WO2023070752A1 - 一种碳或氮改性的催化剂及其制备方法和应用 - Google Patents

一种碳或氮改性的催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023070752A1
WO2023070752A1 PCT/CN2021/130354 CN2021130354W WO2023070752A1 WO 2023070752 A1 WO2023070752 A1 WO 2023070752A1 CN 2021130354 W CN2021130354 W CN 2021130354W WO 2023070752 A1 WO2023070752 A1 WO 2023070752A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon
nitrogen
metal
based active
Prior art date
Application number
PCT/CN2021/130354
Other languages
English (en)
French (fr)
Inventor
郑南峰
阮朋朋
刘圣杰
陈洁
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2023070752A1 publication Critical patent/WO2023070752A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/07Monoamines containing one, two or three alkyl groups, each having the same number of carbon atoms in excess of three
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/08Monoamines containing alkyl groups having a different number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/29Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of catalysts, in particular to a carbon- or nitrogen-modified catalyst, a preparation method thereof and application in aldehyde/ketone reductive amination reactions.
  • the first aspect of the present invention provides a carbon- or nitrogen-modified catalyst
  • the catalyst includes a metal-based active center
  • the metal-based active center reacts with a reducing carbon-containing gas or a reducing nitrogen-containing gas. reaction, making carbon atoms or nitrogen atoms embedded in the crystal lattice of the metal-based active center and forming M 3 C x or M 3 N x , wherein, the M is a metal-based active center, and the metal-based active center includes family of metal elements.
  • the M includes nickel or cobalt.
  • the value of X is 0-1.
  • the value of X is 0.15-1.
  • the molar percentage of carbon in the carbon-modified catalyst is 2% to 25%
  • the molar percentage of nitrogen in the nitrogen-modified catalyst is 2% to 25%.
  • the reducing carbon-containing gas includes carbon monoxide, acetylene or methane, preferably carbon monoxide.
  • the reducing nitrogen-containing gas includes ammonia.
  • the second aspect of the present invention provides a method for preparing a carbon- or nitrogen-modified catalyst, comprising the following steps: placing a catalyst containing a metal-based active center in a reducing carbon-containing gas for carbonization reaction to obtain a carbon-modified catalyst ; Or place the catalyst containing the metal-based active center in a reducing nitrogen-containing gas to carry out nitriding reaction to obtain a nitrogen-modified catalyst.
  • the catalyst containing a metal-based active center includes a nickel-based catalyst or a cobalt-based catalyst.
  • the carbonization reaction temperature is 100°C-1000°C
  • the nitriding reaction temperature is 100°C-1000°C. .
  • the carbonization reaction time is 1h-12h
  • the nitriding reaction time is 1h-12h.
  • the present invention also provides an application of a carbon-modified catalyst, the application comprising the following steps: using the catalyst provided by the present invention or the catalyst prepared by the preparation method provided by the present invention, an aldehyde compound or a ketone compound, an amine source, and a solvent Add it into a reaction kettle to form a mixture, pass nitrogen gas to replace the air in the reaction kettle, seal the reaction kettle and pour in reducing gas, pressurize and stir the mixture until the reaction is completed.
  • reaction temperature is 50°C-100°C
  • reaction time is 0.5h-3h
  • reaction pressure is 0.5MPa-3MPa.
  • the amine source is ammonia water, liquid ammonia or ammonia gas; the reducing gas is hydrogen gas.
  • the present invention has at least the following beneficial effects:
  • the present invention modifies the nickel-based/cobalt-based catalyst by reducing the carbon-containing or nitrogen-containing gas, thereby improving the selectivity of the nickel-based/cobalt-based catalyst for the catalytic aldehyde group reductive amination reaction, and can achieve close to 100% primary amine selectivity, can be applied in the field of biopharmaceuticals.
  • the modification of the nickel-based/cobalt-based catalyst by the reducing carbon-containing or nitrogen-containing gas of the present invention improves the oxidation resistance of the catalyst, breaks the limitation that the traditional nickel-based catalyst is easily oxidized and deactivated, and has extremely high Excellent anti-oxidation performance, can be stored stably in the air, and the catalytic activity will not decrease.
  • the present invention can be reduced under extremely mild conditions, and the reduced catalyst is stable in contact with air without burning, which greatly improves the experimental performance and safety of the nickel-based/cobalt-based catalyst.
  • the method provided by the present invention is simple to operate, low in cost, high in repeatability, and has wide substrate universality, and can be extended and applied to catalysts such as commercial nickel black, Raney nickel, Raney cobalt, etc., providing a great opportunity for the industrialization of catalyst preparation convenient.
  • the catalyst prepared by the present invention can be applied to the high-activity and high-selectivity reductive amination of aldehyde/ketone substrates with various functional groups.
  • the stability of batches is good, and it can be used repeatedly to further improve the quality of the product and reduce the production process. cost.
  • Fig. 1 is the XRD pattern of nickel nanoparticles of the present invention under carbon modification treatment conditions at different temperatures;
  • Fig. 2 (a) is the temperature-programmed reduction TPR figure of the nickel-based catalyst that does not carry out carbon or nitrogen modification treatment of the present invention
  • Fig. 2 (b) is the temperature-programmed desorption-mass spectrum TPD-MS figure of the nickel-based catalyst that has not been modified with carbon or nitrogen in the present invention
  • Fig. 3 (a) is the temperature-programmed reduction TPR diagram of the catalyst prepared in Example 1 of the present invention.
  • Fig. 3 (b) is the temperature programmed desorption-mass spectrum TPD-MS figure of the catalyst prepared in Example 1 of the present invention
  • Fig. 4 (a) is the temperature-programmed reduction TPR diagram of the catalyst prepared in Example 3 of the present invention.
  • Fig. 4(b) is the temperature programmed desorption-mass spectrum TPD-MS diagram of the catalyst prepared in Example 3 of the present invention.
  • Fig. 5 is the nickel element XPS figure of the catalyst prepared by the embodiment of the present invention 1;
  • Fig. 6 is a diagram showing the catalytic stability of the catalyst prepared in Example 1 of the present invention.
  • Carbon modification treatment A commercial nickel black catalyst was placed in an alumina crucible and placed in a tube furnace. At 25°C, CO gas was introduced for 30 minutes to remove oxygen in the pipeline, and then the temperature was raised to 250°C at a rate of 5°C per minute, and carbonized at 250°C for 1 hour under a CO atmosphere to prepare a Ni 3 C 0.15 catalyst.
  • Figure 1 is the XRD pattern of commercial nickel black catalysts under carbon modification treatment conditions at different temperatures. It can be seen that with the increase of carbon modification treatment temperature, the diffraction peak of M 3 C x becomes more and more obvious, indicating that the generated There are more and more M 3 C x crystal phases.
  • Figure 3(a) is the temperature-programmed reduction TPR diagram of the catalyst prepared in Example 1 of the present invention
  • Figure 3(b) is the temperature-programmed desorption-mass spectrum TPD-MS diagram of the catalyst prepared in Example 1 of the present invention.
  • two reduction peaks can be observed in the commercial nickel black catalyst with carbon monoxide carbon modification treatment at 250 ° C for one hour in Example 1 of the present invention.
  • mass spectrometry analysis low temperature
  • the very weak reduction peak at 75°C is the reduction of surface oxidized nickel carbide
  • the reduction peak at high temperature 240°C is the reduction of lattice carbon.
  • the carbon modification treatment under this condition is Ni 3 C 0.15 catalyst.
  • the carbonized catalyst can be reduced under milder conditions (75°C), indicating that carbonized treatment can effectively improve the oxidation resistance of the catalyst, and the oxidized species on the surface are also easily reduced. , further providing the preparation of stable nickel-based catalysts.
  • Fig. 5 is the nickel element XPS diagram of the catalyst prepared in Example 1 of the present invention.
  • the catalyst after carbon modification treatment shows that the signal is mainly zero-valent nickel, which further confirms that the nickel carbide catalyst can be stored stably in the air.
  • Performance evaluation of the catalyst prepared in Example 1 Add 1 mmol of benzaldehyde, 6 mg of the Ni 3 C 0.15 catalyst prepared in Example 1, 1 mL of ammonia water, and 2 mL of absolute ethanol into the reactor to form a mixture, and pour the mixture into the reactor.
  • Fig. 6 is the catalytic stability diagram of the catalyst prepared in Example 1 of the present invention. It can be seen from Fig. 6 that the Ni 3 C 0.15 catalyst of the present invention still maintains high conversion rate and high selectivity after repeated repeated application. This indicates that the catalyst has good catalytic stability.
  • Example 2 The preparation steps and selection of materials in Example 2 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 2 is carbonized at 225°C for 1 hour under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.09 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 3 The preparation steps and selection of materials in Example 3 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 3 is carbonized at 275°C for 1 hour under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.3 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Fig. 4 (a) is the temperature-programmed reduction TPR diagram of the nickel carbide of the catalyst prepared in Example 3 of the present invention
  • Fig. 4 (b) is the temperature-programmed desorption-mass spectrum TPD-MS of the catalyst prepared in Example 3 of the present invention picture. It can be deduced that the Ni 3 C 0.3 catalyst obtained by carbon monoxide carbon modification treatment at 275° C. for one hour in Example 3 of the present invention is inferred.
  • the increase in carbon content is consistent with the results of XRD characterization data, which further confirms the formation of nickel carbide, and the reduction peak signal of the oxide on the surface of the nickel-based catalyst after carbon modification treatment is weak, indicating that nickel carbide is very stable in the air, and even The weak oxidation can be reduced at 75°C, which improves the practicability and safety of the nickel-based catalyst.
  • Example 4 The preparation steps and selection of materials in Example 4 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 4 is carbonized at 300°C for 1 hour under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.38 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 5 The preparation steps and selection of materials in Example 5 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 5 is carbonized at 250°C for 3 hours under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.45 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 6 The preparation steps and selection of materials in Example 6 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 6 is carbonized at 250°C for 5 hours under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.58 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 7 The preparation steps and selection of materials in Example 7 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 5 is carbonized at 250°C for 12 hours under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.75 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 8 The preparation steps and selection of materials in Example 8 are the same as in Example 1. The difference is that in the carbon modification treatment, Example 8 is carbonized at 250°C for 24 hours under a CO atmosphere, and the obtained catalyst is Ni 3 C 0.8 , the selection of all the other preparation steps and materials is the same as in Example 1.
  • Example 9 The preparation steps and selection of materials in Example 9 are the same as in Example 1. The difference is that in the carbon modification treatment, the commercial nickel black catalyst obtained in Example 9 is placed in a high-pressure reaction bottle, and 3 atmospheres are introduced. After inflating and degassing 3 times, the high-pressure reaction bottle was placed in an oil bath at 200°C and reacted for 1 hour. The obtained catalyst was Ni 3 C 0.17 . The rest of the preparation steps and material selection were the same as in Example 1.
  • Example 9 The performance of the catalyst prepared in Example 9 was evaluated.
  • the catalytic reaction conditions were the same as in Example 1. According to the results of gas chromatography analysis, the conversion rate was 99.8%, and the selectivity was 98.7%.
  • Carbon modification treatment A commercial nickel black catalyst was placed in an alumina crucible and placed in a tube furnace. First pass acetylene gas at 25°C for 30 minutes to remove oxygen in the pipeline, then raise the temperature to 250°C at a rate of 5°C per minute, and carbonize at 250°C for 1 hour under an acetylene atmosphere to prepare a Ni 3 C 0.34 catalyst.
  • Carbon modification treatment A commercial nickel black catalyst was placed in an alumina crucible and placed in a tube furnace. Methane gas was introduced at 25°C for 30 minutes to remove oxygen in the pipeline, and then the temperature was raised to 350°C at a rate of 5°C per minute, and carbonized at 350°C for 1 hour under methane atmosphere to prepare Ni 3 C 0.22 catalyst.
  • Nitrogen modification treatment A commercial nickel black catalyst was placed in an alumina crucible and placed in a tube furnace. At 25°C, ammonia gas was introduced for 30 minutes to remove oxygen in the pipeline, then the temperature was raised to 350°C at a rate of 5°C per minute, and nitriding treatment was carried out at 350°C for 2 hours under an ammonia atmosphere to prepare a Ni 3 N 0.38 catalyst.
  • Raney nickel was placed in an alumina crucible as a nickel-based catalyst and placed in a tube furnace. At 25°C, CO gas was introduced for 30 minutes to remove the oxygen in the pipeline, and then the temperature was raised to 250°C at a rate of 5°C per minute, and carbonized at 250°C for 1 hour under a CO atmosphere to prepare Raney Ni 3 C 0.15 catalyst.
  • Raney cobalt was placed in an alumina crucible as a cobalt-based catalyst and placed in a tube furnace. At 25°C, CO gas was introduced for 30 minutes to remove the oxygen in the pipeline, then the temperature was raised to 250°C at a rate of 5°C per minute, and carbonized at 250°C for 1 hour under a CO atmosphere to prepare Raney Co 3 C 0.15 catalyst.
  • Raney cobalt was placed in an alumina crucible as a cobalt-based catalyst and placed in a tube furnace. At 25°C, first pass ammonia gas for 30 minutes to remove the oxygen in the pipeline, then raise the temperature to 350°C at a rate of 5°C per minute, and perform amination treatment at 350°C under ammonia gas for 1 hour to prepare Raney Co 3 N 0.33 catalyst.
  • the catalysts under different reducing carbon-containing or nitrogen gas modification treatment conditions are used for the reductive amination of benzaldehyde, and the conversion rate can be as high as 99.9%, and the selectivity can be as high as 98.7%.
  • the carbonization or nitriding of the surface of the catalyst modified by carbon or nitrogen to form a stable M 3 C x crystal phase or M 3 N x crystal phase can effectively improve the amine selectivity of the reductive amination reaction of the catalyst.
  • Embodiment 17 to embodiment 32 use furfural, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, 4-bromobenzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 3-fluorobenzaldehyde, 3-methylbenzaldehyde, 2-fluorobenzene Formaldehyde, 2-methylbenzaldehyde, 3,5-dimethylbenzaldehyde, phenylacetaldehyde, phenylpropionaldehyde, n-octylaldehyde, 2-octanone and cyclohexanone replace the benzaldehyde in Example 1, and the rest are prepared
  • the selection of steps and materials is the same as in Example 1. At the same time, performance evaluations were performed on the same time.
  • the carbon- or nitrogen-modified catalysts provided by the present invention have excellent catalytic effects on catalyzing the reductive amination reaction of aldehydes and ketones.
  • Comparative Example 1 uses the same commercial nickel black catalyst as in Example 1, except that no carbonization or nitriding treatment is performed.
  • Figure 2(a) is the temperature-programmed reduction TPR diagram of the commercial nickel black catalyst without carbon or nitrogen modification treatment
  • Figure 2(b) is the temperature-programmed desorption of the commercial nickel black catalyst without carbon or nitrogen modification treatment -Mass spectrum TPD-MS diagram
  • the commercial nickel black catalyst without carbon or nitrogen modification treatment has only one reduction peak at 175°C, which corresponds to the signal generated by this peak in the mass spectrum, indicating that no carbon or nitrogen modification has been performed
  • the nickel oxide on the surface of the treated commercial nickel black catalyst is reduced to water at 175 °C, and the nickel-based material without carbon or nitrogen modification treatment consumes a large amount of hydrogen compared to the carbon or nitrogen-modified nickel-based material , which indicates that the surface oxidation of nickel-based materials without carbon or nitrogen modification treatment is more serious, and it is more difficult to be reduced than carbon or nitrogen-modified nickel-based catalysts after oxidation.
  • Comparative Example 2 a 30 wt% Ni/C supported catalyst was prepared under the same preparation conditions as in Example 11, except that no carbonization or nitriding treatment was performed.
  • Comparative Example 2 used the same commercial Raney nickel catalyst as in Example 12, except that no carbonization or nitriding treatment was performed.
  • Comparative Example 2 used the same commercial Raney cobalt catalyst as in Example 13, except that no carbonization or nitriding treatment was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种碳或氮改性的催化剂及其制备方法和应用,通过金属基活性中心与还原性含碳气体或还原性含氮气体发生化学反应,使碳原子或氮原子嵌入金属基活性中心的晶格并形成M 3C x或M 3N x,其中,所述M为金属基活性中心,所述金属基活性中心包括选自第VIII族的金属元素。所述催化剂能够大幅度提升在醛/酮基还原胺化反应中对于有机胺产物的活性与选择性,并且套用批次稳定性良好,可以重复套用。

Description

一种碳或氮改性的催化剂及其制备方法和应用 技术领域
本发明涉及催化剂领域,尤其关于一种碳或氮改性的催化剂及其制备方法和应用于醛/酮还原胺化反应中。
背景技术
伯胺配体作为高附加值的化工产品被广泛应用于化学、生物、能源、材料与环境领域,特别是医药等领域。例如,2018年世界销量前200的药品有80%是含胺的,且研究表明这些胺基基团对于药物分子的活性是起至关重要的作用。而对于制备以及功能化这些胺基化合物,近年来醛/酮还原胺化作为一类绿色环保廉价的策略被广泛关注:即通过醛或者酮在氨水缩合通过催化剂催化氢化得到相应的目标伯胺产物。在这类反应催化剂中,廉价的过渡金属镍或钴基催化基因其独特的还原胺化催化性能及其可持续发展而备受关注。
2017年,Beller,M.等人在science上报道了金属Co-MOF催化剂可以催化醛基与有机胺配体的还原胺化反应,该催化剂虽可以适用于不同的底物,但是催化剂催化条件苛刻(120度,4MPa)。随后,2019年Kempe,R.等人在Nature Catalysis上报道了Ni/Al 2O 3可以有效的实现醛基与氨水的还原胺化反应制备一系列伯胺配体。2017年张泽会等人在CN106552661A专利上报道了一种氮参杂的碳负载的钴催化剂可以有效的催化醛基还原胺化反应。然而上述催化剂暴露在空气中容易发生氧化,导致催化剂活性丧失。
并且研究发现,目前催化剂催化活性与选择性普遍不高,这主要是由于醛/酮还原胺化反应容易发生各类副反应,比如醛基/酮基化合物直接氢化为醇副产物,或者产生的胺与原料缩合得到另一副产物亚胺,其容易进一步加氢得到多级胺副产物。因此,制备高活性与高选择性同时兼备高抗氧化性能的廉价金属催化剂对于发展绿色廉价的还原胺化催化剂是至关重要的。
发明内容
为解决上述问题,本发明第一方面提供一种碳或氮改性的催化剂,所述催化剂包括金属基活性中心,所述金属基活性中心与还原性含碳气体或还原性含氮气体发生化学反应,使碳原子或氮原子嵌入金属基活性中心的晶格并形成M 3C x或者M 3N x,其中,所述M为金属基活性中 心,所述金属基活性中心包括选自第VIII族的金属元素。
进一步的,所述M包括镍或钴。
进一步的,所述X的值为0~1。优选的,所述X的值为0.15~1。
进一步的,所述碳改性的催化剂中碳元素的摩尔百分含量占比为2%~25%,所述氮改性的催化剂中氮元素的摩尔百分含量占比为2%~25%。
进一步的,所述还原性含碳气体包括一氧化碳、乙炔或甲烷,优选为一氧化碳。
进一步的,所述还原性含氮气体包括氨气。
本发明第二方面提供一种碳或氮改性的催化剂的制备方法,包括如下步骤:将含金属基活性中心的催化剂置于还原性含碳气体中进行碳化反应,即得到碳改性的催化剂;或者将含金属基活性中心的催化剂置于还原性含氮气体中进行氮化反应,即得到氮改性的催化剂。
进一步的,所述含金属基活性中心的催化剂包括镍基催化剂或钴基催化剂。
进一步的,所述碳化反应温度为100℃~1000℃,所述氮化反应温度为100℃~1000℃。。
进一步的,所述碳化反应时间为1h~12h,所述氮化反应时间为1h~12h。
本发明还提供一种碳改性的催化剂的应用,所述应用包括如下步骤:将本发明提供的催化剂或本发明提供制备方法制备得到的催化剂、醛类化合物或酮类化合物、胺源、溶剂加入反应釜中,形成混合物,通入氮气置换所述反应釜中空气,密封反应釜后冲入还原性气体,加压、搅拌所述混合物直到反应完成。
进一步的,所述反应温度为50℃~100℃,所述反应时间为0.5h~3h,所述反应压强为0.5MPa~3MPa。
进一步的,所述胺源为氨水、液氨或者氨气;所述还原性气体为氢气。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明通过还原性含碳或氮气体对镍基/钴基催化剂改性,提高了镍基/钴基催化剂催化醛基还原胺化反应选择性,在相对温和条件下即可实现接近100%伯胺选择性,能够应用于生物制药领域。
(2)本发明还原性含碳或氮气体对镍基/钴基催化剂改性提高了催化剂的抗氧化能力,打破了传统镍基催化剂易被氧化失活的局限性,在空气中具备极高的抗氧化性能,可稳定地存储于空气中,催化活性不会降低。
(3)本发明可在极其温和条件下还原,还原的催化剂接触空气稳定,不会发生燃烧,大大提升了镍基/钴基催化剂的实验性与安全性。
(4)本发明提供的方法操作简单,成本低廉,重复性高,底物普适性广,可推广适用于商用镍黑、雷尼镍、雷尼钴等催化剂,为催化剂制备产业化提供了便利。
(5)本发明制备得到的催化剂可以适用于各类官能团的醛/酮基底物的高活性高选择性还原胺化,套用批次稳定性良好,可以重复套用,进一步提高产品的品质,降低工艺成本。
附图说明
所提供附图可对本发明进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明镍纳米颗粒在不同温度碳改性处理条件下的XRD图;
图2(a)为本发明未进行碳或氮改性处理的镍基催化剂的程序升温还原TPR图;
图2(b)为本发明未进行碳或氮改性处理的镍基催化剂的程序升温脱附-质谱TPD-MS图;
图3(a)为本发明实施例1制备得到的催化剂的程序升温还原TPR图;
图3(b)为本发明实施例1制备得到的催化剂的程序升温脱附-质谱TPD-MS图;
图4(a)为本发明实施例3制备得到的催化剂的程序升温还原TPR图;
图4(b)为本发明实施例3制备得到的催化剂的程序升温脱附-质谱TPD-MS图。
图5为本发明实施例1制备得到的催化剂的镍元素XPS图;
图6为本发明实施例1制备得到的催化剂的催化稳定性图。
具体实施方式
以下特定的具体实施例及附图用以对本发明的制备及应用进行详细阐述,熟悉此技艺的人士可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技艺的人士的了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应落在本发明所揭示的技术内容得能涵盖的范围内。
以下通过实施例说明本发明所提供制备方法的详细制作流程与条件。
实施例1
碳改性处理:将商用镍黑催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入CO气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至250℃,在CO 气氛下250℃碳化处理1h,制备得到Ni 3C 0.15催化剂。
图1为商用镍黑催化剂在不同温度碳改性处理条件下的XRD图,可以看到,随着碳改性处理温度的升高,M 3C x的衍射峰越来越明显,表明生成的M 3C x晶相越来越多。
图3(a)为本发明实施例1制备得到的催化剂的程序升温还原TPR图,图3(b)为本发明实施例1制备得到的催化剂的程序升温脱附-质谱TPD-MS图。相比于未进行碳或氮改性处理的商用镍黑催化剂,本发明实施例1在250℃一氧化碳碳改性处理一小时的商用镍黑催化剂可以观测到两个还原峰,结合质谱分析,低温非常微弱75℃还原峰为表面氧化的碳化镍的还原,高温240℃的还原峰为晶格碳的还原,以此根据氢气消耗量推算出该条件下碳改性处理得到的是Ni 3C 0.15催化剂。同时,从实验数据结果可以看出,碳化处理的催化剂在较温和条件下(75℃)即可被还原,表明碳化处理可以有效地提高催化剂抗氧化的同时,表面氧化的物种也很容易被还原,进一步提供了稳定的镍基催化剂的制备。
图5为本发明实施例1制备得到的催化剂的镍元素XPS图,碳改性处理后的催化剂表明主要为零价镍信号,进一步证实了碳化镍催化剂在空气中可稳定保存。
催化效率
对本实施例1制备得到的催化剂进行性能评价:将1mmol苯甲醛,6mg本实施例1制备得到的Ni 3C 0.15催化剂、1mL氨水、2mL无水乙醇加入反应釜中,形成混合物,向反应釜内通入氮气连续3次置换反应釜中空气,密封反应釜后再向反应釜中通入氢气,反应釜内压力在2MPa时开启搅拌,转速为750rpm,维持反应温度不高于80℃,观察每分钟氢气消耗情况,直到不再有压降变化停止反应,反应时间为120分钟,反应结束后用气相色谱分析,经气相色谱分析结果,转化率为99.9%,选择性为98.3%。
催化剂多次套用
在上述催化效率试验相同的条件下,反应时间为1小时,连续套用本发明实施例1制备得到的Ni 3C 0.15催化剂,分别取样,套用后的选择性数据和反应活性变化如图6所示。
图6为本发明实施例1制备得到的催化剂的催化稳定性图,从图6中可以看出,本发明的Ni 3C 0.15催化剂,经过连续多次套用后,依旧保持高转化率和高选择性,说明催化剂具有良好的催化稳定性。
实施例2
本实施例2制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施 例2是在CO气氛下225℃碳化处理1h,获得的催化剂为Ni 3C 0.09,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例2制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为91%。
实施例3
本实施例3制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例3是在CO气氛下275℃碳化处理1h,获得的催化剂为Ni 3C 0.3,其余制备步骤与材料的选用同实施例1。
图4(a)为本发明实施例3制备得到的催化剂的碳化镍的程序升温还原TPR图,图4(b)为本发明实施例3制备得到的催化剂的程序升温脱附-质谱TPD-MS图。可以推算出本发明实施例3在275℃一氧化碳碳改性处理一小时得到的是Ni 3C 0.3催化剂。含碳量的增加与XRD表征数据结果符合,也进一步证实了碳化镍的生成,且碳改性处理后镍基催化剂表面氧化物的还原峰信号微弱,表明碳化镍在空气中非常稳定,且即便发生微弱氧化在75℃即可被还原,提高了镍基催化剂的实用性与安全性。
催化效率
对本实施例3制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.6%,选择性为98.5%。
实施例4
本实施例4制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例4是在CO气氛下300℃碳化处理1h,获得的催化剂为Ni 3C 0.38,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例4制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.2%。
实施例5
本实施例5制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施 例5是在CO气氛下250℃碳化处理3h,获得的催化剂为Ni 3C 0.45,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例5制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98%。
实施例6
本实施例6制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例6是在CO气氛下250℃碳化处理5h,获得的催化剂为Ni 3C 0.58,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例6制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.5%。
实施例7
本实施例7制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例5是在CO气氛下250℃碳化处理12h,获得的催化剂为Ni 3C 0.75,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例7制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为97.5%。
实施例8
本实施例8制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例8是在CO气氛下250℃碳化处理24h,获得的催化剂为Ni 3C 0.8,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例8制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为96.8%。
实施例9
本实施例9制备步骤与材料的选用同实施例1,不用之处在于,在碳改性处理中,本实施例9是将获得的商用镍黑催化剂放置于高压反应瓶中,通入3大气压的CO气体,来回充放气3遍后,将高压反应瓶置于200℃油浴中,反应1小时,获得的催化剂为Ni 3C 0.17,其余制备步骤与材料的选用同实施例1。
催化效率
对本实施例9制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.8%,选择性为98.7%。
实施例10
碳改性处理:将商用镍黑催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入乙炔气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至250℃,在乙炔气氛下250℃碳化处理1h,制备得到Ni 3C 0.34催化剂。
催化效率
对本实施例10制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为97.5%。
实施例11
碳改性处理:将商用镍黑催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入甲烷气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至350℃,在甲烷气氛下350℃碳化处理1h,制备得到Ni 3C 0.22催化剂。
催化效率
对本实施例11制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.4%。
实施例12
氮改性处理:将商用镍黑催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入氨气30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至350℃,在氨气氛下350℃氮化处理2h,制备得到Ni 3N 0.38催化剂。
催化效率
对本实施例10制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.5%。
实施例13
(1)称取2.30g的硝酸镍溶解于10mL乙醇中,得到硝酸镍溶液;同时称取1g活性碳载体分散于50mL乙醇中,得到活性碳分散液;滴加硝酸镍溶液至活性碳分散液中,充分搅拌5min,升温至80摄氏度,蒸干乙醇,得到Ni/C催化剂前驱体;将催化剂前驱体在5%H 2/Ar氛围下500度还原2小时,得到Ni/C催化剂,负载量为30%。
(2)碳改性处理:将上述获得的Ni/C催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入CO气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至250℃,在CO气氛下250℃碳化处理1h,制备得到Ni 3C 0.15/C催化剂。
催化效率
对本实施例11制备得到的催化剂进行性能评价,除了使用6mg的30wt%Ni 3C 0.15/C催化剂外,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为92%。
实施例14
将雷尼镍作为镍基催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入CO气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至250℃,在CO气氛下250℃碳化处理1h,制备得到Raney Ni 3C 0.15催化剂。
催化效率
对本实施例12制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.6%。
实施例15
将雷尼钴作为钴基催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入CO气体30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至250℃,在CO气氛下250℃碳化处理1h,制备得到Raney Co 3C 0.15催化剂。
催化效率
对本实施例13制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.1%。
实施例16
将雷尼钴作为钴基催化剂放置于氧化铝坩埚中,并将其置于管式炉内。在25℃下先通入氨气30分钟排除管道内的氧气,然后以5℃每分钟的速率升温至350℃,在氨气下350℃胺化处理1h,制备得到Raney Co 3N 0.33催化剂。
催化效率
对本实施例16制备得到的催化剂进行性能评价,催化反应条件与实施例1相同,经气相色谱分析结果,转化率为99.9%,选择性为98.3%。
表1、实施例1至15用于苯甲醛还原胺化的反应数据
Figure PCTCN2021130354-appb-000001
从表1可以看出,不同还原性含碳或氮气体改性处理条件下的催化剂用于苯甲醛还原胺化,转化率可高达99.9%、选择性可高达98.7%,由此可见,本发明经碳或氮改性处理的催化剂表面碳化或氮化形成稳定的M 3C x晶相或M 3N x晶相能够有效提高催化剂还原胺化反应的胺选择性。
实施例17至实施例32
实施例17至实施例32催化剂的制备步骤与材料的选用同实施例1,与实施例1不同之处仅在于催化剂进行性能评价时所用底物不同,实施例17至实施例32分别用糠醛、4-氯苯甲醛、4-氟苯甲醛、4-溴苯甲醛、4-甲基苯甲醛、4-甲氧基苯甲醛、3-氟苯甲醛、3-甲基苯甲醛、2-氟苯甲醛、2-甲基苯甲醛、3,5-二甲基苯甲醛、苯乙醛、苯丙醛、正辛醛、2-辛酮与环己酮替换实施例1中的苯甲醛,其余制备步骤与材料的选用同实施例1。同时分别对本实施例14至实施例29制备得到的催化剂进行性能评价,催化反应条件均与实施例1相同,经气相色谱分析,结果如表2所示。
表2、实施例17至32用于不同底物的反应数据
Figure PCTCN2021130354-appb-000002
Figure PCTCN2021130354-appb-000003
从表2可以看出,针对不同的醛类化合物或酮类化合物作为底物,本发明提供的碳或氮改性的催化剂对催化醛酮还原胺化反应均具有优异的催化效果。
对比例1
对比例1采用与实施例1相同的商用镍黑催化剂,不同之处在于没有进行任何碳化处理或氮化处理。
图2(a)为未进行碳或氮改性处理的商用镍黑催化剂的程序升温还原TPR图,图2(b)为未进行碳或氮改性处理的商用镍黑催化剂的程序升温脱附-质谱TPD-MS图,可以看到,未进行碳或氮改性处理的商用镍黑催化剂只有175℃一个还原峰,对应了质谱该峰产生的信号为水,表明未进行碳或氮改性处理的商用镍黑催化剂在175℃表面的氧化镍被还原生成水,同时相比于碳或氮改性处理的镍基材料,未进行碳或氮改性处理的镍基材料消耗了大量的氢气,这表明未进行碳或氮改性处理的镍基材料表面发生的氧化更严重,且氧化后相比于碳或氮改性的镍基催化剂更难被还原。
对比例2
对比例2采用与实施例11相同的制备条件制备30wt%质量分数的Ni/C负载型催化剂,不同之处在于没有进行任何碳化处理或氮化处理。
对比例3
对比例2采用与实施例12相同的商用雷尼镍催化剂,不同之处在于没有进行任何碳化处理或氮化处理。
对比例4
对比例2采用与实施例13相同的商用雷尼钴催化剂,不同之处在于没有进行任何碳化处理或氮化处理。
分别将对比例1至对比例4的催化剂进行性能评价,催化反应条件均与实施例1相同, 经气相色谱分析,结果如表3所示。
表3、对比例1至对比例4用于苯甲醛还原胺化的反应数据
Figure PCTCN2021130354-appb-000004
对比表1至表3可以看出,未经碳或氮改性的镍基/钴基催化剂与本发明提供的经碳或氮改性处理的镍基/钴基催化剂,对苯甲醛还原胺化反应催化选择性存在明显的差异。由改性前的29%-55%提升至92%-99%。
上述实施例仅用以例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟习此项技艺的人士均可在不违背本发明的精神及范畴下,对上述实施例进行修改。因此本发明的权利保护范围,应如权利要求书所列。

Claims (10)

  1. 一种碳或氮改性的催化剂,其特征在于,所述催化剂包括金属基活性中心,所述金属基活性中心与还原性含碳气体或还原性含氮气体发生化学反应,使碳原子或氮原子嵌入金属基活性中心的晶格并形成M 3C x或M 3N x,其中,所述M为金属基活性中心,所述金属基活性中心包括选自第VIII族的金属元素。
  2. 根据权利要求1所述的催化剂,其特征在于,所述M包括镍或钴。
  3. 根据权利要求2所述的催化剂,其特征在于,所述X的值为0~1。
  4. 根据权利要求1所述的催化剂,其特征在于,所述催化剂中碳元素或氮元素的摩尔百分含量占比为2%~25%。
  5. 根据权利要求1所述的催化剂,其特征在于,所述还原性含碳气体包括一氧化碳、乙炔或甲烷,所述还原性含氮气体包括氨气。
  6. 一种如权利要求1~5任一项所述碳或氮改性的催化剂的制备方法,其特征在于,包括如下步骤:将含金属基活性中心的催化剂置于还原性含碳气体中进行碳化反应,即得到碳改性的催化剂;或者将含金属基活性中心的催化剂置于还原性含氮气体中进行氮化反应,即得到氮改性的催化剂。
  7. 根据权利要求6所述的制备方法,其特征在于,所述碳化反应温度为100℃~1000℃,所述氮化反应温度为100℃~1000℃。
  8. 根据权利要求6所述的制备方法,其特征在于,所述碳化反应时间为1h~12h,所述氮化反应时间为1h~12h。
  9. 一种如权利要求1~5任一项所述碳或氮改性的催化剂的应用,其特征在于,将所述催化剂用于醛/酮还原胺化制备伯胺的应用。
  10. 根据权利要求9所述催化剂的应用,其特征在于,包括如下步骤:
    将所述催化剂、醛类化合物或酮类化合物、胺源、溶剂加入反应釜中,形成混合物,通入氮气置换所述反应釜中空气,密封所述反应釜后冲入还原性气体,加压、搅拌所述混合物直到反应完成。
PCT/CN2021/130354 2021-10-27 2021-11-12 一种碳或氮改性的催化剂及其制备方法和应用 WO2023070752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111259042.3 2021-10-27
CN202111259042.3A CN116020506A (zh) 2021-10-27 2021-10-27 一种碳或氮改性的催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023070752A1 true WO2023070752A1 (zh) 2023-05-04

Family

ID=86071122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130354 WO2023070752A1 (zh) 2021-10-27 2021-11-12 一种碳或氮改性的催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN116020506A (zh)
WO (1) WO2023070752A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287095A (en) * 1980-06-24 1981-09-01 The United States Of America As Represented By The Secretary Of The Interior High surface area transition metal catalysts and method of preparing same
CN104357841A (zh) * 2014-10-29 2015-02-18 北京工业大学 一种铁族碳化物纳米晶体-石墨烯纳米带复合材料、制备及其应用
CN104812490A (zh) * 2012-10-24 2015-07-29 沙索技术有限公司 用于制备费-托催化剂的方法
CN105944746A (zh) * 2016-05-18 2016-09-21 中国科学院理化技术研究所 一种碳负载氮化镍催化剂及其制备方法和应用
CN112206803A (zh) * 2020-09-30 2021-01-12 润泰化学(泰兴)有限公司 一种用于甲基丙烯醛选择性加氢生成异丁醛的催化剂及其制备方法
CN113522294A (zh) * 2021-08-11 2021-10-22 中国科学院青岛生物能源与过程研究所 一种Ni基催化剂及其制备方法与在还原胺化中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287095A (en) * 1980-06-24 1981-09-01 The United States Of America As Represented By The Secretary Of The Interior High surface area transition metal catalysts and method of preparing same
CN104812490A (zh) * 2012-10-24 2015-07-29 沙索技术有限公司 用于制备费-托催化剂的方法
CN104357841A (zh) * 2014-10-29 2015-02-18 北京工业大学 一种铁族碳化物纳米晶体-石墨烯纳米带复合材料、制备及其应用
CN105944746A (zh) * 2016-05-18 2016-09-21 中国科学院理化技术研究所 一种碳负载氮化镍催化剂及其制备方法和应用
CN112206803A (zh) * 2020-09-30 2021-01-12 润泰化学(泰兴)有限公司 一种用于甲基丙烯醛选择性加氢生成异丁醛的催化剂及其制备方法
CN113522294A (zh) * 2021-08-11 2021-10-22 中国科学院青岛生物能源与过程研究所 一种Ni基催化剂及其制备方法与在还原胺化中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EGASHIRA EGASHIRA Y Y, KOMIYAMA H: "A diffusion barrier protected catalyst applied to the NO/CO reaction over Ni3N", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 29, no. 8, 1 August 1990 (1990-08-01), Washington, DC, pages 1583 - 1588, XP093061014, DOI: 10.1021/ie00104a002 *
GAO JIAN-FEI, ZHANG WEI-BIN, ZHAO ZHI-YUN, KONG LING-BIN: "Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co 3 N", SUSTAINABLE ENERGY & FUELS, vol. 2, no. 6, 27 March 2018 (2018-03-27), pages 1178 - 1188, XP093061007, DOI: 10.1039/C8SE00009C *
HOFER L J E, COHN E M, PEEBLES1 W C: "ISOTHERMAL DECOMPOSITION OF NICKEL CARBIDE", THE JOURNAL OF PHYSICAL AND COLLOID CHEMISTRY, vol. 54, no. 8, 30 November 1950 (1950-11-30), pages 1161 - 1169, XP093061010 *

Also Published As

Publication number Publication date
CN116020506A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN108393092B (zh) 用于腈类化合物加氢制仲胺的催化剂的制备方法及其产品和应用
CN105032424A (zh) 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法
CN107500296B (zh) 一种棒状β-Mo2C的可控合成及其在逆水汽变换反应中的应用
WO2020048019A1 (zh) 负载型过渡金属碳化物催化剂及其一步法合成方法
CN104437467A (zh) 加氢催化剂及其应用、脱氢催化剂及其应用
Gurram et al. Synthesis and industrial catalytic applications of binary and ternary molybdenum nitrides: a review
CN110652991A (zh) 一种用于氨合成的碳化钼/氧化铈催化剂及其制备方法
CN100431698C (zh) 一种负载纳米双金属催化剂及其制备方法和应用
CN111644197A (zh) 低温甲烷转化制芳烃的催化体系、制备方法及应用
CN111185214A (zh) 氧化铝生物质炭复合材料、其制备方法与应用
CN112076748A (zh) 一种脱氢催化剂
CN113731441B (zh) 一种钴-还原氧化石墨烯Co/rGO催化剂及其制备方法与应用
Xu et al. Stable Ni catalyst encapsulated in N-doped carbon nanotubes for one-pot reductive amination of nitroarenes with aldehydes
WO2023070752A1 (zh) 一种碳或氮改性的催化剂及其制备方法和应用
CN113351214A (zh) 一种碳掺杂二氧化硅负载镍铜合金及其制备方法和应用
JP2004501760A (ja) 金属性水素化触媒、その製造およびその使用
CN114618545A (zh) 单原子Ru催化剂及其制备和在醛酮还原胺化中的应用
CN114805259A (zh) 一种耐失活镍基催化剂上糠醇选择性胺化制备糠胺的方法
CN107442134B (zh) 一种铑/镍合金纳米催化剂及其制备方法和应用
CN109433214A (zh) 一种Ni/Zn多孔碳负载型催化剂及其在苯环催化加氢中的应用
CN114849694A (zh) 一种基于金属负载氧化钨氢化硝基芳烃的催化剂及其制备方法和应用
CN108525670B (zh) 氧化硅限域镍基催化剂及其制备方法与应用
CN112452318A (zh) 一种水刻蚀石墨烯限域的Pt纳米复合材料及其制备方法和应用
CN115254156A (zh) 负载型Ru单原子合金催化剂和其应用
CN115155631B (zh) 一种碳改性的金属系还原催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962098

Country of ref document: EP

Kind code of ref document: A1