WO2023071485A1 - 一种导热垫、散热模组及电子设备 - Google Patents

一种导热垫、散热模组及电子设备 Download PDF

Info

Publication number
WO2023071485A1
WO2023071485A1 PCT/CN2022/115225 CN2022115225W WO2023071485A1 WO 2023071485 A1 WO2023071485 A1 WO 2023071485A1 CN 2022115225 W CN2022115225 W CN 2022115225W WO 2023071485 A1 WO2023071485 A1 WO 2023071485A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
overflow
metal material
liquid metal
hollow part
Prior art date
Application number
PCT/CN2022/115225
Other languages
English (en)
French (fr)
Inventor
李二亮
董行行
杨俊杰
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22865871.2A priority Critical patent/EP4199676A4/en
Publication of WO2023071485A1 publication Critical patent/WO2023071485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present application relates to the technical field of heat conduction pads, in particular to a heat conduction pad, a heat dissipation module and electronic equipment.
  • a heat conduction pad is usually provided between the electronic device and the heat sink.
  • the heat conduction pad is usually made of thermal grease, heat conduction silica gel and other materials to transfer the heat generated by the electronic device to the heat sink for dissipation.
  • the heat conduction efficiency of the above heat conduction pad is not high, and it is difficult to meet the heat dissipation requirements of electronic devices, especially high-power electronic devices.
  • liquid gold layer (its material is liquid metal material) is set between electronic device and heat sink, in order to prevent liquid gold layer from between electronic device and heat sink If the space overflows, a sealing ring needs to be set between the electronic device and the heat sink.
  • the setting of the sealing ring makes the structure of the heat dissipation module more complicated, increases the difficulty of the assembly process of the heat dissipation module, and is not conducive to reducing the production of the heat dissipation module. cost.
  • Embodiments of the present application provide a heat conduction pad, a heat dissipation module and an electronic device, which are used to solve the problem that the heat dissipation module of the electronic device in the related art cannot simultaneously improve the heat dissipation efficiency and reduce the manufacturing cost.
  • an embodiment of the present application provides a heat conduction pad, including a pad body, a hollow part is opened on the pad body, and a liquid metal material layer is filled in the hollow part.
  • the overall thermal conductivity of the heat conduction pad is improved, the overall thermal resistance of the heat conduction pad is reduced, and the heat dissipation efficiency of the electronic device is improved, so that the heat dissipation of the electronic device is more sufficient; at the same time, no other sealing structure is required Restricting the flow of the liquid metal material layer not only makes the structure of the heat dissipation module simpler, but also simplifies the assembly process of the heat dissipation module, which is beneficial to reduce the production cost of the heat dissipation module.
  • the pad body along the thickness direction of the pad body, the pad body includes two pad surfaces disposed opposite to each other, and the hollow part is opened on the pad surfaces.
  • the hollow part is disposed through the pad body.
  • the liquid metal material layer in the hollow part can be in contact with the electronic device and the heat sink respectively, which is beneficial to further reduce the overall thermal resistance of the heat conduction pad.
  • each of the pad surfaces is provided with the hollow part, and the depth of the hollow part is smaller than the thickness of the pad body.
  • the liquid metal material layers in the hollowed-out parts of the two pad surfaces can be respectively in contact with the electronic device and the heat sink, which is beneficial to further reduce the overall thermal resistance of the heat conduction pad.
  • the hollowed-out portions formed on the two pad surfaces are staggered.
  • a plurality of the hollowed out parts arranged in an array are opened on the surface of the pad.
  • the coverage area of the liquid metal material layer in the pad body is increased, which is more conducive to improving the heat dissipation effect of the electronic device.
  • the hollow part is a hole or a groove.
  • the pad surface includes a hollowed-out area and a peripheral area located on the periphery of the hollowed-out area; the hollowed-out area is provided with the hollow part, and the peripheral area is provided with an anti-overflow groove.
  • the overflow prevention groove is separated from the hollow part.
  • the anti-overflow groove extends along the circumference of the hollowed-out area.
  • a group of anti-overflow grooves is defined in the peripheral area, and the group of anti-overflow grooves includes a plurality of anti-overflow grooves arranged around the hollowed-out area.
  • the spilled liquid metal material can be prevented from spreading in multiple directions, thereby further reducing the probability of the liquid metal material leaking from the edge of the heat conduction pad.
  • the peripheral area is provided with a plurality of anti-overflow groove groups, and the plurality of anti-overflow groove groups are arranged along a direction away from the hollowed-out area.
  • each of the anti-overflow grooves in the set of anti-overflow grooves runs through the pad body.
  • the volume of the anti-overflow tank can be increased, so that the liquid metal material can be better prevented from continuing to spread outward.
  • the anti-overflow groove is an annular groove and is arranged around the hollow opening area, and the depth of the anti-overflow groove is smaller than the thickness of the pad body.
  • the peripheral area is provided with a plurality of anti-overflow grooves, and the plurality of anti-overflow grooves are arranged along a direction away from the hollowed-out area.
  • the plurality of anti-overflow grooves can better prevent the overflowed liquid metal material from spreading in multiple directions, thereby greatly reducing the probability of the liquid metal material leaking from the edge of the thermal pad.
  • one end of the anti-overflow groove extends to the edge of the hollow part to communicate with the hollow part.
  • the width of the anti-overflow groove ranges from 0.1 mm to 0.2 mm.
  • the hollow opening area is provided with two rows of the hollow parts, each row includes a plurality of the hollow parts, and each of the hollow parts communicates with at least one of the anti-overflow grooves.
  • the heat conduction pad further includes a protective film, and the protective film is attached to the surface of the pad to cover the liquid metal material layer.
  • the liquid metal material in the hollow part can be prevented from leaking, thereby facilitating the storage and transportation of the heat conduction pad.
  • the embodiment of the present application provides a heat dissipation module, including an electronic device, a heat sink, and the thermal conduction pad described in the first aspect, the pad body of the thermal conduction pad is arranged on the electronic device and the between radiators.
  • the electronic device is a central processing unit; the central processing unit includes a substrate and a die disposed on the substrate, and the pad is disposed between the die and the heat sink between.
  • the central processing unit can be better cooled to ensure the normal operation of the central processing unit.
  • an embodiment of the present application provides an electronic device, including a casing, and the heat dissipation module described in the second aspect, the heat dissipation module being arranged in the casing.
  • the embodiment of the present application provides a method for manufacturing a heat conduction pad, including the following steps: providing a heat conduction pad; wherein, the heat conduction pad includes a pad body, and along the thickness direction of the pad body, the pad body includes Two pad surfaces disposed opposite to each other. A hollow portion is formed on the surface of the pad; wherein, the depth of the hollow portion is smaller than the thickness of the pad body. Filling the liquid metal material into the hollow part to form a liquid metal material layer.
  • the beneficial effect of the manufacturing method of the heat conduction pad is the same as that of the heat conduction pad described in the first aspect, and will not be repeated here.
  • the following step is further included: sticking a protective film on the surface of the pad to cover the liquid metal material layer.
  • the liquid metal material in the hollow part can be prevented from leaking, thereby facilitating the storage and transportation of the heat conduction pad.
  • the following step is further included: setting up an anti-overflow groove on the periphery of the hollow part.
  • the embodiment of the present application provides a method for manufacturing a thermal pad, including the following steps: providing a thermal pad; wherein, the thermal pad includes a pad body, and along the thickness direction of the pad body, the pad body includes Oppositely disposed first and second pad surfaces.
  • a hollow part is set on the pad body; wherein, the hollow part penetrates the pad body along the thickness direction of the pad body.
  • a protective film is pasted on the surface of the first pad to cover the hollow part.
  • the liquid metal material is filled into the hollow portion from the opening of the hollow portion on the surface of the second pad, so as to form a liquid metal material layer.
  • a protective film is pasted on the surface of the second pad to cover the liquid metal material layer.
  • the beneficial effect of the manufacturing method of the heat conduction pad is the same as that of the heat conduction pad described in the first aspect, and will not be repeated here.
  • the following step is further included: setting up an anti-overflow groove on the periphery of the hollow part.
  • FIG. 1a is a schematic diagram of a heat dissipation module in a conventional electronic device
  • FIG. 1b is a schematic diagram of a heat dissipation module in an electronic device in the related art
  • Figure 1c is a schematic structural diagram of a notebook computer in some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the layout of the heat dissipation module in some embodiments of the present application
  • Fig. 3 is a schematic structural diagram of the cooling module in Fig. 2;
  • Fig. 4 is a top view of the pad body of the thermal pad in some embodiments of the present application.
  • Fig. 5 is the A-A sectional view of pad body among Fig. 4;
  • Fig. 6 is a schematic structural diagram of a pad body of a thermal pad in other embodiments of the present application.
  • FIG. 7 is a schematic structural view of the thermal pad in FIG. 5 when not in use;
  • Figure 8a is a diagram of the manufacturing process of the thermal pad shown in Figure 7;
  • Fig. 8b is a flowchart of the manufacturing method of the thermal pad shown in Fig. 7;
  • Fig. 9 is a top view of the pad body of the thermal pad in other embodiments of the present application.
  • Fig. 10 is a B-B sectional view of the pad body of the thermal pad in Fig. 9;
  • Fig. 11 is a top view of the pad body of the thermal pad in other embodiments of the present application.
  • Fig. 12 is a C-C sectional view of the pad body of the thermal pad in Fig. 11;
  • FIG. 13 is a schematic structural view of the thermal pad attached with a protective film in FIG. 12;
  • Fig. 14a is a production process diagram of the thermal pad shown in Fig. 13;
  • Fig. 14b is a flow chart of the manufacturing method of the thermal pad shown in Fig. 13;
  • Fig. 15 is a top view of the pad body of the thermal pad in other embodiments of the present application.
  • FIG. 16 is a D-D sectional view of the pad body of the thermal pad in FIG. 15 .
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • electrical connection should be understood in a broad sense, for example, it may be to realize current conduction through direct connection, or to realize electric energy conduction through capacitive coupling.
  • FIG. 1a is a schematic diagram of a heat dissipation module in a traditional electronic device.
  • the cooling module includes: an electronic device 310 , a heat sink 320 , and a heat conduction pad 330 .
  • the heat conduction pad 330 is disposed between the electronic device 310 and the heat sink 320 to transfer the heat generated by the electronic device 310 to the heat sink 320 for dissipation.
  • the above-mentioned heat conduction pad 330 is usually made of materials such as heat conduction silicone grease and heat conduction silica gel.
  • the heat dissipation efficiency of the heat conduction pad 330 made of heat conduction silicone grease and heat conduction silica gel is usually 3 to 15 W ⁇ m -1 k -1 , and the heat dissipation efficiency
  • the heat conduction pad 330 cannot dissipate the heat generated by the electronic device 310 in time, and it is difficult to meet the heat dissipation requirements of the electronic device 310 (especially the high-power electronic device 310 ) during operation.
  • FIG. 1b is a schematic diagram of a heat dissipation module in an electronic device in the related art.
  • the heat dissipation module includes an electronic device 310, a radiator 320, and a liquid gold layer 350 arranged between the electronic device 310 and the radiator 320.
  • the material of the liquid gold layer 350 is a liquid metal material (the liquid metal material can be referred to as "liquid metal material" for short). Gold"), in order to prevent the liquid gold layer 350 from overflowing from between the electronic device 310 and the heat sink 320, the periphery of the liquid gold layer 350 is also provided with a sealing structure 340.
  • the liquid gold layer 350 used in the heat dissipation structure shown in Figure 1b can improve the heat dissipation efficiency of the electronic device 310, but in order to prevent the liquid gold layer 350 from overflowing from between the electronic device 310 and the heat sink 320, the heat dissipation module needs
  • the sealing structure 340 ie, the sealing ring
  • the sealing structure 340 makes the heat dissipation module more complicated, increases the difficulty of the assembly process of the heat dissipation module, and is not conducive to reducing the production cost of the heat dissipation module.
  • liquid metal material is relatively expensive, a whole layer of liquid gold layer 350 is provided between the electronic device 310 and the heat sink 320, and a large amount of liquid metal material is used, which is not conducive to reducing the cost of the heat dissipation module.
  • the embodiment of the present application provides a heat conduction pad, a heat dissipation module and an electronic device.
  • a heat conduction pad By filling the hollow part of the heat conduction pad body with a liquid metal material layer, not only the heat dissipation of the electronic device is more sufficient, but also the electronic device is improved.
  • the heat dissipation efficiency of the device can be improved, and the structure of the heat dissipation module can be simplified to reduce the production cost of the heat dissipation module.
  • the electronic equipment in the embodiment of the present application can be a notebook computer, a desktop computer, a frequency converter, a solid-state relay, a bridge rectifier, a power battery, a relatively high-power LED (Light-Emitting Diode; light-emitting diode) lamp, etc., which have a cooling module inside. equipment.
  • a relatively high-power LED Light-Emitting Diode; light-emitting diode
  • the following takes a notebook computer as an example to introduce the structure of the internal heat dissipation module in detail.
  • Other electronic devices can be set with reference to the structure of the heat dissipation module in the embodiment of the notebook computer, and will not be repeated here.
  • Figure 1c is a schematic structural diagram of a notebook computer in some embodiments of the present application
  • Figure 2 is a schematic layout of the heat dissipation module 300 in some embodiments of the present application
  • Figure 3 is a schematic diagram of the layout of the notebook computer in Figure 2 2 and 3 are only for illustrating the composition of the heat dissipation module 300 and the connection relationship between various components, and are not shown according to the actual proportion of each component in the actual product.
  • the notebook computer includes a housing 100, a motherboard 200 disposed in the housing 100, a cooling module 300 and a cooling fan 400, the housing 100 is provided with an air inlet 110 and an air outlet 120, the cooling module 300 and the cooling fan 400 are all arranged on the main board 200 .
  • the heat dissipation module 300 includes an electronic device 310 , a heat sink 320 , and a thermal pad 330 .
  • the electronic device 310 is a central processing unit (Central Processing Unit; CPU for short), and the central processing unit includes a substrate 311 and a bare chip (DIE) 312 disposed on the substrate 311).
  • CPU Central Processing Unit
  • DIE bare chip
  • the electronic device 310 may also be a heat-generating component such as a power module, which may be determined according to the type of the electronic device.
  • FIG. 4 is a top view of the pad body 331 of the thermal pad 330 in some embodiments of the present application
  • FIG. 5 is an A-A sectional view of the pad body 331 in FIG. 4
  • the heat conduction pad 330 includes a pad body 331 .
  • a hollow portion 332 is opened on the pad body 331 .
  • the hollow portion 332 is filled with a liquid metal material layer 333 .
  • the pad body 331 is disposed between the die 312 and the heat sink 320 .
  • liquid metal materials are a general term for a class of metal materials that are in a liquid state at relatively low temperatures. They not only have the strong thermal conductivity of metal substances, but also have a heat dissipation efficiency of 40-80W ⁇ m -1 k -1 , and It also has a certain degree of mobility.
  • the liquid metal material can be a low-melting point metal, such as gallium (Ga) and sodium (Na), potassium (K), lithium (Li), etc. in alkali metals; it can also be a low-melting point alloy, such as a gallium metal alloy.
  • the pad body 331 can be made of thermally conductive silicone grease, thermally conductive silica gel, graphite and other thermally conductive materials.
  • the heat conduction pad 330 conducts the heat generated by the die 312 to the radiator 320, and at the same time, the cooling fan 400 sucks the wind outside the casing 100 into the casing 100 through the air inlet 110, and then the wind flows through the radiator 320 to dissipate the heat.
  • the heat dissipated from the radiator 320 is taken away and discharged out of the casing 100 through the air outlet 120 .
  • the overall thermal conductivity of the thermal pad 330 is improved, and the overall thermal resistance of the thermal pad 330 is reduced, thereby facilitating the improvement of electronic devices.
  • the heat dissipation efficiency of the 310 makes the heat dissipation of the electronic device 310 more sufficient.
  • the hollow portion 332 can limit the flow of the liquid metal material layer 333, so that the pad body 331 itself can seal the liquid metal material layer 333, then There is no need to set other sealing structures to limit the flow of the liquid metal material layer 333, which not only makes the structure of the heat dissipation module 300 simpler, but also simplifies the assembly process of the heat dissipation module 300, which is conducive to reducing the production cost of the heat dissipation module 300 .
  • the more expensive liquid metal material layer 333 is filled In the pad body 331 of the lower-priced heat conduction pad 330 , this can avoid excessive use of liquid metal material, and while satisfying the heat dissipation of the electronic device 310 , it is also beneficial to reduce the heat dissipation cost of the electronic device 310 .
  • the pad body 331 includes two pad surfaces 3311 disposed opposite to each other, and the hollow portion 332 is opened on the pad surfaces 3311 .
  • This not only facilitates the filling of the liquid metal material layer 333 in the hollow part 332, but also the liquid metal material layer 333 in the hollow part 332 can also be in contact with the electronic device 310 or the heat sink 320, thereby greatly reducing the overall thermal resistance of the thermal pad 330, Therefore, the heat dissipation effect of the electronic device 310 is improved.
  • a plurality of hollowed out parts 332 arranged in an array are provided on the pad surface 3311 of the pad body 331 , and the hollowed out parts 332 in FIG. ) array arrangement.
  • the coverage area of the hollow part 332 on the pad body 331 of the heat conduction pad 330 can be increased, thereby increasing the coverage area of the liquid metal material layer 333 in the pad body 331, so that the efficient heat conduction area of the heat conduction pad 330 (that is, The liquid metal material layer 333 covers a larger area in the pad body 331 ), which is more conducive to improving the heat dissipation effect of the electronic device 310 .
  • each pad surface 3311 of the pad body 331 is provided with a hollow portion 332 , the depth of the hollow portion 332 is smaller than the thickness of the pad body 331 , that is, the hollow portion 332 does not penetrate the pad body 331 . Since the depth of the hollowed out portion 332 is smaller than the thickness of the pad body 331 , the hollowed out portion 332 is equivalent to a “container” of the liquid metal material layer 333 , thereby making it easier to fill the hollowed out portion 332 with the liquid metal material layer 333 .
  • each pad surface 3311 of the pad body 331 is provided with a hollow portion 332, so that the liquid metal material layer 333 in the hollow portion 332 of the two pad surfaces 3311 can be in contact with the electronic device 310 and the heat sink 320 respectively, thereby effectively It is beneficial to further reduce the overall thermal resistance of the heat conduction pad 330 , thereby further improving the heat dissipation effect of the electronic device 310 .
  • the hollow parts 332 formed on the two pad surfaces 3311 are staggered.
  • the coverage area of the hollow parts 332 on the pad body 331 of the heat conduction pad 330 can be increased, thereby increasing the coverage area of the liquid metal material layer 333 in the pad body 331, so that the heat conduction pad
  • the high-efficiency heat conduction area of 330 is larger, which is more conducive to improving the heat dissipation effect of the electronic device 310 .
  • the outline of the pad body 331 is rectangular, and the hollow parts 332 provided on both sides of the pad body 331 are staggered in the width direction X and the length direction Y of the pad body 331 .
  • the hollow parts 332 provided on the two pad surfaces 3311 can be completely staggered, as shown in FIG. 5 , or can be partially staggered.
  • “Completely staggered” means that along the direction perpendicular to the thickness direction of the pad body 331, the orthographic projections on the first plane of the hollow part 332 on the two pad surfaces 3311 do not overlap, and "partially staggered” means along the direction perpendicular to the pad body 331 In the direction Y of the thickness direction, the orthographic projections of the hollow parts 332 on the two pad surfaces 3311 on the first plane partially overlap; the first plane is a plane perpendicular to the thickness direction of the pad body 331 .
  • the hollow part 332 is a groove.
  • the hollow part 332 is set as a groove, so that the hollow part 332 can be formed by a stamping process, so as to facilitate the manufacture of the hollow part 332 .
  • the hollow part 332 can also be a hole in addition to being a groove, and the hole can also be formed by a stamping process, so as to facilitate the manufacture of the hollow part 332 .
  • the hollow part 332 can be opened not only on the pad surface 3311 of the pad body 331 , but also inside the pad body 331 , and the liquid metal material can be injected into the hollow part 332 inside the pad body 331 through a needle.
  • the pad surface 3311 of the pad body 331 includes a hollowed out area 334 and a peripheral area 335 located on the periphery of the hollowed out area 334; the hollowed out area 334 is provided with a hollowed out portion 332, The peripheral area 335 defines an overflow prevention groove 336 .
  • the liquid metal material in the hollow part 332 will inevitably overflow and flow along the gap between the thermal pad 330 and the heat sink 320 or the electronic device 310 Diffusion to the peripheral area 335, by setting the anti-overflow groove 336 in the peripheral area 335, the overflowing liquid metal material can be accommodated, thereby preventing the liquid metal material from continuing to spread outwards, and reducing the leakage of the liquid metal material from the edge of the thermal pad 330 probability.
  • the anti-overflow groove 336 is separated from the hollow portion 332 , that is, the anti-overflow groove 336 is separated from the hollow portion 332 by a certain distance and is not connected.
  • the anti-overflow groove 336 extends along the circumference of the hollowed out area 334 .
  • the hollowed-out area 334 is rectangular, and the anti-overflow groove 336 extends along the length direction Y or the width direction X of the hollowed-out area 334 .
  • the peripheral area 335 is provided with an anti-overflow groove group 337
  • the anti-overflow groove group 337 includes a plurality of anti-overflow grooves 336 disposed around the hollowed-out area 334 .
  • the multiple anti-overflow grooves 336 arranged around the hollowed-out area 334 in the anti-overflow groove group 337 can prevent the overflowing liquid metal material from spreading in multiple directions, thereby further reducing the flow of liquid metal material from the edge of the thermal pad 330. probability of leakage.
  • the overflow prevention groove group 337 includes four overflow prevention grooves 336, wherein two overflow prevention grooves 336 are located on both sides of the hollowed out area 334 along its width direction X, and the other two overflow prevention grooves 336 are respectively located on both sides of the hollowed out area 334 along the length direction Y thereof.
  • the peripheral area 335 is provided with a plurality of anti-overflow groove groups 337 , and the plurality of anti-overflow groove groups 337 are arranged along a direction away from the hollowed-out area 334 .
  • the plurality of anti-overflow groove groups 337 can better prevent the spilled liquid metal material 333 from spreading in multiple directions, thereby greatly reducing the probability of the liquid metal material 333 leaking from the edge of the thermal pad 330 .
  • the number of anti-overflow groove groups 337 is two, but it is not limited thereto, and two or more can also be provided, depending on the amount of liquid metal material filled in the hollow portion 332 .
  • each overflow prevention groove 336 in the overflow prevention groove set 337 runs through the pad body 331 .
  • the volume of the anti-overflow groove 336 can be increased to increase the amount of the liquid metal material contained in the anti-overflow groove 336, which can better prevent the liquid metal material from continuing to spread outward, and greatly reduce the flow of the liquid metal material from the edge of the thermal pad 330. probability of leakage.
  • the anti-overflow groove 336 may not pass through the pad body 331, as shown in FIG. Schematic.
  • the depth of the anti-overflow groove 336 is smaller than the thickness of the pad body 331 .
  • the cross-section of the anti-overflow groove 336 is triangular, so that the overflowing liquid metal material can enter into the anti-overflow groove 336 conveniently.
  • FIG. 7 is a schematic structural diagram of the thermal pad 330 in FIG. 5 when not in use.
  • the heat conduction pad 330 further includes a protective film 338 attached to the pad surface 3311 to cover the liquid metal material layer 333 .
  • the protective film 338 when the thermal pad 330 is not in use, the protective film 338 can prevent the liquid metal material in the hollow portion 332 from leaking, thereby facilitating storage and transportation of the thermal pad 330 .
  • the protective film 338 can be torn off to ensure that the pad body 331 of the heat conduction pad 330 is attached between the electronic device 310 and the heat sink 320; wherein, the ambient temperature when the pad body 331 is attached can be controlled at Below the melting point of the liquid metal material, the liquid metal material layer 333 in the hollow portion 332 is solid, which facilitates the lamination of the pad body 331 .
  • the protective film 338 may be a PET (polyethylene terephthalate; polyethylene terephthalate) protective film.
  • the protective films 338 are attached to the two pad surfaces 3311 of the pad body 331 . If a pad surface 3311 of the pad body 331 is provided with a hollow portion 332 , a protective film 338 may be pasted on the pad surface 3311 of the pad body 331 with the hollow portion 332 .
  • FIG. 8 a is a diagram of the manufacturing process of the thermal pad 330 shown in FIG. 7
  • FIG. 8 b is a flow chart of a manufacturing method of the thermal pad 330 shown in FIG. 7 .
  • the manufacturing method of the heat conduction pad 330 includes:
  • the thermal pad 330 includes a pad body 331 , and the material of the pad body 331 can be thermal grease, thermal silica gel, graphite, and the like.
  • hollow out portions 332 are provided on the two pad surfaces 3311 of the pad body 331 of the thermal conduction pad 330 .
  • the depth of the hollow part 332 is smaller than the thickness of the pad body 331; the hollow part 332 can be formed by a stamping process, or can be formed by other processes, which are not specifically limited here.
  • the anti-overflow groove 336 can be formed by scribing on the periphery with a knife.
  • liquid metal material is filled in the hollow part 332 on a pad surface 3311, to form liquid metal material layer 333, stick on this pad surface 3311 then A protective film 338 is attached to cover the liquid metal material layer 333 .
  • liquid metal material is filled in the hollow part 332 on another pad surface 3311, to form liquid metal material layer 333, then on this pad surface 3311 A protective film 338 is attached to cover the liquid metal material layer 333 .
  • the order of S2 and S3 can also be reversed, that is, the anti-overflow groove 336 is provided first, and then the hollow part 332 is provided; in addition, the anti-overflow groove 336 and the hollow part 332 can also be formed on the pad body 331 simultaneously through a process, For example, the anti-overflow groove 336 and the hollow part 332 are simultaneously formed on the pad body 331 through a stamping process.
  • the anti-overflow groove 336 may not be provided.
  • the hollow part 332 can also be opened only on one pad surface 3311 of the pad body 331, so that after the hollow part 332 is filled with liquid metal material, the protective film 338 is only attached on the pad surface 3311.
  • FIG. 9 is a top view of the pad body 331 of the thermal pad 330 in other embodiments of the present application
  • FIG. 10 is a B-B sectional view of the pad body 331 of the thermal pad 330 in FIG. 9
  • the main difference between the pad body 331 shown in Figure 9 and Figure 10 and the pad body 331 shown in Figure 4 and Figure 5 is that the shape of the anti-overflow groove 336 is different, and in this embodiment, the anti-overflow groove 336 is a ring groove And it is arranged around the hollow opening area 334 , and the depth of the anti-overflow groove 336 is smaller than the thickness of the pad body 331 .
  • the anti-overflow groove 336 By setting the anti-overflow groove 336 as a ring groove, the anti-overflow groove 336 can surround the hollowed out area 334, which can better prevent the overflowing liquid metal material from spreading in multiple directions, thereby reducing the flow of liquid metal material from the thermal pad 330. The probability that the edge leaks out.
  • the groove depth of anti-overflow groove 336 is set to be less than the thickness of pad body 331, avoids like this ring-shaped anti-overflow groove 336 that pad body 331 is divided into two parts.
  • the cross-sectional shape of the anti-overflow groove 336 is a rectangle, but it is not limited thereto, and other shapes are also possible, such as a triangle.
  • the shape of the anti-overflow groove 336 can be a rectangular ring or a circular ring, which can be determined according to the shapes of the pad body 331 and the hollowed-out area 334 .
  • the peripheral area 335 is provided with a plurality of anti-overflow grooves 336 , and the plurality of anti-overflow grooves 336 are arranged along a direction away from the hollowed-out area 334 .
  • the multiple anti-overflow grooves 336 can better prevent the spilled liquid metal material from spreading in multiple directions, thereby greatly reducing the probability of the liquid metal material leaking from the edge of the thermal pad 330 .
  • a protective film 338 may also be attached to the pad surface 3311 of the pad body 331 shown in FIG. 9 and FIG. 10 .
  • the heat conduction pad 330 shown in FIG. 9 and FIG. 10 can be manufactured with reference to the method shown in FIG. 8a and FIG. 8b , and will not be repeated here.
  • FIG. 11 is a top view of the pad body 331 of the thermal pad 330 in other embodiments of the present application
  • FIG. 12 is a C-C sectional view of the pad body 331 of the thermal pad 330 in FIG. 11 .
  • the main difference between the pad body 331 shown in Figure 11 and Figure 12 and the pad body 331 shown in Figure 4 and Figure 5 is that the structure of the hollow part 332 is different, and the relationship between the overflow prevention groove 336 and the hollow part 332 different.
  • the hollow part 332 is disposed through the pad body 331 .
  • the liquid metal material layer 333 in the hollow portion 332 can be in contact with the electronic device 310 and the heat sink 320 respectively, which is beneficial to further reduce the overall thermal resistance of the thermal pad 330 , thereby further improving the heat dissipation effect of the electronic device 310 .
  • one end of the overflow prevention groove 336 extends to the edge of the hollow portion 332 to communicate with the hollow portion 332 .
  • the liquid metal material in the hollow part 332 can directly enter the anti-overflow groove 336, thereby greatly reducing the flow of liquid metal material from the hollow part 332. The probability of overflow in the edge of .
  • the width of the anti-overflow groove 336 is an important parameter, and it should not be too large or too small. If the width of the anti-overflow groove 336 is too large, when the liquid metal material is filled into the hollow part 332, a part of the liquid metal material will enter in the anti-overflow groove 336, occupying the space in the anti-overflow groove 336, thereby affecting The anti-overflow effect of the anti-overflow groove 336 on the liquid metal material; if the width of the anti-overflow groove 336 is too small, the accommodation space of the anti-overflow groove 336 will be smaller, and the amount of the liquid metal material to be accommodated will be smaller, which will also affect The anti-overflow effect of the anti-overflow groove 336 on the liquid metal material.
  • the liquid metal material can not easily enter into the anti-overflow groove 336 when it is filled into the hollow part 332 , and it can also avoid the overfill prevention groove 336
  • the accommodating space is too small, so as to ensure that the anti-overflow effect of the anti-overflow groove 336 on the liquid metal material is in a better state.
  • the hollowed-out area 334 is provided with two rows of hollowed-out parts 332, and each row includes a plurality of hollowed-out parts 332 (four hollowed-out parts 332 are shown in the figure), and each hollowed-out The portions 332 communicate with an overflow prevention groove 336 respectively.
  • each hollow part 332 in the two rows is adjacent to the peripheral area 335 , so that the anti-overflow groove 336 communicates with each hollow part 332 .
  • each hollow part 332 can also communicate with two or more anti-overflow grooves 336, which can be determined according to the amount of liquid metal material in each hollow part 332. .
  • FIG. 13 is a schematic structural diagram of attaching a protective film 338 to the thermal pad 330 in FIG. 12 .
  • Each pad surface 3311 of the pad body 331 is detachably attached with a protective film 338 , and the protective film 338 attached to each pad surface 3311 covers the hollow portion 332 .
  • a protective film 338 can be attached on a pad surface 3311.
  • the protective film 338 and the hollow part 332 form a "container" for containing the liquid metal material, thereby preventing the liquid metal material from being filled.
  • the hollow part 332 leaks from the other side of the pad body 331 .
  • FIG. 14a is a diagram of the manufacturing process of the thermal pad 330 shown in FIG. 13
  • FIG. 14b is a flow chart of the manufacturing method of the thermal pad 330 shown in FIG. 13
  • the manufacturing method of the heat conduction pad 330 includes:
  • N1 as shown in (1) in Figure 14a, provide a heat conduction pad 330;
  • the heat conduction pad 330 includes a pad body 331, and two pad surfaces 3311 of the pad body 331 are respectively a first pad surface 3311a and a second pad surface 3311b.
  • a hollow portion 332 is provided on the pad body 331 of the heat conduction pad 330 .
  • the hollow portion 332 penetrates through the pad body 331 along the thickness direction of the pad body 331 .
  • the order of N2 and N3 can also be reversed, that is, the anti-overflow groove 336 is provided first, and then the hollow part 332 is provided; in addition, the anti-overflow groove 336 and the hollow part 332 can also be formed on the pad body 331 simultaneously through one process, For example, the anti-overflow groove 336 and the hollow part 332 are simultaneously formed on the pad body 331 through a stamping process. If there are other measures to prevent the liquid metal material from overflowing from the edge of the hollow part 332, the anti-overflow groove 336 may not be provided.
  • FIG. 15 is a top view of the pad body 331 of the thermal pad 330 in other embodiments of the present application
  • FIG. 16 is a D-D sectional view of the pad body 331 of the thermal pad 330 in FIG. 15 .
  • the main difference between the pad body 331 shown in FIG. 15 and FIG. 16 and the pad body 331 shown in FIG. 11 and FIG. 12 is that the number of hollowed out parts 332 in the hollowed out area 334 is different.
  • the hollow opening area 334 defines a hollow part 332.
  • the contour shape of the hollow part 332 is oval, but it is not limited thereto.
  • the contour shape of the hollow part 332 can also be circular, rectangular, etc., specifically It can be determined according to the actual situation.
  • the arrangement of the anti-overflow groove 336 in this embodiment can specifically refer to the arrangement shown in Figure 11 and Figure 12, can also refer to the arrangement shown in Figure 4 and Figure 5, and can also refer to Figure 9 and Figure 9.
  • the setting method shown in 10 may be determined according to the actual situation.
  • a protective film 338 can also be pasted on the pad surface 3311 of the pad body 331 shown in FIG. 15 and FIG. 16 .
  • the heat conduction pad 330 shown in FIG. 15 and FIG. 16 can be manufactured with reference to the method shown in FIG. 14a and FIG. 14b , and details will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请公开了一种导热垫、散热模组及电子设备,涉及导热垫技术领域,为解决相关技术中的电子设备的散热模组不能够同时兼顾提高散热效率和降低制作成本的问题而发明。该导热垫包括垫体,所述垫体上开设有镂空部,所述镂空部内填充有液态金属材料层。本申请可用于笔记本电脑等电子设备中。

Description

一种导热垫、散热模组及电子设备
本申请要求于2021年10月27日提交国家知识产权局、申请号为202111260485.4、申请名称为“一种导热垫、散热模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及导热垫技术领域,尤其涉及一种导热垫、散热模组及电子设备。
背景技术
随着电子设备向小型化和高性能方向快速发展,位于设备内部较小空间内的电子器件的散热需求也越来越迫,因此,如何设置对电子器件散热成为业内重要的课题之一。
传统的电子设备中,通常在电子器件和散热器之间设置导热垫,导热垫通常由导热硅脂、导热硅胶等材料制成,以将电子器件产生的热量传递至散热器散出。然而,受制于导热垫材料的导热效率的限制,上述导热垫的导热效率不高,难以满足电子器件,尤其是高功率电子器件的散热需求。
为了提高电子器件的散热效率,相关技术的一种电子设备中,在电子器件和散热器之间设置液金层(其材料为液态金属材料),为了防止液金层从电子器件和散热器之间溢出,电子器件和散热器之间需要设置密封圈,然而设置密封圈,这样使得该散热模组的结构较为复杂,增加了散热模组的组装工艺的难度,不利于降低散热模组的制作成本。
发明内容
本申请的实施例提供一种导热垫、散热模组及电子设备,用于解决相关技术中的电子设备的散热模组不能够同时兼顾提高散热效率和降低制作成本的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供了一种导热垫,包括垫体,所述垫体上开设有镂空部,所述镂空部内填充有液态金属材料层。
通过采用上述技术方案,提高了导热垫整体的导热系数,降低了导热垫整体的热阻,提高了电子器件的散热效率,从而使得电子器件的散热更加充分;同时,还无需设置其它的密封结构来限制液态金属材料层的流动,不但使得散热模组的结构更加简单,而且还简化了散热模组的组装工艺,有利于降低散热模组的制作成本。
在一些实施例中,沿所述垫体的厚度方向,所述垫体包括相背设置的两个垫表面,所述镂空部开设于所述垫表面。
通过采用上述技术方案,可以大大降低导热垫整体的热阻。
在一些实施例中,所述镂空部贯穿所述垫体设置。
通过采用上述技术方案,这样镂空部中液态金属材料层就可以分别与电子器件、散热器接触,有利于进一步降低导热垫整体的热阻。
在一些实施例中,每个所述垫表面均开设有所述镂空部,所述镂空部的深度小于所述垫体的厚度。
通过采用上述技术方案,这样两个垫表面的镂空部中液态金属材料层就可以分别与电子器件、散热器接触,有利于进一步降低导热垫整体的热阻。
在一些实施例中,沿垂直于所述垫体的厚度方向的方向,开设于两个所述垫表面上的所述镂空部错开设置。
通过采用上述技术方案,这样在镂空部的总数目一定时,增加了液态金属材料层在垫体中的覆盖区域,更加有利于提高电子器件的散热效果。
在一些实施例中,所述垫表面上开设多个呈阵列排布的所述镂空部。
通过采用上述技术方案,这样增加了液态金属材料层在垫体中的覆盖区域,更加有利于提高电子器件的散热效果。
在一些实施例中,所述镂空部为孔或凹槽。
通过采用上述技术方案,这样可以方便镂空部的制作。
在一些实施例中,所述垫表面包括镂空开设区、以及位于所述镂空开设区外围的周边区;所述镂空开设区开设有所述镂空部,所述周边区开设有防溢槽。
通过采用上述技术方案,这样可以阻止了液态金属材料向外扩散,降低了液态金属材料从导热垫的边缘泄露出的概率。
在一些实施例中,所述防溢槽与所述镂空部隔开。
通过采用上述技术方案,在将液态金属材料填充至镂空部中时,就可以降低镂空部中的液态金属材料进入至防溢槽中的概率。
在一些实施例中,所述防溢槽沿所述镂空开设区的周向延伸。
通过采用上述技术方案,这样提高了防溢槽对溢出的液态金属材料向周边区扩散阻止的效果。
在一些实施例中,所述周边区开设有防溢槽组,所述防溢槽组包括多个围绕所述镂空开设区设置的所述防溢槽。
通过采用上述技术方案,可以阻止溢出的液态金属材料向多个方向扩散,从而进一步降低了液态金属材料从导热垫的边缘泄露出的概率。
在一些实施例中,所述周边区开设有多个所述防溢槽组,多个所述防溢槽组沿远离所述镂空开设区的方向排布。
通过采用上述技术方案,可以更好地阻止溢出的液态金属材料向多个方向扩散,从而大大降低了液态金属材料从导热垫的边缘泄露出的概率。
在一些实施例中,所述防溢槽组中的每个所述防溢槽均贯穿所述垫体。
通过采用上述技术方案,可以增大防溢槽的容积,从而可以更好地阻止液态金属材料继续向外扩散。
在一些实施例中,所述防溢槽为环槽且围绕所述镂空开设区设置,所述防溢槽的槽深小于所述垫体的厚度。
通过采用上述技术方案,可以更好地阻止溢出的液态金属材料向多个方向扩散,从而降低了液态金属材料从导热垫的边缘泄露出的概率。
在一些实施例中,所述周边区开设有多个所述防溢槽,多个所述防溢槽沿远离所 述镂空开设区的方向排布。
通过采用上述技术方案,多个防溢槽可以更好地阻止溢出的液态金属材料向多个方向扩散,从而大大降低了液态金属材料从导热垫的边缘泄露出的概率。
在一些实施例中,所述防溢槽的一端延伸至所述镂空部的边缘,以与所述镂空部连通。
通过采用上述技术方案,可以大大降低液态金属材料从镂空部的边缘中溢出的概率。
在一些实施例中,所述防溢槽的宽度范围为0.1mm~0.2mm。
通过采用上述技术方案,既可以使液态金属材料填充至镂空部中时不容易进入到防溢槽中,也可以避免防溢槽的容纳空间过小,确保防溢槽对液态金属材料的防溢出效果处于较佳的状态。
在一些实施例中,所述镂空开设区开设有两排所述镂空部,每排包括多个所述镂空部,每个所述镂空部分别与至少一个所述防溢槽连通。
通过采用上述技术方案,可以方便防溢槽与每个镂空部连通。
在一些实施例中,所述导热垫还包括保护膜,所述保护膜贴附在所述垫表面,以将所述液态金属材料层覆盖。
通过采用上述技术方案,可以防止镂空部内的液态金属材料泄露,从而方便该导热垫的储存和运输。
第二方面,本申请实施例提供了一种散热模组,包括电子器件、散热器、以及第一方面中所述的导热垫,所述导热垫的垫体设置于所述电子器件和所述散热器之间。
该散热模组所具有的有益效果与第一方面中所述的导热垫的有益效果相同,在此不再赘述。
在一些实施例中,所述电子器件为中央处理器;所述中央处理器包括基板、以及设置于所述基板上的裸片,所述垫体设置于所述裸片和所述散热器之间。
通过采用上述技术方案,可以更好地为中央处理器散热,保证中央处理器的正常工作。
第三方面,本申请实施例提供了一种电子设备,包括壳体、以及第二方面中所述的散热模组,所述散热模组设置于所述壳体中。
该电子设备所具有的有益效果与第二方面中所述的散热模组的有益效果相同,在此不再赘述。
第四方面,本申请实施例提供了一种导热垫的制作方法,包括以下步骤:提供导热垫;其中,所述导热垫包括垫体,沿所述垫体的厚度方向,所述垫体包括相背设置的两个垫表面。在所述垫表面上开设镂空部;其中,所述镂空部的深度小于所述垫体的厚度。将液态金属材料填充至所述镂空部中,以形成液态金属材料层。
该导热垫的制作方法所具有的有益效果与第一方面中所述的导热垫的有益效果相同,在此不再赘述。
在一些实施例中,在将液态金属材料填充至所述镂空部中之后,还包括以下步骤:在所述垫表面上贴附保护膜,以将所述液态金属材料层覆盖。
通过采用上述技术方案,可以防止镂空部内的液态金属材料泄露,从而方便该导 热垫的储存和运输。
在一些实施例中,在将液态金属材料填充至所述镂空部中之前,还包括以下步骤:在所述镂空部的外围开设防溢槽。
通过采用上述技术方案,这样可以阻止了液态金属材料向外扩散,降低了液态金属材料从导热垫的边缘泄露出的概率。
第五方面,本申请实施例提供了一种导热垫的制作方法,包括以下步骤:提供导热垫;其中,所述导热垫包括垫体,沿所述垫体的厚度方向,所述垫体包括相背设置的第一垫表面和第二垫表面。在所述垫体上开设镂空部;其中,所述镂空部沿所述垫体的厚度方向贯穿所述垫体。在所述第一垫表面上贴附保护膜,以将所述镂空部覆盖。然后将液态金属材料从所述镂空部位于所述第二垫表面上的开口填充至所述镂空部中,以形成液态金属材料层。在所述第二垫表面上贴附保护膜,以将所述液态金属材料层覆盖。
该导热垫的制作方法所具有的有益效果与第一方面中所述的导热垫的有益效果相同,在此不再赘述。
在一些实施例中,在将液态金属材料填充至所述镂空部中之前,还包括以下步骤:在所述镂空部的外围开设防溢槽。
通过采用上述技术方案,这样可以阻止了液态金属材料向外扩散,降低了液态金属材料从导热垫的边缘泄露出的概率。
附图说明
图1a为传统的电子设备中的散热模组的示意图;
图1b为相关技术中一种电子设备中的散热模组的示意图;
图1c为本申请一些实施例中笔记本电脑的结构示意图;
图2为本申请一些实施例中的散热模组的布置示意图;
图3为图2中的散热模组的结构示意图;
图4为本申请一些实施例中的导热垫的垫体的俯视图;
图5为图4中垫体的A-A剖面视图;
图6为本申请另一些实施例中的导热垫的垫体的结构示意图;
图7为图5中的导热垫在未使用时的结构示意图;
图8a为图7所示的导热垫的制作过程图;
图8b为图7所示的导热垫的制作方法的流程图;
图9为本申请另一些实施例中的导热垫的垫体的俯视图;
图10为图9中的导热垫的垫体的B-B剖面视图;
图11为本申请另一些实施例中的导热垫的垫体的俯视图;
图12为图11中的导热垫的垫体的C-C剖面视图;
图13为图12中的导热垫贴附保护膜的结构示意图;
图14a为图13所示的导热垫的制作过程图;
图14b为图13所示的导热垫的制作方法的流程图;
图15为本申请另一些实施例中的导热垫的垫体的俯视图;
图16为图15中的导热垫的垫体的D-D剖面视图。
具体实施方式
在本申请实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,需要说明的是,术语“电连接”应做广义理解,例如,可以是通过直接连接的方式实现电流导通,也可以是通过电容耦合的方式实现电能量传导。
如图1a所示,图1a为传统的电子设备中的散热模组的示意图。该散热模组包括:电子器件310、散热器320、以及导热垫330,导热垫330设置于电子器件310和散热器320之间,以将电子器件310产生的热量传递至散热器320散出。上述导热垫330通常由导热硅脂、导热硅胶等材料制成,然而,由导热硅脂、导热硅胶制成的导热垫330的散热效率通常为3~15W·m -1k -1,散热效率较低,这样导热垫330不能够及时将电子器件310产生的热量及时散出,难以满足电子器件310(尤其是大功率的电子器件310)在工作时的散热需求。
为了提高电子器件310的散热效率,如图1b所示,图1b为相关技术中一种电子设备中的散热模组的示意图。该散热模组包括电子器件310、散热器320、以及设置于电子器件310和散热器320之间的液金层350,液金层350的材料为液态金属材料(液态金属材料可以简称为“液金”),为了防止液金层350从电子器件310、散热器320之间外溢,液金层350的外围还设有密封结构340。
图1b所示的散热结构中通过采用的液金层350,能够提高电子器件310的散热效率,然而为了防止液金层350从电子器件310、散热器320之间溢出,该散热模组中需要设置密封结构340(即密封圈),设置密封结构340这样使得该散热模组较为复杂,增加了散热模组的组装工艺的难度,不利于降低散热模组的制作成本。
另外,由于液态金属材料的价格较为昂贵,在电子器件310和散热器320之间设置一整层液金层350,所采用的液态金属材料的量较多,不利于散热模组的降低成本。
由此可见,相关技术中电子设备中的散热模组不能够同时兼顾提高散热效率和降低制作成本。
为此,本申请实施例中提供了一种导热垫、散热模组及电子设备,通过在导热垫垫体的镂空部中填充液态金属材料层,不但使得电子器件的散热更充分,提高了电子器件的散热效率,而且还可以简化了散热模组的结构,降低散热模组的制作成本。
本申请实施例中的电子设备可以是笔记本电脑、台式电脑、变频器、固态继电器、桥式整流器、动力电池、较大功率LED(Light-Emitting Diode;发光二极管)灯具等内部具有散热模组的设备。
下面以笔记本电脑为例来详细介绍内部的散热模组的结构,其它电子设备具体可参照笔记本电脑实施例中的散热模组的结构来设置,在此不再一一赘述。
如图1c、图2和图3所示,图1c为本申请一些实施例中笔记本电脑的结构示意图,图2为本申请一些实施例中的散热模组300的布置示意图,图3为图2中的散热模组300的结构示意图,图2和图3仅为了示出散热模组300的组成及各个部件间的 连接关系,未按照实际产品中各个部件的实际比例示出。
该笔记本电脑包括壳体100、以及设置于壳体100中的主板200、散热模组300和散热风扇400,壳体100上开设有进风口110和出风口120,散热模组300和散热风扇400均设置于主板200上。
散热模组300包括电子器件310、散热器320、以及导热垫330。电子器件310为中央处理器(Central Processing Unit;简称CPU),中央处理器包括基板311、以及设置于基板311上的裸片(DIE)312)。
当然,电子器件310除了为中央处理器之外,也可以为功率模块等发热部件,具体可根据电子设备的类型而定。
如图4和图5所示,图4为本申请一些实施例中的导热垫330的垫体331的俯视图,图5为图4中垫体331的A-A剖面视图。该导热垫330包括垫体331,垫体331上开设有镂空部332,镂空部332内填充有液态金属材料层333,垫体331设置于裸片312和散热器320之间。
其中,液态金属材料是在较低温度下处于液态的一类金属材料的统称,不但具有金属物质所具有的极强的导热性,其散热效率为40~80W·m -1k -1,而且还具有一定的流动性。该液态金属材料可以为低熔点金属,比如镓(Ga)以及碱金属中的钠(Na)、钾(K)、锂(Li)等;也可以为低熔点合金,比如镓金属合金。
上述垫体331可以由导热硅脂、导热硅胶、石墨等导热材料制作而成。
在工作时,导热垫330将裸片312产生的热量传导至散热器320,同时,散热风扇400将壳体100外的风由进风口110吸入壳体100内,然后风流经散热器320时将散热器320上散出的热量带走,并由出风口120排出壳体100外。通过在垫体331的镂空部332中填充有导热性较好的液态金属材料层333,这样提高了导热垫330整体的导热系数,降低了导热垫330整体的热阻,从而有利于提高电子器件310的散热效率,使得电子器件310的散热更加充分。
同时,由于液态金属材料层333填充于垫体331的镂空部332中,这样镂空部332可以限制液态金属材料层333的流动,使垫体331本身能够对液态金属材料层333起到密封,那么就无需设置其它的密封结构来限制液态金属材料层333的流动,不但使得散热模组300的结构更加简单,而且还简化了散热模组300的组装工艺,有利于降低散热模组300的制作成本。
再者,相较于将电子器件310和散热器320件之间设置一整层的液态金属材料层(图1b所示),本申请实施例中是将价格较贵的液态金属材料层333填充在价格较低的导热垫330的垫体331中,这样可以避免液态金属材料的使用量过多,在满足电子器件310的散热的同时,还有利于降低电子器件310的散热成本。
在一些实施例中,如图5所示,沿垫体331的厚度方向H,垫体331包括相背设置的两个垫表面3311,镂空部332开设于垫表面3311。这样不但可以方便镂空部332中填充液态金属材料层333,而且镂空部332中的液态金属材料层333还可以与电子器件310或散热器320接触,从而可以大大降低导热垫330整体的热阻,从而提高电子器件310的散热效果。
在一些实施例中,如图4和图5所示,垫体331的垫表面3311上开设多个呈阵列 排布的镂空部332,图5中镂空部332呈6(列)×3(行)阵列排布。通过这样设置,能够增加镂空部332在导热垫330的垫体331上的覆盖区域,从而增加了液态金属材料层333在垫体331中的覆盖区域,使得导热垫330的高效导热区域(也就是上述液态金属材料层333在垫体331中的覆盖区域)更大,进而更加有利于提高电子器件310的散热效果。
在一些实施例中,如图5所示,垫体331的每个垫表面3311均开设有镂空部332,镂空部332的深度小于垫体331的厚度,也就是镂空部332未贯穿垫体331。由于镂空部332的深度小于垫体331的厚度,这样镂空部332相当于液态金属材料层333的“容器”,从而更加方便镂空部332中填充液态金属材料层333。同时,通过将垫体331的每个垫表面3311均开设有镂空部332,这样两个垫表面3311的镂空部332中液态金属材料层333就可以分别与电子器件310、散热器320接触,有利于进一步降低导热垫330整体的热阻,从而进一步提高了电子器件310的散热效果。
在一些实施例中,如图5所示,沿垂直于垫体331的厚度方向的方向Y,开设于两个垫表面3311上的镂空部332错开设置。这样,在镂空部332的总数目一定时,能够增加镂空部332在导热垫330的垫体331上的覆盖区域,从而增加了液态金属材料层333在垫体331中的覆盖区域,使得导热垫330的高效导热区域更大,进而更加有利于提高电子器件310的散热效果。
示例的,如图4和图5所示,垫体331的轮廓呈矩形,垫体331开设于两个侧面上的镂空部332在垫体331的宽度方向X以及长度方向Y上均错开设置。
其中,开设于两个垫表面3311上的镂空部332,可以完全错开设置,如图5所示,也可以部分错开设置。“完全错开”是指沿垂直于垫体331的厚度方向的方向,两个垫表面3311上的镂空部332第一平面上的正投影不重叠,“部分错开”是指沿垂直于垫体331的厚度方向的方向Y,两个垫表面3311上的镂空部332在第一平面上的正投影部分重叠;上述第一平面为垂直于垫体331的厚度方向的一个平面。
在一些实施例中,如图4和图5所示,镂空部332为凹槽。将镂空部332设置为凹槽,这样镂空部332就可以采用冲压工艺形成,以方便镂空部332的制作。
当然,镂空部332除了为凹槽之外,也可以为孔,孔同样可以采用冲压工艺形成,从而方便镂空部332的制作。
镂空部332除了可以开设于垫体331的垫表面3311之外,也可以开设于垫体331的内部,液态金属材料可以通过针头注入到位于垫体331内部的镂空部332中。
在一些实施例中,如图4和图5所示,垫体331的垫表面3311包括镂空开设区334、以及位于镂空开设区334外围的周边区335;镂空开设区334开设有镂空部332,周边区335开设有防溢槽336。
在垫体331贴在散热器320和电子器件310的之间受到挤压时,镂空部332中液态金属材料难免会溢出,并顺着导热垫330与散热器320或者电子器件310之间的缝隙向周边区335扩散,通过在周边区335设置防溢槽336,能够容纳溢出的液态金属材料,从而阻止了液态金属材料继续向外扩散,降低了液态金属材料从导热垫330的边缘泄露出的概率。
在一些实施例中,如图4和图5所示,防溢槽336与镂空部332隔开,也就是防 溢槽336与镂空部332相隔一定距离并且不连通。通过这样设置,在将液态金属材料填充至镂空部332中时,就可以降低镂空部332中的液态金属材料进入至防溢槽336中的概率。
在一些实施例中,如图4所示,防溢槽336沿镂空开设区334的周向延伸。通过这样设置,在镂空部332的液态金属材料溢出并向周边区335扩散时,更容易进入到防溢槽336中,这样提高了防溢槽336对溢出的液态金属材料向周边区335扩散阻止的效果。
示例的,如图4所示,镂空开设区334呈矩形,防溢槽336沿镂空开设区334的长度方向Y或宽度方向X延伸。
在一些实施例中,如图4所示,周边区335开设有防溢槽组337,防溢槽组337包括多个围绕镂空开设区334设置的防溢槽336。通过这样设置,防溢槽组337中多个围绕镂空开设区334设置的防溢槽336,可以阻止溢出的液态金属材料向多个方向扩散,从而进一步降低了液态金属材料从导热垫330的边缘泄露出的概率。
示例的,如图4所示,防溢槽组337包括四个防溢槽336,其中两个防溢槽336分别位于镂空开设区334沿其宽度方向X的两侧,另外两个防溢槽336分别位于镂空开设区334沿其长度方向Y的两侧。
在一些实施例中,如图4和图5所示,周边区335开设有多个防溢槽组337,多个防溢槽组337沿远离镂空开设区334的方向排布。通过这样设置,多个防溢槽组337可以更好地阻止溢出的液态金属材料333向多个方向扩散,从而大大降低了液态金属材料333从导热垫330的边缘泄露出的概率。
其中,如图4所示,防溢槽组337的数目为两个,但也不限于此,也可以设置两个及以上,具体可根据镂空部332中填充的液态金属材料的量而定。
在一些实施例中,如图5所示,防溢槽组337中的每个防溢槽336均贯穿垫体331。这样可以增大防溢槽336的容积,以增大防溢槽336容纳液态金属材料的量,从而可以更好地阻止液态金属材料继续向外扩散,大大降低液态金属材料从导热垫330的边缘泄露出的概率。
当然,如果液态金属材料的溢出量不大,防溢槽336也可以不贯穿垫体331,具体如图6所示,图6为本申请另一些实施例中的导热垫330的垫体331的结构示意图。防溢槽336的槽深小于垫体331的厚度。该防溢槽336的横截面为三角形,以方便溢出的液态金属材料进入到防溢槽336中。
在一些实施例中,如图7所示,图7为图5中的导热垫330在未使用时的结构示意图。导热垫330还包括保护膜338,保护膜338贴附在垫表面3311,以将液态金属材料层333覆盖。
通过设置保护膜338,这样在导热垫330未使用时,保护膜338可以防止镂空部332内的液态金属材料泄露,从而方便该导热垫330的储存和运输。导热垫330在使用时,可以将保护膜338撕去,以保证导热垫330的垫体331贴在电子器件310和散热器320之间;其中,垫体331贴合时的环境温度可以控制在液态金属材料的熔点之下,这样镂空部332内的液态金属材料层333为固态,从而可以方便垫体331的贴合。
示例的,保护膜338可以为PET(polyethylene terephthalate;聚对苯二甲酸乙二 醇酯)保护膜。
如果垫体331的两个垫表面3311上均开设有镂空部332,如图7所示,垫体331的两个垫表面3311上均贴附保护膜338。如果垫体331的一个垫表面3311上开设有镂空部332,可以在垫体331开设镂空部332的垫表面3311上贴附保护膜338。
如图8a和图8b所示,图8a为图7所示的导热垫330的制作过程图,图8b为图7所示的导热垫330的制作方法的流程图。该导热垫330的制作方法包括:
S1、如图8a中的(1)所示,提供导热垫330。
其中,导热垫330包括垫体331,垫体331材料可以为导热硅脂、导热硅胶、石墨等。
S2、如图8a中的(2)所示,在导热垫330的垫体331的两个垫表面3311上分别开设镂空部332。
其中,镂空部332的深度小于垫体331的厚度;镂空部332可以通过冲压工艺形成,也可以通过其它工艺形成,在此不做具体限定。
S3、如图8a中的(2)所示,在镂空部332的外围开设防溢槽336。
其中,防溢槽336可以通过刀具在外围划切形成。
S4、如图8a中的(3)和(4)所示,将液态金属材料填充至一个垫表面3311上的镂空部332中,以形成液态金属材料层333,然后在该垫表面3311上贴附保护膜338,以将液态金属材料层333覆盖。
S5、如图8a中的(5)和(6)所示,将液态金属材料填充至另一个垫表面3311上的镂空部332中,以形成液态金属材料层333,然后在该垫表面3311上贴附保护膜338,以将液态金属材料层333覆盖。
当然,S2和S3的顺序也可以相互对调,也就是先开设防溢槽336,再开设镂空部332;此外,防溢槽336、镂空部332也可以通过一道工序同时形成于垫体331上,比如防溢槽336、镂空部332通过一道冲压工序同时形成在垫体331上。
如果有其它措施防止液态金属材料333从垫体331边缘泄漏出,防溢槽336也可以不设置。
在步骤S2中也可以只在垫体331的一个垫表面3311上开设镂空部332,这样后续在该镂空部332填充液态金属材料之后,仅在该垫表面3311上贴附保护膜338。
在垫体331上仅一个垫表面3311上开设镂空部332的实施例中,如果将垫体331储藏在液态金属材料层333的熔点之下的环境中,那么垫体331上也可以不用贴附保护膜338。
如图9和图10所示,图9为本申请另一些实施例中的导热垫330的垫体331的俯视图,图10为图9中的导热垫330的垫体331的B-B剖面视图。图9和图10中所示垫体331与图4和图5中的所示垫体331的主要区别在于:防溢槽336的形状不同,在该实施例中,防溢槽336为环槽且围绕镂空开设区334设置,防溢槽336的槽深小于垫体331的厚度。
通过将防溢槽336设置为环槽,这样防溢槽336可以将镂空开设区334包围,可以更好地阻止溢出的液态金属材料向多个方向扩散,从而降低了液态金属材料从导热垫330的边缘泄露出的概率。将防溢槽336的槽深设置为小于垫体331的厚度,这样 避免呈环状的防溢槽336将垫体331分割成两个部分。
其中,如图10所示,防溢槽336的横截面形状为矩形,但也不限于此,其它形状也可以,比如三角形。防溢槽336的形状可以呈矩形环,也可以呈圆环,具体可根据垫体331以及镂空开设区334的形状而定。
在一些实施例中,如图9和图10所示,周边区335开设有多个防溢槽336,多个防溢槽336沿远离镂空开设区334的方向排布。通过这样设置,多个防溢槽336可以更好地阻止溢出的液态金属材料向多个方向扩散,从而大大降低了液态金属材料从导热垫330的边缘泄露出的概率。
为了防止液态金属材料泄露,以便于导热垫的储存和运输,图9和图10中所示垫体331的垫表面3311上也可以贴附保护膜338。
图9和图10中所示导热垫330具体可参照图8a和图8b中所示的方法制作,在此不再赘述。
如图11和图12所示,图11为本申请另一些实施例中的导热垫330的垫体331的俯视图,图12为图11中的导热垫330的垫体331的C-C剖面视图。图11和图12中所示垫体331与图4和图5中的所示垫体331的主要区别在于:镂空部332的结构不同,防溢槽336与镂空部332两者之间的关系不同。
在该实施例中,镂空部332贯穿垫体331设置。这样镂空部332中液态金属材料层333就可以分别与电子器件310、散热器320接触,有利于进一步降低导热垫330整体的热阻,从而进一步提高了电子器件310的散热效果。
在该实施例中,防溢槽336的一端延伸至镂空部332的边缘,以与镂空部332连通。这样在垫体331贴在散热器320和电子器件310的之间受到挤压时,镂空部332中液态金属材料就可以直接进入到防溢槽336中,从而大大降低液态金属材料从镂空部332的边缘中溢出的概率。
其中,防溢槽336的宽度是一个重要的参数,其不宜过大,也不宜过小。如果防溢槽336的宽度过大,那么在将液态金属材料填充至镂空部332中时,一部分的液态金属材料就会进入到防溢槽336中,占用防溢槽336中的空间,从而影响防溢槽336对液态金属材料的防溢出效果;如果防溢槽336的宽度过小,那么防溢槽336的容纳空间就会越小,容纳液态金属材料的量也就越小,同样会影响防溢槽336对液态金属材料的防溢出效果。经研究发现,当防溢槽336的宽度范围为0.1mm~0.2mm时,既可以使液态金属材料填充至镂空部332中时不容易进入到防溢槽336中,也可以避免防溢槽336的容纳空间过小,从而确保防溢槽336对液态金属材料的防溢出效果处于较佳的状态。
在一些实施例中,如图11所示,镂空开设区334开设有两排镂空部332,每排包括多个镂空部332(图中所示为每排四个镂空部332),每个镂空部332分别与一个防溢槽336连通。通过在镂空开设区334开设两排镂空部332,这样两排中的每个镂空部332均与周边区335相邻,从而方便防溢槽336与每个镂空部332连通。
当然,每个镂空部332除了分别与一个防溢槽336连通之外,也可以与两个及以上的防溢槽336连通,具体可根据每个镂空部332中的液态金属材料的量而定。
如图13所示,图13为图12中的导热垫330贴附保护膜338的结构示意图。垫体 331的每个垫表面3311上均可分离地贴附有保护膜338,贴附于每个垫表面3311上的保护膜338均将镂空部332覆盖。在镂空部332填充液态金属材料时,可以在一个垫表面3311上贴附保护膜338,此时保护膜338与镂空部332形成容纳液态金属材料的“容器”,从而避免液态金属材料在填充于镂空部332时从垫体331的另一侧漏出。
如图14a和图14b所示,图14a为图13所示的导热垫330的制作过程图,图14b为图13所示的导热垫330的制作方法的流程图。该导热垫330的制作方法包括:
N1、如图14a中的(1)所示,提供导热垫330;
其中,导热垫330包括垫体331,垫体331的两个垫表面3311分别第一垫表面3311a和第二垫表面3311b。
N2、如图14a中的(2)所示,在导热垫330的垫体331上开设镂空部332。
其中,镂空部332沿垫体331的厚度方向贯穿垫体331。
N3、在镂空部332的外围开设防溢槽336。
N4、如图14a中的(3)所示,在第一垫表面3311a上贴附保护膜338,以将镂空部332覆盖;
N5、如图14a中的(4)所示,将液态金属材料从镂空部332位于第二垫表面3311b上的开口填充至镂空部332中,以形成液态金属材料层333。
N6、如图14a中的(5)所示,在第二垫表面3311b上贴附保护膜338,以将液态金属材料层333覆盖。
当然,N2和N3的顺序也可以相互对调,也就是先开设防溢槽336,再开设镂空部332;此外,防溢槽336、镂空部332也可以通过一道工序同时形成于垫体331上,比如防溢槽336、镂空部332通过一道冲压工序同时形成在垫体331上。如果有其它措施防止液态金属材料从镂空部332边缘溢出,防溢槽336也可以不设置。
如图15和图16所示,图15为本申请另一些实施例中的导热垫330的垫体331的俯视图,图16为图15中的导热垫330的垫体331的D-D剖面视图。图15和图16中所示垫体331与图11和图12中的所示垫体331的主要区别在于:镂空开设区334开设镂空部332的数目不同。
在该实施例中,镂空开设区334开设一个镂空部332,该镂空部332的轮廓形状为椭圆形,但也不限于此,该镂空部332的轮廓形状也可以为圆形,矩形等,具体可根据实际情况而定。
该实施例中的防溢槽336的设置方式具体可参照图11和图12中所示的设置方式,也可以参照图4和图5中所示的设置方式,还可以参照如图9和图10所示的设置方式,具体可根据实际情况而定。
为了防止液态金属材料泄露,以便于导热垫的储存和运输,图15和图16中所示垫体331的垫表面3311上也可以贴附保护膜338。
图15和图16中所示导热垫330具体可参照图14a和图14b中所示的方法制作,在此不再赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽 管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种导热垫,其特征在于,包括垫体,所述垫体上开设有镂空部,所述镂空部内填充有液态金属材料层。
  2. 根据权利要求1所述的导热垫,其特征在于,
    沿所述垫体的厚度方向,所述垫体包括相背设置的两个垫表面,所述镂空部开设于所述垫表面。
  3. 根据权利要求2所述的导热垫,其特征在于,
    所述镂空部贯穿所述垫体设置。
  4. 根据权利要求2所述的导热垫,其特征在于,
    每个所述垫表面均开设有所述镂空部,所述镂空部的深度小于所述垫体的厚度。
  5. 根据权利要求4所述的导热垫,其特征在于,
    沿垂直于所述垫体的厚度方向的方向,开设于两个所述垫表面上的所述镂空部错开设置。
  6. 根据权利要求2~5中任一项所述的导热垫,其特征在于,
    所述垫表面上开设多个呈阵列排布的所述镂空部。
  7. 根据权利要求2~6中任一项所述的导热垫,其特征在于,
    所述镂空部为孔或凹槽。
  8. 根据权利要求2~7中任一项所述的导热垫,其特征在于,
    所述垫表面包括镂空开设区、以及位于所述镂空开设区外围的周边区;
    所述镂空开设区开设有所述镂空部,所述周边区开设有防溢槽。
  9. 根据权利要求8所述的导热垫,其特征在于,
    所述防溢槽与所述镂空部隔开。
  10. 根据权利要求9所述的导热垫,其特征在于,
    所述防溢槽沿所述镂空开设区的周向延伸。
  11. 根据权利要求9或10所述的导热垫,其特征在于,
    所述周边区开设有防溢槽组,所述防溢槽组包括多个围绕所述镂空开设区设置的所述防溢槽。
  12. 根据权利要求11所述的导热垫,其特征在于,
    所述周边区开设有多个所述防溢槽组,多个所述防溢槽组沿远离所述镂空开设区的方向排布。
  13. 根据权利要求11或12所述的导热垫,其特征在于,
    所述防溢槽组中的每个所述防溢槽均贯穿所述垫体。
  14. 根据权利要求9所述的导热垫,其特征在于,
    所述防溢槽为环槽且围绕所述镂空开设区设置,所述防溢槽的槽深小于所述垫体的厚度。
  15. 根据权利要求14所述的导热垫,其特征在于,
    所述周边区开设有多个所述防溢槽,多个所述防溢槽沿远离所述镂空开设区的方向排布。
  16. 根据权利要求8所述的导热垫,其特征在于,
    所述防溢槽的一端延伸至所述镂空部的边缘,以与所述镂空部连通。
  17. 根据权利要求16所述的导热垫,其特征在于,
    所述防溢槽的宽度范围为0.1mm~0.2mm。
  18. 根据权利要求16或17所述的导热垫,其特征在于,
    所述镂空开设区开设有两排所述镂空部,每排包括多个所述镂空部,每个所述镂空部分别与至少一个所述防溢槽连通。
  19. 根据权利要求2~18中任一项所述的导热垫,其特征在于,
    所述导热垫还包括保护膜,所述保护膜贴附在所述垫表面,以将所述液态金属材料层覆盖。
  20. 一种散热模组,其特征在于,包括:
    电子器件;
    散热器;
    权利要求1~19中任一项所述的导热垫,所述导热垫的垫体设置于所述电子器件和所述散热器之间。
  21. 根据权利要求20所述的散热模组,其特征在于,
    所述电子器件为中央处理器;所述中央处理器包括基板、以及设置于所述基板上的裸片,所述垫体设置于所述裸片和所述散热器之间。
  22. 一种电子设备,其特征在于,包括:
    壳体;
    权利要求20或21所述的散热模组,所述散热模组设置于所述壳体中。
PCT/CN2022/115225 2021-10-27 2022-08-26 一种导热垫、散热模组及电子设备 WO2023071485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22865871.2A EP4199676A4 (en) 2021-10-27 2022-08-26 THERMAL PAD, HEAT DISSIPATION MODULE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111260485.4 2021-10-27
CN202111260485.4A CN116033703A (zh) 2021-10-27 2021-10-27 一种导热垫、散热模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023071485A1 true WO2023071485A1 (zh) 2023-05-04

Family

ID=86080091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115225 WO2023071485A1 (zh) 2021-10-27 2022-08-26 一种导热垫、散热模组及电子设备

Country Status (3)

Country Link
EP (1) EP4199676A4 (zh)
CN (1) CN116033703A (zh)
WO (1) WO2023071485A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207051829U (zh) * 2017-04-19 2018-02-27 上海帕科网络科技有限公司 云服务器芯片液态金属散热系统
CN207382767U (zh) * 2017-08-11 2018-05-18 深圳市大材液态金属科技有限公司 手机散热结构
CN211531648U (zh) * 2020-04-10 2020-09-18 常州微控科技有限公司 局部封装液态金属的浸没式散热冷板
CN113517243A (zh) * 2021-06-29 2021-10-19 北京时代民芯科技有限公司 一种非气密性陶瓷倒装焊封装散热结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075291A1 (ja) * 2003-02-24 2004-09-02 Fujitsu Limited 電子部品と放熱部材および、それらを使用した半導体装置の製造方法
CN112201634A (zh) * 2020-10-16 2021-01-08 北京市九州风神科技股份有限公司 一种带有防溢安全结构的导热界面装置
CN112713128A (zh) * 2020-12-31 2021-04-27 无锡太机脑智能科技有限公司 一种智能控制器散热方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207051829U (zh) * 2017-04-19 2018-02-27 上海帕科网络科技有限公司 云服务器芯片液态金属散热系统
CN207382767U (zh) * 2017-08-11 2018-05-18 深圳市大材液态金属科技有限公司 手机散热结构
CN211531648U (zh) * 2020-04-10 2020-09-18 常州微控科技有限公司 局部封装液态金属的浸没式散热冷板
CN113517243A (zh) * 2021-06-29 2021-10-19 北京时代民芯科技有限公司 一种非气密性陶瓷倒装焊封装散热结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199676A4

Also Published As

Publication number Publication date
EP4199676A4 (en) 2024-07-03
EP4199676A1 (en) 2023-06-21
CN116033703A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN202443965U (zh) 一种金属石墨复合散热设备
TWI309549B (en) Printed circuit board with improved thermal dissipating structure and electronic device with the same
CN109637983B (zh) 芯片封装
US20140291832A1 (en) Integrated cooling modules of power semiconductor device
CN105742252A (zh) 一种功率模块及其制造方法
US20130133864A1 (en) Heat distribution structure, manufacturing method for the same and heat-dissipation module incorporating the same
WO2021179352A1 (zh) 基于石墨烯基封装衬板的大功率ipm的结构及加工工艺
CN115003102B (zh) 电子元件散热结构的制造方法、散热结构及电子设备
CN103871982A (zh) 芯片散热系统
WO2023071485A1 (zh) 一种导热垫、散热模组及电子设备
TWI675287B (zh) 加熱散熱模組
WO2023071493A1 (zh) 电子元件散热结构的制造方法、散热结构及电子设备
CN218160349U (zh) 一种半导体二极管芯片
CN207382767U (zh) 手机散热结构
WO2023005205A1 (zh) 散热装置及电子设备
JP2006013217A (ja) カーボングラファイトを使用するヒートシンク
CN205546391U (zh) 散热鳍片
CN217544598U (zh) 一种用于半导体芯片的封装结构
CN220895498U (zh) 高导热系数材料的防漏散热改良结构
CN203659935U (zh) 一种大功率led的液冷散热装置
CN219042315U (zh) 散热结构
CN219068792U (zh) 一种封闭空间高功耗电子设备散热器
CN103779490A (zh) 光电半导体装置及其制造方法
US20230189434A1 (en) Package assembly
CN110913653B (zh) 加热散热模块

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022865871

Country of ref document: EP

Effective date: 20230313

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE