WO2023063173A1 - 気流式分級機 - Google Patents
気流式分級機 Download PDFInfo
- Publication number
- WO2023063173A1 WO2023063173A1 PCT/JP2022/037146 JP2022037146W WO2023063173A1 WO 2023063173 A1 WO2023063173 A1 WO 2023063173A1 JP 2022037146 W JP2022037146 W JP 2022037146W WO 2023063173 A1 WO2023063173 A1 WO 2023063173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air classifier
- classifying
- fine powder
- ceiling wall
- chamber
- Prior art date
Links
- 239000000843 powder Substances 0.000 claims abstract description 254
- 239000002994 raw material Substances 0.000 claims abstract description 52
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 46
- 239000007789 gas Substances 0.000 description 38
- 238000011084 recovery Methods 0.000 description 37
- 239000011362 coarse particle Substances 0.000 description 15
- 239000010419 fine particle Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B7/00—Selective separation of solid materials carried by, or dispersed in, gas currents
- B07B7/08—Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B11/00—Arrangement of accessories in apparatus for separating solids from solids using gas currents
- B07B11/06—Feeding or discharging arrangements
Definitions
- the present invention utilizes the balance between the centrifugal force and the drag force applied to the powder by the swirl flow formed by the gas, and divides the raw material powder having a particle size distribution into fine powder and coarse powder at the desired particle size (classification point). More specifically, it relates to an air classifier that maintains classification accuracy and reduces classification points.
- fine particles such as oxide fine particles, nitride fine particles, and carbide fine particles are used as electrical insulating materials such as semiconductor substrates, printed circuit boards, and various electrical insulating parts, as well as high-hardness and high-precision machining materials such as cutting tools, dies, and bearings.
- functional materials such as humidity sensors
- production of sintered bodies such as precision sintered molding materials
- production of thermal spray parts such as materials requiring high temperature wear resistance such as engine valves, and fuel cell electrodes and electrolytes It is used in fields such as materials and various catalysts.
- the fine particles described above are produced by a chemical method in which various gases are chemically reacted at high temperature, or a physical method in which a beam such as an electron beam or a laser is irradiated to decompose and evaporate the substance to produce fine particles. .
- the fine particles produced by the above-described production method have a particle size distribution, and are a mixture of coarse particles and fine particles.
- the fine particles When the fine particles are used for the above applications, it is preferable that the fine particles contain a small proportion of coarse powder, since better properties can be obtained.
- the fine metal particles it is preferable that the ratio of the coarse powder is small, because better characteristics can be obtained. Therefore, for example, an air classifier, a powder classifier, and the like are used, which use a swirling flow to impart a swirling motion to the powder to separate it into coarse powder and fine powder by centrifugation.
- Patent Literature 1 describes a powder classifier in which powder having a particle size distribution is air-conveyed and supplied.
- the powder classifier of Patent Document 1 has a disk-shaped cavity (disk-shaped cavity) which is a space for classifying the supplied powder having a particle size distribution, and a disk-shaped cavity for classifying the powder having a particle size distribution.
- a powder supply port for supplying powder to the part; a plurality of guide vanes arranged to extend inwardly at a predetermined angle from the outer periphery of the disk-shaped cavity; and an air flow containing fine powder discharged from the disk-shaped cavity.
- It has a discharge part and a recovery part for coarse powder discharged from the disk-shaped cavity, and is located below the plurality of guide vanes and is arranged along the tangential direction of the outer peripheral wall of the disk-shaped cavity, and a plurality of air nozzles for blowing compressed air into the coarse powder collecting portion inside the disk-shaped hollow portion and returning the fine powder on the coarse powder collecting portion side to the disk-shaped hollow portion.
- Patent Document 2 powder supplied from a supply port provided in the upper part of the apparatus main body is swirled in the apparatus main body and guided downward, and a suction port is provided at the upper end in the center part of the apparatus main body.
- a classifier which is provided with a suction pipe composed of multiple pipes, and sucks powder having a small particle size from a suction port through the suction pipe in the powder guided downward while swirling.
- powders having different particle diameters are separately sucked and collected through a suction tube composed of multiple tubes.
- the powder classifier of Patent Document 1 can classify a raw material powder having a particle size distribution into fine powder and coarse powder at a desired particle size (classification point). Therefore, it is desired to further miniaturize the classification point in the powder classifier.
- one raw material powder is classified in one classifying operation, and is passed through a suction tube composed of multiple tubes as described above, and each tube constituting each multiple tube has a particle size. Collecting different powders. For this reason, in Patent Document 2, powder can be recovered in each tube constituting the multiple tube, and variation in the particle size of each recovered powder can be reduced, but the classification point is set at each suction tube. It is determined by the air volume balance and does not realize miniaturization of the classification point. Further, when classifying powder, it is desired to be able to classify stably for a long period of time and to maintain classification accuracy for a long period of time.
- the object of the present invention is to solve the above-mentioned problems based on the prior art, maintain the classification accuracy for a long period of time, and provide an air current classifier with a smaller classification point.
- one aspect of the present invention provides a casing having a ceiling wall and an annular wall continuously provided on the outer edge of the ceiling wall, and a casing having a surface facing the ceiling wall.
- a classifying plate to be placed a classifying chamber constructed between the ceiling wall of the casing and the surface of the classifying plate, a gas supply section for supplying gas into the classifying chamber to generate a swirling flow, and a gas generated in the classifying chamber.
- a raw material supply unit for supplying raw material powder to the swirling flow, a fine powder discharge port provided in the center of one of the ceiling wall of the casing and the surface of the classifying plate constituting the classifying chamber, the ceiling wall, and Coarse powder outlet opening along the outer periphery of the classifying chamber on either side of the surface of the classifying plate facing the ceiling wall, and at least one of the surfaces of the ceiling wall and the classifying plate.
- the present invention provides an air classifier having grooves.
- the diameter of the first cylindrical portion and the diameter of the second cylindrical portion are different. It is preferable that at least one of the ceiling wall of the casing and the surface of the classification plate is formed with a slope, and the slope is provided with a groove. Preferably, at least one of the peripheral edge of the first cylindrical portion of the ceiling wall of the casing and the peripheral edge of the second cylindrical portion of the surface of the classifying plate is formed with a slope, and the slope is provided with a groove. .
- the fine powder discharge port is circular, and the groove is provided concentrically with respect to the fine powder discharge port.
- the grooves are preferably provided on the surfaces of the ceiling wall and the classification plate.
- the fine powder discharge port is circular, and the groove is provided concentrically with respect to the fine powder discharge port, and the groove provided on the ceiling wall faces the groove provided on the surface of the classifying plate. is preferred.
- a groove is provided along the periphery of the fine powder outlet and concentrically with the fine powder outlet.
- Concentric grooves are provided facing the concentric grooves provided in the surrounding area, and the concentric groove provided on the side with the fine powder discharge port and the concentric groove provided on the side without the fine powder discharge port are provided.
- the concentric circular grooves are preferably provided at the same position in a direction orthogonal to the direction in which the ceiling wall of the casing of the classifying chamber and the surface of the classifying plate face each other.
- a plurality of grooves are preferably provided along the circumference of the fine powder outlet.
- the ceiling wall has the first cylindrical portion and the surface of the classification plate is provided with grooves. It is preferable that the surface of the classification plate has a second cylindrical portion and the ceiling wall is provided with a groove. It is preferable that the slope is inclined so that the height of the classifying chamber gradually increases from the outside toward the center of the classifying chamber. It is preferable that the slope is inclined so that the height of the classifying chamber decreases from the outside toward the center of the classifying chamber.
- the raw material supply unit is connected to either one of the ceiling wall of the casing and the surface of the classifying plate, which constitute the classifying chamber, and preferably supplies the raw material powder to the swirling flow generated in the classifying chamber.
- the raw material supply unit has a jet nozzle for supplying the raw material powder to the swirling flow generated in the classifying chamber.
- the gas supply unit has a plurality of air nozzles, and the air nozzles are arranged along the outer edge of the classifying chamber at equal intervals in the circumferential direction of the classifying chamber.
- the gas supply unit has a plurality of guide vanes, and the guide vanes are arranged along the outer edge of the classification chamber at equal intervals in the circumferential direction of the classification chamber.
- the classification point when raw material powder having a particle size distribution is classified into fine powder and coarse powder, the classification point can be made smaller than before while maintaining the classification accuracy for a long period of time.
- FIG. 1 is a schematic cross-sectional view showing a first example of an air classifier according to an embodiment of the present invention
- FIG. FIG. 2 is a schematic diagram showing an example of grooves in the first example of the air classifier according to the embodiment of the present invention
- FIG. 4 is a schematic diagram showing another example of the groove portion of the first example of the air classifier according to the embodiment of the present invention
- FIG. 4 is a schematic cross-sectional view showing a second example of the air classifier according to the embodiment of the present invention
- FIG. 5 is a schematic partial cross-sectional view showing a third example of the air classifier according to the embodiment of the present invention
- FIG. 4 is a schematic partial cross-sectional view showing a fourth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a fifth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a sixth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a seventh example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing an eighth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a ninth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a ninth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic partial cross-sectional view showing a ninth example of the air classifier according
- FIG. 10 is a schematic partial cross-sectional view showing a tenth example of the air classifier according to the embodiment of the present invention
- FIG. 11 is a schematic cross-sectional view showing an eleventh example of the air classifier according to the embodiment of the present invention
- FIG. 4 is a schematic cross-sectional view showing a first air classifier for comparison; It is a graph which shows the result of classification.
- 1 is a schematic diagram showing ceramic particles after being classified by an air classifier of the present invention.
- FIG. FIG. 2 is a schematic diagram showing ceramic particles after being classified by a first air classifier for comparison;
- FIG. 4 is a schematic partial cross-sectional view showing a second air classifier for comparison; It is a graph which shows the result of classification.
- 1 is a schematic diagram showing ceramic particles after being classified by an air classifier of the present invention.
- FIG. FIG. 3 is a schematic diagram showing ceramic particles after being classified by a second air classifier for comparison.
- FIG. 1 is a schematic cross-sectional view showing a first example of an air classifier according to an embodiment of the present invention
- FIG. 2 shows an example of a groove portion of the first example of an air classifier according to an embodiment of the present invention
- FIG. 3 is a schematic diagram showing another example of the groove portion of the first example of the air classifier according to the embodiment of the present invention.
- the air classifier 10 shown in FIG. 1 utilizes the balance between the centrifugal force and the drag force applied to the powder by the swirl flow formed by the gas to classify raw material powder having a particle size distribution into a desired particle size (classification). point) to classify into fine powder Pf and coarse powder Pc.
- An air classifier 10 shown in FIG. 1 has, for example, a cylindrical casing 12 .
- the casing 12 has a ceiling wall 13 and an annular wall 19 provided continuously from the outer edge 13b of the ceiling wall 13 .
- the ceiling wall 13 constitutes a circular upper disk-shaped portion 14
- the casing 12 has the upper disk-shaped portion 14 .
- a classifying plate 16 is arranged on the ceiling wall 13 of the casing 12, that is, on the upper disc-shaped portion 14, with a predetermined space therebetween, with the surface 16c facing each other.
- the classification plate 16 has a substantially circular outer shape.
- the upper disc-shaped portion 14 (ceiling wall 13) and the classifying plate 16 are arranged facing each other in the direction H. As shown in FIG.
- a substantially disk-shaped classification chamber 18 is defined between the upper disk-shaped portion 14 and the classification plate 16 , and the circumference of the classification chamber 18 is closed by an annular wall 19 of the casing 12 .
- the classifying chamber 18 is a space sandwiched between the opposing ceiling wall 13 (the surface 14c of the upper disc-shaped portion 14) and the surface 16c of the classifying plate 16. It is configured between the surface 16 c of the plate 16 .
- the upper disc-shaped portion 14 (ceiling wall 13 ) and the classifying plate 16 are both members that form the space of the classifying chamber 18 .
- Raw material powder having a particle size distribution is separated into, for example, coarse powder and fine powder in the classifying chamber 18 and classified.
- a fine powder discharge port 14a is formed in the central portion of the upper disk-shaped portion 14 .
- the fine powder discharge port 14a communicates with the classification chamber 18 .
- the fine powder outlet 14a is circular, for example.
- the fine powder discharge port 14a discharges the fine powder out of the coarse powder and fine powder generated by separating the raw material powder in the classifying chamber 18 as will be described later.
- a surface 14c of the upper disk-shaped part 14 facing the classifying chamber 18 is configured by a plane parallel to the direction W, for example. This direction W is a direction orthogonal to the direction H.
- a surface 16c of the classifying plate 16 facing the classifying chamber 18 is configured by a plane parallel to the direction W, for example.
- the surface 14c of the upper disk-shaped portion 14 and the surface 16c of the classifying plate 16 are parallel.
- a groove portion 50 is provided in the first region 24a around the fine powder outlet 14a.
- the groove portion 50 is recessed from the surface 14 c of the upper disk-shaped portion 14 .
- the groove 50 is arranged along the fine powder outlet 14a and concentrically with the fine powder outlet 14a.
- the ceiling wall 13 (upper disc-shaped portion 14) provided with the fine powder discharge port 14a is provided with a groove 50 concentrically with the fine powder discharge port 14a along the periphery of the fine powder discharge port 14a.
- a groove portion 51 is provided in a second region 26a facing the first region 24a around the fine powder outlet 14a.
- the groove portion 51 is recessed from the surface 16 c of the classifying plate 16 .
- a member having no opening for example, the classifying plate 16
- the groove portion 51 has the same configuration as the groove portion 50 .
- the groove portion 50 of the upper disc-shaped portion 14 and the groove portion 51 of the classifying plate 16 are arranged to face each other in the H direction.
- the concentric grooves 50 provided in the upper disc-shaped portion 14 (one member) and the concentric grooves 51 provided in the classifying plate 16 (the other member) are two members of the classifying chamber 18. , are provided at the same position in the direction W perpendicular to the direction H in which the upper disc-shaped portion 14 and the classifying plate 16 face each other.
- Both the groove portion 50 and the groove portion 51 have a rectangular cross-sectional shape.
- the cross-sectional shape of the groove portion 50 and the groove portion 51 is not limited to a rectangular shape, and the bottom portion may be flat, curved, or curved.
- the cross section may be U-shaped or V-shaped.
- the groove portion 51 has the same configuration as the groove portion 50, and has the same width in the direction W and depth in the direction H, but is not limited to this.
- the grooves 50 and 51 may have different widths in the W direction and different depths in the H direction.
- the position where the groove portion 50 is provided may be the first region 24a around the fine powder discharge port 14a, and is not limited to being provided along the outer edge of the fine powder discharge port 14a.
- the grooves 50 and 51 are arranged concentrically with the fine powder discharge port 14a, for example, as shown in FIG. 2, but the present invention is not limited to this.
- a plurality of grooves 52 may be provided along the circumference of the fine powder discharge port 14a.
- the groove 52 has, for example, a circular opening.
- the grooves may be provided in at least one of the two opposing members, the upper disc-shaped portion 14 and the classifying plate 16 , which constitute the classifying chamber 18 . That is, at least one of the first region 24a around the fine powder discharge port 14a and the second region 26a facing the first region 24a around the fine powder discharge port 14a has a recessed groove. Any configuration is acceptable.
- the groove portion By providing the groove portion, adhesion of the powder to the classifying chamber 18 is suppressed when the powder is classified. If powder adheres to the classifying chamber 18, the adhering powder may detach, but by suppressing the adhering of the powder, the probability of the powder detaching can be reduced. As a result, classification can be stably performed over a long period of time, and classification accuracy can be maintained over a long period of time. Moreover, the classification point can be made smaller. That is, it can be classified into fine powder and coarse powder at smaller particle sizes. Further, by providing the groove portion, the speed of the powder traveling from the outside of the device to the fine powder discharge port 14a can be locally suppressed, so that the classification point becomes smaller.
- the grooves 50 of the upper disc-shaped portion 14 and the grooves 51 of the classifying plate 16 are provided, but the configuration is not limited to this, and the grooves 50 of the upper disc-shaped portion 14 and the classifying plate It is sufficient that at least one of the 16 grooves 51 is provided.
- a fine powder collection pipe 30 is provided in the fine powder discharge port 14a so as to extend in a direction perpendicular to the surface 12a of the casing 12. As shown in FIG. This perpendicular direction is the direction parallel to the direction H described above.
- the fine powder recovery pipe 30 is for discharging the gas containing the fine powder Pf classified in the classifying chamber 18 to the outside of the classifying chamber 18 through the gap 23 .
- a suction blower (not shown) is connected to the end 30c of the fine powder recovery pipe 30 on the side opposite to the classifying chamber 18 via, for example, a bag filter (not shown).
- a bag filter (not shown), a suction blower (not shown) and the like constitute a fine powder recovery device.
- the fine powder recovery pipe 30 constitutes a fine powder recovery section. Out of the coarse powder and the fine powder produced by separating the raw material powder in the classifying chamber 18, the fine powder is discharged from the fine powder outlet 14a of the upper disc-shaped portion 14. As shown in FIG. There is also a gap 39 between the outer end 16 a of the classifying plate 16 and the annular wall 19 of the casing 12 . Gap 39 is located at the outer edge of classification chamber 18 . Below the casing 12, for example, a hollow truncated conical coarse particle recovery chamber 28 is provided below the casing 12, for example. The classifying chamber 18 and the coarse powder collecting chamber 28 communicate with each other through a gap 39 . In addition, the outer edge of the classifying chamber 18 is higher in the direction H than the central portion, and the outer edge of the classifying chamber 18 widens in the direction H. As shown in FIG.
- the coarse powder collecting chamber 28 is for discharging the coarse powder Pc classified in the classifying chamber 18 to the outside of the classifying chamber 18 .
- the coarse particle recovery chamber 28 is provided with a coarse particle recovery pipe (not shown) for collecting the classified coarse particles.
- a hopper (not shown) is provided at the lower end of the coarse particle recovery pipe via a rotary valve (not shown), for example.
- Coarse powder Pc obtained by classifying the raw material powder in the classifying chamber 18 passes through the gap 39 and is collected in the hopper through the coarse powder collecting chamber 28 and the coarse powder collecting pipe.
- the gap 39 described above constitutes the coarse powder discharge port 66 .
- Coarse powder discharge port 66 discharges coarse powder out of coarse powder and fine powder generated by separating raw material powder in classifying chamber 18 .
- the coarse particle recovery chamber 28 constitutes a coarse particle recovery section.
- Coarse powder Pc is discharged from the gap 39 (coarse powder discharge port 66).
- the coarse particle recovery unit for example, the coarse particle recovery chamber 28 includes the upper disc-shaped portion 14 (one member) and the classifying plate facing the upper disc-shaped portion 14 (one member) with the classifying chamber 18 interposed therebetween. 16 (the other member), provided on the outer edge of the classifying chamber 18 and communicating with the classifying chamber 18 to classify the coarse powder Pc classified in the classifying chamber 18. It is to be discharged to the outside of the chamber 18 .
- the configuration of the coarse particle recovery section is not limited to the configuration shown in FIG.
- the annular wall 19 of the casing 12 is provided with a plurality of first air nozzles 34 on the side of the fine powder collecting pipe 30 in the direction H. As shown in FIG.
- the annular wall 19 is also provided with a second air nozzle 36 below the first air nozzle 34 in the direction H. As shown in FIG. That is, a plurality of second air nozzles 36 are provided.
- the cylindrical casing 12 is provided with a third air nozzle 38 below the second air nozzle 36 in the direction H. As shown in FIG. That is, a plurality of third air nozzles 38 are provided.
- a plurality of first air nozzles 34 are provided along the outer edge of the classifying chamber 18, each having a predetermined angle with respect to the tangential direction of the outer edge of the classifying chamber 18. For example, 6 pieces are arranged at equal intervals in the circumferential direction of 18 pieces.
- a plurality of second air nozzles 36 and third air nozzles 38 are provided along the outer edge of the classifying chamber 18 in the same manner as the first air nozzle 34, and each of them has a predetermined angle with respect to the tangential direction of the outer edge of the classifying chamber 18. are arranged at equal intervals in the circumferential direction of the classification chamber 18, for example, six.
- the gas supply has a first air nozzle 34 and a second air nozzle 36 .
- the gas supply unit has the first air nozzle 34 and the second air nozzle 36, but it may be configured to have the first air nozzle 34 or the second air nozzle 36 out of the first air nozzle 34 and the second air nozzle 36. .
- the first air nozzle 34, the second air nozzle 36, and the third air nozzle 38 are each connected to a pressurized gas supply (not shown) and have gas injection ports. Gas with a predetermined pressure is supplied from the pressurized gas supply unit to the first air nozzle 34 and the second air nozzle 36, and the pressurized gas is jetted out from each of them, thereby swirling in the same direction in the classifying chamber 18. A stream is formed.
- the gas is appropriately determined according to the raw material powder to be classified, the purpose, etc. Air is used as the gas, for example. When the raw material powder reacts with air, other non-reactive gas is appropriately used.
- gas of a predetermined pressure is supplied from the pressurized gas supply unit to the third air nozzle 38, and the pressurized gas is ejected from the third air nozzle 38, so that the outer end portion 16a of the classifying plate 16 and the casing 12 are separated. Pressurized gas is supplied to the gap 39 between the .
- the number of the first air nozzles 34, the second air nozzles 36, and the third air nozzles 38 is not limited to the number described above, and may be one or more, and is appropriately determined according to the device configuration and the like. be done.
- the second air nozzle 36 is not limited to a nozzle, and may be a guide vane or the like as will be described later, which is appropriately determined according to the device configuration.
- a supply pipe 42 is provided on the surface 12a of the casing 12 at a predetermined distance from the fine powder recovery pipe 30 in the direction W.
- the supply pipe 42 is provided on the outer edge of the casing 12 .
- a material supply unit 40 for supplying the raw material powder Ps into the classifying chamber 18 is provided above the supply pipe 42 .
- the supply pipe 42 has, for example, a hollow truncated cone shape.
- the supply pipe 42 is arranged with the tip of the truncated cone having a small diameter facing the surface 12 a of the casing 12 .
- a connecting portion between the supply pipe 42 and the casing 12 is configured by a pipe having a constant diameter.
- the supply pipe 42 is connected to, for example, the upper disk-shaped portion 14 , and the raw material powder Ps is supplied into the classifying chamber 18 through an opening 42 a of the upper disk-shaped portion 14 .
- a suction blower (not shown) draws air from inside the classifying chamber 18 through the fine powder recovery pipe 30 at a predetermined air volume, and a pressurized gas supply unit (not shown) feeds the first air nozzle 34 and the second air nozzle 34 .
- a pressurized gas is supplied to each of the air nozzles 36 of , to generate a swirling flow in the classifying chamber 18 .
- a predetermined amount of raw material powder Ps having a particle size distribution is supplied from the raw material supply unit 40 through the opening 42 a of the upper disk-shaped portion 14 to the swirling flow of the classifying chamber 18 .
- the raw material jetting nozzle (not shown) flows into the classifying chamber 18 .
- the supplied powdered raw material Ps swirls in the classifying chamber 18 and undergoes a centrifugal separation action within the classifying chamber 18 .
- the grooves 50 and 51 provided in the classifying chamber 18 can locally suppress the speed of the powder moving from the outside of the device toward the fine powder discharge port 14a, so that the classification point becomes smaller. This enables classification into fine powder and coarse powder at smaller particle sizes.
- the coarse powder Pc having a large particle size remains in the classification chamber 18 without flowing into the fine powder recovery pipe 30 through the fine powder discharge port 14a, while the fine powder Pf having a size equal to or smaller than the classification point is mixed with the air flow.
- the fine powder discharge port 14a the fine powder is sucked from the fine powder collecting pipe 30 and discharged.
- the fine powder Pf can be classified and recovered from the raw material powder Ps having a particle size distribution.
- by providing the grooves 50 and 51 as described above adhesion of powder to the classifying chamber 18 is suppressed. Since classification can be stably performed over a long period of time, classification accuracy can be maintained over a long period of time. The particle size of the collected fine powder Pf can be reduced.
- the remainder of the raw material powder not discharged from the fine powder recovery pipe 30, that is, the coarse powder Pc passes through the gap 39 between the classifying plate 16 and the annular wall 19 from the classification chamber 18 to the coarse powder recovery chamber 28. and fall. After that, the remainder of the raw material powder, that is, the coarse powder Pc is recovered through a coarse powder recovery pipe (not shown).
- the guide vane method may be able to classify with higher accuracy than the air nozzle method. Therefore, the conventional guide vane system can be selected according to the purpose of classification.
- Fine particles such as submicron particles tend to agglomerate with each other, but according to the air classifier 10, a large amount of pressurized gas can be ejected from the first air nozzle 34 and the second air nozzle 36. Therefore, it is possible to classify efficiently.
- various powders ranging from low specific gravity powders such as silica and toner to high specific gravity powders such as metals and alumina can be used as objects to be classified.
- the second air nozzle 36 may be of a guide vane type with a wide setting range of air volume.
- FIG. 4 is a schematic cross-sectional view showing a second example of the air classifier according to the embodiment of the present invention.
- the air classifier 10a shown in FIG. 4 the same components as in the air classifier 10 shown in FIG. Compared to the air classifier 10 shown in FIG. 1, the air classifier 10a shown in FIG. 4 has a cylindrical first cylindrical portion 20 and a cylindrical second cylindrical portion 22. Except for this, the configuration is the same as that of the air classifier 10 shown in FIG.
- the upper disk-shaped part 14 is provided with a first cylindrical part 20 protruding into the classifying chamber 18 along the edge of the fine powder outlet 14a.
- the first cylindrical portion 20 is composed of, for example, a cylindrical member having the same inner diameter as the fine powder outlet 14a.
- the first cylindrical portion 20 and the fine powder discharge port 14a are in communication.
- a cylindrical second cylindrical portion 22 is provided on the classifying plate 16 which is the other member so as to face the first cylindrical portion 20 and create a gap 23 at a predetermined distance.
- the first cylindrical portion 20 and the second cylindrical portion 22 are arranged in the central portion in the direction W of the classifying chamber 18 .
- the air classifier 10a classifies raw material powder having a particle size distribution into fine powder and coarse powder, while maintaining high accuracy, while classifying the classification point to be smaller than before.
- the first cylindrical portion 20 and the second cylindrical portion 22 suppress the coarse powder Pc having a large particle size from flowing into the fine powder recovery pipe 30, and prevent the coarse powder Pc having a large particle size from flowing into the classification chamber. 18.
- the fine powder Pf having a size equal to or smaller than the classification point passes through the gap 23 together with the air flow, and can be sucked into the fine powder recovery pipe 30 through the fine powder discharge port 14a.
- the particle size of the collected fine powder Pf can be made smaller.
- the classification point can be made smaller than before.
- FIG. 5 is a schematic partial cross-sectional view showing a third example of the air classifier according to the embodiment of the present invention.
- the air classifier 10b shown in FIG. 5 the same components as in the air classifier 10a shown in FIG. Compared to the air classifier 10a shown in FIG. 4, the air classifier 10b shown in FIG. Except for the points, it has the same configuration as the air classifier 10a shown in FIG.
- the air classifier 10b is provided with a groove portion 51 in the second area 26a around the fine powder outlet 16b.
- a groove portion 50 is provided in the first region 24 a of the upper disk-shaped portion 14 so as to face the groove portion 51 .
- the first region 24a of the upper disc-shaped portion 14 is a region facing the periphery of the fine powder discharge port 16b.
- the position where the groove portion 51 is provided may be the second region 26a around the fine powder discharge port 16b, and is not limited to providing along the outer edge of the fine powder discharge port 16b.
- a fine powder recovery pipe 60 is provided at the fine powder outlet 16b. Similar to the fine powder recovery pipe 30 (see FIG.
- the fine powder recovery pipe 60 is connected at its end (not shown) to a suction blower (not shown) via, for example, a bag filter (not shown). It is A bag filter (not shown), a suction blower (not shown) and the like constitute a fine powder recovery device.
- the fine powder recovery pipe 60 constitutes a fine powder recovery section.
- the fine powder Pf is recovered through the fine powder recovery pipe 60 .
- the air classifier 10b can obtain the same effect as the air classifier 10a shown in FIG. 5, the fine powder Pf (see FIG. 1) is discharged from the classifying plate 16 side, and the outer end 16a of the classifying plate 16 and the casing 12 (see FIG. 1) are discharged from the classifying plate 16 side. Coarse powder Pc (see FIG.
- the air classifiers 10 and 10a shown in FIGS. 1 and 4 may be configured to take out the fine powder Pf from the upper disk-shaped portion 14, or the air classifier 10b may be configured to take out the fine powder Pf from the classifying plate 16. It's okay.
- the take-out of the fine powder Pf is not particularly limited.
- FIG. 6 is a schematic partial cross-sectional view showing a fourth example of the air classifier according to the embodiment of the present invention.
- the air classifier 10c shown in FIG. 6 the same components as those of the air classifier 10 shown in FIG. Compared to the air classifier 10 shown in FIG. 1, the air classifier 10c shown in FIG. The configuration is the same as that of the air classifier 10 shown in FIG.
- the upper disk-shaped part 14 is provided with a first cylindrical part 20 protruding into the classifying chamber 18 along the edge of the fine powder discharge port 14a.
- a groove portion 51 is provided in the second region 26a of the classifying plate 16 facing the first region 24a around the fine powder outlet 14a.
- the first region 24a of the upper disc-shaped portion 14 is a region facing the periphery of the fine powder discharge port 16b.
- the classifying plate 16 is not provided with the second cylindrical portion 22 .
- the air classifier 10c has a configuration in which the upper disk-shaped portion 14 (one member) has the first cylindrical portion 20 and the classifying plate 16 (the other member) is provided with the groove portion 51 .
- the air classifier 10c can obtain the same effect as the air classifier 10 shown in FIG.
- the groove portion 51 suppresses adhesion of powder to the classifying chamber 18, and stable classification can be performed for a long period of time, so that classification accuracy can be maintained for a long period of time.
- the first cylindrical portion 20 suppresses the coarse powder Pc (see FIG. 1) having a large particle size from flowing into the fine powder recovery pipe 30 (see FIG. 1), and the recovered fine powder Pf (see FIG. 1) is suppressed. ) can be made smaller.
- FIG. 7 is a schematic partial cross-sectional view showing a fifth example of the air classifier according to the embodiment of the present invention.
- the air classifier 10d shown in FIG. 7 the same components as in the air classifier 10a shown in FIG. Compared to the air classifier 10a shown in FIG. 4, the air classifier 10d shown in FIG. Except for the points, it has the same configuration as the air classifier 10a shown in FIG.
- the air classifier 10d has a configuration in which the classifying plate 16 (the other member) has a second cylindrical portion 22, and the upper disc-shaped portion 14 (the one member) is provided with a groove portion 50. As shown in FIG.
- the air classifier 10d can obtain the same effect as the air classifier 10 shown in FIG.
- the grooves 50 prevent the powder from adhering to the classifying chamber 18, enabling stable classification over a long period of time, so that the classification accuracy can be maintained over a long period of time.
- the second cylindrical portion 22 suppresses the coarse powder Pc having a large particle size from flowing into the fine powder recovery pipe 30 (see FIG. 1), so that the particle size of the recovered fine powder Pf can be made smaller. can.
- FIG. 8 is a schematic partial cross-sectional view showing a sixth example of the air classifier according to the embodiment of the present invention.
- the air classifier 10e shown in FIG. 8 differs from the air classifier 10a shown in FIG. 4 in the diameter D1 of the first cylindrical portion 20 and the diameter D2 of the second cylindrical portion 22 Otherwise, the configuration is the same as that of the air classifier 10a shown in FIG.
- the diameter D 1 of the first cylindrical portion 20 is larger than the diameter D 2 of the second cylindrical portion 22 .
- the air classifier 10e can obtain the same effect as the air classifier 10a shown in FIG.
- FIG. 9 is a schematic partial cross-sectional view showing a seventh example of the air classifier according to the embodiment of the present invention.
- the air classifier 10f shown in FIG. 9 differs from the air classifier 10a shown in FIG. 4 in the diameter D1 of the first cylindrical portion 20 and the diameter D2 of the second cylindrical portion 22 Otherwise, the configuration is the same as that of the air classifier 10a shown in FIG.
- the diameter D2 of the second cylindrical portion 22 is larger than the diameter D1 of the first cylindrical portion 20.
- the air classifier 10e can obtain the same effect as the air classifier 10a shown in FIG.
- FIG. 10 is a schematic partial cross-sectional view showing an eighth example of the air classifier according to the embodiment of the present invention.
- the air classifier 10g shown in FIG. 10 the same components as in the air classifier 10a shown in FIG. 10, the air classifier 10g shown in FIG. 4 except that an inclined portion 26b is formed in the region 26a of the air classifier 10a shown in FIG.
- an inclined portion 24b is formed on the surface 14c of the upper disk-shaped portion 14 facing the classifying chamber 18 on the side closer to the cylindrical first cylindrical portion 20. .
- a groove portion 50 is provided in the inclined portion 24b.
- an inclined portion 26b is formed on the side closer to the cylindrical second cylindrical portion 22.
- a groove portion 51 is provided in the inclined portion 26b.
- the slant portion 24b and the slant portion 26b are inclined planes and have a straight cross-sectional shape.
- the inclined portion 24b and the inclined portion 26b are inclined so that the height of the classifying chamber 18 gradually increases from the annular wall 19 toward the fine powder outlet 14a. That is, the inclined portion 24b of the upper disk-shaped portion 14 rises toward the fine powder outlet 14a.
- the inclined portion 26 b of the classifying plate 16 is lowered toward the second cylindrical portion 22 .
- the length L1 of the first cylindrical portion 20 and the length L2 of the second cylindrical portion 22 can be increased, and the collected fine powder Pf (Fig. 1) can be reduced.
- Both the angle of the inclined portion 24b and the angle of the inclined portion 26b of the classifying plate 16 with respect to a line parallel to the direction W of the upper disc-shaped portion 14 are represented by ⁇ .
- the angle ⁇ is preferably 5° to 30°, more preferably 10° to 20°. If the angle ⁇ is about 5° to 30°, the classification points can be made smaller when the raw material powder Ps is classified into the fine powder Pf and the coarse powder Pc.
- the angle ⁇ of the inclined portion 24b of the upper disc-shaped portion 14 and the angle ⁇ of the inclined portion 26b of the classifying plate 16 may be the same or different.
- the surface 14c of the upper disk-shaped portion 14 may be configured as an inclined surface extending from the peripheral edge of the first cylindrical portion 20 to the outer edge.
- the surface 14c of the upper disk-shaped portion 14 may be configured as a slope.
- the surface 16c of the classifying plate 16 may be composed of an inclined surface extending from the peripheral edge of the second cylindrical portion 22 to the outer edge. That is, the surface 16c of the classifying plate 16 may be composed of slopes.
- the inclined portion 24b and the inclined portion 26b have straight cross-sectional shapes, but the cross-sectional shape need not be straight.
- 26b may be configured with a curved surface so that the height of the center of the classification chamber 18 is high, and the cross-sectional shape may be curved.
- the inclined portion 24b and the inclined portion 26b may have a configuration of a combination of flat surfaces and curved surfaces, in which case the cross-sectional shape is a combination of straight lines and curved lines.
- the air classifier 10g is configured to have the first cylindrical portion 20 and the second cylindrical portion 22, but is not limited to this, and the first cylindrical portion 20 and the second cylindrical portion 22 At least one of them is sufficient.
- At least one of the inclined portion 24b and the inclined portion 26b is sufficient for the inclined portion 24b and the inclined portion 26b.
- at least one of the grooves 50 and 51 may be provided for the grooves 50 and 51 as well.
- FIG. 11 is a schematic partial cross-sectional view showing a ninth example of the air classifier according to the embodiment of the present invention.
- the air classifier 10h shown in FIG. 11 differs from the air classifier 10b shown in FIG. , which has the same configuration as the air classifier 10b shown in FIG.
- the surface 16c of the classifying plate 16 facing the classifying chamber 18 is formed with an inclined portion 26b.
- the slant portion 26b is a sloping surface configured by a plane and has a straight cross-sectional shape.
- the inclined portion 26b is inclined from the annular wall 19 toward the fine powder discharge port 16b, that is, from the outside of the classifying chamber 18 toward the center so that the height of the classifying chamber 18 decreases. That is, the surface 16c of the classifying plate 16 is lowered toward the outer end 16a.
- a groove portion 51 is provided on the inclined portion 26b, that is, the slope.
- the angle of the inclined portion 26b of the classifying plate 16 with respect to a line parallel to the direction W of the upper disk-shaped portion 14 is represented by ⁇ .
- the angle ⁇ is preferably between 5° and 30°, more preferably between 10° and 20°.
- the air classifier 10h can obtain the same effect as the air classifier 10b shown in FIG.
- the inclined portion 26b is provided on the surface 16c of the classifying plate 16, but it is not limited to this, and the inclined portion 24b (see FIG. 10) is provided on the surface 14c of the upper disc-shaped portion 14. may At least one of the inclined portion 24b and the inclined portion 26b is sufficient.
- the air classifier 10h is configured to have the first cylindrical portion 20 and the second cylindrical portion 22, but is not limited to this, and the first cylindrical portion 20 and the second cylindrical portion At least one of the portions 22 is sufficient.
- the fine powder Pf (not shown) is discharged from the classifying plate 16 side, and is separated from the classifying plate 16 side by the outer end portion 16a of the classifying plate 16 and the casing 12 (see FIG. 1).
- Coarse powder Pc (not shown) is discharged from the gap 39 (coarse powder discharge port 66) with the annular wall 19 of.
- FIG. 12 is a schematic partial cross-sectional view showing a tenth example of the air classifier according to the embodiment of the present invention.
- the airflow classifier 10i shown in FIG. 12 differs from the airflow classifier 10h shown in FIG. 11 in that the first cylindrical portion 20 is not provided. It has the same configuration as the classifier 10h. 12, the fine powder Pf (not shown) is discharged from the classifying plate 16 side, and is separated from the classifying plate 16 side by the outer end portion 16a of the classifying plate 16 and the casing 12 (see FIG. 1). Coarse powder Pc (not shown) is discharged from the gap 39 (coarse powder discharge port 66) with the annular wall 19 of.
- the air classifier 10h can obtain the same effect as the air classifier 10 shown in FIG.
- FIG. 13 is a schematic cross-sectional view showing an eleventh example of the air classifier according to the embodiment of the present invention.
- the air classifier 10j shown in FIG. 13 the same components as in the air classifier 10 shown in FIG.
- the air classifier 10j shown in FIG. 13 differs from the air classifier 10 shown in FIG.
- the configuration is the same as that of the air classifier 10 shown in FIG. 1 except that vanes 62 are provided.
- an ejector section 54 is provided in the supply pipe 42 of the raw material supply section 40.
- the ejector section 54 has an ejection nozzle 55 that ejects the raw material powder Ps into the classifying chamber 18, and a pressure section 57 that supplies high pressure air to the ejection nozzle 55, for example.
- the jet nozzle 55 is connected to, for example, the upper disc-shaped portion 14 by a pipe 56 .
- High-pressure air supplied from the pressure unit 57 through the ejection nozzle 55 and the pipe 56 causes the raw material powder Ps in the raw material supply unit 40 to pass through the opening 42a of the upper disk-shaped portion 14 and be supplied to the classification chamber 18. be done.
- the air classifier 10 j has the ejector section 54 , the raw material powder Ps can be reliably supplied to the swirling flow generated in the classifying chamber 18 .
- the ejection nozzle 55 and the pressure portion 57 of the ejector portion 54 known ones used for conveying powder can be appropriately used.
- a plurality of guide vanes 62 are provided along the outer edge of the classifying chamber 18, like the second air nozzle 36 in the air classifier 10 shown in FIG.
- the guide vanes 62 are also provided in the annular wall 19 below the first air nozzles 34 in the direction H.
- the guide vanes 62 are arranged at equal intervals in the circumferential direction of the classifying chamber 18 while each having a predetermined angle with respect to the tangential direction of the outer edge of the classifying chamber 18 .
- the gas supply has a first air nozzle 34 and guide vanes 62 .
- the gas supply unit may be configured to have the guide vanes 62 without having the first air nozzles 34 .
- a push-in chamber 64 for storing air and supplying gas into the classifying chamber 18 .
- Pushing chamber 64 is connected to a pressurized gas supply (not shown).
- a gas having a predetermined pressure is supplied from a pressurized gas supply portion, and the pressurized gas is supplied from between a plurality of guide vanes 62 via a pushing chamber 64 .
- each guide vane 62 is, for example, rotatably supported on the annular wall 19 by a rotating shaft (not shown) and locked to a rotating plate (not shown) by a pin (not shown).
- a rotating shaft not shown
- a rotating plate not shown
- a pin not shown
- the intervals between the guide vanes 62 are adjusted to change the flow velocity of the gas, for example, the air passing through the intervals between the guide vanes 62. be able to.
- the air classifier 10j shown in FIG. 14 can also obtain the same effects as the air classifier 10 shown in FIG.
- the air classifier 10j has the ejector section 54
- the above air classifiers 10, 10a to 10i may also have the ejector section 54.
- the raw material supply unit 40 is connected to the upper disk-shaped part 14, passes through the opening 42a of the upper disk-shaped part 14, and supplies the raw material powder Ps to the swirling flow generated in the classifying chamber 18.
- the classifying plate 16 may be connected to the raw material supply unit 40 to supply the raw material powder Ps to the swirling flow generated in the classifying chamber 18 .
- the guide vanes 62 are provided in place of the second air nozzles 36 of the air classifier 10 shown in FIG. 1, but the present invention is not limited to this. In the second to eleventh examples of the air classifier described above, guide vanes 62 may be provided in place of the second air nozzles 36 .
- the present invention is basically configured as described above. Although the air classifier of the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.
- FIG. 14 is a schematic cross-sectional view showing a first air classifier for comparison.
- the first air classifier 100 shown in FIG. 14 the same components as those of the air classifier 10a shown in FIG.
- the first air classifier 100 shown in FIG. 14 is different from the air classifier 10a shown in FIG. 4 except that the grooves 50 and 51 are not provided. It has the same configuration as 10a.
- the air classifier 10a of the present invention and the first air classifier 100 for comparison were classified under the same classification conditions such as air volume. Ceramic particles having an average particle size of 0.4 ⁇ m were used as raw material powder. The average particle size is a value measured by a laser diffraction/scattering method. The classification results are shown in the graph of FIG. Further, FIG. 16 shows the ceramic particles after being classified by the air classifier 10a. FIG. 17 shows ceramic particles after being classified by the first air classifier 100 . 16 and 17 are SEM (Scanning Electron Microscope) images at a magnification of 10000 times. 15, reference numeral 70 indicates the classification result of the air classifier 10a shown in FIG. 4, and reference numeral 72 indicates the classification result of the first air classifier 100 shown in FIG.
- SEM Sccanning Electron Microscope
- the classification accuracy is high, and the present invention can make the classification point smaller.
- FIGS. 16 and 17 more coarse particles were observed after classification in the first air classifier 100 than in the air classifier 10a. It was confirmed that more powder adhered to the first cylindrical portion 20 in the first air classifier 100 for comparison than in the air classifier 10a.
- Fig. 18 is a schematic partial cross-sectional view showing a second air classifier for comparison.
- the second air classifier 102 shown in FIG. 18 is different from the air classifier 10g shown in FIG. 10 except that the grooves 50 and 51 are not provided. It has the same configuration as
- Classification was carried out under the same classification conditions such as air volume for the air classifier 10g of the present invention and the second air classifier 102 for comparison. Ceramic particles having an average particle size of 0.4 ⁇ m were used as raw material powder. The average particle size is a value measured by a laser diffraction/scattering method. The classification results are shown in the graph of FIG. Further, FIG. 20 shows the ceramic particles after being classified by the air classifier 10g. FIG. 21 shows ceramic particles after being classified by the second air classifier 102 . 20 and 21 are SEM images at a magnification of 10000 times. 19, reference numeral 74 indicates the result of classification by the air classifier 10g shown in FIG.
- reference numeral 76 indicates the result of classification by the second air classifier 102 shown in FIG. As shown in FIG. 19, the classification accuracy is high, and the present invention can make the classification point smaller. As shown in FIGS. 20 and 21, more coarse particles were observed after classification in the second air classifier 102 than in the air classifier 10 g. It was confirmed that more powder adhered to the first cylindrical portion 20 in the second air classifier 102 for comparison than in the air classifier 10g.
Landscapes
- Combined Means For Separation Of Solids (AREA)
Abstract
Description
そこで、例えば、旋回流を用いて、粉体に旋回運動を与えて粗粉と微粉とに遠心分離する気流式分級機及び粉体分級装置等が利用されている。
特許文献2では多重管で構成された吸引管を通して、それぞれ粒径の異なる粉体が別個に吸引されて回収される。
また、特許文献2では、1回の分級操作で1つの原料粉体を分級して、上述のような多重管で構成された吸引管を通して、各多重管を構成する各管それぞれで粒径の異なる粉体を回収している。
このため、特許文献2では、多重管を構成する各管それぞれで粉体を回収でき、回収されたそれぞれの粉体の粒径のバラツキを小さくすることができるものの、分級点は各吸引管の風量バランスで決まり、分級点の微小化を実現するものではない。
また、粉体を分級する場合、長期間にわたり安定して分級でき、分級精度を長期間にわたり維持できることが望まれている。
第1の円筒部の直径と第2の円筒部の直径とが異なることが好ましい。
ケーシングの天井壁、及び分級板の表面のうち、少なくとも一方に斜面が形成されており、斜面に溝部が設けられていることが好ましい。
ケーシングの天井壁の第1の円筒部の周縁、及び分級板の表面の第2の円筒部の周縁のうち、少なくとも一方に斜面が形成されており、斜面に溝部が設けられていることが好ましい。
溝部は、天井壁及び分級板の表面に設けられていることが好ましい。
微粉排出口は円形状であり、溝部は微粉排出口に対して同心円状に設けられており、天井壁に設けられた溝部と、分級板の表面に設けられた溝部とは対向していることが好ましい。
天井壁及び分級板の表面のうち、微粉排出口がある方に、微粉排出口の周囲に沿って微粉排出口と同心円状に溝部が設けられ、微粉排出口がない方に、微粉排出口の周囲の領域に設けられた同心円状の溝部に対向して同心円状の溝部が設けられており、微粉排出口がある方に設けられた同心円状の溝部と、微粉排出口がない方に設けられた同心円状の溝部とは、分級室のケーシングの天井壁と分級板の表面とが対向する方向と直交する方向において同じ位置に設けられていることが好ましい。
溝部は、微粉排出口の周囲に沿って複数設けられていることが好ましい。
分級板の表面に第2の円筒部を有し、天井壁に溝部が設けられていることが好ましい。
斜面は、分級室の外側から中心に向って、分級室の高さが次第に高くなるように傾斜していることが好ましい。
斜面は、分級室の外側から中心に向って、分級室の高さが低くなるように傾斜していることが好ましい。
原料供給部は、分級室内に発生された旋回流に原料粉体を供給する噴出ノズルを有することが好ましい。
気体供給部は、エアノズルを複数有し、各エアノズルは、分級室の外縁に沿って分級室の周方向に互いに均等な間隔で配置されていることが好ましい。
気体供給部は、ガイドベーンを複数有し、各ガイドベーンは、分級室の外縁に沿って分級室の周方向に互いに均等な間隔で配置されていることが好ましい。
なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
図1は本発明の実施形態の気流式分級機の第1の例を示す模式的断面図であり、図2は本発明の実施形態の気流式分級機の第1の例の溝部の一例を示す模式図であり、図3は本発明の実施形態の気流式分級機の第1の例の溝部の他の例を示す模式図である。
図1に示す気流式分級機10は、気体で形成される旋回流により粉体に与えられる遠心力と抗力とのバランスを利用して、粒度分布を持つ原料粉体を所望の粒径(分級点)において微粉Pfと粗粉Pcとに分級するものである。
略円盤形状の分級室18が上部円盤状部14と分級板16の間に区画形成され、分級室18は周方向外周がケーシング12の環状壁19によって閉鎖されている。このように分級室18は対向する天井壁13(上部円盤状部14の表面14c)と分級板16の表面16cとに挟まれた空間であり、分級室18はケーシング12の天井壁13と分級板16の表面16cとの間に構成される。このように上部円盤状部14(天井壁13)と分級板16は、いずれも分級室18の空間を構成する部材である。分級室18内で粒度分布を持つ原料粉体が、例えば、粗粉と微粉等とに分離され、分級される。
上部円盤状部14の分級室18に面している表面14cは、例えば、方向Wに平行な平面で構成されている。この方向Wは方向Hと直交する方向である。
分級板16の分級室18に面している表面16cは、例えば、方向Wに平行な平面で構成されている。上部円盤状部14の表面14cと、分級板16の表面16cとは平行である。
溝部50は、例えば、図2に示すように、微粉排出口14aに沿って、微粉排出口14aと同心円状に配置されている。微粉排出口14aが設けられた天井壁13(上部円盤状部14)には、微粉排出口14aの周囲に沿って微粉排出口14aと同心円状に溝部50が設けられている。
分級板16において、微粉排出口14aの周囲の第1の領域24aに対向する第2の領域26aに溝部51が設けられている。溝部51は、分級板16の表面16cに対して凹んで設けられている。開口部がない部材(例えば、分級板16)には、微粉排出口14aの周囲の領域に設けられた同心円状の溝部50に対向して同心円状の溝部51が設けられている。溝部51は溝部50と同様の構成である。
溝部50と溝部51とは、いずれも断面形状が矩形状である。溝部50及び溝部51の断面形状は、矩形状に限定されるものではなく、底部が平面でも、曲面でも、屈曲した面でもよい。例えば、断面がU字形状でも、V字形状でもよい。
溝部51は溝部50と同様の構成とし、方向Wにおける幅と、方向Hの深さとが同じ構成としたが、これに限定されるものではない。溝部50と溝部51とは、方向Wにおける幅が異なってもよく、方向Hの深さが異なってもよい。
上述のように溝部50、51は、例えば、図2に示すように、微粉排出口14aと同心円状に配置されているが、これに限定されるものではない。例えば、図3に示すように、微粉排出口14aの周囲に沿って、溝部52が複数設けられている形態でもよい。溝部52は、例えば、開口部が円形状である。
なお、溝部は、分級室18を構成する対向する上部円盤状部14と分級板16との2つの部材のうち、少なくとも一方の部材に設けられていればよい。すなわち、微粉排出口14aの周囲の第1の領域24a及び微粉排出口14aの周囲の第1の領域24aに対向する第2の領域26aのうち、少なくとも一方に、凹んで設けられた溝部を有する構成であればよい。
しかも、分級点をより小さくできる。すなわち、より小さい粒径において、微粉と粗粉とに分級できる。また、溝部を設けることにより、局所的に装置外部から微粉排出口14aに向かう粉体の速度を抑制できるため、分級点が小さくなる。これにより、より小さい粒径において、微粉と粗粉とに分級できる。
上述のように、上部円盤状部14の溝部50と、分級板16の溝部51とを設ける構成としたが、これに限定されるものではく、上部円盤状部14の溝部50と、分級板16の溝部51とのうち、少なくとも一方の溝部を有する構成であればよい。
微粉回収管30は、分級室18内で分級された微粉Pfを含む気体を、隙間23を経て分級室18外に排出するためのものである。微粉回収管30は、分級室18とは反対側の端部30cに、例えば、バグフィルター(図示せず)等を介して吸引ブロワ(図示せず)が接続されている。バグフィルター(図示せず)、及び吸引ブロワ(図示せず)等により微粉回収装置が構成される。また、微粉回収管30により微粉回収部が構成される。上部円盤状部14の微粉排出口14aから、分級室18内で原料粉体が分離されて生じた粗粉と微粉とのうち、微粉が排出される。
また、分級板16の外端部16aとケーシング12の環状壁19との間には隙間39がある。隙間39は分級室18の外縁部に位置する。ケーシング12の下方に、例えば、中空円錐台状の粗粉回収室28が設けられている。分級室18と粗粉回収室28とは隙間39により連通している。また、分級室18の外縁部は、方向Hにおける高さが中央部に比して高くなっており、分級室18の外縁部は方向Hに広がっている。
粗粉回収室28により粗粉回収部が構成される。図1に示す粗粉回収部の構成では、上部円盤状部14(一方の部材)側から、微粉Pfが排出され、分級板16(他方の部材)側、かつ分級室18の外縁部にある隙間39(粗粉排出口66)から粗粉Pcが排出される。
ここで、粗粉回収部、例えば、粗粉回収室28は、上部円盤状部14(一方の部材)、及び上部円盤状部14(一方の部材)と分級室18を挟んで対向する分級板16(他方の部材)のうち、いずれかの部材側であり、かつ分級室18の外縁部に、分級室18内に連通して設けられ、分級室18内で分級された粗粉Pcを分級室18外に排出するものである。粗粉回収部の構成は、図1に示す構成に限定されるものではない。
さらに、円筒状のケーシング12には、方向Hにおいて第2のエアノズル36の下方に第3のエアノズル38が設けられている。すなわち、複数の第3のエアノズル38が設けられている。
詳細な図示はしないが、第1のエアノズル34は、分級室18の外縁に沿って複数設けられており、それぞれ分級室18の外縁の接線方向に対して所定の角度を有しながら、分級室18の周方向に互いに均等な間隔で、例えば、6個配置されている。
第2のエアノズル36及び第3のエアノズル38も第1のエアノズル34と同様に、分級室18の外縁に沿って複数設けられており、それぞれ分級室18の外縁の接線方向に対して所定の角度を有しながら、分級室18の周方向に互いに均等な間隔で、例えば、6個配置されている。気体供給部は、第1のエアノズル34と第2のエアノズル36とを有する。気体供給部は、第1のエアノズル34及び第2のエアノズル36を有するが、第1のエアノズル34及び第2のエアノズル36のうち、第1のエアノズル34又は第2のエアノズル36を有する構成でもよい。
また、加圧気体供給部から所定の圧力の気体が第3のエアノズル38に供給されて、第3のエアノズル38から加圧気体が噴出されて、分級板16の外端部16aとケーシング12との間の隙間39に加圧気体が供給される。
第1のエアノズル34、及び第2のエアノズル36、並びに第3のエアノズル38を設ける個数は、上述の個数に限定されるものではなく、1つでも複数でもよく、装置構成等に応じて適宜決定される。
また、第2のエアノズル36はノズルに限定されるものではなく、後述のようにガイドベーン等でもよく装置構成に応じて適宜決定される。
まず、吸引ブロワ(図示せず)により微粉回収管30を介して分級室18内から所定の風量で吸気を行うとともに、加圧気体供給部(図示せず)から第1のエアノズル34及び第2のエアノズル36にそれぞれ加圧気体を供給して分級室18に旋回流を発生させる。
この状態で、原料供給部40から上部円盤状部14の開口部42aを通り、分級室18の旋回流に、粒度分布を有する原料粉体Psを所定の量、供給する。
このようにして、粒度分布を有する原料粉体Psから微粉Pfを分級して回収することができる。しかも、上述のように、溝部50及び溝部51を設けることにより、分級室18内への粉体の付着が抑制される。長期間にわたり安定して分級できるため、分級精度を長期間にわたり維持できる。回収される微粉Pfの粒径を小さくすることができる。
サブミクロン粒子のように微細な粒子は互いに凝集しやすい性質を有するが、気流式分級機10によれば、第1のエアノズル34及び第2のエアノズル36から大流量の加圧気体を噴出することにより、効率よく分級することができる。また、原料粉体としては、シリカ、トナー等の低比重のものから、金属、アルミナ等の高比重のものまで各種の粉体を分級対象として用いることができる。
ただし、分級目的に応じて第2のエアノズル36は、風量の設定範囲が広いガイドベーン方式でもよい。
図4は本発明の実施形態の気流式分級機の第2の例を示す模式的断面図である。
図4に示す気流式分級機10aにおいて、図1に示す気流式分級機10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
図4に示す気流式分級機10aは、図1に示す気流式分級機10に比して、円筒状の第1の円筒部20と、円筒状の第2の円筒部22とを有する点が異なり、それ以外は、図1に示す気流式分級機10と同様の構成である。
気流式分級機10aは、上部円盤状部14は微粉排出口14aの縁に沿って、分級室18内に突出する第1の円筒部20が設けられている。第1の円筒部20は、例えば、微粉排出口14aと同じ内径を有する円筒部材で構成されている。第1の円筒部20と微粉排出口14aとは連通している。第1の円筒部20に対向し、かつ所定の間隔をあけて隙間23が生じるように、他方の部材である分級板16に円筒状の第2の円筒部22が設けられている。第1の円筒部20と第2の円筒部22とは分級室18の方向Wにおける中央部に配置されている。
第1の円筒部20と第2の円筒部22とを有することにより、分級点を従来よりも微小化できる。
図5は本発明の実施形態の気流式分級機の第3の例を示す模式的部分断面図である。
図5に示す気流式分級機10bにおいて、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図5に示す気流式分級機10bは、図4に示す気流式分級機10aに比して、分級板16に微粉排出口16bが設けられており、分級板16から微粉Pfを取り出す構成である点が異なり、それ以外は、図4に示す気流式分級機10aと同様の構成である。
微粉排出口16bに、微粉回収管60が設けられている。微粉回収管30(図4参照)と同様に、微粉回収管60は、端部(図示せず)に、例えば、バグフィルター(図示せず)等を介して吸引ブロワ(図示せず)が接続されている。バグフィルター(図示せず)、及び吸引ブロワ(図示せず)等により微粉回収装置が構成される。微粉回収管60により微粉回収部が構成される。微粉回収管60を介して微粉Pfが回収される。気流式分級機10bは図4に示す気流式分級機10aと同様の効果を得ることができる。
図5に示す粗粉回収部の構成では、分級板16側から微粉Pf(図1参照)が排出され、分級板16側、かつ分級板16の外端部16aとケーシング12(図1参照)の環状壁19との隙間39(粗粉排出口66)から粗粉Pc(図1参照)が排出される。
なお、図1及び図4に示す気流式分級機10、10aのように上部円盤状部14から微粉Pfを取り出す構成でもよく、気流式分級機10bのように分級板16から微粉Pfを取り出す構成でもよい。気流式分級機において、微粉Pfの取り出しは、特に限定されるものではない。
図6は本発明の実施形態の気流式分級機の第4の例を示す模式的部分断面図である。
図6に示す気流式分級機10cにおいて、図1に示す気流式分級機10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
図6に示す気流式分級機10cは、図1に示す気流式分級機10に比して、上部円盤状部14に第1の円筒部20が設けられており、分級板16に溝部51が設けられている点が異なり、それ以外は、図1に示す気流式分級機10と同様の構成である。
微粉排出口14aの周囲の第1の領域24aに対向する分級板16の第2の領域26aに、溝部51が設けられている。気流式分級機10bでは、上部円盤状部14の第1の領域24aが、微粉排出口16bの周囲に対向する領域である。分級板16には、第2の円筒部22が設けられていない。気流式分級機10cは、上部円盤状部14(一方の部材)に第1の円筒部20を有し、分級板16(他方の部材)に溝部51が設けられている構成である。
気流式分級機10cは図1に示す気流式分級機10と同様の効果を得ることができる。
溝部51により、分級室18内への粉体の付着が抑制され、長期間にわたり安定して分級できるため、分級精度を長期間にわたり維持できる。
また、第1の円筒部20により、粒径の大きな粗粉Pc(図1参照)が微粉回収管30(図1参照)内に流入することが抑制され、回収される微粉Pf(図1参照)の粒径をより小さくすることができる。
図7は本発明の実施形態の気流式分級機の第5の例を示す模式的部分断面図である。
図7に示す気流式分級機10dにおいて、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図7に示す気流式分級機10dは、図4に示す気流式分級機10aに比して、第1の円筒部20が設けられていない点、及び分級板16に溝部51が設けられていない点が異なり、それ以外は、図4に示す気流式分級機10aと同様の構成である。
気流式分級機10dは、分級板16(他方の部材)に第2の円筒部22を有し、上部円盤状部14(一方の部材)に溝部50が設けられている構成である。
気流式分級機10dは、図1に示す気流式分級機10と同様の効果を得ることができる。さらに、溝部50により、分級室18内への粉体の付着が抑制され、長期間にわたり安定して分級できるため、分級精度を長期間にわたり維持できる。
また、第2の円筒部22により、粒径の大きな粗粉Pcが微粉回収管30(図1参照)内に流入することが抑制され、回収される微粉Pfの粒径をより小さくすることができる。
図8は本発明の実施形態の気流式分級機の第6の例を示す模式的部分断面図である。
図8に示す気流式分級機10eにおいて、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図8に示す気流式分級機10eは、図4に示す気流式分級機10aに比して、第1の円筒部20の直径D1と第2の円筒部22の直径D2とが異なり、それ以外は、図4に示す気流式分級機10aと同様の構成である。気流式分級機10eは、第1の円筒部20の直径D1の方が、第2の円筒部22の直径D2よりも大きい。
気流式分級機10eは、図4に示す気流式分級機10aと同様の効果を得ることができる。
図9は本発明の実施形態の気流式分級機の第7の例を示す模式的部分断面図である。
図9に示す気流式分級機10fにおいて、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図9に示す気流式分級機10fは、図4に示す気流式分級機10aに比して、第1の円筒部20の直径D1と第2の円筒部22の直径D2とが異なり、それ以外は、図4に示す気流式分級機10aと同様の構成である。図9に示す気流式分級機10fは、第2の円筒部22の直径D2の方が、第1の円筒部20の直径D1よりも大きい。
気流式分級機10eは図4に示す気流式分級機10aと同様の効果を得ることができる。
図10は本発明の実施形態の気流式分級機の第8の例を示す模式的部分断面図である。
図10に示す気流式分級機10gにおいて、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図10に示す気流式分級機10gは、図4に示す気流式分級機10aに比して、上部円盤状部14の第1の領域24aに傾斜部24bが形成され、分級板16の第2の領域26aに傾斜部26bが形成されている点が異なり、それ以外は、図4に示す気流式分級機10aと同様の構成である。
分級板16の分級室18に面している表面16cでは、円筒状の第2の円筒部22に近い側に傾斜部26bが形成されている。傾斜部26bに溝部51が設けられている。
傾斜部24bと傾斜部26bとは平面で構成された斜面であり、断面形状が直線である。傾斜部24bと傾斜部26bとは、環状壁19から微粉排出口14aに向かって、分級室18の高さが次第に高くなるように傾斜している。すなわち、上部円盤状部14の傾斜部24bは、微粉排出口14aに向かって上がっている。分級板16の傾斜部26bは、第2の円筒部22に向かって下がっている。
上部円盤状部14の傾斜部24bの角度θと、分級板16の傾斜部26bの角度θとは同じであっても違っていてもよい。
上部円盤状部14の表面14cが第1の円筒部20の周縁から外縁に至る斜面で構成されてもよい。すなわち、上部円盤状部14の表面14cが斜面で構成されていてもよい。分級板16の表面16cが第2の円筒部22の周縁から外縁に至る斜面で構成されてもよい。すなわち、分級板16の表面16cが斜面で構成されていてもよい。
気流式分級機10gは、第1の円筒部20と第2の円筒部22とを有する構成としたが、これに限定されるものではなく、第1の円筒部20及び第2の円筒部22のうち、少なくとも一方があればよい。
また、気流式分級機10gでは、傾斜部24b及び傾斜部26bについても、傾斜部24b及び傾斜部26bのうち、少なくとも一方があればよい。
また、気流式分級機10gでは、溝部50と溝部51についても、溝部50と溝部51のうち、少なくとも一方があればよい。
図11は本発明の実施形態の気流式分級機の第9の例を示す模式的部分断面図である。
図11に示す気流式分級機10hにおいて、図5に示す気流式分級機10bと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図11に示す気流式分級機10hは、図5に示す気流式分級機10bに比して、分級板16の第2の領域26aに傾斜部26bが形成されている点が異なり、それ以外は、図5に示す気流式分級機10bと同様の構成である。
図11に示す気流式分級機10hは、分級板16の分級室18に面している表面16cが傾斜部26bで形成されている。傾斜部26bは平面で構成された斜面であり、断面形状が直線である。傾斜部26bは、環状壁19から微粉排出口16bに向かって、すなわち、分級室18の外側から中心に向って、分級室18の高さが低くなるように傾斜している。すなわち、分級板16の表面16cは、外端部16aに向かって下がっている。傾斜部26b、すなわち、斜面に溝部51が設けられている。
上部円盤状部14の方向Wと平行な線に対する分級板16の傾斜部26bの角度をβで表す。角度βは5°~30°であることが好ましく、より好ましくは10°~20°である。
気流式分級機10hは図5に示す気流式分級機10bと同様の効果を得ることができる。
気流式分級機10hでは、分級板16の表面16cに傾斜部26bを設けたが、これに限定されるものではなく、上部円盤状部14の表面14cに傾斜部24b(図10参照)を設けてもよい。また、傾斜部24b及び傾斜部26bのうち、少なくとも一方があればよい。
また、気流式分級機10hは、第1の円筒部20と第2の円筒部22とを有する構成としたが、これに限定されるものではなく、第1の円筒部20及び第2の円筒部22のうち、少なくとも一方があればよい。
図11に示す粗粉回収部の構成では、分級板16側から微粉Pf(図示せず)が排出され、分級板16側、かつ分級板16の外端部16aとケーシング12(図1参照)の環状壁19との隙間39(粗粉排出口66)から粗粉Pc(図示せず)が排出される。
図12は本発明の実施形態の気流式分級機の第10の例を示す模式的部分断面図である。図12に示す気流式分級機10iにおいて、図11に示す気流式分級機10hと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図12に示す気流式分級機10iは、図11に示す気流式分級機10hに比して、第1の円筒部20が設けられていない点が異なり、それ以外は、図11に示す気流式分級機10hと同様の構成である。
図12に示す粗粉回収部の構成では、分級板16側から微粉Pf(図示せず)が排出され、分級板16側、かつ分級板16の外端部16aとケーシング12(図1参照)の環状壁19との隙間39(粗粉排出口66)から粗粉Pc(図示せず)が排出される。
気流式分級機10hは図1に示す気流式分級機10と同様の効果を得ることができる。
図13は本発明の実施形態の気流式分級機の第11の例を示す模式的断面図である。
図13に示す気流式分級機10jにおいて、図1に示す気流式分級機10と同一構成物には、同一符号を付して、その詳細な説明は省略する。
図13に示す気流式分級機10jは、図1に示す気流式分級機10に比して、原料供給部40にエジェクタ部54が設けられている点、及び第2のエアノズル36に代えてガイドベーン62が設けられている点が異なり、それ以外の構成は図1に示す気流式分級機10と同様の構成である。
気流式分級機10jでは、エジェクタ部54を有することにより、原料粉体Psを分級室18内に発生された旋回流に確実に供給できる。なお、エジェクタ部54の噴出ノズル55及び圧力部57は粉体の搬送に用いられる公知のものを適宜利用可能である。
複数のガイドベーン62の外周部に、空気を溜め、かつ分級室18内に気体を供給するための押し込み室64がある。押し込み室64が加圧気体供給部(図示せず)に接続されている。加圧気体供給部から所定の圧力の気体を、押し込み室64を介して複数のガイドベーン62の間から加圧気体を供給する。第1のエアノズル34及びガイドベーン62にそれぞれ加圧気体を供給することで、分級室18に旋回流が発生する。
また、原料供給部40は、上部円盤状部14に接続し、上部円盤状部14の開口部42aを通り、原料粉体Psを分級室18内に発生された旋回流に供給する構成としたが、これに限定されるものではない。例えば、分級板16に原料供給部40を接続し、原料粉体Psを分級室18内に発生された旋回流に供給する構成としてもよい。
上述の図4に示す気流式分級機10aと、図14に示す比較のための第1の気流式分級機100を用いて、原料粉体を分級した。
図14は比較のための第1の気流式分級機を示す模式的断面図である。図14に示す第1の気流式分級機100において、図4に示す気流式分級機10aと同一構成物には、同一符号を付して、その詳細な説明は省略する。
図14に示す第1の気流式分級機100は、図4に示す気流式分級機10aに比して、溝部50及び溝部51が設けられていない点以外は、図4に示す気流式分級機10aと同様の構成である。
原料粉体には、平均粒径0.4μmのセラミックス粒子を用いた。なお、平均粒径は、レーザ回折・散乱法により測定した値である。
分級の結果を図15のグラフに示す。また、図16に気流式分級機10aによる分級後のセラミックス粒子を示す。図17に第1の気流式分級機100による分級後のセラミックス粒子を示す。図16及び図17は倍率10000倍のSEM(Scanning Electron Microscope)像である。
図15において、符号70は図4に示す気流式分級機10aの分級の結果を示し、符号72は図14に示す第1の気流式分級機100の分級の結果を示す。図15に示すように、分級精度が高く、本発明は、分級点をより小さくすることができる。図16及び図17に示すように、気流式分級機10aよりも第1の気流式分級機100の方が分級後に粗大粒子が多く観察された。なお、気流式分級機10aよりも、比較のための第1の気流式分級機100に、第1の円筒部20に多くの粉体が付着していることを確認している。
原料粉体には、平均粒径0.4μmのセラミックス粒子を用いた。なお、平均粒径は、レーザ回折・散乱法により測定した値である。
分級の結果を図19のグラフに示す。また、図20に気流式分級機10gによる分級後のセラミックス粒子を示す。図21に第2の気流式分級機102による分級後のセラミックス粒子を示す。図20及び図21は倍率10000倍のSEM像である。
図19において、符号74は図10に示す気流式分級機10gの分級の結果を示し、符号76は図18に示す第2の気流式分級機102の分級の結果を示す。図19に示すように、分級精度が高く、本発明は、分級点をより小さくすることができる。図20及び図21に示すように、気流式分級機10gよりも第2の気流式分級機102の方が分級後に粗大粒子が多く観察された。なお、気流式分級機10gよりも、比較のための第2の気流式分級機102に、第1の円筒部20に多くの粉体が付着していることを確認している。
10h、10i、10j 気流式分級機
12 ケーシング
12a 表面
13 天井壁
13b 外縁
14 上部円盤状部
14a、16b 微粉排出口
16 分級板
16a 外端部
18 分級室
19 環状壁
20 第1の円筒部
22 第2の円筒部
23 隙間
24a 第1の領域
24b 傾斜部
26a 第2の領域
26b 傾斜部
28 粗粉回収室
30 微粉回収管
30c 端部
34 第1のエアノズル
36 第2のエアノズル
38 第3のエアノズル
39 隙間
40 原料供給部
42 供給管
50、51、52 溝部
54 エジェクタ部
55 噴出ノズル
56 配管
60 微粉回収管
62 ガイドベーン
64 押し込み室
66 粗粉排出口
100 第1の気流式分級機
102 第2の気流式分級機
H 方向
Pc 粗粉
Pf 微粉
Ps 原料粉体
W 方向
β、θ 角度
Claims (18)
- 天井壁と、前記天井壁の外縁に連続して設けられた環状壁とを有するケーシングと、
前記ケーシングの前記天井壁に、表面を対向して配置される分級板と、
前記ケーシングの前記天井壁と前記分級板の前記表面との間に構成される分級室と、
前記分級室内に気体を供給して旋回流を発生させる気体供給部と、
前記分級室内に発生された前記旋回流に原料粉体を供給する原料供給部と、
前記分級室を構成する前記ケーシングの前記天井壁と前記分級板の前記表面とのうち、一方の中央部に設けられた微粉排出口と、
前記天井壁、及び前記天井壁と対向する前記分級板の前記表面のうち、いずれかの側に、前記分級室の外周に沿って開口する粗粉排出口と、
前記天井壁、及び前記分級板の前記表面のうち、少なくとも一方に設けられた溝部とを有する、気流式分級機。 - 前記微粉排出口に設けられた第1の円筒部と、
前記第1の円筒部に対向し、かつ所定の隙間をあけて前記分級室の前記分級板の前記表面に設けられた第2の円筒部とのうち、少なくとも一方を有する、請求項1に記載の気流式分級機。 - 前記第1の円筒部の直径と前記第2の円筒部の直径とが異なる、請求項2に記載の気流式分級機。
- 前記ケーシングの前記天井壁、及び前記分級板の前記表面のうち、少なくとも一方に斜面が形成されており、
前記斜面に前記溝部が設けられている、請求項1に記載の気流式分級機。 - 前記ケーシングの前記天井壁の前記第1の円筒部の周縁、及び前記分級板の前記表面の前記第2の円筒部の周縁のうち、少なくとも一方に斜面が形成されており、
前記斜面に前記溝部が設けられている、請求項2又は3に記載の気流式分級機。 - 前記微粉排出口は円形状であり、前記溝部は、前記微粉排出口に対して同心円状に設けられている、請求項1~5のいずれか1項に記載の気流式分級機。
- 前記溝部は、前記天井壁及び前記分級板の前記表面に設けられている、請求項1~6のいずれか1項に記載の気流式分級機。
- 前記微粉排出口は円形状であり、前記溝部は前記微粉排出口に対して同心円状に設けられており、前記天井壁に設けられた前記溝部と、前記分級板の前記表面に設けられた前記溝部とは対向している、請求項7に記載の気流式分級機。
- 前記天井壁及び前記分級板の前記表面のうち、前記微粉排出口がある方に、前記微粉排出口の周囲に沿って前記微粉排出口と同心円状に前記溝部が設けられ、前記微粉排出口がない方に、前記微粉排出口の周囲の領域に設けられた前記同心円状の前記溝部に対向して同心円状の溝部が設けられており、
前記微粉排出口がある方に設けられた前記同心円状の前記溝部と、前記微粉排出口がない方に設けられた前記同心円状の前記溝部とは、前記分級室の前記ケーシングの前記天井壁と前記分級板の前記表面とが対向する方向と直交する方向において同じ位置に設けられている、請求項7に記載の気流式分級機。 - 前記溝部は、前記微粉排出口の周囲に沿って複数設けられている、請求項1~5のいずれか1項に記載の気流式分級機。
- 前記天井壁に前記第1の円筒部を有し、前記分級板の前記表面に前記溝部が設けられている、請求項2に記載の気流式分級機。
- 前記分級板の前記表面に前記第2の円筒部を有し、前記天井壁に前記溝部が設けられている、請求項2に記載の気流式分級機。
- 前記斜面は、前記分級室の外側から中心に向って、前記分級室の高さが次第に高くなるように傾斜している請求項4又は5に記載の気流式分級機。
- 前記斜面は、前記分級室の外側から中心に向って、前記分級室の高さが低くなるように傾斜している請求項4又は5に記載の気流式分級機。
- 前記原料供給部は、前記分級室を構成する前記ケーシングの前記天井壁と前記分級板の前記表面とのうち、いずれか一方に接続されており、前記分級室内に発生された前記旋回流に前記原料粉体を供給する、請求項1~14のいずれか1項に記載の気流式分級機。
- 前記原料供給部は、前記分級室内に発生された前記旋回流に前記原料粉体を供給する噴出ノズルを有する、請求項1~15のいずれか1項に記載の気流式分級機。
- 前記気体供給部は、エアノズルを複数有し、前記各エアノズルは、前記分級室の外縁に沿って前記分級室の周方向に互いに均等な間隔で配置されている、請求項1~16のいずれか1項に記載の気流式分級機。
- 前記気体供給部は、ガイドベーンを複数有し、前記各ガイドベーンは、前記分級室の外縁に沿って前記分級室の周方向に互いに均等な間隔で配置されている、請求項1~16のいずれか1項に記載の気流式分級機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280068490.1A CN118103148A (zh) | 2021-10-14 | 2022-10-04 | 气流式分级机 |
JP2023554429A JPWO2023063173A1 (ja) | 2021-10-14 | 2022-10-04 | |
KR1020247012031A KR20240073056A (ko) | 2021-10-14 | 2022-10-04 | 기류식 분급기 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-168644 | 2021-10-14 | ||
JP2021168644 | 2021-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063173A1 true WO2023063173A1 (ja) | 2023-04-20 |
Family
ID=85988586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037146 WO2023063173A1 (ja) | 2021-10-14 | 2022-10-04 | 気流式分級機 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2023063173A1 (ja) |
KR (1) | KR20240073056A (ja) |
CN (1) | CN118103148A (ja) |
TW (1) | TW202327740A (ja) |
WO (1) | WO2023063173A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024262438A1 (ja) * | 2023-06-20 | 2024-12-26 | 株式会社日清製粉グループ本社 | 気流式分級機 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114367A (ja) * | 1983-11-24 | 1985-06-20 | Hitachi Ltd | 遠心分離機 |
JP2005152801A (ja) * | 2003-11-26 | 2005-06-16 | Ricoh Co Ltd | 分級装置および現像剤の製造方法 |
WO2015001905A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社日清製粉グループ本社 | 粉体分級装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000107698A (ja) | 1998-10-02 | 2000-04-18 | Minolta Co Ltd | 分級装置 |
-
2022
- 2022-10-04 WO PCT/JP2022/037146 patent/WO2023063173A1/ja active Application Filing
- 2022-10-04 KR KR1020247012031A patent/KR20240073056A/ko unknown
- 2022-10-04 CN CN202280068490.1A patent/CN118103148A/zh active Pending
- 2022-10-04 JP JP2023554429A patent/JPWO2023063173A1/ja active Pending
- 2022-10-12 TW TW111138641A patent/TW202327740A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114367A (ja) * | 1983-11-24 | 1985-06-20 | Hitachi Ltd | 遠心分離機 |
JP2005152801A (ja) * | 2003-11-26 | 2005-06-16 | Ricoh Co Ltd | 分級装置および現像剤の製造方法 |
WO2015001905A1 (ja) * | 2013-07-05 | 2015-01-08 | 株式会社日清製粉グループ本社 | 粉体分級装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024262438A1 (ja) * | 2023-06-20 | 2024-12-26 | 株式会社日清製粉グループ本社 | 気流式分級機 |
Also Published As
Publication number | Publication date |
---|---|
KR20240073056A (ko) | 2024-05-24 |
CN118103148A (zh) | 2024-05-28 |
JPWO2023063173A1 (ja) | 2023-04-20 |
TW202327740A (zh) | 2023-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI490050B (zh) | 粉體分級裝置 | |
US5522555A (en) | Dry powder dispersion system | |
EP1033180B1 (en) | Classifier | |
TWI587934B (zh) | 粉體分級裝置 | |
WO2023063173A1 (ja) | 気流式分級機 | |
JP6564792B2 (ja) | 粉体分級装置 | |
JP6982090B2 (ja) | 粉体分級装置 | |
JP2011045819A (ja) | 粉体分級装置 | |
JPS6345872B2 (ja) | ||
WO2024262438A1 (ja) | 気流式分級機 | |
JP3752068B2 (ja) | 気流分級機 | |
JP3091289B2 (ja) | 衝突式気流粉砕装置 | |
KR100490858B1 (ko) | 가상 관성형 미분체 분급기 | |
JPH11276996A (ja) | 気流分級機の粉体原料供給装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22880869 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023554429 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068490.1 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247012031 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22880869 Country of ref document: EP Kind code of ref document: A1 |