WO2023071350A1 - 废旧钠离子电池综合回收方法 - Google Patents

废旧钠离子电池综合回收方法 Download PDF

Info

Publication number
WO2023071350A1
WO2023071350A1 PCT/CN2022/109227 CN2022109227W WO2023071350A1 WO 2023071350 A1 WO2023071350 A1 WO 2023071350A1 CN 2022109227 W CN2022109227 W CN 2022109227W WO 2023071350 A1 WO2023071350 A1 WO 2023071350A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion batteries
solid
nickel
sodium
filtrate
Prior art date
Application number
PCT/CN2022/109227
Other languages
English (en)
French (fr)
Inventor
余海军
张学梅
谢英豪
李爱霞
钟应声
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023071350A1 publication Critical patent/WO2023071350A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery recycling, and in particular relates to a comprehensive recycling method for waste sodium ion batteries.
  • Waste sodium-ion batteries contain a large amount of valuable substances, such as sodium, manganese, nickel, cobalt, etc., which have serious impacts on the environment if not properly disposed of. Batteries become an important research aspect in the field of resource recycling.
  • the direct regeneration method includes hydrothermal regeneration and solid phase regeneration, both of which have strict requirements on the purity of waste positive and negative electrode materials, which limits its application in the treatment of waste batteries containing a large amount of impurities.
  • Various target metals are sorted and recovered, so waste batteries containing multiple elements such as waste lithium-ion batteries (LIBs) and waste sodium-ion batteries cannot be processed in depth, further limiting their application in the recycling of mainstream secondary batteries.
  • LIBs waste lithium-ion batteries
  • waste sodium-ion batteries cannot be processed in depth, further limiting their application in the recycling of mainstream secondary batteries.
  • the hydrometallurgical process has been widely used because of its mild reaction conditions, convenient operation and high recovery rate.
  • reducing agents such as hydrogen peroxide, starch, and glucose are generally added to the wet leaching system.
  • the addition of reducing agents can effectively increase the reaction temperature and leaching efficiency, the acid leaching The system will inevitably be affected, and it is easy to cause secondary pollution, such as the production of toxic gas and acid gas (Cl 2 , SO 2 , NO x ) and organic waste water, thus posing a threat to the environment.
  • carbonaceous materials such as carbon-based negative electrode materials, conductive agents, binders, separators
  • carbonaceous materials can convert waste battery positive electrode materials into metal elements or metal oxides, and a considerable part of carbonaceous materials will inevitably remain.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes an efficient and environmentally friendly comprehensive recovery method for waste sodium-ion batteries.
  • Ammonia leaching with battery black powder and preleaching agent will precipitate Mn and Al in the reaction system, while Na, Ni and Co still exist in the leaching solution, which can reduce the difficulty of separation and recovery of valuable metal compounds in the leaching solution, and greatly reduce the cost.
  • the chelating agent and nickel are used to form a chelate, so that nickel and cobalt coexist as different substances in the solution, thereby achieving efficient separation of nickel and cobalt.
  • S2 Mix and grind the battery black powder and preleaching agent, then add reducing agent and ammonia solution for leaching, solid-liquid separation to obtain leachate and solid, add acid to dissolve the solid, solid-liquid separation to obtain carbon residue and filtrate, and send to Add alkali to the filtrate to adjust the pH, separate to obtain aluminum hydroxide, continue to add alkali to the filtrate to adjust the pH, and separate to obtain manganese hydroxide;
  • the preleaching agent is sodium carbonate, ammonium sulfate, sodium bicarbonate or bicarbonate One or more of ammonium;
  • step S1 the pretreatment process is as follows: the spent sodium ion battery is disassembled, discharged, evaporated to dry electrolyte, crushed, sorted out the battery case, current collector and all The battery black powder.
  • step S1 the process of the discharge treatment is as follows: soak the waste sodium ion battery in a saline solution for chemical discharge, and the saline solution is sodium chloride, sodium sulfate, nitric acid One or more of sodium or sodium phosphate, the concentration of the salt solution is 0-10wt%.
  • step S1 the specific process of evaporating the electrolyte is: sending the waste sodium-ion battery to a heating device for heat treatment, and evaporating the electrolyte inside the battery.
  • the heating device is selected from One of sintering furnace, kiln, converter, muffle furnace, electric furnace or oven, the heating temperature is 100-300°C, and the heating time is 0.5-40h.
  • step S1 the sorting uses a multi-stage vibrating sieve to sieve out battery cases and aluminum foil current collectors, and the under-sieve is the battery black powder.
  • step S2 adding alkali to the filtrate to adjust the pH to 3.0-5.0, separating the aluminum hydroxide, adding alkali to the filtrate to adjust the pH to 8.0-12.0, separating The manganese hydroxide is obtained.
  • step S2 the grinding time is 1-12h.
  • the leaching temperature is 30-80°C.
  • the reducing agent is one or more of sodium sulfite, sulfurous acid or manganese sulfite; preferably, the concentration of the reducing agent is 0.1-3mol/L.
  • the acid is one or more of sulfuric acid, hydrochloric acid, phosphoric acid or nitric acid.
  • step S2 after the manganese hydroxide is separated from the filtrate, the remaining filtrate is evaporated to recover ammonia and sodium salt.
  • the evaporation temperature is 60-120°C, further, the evaporation time is 0.5-12h.
  • the added amount of the preleaching agent is 0.01-8% of the mass of the battery black powder.
  • step S2 the solid-to-liquid ratio of the black battery powder to the ammonia liquid is 1-300 g/L, and the concentration of the ammonia liquid is 0.01-8 mol/L.
  • step S2 the pH in the leached system is >11.
  • the chelating agent is ethylenediaminetetraacetic acid, diammonium edetate, disodium edetate, tetrasodium edetate or ethylenediaminetetraacetic acid
  • tetraammonium amine tetraacetates One or more of tetraammonium amine tetraacetates; preferably, the molar ratio of nickel in the leachate to the chelating agent is 100:(90-150).
  • the first oxidizing agent is one or more of hydrogen peroxide, sodium hypochlorite or Cl2 ; preferably, the addition amount of the first oxidizing agent is oxidizing the 2-20 times the theoretical amount required for divalent cobalt in the leaching solution.
  • step S3 also include: adding ferrous salt and the second oxidizing agent to described nickel-containing chelate solution, solid-liquid separation obtains nickel salt precipitation; Its principle is that oxidizing agent and ferrous The reaction generates hydroxyl radicals, hydroxide radicals, and ferric iron. The hydroxyl radicals are to oxidize the chelate complex, and the hydroxide radicals, ferric iron and the divalent nickel after the complex oxidation generate nickel ferrite precipitation (Ni 2+ +Fe 3+ +OH - ⁇ NiFe 2 O 4 ), separate and recover nickel salt.
  • the second oxidizing agent is hydrogen peroxide;
  • the molar weight of the nickel-containing chelate, ferrous salt and the second oxidizing agent in the described nickel-containing chelate solution is 10:(10-30 ): (60-150).
  • step S3 the alkali is added to adjust the pH of the leaching solution to 8.0-14.0.
  • step S3 the temperature of the ammonia distillation is 70-105°C, further, the time is 0.5-12h.
  • the oxides such as sodium, nickel, cobalt and manganese in the battery black powder can be activated, and the subsequent leaching process can promote the rapid reaction between the battery black powder and ammonia and improve the leaching s efficiency.
  • step S3 The purpose of adding oxidizing agent and chelating agent to the leaching solution (nickel-cobalt complex solution) in step S3 is: under solution pH>10, cobalt is oxidized to a trivalent state, controls the amount of adding chelating agent, and nickel and chelating agent generate A more stable chelate, and the trivalent cobalt complex does not chelate with the chelating agent, so nickel and cobalt will coexist as different substances in the solution. Subsequent ammonia distillation, ammonia is separated, cobalt in the solution will become hydroxide precipitates, and nickel chelates will be separated, thereby achieving efficient separation of nickel and cobalt.
  • a comprehensive recovery method for waste sodium ion batteries, the specific process is:
  • waste sodium-ion batteries Disassemble the shell of waste sodium-ion batteries, soak and discharge waste sodium-ion batteries in 0.13wt% sodium chloride, place them in a sintering furnace (temperature 155°C, time 3h36min) and evaporate to dryness for battery internal electrolysis liquid, crushing, using a multi-stage vibrating sieve to sieve out the battery case and aluminum foil current collector, and the under-sieve is battery black powder;
  • a comprehensive recovery method for waste sodium ion batteries, the specific process is:
  • waste sodium-ion batteries Disassemble the shell of waste sodium-ion batteries, soak and discharge waste sodium-ion batteries in 0.13wt% sodium chloride, place them in a sintering furnace (temperature 155°C, time 3h36min) and evaporate to dryness for battery internal electrolysis liquid, crushing, using a multi-stage vibrating sieve to sieve out the battery case and aluminum foil current collector, and the under-sieve is battery black powder;
  • a comprehensive recovery method for waste sodium ion batteries, the specific process is:
  • waste sodium-ion batteries Disassemble the casing of waste sodium-ion batteries, soak and discharge waste sodium-ion batteries in 0.04wt% sodium sulfate, and place them in a sintering furnace (temperature 185°C, time 3h23min) to dry up the electrolyte inside the battery , crushing, use a multi-stage vibrating sieve to sieve out the battery case and aluminum foil current collector, and the under-sieve is battery black powder;
  • a comprehensive recovery method for waste sodium ion batteries, the specific process is:
  • waste sodium-ion batteries Disassemble the casing of waste sodium-ion batteries, soak and discharge waste sodium-ion batteries in 0.04wt% sodium sulfate, and place them in a sintering furnace (temperature 185°C, time 3h23min) to dry up the electrolyte inside the battery , crushing, use a multi-stage vibrating sieve to sieve out the battery case and aluminum foil current collector, and the under-sieve is battery black powder;
  • Example 1 23.75 18.83 42.43
  • Example 2 23.83 18.92 42.73
  • Example 3 23.86 18.80 42.32
  • Example 4 23.78 18.84 42.36 Recovery rate manganese(%) cobalt(%) nickel(%)
  • Example 1 93.93 93.78 95.752
  • Example 2 93.70 94.18 96.39
  • Example 3 96.79 94.57 95.18
  • Example 4 95.30 95.71 96.84

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种废旧钠离子电池综合回收方法,包括将电池黑粉与预浸出剂混合研磨,再加入还原剂和氨液进行浸出,固液分离得到浸出液和固体,固体加酸溶解,固液分离得到碳渣和滤液,向滤液中加碱调节pH,分离得到氢氧化铝,继续向滤液中加碱调节pH,分离得到氢氧化锰,向浸出液中加入第一氧化剂、螯合剂和碱,进行蒸氨,固液分离得到含钴不溶物和含镍螯合物溶液。本发明通过电池黑粉与预浸出剂进行氨浸,将反应体系中Mn、Al沉淀,而Na、Ni、Co仍然存于浸出液中,能降低浸出液中有价金属化合物的分离和回收难度,大大缩减了后续沉淀分离的工序,再利用螯合剂与镍生成螯合物,使溶液中镍钴以不同物质共存,由此实现镍钴的高效分离。

Description

废旧钠离子电池综合回收方法 技术领域
本发明属于电池回收技术领域,具体涉及一种废旧钠离子电池综合回收方法。
背景技术
废旧钠离子电池(NIBs)含有大量有价值的物质,例如钠,锰,镍,钴等,如果处理不当对环境具有严重影响,因此,无论是从经济角度还是从环境角度来看,废钠离子电池成为资源回收利用领域的一个重要研究方面。
目前,从废弃电池中回收有价金属的方法可以大致分为直接再生法、湿法冶金法和火法冶金法。直接再生法包括水热再生和固相再生,两者对于废弃正负极材料的纯度都有严格的要求,这限制了其在处理含有大量杂质的废电池的应用,火法冶金法由于不能彻底分类回收各种目标金属,因此像废弃锂离子电池(LIBs)、废弃钠离子电池之类含多种元素的废弃电池将无法进行深度处理,进一步限制了其在主流二次电池的回收应用。对于上述两类回收,湿法冶金工艺因其反应条件温和、操作方便、回收率高,已得到广泛应用。湿法冶金工艺中,一方面,基于热力学原理,一般向湿法浸出体系中加入过氧化氢、淀粉、葡萄糖等还原剂,虽然还原剂的加入可以有效地提高反应温度、浸出效率,但酸浸体系必然受到影响,容易造成二次污染,如生产有毒气酸性气体(Cl 2、SO 2、NO x)、有机废水,因此对环境构成威胁。另一方面,含碳材料(如碳基负极材料、导电剂、粘结剂、隔膜)能将废电池正极材料转化为金属元素或金属氧化物,相当一部分碳质材料不可避免地会残留下来,在焙烧中还原焙烧废金属,这将导致后续分离的复杂性和浸出的化学试剂的过度使用,降低回收率以及获得的有价金属的效率和纯度,也将进一步提高电池的回收成本,降低目标产品的质量。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高效、环保的废旧钠离子电池综合回收方法。通过电池黑粉与预浸出剂进行氨浸,将反应体系中Mn、Al沉淀,而Na、Ni、Co仍然存于浸出液中,能降低浸出液中有价金属化合物 的分离和回收难度,大大缩减了后续沉淀分离的工序,再利用螯合剂与镍生成螯合物,使溶液中镍钴以不同物质共存,由此实现镍钴的高效分离。
根据本发明的一个方面,提出了一种废旧钠离子电池综合回收方法,包括以下步骤:
S1:将废旧钠离子电池进行前处理,得到电池黑粉;
S2:将所述电池黑粉与预浸出剂混合研磨,再加入还原剂和氨液进行浸出,固液分离得到浸出液和固体,所述固体加酸溶解,固液分离得到碳渣和滤液,向所述滤液中加碱调节pH,分离得到氢氧化铝,继续向所述滤液中加碱调节pH,分离得到氢氧化锰;所述预浸出剂为碳酸钠、硫酸铵、碳酸氢钠或碳酸氢铵中的一种或几种;
S3:向所述浸出液中加入第一氧化剂、螯合剂和碱,进行蒸氨,固液分离得到含钴不溶物和含镍螯合物溶液。
在本发明的一些实施方式中,步骤S1中,所述前处理的过程为:废旧钠离子电池经拆解外壳、放电处理、蒸干电解液、破碎、分选出电池壳、集流体和所述电池黑粉。
在本发明的一些实施方式中,步骤S1中,所述放电处理的过程如下:将废旧钠离子电池置于盐溶液中浸泡,进行化学放电,所述盐溶液为氯化钠、硫酸钠、硝酸钠或磷酸钠中的一种或几种,所述盐溶液的浓度为0-10wt%。
在本发明的一些实施方式中,步骤S1中,所述蒸干电解液的具体过程为:将废旧钠离子电池送至加热设备进行热处理,至电池内部电解液蒸干,所述加热设备选自烧结炉、锟道窑炉、转炉、马弗炉、电炉或烘箱中的一种,加热的温度为100-300℃,加热的时间为0.5-40h。
在本发明的一些实施方式中,步骤S1中,所述分选采用多级振动筛筛分出电池壳、铝箔集流体,筛下物即为所述电池黑粉。
在本发明的一些实施方式中,步骤S2中,向所述滤液中加碱调节pH至3.0-5.0,分离得到所述氢氧化铝,向所述滤液中加碱调节pH至8.0-12.0,分离得到所述氢氧化锰。
在本发明的一些实施方式中,步骤S2中,所述研磨的时间为1-12h。
在本发明的一些实施方式中,步骤S2中,所述浸出的温度为30-80℃。
在本发明的一些实施方式中,步骤S2中,所述还原剂为亚硫酸钠、亚硫酸或亚硫酸 锰中的一种或几种;优选的,所述还原剂的浓度为0.1-3mol/L。
在本发明的一些实施方式中,步骤S2中,所述酸为硫酸、盐酸、磷酸或硝酸中的一种或几种。
在本发明的一些实施方式中,步骤S2中,所述滤液分离出所述氢氧化锰后,剩余滤液进行蒸发回收氨和钠盐。优选的,所述蒸发的温度为60-120℃,进一步地,时间为0.5-12h。
在本发明的一些实施方式中,步骤S2中,所述预浸出剂的加入量为所述电池黑粉质量的0.01-8%。
在本发明的一些实施方式中,步骤S2中,所述电池黑粉与氨液的固液比1-300g/L,所述氨液的浓度为0.01-8mol/L。
在本发明的一些实施方式中,步骤S2中,所述浸出的体系中pH>11。
在本发明的一些实施方式中,步骤S3中,所述螯合剂为乙二胺四乙酸、乙二胺四乙酸二铵、乙二胺四乙酸二钠、乙二胺四乙酸四钠或乙二胺四乙酸四铵中的一种或几种;优选的,所述浸出液中的镍与所述螯合剂的摩尔比为100:(90-150)。
在本发明的一些实施方式中,步骤S3中,所述第一氧化剂为过氧化氢、次氯酸钠或Cl 2中的一种或几种;优选的,所述第一氧化剂的加入量为氧化所述浸出液中二价钴所需理论量的2-20倍。
在本发明的一些实施方式中,步骤S3中,还包括:向所述含镍螯合物溶液中加入亚铁盐和第二氧化剂,固液分离得到镍盐沉淀;其原理为氧化剂与亚铁反应生成羟基自由基和氢氧根、三价铁,羟基自由基是对螯合物进行破络氧化,氢氧根、三价铁与破络氧化后的二价镍生成铁酸镍沉淀(Ni 2++Fe 3++OH -→NiFe 2O 4),进行分离回收镍盐。优选的,所述第二氧化剂为过氧化氢;进一步优选的,所述含镍螯合物溶液中的含镍螯合物、亚铁盐和第二氧化剂的摩尔量为10:(10-30):(60-150)。
在本发明的一些实施方式中,步骤S3中,加入所述碱调节所述浸出液的pH为8.0-14.0。
在本发明的一些实施方式中,步骤S3中,所述蒸氨的温度为70-105℃,进一步地,时间为0.5-12h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、通过浸出前电池黑粉与预浸出剂混合、研磨,可以活化电池黑粉中钠、镍、钴、锰等氧化物,后续浸出过程中,能促进电池黑粉与氨快速反应,提高浸出的效率。此外,电池黑粉中的钠、锰、镍、钴可溶于浸出反应体系中,体系中生成Ni(NH 3) x 2+、Co(NH 3) x 2+、Mn(NH 3) x 2+等络合物(x=3、4、5、6),其中Ni(NH 3) x 2+、Co(NH 3) x 2+比较稳定,而Mn(NH 3) x 2+将与(NH 4) 2T、H 2O反应(T=CO 3 2-或SO 4 2-),逐渐生成Mn(NH 4) 2T 2沉淀,反应原理如下:
Figure PCTCN2022109227-appb-000001
M+xNH 3→M(NH 3) x 2+(M=Ni、Co、Mn,x=3、4、5、6)
Figure PCTCN2022109227-appb-000002
不同的是,浸出体系中,铝与过量氨水反应,生成的Al(OH) 3进一步与OH -得到AlO 2-,而AlO 2-水解得到Al 2O 3·H 2O沉淀。综上,步骤(2)中反应体系中Mn、Al将沉淀,而Na、Ni、Co仍然存于浸出液中,因此能降低浸出液中有价金属化合物的分离和回收难度,大大缩减了后续沉淀分离的工序。
2、向步骤S3中的浸出液(镍钴络合溶液)中加氧化剂、螯合剂目的是:溶液pH>10下,钴被氧化为三价态,控制加入螯合剂的量,镍与螯合剂生成更稳定的螯合物,而三价钴络合物不与螯合剂螯合,因此溶液中镍钴将以不同物质共存。后续蒸氨,分离出氨,溶液中钴将变为氢氧化物沉淀存在,分离得到镍的螯合物,由此实现镍钴的高效分离。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种废旧钠离子电池综合回收方法,具体过程为:
(1)废弃钠离子电池预处理:废弃钠离子电池拆解外壳、废弃钠离子电池置于0.13wt%氯化钠浸泡放电处理、置于烧结炉(温度155℃,时间3h36min)蒸干电池内部电解液、破碎,利用多级振动筛筛分出电池壳、铝箔集流体,筛下物为电池黑粉;
(2)电池黑粉浸出处理:150g黑粉与12g碳酸钠混合研磨54min,加80mL 0.54mol/L的亚硫酸钠和1.5L 3.27mol/L的氨液,在53℃下进行浸出,固液分离得到浸出液和固体,固体加浓度为0.21mol/L的稀硫酸溶解,分离出碳渣,剩余溶液搅拌、滴加浓度为1.5mol/L的氢氧化钠调节pH在3.8,压滤分离得到氢氧化铝,继续加氢氧化钠调节pH在8.7,压滤分离得到氢氧化锰,溶液在90℃下蒸发2h36min,回收氨、钠盐;
(3)镍钴回收:基于步骤(2)固液分离得到的浸出液,测定浸出液中含有1.09mol镍、0.48mol钴,搅拌、加入1.3L24.7%的过氧化氢、1L1.14mol/L乙二胺四乙二钠,加浓度为2.0mol/L的氢氧化钠调节pH=12.7,搅拌,在95℃下进行蒸氨3h,固液分离得到含钴不溶物和含镍螯合物溶液,向含镍螯合物溶液中加入243g硫酸亚铁和1.7L 24.7%的过氧化氢,固液分离得到镍盐沉淀。
实施例2
一种废旧钠离子电池综合回收方法,具体过程为:
(1)废弃钠离子电池预处理:废弃钠离子电池拆解外壳、废弃钠离子电池置于0.13wt%氯化钠浸泡放电处理、置于烧结炉(温度155℃,时间3h36min)蒸干电池内部电解液、破碎,利用多级振动筛筛分出电池壳、铝箔集流体,筛下物为电池黑粉;
(2)电池黑粉浸出处理:150g黑粉与7.5g碳酸钠混合研磨69min,加60mL 0.54mol/L的亚硫酸钠和1.2L 3.27mol/L的氨液,在53℃下进行浸出,固液分离得到浸出液和固体,固体加浓度为0.21mol/L的稀硫酸溶解,分离出碳渣,剩余溶液搅拌、滴加浓度为1.5mol/L的氢氧化钠调节pH在3.8,压滤分离得到氢氧化铝,继续加氢氧化钠调节pH在8.6,压滤分离得到氢氧化锰,溶液在90℃下蒸发2h55min,回收氨、钠盐;
(3)镍钴回收:基于步骤(2)固液分离得到的浸出液,测定浸出液中含有1.10mol镍、0.48mol钴,搅拌、加入1.4L 24.7%的过氧化氢、1.2L 1.14mol/L乙二胺四乙二钠,加浓度为2.0mol/L的氢氧化钠调节pH=12.9,搅拌,在95℃下进行蒸氨3h,固液分离得到含钴不溶物和含镍螯合物溶液,向含镍螯合物溶液中加入221g硫酸亚铁和1.65L 24.7%的过氧化氢,固液分离得到镍盐沉淀。
实施例3
一种废旧钠离子电池综合回收方法,具体过程为:
(1)废弃钠离子电池预处理:废弃钠离子电池拆解外壳、废弃钠离子电池置于0.04wt%硫酸钠浸泡放电处理、置于烧结炉(温度185℃,时间3h23min)蒸干电池内部电解液、破碎,利用多级振动筛筛分出电池壳、铝箔集流体,筛下物为电池黑粉;
(2)电池黑粉浸出处理:120g黑粉与10g硫酸铵混合研磨87min,加75mL 0.54mol/L的亚硫酸钠和1.0L 3.35mol/L的氨液,在64℃下进行浸出,固液分离得到浸出液和固体,固体加浓度为0.46mol/L的稀盐酸溶解,分离出碳渣,剩余溶液搅拌、滴加浓度为1.5mol/L的氢氧化钠调节pH在3.4,压滤分离得到氢氧化铝,继续加氢氧化钠调节pH在8.4,压滤分离得到氢氧化锰,溶液在90℃下蒸发2h27min,回收氨、钠盐;
(3)镍钴回收:基于步骤(2)固液分离得到的浸出液,测定浸出液中含有0.87mol镍、0.39mol钴,搅拌、加入0.9L 29.6%的过氧化氢、1.8L 1.14mol/L乙二胺四乙二钠,加浓度为2.0mol/L的氢氧化钠调节pH=12.9,搅拌,在95℃下进行蒸氨2h55min,固液分离得到含钴不溶物和含镍螯合物溶液,向含镍螯合物溶液中加入213g硫酸亚铁和1.3L 29.6%的过氧化氢,固液分离得到镍盐沉淀。
实施例4
一种废旧钠离子电池综合回收方法,具体过程为:
(1)废弃钠离子电池预处理:废弃钠离子电池拆解外壳、废弃钠离子电池置于0.04wt%硫酸钠浸泡放电处理、置于烧结炉(温度185℃,时间3h23min)蒸干电池内部电解液、破碎,利用多级振动筛筛分出电池壳、铝箔集流体,筛下物为电池黑粉;
(2)电池黑粉浸出处理:120g黑粉与13g硫酸铵混合研磨84min,加75mL0.54mol/L的亚硫酸钠和1.0L 3.35mol/L的氨液,在64℃下进行浸出,固液分离得到浸出液和固体,固体加浓度为0.46mol/L的稀盐酸溶解,分离出碳渣,剩余溶液搅拌、滴加浓度为1.5mol/L的氢氧化钠调节pH在3.5,压滤分离得到氢氧化铝,继续加氢氧化钠调节pH在8.8,压滤分离得到氢氧化锰,溶液在90℃下蒸发2h27min,回收氨、钠盐;
(3)镍钴回收:基于步骤(2)固液分离得到的浸出液,测定浸出液中含有0.86mol镍、0.39mol钴,搅拌、加入1.0L 29.6%的过氧化氢、1.6L 1.14mol/L乙二胺四乙二钠,加 浓度为2.0mol/L的氢氧化钠调节pH=12.8,搅拌,在95℃下进行蒸氨2h55min,固液分离得到含钴不溶物和含镍螯合物溶液,向含镍螯合物溶液中加入187g硫酸亚铁和1.4L 29.6%的过氧化氢,固液分离得到镍盐沉淀。
表1实施例1-4电池黑粉中锰钴镍的含量、回收率
含量 锰(%) 钴(%) 镍(%)
实施例1 23.75 18.83 42.43
实施例2 23.83 18.92 42.73
实施例3 23.86 18.80 42.32
实施例4 23.78 18.84 42.36
回收率 锰(%) 钴(%) 镍(%)
实施例1 93.93 93.78 95.752
实施例2 93.70 94.18 96.39
实施例3 96.79 94.57 95.18
实施例4 95.30 95.71 96.84
表2实施例1-4锰钴镍产物的含量
Figure PCTCN2022109227-appb-000003
由表1和表2可见,采用本发明的回收方法,电池黑粉中锰、钴、镍的回收率都比较高,且分离效果好,产物杂质含量低。
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废旧钠离子电池综合回收方法,其特征在于,包括以下步骤:
    S1:将废旧钠离子电池进行前处理,得到电池黑粉;
    S2:将所述电池黑粉与预浸出剂混合研磨,再加入还原剂和氨液进行浸出,固液分离得到浸出液和固体,所述固体加酸溶解,固液分离得到碳渣和滤液,向所述滤液中加碱调节pH,分离得到氢氧化铝,继续向所述滤液中加碱调节pH,分离得到氢氧化锰;所述预浸出剂为碳酸钠、硫酸铵、碳酸氢钠或碳酸氢铵中的一种或几种;
    S3:向所述浸出液中加入第一氧化剂、螯合剂和碱,进行蒸氨,固液分离得到含钴不溶物和含镍螯合物溶液。
  2. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S1中,所述前处理的过程为:废旧钠离子电池经拆解外壳、放电处理、蒸干电解液、破碎、分选出电池壳、集流体和所述电池黑粉。
  3. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S2中,向所述滤液中加碱调节pH至3.0-5.0,分离得到所述氢氧化铝,向所述滤液中加碱调节pH至8.0-12.0,分离得到所述氢氧化锰。
  4. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S2中,所述滤液分离出所述氢氧化锰后,剩余滤液进行蒸发回收氨和钠盐。
  5. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S2中,所述预浸出剂的加入量为所述电池黑粉质量的0.01-20%。
  6. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S2中,所述电池黑粉与氨液的固液比为1-300g/L,所述氨液的浓度为0.01-8mol/L。
  7. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S3中,所述螯合剂为乙二胺四乙酸、乙二胺四乙酸二铵、乙二胺四乙酸二钠、乙二胺四乙酸四钠或乙二胺四乙酸四铵中的一种或几种;优选的,所述浸出液中的镍与所述螯合剂的摩尔比为100:(90-150)。
  8. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S3中, 所述第一氧化剂为过氧化氢、次氯酸钠或Cl 2中的一种或几种;优选的,所述第一氧化剂的加入量为氧化所述浸出液中二价钴所需理论量的2-20倍。
  9. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S3中,还包括:向所述含镍螯合物溶液中加入亚铁盐和第二氧化剂,固液分离得到镍盐沉淀。
  10. 根据权利要求1所述的废旧钠离子电池综合回收方法,其特征在于,步骤S3中,加入所述碱调节所述浸出液的pH为8.0-14.0。
PCT/CN2022/109227 2021-10-26 2022-07-29 废旧钠离子电池综合回收方法 WO2023071350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111247002.7A CN114229875A (zh) 2021-10-26 2021-10-26 废旧钠离子电池综合回收方法
CN202111247002.7 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071350A1 true WO2023071350A1 (zh) 2023-05-04

Family

ID=80743260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109227 WO2023071350A1 (zh) 2021-10-26 2022-07-29 废旧钠离子电池综合回收方法

Country Status (2)

Country Link
CN (1) CN114229875A (zh)
WO (1) WO2023071350A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229875A (zh) * 2021-10-26 2022-03-25 广东邦普循环科技有限公司 废旧钠离子电池综合回收方法
CN115472943B (zh) * 2022-09-05 2023-12-12 广东邦普循环科技有限公司 一种废旧普鲁士类钠电池正极材料的回收方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316643A (zh) * 2014-10-10 2015-01-28 荆门市格林美新材料有限公司 镍钴锰三元材料的三元素测定方法
CN104831065A (zh) * 2015-04-09 2015-08-12 长沙矿冶研究院有限责任公司 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN105591171A (zh) * 2015-12-18 2016-05-18 浙江天能能源科技有限公司 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
CN107230811A (zh) * 2016-03-25 2017-10-03 中国科学院过程工程研究所 一种正极材料中金属组分的选择性浸出剂及回收方法
CN109136571A (zh) * 2018-09-28 2019-01-04 中南大学 一种从锂离子电池混合富锰废料浸出液中提取有价金属的方法
CN110028111A (zh) * 2019-03-25 2019-07-19 中南大学 三元正极材料前驱体及碳酸锂的制备方法
CN111206153A (zh) * 2020-02-20 2020-05-29 贵州红星电子材料有限公司 一种镍钴锰酸锂电池正极材料的回收方法
CN111690812A (zh) * 2020-06-15 2020-09-22 南方科技大学 一种废旧三元锂电池的回收方法
CN114229875A (zh) * 2021-10-26 2022-03-25 广东邦普循环科技有限公司 废旧钠离子电池综合回收方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1068015A (fr) * 1951-09-20 1954-06-22 Perfectionnements à la séparation du nickel et du cobalt
CN109193057B (zh) * 2018-09-07 2020-04-07 昆明理工大学 一种利用废旧三元锂电池制备正极材料前驱体的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316643A (zh) * 2014-10-10 2015-01-28 荆门市格林美新材料有限公司 镍钴锰三元材料的三元素测定方法
CN104831065A (zh) * 2015-04-09 2015-08-12 长沙矿冶研究院有限责任公司 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN105591171A (zh) * 2015-12-18 2016-05-18 浙江天能能源科技有限公司 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
CN107230811A (zh) * 2016-03-25 2017-10-03 中国科学院过程工程研究所 一种正极材料中金属组分的选择性浸出剂及回收方法
CN109136571A (zh) * 2018-09-28 2019-01-04 中南大学 一种从锂离子电池混合富锰废料浸出液中提取有价金属的方法
CN110028111A (zh) * 2019-03-25 2019-07-19 中南大学 三元正极材料前驱体及碳酸锂的制备方法
CN111206153A (zh) * 2020-02-20 2020-05-29 贵州红星电子材料有限公司 一种镍钴锰酸锂电池正极材料的回收方法
CN111690812A (zh) * 2020-06-15 2020-09-22 南方科技大学 一种废旧三元锂电池的回收方法
CN114229875A (zh) * 2021-10-26 2022-03-25 广东邦普循环科技有限公司 废旧钠离子电池综合回收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOHONG ZHENG, ZEWEN ZHU, XIAO LIN, YI ZHANG, YI HE, HONGBIN CAO, ZHI SUN: "A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries", ENGINEERING, vol. 4, no. 3, 1 June 2018 (2018-06-01), pages 361 - 370, XP055751032, ISSN: 2095-8099, DOI: 10.1016/j.eng.2018.05.018 *
ZHENG XIAOHONG, GAO WENFANG, ZHANG XIHUA, HE MINGMING, LIN XIAO, CAO HONGBIN, ZHANG YI, SUN ZHI: "Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite", WASTE MANAGEMENT., ELSEVIER, NEW YORK, NY., US, vol. 60, 1 February 2017 (2017-02-01), US , pages 680 - 688, XP093059851, ISSN: 0956-053X, DOI: 10.1016/j.wasman.2016.12.007 *

Also Published As

Publication number Publication date
CN114229875A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN109088115B (zh) 废旧锂离子电池正极材料循环利用制备三元正极材料方法
WO2023071350A1 (zh) 废旧钠离子电池综合回收方法
CN112158894A (zh) 一种废旧锂电池正极材料的回收方法
Mohanty et al. Application of various processes to recycle lithium-ion batteries (LIBs): A brief review
CN111979415B (zh) 一种无需强酸浸出的废旧钴酸锂正极材料的回收方法
CN108265178B (zh) 一种钴镍冶金废水渣的处理方法
WO2024000818A1 (zh) 一种废旧锂电池材料的回收方法
US20230411720A1 (en) Method of Metal Ion Recovery from Batteries
KR20230093490A (ko) 리튬 이온 전지 폐기물의 처리 방법
CN112366381A (zh) 从废旧锂电池正极材料中回收锂的方法及应用
CN114959272B (zh) 从废旧锂离子电池中选择性回收锂的方法
JP6459797B2 (ja) 廃ニッケル水素電池からのフェロニッケル製造用原料の回収方法及びその回収装置
JP6314730B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
Illés et al. Extraction of pure Co, Ni, Mn, and Fe compounds from spent Li-ion batteries by reductive leaching and combined oxidative precipitation in chloride media
CN115852152B (zh) 一种协同处理电池黑粉与镍钴氢氧化物的方法
CN112342383A (zh) 三元废料中镍钴锰与锂的分离回收方法
CN116477591A (zh) 一种废旧磷酸铁锂正极材料综合利用的方法
JP6201905B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN111961863B (zh) 一种从电解锰阳极泥脱除铅的方法
CN109081322A (zh) 一种红土镍矿中黄铁矾法提取铁制备磷酸铁锂的方法
CN115896461B (zh) 氨浸提锂回收废旧锂电池的方法
Dolotko et al. Mechanochemically induced hydrometallurgical method for recycling d-elements from Li-ion battery cathodes
KR102640253B1 (ko) 폐 리튬 전지 재료로부터 리튬의 회수 방법
CN114317985B (zh) 从回收废旧动力蓄电池产生的镍钴锰溶液中除锆的方法
CN218101414U (zh) 一种镍、钴、锰浸出回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885250

Country of ref document: EP

Kind code of ref document: A1