may be filtered by software or hardware for removing noise during detection.
  • step S11 When the voltage detection value is equal to or less than the threshold value Vth (NO in step S11), the control unit 60 switches the duty command switching unit 63 in FIG. 4 to the contact A side to perform PI control (step S13).
  • the control unit 60 switches the duty command switching unit 63 of FIG. 4 to the contact B side to control the switching element 32 with a fixed duty. (step S13).
  • the fixed duty is a value smaller than the PI control duty.
  • FIG. 6 is a diagram showing an example of operating waveforms of the power conversion device 100 according to Embodiment 1.
  • FIG. FIG. 6 shows operation waveforms when 0 is set as the fixed duty and the target voltage Vta is set as the threshold value Vth.
  • the first pulsation of the terminal voltage (that is, the output voltage) of the smoothing capacitor 33 The pulsation frequency can be made higher than the second pulsation frequency of the voltage pulsation before boosting, and the voltage peak value can be reduced.
  • the average value Vav of the terminal voltage of the smoothing capacitor 33 since the average value Vav of the terminal voltage of the smoothing capacitor 33 is controlled to be the target voltage Vta, the average value of the terminal voltage of the smoothing capacitor 33 may be used as the threshold value Vth.
  • Embodiment 1 when an inverter and a motor are used as the load 50 of the power converter 100, the operating range of the motor can be expanded, and beats are suppressed even when overmodulation control is performed. Vibration and noise of the motor can be reduced. Also, since voltage peaks can be reduced, overvoltage failures of devices can be prevented.
  • the power conversion device according to the second embodiment differs from the power conversion device 100 according to the first embodiment in terms of the configuration and operation of the control section.
  • the control unit of the power converter according to the second embodiment PI-controls the conduction period of the switching element 32 so that the voltage detection value Vdc approaches the predetermined target voltage Ta, and the voltage detection value Vdc exceeds the threshold value Vth.
  • the PI control gain Gb when the voltage detection value Vdc exceeds the threshold value Vth is controlled to be greater than the PI control gain Ga when the voltage detection value Vdc is equal to or less than the threshold value Vth.
  • FIG. 7 is a block diagram showing the configuration of the control section 60b of the power converter according to Embodiment 2.
  • the control section 60 b has a gain switching section 64 , a PI control section 65 and an upper/lower limit section 66 .
  • the gain switching unit 64 switches the control gain used for the PI control of the PI control unit 65 to a predetermined gain Ga or Gb based on the comparison result between the voltage detection value Vdc and the threshold value Vth.
  • the threshold Vth may be set to a value equal to the target voltage Vta or the average value Vav of the voltage detection values Vdc, for example.
  • the integration result in the PI control unit 65 may change sharply by switching the control gain, the integration value is saved (that is, temporarily stored) and restored.
  • the upper/lower limit unit 66 When the upper/lower limit unit 66 is provided, when the output of the PI control unit 65 reaches the upper limit value or the lower limit value set by the upper/lower limit unit 66, unnecessary integration is not performed. It is desirable to perform an anti-windup action to An example of anti-windup action is the action of stopping the integral action.
  • FIG. 8 is a flow chart showing the operation of the control unit 60b of the power converter according to the second embodiment.
  • the control unit 60b compares the voltage detection value Vdc of the voltage detection unit 40 with a preset threshold value Vth (step S21).
  • the control unit 60b compares the previous voltage detection value Vdc1 with the threshold Vth (step S24). If the previous voltage detection value Vdc1 is equal to or less than the threshold value Vth (NO in step S24), the control unit 60b sets the control gain used by the PI control unit 65 to gain Ga (step S27). If the previous voltage detection value Vdc1 is greater than the threshold value Vth (YES in step S24), the control unit 60b sets the integral value temporarily stored as the integral value of the PI control (step S25), and the PI control unit 65 is set to gain Ga (step S26).
  • control unit 60b When the voltage detection value Vdc is greater than the threshold value Vth (YES in step S21), the control unit 60b temporarily stores the integral value of the PI control (step S22), and sets the control gain used in the PI control unit 65 to the gain Gb (Gb>Ga) is set (step S27).
  • FIG. 9 is a diagram showing an example of operating waveforms of the power converter according to the second embodiment.
  • control unit 60b performs PI control of the conduction period of switching element 32 so that voltage detection value Vdc approaches target voltage Vta.
  • the control gain Gb is controlled to be greater than the PI control gain Ga when the voltage detection value Vdc is equal to or less than the threshold value Vth. Therefore, as shown in FIG. 9, the pulsation of the output voltages of the output terminals 41 and 42 (that is, the voltage boosted by the booster circuit 30) can be reduced.
  • FIG. 10 is a diagram showing configurations of a motor drive device 300 and a refrigeration cycle application device 400 according to Embodiment 3.
  • the motor drive device 300 has a power conversion device 100 and an inverter 51 as a load.
  • the refrigerating cycle applied equipment 400 has a motor drive device 300 and a refrigerating cycle device 200 .
  • the refrigeration cycle application equipment 400 is, for example, an air conditioner, a refrigerator, or the like.
  • the power conversion device 100 the power conversion device according to Embodiment 1 or 2 can be used.
  • the refrigeration cycle device 200 has a compressor 201, a four-way valve 202, an internal heat exchanger 203, an expansion mechanism 204, a heat exchanger 205, and a refrigerant pipe 206 connecting these components in order. ing.
  • a compression mechanism 207 for compressing refrigerant and a motor 208 for operating the compression mechanism 207 are provided inside the compressor 201 . Also, the motor 208 is driven by an inverter 51 connected as a load to the power converter 100 .
  • FIGS. 11A and 11B are diagrams showing examples of operating waveforms of the motor driving device of the comparative example.
  • the control unit 60a shown in FIG. 2 has the first pulsation frequency of the output terminal at the first pulsation frequency of the rectified voltage. 2 pulsation frequency is not performed.
  • FIG. 11A in the motor drive device of the comparative example, a low-frequency beat is superimposed on the current flowing through the motor 208 due to the influence of the pulsation of the terminal voltage of the smoothing capacitor 33, causing deterioration of vibration and noise. there is a possibility.
  • the pulsation frequency of the terminal voltage of the smoothing capacitor 33 is n times the frequency of the AC voltage input to the rectifier circuit 20 . where n is 2 if the AC voltage is single-phase and 6 if it is three-phase.
  • FIGS. 12A and 12B are diagrams showing examples of operating waveforms of the motor drive device 300 according to Embodiment 3.
  • the control unit that is, the control unit 60 or 60b
  • the conduction period of the switching element 32 is controlled based on the voltage detection value Vdc so as to be higher than the second pulsation frequency which is the frequency of . That is, in the motor drive device 300 according to the third embodiment, the pulsation frequency of the terminal voltage of the smoothing capacitor 33 can be increased.
  • the power conversion device 100 according to the first embodiment is used as the power conversion device of the motor drive device 300, as shown in FIG.
  • the pulsation frequency is about twice that in the case.
  • the pulsating frequency of the terminal voltage of the smoothing capacitor 33 is approximately double the pulsating frequency of FIG. 11(B) showing a comparative example. (A). From FIG. 12A, it can be seen that the low frequency beat can be reduced by increasing the pulsation frequency. As a result, low vibration and low noise of the device can be realized.
  • the power conversion device according to Embodiment 1 or 2 is used to reduce the pulsation of the voltage applied to the inverter 51. Frequency beat can be reduced. As a result, the refrigerating cycle equipment 400 including the motor drive device 300 can achieve low vibration and low noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(100)は、出力端子(41、42)から出力電圧を負荷に供給する装置(100)であって、AC電圧を整流し、整流された電圧を出力する整流回路(20)と、出力端子(41、42)間に出力電圧を供給する昇圧回路(30)と、出力電圧を示す電圧検出値(Vdc)を出力する電圧検出部(40)と、制御部(60)とを有し、昇圧回路(30)は、整流回路(20)に接続されたリアクトル(31)と、整流された電圧を平滑化して出力電圧を生成する平滑コンデンサ(33)と、リアクトル(31)を短絡させるスイッチング素子(32)とを有し、制御部(60)は、出力電圧の脈動の周波数である第1の脈動周波数が整流された電圧の脈動の周波数である第2の脈動周波数よりも高くなるように、電圧検出値(Vdc)に基づいてスイッチング素子(32)の導通期間を制御する。冷凍サイクル適用機器は、電力変換装置(100)を有する。

Description

電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器
 本開示は、電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器に関する。
 AC電圧から変換されたDC電圧を出力電圧として出力端子から負荷に供給する電力変換装置が提案されている(例えば、特許文献1を参照)。この電力変換装置は、整流回路と、昇圧チョッパ回路とを有している。昇圧チョッパ回路は、整流回路に接続されたリアクトルと、出力電圧の脈動を小さくするための平滑コンデンサと、リアクトルを短絡させるためのスイッチング素子とを有している。出力電圧の脈動をより小さくするためには大容量の平滑コンデンサを用いることが望ましいが、この場合、平滑コンデンサの体積が大きくなる。
特開2012-65399号公報
 上記電力変換装置において平滑コンデンサの容量を小さくすると、出力電圧の脈動が大きくなり、その結果、ビート現象が発生しやすくなり、また負荷であるインバータにおける素子破壊が生じやすくなる。
 本開示は、出力電圧の脈動を小さくすることができる電力変換装置、電力変換装置を備えたモータ駆動装置、及びモータ駆動装置を備えた冷凍サイクル適用機器を提供することを目的とする。
 本開示の電力変換装置は、出力端子から出力電圧を負荷に供給する装置であって、交流電圧を整流し、整流された電圧を出力する整流回路と、前記出力端子間に前記出力電圧を供給する昇圧回路と、前記出力電圧を検出して、前記出力電圧を示す電圧検出値を出力する電圧検出部と、制御部と、を有し、前記昇圧回路は、前記整流回路に接続されたリアクトルと、前記整流された電圧を平滑化して前記出力電圧を生成する平滑コンデンサと、オン状態の期間である導通期間に前記リアクトルを短絡させるスイッチング素子と、を有し、前記制御部は、前記出力電圧の脈動の周波数である第1の脈動周波数が前記整流された電圧の脈動の周波数である第2の脈動周波数よりも高くなるように、前記電圧検出値に基づいて前記スイッチング素子の前記導通期間を制御する。
 本開示のモータ駆動装置は、上述した電力変換装置と、前記出力電圧をAC電圧に変換してモータに供給するインバータとを備えている。
 本開示の冷凍サイクル適用機器は、上述した記モータ駆動装置と、前記モータ駆動装置によって駆動されるモータを有する、冷凍サイクル装置とを備えている。
 本開示によれば、出力電圧の脈動を小さくすることができ、ビート現象の発生及び負荷であるインバータにおける素子破壊を発生しにくくすることができる。
実施の形態1に係る電力変換装置の構成を示す図である。 比較例の電力変換装置の制御部の構成を示すブロック図である。 比較例の電力変換装置の動作波形の例を示す図である。 実施の形態1に係る電力変換装置の制御部の構成を示すブロック図である。 実施の形態1に係る電力変換装置の制御部の動作を示すフローチャートである。 実施の形態1に係る電力変換装置の動作波形の例を示す図である。 実施の形態2に係る電力変換装置の制御部の構成を示すブロック図である。 実施の形態2に係る電力変換装置の制御部の動作を示すフローチャートである。 実施の形態2に係る電力変換装置の動作波形の例を示す図である。 実施の形態3に係るモータ駆動装置及び冷凍サイクル適用機器の構成を示す図である。 (A)及び(B)は、比較例のモータ駆動装置の動作波形の例を示す図である。 (A)及び(B)は、実施の形態3に係るモータ駆動装置の動作波形の例を示す図である。
 以下に、実施の形態に係る電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。
《実施の形態1》
〈構成〉
 図1は、実施の形態1に係る電力変換装置100の構成を示す図である。電力変換装置100は、交流電源(すなわち、AC電源)10から供給される交流(AC)を直流(DC)に変換して、この直流を出力端子41、42から負荷50に供給する。交流は、例えば、三相交流である。実施の形態1では、負荷50として、インバータを想定している。ただし、負荷50は、インバータに限定されない。インバータは、モータを駆動することができる。したがって、電力変換装置100とインバータとは、モータ駆動装置を構成する。
 電力変換装置100は、整流回路20と、昇圧回路(図1の例では、昇圧チョッパ回路)30と、電圧検出部40と、制御部60とを有している。整流回路20は、AC電源10から供給されたAC電圧を整流し、整流された電圧(すなわち、昇圧前の電圧)を出力する。昇圧回路30は、出力端子41、42間に出力電圧(すなわち、昇圧後の電圧)を供給する。電圧検出部40は、出力端子41、42間の電圧を検出して、出力電圧を示す電圧検出値Vdcを出力する検出回路である。
 昇圧回路30は、整流回路20に接続されたリアクトル31と、整流回路20によって整流された電圧を平滑化して出力電圧を生成する平滑コンデンサ33と、オン状態の期間である導通期間にリアクトル31を短絡させるスイッチング素子32と、リアクトル31と平滑コンデンサ33との間に接続された逆流防止素子としてのダイオード34とを有している。リアクトル31は、整流回路20の入力側又は出力側のいずれに接続されてもよい。平滑コンデンサ33とスイッチング素子32とは、並列に接続されている。ダイオード34は、平滑コンデンサ33からAC電源10への電流の逆流を防止する。
 制御部60は、駆動信号をスイッチング素子32に出力して、スイッチング素子32を制御する。スイッチング素子32は、オンオフ制御される。スイッチング素子32がオンのときには、導通期間になり、オフのときには、非導通期間となる。制御部60は、出力端子41、42間の出力電圧(すなわち、昇圧後の電圧)の脈動の周波数である脈動周波数(「第1の脈動周波数」ともいう。)が、整流回路20で整流された電圧(すなわち、昇圧前の電圧)の脈動の周波数である脈動周波数(「第2の脈動周波数」ともいう。)よりも高くなるように、電圧検出値Vdcに基づいてスイッチング素子32の導通期間、すなわち、オン期間を制御する。
 スイッチング素子32は、例えば、パワートランジスタ、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチング素子である。スイッチング素子32には、スイッチングによるサージ電圧を抑制する目的で、環流ダイオード(図示せず)が並列に接続されていてもよい。なお、環流ダイオードは、半導体スイッチング素子であるスイッチング素子32の寄生ダイオードであってもよい。また、環流ダイオードは、MOSFETであってもよく、この場合は、環流のタイミングで還流ダイオードとしてのMOSFETをオン状態とする。また、スイッチング素子32を構成する材料は、ケイ素(Si)に限定されない。スイッチング素子32は、ワイドバンドギャップ半導体であってもよい。ワイドバンドギャップ半導体を、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、又はダイヤモンドで構成することで、低損失化及び高速スイッチング化を実現できる。
 制御部60は、スイッチング素子32をオンオフ制御することにより、出力端子41、42から負荷50に供給される出力電圧を制御する。例えば、制御部60は、電圧検出部40の電圧検出値Vdcの平均値Vavが目標電圧Vtaになるように、比例積分(PI)制御などを用いてスイッチング素子32のオンオフ時間を調整(すなわち、デューティを調整)する。なお、オンオフ制御には、例えば、パルス幅変調(PWM)制御を用いればよい。制御部60は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)、マイクロコンピュータ(マイコン)の離散システムで構成可能である。例えば、制御部60は、アナログ回路又はデジタル回路などの電気回路などで構成された制御回路であってもよい。
〈課題〉
 実施の形態1が解決しようとする課題について説明する。図2は、比較例の電力変換装置の制御部60aの構成を示すブロック図である。図2の電力変換装置は、制御部60aの構成の点で、図1の電力変換装置100と相違する。図3は、比較例の電力変換装置の動作波形の例を示す図である。
 図2の比較例では、制御部60aは、電圧検出値Vdcの平均値Vavを算出する平均値算出部61と、平均値Vavと目標電圧Vtaとの差に基づいてPI制御を行うPI制御部62とを有している。例えば、平滑コンデンサ33として数百μF程度の静電容量を持つコンデンサを用い、図3に示されるように、電圧検出部40の電圧検出値Vdcの平均値Vavが目標電圧Vtaとなるように、スイッチング素子32のデューティ(すなわち、1制御周期に対するスイッチング素子32のオン時間の割合であり「PWMデューティ」ともいう。)をPI制御する。この場合には、平滑コンデンサ33の端子電圧(すなわち、出力端子41、42間の出力電圧)に昇圧後の波形として示されるように、大きな振幅の脈動が生じる。平滑コンデンサ33の端子電圧の脈動の周波数である脈動周波数は、整流回路20に入力されるAC電圧の周波数のn倍(nは正の整数)である。nは、AC電圧が単相の場合には2であり、三相の場合には6である。平滑コンデンサ33の端子電圧の平均値Vavは昇圧されるものの、脈動が大きいため、ビート現象が発生する。また、電圧ピーク値(例えば、図3の上側の波形の破線の円で囲まれた箇所)が過大となり、インバータの耐圧を超えてインバータを構成する素子の破壊を招く恐れがある。
 このような課題を解決するために、実施の形態1では、制御部60は、平滑コンデンサ33の端子電圧(すなわち、出力端子41、42間の出力電圧)の脈動の周波数である第1の脈動周波数を、昇圧回路30による昇圧前の電圧(すなわち、整流回路20で整流された電圧)の脈動の周波数である第2の脈動周波数よりも高くなるように、電圧検出値Vdcに基づいてスイッチング素子32の導通期間(なわち、オン期間)を制御している。これにより、平滑コンデンサ33の端子電圧のピーク値を低減している。
〈動作〉
 図4は、実施の形態1に係る電力変換装置100の制御部60の構成を示すブロック図である。実施の形態1では、制御部60は、電圧検出部40の電圧検出値Vdcの平均値Vavが予め定められた目標電圧Vtaとなるようにデューティ(PI制御時のデューティ)を調整するPI制御部62と、PI制御部62の出力と予め定められたデューティ(固定のデューティ)のいずれか一方を出力するデューティ指令切替部63とを有している。この固定のデューティは、「低デューティ」又は「第1のデューティ」ともいう。
 図5は、実施の形態1に係る電力変換装置100の制御部60の動作を示すフローチャートである。制御部60は、図5に示されるように、電圧検出部40の電圧検出値Vdcと予め定められた閾値Vth(例えば、目標電圧ta又は電圧検出値Vdcの平均値Vav)とを比較する(ステップS11)。なお、電圧検出部40の電圧検出値Vdcには、検出時のノイズなどを除去するためのフィルタ処理を、ソフトウェア又はハードウェア上で施してもよい。
 制御部60は、電圧検出値が閾値Vth以下の場合(ステップS11においてNO)には、図4のデューティ指令切替部63を接点A側に切り替えさせて、PI制御を行う(ステップS13)。制御部60は、電圧検出値が閾値Vthより大きい場合(ステップS11においてYES)には、図4のデューティ指令切替部63を接点B側に切り替えさせて、固定のデューティでスイッチング素子32の制御を行う(ステップS13)。固定のデューティは、PI制御のデューティよりも小さい値である。
 図6は、実施の形態1に係る電力変換装置100の動作波形の例を示す図である。図6は、固定のデューティとして0を設定し、閾値Vthに目標電圧Vtaを設定した場合の動作波形を示す。図6に示されるように、電圧検出値Vdcの平均値Vavが閾値Vthを超えた際にデューティを0にすることにより、平滑コンデンサ33の端子電圧(すなわち、出力電圧)の脈動の第1の脈動周波数を、昇圧前の電圧の脈動の第2の脈動周波数よりも高くすることができ、かつ電圧ピーク値を低減することができる。
 実施の形態1においては、平滑コンデンサ33の端子電圧の平均値Vavが目標電圧Vtaとなるように制御しているため、閾値Vthとして平滑コンデンサ33の端子電圧の平均値を用いてもよい。
〈効果〉
 実施の形態1によれば、電力変換装置100の負荷50としてインバータ及びモータを用いた場合に、モータの運転範囲を拡げることができ、過変調制御を行う場合にもビートが抑制されることでモータの振動及び騒音を低減することが可能となる。
 また、電圧ピークを低減できるため機器の過電圧故障などを防止することができる。
《実施の形態2》
 実施の形態2に係る電力変換装置は、制御部の構成及び動作の点で、実施の形態1に係る電力変換装置100と相違する。実施の形態2に係る電力変換装置の制御部は、電圧検出値Vdcを予め定められた目標電圧Taに近づけるように、スイッチング素子32の導通期間をPI制御し、電圧検出値Vdcが閾値Vthを越えているときにおけるPI制御のゲインGbを、電圧検出値Vdcが閾値Vth以下であるときにおけるPI制御のゲインGaよりも大きくなるように制御する。
 図7は、実施の形態2に係る電力変換装置の制御部60bの構成を示すブロック図である。制御部60bは、ゲイン切替部64と、PI制御部65と、上下限リミット部66とを有している。ただし、上下限リミット部66を備えないことも可能である。ゲイン切替部64は、電圧検出値Vdcと閾値Vthとの比較結果に基づいて、PI制御部65のPI制御に使用される制御ゲインを、予め定められたゲインGa又はGbのいずれかに切り替える。ここで、Gb>Gaである。なお、閾値Vthは、例えば、目標電圧Vta又は電圧検出値Vdcの平均値Vavに等しい値に設定してもよい。
 また、制御ゲインを切り替えることでPI制御部65における積分結果が急峻に変化する場合があるため、積分値の退避(すなわち、一時的な保存)と復元を行う。また、PI制御部65の出力が過大又は過少になることを防ぐため、上下限リミット部66を設けることが望ましい。上下限リミット部66を設ける場合には、PI制御部65の出力が上下限リミット部66で設定されている上限リミット値又は下限リミット値に達した場合に、不要な積分が行われないようにするアンチワインドアップ動作を行うことが望ましい。アンチワインドアップ動作の一例は、積分動作を停止する動作である。
 図8は、実施の形態2に係る電力変換装置の制御部60bの動作を示すフローチャートである。制御部60bは、電圧検出部40の電圧検出値Vdcと予め設定された閾値Vthとを比較する(ステップS21)。
 制御部60bは、電圧検出値Vdcが閾値Vth以下の場合(ステップS21においてNO)には、前回の電圧検出値Vdc1と閾値Vthとを比較する(ステップS24)。前回の電圧検出値Vdc1が閾値Vth以下である場合(ステップS24においてNO)には、制御部60bは、PI制御部65で使用する制御ゲインをゲインGaに設定する(ステップS27)。前回の電圧検出値Vdc1が閾値Vthより大きい場合(ステップS24においてYES)には、制御部60bは、PI制御の積分値として一時保存されていた積分値を設定し(ステップS25)、PI制御部65で使用する制御ゲインをゲインGaに設定する(ステップS26)。
 制御部60bは、電圧検出値Vdcが閾値Vthより大きい場合(ステップS21においてYES)には、PI制御の積分値を一時保存して(ステップS22)、PI制御部65で使用する制御ゲインをゲインGb(Gb>Ga)に設定する(ステップS27)。
 図9は、実施の形態2に係る電力変換装置の動作波形の例を示す図である。実施の形態2においては、制御部60bは、電圧検出値Vdcを目標電圧Vtaに近づけるように、スイッチング素子32の導通期間をPI制御し、電圧検出値Vdcが閾値Vthを越えているときにおけるPI制御のゲインGbを、電圧検出値Vdcが閾値Vth以下であるときにおけるPI制御のゲインGaよりも大きくなるように制御している。このため、図9に示されるように、出力端子41、42の出力電圧(すなわち、昇圧回路30による昇圧後の電圧)の脈動を低減することができる。
《実施の形態3》
 図10は、実施の形態3に係るモータ駆動装置300及び冷凍サイクル適用機器400の構成を示す図である。モータ駆動装置300は、電力変換装置100と、負荷としてのインバータ51とを有する。冷凍サイクル適用機器400は、モータ駆動装置300と、冷凍サイクル装置200とを有する。冷凍サイクル適用機器400は、例えば、空気調和機、冷蔵庫、などである。電力変換装置100としては、実施の形態1又は2に係る電力変換装置を用いることができる。
 冷凍サイクル装置200は、圧縮機201と、四方弁202と、内部熱交換器203と、膨張機構204と、熱交換器205と、これらの構成を順次接続している冷媒配管206とを有している。また、圧縮機201の内部には、冷媒を圧縮する圧縮機構207と、この圧縮機構207を動作させるモータ208とが設けられている。また、モータ208は、電力変換装置100に負荷として接続されたインバータ51により駆動される。
 図11(A)及び(B)は、比較例のモータ駆動装置の動作波形の例を示す図である。比較例のモータ駆動装置では、制御部60a(図2に示される)は、実施の形態1又は2の制御部60又は60bと異なり、出力端子の第1の脈動周波数が整流された電圧の第2の脈動周波数よりも高くなるようにスイッチング素子32の導通期間を制御する処理を実行していない。図11(A)に示されるように、比較例のモータ駆動装置では、平滑コンデンサ33の端子電圧の脈動の影響によってモータ208に流れる電流に低周波ビートが重畳し、振動及び騒音の悪化を引き起こす可能性がある。このとき、平滑コンデンサ33の端子電圧の脈動周波数は、整流回路20に入力されるAC電圧の周波数のn倍である。ここで、nは、AC電圧が単相の場合には2であり、三相の場合には6である。
 図12(A)及び(B)は、実施の形態3に係るモータ駆動装置300の動作波形の例を示す図である。実施の形態3では、制御部(すなわち、制御部60又は60b)は、出力電圧の第1の脈動周波数(例えば、図12(B)に示される脈動の脈動周波数)が整流された電圧の脈動の周波数である第2の脈動周波数よりも高くなるように、電圧検出値Vdcに基づいてスイッチング素子32の導通期間を制御する。つまり、実施の形態3に係るモータ駆動装置300では、平滑コンデンサ33の端子電圧の脈動周波数を高くすることができる。
 例えば、モータ駆動装置300の電力変換装置として、実施の形態1に係る電力変換装置100を用いた場合には、図6に昇圧後の電圧として示されるように、図3に示される比較例の場合に比べて、脈動周波数は、概ね2倍程度である。平滑コンデンサ33の端子電圧の脈動周波数を、図12(B)に示されるように、比較例を示す図11(B)の脈動周波数に対して概ね2倍とした場合の動作波形は、図12(A)に示される。図12(A)から、脈動周波数を高くすることで、低周波ビートを低減することができていることがわかる。これにより、機器の低振動化及び低騒音化を実現できる。
 以上に説明したように、実施の形態3に係るモータ駆動装置300では、実施の形態1又は2に係る電力変換装置を用いてインバータ51に印加される電圧の脈動を低減しているので、低周波ビートを低減することができる。その結果、モータ駆動装置300を備えた冷凍サイクル適用機器400では、低振動化及び低騒音化を実現することができる。
 10 AC電源、 20 整流回路、 30 昇圧回路、 31 リアクトル、 32 スイッチング素子、 33 平滑コンデンサ、 34 ダイオード(逆流防止素子)、 40 電圧検出部(検出回路)、 50 負荷、 51 インバータ、 60、60b 制御部(制御回路)、 61 平均値算出部、 62 PI制御部、 63 デューティ指令切替部、 64 ゲイン切替部、 65 PI制御部、 66 上下限リミット部、 100 電力変換装置、 200 冷凍サイクル装置、 201 圧縮機、 202 四方弁、 203 内部熱交換器、 204 膨張機構、 205 熱交換器、 206 冷媒配管、 207 圧縮機構、 208 モータ、 300 モータ駆動装置、 400 冷凍サイクル適用機器。

Claims (10)

  1.  出力端子から出力電圧を負荷に供給する電力変換装置であって、
     交流電圧を整流し、整流された電圧を出力する整流回路と、
     前記出力端子間に前記出力電圧を供給する昇圧回路と、
     前記出力電圧を検出して、前記出力電圧を示す電圧検出値を出力する電圧検出部と、
     制御部と、
     を有し、
     前記昇圧回路は、
     前記整流回路に接続されたリアクトルと、
     前記整流された電圧を平滑化して前記出力電圧を生成する平滑コンデンサと、
     オン状態の期間である導通期間に前記リアクトルを短絡させるスイッチング素子と、
     を有し、
     前記制御部は、前記出力電圧の脈動の周波数である第1の脈動周波数が前記整流された電圧の脈動の周波数である第2の脈動周波数よりも高くなるように、前記電圧検出値に基づいて前記スイッチング素子の前記導通期間を制御する
     電力変換装置。
  2.  前記制御部は、
     前記電圧検出値が予め定められた閾値以下であるときにおける前記導通期間を、前記電圧検出値の平均値を予め定められた目標電圧に近づけるように制御し、
     前記電圧検出値が前記閾値を越えているときにおける前記導通期間を、前記電圧検出値が前記閾値以下であるときにおける前記導通期間よりも短くなるように制御する
     請求項1に記載の電力変換装置。
  3.  前記制御部は、
     前記電圧検出値が予め定められた閾値以下であるときに、前記電圧検出値の平均値を前記目標電圧に近づけるように、前記スイッチング素子のデューティを制御し、
     前記電圧検出値が前記閾値を越えているときに、前記電圧検出値の平均値を前記目標電圧に近づけるように、前記デューティより低い予め定められた第1のデューティを用いた制御を行う
     請求項2に記載の電力変換装置。
  4.  前記第1のデューティは、0である
     請求項3に記載の電力変換装置。
  5.  前記閾値は、前記目標電圧又は前記電圧検出値の前記平均値に等しい
     請求項2から4のいずれか1項に記載の電力変換装置。
  6.  前記制御部は、
     前記電圧検出値を予め定められた目標電圧に近づけるように前記導通期間をPI制御し、
     前記電圧検出値が予め定められた閾値を越えているときにおける前記PI制御のゲインを、前記電圧検出値が前記閾値以下であるときにおける前記PI制御のゲインよりも大きくなるように制御する
     請求項1に記載の電力変換装置。
  7.  前記制御部は、前記スイッチング素子に前記導通期間を指令するデューティが、予め定められた下限リミット値以上で予め定められた上限リミット値以下に制限する上下限リミット部を有する
     請求項6に記載の電力変換装置。
  8.  前記閾値は、前記目標電圧又は前記電圧検出値の平均値に等しい
     請求項6又は7に記載の電力変換装置。
  9.  請求項1から8のいずれか1項に記載の電力変換装置と、
     前記出力電圧をAC電圧に変換してモータに供給するインバータと、
     を備えたモータ駆動装置。
  10.  請求項9に記載のモータ駆動装置と、
     前記モータ駆動装置によって駆動されるモータを有する、冷凍サイクル装置と、
     を備えた冷凍サイクル適用機器。
PCT/JP2021/039843 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器 WO2023073871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/039843 WO2023073871A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器
CN202180103516.7A CN118140401A (zh) 2021-10-28 2021-10-28 电力转换装置、马达驱动装置以及制冷循环应用设备
JP2023555984A JPWO2023073871A1 (ja) 2021-10-28 2021-10-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039843 WO2023073871A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器

Publications (1)

Publication Number Publication Date
WO2023073871A1 true WO2023073871A1 (ja) 2023-05-04

Family

ID=86157565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039843 WO2023073871A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器

Country Status (3)

Country Link
JP (1) JPWO2023073871A1 (ja)
CN (1) CN118140401A (ja)
WO (1) WO2023073871A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125582A (ja) * 2001-10-15 2003-04-25 Sanken Electric Co Ltd 電源装置
JP2005110491A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd コンバータ回路及びモータ駆動装置
JP2011061965A (ja) * 2009-09-09 2011-03-24 Ihi Corp 電力変換装置
JP2012065399A (ja) 2010-09-14 2012-03-29 Mitsubishi Electric Corp 電力変換装置
WO2012101698A1 (ja) * 2011-01-25 2012-08-02 パナソニック株式会社 スイッチング電源装置
WO2016098160A1 (ja) * 2014-12-15 2016-06-23 三菱電機株式会社 電力変換装置、圧縮機、送風機、および空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125582A (ja) * 2001-10-15 2003-04-25 Sanken Electric Co Ltd 電源装置
JP2005110491A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd コンバータ回路及びモータ駆動装置
JP2011061965A (ja) * 2009-09-09 2011-03-24 Ihi Corp 電力変換装置
JP2012065399A (ja) 2010-09-14 2012-03-29 Mitsubishi Electric Corp 電力変換装置
WO2012101698A1 (ja) * 2011-01-25 2012-08-02 パナソニック株式会社 スイッチング電源装置
WO2016098160A1 (ja) * 2014-12-15 2016-06-23 三菱電機株式会社 電力変換装置、圧縮機、送風機、および空気調和機

Also Published As

Publication number Publication date
CN118140401A (zh) 2024-06-04
JPWO2023073871A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
JP6072924B2 (ja) 直流電源装置、およびそれを備えた冷凍サイクル適用機器
WO2015063869A1 (ja) 直流電源装置及び冷凍サイクル機器
AU2014335666B2 (en) Power converter and air conditioner
US20140204491A1 (en) Backflow preventing means, power converting device, and refrigerating and air-conditioning apparatus
WO2014207824A1 (ja) 直流電源装置、およびそれを備えた冷凍サイクル適用機器
JPWO2008090917A1 (ja) 直流電源装置とそれを備えた空気調和機
GB2542985A (en) Power conversion device and refrigeration cycle device
US11101728B2 (en) Power converting apparatus, motor drive control apparatus, blower, compressor, and air conditioner
WO2016098160A1 (ja) 電力変換装置、圧縮機、送風機、および空気調和機
US11509232B2 (en) Power converter and air-conditioning apparatus using the same
KR102507936B1 (ko) 전력 변환 장치, 모터 구동 장치 및 공기 조화기
WO2023073871A1 (ja) 電力変換装置、モータ駆動装置、及び冷凍サイクル適用機器
US20220360192A1 (en) Power converting apparatus, motor driving apparatus, and air conditioner
US9621025B2 (en) Backflow preventing device, power conversion apparatus, motor driver, and refrigerating and air-conditioning apparatus
CN114287104B (zh) 电力变换装置、马达驱动装置以及空调机
WO2021038865A1 (ja) モータ駆動装置、送風機、圧縮機及び空気調和機
JP7045530B2 (ja) 電力変換装置、モータ駆動装置及び空気調和機
WO2022176065A1 (ja) 直流電源装置、モータ駆動装置、及び冷凍サイクル適用機器
JP7045529B2 (ja) 電力変換装置および空気調和機
US20230059776A1 (en) Dual mode converter for air conditioning system
KR101825451B1 (ko) 인버터 제어장치
US10003184B2 (en) Backflow preventing device, power conversion device, and refrigeration air-conditioning apparatus
JP2015080370A (ja) 電力変換装置
CN116848773A (zh) 电力转换装置以及空调机
CN113508520A (zh) 转换器装置、马达驱动装置以及空气调节机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555984

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021962419

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021962419

Country of ref document: EP

Effective date: 20240528