WO2023071244A1 - 一种二氧化碳合成甲醇的催化剂及其制备方法和应用 - Google Patents

一种二氧化碳合成甲醇的催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023071244A1
WO2023071244A1 PCT/CN2022/100990 CN2022100990W WO2023071244A1 WO 2023071244 A1 WO2023071244 A1 WO 2023071244A1 CN 2022100990 W CN2022100990 W CN 2022100990W WO 2023071244 A1 WO2023071244 A1 WO 2023071244A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
reaction
crystallization
mixed solution
precipitation reaction
Prior art date
Application number
PCT/CN2022/100990
Other languages
English (en)
French (fr)
Inventor
何忠
王琪
李旭
吴桐
程阿超
刘练波
郜时旺
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能国际电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能国际电力股份有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023071244A1 publication Critical patent/WO2023071244A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the technical field of catalysts, in particular to a catalyst for synthesizing methanol from carbon dioxide and its preparation method and application.
  • the catalysts for the hydrogenation of carbon dioxide to methanol are developed on the basis of the hydrogenation of carbon monoxide into methanol.
  • the catalysts mainly include copper-based catalysts and catalysts supported by noble metals as the main active component.
  • the optimization of catalyst performance through the change of catalyst components and the change of preparation method is the direction of researchers' efforts.
  • Common copper-based catalysts have uniform dispersion of components, small particle size, large specific surface area, and strong synergy between active components and additives.
  • the preparation method is cumbersome, and there are many precipitation steps, which are not easy for industrial scale-up.
  • the copper-based catalyst itself is also a water-gas shift reaction, which causes a large amount of by-product carbon monoxide to be generated in the reaction of carbon dioxide to methanol, which reduces the selectivity of methanol; and the copper-based catalyst has poor heat resistance and cannot increase the catalytic reaction temperature.
  • the technical problem to be solved in this application is to provide a catalyst for hydrogenation of carbon dioxide to synthesize methanol and its preparation method, so as to solve the problems of poor heat resistance and low methanol selectivity of existing methanol synthesis catalysts.
  • the present application is to provide a catalyst for synthesizing methanol from carbon dioxide, which includes the following components in terms of mass percentage: CuO 45%-75%, ZnO 15%-40%, Fe 2 O 3 4%-30 %, TiO 2 5%-30%.
  • the preparation method of the catalyst for synthesizing methanol from carbon dioxide comprises the steps of:
  • the preparation of the CuZnFeTi precursor comprises the following steps:
  • Step 1 mixing Cu salt, Zn salt, Fe salt, Ti salt, urea and organic alcohol solvent to obtain a mixed solution, and then performing crystallization and precipitation reaction on the mixed solution;
  • Step 2 After the crystallization and precipitation reaction is completed, the obtained reaction mixture is subjected to aging treatment, filtered and washed to obtain the CuZnFeTi precursor.
  • the molar ratio of Cu salt, Zn salt, Fe salt, Ti salt, urea in step 1 is (0.15-0.85): (0.05-0.45): (0.02-0.2): (0.02-0.35): (0.1 -1.4);
  • the concentration of Cu salt in the mixed solution described in step 1 is 0.15-0.85mol/L
  • the concentration of Zn salt is 0.05-0.45mol/L
  • the concentration of Fe salt is 0.02-0.2mol/L
  • the concentration of Ti salt is 0.02 -0.35mol/L
  • the concentration of urea is 0.1-1.4mol/L.
  • the preparation of the CuZnFeTi precursor comprises the following steps:
  • the molar ratio of urea to Ti salt in step S1 is (0.01-1.4):(0.02-0.35), the concentration of urea in the first mixed solution is 0.01-1.4mol/L, and the concentration of Ti salt is 0.02- 0.35mol/L;
  • step S2 the molar ratio of Cu salt, Zn salt, Fe salt, and urea is (0.15-0.85): (0.05-0.45): (0.02-0.2): (0.1-1.4), and the Cu salt in the second mixed solution
  • concentration of Zn salt is 0.15-0.85mol/L
  • concentration of Zn salt is 0.05-0.45mol/L
  • concentration of Fe salt is 0.02-0.2mol/L
  • concentration of urea is 0.1-1.4mol/L.
  • the preparation of the CuZnFeTi precursor comprises the following steps:
  • the molar ratio of urea and Ti salt in step a is (0.01-1.4):(0.02-0.35), the concentration of urea in the third mixed solution is 0.01-1.4mol/L, and the concentration of Ti salt is 0.02-0.35mol/L;
  • step b the molar ratio of Cu salt, Zn salt, Fe salt, and urea is (0.15-0.85): (0.05-0.45): (0.02-0.2): (0.1-1.4), and the Cu salt in the fourth mixed solution
  • concentration of Zn salt is 0.15-0.85mol/L
  • concentration of Zn salt is 0.05-0.45mol/L
  • concentration of Fe salt is 0.02-0.2mol/L
  • concentration of urea is 0.1-1.4mol/L.
  • the pH value of the reaction solution is controlled to be 7-8.5
  • the crystallization and precipitation reaction temperature is 100-120°C
  • the reaction pressure is 1.0-3.0MPa
  • the reaction time is 8-24h.
  • Step 2 Medium aging temperature is 60-150°C, aging time is 0.5-2.5h;
  • the pH value of the reaction solution is controlled to be 7-8.5, the first crystallization precipitation reaction temperature is 100-120°C, the reaction pressure is 1.0-3.0MPa, and the reaction time is 8-24h
  • the pH value of the reaction solution is controlled to be 7-8.5, the second crystallization and precipitation reaction temperature is 100-120° C., the reaction pressure is 1.0-3.0 MPa, and the reaction time is 8-24 hours.
  • the aging temperature is 60-150°C, and the aging time is 0.5-2.5h;
  • the pH value of the reaction solution is controlled to be 7-8.5, the first crystallization precipitation reaction temperature is 100-120°C, the reaction pressure is 1.0-3.0MPa, and the reaction time is 8-24h
  • the pH value of the reaction solution is controlled to be 7-8.5, the second crystallization and precipitation reaction temperature is 100-120°C, the reaction pressure is 1.0-3.0MPa, and the reaction time is 8-24h
  • the aging temperature is 60-150°C, and the aging time is 0.5-2.5h;
  • the calcination temperature is 400-600°C, and the calcination time is 4-12h;
  • Described organic alcohol solvent is dehydrated alcohol
  • the Cu salt is selected from copper nitrate and/or copper acetate
  • the Zn salt is selected from zinc nitrate and/or zinc acetate
  • the Fe salt is selected from iron nitrate and/or iron acetate
  • the Ti salt is selected from tetrachloro One or more of titanium oxide, butyl titanate, titanium isopropoxide and titanyl sulfate.
  • the present application also provides the application of the above-mentioned catalyst or the catalyst prepared by the above-mentioned preparation method in the hydrogenation of carbon dioxide to methanol.
  • the catalyst for synthesizing methanol from carbon dioxide provided by this application, in terms of mass percentage, said catalyst includes the following components: CuO45%-75%, ZnO15%-40%, Fe2O34 %-30%, TiO25 %-30%.
  • This application utilizes the oxygen vacancy structure of TiO2 , and the modified CuZn catalyst system can inhibit the generation of CO in the water gas shift reaction, adjust the surface acidity of the catalyst, inhibit the carbon deposition of the catalyst, and improve the selectivity of methanol; the catalyst system introduces Fe metal , not only can synergize the interaction between Cu and Zn between CuZn catalysts, but more importantly, it can form a hydrotalcite structure. After aging and roasting, the active components of the catalyst are more uniformly dispersed, with higher activity and better heat resistance.
  • the preparation method of the catalyst for synthesizing methanol from carbon dioxide provided by this application provides a high-temperature and high-pressure environment for the growth and aggregation of crystal grains during the precipitation reaction process, forming stable CuFe, ZnFe hydrotalcite structures and CuZnFe-like hydrotalcites; and
  • the TiO 2 carrier grains produced under this process condition are finer and more uniformly distributed.
  • the modified CuZn catalyst system can inhibit the formation of CO in the water-gas shift reaction, adjust the surface acidity of the catalyst, inhibit the carbon deposition of the catalyst, and improve the selectivity of methanol ;
  • the introduction of Fe metal improves the dispersion of the active components, not only can synergize the interaction between Cu and Zn between CuZn catalysts, but more importantly, it can generate a hydrotalcite structure, which is beneficial to the chemical interaction between the active components and the support It improves the surface dispersion of the catalyst, which not only improves the methanol selectivity of the catalyst, but also helps to improve the heat resistance and carbon deposition resistance of the catalyst.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 120°C for 12h, then placed in a muffle furnace, and calcined at 450°C for 6h to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 mesh for evaluation of the reaction.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 120°C for 24 hours, then placed in a muffle furnace, and calcined at 600°C for 6 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 mesh for evaluation.
  • the present embodiment provides a kind of preparation method of the catalyst of carbon dioxide hydrogenation synthesis methanol, comprises the steps:
  • the mixed solution was transferred to a glass flask and placed in a microwave oven for aging.
  • the aging temperature was 150° C. and the aging time was 0.5 h.
  • the CuZnFeTi precursor is obtained by washing, filtering and washing with deionized water until neutral.
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 110°C for 12 hours, then placed in a muffle furnace, and calcined at 450°C for 12 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 meshes for evaluation.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the mixed solution after the reaction in the two high-temperature and high-pressure stirred tanks was transferred to a glass flask and placed in a microwave heating furnace for aging.
  • the aging temperature was 120 °C and the aging time was 1 h; after the aging was completed, it was filtered and washed with deionized water to Neutral, the CuZnFeTi precursor is obtained.
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 100°C for 12 hours, then placed in a muffle furnace, and calcined at 460°C for 8 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 meshes for evaluation.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 100°C for 24h, then placed in a muffle furnace, and calcined at 500°C for 12h to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 mesh for evaluation.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the mixed solution was transferred to a glass flask and placed in a microwave oven for aging.
  • the aging temperature was 140° C. and the aging time was 1.5 h.
  • the CuZnFeTi precursor is obtained by washing, filtering and washing with deionized water until neutral.
  • the mixed solution was transferred to a glass flask and placed in a microwave oven for aging.
  • the aging temperature was 140° C. and the aging time was 1.5 h.
  • the CuZnFeTi precursor is obtained by washing, filtering and washing with deionized water until neutral.
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 120°C for 12 hours, then placed in a muffle furnace, and calcined at 450°C for 12 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 meshes for evaluation.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the mixed solution was transferred to a glass flask and placed in a microwave oven for aging.
  • the aging temperature was 150° C. and the aging time was 0.5 h.
  • the CuZnFeTi precursor is obtained by washing, filtering and washing with deionized water until neutral.
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 110°C for 12 hours, then placed in a muffle furnace, and calcined at 500°C for 8 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 mesh for evaluation.
  • This embodiment provides a method for preparing a catalyst for hydrogenation of carbon dioxide to synthesize methanol, comprising the following steps:
  • the aging temperature is 150°C and the aging time is 0.5h; after aging, filter and wash with deionized water To neutral, the CuZnFeTi precursor is obtained.
  • the CuZnFeTi precursor obtained above was placed in an oven, dried at 100°C for 12 hours, then placed in a muffle furnace, and calcined at 600°C for 12 hours to obtain a CuZnFeTi catalyst, which was crushed, ground and sieved to 20-40 meshes for evaluation.
  • the CuZnFeAl precursor obtained above was placed in an oven, dried at 120°C for 12 hours, then placed in a muffle furnace, and calcined at 450°C for 6 hours to obtain a CuZnFeAl catalyst, which was crushed, ground and sieved to 20-40 meshes for evaluation of the reaction.
  • the CuZnTi precursor obtained above was placed in an oven, dried at 120°C for 12h, then placed in a muffle furnace, and calcined at 450°C for 6h to obtain a CuZnTi catalyst, which was crushed, ground and sieved to 20-40 mesh for evaluation of the reaction.
  • the activity of the finished catalysts prepared in the above examples and comparative examples was measured on an adiabatic fixed bed.
  • pressure 5MPa

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及一种二氧化碳合成甲醇的催化剂及其制备方法和应用,本申请提供的催化剂以质量百分数计,包括如下组分:CuO 45%-75%、ZnO 15%-40%、Fe 2O 3 4%-30%、TiO 2 5%-30%。本申请提供的催化剂可有效提高甲醇选择性和耐热性。

Description

一种二氧化碳合成甲醇的催化剂及其制备方法和应用
相关申请的交叉引用
本申请要求在2021年10月29日提交中国专利局、申请号为202111273325.3、发明名称为“一种二氧化碳合成甲醇的催化剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及催化剂技术领域,具体涉及一种二氧化碳合成甲醇的催化剂及其制备方法和应用。
背景技术
近年来,随着工业化进程的加快,化石能源的过度开采和利用,造成二氧化碳的大量排放,全球温室效应所带来的环境问题日益突出,二氧化碳的捕集与综合利用也越来越受到人们的关注,利用二氧化碳转化成附加值高的资源是解决环境问题和能源问题的有效途径。
目前在二氧化碳利用方面研究最多的是将二氧化碳催化加氢转化为甲醇,通过二氧化碳加氢反应耦合太阳能、风能和生物质等可再生能源是一条绿色、可持续的甲醇、汽油等液体燃料的合成途径,是循环经济包括“液态阳光”和“甲醇经济”的重要一环。甲醇更是一种高效的储氢材料,在常温常压条件下相对于其它储氢材料,甲醇具有能量密度高、储氢成本低等优点。另外,甲醇也是一种重要的化工基础原料,通过甲醇可以合成甲酸、 甲醛、烯烃、芳烃等附加值更高的化工产品,特别是利用甲醇制备聚丙烯、聚乙烯等终端产品,可以应用到我们日常的生产和生活中,缓解石油化工产业上的能源消耗,是实现碳中和的最有效途径。
二氧化碳加氢转化为甲醇的催化剂大部分是在一氧化碳加氢转化为甲醇的基础上研发,催化剂主要包括铜基催化剂和以贵金属为主要活性组成负载的催化剂等。通过催化剂组分的变化,以及制备方法的变化对催化剂性能的优化是研究者努力的方向。
一般的铜基催化剂,组分分散均匀,颗粒尺寸小,比表面积大,活性组分与助剂之间的协同性强,但制备方法较为繁琐,沉淀步骤较多,不易于工业化放大。铜基催化剂本身也是水煤气变换反应,造成二氧化碳合成甲醇的反应会有大量副产物一氧化碳生成,降低了甲醇的选择性;且铜基催化剂耐热性差,无法提高催化反应温度。
发明内容
本申请所要解决的技术问题在于提供一种二氧化碳加氢合成甲醇的催化剂及其制备方法,以解决现有甲醇合成催化剂的耐热性差,甲醇选择性低等问题。
为此,本申请在于提供一种二氧化碳合成甲醇的催化剂,以质量百分数计,所述催化剂包括如下组分:CuO 45%-75%、ZnO 15%-40%、Fe 2O 3 4%-30%、TiO 2 5%-30%。
可选地,所述的二氧化碳合成甲醇催化剂的制备方法,包括如下步骤:
1)制备CuZnFeTi前驱体;
2)将CuZnFeTi前驱体进行焙烧,得到所述二氧化碳合成甲醇的催化剂。
可选地,所述CuZnFeTi前驱体的制备包括如下步骤:
步骤1、将Cu盐、Zn盐、Fe盐、Ti盐、尿素和有机醇溶剂混合,得到混合溶液,然后对所述混合溶液进行晶化沉淀反应;
步骤2、晶化沉淀反应结束后,将得到的反应混合液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
可选地,步骤1中Cu盐、Zn盐、Fe盐、Ti盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.02-0.35):(0.1-1.4);
步骤1中所述混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,Ti盐的浓度为0.02-0.35mol/L,尿素的浓度为0.1-1.4mol/L。
可选地,所述CuZnFeTi前驱体的制备包括如下步骤:
S1、将尿素、Ti盐和有机醇溶剂混合,得到第一混合溶液,然后对所述第一混合溶液进行第一次晶化沉淀反应;
S2、将Cu盐、Zn盐、Fe盐、尿素和有机醇溶剂混合,得到第二混合溶液,然后将所述第二混合溶液加入到第一次晶化沉淀反应的反应液中进行第二次晶化沉淀反应,第二次晶化沉淀反应结束后,将得到的反应混合液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
可选地,步骤S1中尿素、Ti盐的摩尔比为(0.01-1.4):(0.02-0.35),第一混合溶液中尿素的浓度为0.01-1.4mol/L,Ti盐的浓度为0.02-0.35mol/L;
步骤S2中Cu盐、Zn盐、Fe盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.1-1.4),所述第二混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,尿素的浓度 为0.1-1.4mol/L。
可选地,所述CuZnFeTi前驱体的制备包括如下步骤:
a、将尿素、Ti盐和有机醇溶剂混合,得到第三混合溶液,然后对第三混合溶液进行第一次晶化沉淀反应;
b、将Cu盐、Zn盐、Fe盐、尿素和有机醇溶剂混合,得到第四混合溶液,然后对第四混合溶液进行第二次晶化沉淀反应;
c、将第一次晶化沉淀反应的反应混合液和第二次晶化沉淀反应的反应混合液进行混合,得到第五混合溶液,对第五混合溶液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
可选地,步骤a中尿素、Ti盐的摩尔比为(0.01-1.4):(0.02-0.35),所述第三混合溶液中尿素的浓度为0.01-1.4mol/L,Ti盐的浓度为0.02-0.35mol/L;
步骤b中Cu盐、Zn盐、Fe盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.1-1.4),所述第四混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,尿素的浓度为0.1-1.4mol/L。
可选地,步骤1中晶化沉淀反应期间控制反应液pH值为7-8.5,晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤2中老化温度为60-150℃,老化时间为0.5-2.5h;
步骤S1中第一次晶化沉淀反应期间控制反应液pH值为7-8.5,第一次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤S2中第二次晶化沉淀反应期间控制反应液pH值为7-8.5,第二次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h, 老化温度为60-150℃,老化时间为0.5-2.5h;
步骤a中第一次晶化沉淀反应期间控制反应液pH值为7-8.5,第一次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤b中第二次晶化沉淀反应期间控制反应液pH值为7-8.5,第二次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤c中老化温度为60-150℃,老化时间为0.5-2.5h;
洗涤结束后还包括对洗涤后的产物进行干燥的步骤,干燥温度为80-150℃,干燥时间为12-24h;
所述焙烧温度为400-600℃,焙烧时间为4-12h;
所述有机醇溶剂为无水乙醇;
所述Cu盐选自硝酸铜和/或醋酸铜,所述Zn盐选自硝酸锌和/或醋酸锌,所述Fe盐选自硝酸铁和/或醋酸铁,所述Ti盐选自四氯化钛、钛酸丁酯、异丙醇钛和硫酸氧钛中的一种或多种。
本申请还提供如上所述的催化剂或者如上所述的制备方法制备得到的催化剂在二氧化碳加氢合成甲醇反应中的应用。
有益效果:
1.本申请提供的二氧化碳合成甲醇的催化剂,以质量百分数计,所述催化剂包括如下组分:CuO45%-75%、ZnO15%-40%、Fe 2O 34%-30%、TiO 25%-30%。本申请利用TiO 2氧缺位结构,改性CuZn催化剂体系可以抑制水煤气变换反应CO的生成,调变催化剂的表面酸性,抑制催化剂的积碳,提高甲醇的选择性;该催化剂体系引入了Fe金属,不仅可以协同CuZn催化剂之间Cu和Zn的相互作用,更重要是可以生成水滑石结构,老化焙烧 后的催化剂活性组分分散更加均匀,活性更高,耐热性更优。
2.本申请提供的二氧化碳合成甲醇的催化剂的制备方法,在沉淀反应过程中为晶粒的长大和聚集提供一种高温高压环境,形成稳定的CuFe、ZnFe水滑石结构和CuZnFe类水滑石;且该工艺条件下生成的TiO 2载体晶粒更细、分布更均匀。通过引入两性氧化物TiO 2作为载体,利用TiO 2氧缺位结构,改性CuZn催化剂体系可以抑制水煤气变换反应CO的生成,调变催化剂的表面酸性,抑制催化剂的积碳,提高甲醇的选择性;Fe金属的引入提高了活性组分的分散度,不仅可以协同CuZn催化剂之间Cu和Zn的相互作用,更重要是可以生成水滑石结构,有利于协同活性组分与载体之间的化学作用力,改善催化剂表面分散度,不仅提高了催化剂的甲醇选择性,更有利于提高了催化剂的耐热性和抗积碳能力。
具体实施方式
实施例1
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将20g的Cu(NO 3) 2·3H 2O、18g的Zn(NO 3) 2·6H 2O、4g的Fe(NO 3) 3·9H 2O、4g的TiCl 4、11.95g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌100min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,反应压力为2.0MPa,进行晶化沉淀法反应24h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至8.5。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热 炉中进行老化,老化温度为150℃,老化时间为0.5h。老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在120℃干燥12h,然后置于马弗炉中,在450℃焙烧6h,得到CuZnFeTi催化剂,破碎、研磨筛分20-40目用于评价反应。
实施例2
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将40g的Cu(NO 3) 23H 2O、20g的Zn(NO 3) 2·6H 2O、6g的Fe(NO 3) 3·9H 2O、5g的TiOSO 4、19.08g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌60min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速300r/min,控制高温高压搅拌釜中心温度在120℃,反应压力为1.5MPa,进行晶化沉淀法反应12h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至7.5。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为1h。老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在120℃干燥24h,然后置于马弗炉中,在600℃焙烧6h,得到CuZnFeTi催化剂,破碎、研磨筛分20-40目用于评价。
实施例3
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括 如下步骤:
将1.74g的CO(NH 2) 2、5g的TiCl 4和200ml无水乙醇混合,得到第一混合溶液,将第一混合溶液室温下机械搅拌100min,搅拌均匀后全部转移到高温高压搅拌釜中进行晶化沉淀反应,调节搅拌转速300r/min,控制高温高压搅拌釜中心温度在100℃,反应压力为1.0MPa,进行晶化沉淀反应8h,并加入0.10mol/L的氨水调节沉淀反应的pH值至7.5。
将50g的Cu(NO 3) 2·3H 2O、18g的Zn(NO 3) 2·6H 2O、6g的Fe(NO 3) 3·9H 2O和19.31g的CO(NH 2) 2和300ml无水乙醇混合,得到第二混合溶液,在室温下机械搅拌100min,将第二混合溶液通过蠕动泵全部加入到所述晶化沉淀反应的高温高压搅拌釜中,进行第二次晶化沉淀反应,调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在120℃,反应压力为1.0MPa,第二次晶化沉淀反应时间为16h,加入0.10mol/L的氨水调节沉淀反应的pH值至8.5,完成第二次晶化沉淀反应。
第二次晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为0.5h。老化结束后利用去离子水洗滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱,在110℃干燥12h,然后置于马弗炉中,在450℃焙烧12h,得到CuZnFeTi催化剂,破碎、研磨筛分20~40目用于评价。
实施例4
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将1.65g的CO(NH 2) 2、4g的TiOSO 4和200ml无水乙醇混合,得到第三混合溶液,将第三混合溶液室温下机械搅拌100min,搅拌均匀后全部转移到高温高压搅拌釜中进行第一次晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在100℃,反应压力为2.0MPa,进行第一次晶化沉淀反应8h;第一次晶化沉淀反应期间,加入0.10mol/L的氨水调节第一次晶化沉淀反应的pH值至7.5,进行第一次晶化沉淀反应。
将60g的Cu(NO 3) 2·3H 2O、15g的Zn(NO 3) 2·6H 2O和5g的Fe(NO 3) 3·9H 2O和21.1g的CO(NH 2) 2和300ml无水乙醇混合,得到第四混合溶液,室温下机械搅拌60min,搅拌均匀后将第四混合溶液全部转移另一台高温高压搅拌釜中进行第二次晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,反应压力为2.0MPa,进行第二次晶化沉淀反应8h;第二次晶化沉淀反应期间,加入0.10mol/L的氨水调节第二次晶化沉淀反应的pH值至8.5,进行第二次晶化沉淀反应。
将两个高温高压搅拌釜中反应后的混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为120℃,老化时间为1h;老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在100℃干燥12h,然后置于马弗炉中,在460℃焙烧8h,得到CuZnFeTi催化剂,破碎、研磨筛分20~40目用于评价。
实施例5
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将35g的Cu(CH 3COO) 2·H 2O、10g的Zn(CH 3COO) 2、15g的Fe(CH 3COO) 3和12g的TiCl 4、23.62g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌100min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在100℃,反应压力为3.0MPa,进行晶化沉淀法反应12h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至8.5。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为120℃,老化时间为2h。老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在100℃干燥24h,然后置于马弗炉中,在500℃焙烧12h,得到CuZnFeTi催化剂,破碎、研磨筛分20-40目用于评价。
实施例6
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将42g的Cu(CH 3COO) 2·H 2O、15g的Zn(CH 3COO) 2、12g的Fe(CH 3COO) 3和10g的TiOSO 4、26.83g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌100min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速350r/min,控制高温高压搅拌釜中心温度在110℃115℃,反应压力为2.5MPa,进行晶化沉淀法反应18h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至8.5,完成第二次晶化沉淀反应。
第二次晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为140℃,老化时间为1.5h。老化结束后利用去离子水洗滤洗涤至中性,得到CuZnFeTi前驱体。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为140℃,老化时间为1.5h。老化结束后利用去离子水洗滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在120℃干燥12h,然后置于马弗炉中,在450℃焙烧12h,得到CuZnFeTi催化剂,破碎、研磨筛分20~40目用于评价。
实施例7
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将1.74g的CO(NH 2) 2、5g的TiCl 4和200ml无水乙醇混合,得到第一混合溶液,将第一混合溶液室温下机械搅拌100min,搅拌均匀后全部转移到高温高压搅拌釜中进行晶化沉淀反应,调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,进行晶化沉淀反应12h,并加入0.10mol/L的氨水调节沉淀反应的pH值至8.0。
将50g的Cu(CH 3COO) 2·H 2O、18g的Zn(CH 3COO) 2、6g的Fe(CH 3COO) 3和19.31g的CO(NH 2) 2和300ml无水乙醇混合,得到第二混合溶液,在室温下机械搅拌30min,将第二混合溶液通过蠕动泵全部加入到所述晶化沉淀反应的高温高压搅拌釜中,进行第二次晶化沉淀反应,调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在120℃,反应压力为2.0MPa,第二次晶化 沉淀反应时间为12h,加入0.10mol/L的氨水调节沉淀反应的pH值至8.5,完成第二次晶化沉淀反应。
第二次晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为0.5h。老化结束后利用去离子水洗滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置于烘箱中,在110℃干燥12h,然后置于马弗炉中,在500℃焙烧8h,得到CuZnFeTi催化剂,破碎、研磨筛分20-40目用于评价。
实施例8
本实施例提供一种二氧化碳加氢合成甲醇的催化剂的制备方法,包括如下步骤:
将4.13g的CO(NH 2) 2、10g的TiOSO 4和200ml无水乙醇混合,得到第三混合溶液,将第三混合溶液室温下机械搅拌100min,搅拌均匀后全部转移到高温高压搅拌釜中进行第一次晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在100℃,反应压力为2.0MPa,进行第一次晶化沉淀反应24h;第一次晶化沉淀反应期间,加入0.10mol/L的氨水调节沉淀反应的pH值至7.5,进行第一次晶化沉淀反应。
将40g的Cu(CH 3COO) 2·H 2O、25g的Zn(CH 3COO) 2和8g的Fe(CH 3COO) 3和24.51g的CO(NH 2) 2和300ml无水乙醇混合,得到第四混合溶液,室温下机械搅拌40min,搅拌均匀后将第四混合溶液全部转移另一台高温高压搅拌釜中进行第二次晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,反应压力为2.0MPa,进行第二次晶化沉淀反应8h; 第二次晶化沉淀反应期间,加入0.10mol/L的氨水调节第二次晶化沉淀反应的pH值至8.5,进行第二次晶化沉淀。
将两个高温高压搅拌釜中反应后的混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为0.5h;老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeTi前驱体。
将上述得到的CuZnFeTi前驱体置烘箱中,在100℃干燥12h,然后置于马弗炉中,在600℃焙烧12h,得到CuZnFeTi催化剂,破碎、研磨筛分20~40目用于评价。
对比例1
将20g的Cu(NO 3) 2·3H 2O、18g的Zn(NO 3) 2·6H 2O、4g的Fe(NO 3) 3·9H 2O、4.5g的Al(NO 3) 3、12g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌100min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,反应压力为2.0MPa,进行晶化沉淀法反应24h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至8.5。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为0.5h。老化结束后利用去离子水过滤洗涤至中性,得到CuZnFeAl前驱体。
将上述得到的CuZnFeAl前驱体置于烘箱中,在120℃干燥12h,然后置于马弗炉中,在450℃焙烧6h,得到CuZnFeAl催化剂,破碎、研磨筛分20-40目用于评价反应。
对比例2
将20g的Cu(NO 3) 2·3H 2O、18g的Zn(NO 3) 2·6H 2O、4g的TiCl 4、12g的尿素和500ml无水乙醇混合,得到混合溶液,将混合溶液室温下机械搅拌100min,然后将混合溶液转移到高温高压搅拌釜中进行晶化沉淀反应;调节搅拌转速400r/min,控制高温高压搅拌釜中心温度在110℃,反应压力为2.0MPa,进行晶化沉淀法反应24h;晶化沉淀反应期间,加入0.10mol/L的氨水调节晶化沉淀反应的pH值至8.5。
晶化沉淀反应结束后将混合液全部转移到玻璃烧瓶中并置于微波加热炉中进行老化,老化温度为150℃,老化时间为0.5h。老化结束后利用去离子水过滤洗涤至中性,得到CuZnTi前驱体。
将上述得到的CuZnTi前驱体置于烘箱中,在120℃干燥12h,然后置于马弗炉中,在450℃焙烧6h,得到CuZnTi催化剂,破碎、研磨筛分20-40目用于评价反应。
实施例活性评价结果
将以上实施例和对比例中所制备的催化剂成品在绝热固定床上测定其活性。将10g催化剂成品装入不锈钢反应管中,先对催化剂进行水热老化实验:压力=5MPa,H 2O/N 2=10(体积比),老化空速30000h -1,程序升温到300℃催速老化20h;老化结束后,切换成N 2/H 2=9(体积比)混合气还原,还原空速5000h -1,降温到250℃恒温还原8h;还原结束后降温到230℃切换成评价气体CO 2:H 2=3:1(体积比),评价温度230℃,评价压力5MPa,评价空速3000h -1,稳定评价100h,测定活性变化,测试结果如表1所示:
表1
Figure PCTCN2022100990-appb-000001
Figure PCTCN2022100990-appb-000002
从表1可以看出,各实施例中甲醇合成催化剂经过热老化实验处理后,在评价实验过程中能够保持较好的甲醇选择性和二氧化碳转化率,表明催化剂性能稳定,并具有良好的热稳定性和抗积碳性能。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种二氧化碳合成甲醇的催化剂,其特征在于,以质量百分数计,所述催化剂包括如下组分:CuO 45%-75%、ZnO 15%-40%、Fe 2O 34%-30%、TiO 25%-30%。
  2. 一种权利要求1所述的二氧化碳合成甲醇催化剂的制备方法,其特征在于,包括如下步骤:
    1)制备CuZnFeTi前驱体;
    2)将CuZnFeTi前驱体进行焙烧,得到所述二氧化碳合成甲醇的催化剂。
  3. 根据权利要求2所述的制备方法,其特征在于,所述CuZnFeTi前驱体的制备包括如下步骤:
    步骤1、将Cu盐、Zn盐、Fe盐、Ti盐、尿素和有机醇溶剂混合,得到混合溶液,然后对所述混合溶液进行晶化沉淀反应;
    步骤2、晶化沉淀反应结束后,将得到的反应混合液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
  4. 根据权利要求3所述的制备方法,其特征在于,
    步骤1中,Cu盐、Zn盐、Fe盐、Ti盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.02-0.35):(0.1-1.4);
    步骤1中所述混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度 为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,Ti盐的浓度为0.02-0.35mol/L,尿素的浓度为0.1-1.4mol/L。
  5. 根据权利要求2所述的制备方法,其特征在于,所述CuZnFeTi前驱体的制备包括如下步骤:
    S1、将尿素、Ti盐和有机醇溶剂混合,得到第一混合溶液,然后对所述第一混合溶液进行第一次晶化沉淀反应;
    S2、将Cu盐、Zn盐、Fe盐、尿素和有机醇溶剂混合,得到第二混合溶液,然后将所述第二混合溶液加入到第一次晶化沉淀反应的反应液中进行第二次晶化沉淀反应,所述第二次晶化沉淀反应结束后,将得到的反应混合液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
  6. 根据权利要求5所述的制备方法,其特征在于,
    步骤S1中尿素、Ti盐的摩尔比为(0.01-1.4):(0.02-0.35),所述第一混合溶液中尿素的浓度为0.01-1.4mol/L,Ti盐的浓度为0.02-0.35mol/L;
    步骤S2中Cu盐、Zn盐、Fe盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.1-1.4),所述第二混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,尿素的浓度为0.1-1.4mol/L。
  7. 根据权利要求2所述的制备方法,其特征在于,所述CuZnFeTi前驱体的制备包括如下步骤:
    a、将尿素、Ti盐和有机醇溶剂混合,得到第三混合溶液,然后对第三混合溶液进行第一次晶化沉淀反应;
    b、将Cu盐、Zn盐、Fe盐、尿素和有机醇溶剂混合,得到第四混合溶液,然后对第四混合溶液进行第二次晶化沉淀反应;
    c、将第一次晶化沉淀反应的反应混合液和第二次晶化沉淀反应的反应混合液进行混合,得到第五混合溶液,对第五混合溶液进行老化处理,过滤、洗涤,得到所述CuZnFeTi前驱体。
  8. 根据权利要求7所述的制备方法,其特征在于,
    步骤a中尿素、Ti盐的摩尔比为(0.01-1.4):(0.02-0.35),所述第三混合溶液中尿素的浓度为0.01-1.4mol/L,Ti盐的浓度为0.02-0.35mol/L;
    步骤b中Cu盐、Zn盐、Fe盐、尿素的摩尔比为(0.15-0.85):(0.05-0.45):(0.02-0.2):(0.1-1.4),所述第四混合溶液中Cu盐的浓度为0.15-0.85mol/L,Zn盐的浓度为0.05-0.45mol/L,Fe盐的浓度为0.02-0.2mol/L,尿素的浓度为0.1-1.4mol/L。
  9. 根据权利要求2-8中任一项所述的制备方法,其特征在于,
    步骤1中晶化沉淀反应期间控制反应液pH值为7-8.5,晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤2中老化温度为60-150℃,老化时间为0.5-2.5h;
    步骤S1中第一次晶化沉淀反应期间控制反应液pH值为7-8.5,第一次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h, 步骤S2中第二次晶化沉淀反应期间控制反应液pH值为7-8.5,第二次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,老化温度为60-150℃,老化时间为0.5-2.5h;
    步骤a中第一次晶化沉淀反应期间控制反应液pH值为7-8.5,第一次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤b中第二次晶化沉淀反应期间控制反应液pH值为7-8.5,第二次晶化沉淀反应温度为100-120℃,反应压力为1.0-3.0MPa,反应时间为8-24h,步骤c中老化温度为60-150℃,老化时间为0.5-2.5h;
    洗涤结束后还包括对洗涤后的产物进行干燥的步骤,干燥温度为80-150℃,干燥时间为12-24h;
    所述焙烧温度为400-600℃,焙烧时间为4-12h;
    所述有机醇溶剂为无水乙醇;
    所述Cu盐选自硝酸铜和/或醋酸铜,所述Zn盐选自硝酸锌和/或醋酸锌,所述Fe盐选自硝酸铁和/或醋酸铁,所述Ti盐选自四氯化钛、钛酸丁酯、异丙醇钛和硫酸氧钛中的一种或多种。
  10. 权利要求1所述的催化剂或者权利要求2-9中任一项所述的制备方法制备得到的催化剂在二氧化碳加氢合成甲醇反应中的应用。
PCT/CN2022/100990 2021-10-29 2022-06-24 一种二氧化碳合成甲醇的催化剂及其制备方法和应用 WO2023071244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111273325.3A CN113842914B (zh) 2021-10-29 2021-10-29 一种二氧化碳合成甲醇的催化剂及其制备方法和应用
CN202111273325.3 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071244A1 true WO2023071244A1 (zh) 2023-05-04

Family

ID=78983563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100990 WO2023071244A1 (zh) 2021-10-29 2022-06-24 一种二氧化碳合成甲醇的催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113842914B (zh)
WO (1) WO2023071244A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842914B (zh) * 2021-10-29 2023-06-23 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳合成甲醇的催化剂及其制备方法和应用
CN114602476B (zh) * 2022-03-04 2024-02-06 太原理工大学 一种co2加氢制c2+醇的铜铁锌基催化剂的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580750A (zh) * 2012-03-14 2012-07-18 上海华谊(集团)公司 一种二氧化碳加氢制甲醇的催化剂及其制备方法和应用
CN103933978A (zh) * 2014-04-10 2014-07-23 中国科学院福建物质结构研究所 一种用于二氧化碳催化转化的负载型纳米催化剂及其制备方法和应用
CN107008332A (zh) * 2016-01-27 2017-08-04 中国科学院大连化学物理研究所 一种二氧化碳加氢合成甲醇的催化剂及其制备和应用
WO2018215943A1 (en) * 2017-05-24 2018-11-29 Sabic Global Technologies B.V. Copper-zinc-zirconium-based catalyst for direct hydrogenation of co2 to methanol
CN109794276A (zh) * 2019-01-09 2019-05-24 沈阳化工大学 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN113842914A (zh) * 2021-10-29 2021-12-28 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳合成甲醇的催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500382B (zh) * 2011-11-03 2013-07-17 南京工业大学 一种合成甲醇的催化剂及其制备方法
CN112755996A (zh) * 2020-12-11 2021-05-07 上海簇睿低碳能源技术有限公司 用于二氧化碳加氢合成甲醇的催化剂、制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580750A (zh) * 2012-03-14 2012-07-18 上海华谊(集团)公司 一种二氧化碳加氢制甲醇的催化剂及其制备方法和应用
CN103933978A (zh) * 2014-04-10 2014-07-23 中国科学院福建物质结构研究所 一种用于二氧化碳催化转化的负载型纳米催化剂及其制备方法和应用
CN107008332A (zh) * 2016-01-27 2017-08-04 中国科学院大连化学物理研究所 一种二氧化碳加氢合成甲醇的催化剂及其制备和应用
WO2018215943A1 (en) * 2017-05-24 2018-11-29 Sabic Global Technologies B.V. Copper-zinc-zirconium-based catalyst for direct hydrogenation of co2 to methanol
CN109794276A (zh) * 2019-01-09 2019-05-24 沈阳化工大学 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN113842914A (zh) * 2021-10-29 2021-12-28 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳合成甲醇的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113842914B (zh) 2023-06-23
CN113842914A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2018103144A1 (zh) 一种用于挥发性有机物治理的锰基催化剂及制备和应用
WO2023071244A1 (zh) 一种二氧化碳合成甲醇的催化剂及其制备方法和应用
CN103447059B (zh) 一种醋酸酯加氢催化剂的制备方法
CN103816908A (zh) 一种用于醋酸酯加氢制乙醇的催化剂及其制备方法
CN109794276A (zh) 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN110327933A (zh) 二氧化碳加氢制备甲醇的催化剂及其制备方法和应用
CN115254100A (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
CN103480374A (zh) 一种醋酸酯加氢催化剂的制备方法
CN109529850A (zh) 一种镍硅催化剂及其制备方法和应用
CN111111686B (zh) 乙酸自热重整制氢用Ba-Mn钙钛矿型钴基催化剂
CN112517012B (zh) 一种co2加氢制甲醇催化剂的制备方法及应用
KR102035714B1 (ko) 탄화수소 개질용 니켈 촉매
CN104190461B (zh) 一种制备clston型可见光分解水制氢催化剂的方法
CN111111675A (zh) 一种Ni-CeO2催化剂的制备方法
CN115837275A (zh) 一种钙钛矿型高熵氧化物及其制备方法和应用
CN116060035A (zh) 固体反相催化剂及其制备方法与催化低温二氧化碳甲烷化的应用
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN111437862A (zh) 一种用于二氧化碳加氢制备甲醇的催化剂及其制备方法
CN102500382B (zh) 一种合成甲醇的催化剂及其制备方法
CN115646500B (zh) 一种氨分解制氢催化剂及其制备方法与应用
CN114534732B (zh) 一种丙烷蒸汽重整制备氢气的催化剂的合成方法
CN110586064A (zh) 一种锂掺杂氧化锆负载氧化铟催化剂及其制备方法和应用
CN111744488B (zh) 一种用于浆态床合成气制取二甲醚的催化剂及其制备方法
CN114950439A (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN112619654A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885150

Country of ref document: EP

Kind code of ref document: A1