WO2023070943A1 - 抑压水池装置及核反应堆 - Google Patents

抑压水池装置及核反应堆 Download PDF

Info

Publication number
WO2023070943A1
WO2023070943A1 PCT/CN2022/070362 CN2022070362W WO2023070943A1 WO 2023070943 A1 WO2023070943 A1 WO 2023070943A1 CN 2022070362 W CN2022070362 W CN 2022070362W WO 2023070943 A1 WO2023070943 A1 WO 2023070943A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
housing
section
cooling liquid
pool
Prior art date
Application number
PCT/CN2022/070362
Other languages
English (en)
French (fr)
Inventor
梁活
刘金林
杨江
陈韵茵
崔旭阳
刘仲昊
陈忆晨
纪文英
沈永刚
欧阳勇
卢向晖
王仙茅
刘建昌
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2023070943A1 publication Critical patent/WO2023070943A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • G21C9/012Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of equipment design for safety systems of nuclear power plants, in particular to a decompression pool device and a nuclear reactor.
  • Containment is of special significance to the safety of nuclear power plants. It is the last barrier to prevent fission products from fuel and primary radioactive materials from entering the environment.
  • a loss of water accident occurs in the reactor coolant system in the nuclear power plant system or the steam-water circuit of the secondary circuit breaks or fails, it is necessary to ensure the discharge of core heat and the integrity of the containment vessel to limit the development of the accident and reduce the consequences of the accident. For this reason, nuclear power plants have set up special safety facilities.
  • a suppression pool system is used as a safety device, or a containment spray system is used as a safety device of the containment.
  • a containment spray system is used as a safety device of the containment.
  • the steam condensation effect of the depressive pool is average, resulting in the gas mixture entering the air space of the depressive pool still contains more steam and has a higher temperature, resulting in the need for a larger volume of air space and cooling water To complete the cooling steam.
  • the containment spray system still has disadvantages. Its startup needs to rely on the active operation of the spray pump, and the external power supply must be relied on to ensure the system's work, and the safety factor is low.
  • the technical problem to be solved by the present invention is to provide a decompression pool device and a nuclear reactor.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a decompression pool device, including a housing and at least one hollow decompression pipe, and the housing is provided with an airtight cavity and a number of compartments for delaying the flow of gas. a plate; the cavity is filled with cooling liquid, and the partition is immersed in the cooling liquid; and an indwelling space for accommodating the gas is provided above the cooling liquid inside the cavity;
  • the pressure suppression pipe runs through the outer wall of the housing, and the pressure suppression pipe includes an outer shell section located outside the shell and an inner shell section located inside the shell; the end of the inner shell section is inserted into the In the cooling liquid, the outer section of the shell is connected to the gas in the environment, and under predetermined working conditions, the gas enters the cooling liquid through the inner section of the shell for cooling.
  • At least one side of any partition is fixedly connected to the inner side wall of the housing, and at least another side of the partition and the adjacent inner side wall of the housing are left for the A gas flow port leading to the dwelling space.
  • any two adjacent partitions are arranged at intervals along the buoyancy direction of the gas.
  • the two flow ports are located on opposite sides of the housing in the horizontal or liquid surface direction;
  • the inner wall of the casing, the space defined by the plurality of partitions in the cooling liquid, and all the flow ports form a cooling channel for gas flow.
  • the longitudinal section of the baffle is wave-shaped, and the baffle is provided with several grooved flow channels for restricting the aggregation of the gas into large bubbles.
  • the separator forms a set angle with the liquid surface of the cooling liquid; the included angle is 5°-10°.
  • the housing is further provided with at least one support column for supporting the partition, one end of the support column is fixedly connected to the inner wall of the housing, and the other end passes through the partition and is fixedly connected to it.
  • the casing is also provided with an air outlet pipe communicating with the indwelling space and the environment, and a valve arranged on the air outlet pipe to control the air pressure of the indwelling space and the indwelling space. opening and closing of the valve to discharge the gas in the retention space.
  • the inner section of the shell includes a vertical section and a transverse section submerged in the cooling liquid, one end of the vertical section communicates with the outer end of the shell, and the other end of the vertical section passes through the indwelling
  • the space communicates with the transverse section, and the transverse section is provided with an air outlet for discharging the gas into the cooling liquid.
  • the transverse section is tubular and its two axial ends are sealed; the vertical section communicates with the outer wall of the transverse section, and the outer wall of the transverse section is provided with several exhaust holes, and the air outlet is the vent.
  • the separator is provided with several groove flow channels for restricting the aggregation of the gas into large bubbles; the axial extension direction of the transverse section is the same as the axial extension direction of the groove flow channels vertical.
  • the present invention also constructs a nuclear reactor, which includes a containment vessel and a steam pipeline arranged in the containment vessel.
  • the containment vessel is also provided with the above-mentioned decompression pool device, and the outer section of the depressurization pool device is connected to the gas inside the containment vessel.
  • the decompression pool device in the present invention can suppress the rise of containment pressure and temperature only by using simple structures such as the shell, decompression pipes, cooling liquid and partitions, and the manufacturing process is simple , and the cost is low; moreover, a reserved space is set in the shell, and the gas in the environment is automatically sucked in by the pressure difference effect. Improving the suppression effect can reduce the ground air space and cooling water volume requirements of conventional suppression pools, thereby reducing the difficulty of construction and design, and improving the economics of nuclear power plants.
  • Fig. 1 is a schematic structural view of the depression pool device of the present invention
  • Fig. 2 is a schematic diagram of a circuitous flow channel in the depressive pool device of the present invention
  • Fig. 3 is the structural schematic diagram of the dividing plate in the depression pool device of the present invention.
  • Fig. 4 is the schematic diagram of the longitudinal section of the dividing plate in the depression pool device of the present invention.
  • 5-6 are structural schematic diagrams of two adjacent partitions in the decompression pool device of the present invention respectively connected to the housing in a top view.
  • first”, “second”, “third” and so on are only for the convenience of describing the technical solution, and cannot be interpreted as indicating or implying the relative importance or implicitly specifying the quantity of the indicated technical features. Therefore, A feature defined with “first”, “second”, “third”, etc. may expressly or implicitly include one or more of that feature. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • a decompression pool device is created, which can be applied to the internal environment of the containment vessel, and can quickly and effectively suppress the pressure and temperature rise of the containment vessel under predetermined working conditions when the high-temperature and high-pressure gas pipeline ruptures, so as to protect the interior of the containment vessel environment.
  • a decompression pool device can also be used in other environments that need to quickly process high-temperature and high-pressure gases.
  • a depressurization pool device in the present invention includes a housing 1 and at least one hollow depressurization pipe 2.
  • the housing 1 is provided with an airtight cavity and several valves for delaying the flow of gas.
  • the depressurization pool device can be installed in any place with appropriate space inside the containment vessel, preferably around the soda water circuit, so that the depressurization pool device acts on a predetermined working condition at the first time.
  • the casing 1 can be in the shape of a regular cuboid, ring, cylinder or polyhedron, as long as it meets a certain structural strength.
  • the shell 1 is provided with a closed cavity and a plurality of baffles 3 for delaying the flow of gas.
  • the baffles 3 are fixedly connected to the inner wall of the shell 1;
  • An indwelling space 12 for accommodating gas is provided above the cooling liquid 11 .
  • the coolant 11 in the shell 1 needs to be filled in advance before the reactor runs, and the filling method can be a liquid opening (not shown in the figure) and a control liquid opening opened on the side wall or bottom wall of the shell 1
  • the open and close switch (not shown in the figure) opens the liquid opening through the switch when the coolant 11 needs to be filled, and closes the liquid opening after filling to ensure that the cavity in the housing 1 is airtight.
  • the cooling liquid 11 divides the space in the cavity into a gas space, that is, the indwelling space 12 and a liquid space.
  • the gas space is located above the liquid space, and the temperature and pressure of the gas space are approximately the same as the internal environment of the containment at the beginning.
  • the gas contained in the dwelling space 12 may be the gas in the atmosphere, or a mixture of the gas in the atmosphere and the gas inhaled from the containment vessel.
  • the volume of the shell 1 and its cavity and the cooling liquid 11 can be set according to the design characteristics of different reactors, and match the key parameters such as the maximum breach diameter of the reactor, the water loading capacity of the primary and secondary circuits, operating temperature and pressure, etc. .
  • water may be used as the cooling liquid 11 .
  • the decompression pool device is installed in the containment, and is connected to the atmospheric environment of the containment and the internal space of the shell 1 through the decompression pipe 2; under predetermined working conditions, the gas in the containment enters the cooling liquid 11 through the decompression pipe 2 for cooling .
  • the predetermined working condition refers to the atmospheric pressure in the containment is stronger than the pressure of the dwelling space 12 in the shell 1; specifically, when the primary side pipe or the secondary side pipe of the containment nuclear island system ruptures, the high temperature and high pressure steam Rapidly released from the breach to the internal environment of the containment, the space pressure rises rapidly and a certain pressure difference is generated between the atmosphere in the containment and the air space in the decompression pool device.
  • the atmosphere in the containment is larger than the air space of pressure. Due to the pressure difference effect, the mixed gas in the containment, such as steam and non-condensable gas, quickly enters the liquid space of the suppression pool through the pressure suppression pipe 2, and then makes the steam contact with water, and quickly condenses into water to reduce the pressure of the containment vessel. internal pressure.
  • the mixed gas in the containment such as steam and non-condensable gas
  • the pressure suppression pipe 2 is hollow inside, and one end of the containment internal environment is provided with an air vent, and the other end of the cooling liquid 11 is provided with an air outlet; the pressure suppression pipe 2 runs through The outer wall of the shell 1, and the pressure suppression pipe includes an outer shell section 21 located outside the shell 1, and an inner shell section 22 located inside the shell 1; the end of the inner shell section 22 is inserted into the cooling liquid 11, and the outer shell section 21 The gas in the environment is connected, and the gas enters the cooling liquid 11 through the shell inner section 22 for cooling.
  • the pressure suppression pipe 2 is a hollow strip-shaped round pipe, and the shell inner section 22 includes a vertical section 221 and a transverse section 222 immersed in the cooling liquid 11.
  • One end of the vertical section 221 communicates with the outer end of the shell.
  • the other end of the vertical section 221 passes through the indwelling space 12 and communicates with the horizontal section 222.
  • the horizontal section 222 is provided with a gas outlet. The gas is discharged into the cooling liquid 11.
  • connection between the shell outer section 21 and the vertical section 221 can be threaded connection, welding or integral molding;
  • the extension direction of the shell outer section 21 is the same as the axial direction of the housing 1
  • the extension direction of the vertical section 221 is the same as that of the shell outer section 21
  • the extension direction of the transverse section 222 is perpendicular to the vertical section 221
  • the transverse section 222 is parallel to the vertical
  • the straight section 221 is fixedly connected, and the fixed connection method may be welding, bonding or threaded connection.
  • the specific structure of the shell outer section 21, the vertical section 221 and the transverse section 222 is only a specific embodiment of the present invention.
  • the shape and extension direction of the pressure suppression pipe 2 can be changed according to actual working conditions, such as
  • the extension direction of the part of the shell inner section 22 submerged in the cooling liquid 11 can be set as a meandering extension, and the cooling effect can be enhanced by prolonging the time for the gas to pass through the pipeline.
  • the air outlet of the transverse section 222 can be the through holes of the transverse section 222 at the two axial ends of the pipeline, or several exhaust holes 2221 provided on the circumferential outer wall of the transverse section 222; in this embodiment, in order to make The gas in the containment is fully cooled.
  • the transverse section 222 is tubular and its two axial ends are sealed.
  • the vertical section 221 communicates with the outer wall of the transverse section 222.
  • exhaust holes 2221 are provided on the outer wall of the transverse section 222.
  • the transverse The air outlet of section 222 is the exhaust hole 2221 .
  • the aperture is between 1cm-2cm, and the distance between the centers of adjacent exhaust holes 2221 is equal to twice the aperture;
  • the suppression pipe 2 should be inserted into the cooling liquid 11 as deep as possible.
  • the suppression pipe 2 is inserted to the bottom of the suppression pool, lower than the bottom corrugated partition 3, and the axis of the transverse section 222
  • the extending direction is perpendicular to the axial extending direction of the grooved flow channels 31 of the separator 3 , so that the ejected gas is distributed in more grooved flow channels 31 .
  • the liquid level in the suppression tube 2 will be equal to the liquid level in the pool.
  • Parameters such as the number of suppression tubes 2 and the inner diameter of the grooved flow channel 31 can be set according to specific reactor parameters.
  • a partition 3 is arranged in the shell 1 and the partition 3 is immersed in the cooling liquid 11, when the environment After the gas enters the cooling liquid 11 through the pressure suppression pipe 2, the partition plate 3 can play a role in preventing the gas from rising, so as to achieve the purpose of fully cooling the gas.
  • at least one side of any partition 3 is fixedly connected to the inner side wall of the housing 1, and at least the other side of the partition 3 and the adjacent inner side wall of the housing 1 leave a supply gas leading to the indwelling space 12 The circulation port 7.
  • the partition plate 3 is a rectangular plate-shaped structure, which includes four edges, three of which are attached to the inner wall of the housing 1, and the edges are fixedly connected to the
  • the inner side wall of the housing 1 can be fixed by welding, bonding or fixedly connected by a connecting piece; there is a distance between the fourth edge of the partition 3 and the inner side wall of the adjacent housing 1 for the gas to go to the indwelling space 12
  • a distance of about 20 cm can be maintained between the two.
  • the partition 3 when the partition 3 is installed, it is inclined relative to the page of the cooling liquid 11, and the partition 3 and the liquid surface of the cooling liquid 11 form a set angle; the angle is 5°-10°.
  • any two adjacent partitions 3 are arranged at intervals along the flow direction of the gas, specifically along the buoyancy direction of the gas; as shown in Figure 5 and Figure 6, any two adjacent partitions 3 At least one side edge is respectively fixed on opposite sides of the inner wall of the casing 1 , so that the two flow ports 7 are located on opposite sides of the casing 1 in the horizontal or liquid surface direction.
  • the space defined by the inner wall of the casing 1 and the partitions 3 in the cooling liquid 11 together with all the flow ports 7 constitutes a cooling channel ( 71 ) for gas flow. It can be understood that, as shown in FIG.
  • the transverse section 222 of the decompression pipe 2 is placed under the bottommost partition 3 , and the partition 3 is arranged upwards from the bottom of the housing 1 .
  • the lowest point of the upper partition 3 is higher than the highest point of the lower partition 3 , thereby forming a winding cooling channel 71 .
  • the number of partitions 3 can be appropriately increased, and preferably 4-6 partitions 3 are set up.
  • any two adjacent partitions 3 are arranged equidistantly. In addition, it needs to be ensured that the board of the uppermost compartment is also submerged below the liquid level of the cooling liquid 11 .
  • the partition 3 is made of a stainless steel plate structure, which prevents the partition 3 from rusting on the basis of ensuring structural strength, and also has the effect of heat dissipation.
  • the separator 3 is also provided with several groove flow channels 31 for restricting the gas from agglomerating to form large bubbles. It can be understood that, as shown in Figure 4, the longitudinal section of the partition 3 is wavy; wherein the corrugated design forms several parallel grooved channels 31 on the partition 3, which can enhance the stability of the partition 3 on the one hand.
  • the overall rigidity prevents deformation; on the other hand, it can prevent the gas discharged from the pressure suppression pipe 2 from aggregating into large bubbles under the partition 3, thereby reducing the contact area between the gas and the cooling liquid 11;
  • the contact area of the plate 3 is beneficial to transfer the energy of the gas to the partition 3, which is beneficial to the cooling of the gas.
  • the axial extension direction of the transverse section 222 of the pressure suppression pipe 2 is perpendicular to the axial extension direction of the groove flow channel 31 , so that the ejected gas is distributed in more corrugated flow channels.
  • the groove flow channel 31 is parallel to the direction in which the separator 3 is inclined upward.
  • the partition 3 in order to allow the pressure suppression tube 2 to pass through the partition 3 and be directly inserted from the top of the casing 1 to the bottom of the casing 1, the partition 3 also has several through holes 32 for the suppression tube, the size and number of which are And the position matches the vertical section 221 in the suppression pipe 2 .
  • at least one support column 4 for supporting the partition 3 is provided in the housing 1 , and the support column through holes 33 corresponding to the number and size of the support columns 4 are provided on the partition 3 .
  • One end of the support column 4 is fixedly connected to the inner wall of the housing 1 , and the other end passes through the partition plate 3 and is fixedly connected thereto.
  • the support column 4 is a cylindrical stainless steel column, standing vertically on the bottom of the housing 1 , to support and fix the partition 3 .
  • the bottom of the support column 4 is fixed on the inner bottom wall of the housing 1 by welding or the like; the top of the support column 4 can be fixedly connected to the inner top wall of the housing 1, or suspended in the housing 1; the support of the support column 4 and the partition 3
  • the contact edge of the column through hole 33 is fixedly connected, and the connection method may be screw connection, bonding or welding.
  • the housing 1 is also provided with an air outlet pipe 5 communicating with the indwelling space 12 and the environment, and a valve 6 located on the air outlet pipe 5, and the opening of the valve 6 is controlled according to the environment and the atmospheric pressure of the indwelling space 12. combined to discharge the gas in the retention space 12.
  • the valve 6 can be automatically opened to realize the communication between the air space of the depressive pool and the atmospheric space of the containment, preventing The water in the suppression pool flows back into the containment environment through the suppression pipe 2 .
  • the valve is in a closed isolation state.
  • the valve 6 may include a pressure relief valve or a burst valve, and may also be a valve 6 connected to a pressure sensor; where the pressure sensor is placed inside the shell 1, when the pressure in the air space of the depressurized pool device is higher than the atmospheric pressure of the containment vessel When the preset value is reached, the controllable valve 6 is automatically opened until the pressure of the air space of the depressurized water pool device is lower than the second preset value of the containment atmospheric pressure.
  • the bubbles are gradually cooled by the cooling liquid 11 and the separator 3, and finally the water vapor in the gas mixture is condensed and stays in the liquid space, and finally only the lower-temperature non-condensable gas enters the depression pool air space.
  • the proportion of the liquid space in the housing 1 to the volume of the housing 1 is too high, part of the liquid can be discharged through the liquid opening opened on the side wall or the bottom wall of the housing 1 .
  • the obliquely arranged partition 3 slows down the floating speed of the gas, and at the same time increases the movement distance of the gas in the liquid space, thereby greatly increasing the contact time between the gas and the cooling liquid 11, and improving the cooling efficiency of the gas and the condensation ratio of water vapor , reducing the temperature of non-condensable gases entering the gas space and the share of water vapor. Based on these advantages, the air space and liquid space volume of the depressing pool device can be smaller than that of conventional depressing pools, and the construction cost is lower.
  • the present invention also constructs a nuclear reactor, which includes a containment vessel and a steam pipeline located in the containment vessel.
  • the outer section 21 accesses the gas inside the containment vessel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种抑压水池装置及核反应堆,其中抑压水池装置包括壳体(1)及至少一条中空的抑压管(2),壳体(1)内设有密闭的空腔及若干延缓气体流动的隔板(3);空腔内填充有冷却液(11),隔板(3)浸没在冷却液(11)中;并且空腔内部的冷却液(11)上方设有容纳气体的留置空间(12);抑压管(2)贯穿壳体(1)外壁,包括位于壳体(1)外的壳外段(21)、以及位于壳体(1)内的壳内段(22);壳内段(22)的端部插入冷却液(11)中,壳外段(21)接入环境中的气体;本抑压水池装置属于非能动系统,安全可靠性能高;冷却效率高,抑压效果显著,可有效抑制预定工况下安全壳压力和温度的上升;且对空间(12)和冷却液(11)的体积需求低。

Description

抑压水池装置及核反应堆 技术领域
本发明涉及核电厂安全系统设备设计领域,尤其涉及一种抑压水池装置及核反应堆。
背景技术
安全壳对核电厂安全具有特别重要的意义。它是阻挡来自燃料的裂变产物及一回路放射性物质进入环境的最后一道屏障。当核电厂系统中的反应堆冷却剂系统发生失水事故或二回路的汽水回路发生破裂或失效时,必须保证堆芯热量的排出和安全壳的完整性,限制事故的发展和减轻事故的后果,为此核电站设置了专设安全设施。
在现有技术中,比如在一些反应堆中采用抑压水池系统作为安全设施,或者采用安全壳喷淋系统作为安全壳的安全设施。但是目前的抑压水池系统设计中,抑压水池蒸汽冷凝效果一般,导致进入抑压水池气空间的气体混合物依然含有较多蒸汽,且温度较高,造成需要较大的气空间和冷却水体积才能完成冷却蒸汽。而安全壳喷淋系统仍然存在弊端,其启动需要依托于喷淋水泵的能动运行,必须要依靠外部电源才能保证系统的工作,安全系数较低。
技术问题
本发明要解决的技术问题在于,提供一种抑压水池装置及核反应堆。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种抑压水池装置,包括壳体及至少一条中空的抑压管,所述壳体内设有密闭的空腔及若干延缓气体流动的隔板;所述空腔内填充有冷却液,所述隔板浸没在所述冷却液中;并且所述空腔内部的所述冷却液上方设有容纳所述气体的留置空间;
所述抑压管贯穿所述壳体外壁,所述抑压管包括位于所述壳体外的壳外段、以及位于所述壳体内的壳内段;所述壳内段的端部插入所述冷却液中,所述壳外段接入环境中的气体,并且在预定工况下所述气体经所述壳内段进入所述冷却液中进行冷却。
优选地,任一所述隔板的至少一侧固定连接于所述壳体的内侧壁,且所述隔板的至少另一侧与其邻近的所述壳体内侧壁之间留有供所述气体通往所述留置空间的流通口。
优选地,任意相邻的两个所述隔板沿所述气体的浮力方向间隔排布。
优选地,在水平或液面方向两个所述流通口位于所述壳体内相对的两侧;
所述壳体内壁与若干所述隔板在冷却液中所界定出的所界定出的空间、与所有所述流通口构成供气体流动的冷却流道。
优选地,所述隔板纵截面呈波浪状,所述隔板上设有若干条用于限制所述气体聚合呈大气泡的凹槽流道。
优选地,所述隔板与所述冷却液的液面成一设定夹角;所述夹角为5°-10°。
优选地,所述壳体还设有至少一条用于支撑隔板的支撑柱,所述支撑柱一端固定连接于所述壳体内壁,其另一端穿过所述隔板并与其固定连接。
优选地,所述壳体还设有连通所述留置空间和所述环境的出气管、及设于所述出气管上的阀门,根据所述环境与所述留置空间的大气压强大小控制所述阀门的开合,以排放所述留置空间中的气体。
优选地,所述壳内段包括竖直段及浸没在所述冷却液中的横向段,所述竖直段一端与所述壳外端相连通,所述竖直段另一端经过所述留置空间并与所述横向段相连通,所述横向段设有排放所述气体至所述冷却液中的出气口。
优选地,所述横向段呈管状且两轴端密闭设置;所述竖直段与所述横向段的外壁连通,所述横向段的外壁上设有若干个排气孔,所述出气口为所述排气孔。
优选地,所述隔板上设有若干条用于限制所述气体聚合呈大气泡的凹槽流道;所述横向段的轴向延伸方向与所述凹槽流道的轴向延伸方向相垂直。
本发明还构造一种核反应堆,包括安全壳及设于所述安全壳内的蒸汽管道,所述安全壳内还设有上述的抑压水池装置,所述抑压水池装置的壳外段接入所述安全壳内部的气体。
有益效果
实施本发明具有以下有益效果:本发明中的抑压水池装置仅需利用壳体、抑压管、冷却液及隔板该类简单的结构即可抑制安全壳压力和温度的上升,制作工艺简单,且成本低;而且在壳体内设置留置空间,利用压差效应自动吸入环境的气体,属于非能动系统,无需能动能源输入,安全可靠性能高;还有,隔板的设置有效提高冷却效率,提升抑压效果,可降低常规抑压水池地气空间和冷却水体积需求,进而降低建造和设计难度,提高核电厂经济性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明抑压水池装置的结构示意图;
图2是本发明抑压水池装置中的迂回流道示意图;
图3是本发明抑压水池装置中的隔板的结构示意图;
图4是本发明抑压水池装置中的隔板的纵截面示意图;
图5-图6是本发明抑压水池装置中的相邻两个隔板分别在俯视角度下与壳体连接的结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在核电厂系统中,当反应堆冷却剂系统发生失水事故或二回路的汽水回路发生破裂或失效时,必须保证堆芯热量的排出和安全壳的完整性,限制事故的发展和减轻事故的后果,为此核电站设置了专设安全设施。
因此,本发明中创造了一种抑压水池装置,可应用于安全壳内部环境,在发生高温高压气体管道破裂时迅速有效抑制预定工况下安全壳压力和温度的上升,以保护安全壳内部环境。当然,应用于其他需要快速处理高温高压气体的环境中亦可。
如图1-图6所示,本发明中的一种抑压水池装置,包括壳体1及至少一条中空的抑压管2,壳体1内设有密闭的空腔及若干延缓气体流动的隔板3;空腔内填充有冷却液11,隔板3浸没在冷却液11中;并且空腔内部的冷却液11上方设有容纳气体的留置空间12。
可以理解地,抑压水池装置可设置在安全壳内部任意有适当空间的地方,优选设置在汽水回路周边,以使抑压水池装置在第一时间作用于预定工况。壳体1可呈规则的长方体、环形、圆柱形或多面体不规则形状,只要满足一定的结构强度即可。壳体1内设有密闭的空腔以及多个用于延缓气体流动的隔板3,隔板3固定连接在壳体1的内壁;在空腔内装载有冷却液11,且空腔内部于冷却液11的上方设有容纳气体的留置空间12。
进一步地,壳体1内的冷却液11在反应堆运行前需要提前填充,填充方式可以是在壳体1的侧壁或底壁开设的通液口(图中未示出)及控制通液口开合的开关(图中未示出),在需要填充冷却液11的时候通过开关打开通液口,并在填充完毕后关闭通液口,以保证壳体1内的空腔密闭。冷却液11将空腔内的空间分为气空间也就是留置空间12及液空间,气空间位于液空间的上方,初始时气空间的温度及压强与安全壳内部环境的大致相同。需要说明的是,留置空间12中所容纳的气体可以是大气中的气体,或者是大气中的气体与从安全壳内吸入的气体的混合物。壳体1及其空腔、冷却液11的体积可根据不同反应堆的设计特点进行设定,与反应堆的最大破口直径,一、二回路的水装量、运行温度和压力等关键参数相配合。可选地,冷却液11可采用水。
抑压水池装置安装于安全壳里,通过抑压管2连通安全壳的大气环境及壳体1内部空间;在预定工况下安全壳中的气体经抑压管2进入冷却液11中进行冷却。其中,预定工况指代安全壳内大气压强大于壳体1中的留置空间12的压强;具体地,当安全壳核岛系统的一次侧管道或二次侧管道发生破裂时,高温高压的蒸汽从破口处快速释放到安全壳内部环境中,空间压力迅速升高而在安全壳内大气与抑压水池装置中的气空间之间产生一定的压差,此时安全壳内大气大于气空间的压强。由于压差效应,安全壳中的混合气体,例如蒸汽及不可冷凝气体便通过抑压管2快速进入到抑压水池的液空间,进而使蒸汽与水接触,并快速冷凝为水从而降低安全壳内的压力。
可以理解地,如图1所示,抑压管2内设中空,其于安全壳内部环境的一端设有通气口,及其于冷却液11的另一端设有出气口;抑压管2贯穿壳体1外壁,且抑压管包括位于壳体1外的壳外段21、以及位于壳体1内的壳内段22;壳内段22的端部插入冷却液11中,壳外段21接入环境中的气体,并且气体经壳内段22进入冷却液11中进行冷却。在本实施中,抑压管2为中空的条形圆管,壳内段22包括竖直段221及浸没在冷却液11中的横向段222,竖直段221一端与壳外端相连通,竖直段221的另一端经过留置空间12并与横向段222相连通,横向段222设有出气口,气体可从壳外端进入,并经过竖直段221并由横向段222的出气口处排放气体至冷却液11中。
可以理解地,壳外段21与竖直段221之间的连接可以是螺纹连接、焊接或者是一体成型;在本实施例中,壳外段21及竖直段221分别为同一中空管道于不同位置的部分结构。壳外段21的延伸方向与壳体1的轴向相同,竖直段221的延伸方向与壳外段21的相同,横向段222的延伸方向垂直于竖直段221,且横向段222与竖直段221固定连接,固定连接方式可以是焊接、粘接或者螺纹连接。需要说明的是,壳外段21、竖直段221和横向段222的具体构造只是本发明的一个具体实施例,实际上抑压管2的形状及延伸方向可根据实际工况所改变,比如可以将浸没在冷却液11的部分壳内段22的延伸方向设为蜿蜒延伸,通过加长气体通过管道的时间以加强冷却效果。横向段222的出气口可以是横向段222于其管道的两轴端通孔,也可以是横向段222的周向外壁上设有的若干个排气孔2221;在本实施例中,为了使得安全壳的气体得到充分的冷却,横向段222呈管状且其两轴端密闭设置,竖直段221与横向段222的外壁连通,横向段222的外壁上设有若干个排气孔2221,横向段222的出气口为该排气孔2221。,优选地,孔径在1cm-2cm之间,相邻排气孔2221的圆心距等于两倍孔径;排气孔2221的总面积大于壳外段21和竖直段221的流通面积的1.5倍。
安装时,抑压管2应插入冷却液11尽量深的位置,在本实施例中,抑压管2插至抑压池底部,低于最底层波纹状隔板3,且横向段222的轴向延伸方向与隔板3的凹槽流道31的轴向延伸方向相垂直,以使得喷出的气体分布在更多的凹槽流道31中。正常情况下,由于抑压水池内气空间压强和安全壳气空间压强相等,抑压管2内的液面会与水池内液面相平。抑压管2的数量和凹槽流道31内径等参数可根据特定的反应堆参数所设定。
如图1所示,为了使得安全壳的气体可以在抑压水池装置中得到充分的冷却,在壳体1内设置隔板3并将其述隔板3浸没在冷却液11中,当环境中的气体通过抑压管2进入冷却液11后,隔板3可以起到妨碍气体上升的作用,以达到将气体充分冷却的目的。进一步地,任一隔板3的至少一侧固定连接于壳体1的内侧壁,且隔板3的至少另一侧与其邻近的壳体1内侧壁之间留有供气体通往留置空间12的流通口7。在本实施例中,如图5、图6所示,隔板3呈长方形的板状结构,其包括四个边沿,其中三个边沿与壳体1内侧壁贴合,且该边沿固定连接于壳体1的内侧壁,固定方式可以是焊接、粘接或者通过连接件固定连接;隔板3中第四个边沿与邻近壳体1内侧壁之间留有供气体通往留置空间12的距离以形成流通口7,其两者之间可保持约20cm的距离。同时,为了避免气体在上升过程中积累成大气泡,安装隔板3时将其相对于冷却液11页面呈倾斜设置,隔板3与冷却液11的液面成一设定夹角;夹角为5°-10°。
进一步地,任意相邻的两个隔板3沿气体的流动方向间隔排布,具体沿气体的浮力方向间隔排布;如图5、图6所示,任意相邻的两个隔板3中至少各一侧边沿分别固定于壳体1内侧壁的相对两侧,使得在水平或液面方向两个流通口7位于壳体1内相对的两侧。壳体1内壁与若干隔板3在冷却液11中所界定出的空间、与所有流通口7共同构成供气体流动的冷却流道(71)。可以理解地,如图2所示,在抑压水池装置中,抑压管2的横向段222置于最底层隔板3的下方,从壳体1底部开始往上布置隔板3,在任意相邻的两个隔板3中,位于上方的隔板3的最低点高于位于下方的隔板3的最高点,从而形成迂回上升的冷却流道71。当隔板3的数量越多,冷却流道71的长度就越长,气体在液空间内流动的时间就越长,被冷却的效果就越明显。因此,隔板3的数量可适当增多,优选设立4-6个隔板3。优选地,任意相邻的两个隔板3间隔等距设置。此外,需要保证最顶层隔的板也浸没于冷却液11的液面以下。
优选地,隔板3由不锈钢的板状结构,在保证结构强度的基础上防止隔板3出现生锈问题,同时也有散热的作用。隔板3上还设有若干条用于限制气体聚合呈大气泡的凹槽流道31。可以理解地,如图4所示,隔板3的纵截面呈波浪形;其中波纹形的设计,在隔板3上形成若干条平行的凹槽流道31,一方面可增强隔板3的整体刚性,防止变形;另一方面可防止抑压管2中排出的气体在隔板3下方聚合成大气泡,从而减小气体与冷却液11的接触面积;此外,还增大了气体与隔板3的接触面积,有利于将气体的能量传递给隔板3,有利于气体的冷却降温。优选地,抑压管2的横向段222的轴向延伸方向与凹槽流道31的轴向延伸方向相垂直,以使得喷出的气体分布在更多的波纹流道中。可选地,凹槽流道31与隔板3倾斜向上的方向平行。
如图3所示,为了使得抑压管2能够穿过隔板3,从壳体1顶部直插至壳体1底部,隔板3上还开设若干个抑压管通孔32,尺寸、数量和位置与抑压管2中的竖直段221相匹配。此外,壳体1内还设有至少一条用于支撑隔板3的支撑柱4,隔板3上还设有与支撑柱4的数量及尺寸相对应的支撑柱通孔33。支撑柱4一端固定连接于壳体1内壁,其另一端穿过隔板3并与其固定连接。可以理解地,支撑柱4为圆柱形不锈钢柱,垂直立于壳体1底部,起到支撑和固定隔板3的作用。支撑柱4底部通过焊接等固定方式在壳体1内部底壁;支撑柱4的顶部可与壳体1内部顶壁固定连接,或者悬空于壳体1内;支撑柱4与隔板3的支撑柱通孔33接触边沿固定连接,连接方式可以是螺接、粘接或者焊接。
如图1所示,在壳体1还设有连通留置空间12和环境的出气管5、及设于出气管5上的阀门6,根据环境与留置空间12的大气压强大小控制阀门6的开合,以排放留置空间12中的气体。可以理解地,在预定工况时,当抑压水池装置的气空间的压力高于安全壳大气压力一定值时,阀门6可自动打开,实现抑压水池气空间和安全壳大气空间连通,防止抑压水池内的水经抑压管2逆流至安全壳环境中。其他情况下,阀门处于关闭隔离状态。阀门6可包括泄压阀或者爆破阀,也可以是与压力传感器连接的阀门6;其中压力传感器置于壳体1内部,当抑压水池装置的气空间的压力高于安全壳大气压力第一预设值时,可控制阀门6自动打开,直至抑压水池装置的气空间的压力低于安全壳大气压力第二预设值时关闭。
该抑压水池装置的工作时:
当安全壳内反应堆高温管道发生破裂事故时,大量高温高压水蒸气进入安全壳大气中,使得环境压力升高并高于抑压水池装置气空间的压力。此时,由于压差效应,抑压管2的壳外段21吸入安全壳内的混合气体,并经过横向段222的排气孔2221排放至抑压水池内最底层隔板3的下方。在气体浮力的作用下,气体沿着隔板3的凹槽流道31倾斜向上流动,并在多层隔板3之间形成的冷却流道71缓慢地迂回上升,最后经最顶层隔板3的最高点与壳体1内侧壁之间的空隙上浮至冷却液11水平面,进而进入气空间。迂回流道示意图如图2所示。
气泡在迂回向上流动过程中,逐渐被冷却液11和隔板3冷却,最后使得气体混合物中的水蒸汽被冷凝并停留在液空间中,最后仅剩下较低温的不可凝结气体进入抑压水池气空间。当壳体1内液空间所占壳体1内体积比例过高时,可通过在壳体1的侧壁或底壁开设的通液口排出部分液体。
倾斜布置的隔板3,减缓了气体上浮的速度,同时增长了气体在液空间内运动的路程,从而大大增加了气体和冷却液11接触的时间,提高了气体的冷却效率和水蒸汽冷凝份额,降低了进入气空间不可凝结气体的温度和水蒸汽的份额。基于这些优点,本抑压水池装置的气空间和液空间体积可以比常规抑压水池的体积更小,建设成本更低。
基于同一总构思,本发明还构造了一种核反应堆,包括安全壳及设于安全壳内的蒸汽管道,其特征在于,安全壳内还设有上述的抑压水池装置,抑压水池装置的壳外段21接入安全壳内部的气体。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (12)

  1. 一种抑压水池装置,其特征在于,包括壳体(1)及至少一条中空的抑压管(2),所述壳体(1)内设有密闭的空腔及若干延缓气体流动的隔板(3);所述空腔内填充有冷却液(11),所述隔板(3)浸没在所述冷却液(11)中;并且所述空腔内部的所述冷却液(11)上方设有容纳所述气体的留置空间(12);
    所述抑压管(2)贯穿所述壳体(1)外壁,所述抑压管(2)包括位于所述壳体(1)外的壳外段(21)、以及位于所述壳体(1)内的壳内段(22);所述壳内段(22)的端部插入所述冷却液(11)中,所述壳外段(21)接入环境中的气体,并且在预定工况下所述气体经所述壳内段(22)进入所述冷却液(11)中进行冷却。
  2. 根据权利要求1所述的抑压水池装置,其特征在于,任一所述隔板(3)的至少一侧固定连接于所述壳体(1)的内侧壁,且所述隔板(3)的至少另一侧与其邻近的所述壳体(1)内侧壁之间设有供所述气体通往所述留置空间(12)的流通口(7)。
  3. 根据权利要求2所述的抑压水池装置,其特征在于,任意相邻的两个所述隔板(3)沿所述气体的浮力方向间隔排布。
  4. 根据权利要求2所述的抑压水池装置,其特征在于,在水平或液面方向两个所述流通口(7)位于所述壳体(1)内相对的两侧;
    所述壳体(1)内壁与若干所述隔板(3)在所述冷却液(11)中所界定出的空间、与所有所述流通口(7)构成供气体流动的冷却流道(71)。
  5. 根据权利要求2所述的抑压水池装置,其特征在于,所述隔板(3)纵截面呈波浪状,所述隔板(3)上设有若干条用于限制所述气体聚合呈大气泡的凹槽流道(31)。
  6. 根据权利要求2所述的抑压水池装置,其特征在于,所述隔板(3)与所述冷却液(11)的液面成一设定夹角;所述夹角为5°-10°。
  7. 根据权利要求2所述的抑压水池装置,其特征在于,所述壳体(1)还设有至少一条用于支撑隔板(3)的支撑柱(4),所述支撑柱(4)一端固定连接于所述壳体(1)内壁,其另一端穿过所述隔板(3)并与其固定连接。
  8. 根据权利要求1所述的抑压水池装置,其特征在于,所述壳体(1)还设有连通所述留置空间(12)和所述环境的出气管(5)、及设于所述出气管(5)上的阀门(6),根据所述环境与所述留置空间(12)的大气压强大小控制所述阀门(6)的开合,以排放所述留置空间(12)中的气体。
  9. 根据权利要求1所述的抑压水池装置,其特征在于,所述壳内段(22)包括竖直段(221)及浸没在所述冷却液(11)中的横向段(222),所述竖直段(221)一端与所述壳外端相连通,所述竖直段(221)另一端经过所述留置空间(12)并与所述横向段(222)相连通,所述横向段(222)设有排放所述气体至所述冷却液(11)中的出气口。
  10. 根据权利要求9所述的抑压水池装置,其特征在于,所述横向段(222)呈管状且两轴端密闭设置;所述竖直段(221)与所述横向段(222)的外壁连通,所述横向段(222)的外壁上设有若干个排气孔(2221),所述出气口为所述排气孔(2221)。
  11. 根据权利要求2所述的抑压水池装置,其特征在于,所述隔板(3)上设有若干条用于限制所述气体聚合呈大气泡的凹槽流道(31)。
  12. 一种核反应堆,包括安全壳及设于所述安全壳内的蒸汽管道,其特征在于,所述安全壳内还设有上述权利要求1-11任一项所述的抑压水池装置,所述抑压水池装置的壳外段(21)接入所述安全壳内部的气体。
PCT/CN2022/070362 2021-10-29 2022-01-05 抑压水池装置及核反应堆 WO2023070943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277570.1A CN114171217A (zh) 2021-10-29 2021-10-29 抑压水池装置及核反应堆
CN202111277570.1 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023070943A1 true WO2023070943A1 (zh) 2023-05-04

Family

ID=80477964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070362 WO2023070943A1 (zh) 2021-10-29 2022-01-05 抑压水池装置及核反应堆

Country Status (2)

Country Link
CN (1) CN114171217A (zh)
WO (1) WO2023070943A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967781A (zh) * 2022-04-27 2022-08-30 中广核核电运营有限公司 湿度控制装置及安全壳
CN116246804B (zh) * 2023-05-11 2023-07-07 中国电力工程顾问集团有限公司 一种抑压水池及水上浮动核电站的安全系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301215A (en) * 1992-11-25 1994-04-05 General Electric Company Nuclear reactor building
CN104835541A (zh) * 2015-03-17 2015-08-12 上海核工程研究设计院 一种非能动安全壳冷却及降压系统
CN104934076A (zh) * 2015-06-17 2015-09-23 中科华核电技术研究院有限公司 一种两级抑压的安全壳及其抑压水池系统
CN106898389A (zh) * 2015-12-21 2017-06-27 中国核动力研究设计院 一种固有安全的安全壳抑压冷却系统
CN107093470A (zh) * 2017-03-10 2017-08-25 中国核电工程有限公司 一种加强冷却的安全壳抑压系统
CN107293335A (zh) * 2016-04-12 2017-10-24 中广核研究院有限公司 安全壳非能动抑压系统
CN207337938U (zh) * 2017-09-30 2018-05-08 中国船舶重工集团公司第七一九研究所 用于核商船的安全壳系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301215A (en) * 1992-11-25 1994-04-05 General Electric Company Nuclear reactor building
CN104835541A (zh) * 2015-03-17 2015-08-12 上海核工程研究设计院 一种非能动安全壳冷却及降压系统
CN104934076A (zh) * 2015-06-17 2015-09-23 中科华核电技术研究院有限公司 一种两级抑压的安全壳及其抑压水池系统
CN106898389A (zh) * 2015-12-21 2017-06-27 中国核动力研究设计院 一种固有安全的安全壳抑压冷却系统
CN107293335A (zh) * 2016-04-12 2017-10-24 中广核研究院有限公司 安全壳非能动抑压系统
CN107093470A (zh) * 2017-03-10 2017-08-25 中国核电工程有限公司 一种加强冷却的安全壳抑压系统
CN207337938U (zh) * 2017-09-30 2018-05-08 中国船舶重工集团公司第七一九研究所 用于核商船的安全壳系统

Also Published As

Publication number Publication date
CN114171217A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023070943A1 (zh) 抑压水池装置及核反应堆
JP5006178B2 (ja) 原子炉格納容器およびそれを用いた原子力プラント
KR102580625B1 (ko) 냉간 셧다운을 위한 수동 냉각
CA2846055C (en) Pressurized water reactor with compact passive safety systems
JP5463196B2 (ja) 原子炉格納容器冷却設備を備えた原子力プラント
KR101366218B1 (ko) 원자로 및 원자로의 반응로 코어 냉각 방법
WO2016089250A1 (ru) Система пассивного отвода тепла из внутреннего объема защитной оболочки
EP0667623A1 (en) A system for passively dissipating heat from the interior of a nuclear reactor containment structure
JP2007051929A (ja) 原子炉格納容器冷却設備および原子力プラント
ES2699990T3 (es) Placa integral tubular para vasija a presión del reactor
JP3159820B2 (ja) 原子炉格納設備
WO2020151588A1 (zh) 一种具有迷宫式流道的池式铅基快堆
JPH0727055B2 (ja) 原子炉容器用の受動熱除去系
JP2528977B2 (ja) 原子炉格納容器
JP2011021901A (ja) 液体金属冷却原子炉用受動冷却システム
JP2001228280A (ja) 原子炉
JP4031259B2 (ja) 原子炉格納容器冷却設備
CN114999683A (zh) 反应堆的一体化安全系统
JPS6018960B2 (ja) 原子炉格納容器
CN214012518U (zh) 一种压力容器顶部双层壳体的一体化非能动反应堆
JP5607880B2 (ja) 受動的逆止め弁システム
JP2013246117A (ja) 原子力プラント
CN114082247B (zh) 汽水分离器及余热导出系统
CN220584934U (zh) 一种非能动安全壳冷却系统
JPH05323084A (ja) 原子炉格納容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884863

Country of ref document: EP

Kind code of ref document: A1