WO2023071493A1 - 电子元件散热结构的制造方法、散热结构及电子设备 - Google Patents

电子元件散热结构的制造方法、散热结构及电子设备 Download PDF

Info

Publication number
WO2023071493A1
WO2023071493A1 PCT/CN2022/115553 CN2022115553W WO2023071493A1 WO 2023071493 A1 WO2023071493 A1 WO 2023071493A1 CN 2022115553 W CN2022115553 W CN 2022115553W WO 2023071493 A1 WO2023071493 A1 WO 2023071493A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
electrodes
liquid metal
cover
electrode
Prior art date
Application number
PCT/CN2022/115553
Other languages
English (en)
French (fr)
Inventor
董行行
李二亮
杨俊杰
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22862373.2A priority Critical patent/EP4195897A4/en
Publication of WO2023071493A1 publication Critical patent/WO2023071493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a method for manufacturing a heat dissipation structure of an electronic component, a heat dissipation structure and electronic equipment.
  • electronic components can be dissipated through heat dissipation modules such as heat dissipation plates and heat dissipation fans. Since the electronic components themselves should not be squeezed by external force to avoid damage to the electronic components, in order to prevent the heat dissipation module from squeezing the electronic components, there is usually a certain gap between the electronic components and the heat dissipation module. The air in these gaps has high thermal resistance and extremely weak thermal conductivity, which will hinder the conduction of heat to the heat dissipation module. In order to improve the heat conduction efficiency, these gaps can be filled with heat conduction medium to make the heat conduction more smoothly and quickly.
  • heat dissipation modules such as heat dissipation plates and heat dissipation fans.
  • Liquid metal (referred to as liquid metal) has good heat dissipation performance, and its heat dissipation efficiency is about 10 times that of thermal grease. Therefore, many devices that require high heat dissipation use liquid metal to fill the above gap for heat conduction. However, due to the high surface tension of liquid metal, as shown in Figure 1, the surface of liquid metal is not easy to be evenly tiled under the action of surface tension, making it difficult for liquid metal to fill the gap between electronic components and heat dissipation modules , There are still many voids between the electronic components and the heat dissipation module, resulting in a decrease in heat dissipation efficiency.
  • the application provides a method for manufacturing a heat dissipation structure of an electronic component, a heat dissipation structure and an electronic device, which can reduce the surface tension of the liquid metal, so that the liquid metal can fill the cavity between the electronic component and the heat dissipation cover, thereby improving the Efficiency in dissipating heat from electronic components.
  • the present application provides a method for manufacturing a heat dissipation structure of an electronic component, the method comprising the following steps:
  • the heat dissipation cover Covering the heat dissipation cover on the outer periphery of the electronic component and sealingly connecting it with the substrate on which the electronic component is installed, wherein the heat dissipation cover has a through hole, and the inner wall of the heat dissipation cover is provided with a plurality of electrodes;
  • the heat dissipation cover is used to dissipate the heat generated by the electronic components to the outside, so as to cool down the temperature of the electronic components. After the heat dissipation cover is closed on the outer periphery of the electronic component, it can not only realize the heat dissipation effect, but also protect the electronic component, prevent the electronic component from being damaged due to contact with other components, and thereby improve the reliability of the electronic component operation.
  • the material of the heat dissipation cover may include at least one of metal, graphene, silicone grease, silica gel, and plastic.
  • the material of the heat dissipation cover may also include other materials with better heat dissipation performance, which are not specifically limited in this application.
  • the heat dissipation cover may be a metal cover, and the material of the metal cover may be stainless steel, nickel-nickel copper, magnesium-aluminum alloy, etc., which is not limited in the present application.
  • the heat dissipation cover can be sealed and connected with the substrate through sealing structures such as sealing rings, sealing tapes, sealing strips, and sealants.
  • the heat dissipation cover has an opening through which the outer periphery of the electronic component is covered.
  • the through holes on the heat dissipation cover can be arranged on the top wall of the heat dissipation cover, or on the side walls of the heat dissipation cover.
  • the top wall of the heat dissipation cover is opposite to the base plate, and the side wall of the heat dissipation cover is connected with the base plate.
  • the through hole can be a hole of any shape such as a circular hole, a square hole, and a strip hole.
  • the substrate In the process of filling the liquid metal, the substrate is usually placed on a supporting surface such as a desktop for filling.
  • a supporting surface such as a desktop for filling.
  • the through hole can be set on the top wall of the heat dissipation cover, so that the liquid metal Metal flows into the receiving cavity from top to bottom, making filling easier.
  • An electrode is a component in an electronic device, used as the two terminals for inputting or exporting current in a conductive medium (solid, gas, vacuum or liquid).
  • a conductive medium solid, gas, vacuum or liquid.
  • the pole where the current is input is called the anode, and the anode loses electrons, and the pole that emits current is called the cathode, and the cathode gains electrons.
  • each electrode can be arranged in the heat dissipation cover.
  • the structural shape of each electrode may be the same or different.
  • the plurality of electrodes may include: at least one of cylindrical electrodes, plate electrodes, strip electrodes, and point electrodes, but is not limited thereto.
  • the point electrode can be understood as a spherical electrode with a small diameter, or a columnar electrode with a small diameter and height, or other shapes with a small cross-sectional area.
  • the electrode is made of a metal material capable of conducting electricity.
  • the material of the electrode may be at least one of copper, iron, silver, tin, and titanium, but is not limited thereto.
  • the electrodes may be used in pairs, and a pair of electrodes includes an anode electrode and a cathode electrode, and current flows from the anode to the cathode.
  • a pair of electrodes includes an anode electrode and a cathode electrode, and current flows from the anode to the cathode.
  • two electrodes in a pair of electrodes are respectively connected to the positive and negative poles of the power supply, so that one of the two electrodes is an anode and the other is a cathode.
  • the potentials of two electrodes in a pair of electrodes are not equal, thereby creating a potential difference between the two electrodes.
  • the shapes of the two electrodes of the pair of electrodes may be the same or different.
  • the potentials of at least two electrodes are not equal, so that a potential difference is formed between the two electrodes, so as to form a current between the two electrodes.
  • these two electrodes are a pair of electrodes.
  • one electrode can be connected to the positive pole of the power supply, and the other electrode can be connected to the negative pole of the power supply.
  • the potentials of the two electrodes are different, so that A potential difference is formed between the two electrodes.
  • the potential difference is the voltage.
  • the electrode connected to the positive pole of the power supply is the anode, and the electrode connected to the negative pole of the power supply is the cathode.
  • the positive and negative poles of the power supply can be respectively connected to two electrodes in the pair of electrodes, so that the two electrodes in the pair of electrodes form a potential difference.
  • every two adjacent electrodes can be energized as a pair of electrodes.
  • the principle of making the current flow through the liquid metal to reduce the surface tension of the liquid metal is: when the electrodes are energized, a current can be formed in the liquid metal, and a large number of electrons flow inside the liquid metal. Electrons can provide energy for the oxygen in the air to become oxygen ions, so that the oxygen in the air can react with the liquid metal more easily and form a layer of flowing oxide layer on the surface of the liquid metal.
  • the oxide layer is formed by metal oxides, and metal oxides usually It is a solid powder, and the surface tension coefficient of metal oxide is very small, about 0.1mN/m. Therefore, the oxide layer formed on the surface of liquid metal can greatly reduce the surface tension of liquid metal.
  • the electrodes are energized during the process of filling the cavity surrounded by the substrate and the heat dissipation cover with liquid metal. It can make the current flow through the liquid metal, so that the oxygen in the air can react with the liquid metal more easily to form a flowing oxide layer on the surface of the liquid metal.
  • the oxide layer is formed by metal oxides. Metal oxides are usually solid powders.
  • the surface tension of the oxide is very small, therefore, the oxide layer formed on the surface of the liquid metal can greatly reduce the surface tension of the liquid metal, so that the surface of the liquid metal can be spread evenly, so that the liquid metal can fill the space between the electronic components and the heat dissipation cover
  • the cavity avoids the gap between the electronic components and the heat dissipation cover, and improves the heat dissipation efficiency.
  • the method provided by the embodiment of the present application can reduce the tension of each surface of the liquid metal, including the top surface, bottom surface and side surface, so that the wetting of the liquid metal on the outer surface of the electronic component, the inner surface of the heat dissipation cover and the substrate surface can be improved. To further fill the cavity between the electronic components and the heat dissipation cover, so that the heat dissipation efficiency is higher.
  • the heat dissipation cover is connected with the substrate and surrounds the electronic components.
  • the heat dissipation cover not only has the function of heat dissipation, but also has the function of protecting the electronic components, thereby better protecting the electronic components.
  • the potential difference between any pair of adjacent two electrodes among the plurality of electrodes is 0.5 volts to 2 volts.
  • the potential difference may be 0.5 volts, 1 volt, 1.5 volts, 2 volts, etc., but not limited thereto.
  • the potential difference between two adjacent pairs of electrodes is set to a smaller voltage, which can not only form an oxide layer on the surface of the liquid metal to reduce the surface tension, but also avoid excessive thickness of the oxide layer and damage the liquid metal. Fluidity, reducing the heat dissipation performance of liquid metal.
  • the heat dissipation cover includes a heat dissipation module and an enclosure, and the electrodes are arranged on the inner wall of the heat dissipation module.
  • the enclosure can be in a ring structure, and the enclosure is fixed around the edge of the heat dissipation module, and the enclosure extends to one side of the heat dissipation module to form a heat dissipation cover together with the heat dissipation module.
  • the cooling module and the enclosure can be fixed by bonding, clamping, screwing, riveting, welding and other connection methods.
  • the heat dissipation module and the enclosure can form an integrated structure through an integral molding process, which can also make the processing process simpler.
  • the heat dissipation module can include a heat dissipation plate, and heat dissipation structures such as heat dissipation grids and heat dissipation fins can be installed on the heat dissipation plate, so that a larger heat exchange area can be provided and the heat dissipation efficiency of the heat dissipation structure is higher.
  • the heat dissipation module can also be the metal bracket of the functional components in the electronic device.
  • the heat dissipation module is the metal support part of the battery or the screen, which can quickly export the heat from the inside of the mobile phone to the outside and dissipate it to the environment. middle.
  • the substrate In the process of filling the liquid metal, the substrate is usually placed on the surface such as a desktop for filling, the heat dissipation module is located at the top, and the liquid level of the liquid metal in the cavity gradually rises from a position close to the substrate to a position close to the base plate.
  • the electrodes are installed on the inner wall of the heat dissipation module, so that when the liquid metal is almost full, it can contact the electrodes to form an electric current, thereby forming an oxide layer on the surface. In this way, the cavity can be filled Being filled with liquid metal can also reduce the thickness of the liquid metal oxide layer, which has little influence on the fluidity and heat dissipation of the liquid metal.
  • the two through holes are respectively used for filling the liquid metal and discharging the gas in the containing cavity.
  • the liquid level of the liquid metal in the cavity gradually rises from a position close to the substrate to a position close to the heat dissipation module.
  • the through hole is provided on the heat dissipation module, that is, the through hole is provided on the top wall of the heat dissipation cover.
  • the plurality of electrodes include at least one point electrode and at least one strip electrode.
  • the plurality of electrodes may include a point electrode and a strip electrode, or may include a point electrode and a plurality of strip electrodes, and each strip electrode forms a pair of electrodes with a point electrode when energized.
  • the plurality of electrodes may include a point electrode and a strip electrode, or may include a point electrode and a plurality of strip electrodes, and each strip electrode forms a pair of electrodes with a point electrode when energized.
  • multiple point electrodes and multiple strip-shaped electrodes are included, and each adjacent point electrode and strip-shaped electrode forms a pair of electrodes when electrified.
  • the shape of the strip electrodes may be straight, arc, wave, etc., but not limited thereto.
  • the point electrode and the strip electrode can be used as a pair of electrodes, which are respectively the anode and the cathode.
  • the point electrode can be the cathode
  • the strip electrode can be the anode
  • the point electrode can be the anode
  • the strip electrode can be used as the anode.
  • the electrode is the cathode.
  • a plurality of the above-mentioned electrodes are arranged in an array on the inner wall of the heat dissipation module.
  • the electrodes may include three or more than three electrodes.
  • a plurality of electrodes may be arranged on the inner wall of the heat dissipation module in the form of a linear array, a circular array, or a rectangular array.
  • each row of electrodes may be sequentially alternated as anodes and cathodes.
  • the first and third rows are anodes
  • the second and fourth rows are cathodes. It can also be powered on in other ways, which is not limited here.
  • the plurality of electrodes may all be point electrodes, and each electrode is distributed in a circular array or a rectangular array.
  • the array distribution mode of each electrode can be determined according to the shape of the inner wall surface of the heat dissipation module. For example, when the inner wall of the cooling module is circular, the electrodes are distributed in a circular array; when the inner wall of the cooling module is rectangular, the electrodes are distributed in a rectangular array. In this way, when the electrodes are energized, current flows through the entire surface of the liquid metal more quickly, thereby reducing the surface tension of the liquid metal more easily and quickly.
  • the electrodes distributed in multiple arrays can also increase the surface area of the heat dissipation module, increase the contact area between the heat dissipation module and the liquid metal, and increase the contact area for heat exchange with air, thereby improving the heat dissipation efficiency.
  • a plurality of the above-mentioned electrodes are in an annular structure with different sizes, and the electrodes of the plurality of annular structures are nested in sequence.
  • the diameters of the plurality of electrodes become larger sequentially, so as to achieve sequential nesting.
  • every two adjacent electrodes can form a pair of electrodes.
  • each adjacent two can be energized to form a pair of electrodes.
  • the circular rings are closed structures, the surface of the liquid metal can be more quickly and evenly An electric current is formed, which makes it easier and faster to reduce the tension on the surface of the liquid metal.
  • the step of sealing the above-mentioned through holes can be achieved in the following manner:
  • the via holes are closed with a thermally conductive material.
  • Sealing the through hole with a heat conducting material can improve the heat dissipation performance of the heat dissipation cover, thereby improving the heat dissipation performance of the heat dissipation structure.
  • the embodiment of the present application also provides a heat dissipation structure for electronic components, including:
  • the heat dissipation cover is sealed and connected with the above-mentioned substrate, and is covered with the outer periphery of the electronic component.
  • the heat dissipation cover and the above-mentioned substrate form a housing cavity for accommodating the electronic components.
  • the inner wall of the heat dissipation cover is provided with a plurality of electrodes, and the heat dissipation cover has a sealed through hole;
  • the liquid metal is filled in the accommodating cavity.
  • the heat dissipation cover includes a heat dissipation module and an enclosure, and the electrodes are arranged on the inner wall of the heat dissipation module.
  • the plurality of electrodes include at least one point electrode and at least one strip electrode.
  • a plurality of the above-mentioned electrodes are arranged in an array on the inner wall of the heat dissipation module.
  • a plurality of the above-mentioned electrodes are in an annular structure with different sizes, and the electrodes of the plurality of annular structures are nested in sequence.
  • the material sealing the above-mentioned through hole is a thermally conductive material.
  • the heat dissipation structure of the electronic component provided by the embodiment of the present application is produced by the above-mentioned manufacturing method, it has the same beneficial effect as the heat dissipation structure of the electronic component produced by the above-mentioned production method, and will not be repeated here.
  • the present application further provides an electronic device, including the heat dissipation structure of an electronic component as provided in any one of the second aspect.
  • the electronic device provided by the embodiment of the present application includes the above-mentioned heat dissipation structure of the electronic component, it has the same beneficial effect as the above-mentioned heat dissipation structure of the electronic component, which will not be repeated here.
  • Fig. 1 is a schematic diagram of the state of liquid metal in a heat dissipation cover in the related art
  • Fig. 2 is a schematic diagram of the operation flow of an example of the manufacturing method of the heat dissipation structure of the electronic component provided by the embodiment of the application;
  • FIG. 3 is a schematic diagram of the manufacturing process of another example of the manufacturing method of the heat dissipation structure of the electronic component provided by the embodiment of the present application;
  • Fig. 4 is a structural schematic diagram of an example of the heat dissipation structure of an electronic component provided by the embodiment of the present application;
  • Fig. 5 is an exploded view of the heat dissipation structure of the electronic component shown in Fig. 4;
  • FIG. 6 is a schematic cross-sectional view of another example of the heat dissipation structure of the electronic component provided by the embodiment of the present application.
  • Fig. 7 is a top view of the heat dissipation structure of the electronic component shown in Fig. 6 after removing the substrate;
  • FIG. 8 is a schematic cross-sectional view of another example of the heat dissipation structure of the electronic component provided by the embodiment of the present application.
  • Fig. 9 is a top view of the heat dissipation structure of the electronic component shown in Fig. 8 after removing the substrate;
  • Fig. 10 is a top view of another example of the heat dissipation structure of the electronic component provided by the embodiment of the present application after removing the substrate;
  • Fig. 11 is a top view of another example of the heat dissipation structure of the electronic component provided by the embodiment of the present application after removing the substrate;
  • Fig. 12 is a top view of another example of the heat dissipation structure of the electronic component provided by the embodiment of the present application after removing the substrate;
  • FIG. 13 is a schematic cross-sectional view of yet another example of the heat dissipation structure of an electronic component provided by the embodiment of the present application.
  • FIG. 14 is a schematic cross-sectional view of yet another example of the heat dissipation structure of an electronic component provided by the embodiment of the present application.
  • FIG. 15 is a schematic cross-sectional view of yet another example of the heat dissipation structure of an electronic component provided by the embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “side”, “inner”, “outer”, “top”, “bottom” etc.
  • the orientation or positional relationship is only for the convenience of describing the application and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the application .
  • Electronic components are basic elements in electronic circuits, with two or more leads or metal contacts. Electronic components can be connected to form an electronic circuit with specific functions. Electronic components are usually installed on a substrate, and the substrate has the functions of carrying, installing and connecting electronic components. Electronic components can be individual packages, such as resistors, capacitors, inductors, transistors, diodes, etc., or groups of various complexities, such as integrated circuits (Integrated Circuit, IC), chips, and the like.
  • Electronic equipment is composed of integrated circuits, transistors, electronic tubes and other electronic components, and electronic technology software is used to play a role in equipment, such as desktop computers, notebook computers, tablet computers, game consoles, mobile phones, electronic watches, routers, set-top boxes, TVs , modem, etc.
  • Thermal resistance refers to the ratio between the temperature difference at both ends of the object and the power of the heat source when heat is transmitted on the object.
  • the resistance encountered by heat on the heat flow path reflects the size of the heat transfer capacity of the medium or medium, indicating the temperature rise caused by 1W of heat, and the unit is °C/W or K/W.
  • the temperature rise on this heat transfer path can be obtained by multiplying the thermal power dissipation by the thermal resistance.
  • a simple analogy can be used to explain the meaning of thermal resistance.
  • the heat transfer is equivalent to current
  • the temperature difference is equivalent to voltage
  • thermal resistance is equivalent to resistance.
  • electronic components can be dissipated through heat dissipation modules such as heat dissipation plates and heat dissipation fans. Since the electronic components themselves should not be squeezed by external force, so as not to damage the electronic components, in order to prevent the heat dissipation module from squeezing the electronic components, the electronic components and the heat dissipation module will not be tightly pressed together. On the contact surface, it seems that the contact is good on the surface, but in fact, only a part of the direct contact area is made, and the rest is void. The gas in the gap has a large thermal resistance and a very weak thermal conductivity, which will hinder the conduction of heat to the heat dissipation module. In order to improve the heat conduction efficiency, these gaps can be filled with heat conduction medium to make the heat conduction more smoothly and quickly.
  • heat dissipation modules such as heat dissipation plates and heat dissipation fans. Since the electronic components themselves should not be squeezed by external force, so as not to damage
  • Liquid metal refers to a metal that is liquid at normal temperature (also called ordinary temperature or room temperature, generally defined as 25°C).
  • the thermal resistance of liquid metal is small, and the heat dissipation power is large.
  • the heat dissipation power of liquid metal is about 40W ⁇ m-1k-1 ⁇ 80W ⁇ m-1k-1, while the heat dissipation power of thermal pads and thermal grease used in large quantities is about 3W ⁇ m-1k-1 ⁇ 15W ⁇ m-1k-1, it can be seen that liquid metal has good heat dissipation performance, and its heat dissipation efficiency is about 10 times that of thermal conductive silicone grease. Therefore, many devices that require high heat dissipation use liquid metal to fill the above gaps Conduct heat conduction.
  • each molecule in the surface layer Due to the force between liquid molecules, each molecule in the surface layer is subject to a force pointing to the inside of the liquid, which makes each molecule have a tendency to enter the liquid from the surface of the liquid, so the surface of the liquid has a contraction.
  • Trend in the absence of external force, the droplet is always spherical, causing its surface area to shrink to a minimum. This force that shrinks the surface of the liquid is called the surface tension of the liquid.
  • Surface tension is a manifestation of molecular forces. The greater the surface tension, the less likely the liquid will spread evenly.
  • the surface tension coefficient of water is about 72.75 ⁇ 10-3N m-1, that is, 72.75m N m-1
  • the surface tension coefficient of liquid metal is about 500 ⁇ 10-3N m-1 ⁇ 1100 ⁇ 10-3N ⁇ m-1, that is, 500 ⁇ mN ⁇ m-1 ⁇ 1100m N ⁇ m-1
  • the surface tension coefficient of liquid metal is about 14 times that of water. It can be seen that the surface tension of liquid metal is very large.
  • Fig. 1 is a schematic diagram of the state of liquid metal in a heat dissipation cover in the related art.
  • the surface of the liquid metal is usually in an undulating state, and the surface of the liquid metal is not easy to be evenly tiled, which makes it difficult for the liquid metal to fill the gap between the electronic components and the heat dissipation module.
  • the application provides a method for manufacturing a heat dissipation structure of an electronic component, a heat dissipation structure, and an electronic device.
  • the electrodes By energizing the electrodes during the process of filling the liquid metal, when the electrodes are in contact with the filled liquid metal, the current flows Through the liquid metal, the surface tension of the liquid metal can be effectively reduced, so that the surface of the liquid metal can be evenly tiled, so that the liquid metal can fill the gap between the electronic component and the heat dissipation module, and avoid the gap between the electronic component and the heat dissipation module.
  • the presence of voids improves heat dissipation efficiency.
  • FIG. 2 is a schematic diagram of the operation flow of an example of the manufacturing method of the electronic component heat dissipation structure 100 provided in the embodiment of the application
  • FIG. 3 is a schematic diagram of the manufacturing flow of another example of the manufacturing method of the electronic component heat dissipation structure 100 provided in the embodiment of the application.
  • the manufacturing method of the electronic component heat dissipation structure 100 includes the following steps S10 to S30 .
  • Step S10 Cover the heat dissipation cover 120 on the outer periphery of the electronic component 110 and seal it with the substrate 140 on which the electronic component 110 is installed.
  • step S10 operations from (a) to (b) in FIG. 2 may be referred to.
  • the heat dissipation cover 120 has a through hole 122a, and a plurality of electrodes 130 are disposed on the inner wall of the heat dissipation cover 120 .
  • the above-mentioned electronic components 110 may be individual packaging structures, such as resistors, capacitors, inductors, transistors, diodes, and the like.
  • the above-mentioned electronic components 110 can also be groups of various complexities, such as integrated circuits (Integrated Circuit, IC).
  • Integrated circuits can also be called microcircuits, microchips, or chips. on a round surface.
  • the above-mentioned electronic component 110 may be a central processing unit (central processing unit, CPU), a graphics processing unit (graphics processing unit, GPU), a radio frequency amplifier, a power amplifier, a power management chip (power management IC, PMIC) , universal flash storage (universal flash storage, UFS), system-in-package (System in Package, SiP) components, package antenna (antenna in package, AiP), system on chip (system on chip, SOC) components, double data rate (double data rate (DDR) memory, radio frequency integrated circuit (RF IC), embedded multimedia card (embedded multimedia card, EMMC), etc., but not limited thereto.
  • CPU central processing unit
  • graphics processing unit graphics processing unit
  • PMIC power management chip
  • UFS universal flash storage
  • system-in-package System in Package, SiP
  • package antenna asantenna in package, AiP
  • system on chip system on chip
  • DDR double data rate
  • RF IC radio frequency integrated circuit
  • embedded multimedia card embedded multimedia
  • the substrate 140 is a component for carrying, installing and connecting the electronic components 110 .
  • the substrate 140 may be a printed circuit board (printed circuit board, PCB), a flexible circuit board (Flexible Printed Circuit, FPC), a double-sided PCB board, a multi-layer PCB board, etc., but is not limited thereto.
  • the electronic component 110 and the substrate 140 can be welded together by wires or contacts, or can be connected by patch, so as to realize the integration of the electronic component 110 and the substrate 140.
  • This application does not limit the specific details of the electronic component 110 and the substrate 140. connection method.
  • the heat dissipation cover 120 is used to dissipate the heat generated by the electronic component 110 to the outside, so as to cool down the temperature of the electronic component 110 .
  • the heat dissipation cover 120 After the heat dissipation cover 120 is covered on the outer periphery of the electronic component 110, it can not only realize the heat dissipation effect, but also protect the electronic component 110, prevent the electronic component 110 from being damaged due to contact with other components, and thereby improve the operation efficiency of the electronic component 110. reliability.
  • the material of the heat dissipation cover 120 may include at least one of metal, graphene, silicone grease, silica gel, and plastic.
  • the material of the heat dissipation cover 120 may also include other materials with better heat dissipation performance, which are not specifically limited in this application.
  • the heat dissipation cover 120 can be a metal cover, and the material of the metal cover can be stainless steel, nickel-nickel copper, magnesium-aluminum alloy, etc., which is not limited in the present application.
  • the heat dissipation cover 120 is a metal cover, it can be picked up and transferred by a magnetic suction robot arm, which is beneficial to the operation of the assembly process.
  • the heat dissipation cover 120 and the base plate 140 can be connected by patching, bonding, welding, bolt connection, snap connection, etc., so as to realize the fixed connection of the heat dissipation cover 120 and the base plate 140 .
  • the heat dissipation cover 120 fixed on the substrate 140 surrounds the outer periphery of the electronic component 110 , that is, the electronic component 110 is disposed in the cavity 160 surrounded by the heat dissipation cover 120 and the substrate 140 .
  • the heat dissipation cover 120 can be sealed and connected to the substrate 140 through a sealing structure such as a sealing ring, a sealing tape, a sealing strip, or a sealant.
  • a sealing structure such as a sealing ring, a sealing tape, a sealing strip, or a sealant.
  • Fig. 4 is a structural schematic diagram of an example of an electronic component heat dissipation structure 100 provided by the embodiment of the present application
  • Fig. 5 is an exploded view of the electronic component heat dissipation structure 100 shown in Fig. 4
  • Fig. 6 is an electronic component heat dissipation structure provided by the embodiment of the present application A schematic cross-sectional view of another example of 100.
  • the heat dissipation cover 120 may be hermetically bonded to the substrate 140 through glue 170 .
  • the heat dissipation cover 120 can be in a regular shape such as a circular cover, a rectangular cover, a regular multi-shaped cover, etc., so as to facilitate the processing and manufacture of the heat dissipation cover 120 , and also make the structure of the heat dissipation structure 100 for electronic components simpler.
  • the heat dissipation cover 120 may also have an asymmetrical and irregular shape.
  • the structure of the heat dissipation cover 120 can match the structure of the electronic component 110 .
  • the heat dissipation cover 120 can also be a rectangular cover, and when the shape of the electronic component 110 is circular, the heat dissipation cover 120 can also be a circular cover. In this way, the structure of the heat dissipation structure 100 for electronic components can be made more compact and reasonable.
  • the structure of the heat dissipation cover 120 may also be different from that of the electronic component 110 , for example, the shape of the electronic component 110 is circular, and the heat dissipation cover 120 is a rectangular cover. It is enough that the heat dissipation cover 120 can cover the outer periphery of the electronic component 110 , and the application does not limit the specific structure of the heat dissipation cover 120 .
  • one end of the heat dissipation cover 120 has an opening, and the outer periphery of the electronic component 110 is covered through the opening.
  • the through hole 122 a on the heat dissipation cover 120 can be provided on the top wall of the heat dissipation cover 120 , and can also be provided on the side wall of the heat dissipation cover 120 .
  • a top wall of the heat dissipation cover 120 is opposite to the substrate 140 , and a side wall of the heat dissipation cover 120 is connected to the substrate 140 .
  • the through hole 122a may be a hole of any shape such as a circular hole, a square hole, and a strip hole.
  • One through hole 122a may be provided on the heat dissipation cover 120, or two or more through holes 122a may be provided.
  • a through hole 122a is provided on the heat dissipation cover 120, when the liquid metal 150 is filled into the accommodating cavity 160 through the through hole 122a, there should be a gap between the equipment filling the liquid metal 150 and the hole wall of the through hole 122a , so that the gas in the accommodation cavity 160 can be discharged from the left gap.
  • the through holes 122a provided on the heat dissipation cover 120 include two or more, one of the through holes 122a is used for filling the liquid metal 150, and the remaining through holes 122a are used for outward Exhaust gas.
  • the substrate 140 in the process of filling the liquid metal 150, usually the substrate 140 is placed on a supporting surface such as a desktop for filling. On the top wall of the heat dissipation cover 120 , the liquid metal 150 flows into the cavity 160 from top to bottom, making filling easier.
  • the electrode 130 is a component of the electronic device 1000 and is used as two terminals for inputting or exporting current in a conductive medium (solid, gas, vacuum or liquid).
  • a conductive medium solid, gas, vacuum or liquid.
  • the pole where the current is input is called the anode, and the anode loses electrons, and the pole that emits current is called the cathode, and the cathode gains electrons.
  • each electrode 130 may be disposed in the heat dissipation cover 120 .
  • the structural shape of each electrode 130 may be the same or different.
  • the plurality of electrodes 130 may include: at least one of cylindrical electrodes 130 , plate electrodes 130 , strip electrodes 130 , and point electrodes 130 , but is not limited thereto.
  • the point electrode 130 can be understood as a spherical electrode 130 with a small diameter, or a columnar electrode 130 with a small diameter and height, or other shapes with a small cross-sectional area.
  • the electrode 130 is made of a conductive metal material, for example, the material of the electrode 130 may be at least one of copper, iron, silver, tin, and titanium, but is not limited thereto.
  • the above-mentioned electrodes 130 may be fixed on the inner wall of the heat dissipation cover 120 by bonding, clamping, screwing, riveting and other connection methods.
  • a conductive through hole may be provided on the cover wall of the heat dissipation cover 120 , and the electrode 130 is connected to an external power source through the conductive through hole.
  • one end of the electrode 130 used to connect to the power supply can directly pass through the conductive through hole of the heat dissipation cover 120 to extend to the outside, or, one end of the electrode 130 used to connect to the power supply can be connected to a wire, and the wire passes through the heat dissipation cover 120
  • the conductive through-holes extend to the outside, so that it is convenient to connect to the power supply.
  • an insulating material is provided between the electrode 130 and the heat dissipation cover 120 to insulate the electrode 130 from the heat dissipation cover 120 .
  • the distance between the top surface of the electronic component 110 and the heat dissipation cover 120 may range from 1.2 mm to 1.6 mm, for example, 1.2 mm, 1.4 mm or 1.6 mm, but it is not limited thereto. To reduce the overall volume of the heat dissipation structure 100 for electronic components, the distance should not be set too small to ensure a better heat dissipation effect.
  • Step S20 filling the cavity 160 surrounded by the substrate 140 and the heat dissipation cover 120 with the liquid metal 150 through the through hole 122 a until the cavity 160 is completely filled.
  • step S20 the electrodes 130 are energized so that current flows through the liquid metal 150 to reduce the surface tension of the liquid metal 150 .
  • step S20 reference may be made to (c), (d), and (e) in FIG. 2 .
  • (c) in FIG. 2 is filling the liquid metal 150 into the cavity 160
  • (d) in FIG. 2 is electrifying the electrode 130
  • (e) in FIG. 2 is filling the cavity 160.
  • the shape of the above-mentioned electrodes 130 may be any one of cylinder, sphere, strip, ring, and wave.
  • the shapes of the plurality of electrodes 130 may be the same or different.
  • the size of the electrodes 130 can be determined according to the number of the electrodes 130 , the size of the containing cavity 160 , etc., and the specific size is not limited. For example, when the electrode 130 is cylindrical, the diameter of the electrode 130 may be 0.4 millimeters to 0.8 millimeters, which is only used as an example and not limited here.
  • the electrodes 130 may be used in pairs, and a pair of electrodes 130 includes an anode electrode 130 and a cathode electrode 130, and the current flows from the anode to the cathode.
  • the two electrodes 130 in the pair of electrodes 130 are respectively connected to the positive and negative poles of the power supply, so that one of the two electrodes 130 is an anode and the other is a cathode.
  • the potentials of the two electrodes 130 in the pair of electrodes 130 are not equal, so that a potential difference is formed between the two electrodes 130 .
  • the shapes of the two electrodes 130 of the pair of electrodes 130 may be the same or different.
  • the electrodes 130 when the electrodes 130 are energized, the potentials of at least two electrodes 130 are not equal, so that a potential difference is formed between the two electrodes 130 to form a current between the two electrodes 130 .
  • these two electrodes 130 are a pair of electrodes 130.
  • one electrode 130 can be connected to the positive pole of the power supply, and the other electrode 130 can be connected to the negative pole of the power supply.
  • the potentials of the electrodes 130 are different, so that a potential difference is formed between the two electrodes 130.
  • the potential difference is a voltage.
  • the electrode 130 connected to the positive pole of the power supply is an anode, and the electrode 130 connected to the negative pole of the power supply is a cathode.
  • FIG. 12 is a top view of another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application, without the substrate 140 .
  • each adjacent two electrodes 130 can be used as a pair of electrodes 130, and there is no common electrode 130 between each pair of electrodes 130, for example, when the electrodes 130 When four electrodes are included, the first electrode 130 and the second electrode 130 form a pair of electrodes 130 , and the third electrode 130 and the fourth electrode 130 form a pair of electrodes 130 , thus forming two pairs of electrodes 130 .
  • each pair of electrodes 130 there may be a common electrode 130 between each pair of electrodes 130, for example, when the electrodes 130 include three, the first electrode 130 (anode) and the second electrode 130 (cathode) are a pair of electrodes 130, The second electrode 130 (cathode) and the third electrode 130 (anode) are a pair of electrodes 130 , thus forming two pairs of electrodes 130 .
  • the electrodes 130 include five, and the periphery of one electrode 130 is provided with four electrodes 130, these four electrodes 130 can be used as a pair of electrodes 130 with one electrode 130 in the middle respectively, like this, A total of four pairs of electrodes 130 can be energized.
  • two non-adjacent electrodes 130 may form a pair of electrodes 130.
  • a pair of electrodes 130 is formed with the third electrode 130
  • a pair of electrodes 130 is formed between the second electrode 130 and the third electrode 130 . This situation can also make the current flow through the surface of the liquid metal 150 to reduce the surface tension of the liquid metal 150 .
  • the positive and negative electrodes of the power supply can be respectively connected to the two electrodes 130 in the pair of electrodes 130 , so that the two electrodes 130 in the pair of electrodes 130 form a potential difference.
  • every two adjacent electrodes 130 may be used as a pair of electrodes 130 for energization.
  • the area of the figure enclosed by the projection of each electrode 130 on the top wall of the heat dissipation cover 120 can be larger, because the current between the electrodes 130 can quickly flow through the liquid metal 150 between the electrodes 130, Therefore, when the area of the pattern surrounded by each electrode 130 is relatively large, when the electrodes 130 are energized, current can quickly flow through the larger area of the surface of the liquid metal 150, and the current can flow to the area surrounded by each electrode 130. In addition to the figure area, the entire surface of the liquid metal 150 can be flowed with current, so that it is easier and faster to reduce the tension on the surface of the liquid metal 150 .
  • FIG. 7 is a top view of the electronic component cooling structure 100 shown in FIG. 6 without the substrate 140 .
  • the electrode 130 when the electrode 130 includes two, the electrode 130 can be elongated, the length direction of the electrode 130 is parallel to the width direction of the heat dissipation cover 120, and the two electrodes 130 are along the width direction of the heat dissipation cover 120.
  • the length direction of the two electrodes 130 is arranged at intervals, the distance between the two electrodes 130 can be 1/2 to 4/5 of the length of the heat dissipation cover 120, that is, the distance between the two electrodes 130 is set a little larger, and the length of the electrodes 130 can be 1/2-4/5 of the width of the heat dissipation cover 120, the length of the electrodes 130 is also set a little longer, so that the area of the liquid metal 150 through which the current flows between the two electrodes 130 can be larger. Since the liquid metal 150 between the two electrodes 130 can quickly form a current, the formed current then flows outside the pattern range surrounded by the two electrodes 130 , so that the entire surface of the liquid metal 150 forms a current quickly.
  • the distance between the two electrodes 130 in the pair of electrodes 130 should not be set too large, so as to prevent the energy loss of electrons in the liquid metal 150 from being too large to form a stable current.
  • the liquid metal 150 can be injected into the accommodation cavity 160 through the through hole 122a by using the filling device 2000 such as a needle tube and an automatic filler.
  • the filling device 2000 such as a needle tube and an automatic filler.
  • whether the accommodating cavity 160 is filled can be calculated by the filling amount. Specifically, the volume of the containing cavity 160 can be calculated, and then the same volume of liquid metal 150 can be injected into the containing cavity 160 to ensure that the liquid metal 150 fills the containing cavity 160 . Alternatively, whether the accommodating cavity 160 is filled can be observed through the through hole 122a. Alternatively, a transparent viewing area may be provided on the top wall of the heat dissipation cover 120 , through which it is observed whether the accommodating cavity 160 is filled.
  • the material of the above-mentioned liquid metal 150 may include at least one of bismuth, indium, tin, and gallium, and may also include other metals.
  • the liquid metal 150 may be a gallium-based alloy, an indium-based alloy or a bismuth-based alloy.
  • the gallium-based alloy can be gallium-indium alloy, gallium-lead alloy, gallium-mercury alloy, gallium-indium-tin alloy or gallium-indium-tin-zinc alloy;
  • the indium-based alloy can be indium-bismuth-copper alloy or indium-bismuth-tin alloy;
  • the bismuth-based alloy can be For bismuth tin alloy.
  • the present application does not limit the specific composition of the liquid metal 150 .
  • the principle of making the current flow through the liquid metal 150 to reduce the surface tension of the liquid metal 150 is: when the electrode 130 is energized, a current can be formed in the liquid metal 150, and a large number of electrons flow in the liquid metal 150.
  • the internal flow of the moving electrons can provide energy for the oxygen in the air to become oxygen ions, so that the oxygen in the air can react with the liquid metal 150 more easily and form a flowing oxide layer on the surface of the liquid metal 150.
  • the oxide layer is composed of metal Oxide is formed.
  • Metal oxides are usually solid powders. The surface tension coefficient of metal oxides is very small, about 0.1mN/m. Therefore, the oxide layer formed on the surface of liquid metal 150 can greatly reduce the surface tension of liquid metal 150 .
  • the voltage applied to the two electrodes 130 in the pair of electrodes 130 is higher, the current in the liquid metal 150 is larger, and the surface of the liquid metal 150 is more likely to form an oxide layer, and the formed oxide layer is thicker, and the liquid metal 150 the lower the surface tension.
  • the voltage applied to the two electrodes 130 of the pair of electrodes 130 should not be too high, so as not to cause the oxide layer to be too thick, destroy the fluidity of the liquid metal 150 , and reduce the heat dissipation performance of the liquid metal 150 .
  • the potential difference between any pair of adjacent two electrodes 130 among the plurality of electrodes 130 may be 0.5 volts to 2 volts, for example, the potential difference may be 0.5 volts, 1 volt, 1.5 volts, 2 volts, or 0.5 volts. Volt, etc., but not limited to.
  • a pair of adjacent two electrodes 130 that is, two electrodes 130 in a pair of electrodes 130 are adjacent, and no other electrodes 130 are arranged between these two electrodes 130 .
  • One of the two electrodes 130 in the pair of electrodes 130 is a cathode and the other is an anode.
  • the potential difference between two adjacent pairs of electrodes 130 is set to a smaller voltage, which can not only form an oxide layer on the surface of the liquid metal 150 to reduce the surface tension, but also prevent the oxide layer from being too thick and destroying the liquid state.
  • the fluidity of the metal 150 reduces the heat dissipation performance of the liquid metal 150 .
  • step S20 can be implemented as follows: filling the cavity 160 surrounded by the substrate 140 and the heat dissipation cover 120 with liquid metal 150 through the above-mentioned through hole 122a, when the cavity 160 is filled with When the volume ratio of the injected liquid metal 150 is greater than the preset ratio, the electrode 130 is energized, and the filling continues until the entire cavity 160 is filled.
  • the aforementioned volume ratio is the ratio of the volume of the liquid metal 150 to the volume of the containing cavity 160 .
  • the preset ratio can be any ratio from 2/3 to 3/4, and the preset ratio can also be other larger ratios, which are not specifically limited in this application.
  • an oxide layer can be formed on the surface when the liquid metal 150 is almost full, so that the accommodating cavity 160 can be filled with the liquid metal 150, and the thickness of the oxide layer of the liquid metal 150 can be reduced, so that The fluidity and heat dissipation of the liquid metal 150 are less affected.
  • the electrode 130 can also be energized when the liquid metal 150 is started to be filled, or the electrode 130 can be energized before filling.
  • the electrode 130 can be energized, and the specific timing for starting energization is not limited.
  • the energization can be stopped after the accommodating cavity 160 is filled, so as to ensure that the liquid metal 150 can be filled, and the energization operation is also very convenient.
  • the power supply can also be stopped when the liquid level of the liquid metal 150 is higher than the through hole 122a. Since the liquid metal 150 that continues to be filled will not form the surface of the liquid metal 150 , the surface tension of the filled liquid metal 150 will not increase either.
  • Step S30 sealing the above-mentioned through hole 122a.
  • Step S30 may be operated with reference to (f) in FIG. 2 .
  • structures such as colloid, a sealing cover, a baffle, and a valve may be used to seal the above-mentioned through hole 122a.
  • the above-mentioned through hole 122a may be sealed with a thermally conductive material 122b.
  • the thermally conductive material 122b can be silicone grease, silica gel, metal, etc., but is not limited thereto. Sealing the through hole 122a with the heat-conducting material 122b can improve the heat dissipation performance of the heat dissipation cover 120, thereby improving the heat dissipation performance of the heat dissipation structure.
  • each through hole 122a needs to be sealed.
  • step S30 After the above-mentioned through hole 122a is sealed in step S30, the above-mentioned heat dissipation structure 100 for electronic components can be obtained.
  • liquid metal 150 is filled in the accommodation cavity 160 surrounded by the substrate 140 and the heat dissipation cover 120 .
  • energizing the electrode 130 can make the current flow through the liquid metal 150, so that the oxygen in the air reacts with the liquid metal 150 more easily to form a flowing oxide layer on the surface of the liquid metal 150.
  • the oxide layer is composed of metal oxide Formation, the metal oxide is usually a solid powder, and the surface tension of the metal oxide is very small.
  • the oxide layer formed on the surface of the liquid metal 150 can greatly reduce the surface tension of the liquid metal 150, so that the surface of the liquid metal 150 can be spread evenly. Therefore, the liquid metal 150 can fill the cavity between the electronic component 110 and the heat dissipation cover 120 , avoiding the cavity between the electronic component 110 and the heat dissipation cover 120 , and improving the heat dissipation efficiency.
  • the method provided by the embodiment of the present application can reduce the tension of each surface of the liquid metal 150, including the top surface, the bottom surface and the side surface.
  • the wettability of the surface of 140 further fills the cavity between the electronic component 110 and the heat dissipation cover 120 , so that the heat dissipation efficiency is higher.
  • the heat dissipation cover 120 is connected to the substrate 140 and surrounds the electronic component 110 .
  • the heat dissipation cover 120 not only has the function of heat dissipation, but also has the function of protecting the electronic component 110 , thereby better protecting the electronic component 110 .
  • FIG. 8 is a schematic cross-sectional view of still another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application.
  • FIG. 9 is a top view of the electronic component cooling structure 100 shown in FIG. 8 without the substrate 140 .
  • FIG. 10 is a top view of another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application, without the substrate 140 .
  • FIG. 11 is a top view of another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application, without the substrate 140 .
  • the embodiment of the present application also provides a heat dissipation structure 100 for electronic components, including: a substrate 140 , a heat dissipation cover 120 and a liquid metal 150 .
  • the electronic component 110 is arranged on the substrate 140, and the heat dissipation cover 120 is sealed and connected with the substrate 140.
  • the heat dissipation cover 120 covers the outer periphery of the electronic component 110, and the heat dissipation cover 120 and the substrate 140 form a cavity 160 for accommodating the electronic component 110.
  • the heat dissipation cover 120 A plurality of electrodes 130 are arranged on the inner wall of the heat sink 120 , and a sealed through hole 122 a is formed on the heat dissipation cover 120 , and the liquid metal 150 is filled in the cavity 160 .
  • the substrate 140 may be a circular plate, a rectangular plate, or any other regular-shaped plate.
  • the substrate 140 may also be an asymmetric irregular-shaped plate.
  • the application does not limit the specific shape of the substrate 140 .
  • the size of the accommodating cavity 160 formed between the heat dissipation cover 120 and the substrate 140 can be determined according to the size of the substrate 140, the power consumption of the electronic component 110, etc., when the size of the substrate 140 is larger, the space on the substrate 140 is larger, and the space for accommodating The cavity 160 can be set larger. When the power consumption of the electronic component 110 is large, the cavity 160 can be set larger to accommodate more liquid metal 150 for better heat dissipation of the electronic component 110 .
  • the heat dissipation cover 120 may include a heat dissipation module 122 and an enclosure 121 , and the electrodes 130 are disposed on the inner wall of the heat dissipation module 122 .
  • the enclosure 121 can be a ring structure, and the enclosure 121 is fixed on the edge of the heat dissipation module 122 around a circle, and the enclosure 121 extends to one side of the heat dissipation module 122, thereby forming the heat dissipation cover 120 together with the heat dissipation module 122 .
  • the thickness of the enclosure 121 may be 2 mm to 3 mm, or other specific thicknesses, such as 1 mm, 3 mm and so on.
  • the thickness of the enclosure 121 should not be too thick, so as to reduce the volume and weight of the enclosure 121, and the thickness of the enclosure 121 should not be too thin, so that the enclosure 121 has better strength and better heat conduction effect.
  • the heat dissipation module 122 can be made of the same material as that of the enclosure 121 or can be different.
  • the heat dissipation module 122 is made of silica gel
  • the enclosure 121 is made of metal, or both the heat dissipation module 122 and the enclosure 121 are made of silica gel.
  • the materials of the enclosure 121 and the heat dissipation module 122 may both be thermally conductive materials.
  • the cooling module 122 and the enclosure 121 can be fixed by bonding, clipping, screwing, riveting, welding and other connection methods.
  • the heat dissipation module 122 and the enclosure 121 can form an integral structure through an integral molding process, which can also make the processing process simpler.
  • the heat dissipation module 122 may include a heat dissipation plate, on which heat dissipation structures such as heat dissipation grids and heat dissipation fins 123 may be installed. In this way, a larger heat exchange area can be provided and the heat dissipation efficiency of the heat dissipation structure is higher.
  • the heat dissipation module 122 can also be a metal bracket of functional elements in the electronic device 1000.
  • the heat dissipation module 122 is a metal support part of a battery or a screen, which can quickly export heat from the interior of the mobile phone to the outside. , dissipated into the environment.
  • the heat dissipation module 122 can be connected with the metal brackets of some functional elements in the electronic device 1000, for example, the metal brackets of the battery or the screen, so as to conduct heat to the metal brackets, and then dissipate the heat to the environment through the metal brackets.
  • the heat generated by the electronic components 110 is conducted to the heat dissipation module 122 through the liquid metal 150 in the cavity 160 , and the heat is dissipated to the environment through the heat dissipation module 122 .
  • the inner wall surface of the heat dissipation module 122 is the inner surface of the heat dissipation module 122 facing the receiving cavity 160 .
  • the substrate 140 is usually placed on a surface such as a desktop for filling, the heat dissipation module 122 is located at the top, and the liquid level of the liquid metal 150 in the cavity 160 is close to the substrate 140. The position gradually rises to a position close to the heat dissipation module 122 .
  • the electrode 130 is installed on the inner wall surface of the heat dissipation module 122, so that when the liquid metal 150 is almost full, it can contact the electrode 130 to form an electric current, thereby forming an oxide layer on the surface. Filling the cavity 160 with the liquid metal 150 can also reduce the thickness of the oxide layer of the liquid metal 150 , which has little impact on the fluidity and heat dissipation of the liquid metal 150 .
  • FIG. 14 is a schematic cross-sectional view of still another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application.
  • FIG. 15 is a schematic cross-sectional view of still another example of the heat dissipation structure 100 for electronic components provided by the embodiment of the present application.
  • the electrodes 130 may also be arranged on the enclosure 121 .
  • the electronic component heat dissipation structure 100 may also include a heat dissipation module 122, the heat dissipation cover 120 and the heat dissipation module 122 are separate structures, and the top wall of the heat dissipation cover 120 is bonded, The bottom wall of the heat dissipation module 122 is closely attached and fixed by welding, bolt connection, etc.
  • the heat of the electronic component 110 is conducted to the heat dissipation cover 120 through the liquid metal 150, and the heat dissipation cover 120 conducts the heat to the heat dissipation module 122. , dissipate the heat to the environment through the heat dissipation module 122 .
  • the two through holes 122a are used to fill the liquid metal 150 and discharge the gas in the containing cavity 160 respectively.
  • the liquid level of the liquid metal 150 in the cavity 160 gradually rises from a position close to the substrate 140 to a position close to the heat dissipation module 122 .
  • the through hole 122a is arranged on the heat dissipation module 122, that is, the through hole 122a is arranged on the top wall of the heat dissipation cover 120, so, as described above for the method embodiment, when the through hole 122a is used to fill the liquid When the metal 150 is formed, the liquid metal 150 can flow into the containing cavity 160 from top to bottom, so that the liquid metal 150 can be more easily filled into the containing cavity 160 .
  • the through hole 122a When the through hole 122a is used for exhaust, because the through hole 122a is located at the top of the containing cavity 160, all the gas in the containing cavity 160 can be discharged from the through hole 122a, so that the liquid metal can be discharged more smoothly. 150 is filled into the receiving cavity 160 .
  • the plurality of electrodes 130 may include at least one point electrode 130 and at least one strip electrode 130 .
  • a plurality of electrodes 130 may include a point electrode 130 and a strip electrode 130, or may include a point electrode 130 and a plurality of strip electrodes 130.
  • each strip electrode 130 is connected to a point
  • the electrodes 130 form a pair of electrodes 130 , or include a plurality of point electrodes 130 and a plurality of strip electrodes 130 , and each adjacent point electrode 130 and strip electrode 130 forms a pair of electrodes 130 when energized.
  • the shape of the strip electrode 130 may be straight, arc, wave, etc., but not limited thereto.
  • the point electrode 130 and the strip electrode 130 can be used as a pair of electrodes 130, which are respectively an anode and a cathode.
  • the point electrode 130 can be a cathode
  • the strip electrode 130 can be an anode
  • a point electrode 130 is an anode
  • the strip electrode 130 is a cathode.
  • a divergent current can be formed between the point electrode 130 and the strip electrode 130, and the coverage of the current is relatively wide, so that a current can be formed quickly in a large area of the surface of the liquid metal 150, and the current can flow to the liquid metal.
  • Various positions on the surface of the metal 150 enable the entire surface of the liquid metal 150 to have current flow therethrough, thereby reducing the tension on the surface of the liquid metal 150 more easily and quickly.
  • a plurality of electrodes 130 may be arranged in an array on the inner wall of the heat dissipation module 122 .
  • the electrodes 130 may include three or more than three electrodes.
  • a plurality of electrodes 130 may be arranged on the inner wall of the heat dissipation module 122 in a linear array, a circular array, a rectangular array, and the like.
  • each row of electrodes 130 may be alternately used as anodes and cathodes in sequence.
  • the first and third rows are anodes
  • the second and fourth rows are cathodes. It can also be powered on in other ways, which is not limited here.
  • the plurality of electrodes 130 may all be point electrodes 130, and each electrode 130 is distributed in a circular array or a rectangular array.
  • the array distribution of the electrodes 130 can be determined according to the shape of the inner wall surface of the heat dissipation module 122 .
  • the electrodes 130 are distributed in a circular array; when the inner wall of the cooling module 122 is rectangular, the electrodes 130 are distributed in a rectangular array. In this way, when the electrodes 130 are energized, current flows through the entire surface of the liquid metal 150 more quickly, thereby reducing the surface tension of the liquid metal 150 more easily and quickly.
  • the electrodes 130 distributed in a plurality of arrays can also increase the surface area of the heat dissipation module 122, increase the contact area between the heat dissipation module 122 and the liquid metal 150, and can increase the contact area for heat exchange with the air, thereby improving cooling efficiency.
  • the plurality of electrodes 130 are all annular structures with different sizes, and the plurality of annular structures are nested sequentially.
  • the diameters of the plurality of electrodes 130 become larger sequentially, so as to achieve sequential nesting.
  • every two adjacent electrodes 130 may form a pair of electrodes 130 .
  • every adjacent two of the successively nested rings can be energized to form a pair of electrodes 130, in this way, since the rings are closed structures, the surface of the liquid metal 150 can be more quickly and evenly An electric current is formed in an efficient manner, thereby reducing the surface tension of the liquid metal 150 more easily and quickly.
  • the range of the gap may be 0.5 mm to 1.0 mm, for example, 0.5 mm, 0.8 mm, 1 mm, etc., but not limited thereto.
  • multiple electronic components 110 are disposed on the substrate 140 , and the heat dissipation cover 120 surrounds the multiple electronic components 110 .
  • a single heat dissipation cover 120 corresponds to a plurality of electronic components 110 , which can reduce the cost of the production process and installation process of the heat dissipation cover 120 , and further reduce the manufacturing cost of the heat dissipation structure in the present application.
  • the heat dissipation module 122 has a plurality of heat dissipation fins 123 , and the outer surface of the heat dissipation fins 123 is covered with a metal coating, and the metal coating is the above-mentioned electrode 130 .
  • the heat dissipation fins 123 on the heat dissipation module 122 can increase the contact area for heat exchange with the air, thereby improving the heat dissipation efficiency.
  • the heat dissipation structure 100 for electronic components provided by the embodiment of the present application is produced by the above-mentioned manufacturing method, it has the same beneficial effects as the heat dissipation structure 100 for electronic components produced by the above-mentioned production method, and will not be repeated here.
  • FIG. 16 is a schematic structural diagram of an electronic device 1000 provided by an embodiment of the present application.
  • the electronic device 1000 can be a desktop computer.
  • the desktop computer includes a host 200 and a display 300 .
  • the host 200 is provided with a cooling structure 100 for electronic components.
  • the electronic device 1000 may also be any one of a notebook computer, a tablet computer, a game console, a mobile phone, an electronic watch, a router, a set-top box, a TV, and a modem, but is not limited thereto.
  • the positional relationship of the electronic component heat dissipation structure 100 in the electronic device 1000 can also be rationally laid out to further Improve the heat dissipation effect of the electronic device 1000 and improve the heat conduction efficiency of the electronic component heat dissipation structure 100 .
  • the specific layout design is as follows:
  • the electronic components 110 that are sensitive to temperature are best placed in the lowest temperature area, such as the bottom of the electronic device 1000, to avoid installing them directly above the heat-generating devices, and it is best to arrange multiple devices staggered on the horizontal plane;
  • the heat dissipation of the heat dissipation structure mainly depends on air flow, so it is necessary to study the air flow path during design and reasonably configure fans and other components;
  • the electronic components 110 on the same substrate 140 should be arranged according to their calorific value and heat dissipation degree as much as possible.
  • the electronic components 110 with small calorific value or poor heat resistance should be placed in the most upstream of the cooling air flow, and the electronic components 110 with large calorific value or heat resistance should be placed in the most upstream of the cooling airflow.
  • Devices with good thermal properties are placed at the most downstream of the cooling airflow;
  • the high-power electronic components 110 are arranged as close as possible to the edge of the substrate 140 so as to shorten the heat transfer path; Effect of device temperature.
  • the electronic device 1000 provided in the embodiment of the present application includes the above-mentioned heat dissipation structure 100 for electronic components, it has the same beneficial effect as the heat dissipation structure 100 for electronic components described above, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种电子元件散热结构的制造方法、散热结构及电子设备,电子元件散热结构的制造方法,包括:将散热罩(120)盖合于电子元件(110)的外周并与安装电子元件(110)的基板(140)密封连接;散热罩(120)具有通孔(122a),散热罩(120)的内壁上设有多个电极(130);通过通孔(122a)向基板(140)与散热罩(120)围成的容纳空腔(160)内充注液态金属,直至填满整个容纳空腔(160),在此期间,电极(130)通电,以使得电流流经液态金属以降低液态金属的表面张力;密封通孔(122a)。通过本申请实施例提供的方法制作散热结构时,能够减小液态金属表面的张力,从而使液态金属能够填满电子元件(110)与散热罩(120)之间的空腔,从而提高了对电子元件(110)进行散热的效率。

Description

电子元件散热结构的制造方法、散热结构及电子设备
本申请要求于2021年10月26日提交国家知识产权局、申请号为202111249062.2、申请名称为“电子元件散热结构的制造方法、散热结构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,特别涉及一种电子元件散热结构的制造方法、散热结构及电子设备。
背景技术
随着科技的进步,人们对电子设备的要求也越来越高,比如高性能、高可靠性、超薄化等,使得电子设备中电子元件的集成度也越来越高,伴随着功耗也越来越大,导致电子元件在运行过程中产生大量的热量。为了使电子设备正常运行,需要对电子元件进行散热。
相关技术中,可以通过散热板、散热扇等散热模组对电子元件进行散热。由于电子元件本身不宜受外力的挤压,以免损坏电子元件,所以,为了避免散热模组挤压电子元件,电子元件与散热模组之间通常会存在一定间隙。这些间隙中的空气热阻较大,导热能力极弱,会阻碍热量向散热模组传导。为了提高导热效率,可以在这些间隙中填充导热介质,以使热量的传导更加顺畅迅速。
液态金属(简称液金)具有较好的散热性能,其散热效率大概为导热硅脂的10倍左右,因此,很多对散热要求较高的设备使用液态金属来填充上述间隙以进行热传导。然而,由于液态金属的表面张力较大,如图1中所示,在表面张力的作用下液态金属的表面不容易均匀平铺,使得液态金属难以填满电子元件和散热模组之间的间隙,电子元件与散热模组之间仍然存在较多的空洞,导致散热效率降低。
发明内容
本申请提供了一种电子元件散热结构的制造方法、散热结构及电子设备,能够减小液态金属表面的张力,从而使液态金属能够填满电子元件与散热罩之间的空腔,从而提高了对电子元件进行散热的效率。
第一方面,本申请提供了一种电子元件散热结构的制造方法,该方法包括以下步骤:
将散热罩盖合于电子元件的外周并与安装电子元件的基板密封连接,其中,散热罩具有通孔,散热罩的内壁上设有多个电极;
通过散热罩上的通孔向基板与散热罩围成的容纳空腔内充注液态金属,直至填满整个容纳空腔,在充注液态金属期间,上述电极通电,以使得电流流经液态金属以降低液态金属的表面张力;
密封上述通孔。
上述散热罩用于将电子元件产生的热量散发至外界,以对电子元件进行降温。散热罩盖合在电子元件的外周后,既可以实现散热作用,还可以对电子元件进行保护,防止电子元件与其他部件接触、挤压而受损,从而提高电子元件运行的可靠性。
散热罩的材质可以包括金属、石墨烯、硅脂、硅胶、塑胶中的至少一种,散热罩的材质也可以包括其他散热性能较好的材质,本申请不具体限定。
考虑到散热罩的导热效果和屏蔽效果,散热罩可以为金属罩,金属罩的材质可以是不锈钢、洋白铜、镁铝合金等,本申请对此并不限定。
散热罩可以通过密封圈、密封带、密封条、密封胶等密封结构与基板密封连接。
散热罩的一端具有开口,通过该开口罩在电子元件外周。散热罩上的通孔可以设置在散热罩的顶壁上,也可以设置在散热罩的侧壁上。散热罩的顶壁与基板相对,散热罩的侧壁与基板相连接。通孔可以是圆形孔、方形孔、长条形孔等任意形状的孔。
在填充液态金属的过程中,通常是基板放置在桌面等支撑面上进行填充的,为了使液态金属更容易填充进容纳空腔内,通孔可以设置在散热罩的顶壁上,从而使液态金属从上向下流入容纳空腔内,使填充更容易。
电极是电子设备中的一种部件,用于作为导电介质(固体、气体、真空或液体)中输入或导出电流的两个端。输入电流的一极叫阳极,阳极失去电子,放出电流的一极叫阴极,阴极得到电子。
散热罩内可以设置两个、三个、四个或者更多数量个电极。各个电极的结构形状可以相同,也可以不同。例如,多个电极中可以包括:圆柱电极、板状电极、长条形电极、点电极中的至少一种,但不限于此。点电极可以理解为直径较小的球状的电极,或者直径和高度均较小的柱状电极或者其他横截面面积较小的形状。
本申请实施例中,电极为能够导电的金属材质,例如,电极的材质可以是铜、铁、银、锡、钛中的至少一种,但不限于此。
本申请实施例中,电极可以是成对使用的,一对电极包括一个阳极电极和一个阴极电极,电流从阳极流向阴极。在通电过程中,一对电极中的两个电极分别连接电源的正、负极,从而使两个电极一个为阳极,另一个为阴极。一对电极中的两个电极的电势不相等,从而在两个电极之间形成电势差。
一对电极的两个电极的形状可以相同,也可以不同。
本申请实施例在给电极通电时,至少两个电极的电势不相等,从而在这两个电极之间形成电势差,以在两个电极之间形成电流。
当散热罩内设有两个电极时,这两个电极即为一对电极,在通电过程中,可以一个电极连接电源的正极,另一个电极连接电源的负极,两个电极的电势不同,从而在两个电极之间形成电势差,电势差即电压,连接电源正极的电极呈为阳极,连接电源负极的电极为阴极。
在通电过程中,对于每一对电极,可以将电源的正、负极分别连接该对电极中的两个电极,以使这对电极中的两个电极形成电势差。
由于相邻两个电极之间的间距较小,使得相邻两个电极之间电流更大,从而更容易降低液态金属表面的张力。因此,本申请实施例中可以将每相邻两个电极作为一对 电极进行通电。
本申请实施例中,电极通电后,使电流流经液态金属而降低液态金属表面张力的原理为:当电极通电后,能够在液态金属内形成电流,大量电子在液态金属的内部流动,运动的电子能够为空气中氧气变成氧离子提供能量,从而使得空气中的氧气与液态金属更容易反应而在液态金属表面形成一层流动的氧化层,氧化层由金属氧化物形成,金属氧化物通常为固态粉末,金属氧化物表面张力系数非常小,大概为0.1mN/m,因此,在液态金属表面形成的氧化层能够大大降低液态金属表面的张力。
本申请实施例提供的电子元件散热结构的制造方法,由于散热罩的内壁上设有多个电极,在向基板与散热罩围成的容纳空腔内充注液态金属的过程中,给电极通电能够使得电流流经液态金属,从而使得空气中的氧气与液态金属更容易反应而在液态金属表面形成一层流动的氧化层,氧化层由金属氧化物形成,金属氧化物通常为固态粉末,金属氧化物表面张力非常小,因此,在液态金属表面形成的氧化层能够大大降低液态金属表面的张力,使得液态金属表面能够均匀地平铺开,从而使得液态金属能够填满电子元件和散热罩之间的空腔,避免了电子元件与散热罩之间存在空洞,提高了散热效率。
另外,本申请实施例提供的方法可以降低液态金属各个表面的张力,包括顶面、底面和侧面,这样,可以提高液态金属在电子元件的外表面、散热罩的内表面和基板表面的润湿性,进一步将电子元件与散热罩之间的空腔填充满,使得散热效率更高。
散热罩与基板连接,并包围在电子元件的外部,散热罩既具有散热作用,也具有保护电子元件的作用,从而对电子元件进行了更好的保护作用。
在一个可选的设计中,上述多个电极中任意一对相邻的两个电极之间的电势差为0.5伏~2伏。
例如,该电势差可以为0.5伏、1伏、1.5伏、2伏等,但不限于此。
本实施例将两个相邻的一对电极之间的电势差设置为较小的电压,既可以在液态金属表面形成氧化层而减小表面张力,又可以避免氧化层过厚,破坏液态金属的流动性,降低液态金属的散热性能。
在一个可选的设计中,散热罩包括散热模组和围挡,上述电极设置于散热模组的内壁面上。
具体的,围挡可以为环形结构,围挡环绕一圈固定在散热模组的边缘,围挡向散热模组的一侧延伸,从而与散热模组共同组成散热罩。
散热模组与围挡可以通过粘接、卡接、螺纹连接、铆接、焊接等连接方式固定。为了使散热罩的结构可靠性更好,散热模组可以与围挡通过一体成型工艺形成一体结构,这样,还可以使得加工流程更简单。
散热模组可以包括散热板,散热板上可以安装有散热栅格、散热翅片等散热结构,这样,能够提供更大的热交换面积,使散热结构的散热效率更高。散热模组还可以是电子设备中功能元件的金属支架,例如,当电子设备是手机时,散热模组是电池或者屏幕的金属支撑部件,可将热量从手机内部迅速导出至外部,散发至环境中。
在填充液态金属的过程中,通常是将基板放置在桌面等制成面上进行填充的,散热模组位于最上方,容纳空腔内的液态金属的液位从靠近基板的位置逐渐上升到靠近 散热模组的位置。本申请实施例将电极安装在散热模组的内壁面上,可以使得液态金属快填满时再与电极接触而形成电流,从而再在表面形成氧化层,这样,既可以使得容纳空腔内填满液态金属,又可以减小液态金属氧化层的厚度,对液态金属的流动性和散热性影响较小。
在一个可选的设计中,散热罩上的通孔包括两个,并且这两个通孔设于散热模组上。
两个通孔分别用于充注液态金属和排出容纳空腔内的气体。
在填充液态金属的过程中,容纳空腔内的液态金属的液位从靠近基板的位置逐渐上升到靠近散热模组的位置。本实施方式中,通孔设于散热模组上,即通孔设于散热罩的顶壁上,这样,如上述对方法实施例的描述,当通孔用于充注液态金属时,可以使液态金属从上向下流入容纳空腔内,使液态金属更容易填充进容纳空腔内。当通孔用于排气时,由于通孔位于容纳空腔的最顶端,使得容纳空腔内的所有气体都能够从该通孔内排出,从而可以更顺利地将液态金属充注入容纳空腔内。
在一个可选的设计中,多个上述电极中包括至少一个点电极和至少一个条状电极。
具体的,多个电极中可以包括一个点电极和一个条状电极,也可以包括一个点电极和多个条状电极,在通电时,每个条状电极均与一个点电极形成一对电极,或者,包括多个点电极和多个条状电极,每相邻的点电极和条状电极在通电时形成一对电极。
条状电极的形状可以是直线形、弧形、波浪形等,但不限于此。
在通电过程中,可以将点电极和条状电极作为一对电极,分别为阳极和阴极,具体的,可以是点电极为阴极,条状电极为阳极,也可以是点电极为阳极,条状电极为阴极。这样,可以在点电极与条形电极之间形成发散式的电流,电流的覆盖范围较广,从而使得液态金属的表面较大面积内可以很快地形成电流,该电流能够流向液态金属表面的各个位置,使得液态金属表面可以整体上均流经有电流,从而更容易快速地减小液态金属表面的张力。
在一个可选的设计中,多个上述电极以阵列方式排布于散热模组的内壁面上。
本实施方式中,电极可以包括三个或者三个以上。多个电极可以以直线阵列、圆形阵列、矩形阵列等形式排布于散热模组的内壁面上。
例如,当多个电极呈矩形阵列分布时,可以各排电极依次交错作为阳极、阴极。例如,第一排和第三排为阳极,第二排和第四排为阴极。也可以以其他方式进行通电,此处不做限定。
可选地,多个电极可以均为点电极,各个电极以圆形阵列或者矩形阵列分布。
本实施方例中,可以根据散热模组的内壁面形状确定各个电极的阵列分布方式。例如,当散热模组的内壁面为圆形时,各个电极以圆形阵列分布,当散热模组的内壁面为矩形时,各个电极以矩形阵列分布。这样,可以使得在电极通电时,液态金属的整个表面更快速流经有电流,从而更容易快速地减小液态金属表面的张力。
另外,多个阵列分布的电极还可以增大散热模组的表面积,增大了散热模组与液态金属的接触面积,能够增大与空气进行热交换的接触面积,从而提高了散热效率。
在一个可选的设计中,多个上述电极均呈圆环状结构并且尺寸不同,多个圆环状结构的电极依次嵌套。
本实施例中,多个电极的直径依次变大,从而实现依次嵌套。在通电过程中,每相邻两个电极可以形成一对电极。
本实施方例中,由于依次嵌套的各个圆环中,每相邻两个均可以通电后形成一对电极,这样,由于圆环为封闭结构,使得液态金属的表面可以更快速、均匀地形成电流,从而更容易快速地减小液态金属表面的张力。
在一个可选的设计中,密封上述通孔的步骤,可以通过以下方式实现:
使用导热材料封闭所述通孔。
通过导热材料密封通孔,可以使得散热罩的散热性能更好,从而使得散热结构的散热性能更好。
第二方面,本申请实施例还提供了一种电子元件散热结构,包括:
基板,设置有电子元件;
散热罩,与上述基板密封连接,并盖合于电子元件的外周,散热罩与上述基板形成容纳电子元件的容纳空腔,散热罩的内壁上设有多个电极,散热罩上具有被密封的通孔;
液态金属,填满于上述容纳空腔内。
在一个可选的设计中,散热罩包括散热模组和围挡,上述电极设置于散热模组的内壁面上。
在一个可选的设计中,散热罩上的通孔包括两个,并且两个通孔设于散热模组上。
在一个可选的设计中,多个上述电极中包括至少一个点电极和至少一个条状电极。
在一个可选的设计中,多个上述电极以阵列方式排布于散热模组的内壁面上。
在一个可选的设计中,多个上述电极均呈圆环状结构并且尺寸不同,多个圆环状结构的电极依次嵌套。
在一个可选的设计中,密封上述通孔的材料为导热材料。
本申请实施例提供的电子元件散热结构由于是采用上述制作方法制作出的,因此具有与上述制作方法制作出的电子元件散热结构相同的有益效果,此处不再赘述。
第三方面,本申请还提供了一种电子设备,包括如第二方面任一项所提供的电子元件散热结构。
本申请实施例提供的电子设备由于包括了上述电子元件散热结构,因此具有与上述电子元件散热结构相同的有益效果,此处不再赘述。
附图说明
图1是相关技术中液态金属在散热罩中的状态示意图;
图2是申请实施例提供的电子元件散热结构的制造方法的一例的操作流程示意图;
图3是本申请实施例提供的电子元件散热结构的制造方法的另一例的制造流程示意图;
图4是本申请实施例提供的电子元件散热结构的一例的结构示意图;
图5是图4所示的电子元件散热结构的爆炸图;
图6是本申请实施例提供的电子元件散热结构的另一例的剖面示意图;
图7是图6所示的电子元件散热结构去基板后的俯视图;
图8是本申请实施例提供的电子元件散热结构的再一例的剖面示意图;
图9是图8所示的电子元件散热结构去基板后的俯视图;
图10是本申请实施例提供的电子元件散热结构的再一例的去基板后的俯视图;
图11是本申请实施例提供的电子元件散热结构的再一例的去基板后的俯视图;
图12是本申请实施例提供的电子元件散热结构的再一例的去基板后的俯视图;
图13是本申请实施例提供的电子元件散热结构的再一例的剖面示意图;
图14是本申请实施例提供的电子元件散热结构的再一例的剖面示意图;
图15是本申请实施例提供的电子元件散热结构的再一例的剖面示意图;
图16是本申请实施例提供的电子设备的结构示意图。
附图标记:
1000、电子设备;
100、电子元件散热结构;
110、电子元件;120、散热罩;121、围挡;122、散热模组;122a、通孔;122b、导热材料;123、翅片;130、电极;140、基板;150、液态金属;160、容纳空腔;170、胶体;
200、主机;300、显示器;
2000、充注设备。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要理解的是,术语“上”、“下”、“侧”、“内”、“外”、“顶”、“底”等指示的方位或位置关系为基于安装的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
在本申请的描述中,需要说明的是,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
电子元件是电子电路中的基本元素,具有两个或以上的引线或金属接点。电子元 件相互连接后可构成一个具有特定功能的电子电路,电子元件通常安装在基板上,基板具有承载、安装、连接电子元件的功能。电子元件可以是单独的封装,例如电阻器、电容器、电感器、晶体管、二极管等,或是各种不同复杂度的群组,例如集成电路(Integrated Circuit,IC)、芯片等。
电子设备是由集成电路、晶体管、电子管等多种电子元件组成的,应用电子技术软件发挥作用的设备,例如台式电脑、笔记本电脑、平板电脑、游戏主机、手机、电子手表、路由器、机顶盒、电视、调制解调器等。
随着科技的进步,人们对电子设备的要求也越来越高,比如高性能、高可靠性、超薄化等,使得电子设备中电子元件的集成度也越来越高,伴随着功耗也越来越大,导致电子元件在运行过程中产生大量的热量。为了使电子设备正常运行,需要对电子元件进行散热。
热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为℃/W或K/W。用热功耗乘以热阻,即可获得该传热路径上的温升。可以用一个简单的类比来解释热阻的意义,换热量相当于电流,温差相当于电压,则热阻相当于电阻。
相关技术中,可以通过散热板、散热扇等散热模组对电子元件进行散热。由于电子元件本身不宜受外力的挤压,以免损坏电子元件,所以,为了避免散热模组挤压电子元件,电子元件与散热模组不会紧密压合,所以,在电子元件与散热模组的接触面上,外表上看来接触良好,实际上直接接触的面积只有一部分,其余部分都是空隙。空隙内的气体的热阻较大,导热能力极弱,会阻碍热量向散热模组传导。为了提高导热效率,可以在这些间隙中填充导热介质,以使热量的传导更加顺畅迅速。
液态金属(简称液态金属)指的是常温(也叫一般温度或者室温,一般定义为25℃)下为液态的金属。液态金属的热阻较小,散热功率较大。具体的,液态金属的散热功率大概为40W·m-1k-1~80W·m-1k-1,而目前大量使用的导热垫及导热硅脂的散热功率大概为3W·m-1k-1~15W·m-1k-1,可见,液态金属具有较好的散热性能,其散热效率大概为导热硅脂的10倍左右,因此,很多对散热要求较高的设备使用液态金属来填充上述空隙以进行热传导。
由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面具有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。表面张力是分子力的一种表现。表面张力越大,液体越不容易均匀分散开。
水的表面张力系数大概为72.75×10-3N·m-1,即72.75m N·m-1,液态金属的表面张力系数大概为500×10-3N·m-1~1100×10-3N·m-1,即500×mN·m-1~1100m N·m-1,液态金属的表面张力系数大概为水的14倍左右。可见,液态金属的表面张力非常大。
图1是相关技术中液态金属在散热罩中的状态示意图。如图1所示,在表面张力的作用下,液态金属的表面通常为起伏不平的状态,液态金属的表面不容易均匀平铺, 这使得液态金属难以填满电子元件和散热模组之间的间隙,电子元件与散热模组之间仍然存在较多的空洞,导致散热效率降低。
为了解决以上问题,本申请提供了一种电子元件散热结构的制造方法、散热结构及电子设备,通过在填充液态金属的过程中给电极通电,当电极与已填充的液态金属接触时,电流流经液态金属,能够有效降低液态金属的表面张力,使得液态金属表面能够均匀平铺,从而使得液态金属能够填满电子元件和散热模组之间的间隙,避免了电子元件与散热模组之间存在空洞,提高了散热效率。
下面,首先对本申请实施例提供的电子元件散热结构的制造方法进行介绍。
图2是申请实施例提供的电子元件散热结构100的制造方法的一例的操作流程示意图,图3是本申请实施例提供的电子元件散热结构100的制造方法的另一例的制造流程示意图。
如图2、图3所示,本申请实施例提供的电子元件散热结构100的制造方法包括以下步骤S10~步骤S30。
步骤S10:将散热罩120盖合于电子元件110的外周并与安装电子元件110的基板140密封连接。
对于步骤S10,可以参照图2中的(a)到图2中的(b)的操作。
其中,散热罩120具有通孔122a,散热罩120的内壁上设有多个电极130。
上述电子元件110可以是单独的封装结构,例如电阻器、电容器、电感器、晶体管、二极管等。上述电子元件110也可以是各种不同复杂度的群组,例如集成电路(Integrated Circuit,IC)。
集成电路也可以称为微电路(microcircuit)、微芯片(microchip)或者芯片(chip),是一种把电路(主要包括半导体设备,也包括被动组件等)小型化的方式,通常制造在半导体晶圆表面上。
本申请实施例中,上述电子元件110可以是中央处理器(central processing unit,CPU)、图形处理器(graphics processing unit,GPU)、射频放大器、功率放大器、电源管理芯片(power management IC,PMIC)、通用闪存存储(universal flash storage,UFS)、系统级封装(System in Package,SiP)元件、封装天线(antenna in package,AiP)、片上系统(system on chip,SOC)元件、双倍数据率(double data rate,DDR)存储器、射频芯片(radio frequency integrated circuit,RF IC)、嵌入式多媒体卡(embedded multimedia card,EMMC)等,但不限于此。
基板140为用于承载、安装、连接电子元件110的部件。本申请实施例中,基板140可以是印刷电路板(printed circuit board,PCB)、柔性电路板(Flexible Printed Circuit,FPC)、双面PCB板、多层PCB板等,但不限于此。
电子元件110与基板140之间可以通过导线或者触点焊接在一起,也可以通过贴片的方式连接,从而实现电子元件110与基板140的集成,本申请不限定电子元件110与基板140的具体连接方式。
上述散热罩120用于将电子元件110产生的热量散发至外界,以对电子元件110进行降温。散热罩120盖合在电子元件110的外周后,既可以实现散热作用,还可以对电子元件110进行保护,防止电子元件110与其他部件接触、挤压而受损,从而提 高电子元件110运行的可靠性。
散热罩120的材质可以包括金属、石墨烯、硅脂、硅胶、塑胶中的至少一种,散热罩120的材质也可以包括其他散热性能较好的材质,本申请不具体限定。
考虑到散热罩120的导热效果和屏蔽效果,散热罩120可以为金属罩,金属罩的材质可以是不锈钢、洋白铜、镁铝合金等,本申请对此并不限定。
此外,散热罩120为金属罩时,可以通过磁吸式机械臂进行拾取和转移,有利于装配环节的操作。
散热罩120与基板140可以通过贴片、粘接、焊接、螺栓连接、卡扣连接等方式连接,从而实现散热罩120与基板140的固定连接。固定在基板140上的散热罩120包围设置在电子元件110的外周,即电子元件110设置在散热罩120与基板140所围成的容纳空腔160内。
散热罩120可以通过密封圈、密封带、密封条、密封胶等密封结构与基板140密封连接。
图4是本申请实施例提供的电子元件散热结构100的一例的结构示意图,图5是图4所示的电子元件散热结构100的爆炸图,图6是本申请实施例提供的电子元件散热结构100的另一例的剖面示意图。
可选地,如图6所示,散热罩120可以通过胶体170与基板140密封粘接。
散热罩120可以是圆形罩、矩形罩、规则多形罩等规则的形状,以便于散热罩120的加工制造,也可以使得电子元件散热结构100的结构更简单。散热罩120也可以是不对称的非规则形状。
散热罩120的结构可以与电子元件110的结构相匹配。当电子元件110的外形为矩形时,散热罩120也可以为矩形罩,当电子元件110的外形为圆形时,散热罩120也可以为圆形罩。这样,可以使得电子元件散热结构100的结构更紧凑、合理。散热罩120的结构也可以与电子元件110的结构不同,例如,电子元件110的外形为圆形,散热罩120为矩形罩。散热罩120能够盖合于电子元件110外周即可,本申请不限定散热罩120的具体结构。
如图4、图5所示,散热罩120的一端具有开口,通过该开口罩在电子元件110外周。散热罩120上的通孔122a可以设置在散热罩120的顶壁上,也可以设置在散热罩120的侧壁上。散热罩120的顶壁与基板140相对,散热罩120的侧壁与基板140相连接。通孔122a可以是圆形孔、方形孔、长条形孔等任意形状的孔。
散热罩120上可以设置一个通孔122a,也可以设置两个或者更多个通孔122a。当散热罩120上设置一个通孔122a时,通过该通孔122a向容纳空腔160内充注液态金属150时,充注液态金属150的设备与通孔122a的孔壁之间应留有空隙,以使得容纳空腔160内的气体能够从所留出的空隙排出。如图4、图5所示,当散热罩120上设置的通孔122a包括两个或更多个时,其中一个通孔122a用于充注液态金属150,其余的通孔122a用于向外排出气体。
如图2所示,在填充液态金属150的过程中,通常是基板140放置在桌面等支撑面上进行填充的,为了使液态金属150更容易填充进容纳空腔160内,通孔122a可以设置在散热罩120的顶壁上,从而使液态金属150从上向下流入容纳空腔160内,使 填充更容易。
电极130是电子设备1000中的一种部件,用于作为导电介质(固体、气体、真空或液体)中输入或导出电流的两个端。输入电流的一极叫阳极,阳极失去电子,放出电流的一极叫阴极,阴极得到电子。
散热罩120内可以设置两个、三个、四个或者更多个电极130。各个电极130的结构形状可以相同,也可以不同。例如,多个电极130中可以包括:圆柱电极130、板状电极130、长条形电极130、点电极130中的至少一种,但不限于此。点电极130可以理解为直径较小的球状的电极130,或者直径和高度均较小的柱状电极130或者其他横截面面积较小的形状。
本申请实施例中,电极130为能够导电的金属材质,例如,电极130的材质可以是铜、铁、银、锡、钛中的至少一种,但不限于此。
上述电极130可以通过粘接、卡接、螺纹连接、铆接等连接方式固定在散热罩120的内壁上。散热罩120的罩壁上可以设有导电通孔,电极130通过该导电通孔与外部电源连接。具体的,电极130的用于连接电源的一端可以直接穿过散热罩120的导电通孔而伸向外界,或者,电极130的用于连接电源的一端可以连接有导线,导线穿过散热罩120的导电通孔而伸向外界,从而便于与电源连接后通电。
当散热罩120为金属材质时,电极130与散热罩120之间设有绝缘材料,以将电极130与散热罩120绝缘隔离。
电子元件110的顶面与散热罩120之间的距离范围可以为1.2毫米~1.6毫米,例如,可以为1.2毫米、1.4毫米或者1.6毫米,但不限于此,该距离不宜设置的过大,以减小电子元件散热结构100的整体体积,该距离也不宜设置的过小,以保证较好的散热效果。
步骤S20:通过上述通孔122a向基板140与散热罩120围成的容纳空腔160内充注液态金属150,直至填满整个容纳空腔160。
在步骤S20的操作过程中,上述电极130通电,以使得电流流经液态金属150以降低液态金属150的表面张力。
对于步骤S20,可以参照图2中的(c)、(d)、(e)。图2中的(c)为向容纳空腔160内充注液态金属150,图2中的(d)为电极130通电,图2中的(e)为容纳空腔160被填满。
上述电极130的形状可以是圆柱形、球形、长条形、环形、波浪形中的任意一种。多个电极130的形状可以相同,也可以不相同。电极130的尺寸可以根据电极130的数量、容纳空腔160的大小等来确定,具体尺寸不限定。例如,当电极130为圆柱形时,电极130的直径可以为0.4毫米~0.8毫米,此处仅作示例性说明,不作为具体限定。
本申请实施例中,电极130可以是成对使用的,一对电极130包括一个阳极电极130和一个阴极电极130,电流从阳极流向阴极。在通电过程中,一对电极130中的两个电极130分别连接电源的正、负极,从而使两个电极130一个为阳极,另一个为阴极。一对电极130中的两个电极130的电势不相等,从而在两个电极130之间形成电势差。
一对电极130的两个电极130的形状可以相同,也可以不同。
本申请实施例在给电极130通电时,至少两个电极130的电势不相等,从而在这两个电极130之间形成电势差,以在两个电极130之间形成电流。
当散热罩120内设有两个电极130时,这两个电极130即为一对电极130,在通电过程中,可以一个电极130连接电源的正极,另一个电极130连接电源的负极,两个电极130的电势不同,从而在两个电极130之间形成电势差,电势差即电压,连接电源正极的电极130呈为阳极,连接电源负极的电极130为阴极。
图12是本申请实施例提供的电子元件散热结构100的再一例的去基板140后的俯视图。
当散热罩120内设有三个或三个以上的电极130时,可以是每相邻两个电极130作为一对电极130,且各对电极130之间没有共用的电极130,例如,当电极130包括四个时,第一个电极130与第二个电极130为一对电极130,第三个电极130与第四个电极130为一对电极130,从而形成两对电极130。或者,也可以是各对电极130之间存在共用的电极130,例如,当电极130包括三个时,第一个电极130(阳极)与第二个电极130(阴极)为一对电极130,第二个电极130(阴极)与第三个电极130(阳极)为一对电极130,从而形成两对电极130。
再例如,如图12所示,当电极130包括五个,其中一个电极130的外周设有四个电极130,这四个电极130可以分别与中间的一个电极130作为一对电极130,这样,一共可以作为四对电极130进行通电。
本申请实施例中,当电极130包括三个或者更多个时,也可以是不相邻的两个电极130形成一对电极130,例如,三个电极130依次间隔设置,第一个电极130与第三个电极130形成一对电极130,第二个电极130与第三个电极130形成一对电极130。这种情况也可以使电流流经液态金属150表面而降低液态金属150的表面张力。
在通电过程中,对于每一对电极130,可以将电源的正、负极分别连接该对电极130中的两个电极130,以使这对电极130中的两个电极130形成电势差。
由于相邻两个电极130之间的间距较小,使得相邻两个电极130之间电流更大,从而更容易降低液态金属150表面的张力。因此,本申请实施例中可以将每相邻两个电极130作为一对电极130进行通电。
本申请实施例中,各个电极130在散热罩120顶壁上的投影所围成的图形面积可以较大,由于电极130之间的电流能够快速地流经位于电极130之间的液态金属150,所以,当各个电极130所围成的图形面积较大时,在电极130通电时,液态金属150的表面较大的面积内可以地快速流经有电流,该电流能够流向各电极130所围成的图形面积之外,使得液态金属150表面可以整体上均流经有电流,从而更容易快速地减小液态金属150表面的张力。
图7是图6所示的电子元件散热结构100去基板140后的俯视图。
例如,如图4、图7所示,当电极130包括两个时,电极130可以为长条形,电极130的长度方向与散热罩120的宽度方向平行,两个电极130沿着散热罩120的长度方向间隔设置,两个电极130之间的距离可以为散热罩120长度的1/2~4/5,即两个电极130之间的间距设置的较大一点,电极130的长度可以为散热罩120宽度的 1/2~4/5,电极130的长度也设置的长一点,从而可以使两个电极130之间的电流流过的液态金属150的面积更大。由于两个电极130之间的液态金属150能够快速地形成电流,所形成的电流再流向两个电极130所围成的图形范围之外,使得液态金属150的整个表面较快地形成电流。
一对电极130中的两个电极130之间的间距也不宜设置的过大,以免电子在液态金属150中能量损失过大而无法形成稳定的电流。
在一种实施方式中,可以使用针管、自动填充器等充注设备2000等通过通孔122a向容纳空腔160内注入液态金属150。
可选地,可以通过填充量来计算是否填满容纳空腔160。具体的,可以计算容纳空腔160的体积,再向容纳空腔160内注入相同体积的液态金属150,以保证液态金属150将容纳空腔160填满。或者,可以通过通孔122a观察容纳空腔160内是否被填满。或者,可以在散热罩120的顶壁上设置透明的可视区域,通过该可视区域观察容纳空腔160内是否被填满。
上述液态金属150的材料可以包括铋、铟、锡、镓中的至少一种,也可以包括其他金属。液态金属150可以为镓基合金、铟基合金或铋基合金。具体的,镓基合金可以为镓铟合金、镓铅合金、镓汞合金、镓铟锡合金或镓铟锡锌合金;铟基合金可以为铟铋铜合金或铟铋锡合金;铋基合金可以为铋锡合金。本申请不限定液态金属150的具体组成成分。
本申请实施例中,电极130通电后,使电流流经液态金属150而降低液态金属150表面张力的原理为:当电极130通电后,能够在液态金属150内形成电流,大量电子在液态金属150的内部流动,运动的电子能够为空气中氧气变成氧离子提供能量,从而使得空气中的氧气与液态金属150更容易反应而在液态金属150表面形成一层流动的氧化层,氧化层由金属氧化物形成,金属氧化物通常为固态粉末,金属氧化物表面张力系数非常小,大概为0.1mN/m,因此,在液态金属150表面形成的氧化层能够大大降低液态金属150表面的张力。
当一对电极130中的两个电极130所施加的电压越高时,液态金属150内的电流越大,液态金属150表面越容易形成氧化层,所形成的氧化层也越厚,液态金属150的表面张力就越低。但是,一对电极130中的两个电极130所施加的电压也不宜过高,以免导致氧化层过厚,破坏液态金属150的流动性,从而降低液态金属150的散热性能。
在一个具体实施例中,多个电极130中任意一对相邻的两个电极130之间的电势差可以为0.5伏~2伏,例如,该电势差可以为0.5伏、1伏、1.5伏、2伏等,但不限于此。本实施例中,一对相邻的两个电极130即一对电极130中的两个电极130相邻,这两个电极130之间未设置其他的电极130。一对电极130中的两个电极130一个为阴极、一个为阳极。
本实施例将两个相邻的一对电极130之间的电势差设置为较小的电压,既可以在液态金属150表面形成氧化层而减小表面张力,又可以避免氧化层过厚,破坏液态金属150的流动性,降低液态金属150的散热性能。
在一种实施方式中,步骤S20可以按以下步骤实现:通过上述通孔122a向基板 140与散热罩120围成的容纳空腔160内充注液态金属150,当所述容纳空腔160内充注的液态金属150的体积比大于预设比例时,给电极130通电,并继续充注直至填满整个容纳空腔160。
上述体积比即液态金属150的体积与容纳空腔160的容积之比。预设比例可以是2/3~3/4的任一比例,预设比例也可以是其他较大的比例,本申请不具体限定。
本实施方式中可以使得当液态金属150快填满时再在表面形成氧化层,从而既可以使得容纳空腔160内填满液态金属150,又可以减小液态金属150氧化层的厚度,从而对液态金属150的流动性和散热性影响较小。
在其他实施方式中,也可以在开始充注液态金属150的同时给电极130通电,或者可以充注之前就开始给电极130通电,本申请实施例中,在充填容纳空腔160的过程中对电极130通电即可,具体开始通电的时机不限定。
本申请实施例中,可以在填满容纳空腔160后停止通电,以保证液态金属150可以填满,且通电操作也十分方便。当液态金属150是从散热罩120的侧壁注入时,即通孔122a设置在散热罩120的侧壁上时,也可以在液态金属150的液位高于通孔122a时停止通电,此时由于继续充注的液态金属150不会形成液态金属150的表面,因此也不会使已填充的液态金属150表面张力变大。
步骤S30:密封上述通孔122a。
步骤S30可以参照图2中的(f)操作。
具体的,可以使用胶体、密封盖、挡板、阀门等结构密封上述通孔122a。
在一个具体实施例中,可以使用导热材料122b封闭上述通孔122a。导热材料122b可以是硅脂、硅胶、金属等,但不限于此。通过导热材料122b密封通孔122a,可以使得散热罩120的散热性能更好,从而使得散热结构的散热性能更好。
当通孔122a包括多个时,需要密封每一个通孔122a。
步骤S30中密封了上述通孔122a后,即可得到上述电子元件散热结构100。
本申请实施例提供的电子元件散热结构100的制造方法,由于散热罩120的内壁上设有多个电极130,在向基板140与散热罩120围成的容纳空腔160内充注液态金属150的过程中,给电极130通电能够使得电流流经液态金属150,从而使得空气中的氧气与液态金属150更容易反应而在液态金属150表面形成一层流动的氧化层,氧化层由金属氧化物形成,金属氧化物通常为固态粉末,金属氧化物表面张力非常小,因此,在液态金属150表面形成的氧化层能够大大降低液态金属150表面的张力,使得液态金属150表面能够均匀地平铺开,从而使得液态金属150能够填满电子元件110和散热罩120之间的空腔,避免了电子元件110与散热罩120之间存在空洞,提高了散热效率。
另外,本申请实施例提供的方法可以降低液态金属150各个表面的张力,包括顶面、底面和侧面,这样,可以提高液态金属150在电子元件110的外表面、散热罩120的内表面和基板140表面的润湿性,进一步将电子元件110与散热罩120之间的空腔填充满,使得散热效率更高。
散热罩120与基板140连接,并包围在电子元件110的外部,散热罩120既具有散热作用,也具有保护电子元件110的作用,从而对电子元件110进行了更好的保护 作用。
图8是本申请实施例提供的电子元件散热结构100的再一例的剖面示意图。图9是图8所示的电子元件散热结构100去基板140后的俯视图。图10是本申请实施例提供的电子元件散热结构100的再一例的去基板140后的俯视图。图11是本申请实施例提供的电子元件散热结构100的再一例的去基板140后的俯视图。
如图4至图12所示,本申请实施例还提供了一种电子元件散热结构100,包括:基板140、散热罩120和液态金属150。
基板140上设置有电子元件110,散热罩120与基板140密封连接,散热罩120盖合于电子元件110的外周,散热罩120与基板140形成容纳电子元件110的容纳空腔160,散热罩120的内壁上设有多个电极130,散热罩120上具有被密封的通孔122a,液态金属150填满于所述容纳空腔160内。
基板140可以是圆形板、矩形板或者其他任意规则形状的板,基板140也可以是非对称的不规则形状的板,本申请不限定基板140的具体形状。
散热罩120与基板140之间形成的容纳空腔160的大小可以根据基板140的大小、电子元件110的功耗等进行确定,当基板140的尺寸较大,基板140上的空间较大,容纳空腔160可以设置的较大,当电子元件110的功耗较大时,容纳空腔160可以设置的较大,以便容纳更多的液态金属150对电子元件110进行更好的散热。
对于基板140、散热罩120和液态金属150的具体结构、材质和安装方式,可以参考上述制造方法的实施例,此处不再赘述。
在一种实施方式中,如图4、图5所示,散热罩120可以包括散热模组122和围挡121,电极130设置于散热模组122的内壁面上。
具体的,围挡121可以为环形结构,围挡121环绕一圈固定在散热模组122的边缘,围挡121向散热模组122的一侧延伸,从而与散热模组122共同组成散热罩120。
围挡121的厚度可以为2毫米~3毫米,也可以为其他具体的厚度,例如1毫米、3毫米等。围挡121厚度不宜太厚,以减小围挡121的体积和重量,围挡121的厚度也不宜太薄,以使得围挡121有较好的强度以及较好的导热效果。
散热模组122可以与围挡121的材质相同,也可以不同。例如,散热模组122的材质为硅胶,围挡121的材质为金属,或者,散热模组122与围挡121的材质均为硅胶。本申请实施例中,围挡121与散热模组122的材质可以均为导热材料。
散热模组122与围挡121可以通过粘接、卡接、螺纹连接、铆接、焊接等连接方式固定。为了使散热罩120的结构可靠性更好,散热模组122可以与围挡121通过一体成型工艺形成一体结构,这样,还可以使得加工流程更简单。
散热模组122可以包括散热板,散热板上可以安装有散热栅格、散热翅片123等散热结构,这样,能够提供更大的热交换面积,使散热结构的散热效率更高。散热模组122还可以是电子设备1000中功能元件的金属支架,例如,当电子设备1000是手机时,散热模组122是电池或者屏幕的金属支撑部件,可将热量从手机内部迅速导出至外部,散发至环境中。
散热模组122可以与电子设备1000中一些功能元件的金属支架连接,例如,电池或者屏幕的金属支架,以将热量传导至金属支架上,再由金属支架将热量散发至环境 中。
电子元件110产生的热量经过容纳空腔160内的液态金属150传导至散热模组122后,通过散热模组122将热量散发至环境中。
散热模组122的内壁面,即散热模组122的朝向容纳空腔160的内表面。
在填充液态金属150的过程中,通常是将基板140放置在桌面等制成面上进行填充的,散热模组122位于最上方,容纳空腔160内的液态金属150的液位从靠近基板140的位置逐渐上升到靠近散热模组122的位置。本申请实施例将电极130安装在散热模组122的内壁面上,可以使得液态金属150快填满时再与电极130接触而形成电流,从而再在表面形成氧化层,这样,既可以使得容纳空腔160内填满液态金属150,又可以减小液态金属150氧化层的厚度,对液态金属150的流动性和散热性影响较小。
图14是本申请实施例提供的电子元件散热结构100的再一例的剖面示意图。图15是本申请实施例提供的电子元件散热结构100的再一例的剖面示意图。可选地,如图14所示,电极130也可以设置在围挡121上。
在另一种实施方式中,如图15所示,电子元件散热结构100还可以包括散热模组122,散热罩120与散热模组122为分体结构,散热罩120的顶壁通过粘接、焊接、螺栓连接等方式与散热模组122的底壁紧密贴合固定,此时,电子元件110的热量经过液态金属150传导至散热罩120,散热罩120再将热量传导至散热模组122后,通过散热模组122将热量散发至环境中。
在一种实施方式中,如图4、图5所示,通孔122a可以包括两个,并且设于散热模组122上。
本实施方式中,两个通孔122a分别用于充注液态金属150和排出容纳空腔160内的气体。
参见上文所述,在填充液态金属150的过程中,容纳空腔160内的液态金属150的液位从靠近基板140的位置逐渐上升到靠近散热模组122的位置。本实施方式中,通孔122a设于散热模组122上,即通孔122a设于散热罩120的顶壁上,这样,如上述对方法实施例的描述,当通孔122a用于充注液态金属150时,可以使液态金属150从上向下流入容纳空腔160内,使液态金属150更容易填充进容纳空腔160内。当通孔122a用于排气时,由于通孔122a位于容纳空腔160的最顶端,使得容纳空腔160内的所有气体都能够从该通孔122a内排出,从而可以更顺利地将液态金属150充注入容纳空腔160内。
在一种实施方式中,如图11所示,多个电极130中可以包括至少一个点电极130和至少一个条状电极130。
具体的,多个电极130中可以包括一个点电极130和一个条状电极130,也可以包括一个点电极130和多个条状电极130,在通电时,每个条状电极130均与一个点电极130形成一对电极130,或者,包括多个点电极130和多个条状电极130,每相邻的点电极130和条状电极130在通电时形成一对电极130。
条状电极130的形状可以是直线形、弧形、波浪形等,但不限于此。
在通电过程中,可以将点电极130和条状电极130作为一对电极130,分别为阳极和阴极,具体的,可以是点电极130为阴极,条状电极130为阳极,也可以是点电 极130为阳极,条状电极130为阴极。这样,可以在点电极130与条形电极130之间形成发散式的电流,电流的覆盖范围较广,从而使得液态金属150的表面较大面积内可以很快地形成电流,该电流能够流向液态金属150表面的各个位置,使得液态金属150表面可以整体上均流经有电流,从而更容易快速地减小液态金属150表面的张力。
在另一种实施方式中,如图9所示,多个电极130可以通过阵列方式排布于散热模组122的内壁面上。
本实施方式中,电极130可以包括三个或者三个以上。多个电极130可以以直线阵列、圆形阵列、矩形阵列等形式排布于散热模组122的内壁面上。
例如,当多个电极130如图9所示呈矩形阵列分布时,可以各排电极130依次交错作为阳极、阴极。例如,第一排和第三排为阳极,第二排和第四排为阴极。也可以以其他方式进行通电,此处不做限定。
可选地,多个电极130可以均为点电极130,各个电极130以圆形阵列或者矩形阵列分布。
本实施方式中,可以根据散热模组122的内壁面形状确定各个电极130的阵列分布方式。例如,当散热模组122的内壁面为圆形时,各个电极130以圆形阵列分布,当散热模组122的内壁面为矩形时,各个电极130以矩形阵列分布。这样,可以使得在电极130通电时,液态金属150的整个表面更快速流经有电流,从而更容易快速地减小液态金属150表面的张力。
另外,多个阵列分布的电极130还可以增大散热模组122的表面积,增大了散热模组122与液态金属150的接触面积,能够增大与空气进行热交换的接触面积,从而提高了散热效率。
在又一种实施方式中,如图10所示,多个电极130均呈圆环状结构并且尺寸不同,多个圆环状结构依次嵌套。
本实施方式中,多个电极130的直径依次变大,从而实现依次嵌套。在通电过程中,每相邻两个电极130可以形成一对电极130。
本实施方式中,由于依次嵌套的各个圆环中,每相邻两个均可以通电后形成一对电极130,这样,由于圆环为封闭结构,使得液态金属150的表面可以更快速、均匀地形成电流,从而更容易快速地减小液态金属150表面的张力。
在一种实施方式中,电子元件110的侧壁与围挡121的内壁之间可以存在间隙,该间隙内填充有液态金属150,这样,可以使得电子元件110的侧面也可以更好地散热。该间隙范围可以0.5毫米~1.0毫米,例如,0.5毫米、0.8毫米、1毫米等,但不限于此。
在一种可能的设计中,所述基板140上设置有多个所述电子元件110,所述散热罩120包围在多个所述电子元件110的外部。单个散热罩120对应多个电子元件110,能够降低散热罩120的生产工序以及安装工序成本,进而降低了本申请中散热结构的制造成本。
如图13所示,在一种实施例中,散热模组122具有多个散热翅片123,散热翅片123的外表面上覆有金属涂层,该金属涂层为上述电极130。
本实施例中,散热模组122上的散热翅片123能够增大与空气进行热交换的接触 面积,从而提高了散热效率。
对于电子元件散热结构100实施例,由于在上述对制作方法的实施例中对部分散热结构已经进行了详细介绍,此处仅对制作方法实施例中未描述的特征进行介绍,相同内容不再赘述。
本申请实施例提供的电子元件散热结构100由于是采用上述制作方法制作出的,因此具有与上述制作方法制作出的电子元件散热结构100相同的有益效果,此处不再赘述。
本申请还提供了一种电子设备1000。图16是本申请实施例提供的电子设备1000的结构示意图。
如图16所示,该电子设备1000可以为台式电脑,台式电脑包括主机200与显示器300,主机200内设置有电子元件散热结构100。
此外,电子设备1000还可以为笔记本电脑、平板电脑、游戏主机、手机、电子手表、路由器、机顶盒、电视、调制解调器中的任意一种,但不限于此。
可选地,在本申请实施例提供的电子设备1000中,除了应用前述的电子元件散热结构100之外,还可对电子元件散热结构100在电子设备1000中的位置关系进行合理布局,以进一步提高电子设备1000的散热效果以及提高电子元件散热结构100的导热效率。具体布局设计如下:
一、对温度比较敏感的电子元件110最好安置在温度最低的区域,如电子设备1000的底部,避免将其安装在发热器件的正上方,多个器件最好是在水平面上交错布局;
二、散热结构的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置风扇等器件;
三、避免基板140上热点的集中,尽可能地将具有大功率的电子元件110均匀地分布在基板140上,保持基板140表面温度性能的均匀和一致;
四、将功耗最高和发热最大的电子元件110布置在电子设备1000中散热最佳位置附近,如接近风扇出风位置;
五、同一块基板140上的电子元件110应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的电子元件110,放在冷却气流的最上游,发热量大或耐热性好的器件(如大规模集成电路)放在冷却气流最下游;
六、在水平方向上,大功率电子元件110尽量靠近基板140边沿布置,以便缩短传热路径,在垂直方向上,大功率电子元件110尽量靠近基板140上方布置,以便减少这些器件工作时对其他器件温度的影响。
本申请实施例提供的电子设备1000由于包括了上述电子元件散热结构100,因此具有与上述电子元件散热结构100相同的有益效果,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种电子元件散热结构的制造方法,其特征在于,包括:
    将散热罩盖合于所述电子元件的外周并与安装所述电子元件的基板密封连接;所述散热罩具有通孔,所述散热罩的内壁上设有多个电极;
    通过所述通孔向所述基板与所述散热罩围成的容纳空腔内充注液态金属,直至填满整个所述容纳空腔,在此期间,所述电极通电,以使得电流流经所述液态金属以降低所述液态金属的表面张力;
    密封所述通孔。
  2. 根据权利要求1所述的制造方法,其特征在于,多个所述电极中任意一对相邻的两个电极之间的电势差为0.5伏~2伏。
  3. 根据权利要求1或2所述的制造方法,其特征在于,所述散热罩包括散热模组和围挡,所述电极设置于所述散热模组的内壁面上。
  4. 根据权利要求3所述的制造方法,其特征在于,所述通孔包括两个并且设于所述散热模组上。
  5. 根据权利要求3所述的制造方法,其特征在于,多个所述电极中包括至少一个点电极和至少一个条状电极。
  6. 根据权利要求3所述的制造方法,其特征在于,多个所述电极以阵列方式排布于所述散热模组的内壁面上。
  7. 根据权利要求3所述的制造方法,其特征在于,多个所述电极均呈圆环状结构并且尺寸不同,多个所述圆环状结构依次嵌套。
  8. 根据权利要求1至7任一项所述的制造方法,其特征在于,所述密封所述通孔,包括:
    使用导热材料封闭所述通孔。
  9. 一种电子元件散热结构,其特征在于,包括:
    基板,设置有电子元件;
    散热罩,与所述基板密封连接,并盖合于所述电子元件的外周,所述散热罩与所述基板形成容纳所述电子元件的容纳空腔,所述散热罩的内壁上设有多个电极,所述散热罩上具有被密封的通孔;
    液态金属,填满于所述容纳空腔内。
  10. 根据权利要求9所述的散热结构,其特征在于,所述散热罩包括散热模组和围挡,所述电极设置于所述散热模组的内壁面上。
  11. 根据权利要求10所述的散热结构,其特征在于,所述通孔包括两个并且设于所述散热模组上。
  12. 根据权利要求10所述的散热结构,其特征在于,多个所述电极中包括至少一个点电极和至少一个条状电极。
  13. 根据权利要求10所述的散热结构,其特征在于,多个所述电极以阵列方式排布于所述散热模组的内壁面上。
  14. 根据权利要求10所述的散热结构,其特征在于,多个所述电极均呈圆环状结构并且尺寸不同,多个所述圆环状结构依次嵌套。
  15. 根据权利要求9至14任一项所述的散热结构,其特征在于,所述密封所述通孔的材料为导热材料。
  16. 一种电子设备,其特征在于,包括如权利要求9-15中任一项所述的散热结构。
PCT/CN2022/115553 2021-10-26 2022-08-29 电子元件散热结构的制造方法、散热结构及电子设备 WO2023071493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22862373.2A EP4195897A4 (en) 2021-10-26 2022-08-29 MANUFACTURING METHOD FOR HEAT DISSIPATION STRUCTURE OF ELECTRONIC ELEMENT, HEAT DISSIPATION STRUCTURE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111249062.2 2021-10-26
CN202111249062.2A CN116033701A (zh) 2021-10-26 2021-10-26 电子元件散热结构的制造方法、散热结构及电子设备

Publications (1)

Publication Number Publication Date
WO2023071493A1 true WO2023071493A1 (zh) 2023-05-04

Family

ID=86069582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115553 WO2023071493A1 (zh) 2021-10-26 2022-08-29 电子元件散热结构的制造方法、散热结构及电子设备

Country Status (3)

Country Link
EP (1) EP4195897A4 (zh)
CN (1) CN116033701A (zh)
WO (1) WO2023071493A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457598A (zh) * 2023-12-22 2024-01-26 荣耀终端有限公司 电子元件散热封装结构、制造工艺及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260919A1 (en) * 2005-05-17 2006-11-23 Marco Aimi Methods and apparatus for filling a microswitch with liquid metal
CN1971776A (zh) * 2005-11-21 2007-05-30 安捷伦科技有限公司 使用液态金属mems技术的平面电感
CN107205330A (zh) * 2016-11-28 2017-09-26 东莞市明骏智能科技有限公司 一种电子元器件
CN107687992A (zh) * 2017-08-03 2018-02-13 清华大学 一种无外场情况下液态金属表面张力的调控系统及方法
CN211297488U (zh) * 2019-12-25 2020-08-18 厦门市匠研新材料技术有限公司 一种电子元件的散热结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094227B (zh) * 2011-10-28 2016-06-01 中国科学院理化技术研究所 一种三维芯片及其组合结构和制造方法
CN110034702A (zh) * 2019-05-23 2019-07-19 宁波大学 一种基于电激励的精确可控液态金属心跳系统
CN110234214B (zh) * 2019-06-12 2020-06-30 哈尔滨工业大学 一种电驱动液态金属散热组件
CN110926245A (zh) * 2019-12-06 2020-03-27 南方科技大学 一种液态金属换热装置
CN113453467B (zh) * 2021-06-25 2022-10-18 Oppo广东移动通信有限公司 壳体及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260919A1 (en) * 2005-05-17 2006-11-23 Marco Aimi Methods and apparatus for filling a microswitch with liquid metal
CN1971776A (zh) * 2005-11-21 2007-05-30 安捷伦科技有限公司 使用液态金属mems技术的平面电感
CN107205330A (zh) * 2016-11-28 2017-09-26 东莞市明骏智能科技有限公司 一种电子元器件
CN107687992A (zh) * 2017-08-03 2018-02-13 清华大学 一种无外场情况下液态金属表面张力的调控系统及方法
CN211297488U (zh) * 2019-12-25 2020-08-18 厦门市匠研新材料技术有限公司 一种电子元件的散热结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195897A4

Also Published As

Publication number Publication date
CN116033701A (zh) 2023-04-28
EP4195897A1 (en) 2023-06-14
EP4195897A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN106663661B (zh) 具有高效率散热路径的堆叠式半导体裸片组合件及相关联系统
TWI588915B (zh) 製造具有高效率散熱路徑之堆疊式半導體晶粒總成之方法
JP6233377B2 (ja) 電子機器の製造方法
US10163754B2 (en) Lid design for heat dissipation enhancement of die package
US10297523B2 (en) Power module and method for manufacturing the same
WO2021238450A1 (zh) 柔性显示装置
TWI548056B (zh) 具有高效率散熱路徑之堆疊式半導體晶粒總成及相關系統
US7675163B2 (en) Carbon nanotubes for active direct and indirect cooling of electronics device
WO2018045933A1 (zh) 散热器、散热装置、散热系统及通信设备
CN102290381A (zh) 散热增益型电子封装体
US11832419B2 (en) Full package vapor chamber with IHS
WO2023071493A1 (zh) 电子元件散热结构的制造方法、散热结构及电子设备
WO2023071487A1 (zh) 电子元件散热结构的制造方法、散热结构及电子设备
KR20160113301A (ko) 전자 디바이스용 다층 열 방산 장치
TWI470749B (zh) 導熱絕緣複合膜層及晶片堆疊結構
CN103871982A (zh) 芯片散热系统
WO2012132210A1 (ja) 素子搭載用基板、電池および電池モジュール
JP2012109451A (ja) 半導体装置
CN102881667A (zh) 半导体封装构造
TW200416376A (en) Semiconductor integrated circuit device and semiconductor integrated circuit chip thereof
US9502740B2 (en) Thermal management in electronic apparatus with phase-change material and silicon heat sink
WO2019141161A1 (zh) 一种晶圆封装器件
CN115003101B (zh) 电子元件散热结构的制造方法、散热结构及电子设备
WO2023071485A1 (zh) 一种导热垫、散热模组及电子设备
CN112366188B (zh) 一种具有散热齿片的半导体器件封装结构及封装方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18044422

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022862373

Country of ref document: EP

Effective date: 20230309

NENP Non-entry into the national phase

Ref country code: DE