WO2023070864A1 - 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法 - Google Patents

基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法 Download PDF

Info

Publication number
WO2023070864A1
WO2023070864A1 PCT/CN2021/137594 CN2021137594W WO2023070864A1 WO 2023070864 A1 WO2023070864 A1 WO 2023070864A1 CN 2021137594 W CN2021137594 W CN 2021137594W WO 2023070864 A1 WO2023070864 A1 WO 2023070864A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
reactive ion
ion etching
gold film
stretchable
Prior art date
Application number
PCT/CN2021/137594
Other languages
English (en)
French (fr)
Inventor
刘志远
李光林
赵阳
余潜衡远
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023070864A1 publication Critical patent/WO2023070864A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering

Definitions

  • the present application relates to the technical field of electrode materials, in particular to a flexible and stretchable gold film electrode based on reactive ion etching and a preparation method thereof.
  • Traditional semiconductor devices are planar rigid materials based on silicon. Due to the brittleness of silicon, the fracture strain is less than 1%, so traditional electronic devices do not have flexibility and stretchability at all. Electronic devices that are soft and stretchable like rubber will gradually replace traditional rigid electronic devices. Future electronic devices will be highly deformable, capable of changing their shape to meet deformation requirements such as stretching, compression, and wrinkling. Flexible and stretchable electronic devices will make many applications possible, especially in the fields of biomedical devices, flexible displays, and smart wearable devices. Some specific application examples include implanted neural electrodes, artificial eyes, Electronic skin, stretchable transistors, human health monitoring equipment, etc.
  • the existing flexible electrodes have the following disadvantages: the substrate of the existing conductive film flexible electrodes is composed of PDMS or other elastic polymers, the stretchability is not high enough, and the interface adhesion between the conductive film and the polymer substrate is relatively poor , easy to fall off, resulting in low stability of flexible electrodes, which is not conducive to long-term implantable nerve electrodes or long-term body surface wearable biosignal monitoring.
  • the present application provides a flexible and stretchable gold film electrode based on reactive ion etching and its preparation method, by magnetron sputtering a layer of gold film on the surface of the polymer flexible substrate after the reactive ion etching process, avoiding the The interface adhesion between the gold film and the substrate is poor, and it is easy to fall off.
  • the electrode has excellent stretchability and can maintain electrical conduction under large tensile deformation.
  • the present application provides a method for preparing a flexible and stretchable gold film electrode based on reactive ion etching, comprising the following steps: A layer of gold film is magnetron sputtered on the surface; wherein, the thickness of the gold film is 10-40 nanometers, and the gold film has a micron and/or nanoscale crack structure.
  • the polymer flexible substrate is an SEBS polymer substrate.
  • the crack structure is trivial island shape.
  • Step 1 Spin-coat the SEBS solution on the substrate, let it stand until it volatilizes to form a film, and obtain the SEBS polymer substrate;
  • Step 2 using a reactive ion etching process to etch the surface of the SEBS polymer substrate;
  • Step 3 paste the metal mask on the surface of the etched SEBS polymer substrate, and magnetron sputtering a layer of gold film on the surface, the thickness of the gold film is 10-40 nanometers, the The gold thin film has a micron and/or nanoscale crack structure, and the shape of the crack structure is a trivial island shape;
  • Step 4 Remove the metal mask to obtain a highly stretchable flexible gold film electrode based on reactive ion etching process.
  • the process parameters of reactive ion etching Ar gas flow rate is 10-15ccm; CF4 gas flow rate is 30-40ccm, air pressure is 10-15Pa; power parameter is 120-150W, etching time for 80-100 seconds.
  • the Ar gas flow rate is 10 ccm; the CF4 gas flow rate is 30 ccm, the pressure is 13.3 Pa; the power parameter is 150 W, and the etching time is 90 seconds.
  • the magnetron sputtering parameters are: sputtering air pressure 3.5-4.0Pa, sputtering time 8-15 seconds, sputtering power 130-160W.
  • magnetron sputtering are: sputtering air pressure 3.8Pa, sputtering time 14 seconds, sputtering power 150W.
  • the present application also provides a flexible and stretchable gold film electrode, which is obtained by a preparation method of a highly stretchable flexible gold film electrode.
  • the flexible stretchable electrode prepared in this application has excellent stretchability, can maintain electrical conduction under deformation of up to 150%, and still maintain good electrical conductivity under elastic deformation conditions such as bending, kink, and stretching It can meet the complex body surface shape and dynamic deformation requirements of the measured body, and can be applied to implantable nerve electrodes, body surface biological signal monitoring, and large-scale stress and strain sensors.
  • the reactive ion etching process used in this application has simple process, fewer steps, and convenient operation, and can process elastic substrates on a large scale at one time.
  • the flexible and stretchable electrode of this application has excellent interface adhesion and robustness between the gold film and the polymer substrate, is not easy to fall off, is easy to operate, and can be worn and used for a long time.
  • the flexible and stretchable electrode of this application is biocompatible, without any adhesive components, and will not cause skin allergic reactions.
  • Figure 1 is a schematic diagram of the process for preparing a highly stretchable flexible gold film electrode in Example 1 of the present application;
  • Fig. 2 is the microscopic topography of gold thin film surface in the embodiment 1 of the present application;
  • a method for preparing a highly stretchable flexible gold film electrode comprises the following steps: magnetron sputtering a layer of gold film 3 on the surface of a polymer flexible substrate treated by a reactive ion etching process.
  • the thickness of the gold thin film 3 is 10-40 nanometers, and the gold thin film 3 has a micron and/or nanoscale crack structure.
  • the reactive ion etching method is used to process the surface of the polymer substrate to change its surface properties and microscopic morphology, thereby affecting the performance of the gold film 3 deposited by magnetron sputtering.
  • the gold film 3 deposited on it has microns and Nanoscale crack structure. Since the gold film 3 produces micro- and nano-scale crack structures during the magnetron sputtering deposition process, when the gold film 3 is subjected to tensile stress, the micro-cracks can undergo surface deformation, so that a large external force stretches only on the gold film 3. With less strain generated in the film, the energy release rate at the crack tip is greatly reduced, hindering the further propagation of the crack, and significantly improving the stretchability of the flexible electrode. Compared with the sample without RIE, the microcrack structure has more microcracks and forms a trivial island-like microstructure, which makes the gold film have better stretchability.
  • the polymer flexible substrate is SEBS polymer substrate 2 .
  • SEBS polymer substrate 2 can improve the elasticity and fracture toughness of flexible electrodes.
  • the SEBS polymer substrate 2 has extremely strong viscosity, thereby greatly improving the interfacial adhesion between the substrate and the gold film. Since the flexible electrode composed of SEBS polymer substrate 2 and gold thin film 3 with cracked microstructure has up to 150% stretchability and significantly improved interfacial adhesion, it is helpful for flexible and stretchable sensors in biomedical devices and Applications in wearable devices and other related fields.
  • the preparation method specifically includes the following steps:
  • Step 1 Spin-coat the SEBS solution on the substrate, let it stand until it volatilizes and form a film, and obtain the SEBS polymer substrate 2;
  • Step 2 Etching the surface of the SEBS polymer substrate 2 by using a reactive ion etching process
  • Step 3 paste the metal mask on the surface of the etched SEBS polymer substrate 2, and magnetron sputtering a layer of gold film 3 on the surface, the thickness of the gold film 3 is 10-40 nanometers,
  • the gold thin film 3 has a micron and/or nanoscale crack structure
  • Step 4 Remove the metal mask and substrate to obtain a highly stretchable flexible gold film electrode based on reactive ion etching process.
  • SEBS polymer substrate 2 Compared with traditional elastic substrates such as polydimethylsiloxane (PDMS), the use of SEBS polymer substrate 2 has extremely strong viscosity, thereby greatly improving the interface adhesion between the substrate and the gold film.
  • the SEBS substrate is reactive ion etched After the process treatment, a layer of gold film 3 with a thickness of tens of nanometers is magnetron sputtered on its surface.
  • This electrode has excellent stretchability, can maintain electrical conduction under large stretching deformation, and has good flexibility And interfacial adhesion, it can be used in applications such as implantable nerve electrodes and skin surface biosignal monitoring.
  • step 2 the process parameters of reactive ion etching: Ar gas flow rate is 10-15ccm; CF4 gas flow rate is 30-40ccm, air pressure is 10-15Pa; power parameter is 120-150W, The etching time is 80-100 seconds.
  • process parameters of reactive ion etching Ar gas flow rate is 10 ccm; CF4 gas flow rate is 30 ccm, pressure is 13.3 Pa; power parameter is 150 W, etching time is 90 seconds.
  • the parameters of magnetron sputtering are: sputtering air pressure 3.5-4.0Pa, sputtering time 8-15 seconds, sputtering power 130-160W.
  • the parameters of magnetron sputtering are: sputtering pressure 3.8Pa, sputtering time 14 seconds, sputtering power 150W.
  • a highly stretchable flexible gold film electrode is obtained by adopting a preparation method of a highly stretchable flexible gold film electrode.
  • This kind of flexible electrode has up to 150% stretchability and significantly improved interfacial adhesion, which will help the application of flexible and stretchable sensors in related fields such as biomedical devices and wearable devices.
  • the flexible electrode due to the strong adhesion of SEBS, the flexible electrode has high stretchability and high interfacial adhesion at the same time, so as to broaden the application occasions and convenience of flexible stretchable electrodes.
  • Embodiment 1 Referring to FIG. 1, the embodiment of the present application provides a method for preparing a highly stretchable flexible gold film electrode, comprising the following steps:
  • Step 1 Dissolve SEBS particles in dimethylformamide solvent to prepare a 15% concentration solution, spin-coat it on a three-inch silicon wafer 1, and let it stand for 10 hours until SEBS volatilizes to form a film to obtain SEBS polymer substrate 2;
  • Step 2 Put the SEBS polymer substrate 2 in the reactive ion etching equipment, adjust the parameters of Ar gas 10ccm, CF4 gas 30ccm, 13.3Pa, 150W, etch for 90 seconds;
  • Step 3 Paste the patterned metal mask on the surface of the SEBS polymer flexible substrate in step 2, and absorb it with a magnet to make it tightly attached;
  • Step 4 Magnetron sputtering a layer of gold film 3 on the surface of the SEBS polymer flexible substrate, the thickness of the gold film 3 is 20 nanometers, the process is a sputtering pressure of 3.8Pa, the sputtering time is 14 seconds, and the sputtering power is 150W;
  • Step 5 Remove the metal mask, peel off the flexible gold film electrode, and obtain a patterned highly stretchable flexible gold film electrode based on the reactive ion etching process.
  • the surface microscopic appearance of the gold film 3 is shown in Figure 2 Show. During the stretching process, a large number of tiny cracks can be formed to release the stress, so that the stretching performance is greatly improved. As shown in Figure 3, after the substrate is processed by reactive ion etching, the maximum stretching rate of the flexible electrode is significantly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

公开一种基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法,涉及电极材料技术领域。制备方法包括以下步骤:在经过反应离子刻蚀工艺处理后的高分子柔性基底表面磁控溅射一层金薄膜;其中,金薄膜的厚度为10-40纳米,金薄膜具有微米和/或纳米尺度的裂纹结构。用于提高柔性金膜电极的可拉伸性能。

Description

基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法 技术领域
本申请涉及电极材料技术领域,尤其涉及一种基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法。
背景技术
传统的半导体器件是以硅为基底的平面状刚性材料,由于硅显脆性,断裂应变小于1%,因此传统电子器件完全不具备柔性和可拉伸性能。柔软可拉伸如橡胶的电子器件将逐渐替代传统的刚性电子器件。未来的电子器件将具有高度的变形性能,能改变自身的形状来满足拉伸、压缩和褶皱等形变的要求。柔性可拉伸电子器件将使许多应用变成可能,尤其在生物医疗器件、柔性显示、智能可穿戴设备等领域有望率先实现产业化,一些具体应用实例包括植入式神经电极、人工假眼、电子皮肤、可拉伸晶体管、人体健康监测设备等。
目前利用新型材料来实现电子器件的柔性可拉伸化,包括导电高分子复合材料、单壁碳纳米管、石墨烯薄膜、金薄膜电极等。在银纳米线和银纳米颗粒混合的高分子纤维中,银纳米线充当连接银纳米颗粒的桥梁,形成拥有更多电导通通路的渗流网络;掺杂于橡胶基体中的碳纳米管,在外拉伸应力的作用下,会重新排列以保持原有的导电通路。将其印刷在PDMS膜上,可以实现100%范围的拉伸率。石墨烯自从2004年被发现,由于具有优异的物理和化学性能,吸引了大量的研究。石墨烯作为单层或多层碳原子层,几乎完全透明,同时具有良好的柔软性和极高的导电性能,可以通过化学气相沉积法制备石墨烯/PDMS柔性可拉伸电子器件。
现有的柔性电极具有如下缺点:现有的导电薄膜柔性电极的基底由PDMS或其他弹性高分子组成,可拉伸性能不够高,同时导电薄膜和高分子基底之间的界面粘附力比较差,容易脱落,导致柔性电极的稳定性能不高,不利于长期植入式神经电极或长期体表可穿戴式生物信号监测。
技术问题
本申请的提供基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法,通过在经过反应离子刻蚀工艺处理后的高分子柔性基底表面磁控溅射一层金薄膜,避免了由于金膜与基底的界面粘附性较差,很容易脱落的弊端,同时实现了电极具有优异的可拉伸性能,能在大拉伸形变下仍保持电导通。
技术解决方案
为达到上述目的,一方面,本申请提供了一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,包括以下步骤:在经过反应离子刻蚀工艺处理后的高分子柔性基底的表面磁控溅射一层金薄膜;其中,所述金薄膜的厚度为10-40纳米,所述金薄膜具有微米和/或纳米尺度的裂纹结构。
进一步地是,所述高分子柔性基底为SEBS高分子基底。
进一步地是,所述裂纹结构为琐碎的岛状。
进一步地是,具体包括以下步骤:
步骤1:将SEBS溶液旋涂在基片上,静置至其挥发成膜,得到SEBS高分子基底;
步骤2:利用反应离子刻蚀工艺对SEBS高分子基底表面进行刻蚀;
步骤3:将金属掩膜版贴在经过刻蚀处理后的SEBS高分子基底的表面,并在其表面上磁控溅射一层金薄膜,所述金薄膜的厚度为10-40纳米,所述金薄膜具有微米和/或纳米尺度的裂纹结构,且所述裂纹结构的形状为琐碎的岛状;
步骤4:移除金属掩膜版,得到基于反应离子刻蚀处理工艺的高度可拉伸柔性金膜电极。
进一步地是,所述步骤2中,反应离子刻蚀的工艺参数:Ar气体流量为10-15ccm;CF4气体流量为30-40ccm、气压为10-15Pa;功率参数为120-150W,刻蚀时间为80-100秒。
进一步地是,Ar气体流量为10ccm;CF4气体流量为30ccm、气压为13.3Pa;功率参数为150W,刻蚀时间为90秒。
进一步地是,所述步骤3中,磁控溅射的参数为:溅射气压3.5-4.0Pa,溅射时间8-15秒,溅射功率130-160W。
进一步地是,磁控溅射的参数为:溅射气压3.8Pa,溅射时间14秒,溅射功率150W。
另一方面,本申请还提供一种柔性可拉伸金膜电极,其是采用一种高度可拉伸的柔性金膜电极的制备方法得到的。
有益效果
本申请相比现有技术具有以下有益效果:
(1)本申请制备的柔性可拉伸电极具有优异的可拉伸性能,能在高达150%的形变下保持电导通,在弯曲、扭折、拉伸等弹性形变条件下仍然保持良好的电导通,能满足被测体复杂的体表形态和动态形变要求,可应用于植入式神经电极、体表生物信号监测,大尺度的应力应变传感器等。
(2)本申请采用反应离子刻蚀处理基底的工艺相比于光刻等微加工方法,工艺简单、步骤少、操作方便,同时可一次性大规模处理弹性基底。
(3)本申请的柔性可拉伸电极具有优异的金薄膜和高分子基底界面粘附性、鲁棒性,不容易脱落,便于操作,可长期佩戴和使用。
(4)本申请的柔性可拉伸电极具有生物相容性,无任何黏胶成分,不会造成皮肤的过敏反应。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1制备高度可拉伸柔性金膜电极的工艺示意图;
图2为本申请实施例1中金薄膜表面的微观形貌;
[根据细则91更正 18.02.2022] 
图中,1-硅片,2-SEBS高分子基底,3-金薄膜。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
一种高度可拉伸的柔性金膜电极的制备方法,包括以下步骤:在经过反应离子刻蚀工艺处理后的高分子柔性基底表面磁控溅射一层金薄膜3。金薄膜3的厚度为10-40纳米,金薄膜3具有微米和/或纳米尺度的裂纹结构。
本申请利用反应离子刻蚀方法处理高分子基底表面,使其表面性能和微观形貌发生改变,从而影响之后磁控溅射沉积的金薄膜3的性能,沉积其上的金薄膜3具有微米和纳米尺度的裂纹结构。由于金薄膜3在磁控溅射沉积过程中产生了微米和纳米尺度的裂纹结构,当金薄膜3受到拉应力作用时微裂纹可以发生面外形变,从而使得很大的外力拉伸只在金膜中产生较小的应变,在裂纹尖端处的能量释放率大大降低,阻碍裂纹的进一步扩展,显著提高柔性电极的可拉伸性能。微裂纹结构相比于未经反应离子刻蚀的样品具有更多的微小裂纹,且成琐碎的岛状微观结构,使得金膜具有更好的可拉伸性能。
作为本发明一个优选的实施例:高分子柔性基底为SEBS高分子基底2。SEBS高分子基底2相比于传统的弹性基底如聚二甲基硅氧烷(PDMS)相比,能够提高柔性电极的弹性和断裂韧性。并且SEBS高分子基底2具有极强的粘性,从而大幅提高基底与金膜的界面粘附性。由于SEBS高分子基底2和具有裂纹微结构的金薄膜3组成的柔性电极具有高达150%的可拉伸性能和显著提高的界面粘附性,有助于柔性可拉伸传感器在生物医疗器械和可穿戴设备等相关领域的应用。
作为本发明一个优选的实施例:制备方法具体包括以下步骤:
步骤1:将SEBS溶液旋涂在基片上,静置至其挥发成膜,得到对SEBS高分子基底2;
步骤2:利用反应离子刻蚀工艺对SEBS高分子基底2表面进行刻蚀;
步骤3:将金属掩膜版贴在经过刻蚀处理后的SEBS高分子基底2的表面,并在其表面上磁控溅射一层金薄膜3,金薄膜3的厚度为10-40纳米,金薄膜3具有微米和/或纳米尺度的裂纹结构;
步骤4:移除金属掩膜版和基片,得到基于反应离子刻蚀处理工艺的高度可拉伸柔性金膜电极。
采用SEBS高分子基底2相比于传统的弹性基底如聚二甲基硅氧烷(PDMS)具有极强的粘性,从而大幅提高基底与金膜的界面粘附性,SEBS基底经过反应离子刻蚀工艺处理后在其表面磁控溅射一层几十纳米厚度的金薄膜3,此电极具有优异的可拉伸性能,能在大拉伸形变下仍保持电导通,同时具有很好的柔软性和界面粘附性,可用于植入式神经电极和皮肤表面生物信号监测等应用领用。
作为本发明一个优选的实施例:步骤2中,反应离子刻蚀的工艺参数:Ar气体流量为10-15ccm;CF4气体流量为30-40ccm、气压为10-15Pa;功率参数为120-150W,刻蚀时间为80-100秒。
作为本发明一个优选的实施例:反应离子刻蚀的工艺参数:Ar气体流量为10ccm;CF4气体流量为30ccm、气压为13.3Pa;功率参数为150W,刻蚀时间为90秒。
作为本发明一个优选的实施例:步骤3中,磁控溅射的参数为:溅射气压3.5-4.0Pa,溅射时间8-15秒,溅射功率130-160W。
作为本发明一个优选的实施例:磁控溅射的参数为:溅射气压3.8Pa,溅射时间14秒,溅射功率150W。
一种高度可拉伸的柔性金膜电极,其是采用一种高度可拉伸的柔性金膜电极的制备方法得到的。此种柔性电极具有高达150%的可拉伸性能和显著提高的界面粘附性,有助于柔性可拉伸传感器在生物医疗器械和可穿戴设备等相关领域的应用。同时由于SEBS具有极强的粘附性,使得柔性电极同时具有高拉伸性能和高界面粘附性,以便拓宽柔性可拉伸电极的应用场合和便捷性。
实施例1:参照图1,本申请实施例提供了一种高度可拉伸的柔性金膜电极的制备方法,包括以下步骤:
步骤1:将SEBS颗粒溶解在二甲基甲酰胺溶剂中,配成15%浓度溶液,旋涂在三英寸硅片1上,静置10小时至SEBS挥发成膜,得到SEBS高分子基底2;
步骤2:将SEBS高分子基底2置于反应离子刻蚀设备中,调节参数Ar气体10ccm,CF4气体30ccm、13.3Pa、150W,刻蚀90秒;
步骤3:将已图案化的金属掩膜版贴在步骤2的SEBS高分子柔性基底表面,用吸铁石吸附使其贴附紧密;
步骤4:在SEBS高分子柔性基底表面磁控溅射一层金薄膜3,金薄膜3的厚度为20纳米,工艺为溅射气压3.8Pa,溅射时间14秒,溅射功率150W;
步骤5:移除金属掩膜版,揭下柔性金膜电极,得到图案化的基于反应离子刻蚀处理工艺的高度可拉伸柔性金膜电极,其金薄膜3表面微观形貌如图2所示。在拉伸过程中能形成大量微小裂纹释放应力,从而使得拉伸性能大幅提高,如图3所示,基底进行反应离子刻蚀工艺处理后,柔性电极的最大拉伸率显著增加。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (9)

  1. 一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,包括以下步骤:在经过反应离子刻蚀工艺处理后的高分子柔性基底的表面磁控溅射一层金薄膜;其中,所述金薄膜的厚度为10-40纳米,所述金薄膜具有微米和/或纳米尺度的裂纹结构。
  2. 根据权利要求1所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,所述高分子柔性基底为SEBS高分子基底。
  3. 根据权利要求1所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,所述裂纹结构为琐碎的岛状。
  4. 根据权利要求2所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,具体包括以下步骤:
    步骤1:将SEBS溶液旋涂在基片上,静置至其挥发成膜,得到SEBS高分子基底;
    步骤2:利用反应离子刻蚀工艺对SEBS高分子基底表面进行刻蚀;
    步骤3:将金属掩膜版贴在经过刻蚀处理后的SEBS高分子基底的表面,并在其表面上磁控溅射一层金薄膜,所述金薄膜的厚度为10-40纳米,所述金薄膜具有微米和/或纳米尺度的裂纹结构,且所述裂纹结构为琐碎的岛状;
    步骤4:移除金属掩膜版,得到基于反应离子刻蚀处理工艺的高度可拉伸柔性金膜电极。
  5. 根据权利要求4所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,步骤2中,反应离子刻蚀的工艺参数:Ar气体流量为10-15ccm;CF4气体流量为30-40ccm、气压为10-15Pa;功率参数为120-150W,刻蚀时间为80-100秒。
  6. 根据权利要求5所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,Ar气体流量为10ccm;CF4气体流量为30ccm、气压为13.3Pa;功率参数为150W,刻蚀时间为90秒。
  7. 根据权利要求4所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,步骤3中,磁控溅射的参数为:溅射气压3.5-4.0Pa,溅射时间8-15秒,溅射功率130-160W。
  8. 根据权利要求7所述的一种基于反应离子刻蚀的柔性可拉伸金膜电极的制备方法,其特征在于,磁控溅射的参数为:溅射气压3.8Pa,溅射时间14秒,溅射功率150W。
  9. 一种基于反应离子刻蚀的柔性可拉伸金膜电极,其特征在于,其是采用权利要求1-8任一权利要求的制备方法得到的。
PCT/CN2021/137594 2021-11-01 2021-12-13 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法 WO2023070864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111281420.8A CN114107922A (zh) 2021-11-01 2021-11-01 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法
CN202111281420.8 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023070864A1 true WO2023070864A1 (zh) 2023-05-04

Family

ID=80380069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137594 WO2023070864A1 (zh) 2021-11-01 2021-12-13 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法

Country Status (2)

Country Link
CN (1) CN114107922A (zh)
WO (1) WO2023070864A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404475A (zh) * 2014-10-14 2015-03-11 中国科学院半导体研究所 增强聚对二甲苯薄膜与金属层粘附性的方法
CN108444377A (zh) * 2018-03-18 2018-08-24 吉林大学 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法
CN110243506A (zh) * 2018-03-08 2019-09-17 中国科学院深圳先进技术研究院 一种压阻式压力传感器及其制备方法
CN111462942A (zh) * 2019-01-18 2020-07-28 中国科学院苏州纳米技术与纳米仿生研究所 基于裂纹式柔性衬底的折叠式可拉伸电极及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108313976A (zh) * 2017-12-29 2018-07-24 西北工业大学 一种聚酰亚胺表面微结构制备方法
US20190247649A1 (en) * 2018-02-09 2019-08-15 University Of North Texas Nano-devices for skin and mucosal macromolecule delivery and detection
KR102325598B1 (ko) * 2019-10-29 2021-11-11 포항공과대학교 산학협력단 전기방사 매트를 이용한 금속 증착 기반 연신성 전극 및 그의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404475A (zh) * 2014-10-14 2015-03-11 中国科学院半导体研究所 增强聚对二甲苯薄膜与金属层粘附性的方法
CN110243506A (zh) * 2018-03-08 2019-09-17 中国科学院深圳先进技术研究院 一种压阻式压力传感器及其制备方法
CN108444377A (zh) * 2018-03-18 2018-08-24 吉林大学 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法
CN111462942A (zh) * 2019-01-18 2020-07-28 中国科学院苏州纳米技术与纳米仿生研究所 基于裂纹式柔性衬底的折叠式可拉伸电极及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, GUANZHENG ET AL.: "Preparation and Properties Study of SEBS/Nano Carbon Black Composite Membrane for Resistor-Type Strain Sensor", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 30, no. 12, pages 1815 - 1821, XP009545786 *

Also Published As

Publication number Publication date
CN114107922A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Kim et al. Highly conformable, transparent electrodes for epidermal electronics
CN109781311B (zh) 一种柔性电容式压力传感器及其制备方法
CN103961073B (zh) 压阻式电子皮肤及其制备方法
Liu et al. Ultrasonically patterning silver nanowire–acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks
Huang et al. Tuning the rigidity of silk fibroin for the transfer of highly stretchable electronics
CN109801739B (zh) 一种高精度图案化可拉伸电极及其制备方法
CN110118621A (zh) 一种自修复柔性压力传感器及其制作方法
CN108917582A (zh) 应变传感器及其制造方法
CN109099832A (zh) 应变传感器及其制造方法
CN104392904B (zh) 基于柔性基底的可延展导电薄膜及其制备工艺
WO2021068273A1 (zh) 以砂纸表面微结构为模板的电容式应变传感器制作方法
CN110184577B (zh) 柔性基底表面兼具压阻性能与韧性的非晶碳膜的制备方法及其应用
CN108384039A (zh) 一种液态金属与柔性基体界面粘附结构的设计方法
CN110284210A (zh) 一种内部具有微结构的柔性可拉伸纤维及其制备方法与应用
CN111765995A (zh) 一种自驱动抗菌型柔性电子皮肤及其制备方法
WO2023070864A1 (zh) 基于反应离子刻蚀的柔性可拉伸金膜电极及其制备方法
Yang et al. Stress-deconcentrated ultrasensitive strain sensor with hydrogen-bonding-tuned fracture resilience for robust biomechanical monitoring
JP2016139492A (ja) 透明導電積層体およびその製造方法
CN116447967A (zh) 高灵敏与高线性协同的仿生柔性应变传感器及其制造方法
Teng et al. A stretchable petal patterned strain sensor comprising Ir nanoparticles-modified multi-walled carbon nanotubes for human-motion detection
KR101815981B1 (ko) 전도성 복합필름 및 그의 제조방법
CN111320773A (zh) 一种自支撑的柔性导电超疏水薄膜的制备方法
CN115844411A (zh) 一种超疏水高导电柔性干电极及其制作方法
CN108976455B (zh) 一种具有自修复功能的高灵敏导电传感高分子复合材料及其制备方法和应用
TW202102628A (zh) 水轉印導電貼附膜之製造方法及其製造之水轉印導電貼附膜,以及使用該水轉印導電貼附膜之穿戴式元件、發光元件及穿戴式發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962207

Country of ref document: EP

Kind code of ref document: A1