WO2015001905A1 - 粉体分級装置 - Google Patents

粉体分級装置 Download PDF

Info

Publication number
WO2015001905A1
WO2015001905A1 PCT/JP2014/064972 JP2014064972W WO2015001905A1 WO 2015001905 A1 WO2015001905 A1 WO 2015001905A1 JP 2014064972 W JP2014064972 W JP 2014064972W WO 2015001905 A1 WO2015001905 A1 WO 2015001905A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
disk
shaped
air
shaped cavity
Prior art date
Application number
PCT/JP2014/064972
Other languages
English (en)
French (fr)
Inventor
小澤 和三
健司 直原
峻輔 山本
Original Assignee
株式会社日清製粉グループ本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日清製粉グループ本社 filed Critical 株式会社日清製粉グループ本社
Priority to KR1020167000148A priority Critical patent/KR102201557B1/ko
Priority to US14/903,016 priority patent/US9597712B2/en
Priority to CN201480038499.3A priority patent/CN105358265B/zh
Priority to JP2015525108A priority patent/JP6224101B2/ja
Publication of WO2015001905A1 publication Critical patent/WO2015001905A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/10Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force having air recirculating within the apparatus

Definitions

  • the present invention relates to a powder classifying apparatus for classifying powder having a particle size distribution at a desired particle size (classification point), and more specifically, balance between centrifugal force applied to powder by swirling air flow and drag force.
  • the present invention relates to a powder classifying apparatus that can classify powder of about several ⁇ m to submicron with high accuracy over a long period of time.
  • a swirling air flow is formed in the classification chamber using guide vanes and air nozzles, and a swirling motion is applied to the powder supplied into the classification chamber to centrifuge it into coarse powder and fine powder.
  • a classifier is known that collects coarse powder from the lower part of the outer edge of the swirling air flow from the center.
  • fine particles having a narrow particle size distribution have been required with the advancement of technologies such as electronic components such as capacitors.
  • the applicant of the present invention forms a disk-shaped cavity that serves as a classification field for centrifuging powder having a particle size distribution between two disk-shaped members.
  • a plurality of guide vanes are disposed on the outer periphery of the disk-shaped cavity so as to extend inward from the outer periphery of the disk-shaped cavity, and a powder supply port for supplying powder to the disk-shaped cavity is provided in the upper disk-shaped member, Also, a discharge part for airflow containing fine powder discharged from the central part of the disk-shaped cavity is provided in the central part of the upper disk-shaped member, and a recovery part for coarse powder discharged from the disk-shaped cavity is formed in the lower disk shape.
  • a plurality of first air nozzles that are provided between the lower part of the outer edge of the member and the outer peripheral wall of the disk-shaped cavity and further blown compressed air into the disk-shaped cavity are tangent to the outer wall of the disk-shaped cavity.
  • a plurality of second air nozzles for blowing compressed air into the inside of the disk-shaped cavity are arranged in the outer peripheral wall of the disk-shaped cavity along the tangential direction of the coarse powder and below the plurality of guide vanes.
  • a body classification device is proposed.
  • the powder classifying device disclosed in Patent Document 1 sucks and exhausts air from the discharge unit using a blower, thereby allowing the air sucked from the outside of the device to pass between the guide vanes, so that the centrifugal separation chamber (classification field) ) To form a swirling air flow in the disc-shaped cavity, and to give a swirling motion to the powder to centrifuge it into coarse powder and fine powder.
  • compressed air is blown into the inside of the disc-shaped cavity from the plurality of first air nozzles, and the powder supplied from the powder supply port is put on the swirling air flow, and the plurality of second air nozzles are placed.
  • Patent Document 1 realizes a powder classification apparatus that can classify fine powders of about several ⁇ m or less and submicrons with high accuracy, can easily control particle size, and is easy to maintain.
  • Patent Document 2 a disc-shaped centrifuge chamber for centrifuging powder having a particle size distribution, and a ring-shaped centrifuge chamber that is coaxially disposed on both sides and communicates with the centrifuge chamber.
  • the powder dispersion chamber and the powder reclassification chamber are formed in the casing, and the circumferential outer peripheral portion of the centrifugal separation chamber is closed with the peripheral wall portion to supply powder to the powder dispersion chamber.
  • An outlet, a fine powder discharge port for discharging an air flow containing fine powder from the centrifugal separation chamber, and a coarse powder discharge port for discharging the coarse powder from the powder reclassification chamber are formed in the casing.
  • a plurality of first air nozzles for ejecting compressed air into the body dispersion chamber and a plurality of second air nozzles for ejecting compressed air into the powder reclassification chamber are arranged around the peripheral wall portion of the casing.
  • a swirling air flow and a second swirling air flow for floating fine powder in the coarse powder in the powder reclassification chamber and returning them to the centrifuge chamber are formed, and the particle size in the centrifuge chamber is formed by these two swirling air flows.
  • a powder classifying device that forms a third swirling air flow for classifying (centrifuging) powder having a distribution is proposed.
  • the powder classifying device disclosed in Patent Document 2 is configured such that the powder supplied from the powder supply port is compressed by the compressed air ejected from the plurality of first air nozzles into the ring-shaped powder dispersion chamber.
  • a first swirl air flow is formed on the first swirl air flow to disperse the powder in the first swirl air flow, and flow into a disc-shaped cavity serving as a centrifugal separation chamber communicating with the powder dispersion chamber,
  • the second swirling air flow is formed in the powder reclassification chamber by the compressed air jetted from the second air nozzle to the ring-shaped powder reclassification chamber, and the fine powder in the coarse powder is floated and returned to the centrifuge chamber.
  • a third swirling air flow for classifying the powder is formed in the disc-shaped cavity by flowing into the disc-shaped cavity serving as a centrifugal separation chamber communicating with the powder re-classification chamber.
  • a third classification for classification is performed by the first and second vortices (swirl air flow) by the compressed air ejected from the first air nozzle and the second air nozzle. Since the vortex (swirl air flow) is formed, the amount of air in the third vortex (swirl air flow) can be increased as compared with the powder classifier disclosed in Patent Document 1, but it is finer.
  • a vortex is applied as in the case of the powder classifier disclosed in Patent Document 1.
  • the object of the present invention is to eliminate the above-mentioned problems of the prior art, to make the swirling air flow uniform in the disc-shaped cavity serving as a classification field, and to maintain a uniform swirling air flow for a long time. Therefore, it is possible to apply fine powders of about several ⁇ m or less to sub-micron with high accuracy over a long period of time without adhering the powder to the wall surface of the disk-shaped cavity, especially the upper or lower wall surface.
  • An object of the present invention is to provide a powder classification device capable of classification.
  • a powder classifying device is a powder classifying device that classifies powder having a particle size distribution and collects fine powder having a predetermined particle size or less, at a predetermined interval.
  • Two disk-shaped members arranged and a peripheral wall member attached to the outer peripheral side of the two disk-shaped members, and a disk-shaped cavity for classifying the powder by an internal swirling air flow is the two disk-shaped members And at least one side of the two disk-shaped members of the casing so as to communicate with the inside of the outer edge of the disk-shaped cavity, and an air flow
  • Disc-shaped part A discharge portion that discharges air containing the fine powder discharged from the disk-shaped cavity, and a thickness of the peripheral wall member of the casing so as to communicate with the outer edge of the disk-shaped cavity.
  • a recovery portion having a slit-like opening that is formed in a central portion in the vertical direction and is discharged from the disk-shaped cavity and recovering coarse powder larger than the predetermined particle size; and the slit shape of the peripheral wall member of the casing
  • One set is provided on each of both sides of the opening in the thickness direction, and is arranged on the peripheral wall member of the casing along the tangential direction to the outer edge of the disk-shaped cavity, and the disk-shaped cavity
  • it has two sets of air introduction portions each having a plurality of air introduction devices for introducing air into the inside of the disk-shaped cavity. .
  • the two disk-shaped members include an upper disk-shaped member and a lower disk-shaped member, and are further formed on at least one of the two disk-shaped members of the casing so as to communicate with the disk-shaped cavity. It is preferable to have a second recovery part for recovering a part of the coarse powder discharged from the disk-shaped cavity.
  • the discharge part is constituted by an inner cylindrical tube that stands upright on the upper disk-shaped member of the casing and has a tip projecting into the disk-shaped cavity
  • the second recovery part is the upper disk of the casing It is composed of a coaxial outer cylindrical tube that stands upright on the cylindrical member and has a diameter larger than that of the inner cylindrical tube, and the distal end of the outer cylindrical tube retreats upward from the distal end of the inner cylindrical tube and communicates with the disk-shaped cavity. It is preferable to do.
  • the second recovery part includes a groove-shaped discharge path formed on the lower side of the lower disk-shaped member of the casing so as to communicate with the inside of the outer edge of the disk-shaped cavity. Is preferred.
  • recovery part has a taper shape expanded toward the said disk-shaped cavity part.
  • the said discharge part is each provided in the said two disk shaped members of the said casing.
  • the plurality of powder supply ports may be one upper disk of the two disk-shaped members of the casing so as to incline in the swirling direction of the swirling air flow toward the inside of the outer edge of the disk-shaped cavity.
  • the powder is uniformly formed on the member, and the powder is conveyed by the airflow formed by the ejector, and the swirling airflow is transferred from the one or more powder supply ports into the disk-shaped cavity. It is preferable to spray and supply with the said airflow in the turning direction.
  • the powder supply port opens into one air introduction device of one of the two sets of air introduction portions, and the powder is produced by an ejector effect caused by air introduced by the air introduction device. It is preferable that the air current is conveyed and supplied to the disk-shaped cavity.
  • the powder conveyed by the airflow by airflow is preliminarily distributed in a distributor to a plurality of pipelines directed to each of the plurality of powder supply ports by compressed air.
  • the air introduction device is preferably an air nozzle that blows compressed air into the disk-shaped cavity.
  • the vortex (swirl air flow) in the disc-shaped cavity serving as a classification field can be made uniform, and the uniform swirl air flow can be maintained for a long time. Can be classified with high accuracy over a long period of time, and particle size can be easily controlled without adhering to the wall surface of the disk-shaped cavity, especially the upper and lower walls. In addition, an effect of realizing a powder classifier that is easy to maintain can be obtained.
  • FIG. 6 is a schematic cross-sectional view of a powder classifier according to still another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a powder classifier according to still another embodiment of the present invention.
  • FIG. 1 It is a schematic diagram which shows the structure of the whole classification system using the powder classification apparatus of this invention.
  • (A), (B), (C), and (D) are drawing substitute photographs showing the states of the inner surfaces of the upper and lower disk-shaped members of the present invention and the conventional powder classifier, respectively.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the powder classifier according to the first embodiment of the present invention, and is a cross-sectional view cut along a plane passing through the central axis of the powder classifier.
  • 2 (A) and 2 (B) are a sectional view taken along line IIA-IIA and a sectional view taken along line IIB-IIB, respectively, of the powder classifier shown in FIG.
  • a powder classifying apparatus 10 according to the first embodiment of the present invention shown in FIG. 1 has a substantially truncated cone-shaped casing 20 arranged with its apex directed vertically downward.
  • the casing 20 includes an upper disk-shaped member 12 and a lower disk-shaped member 14 that are arranged to face each other with a predetermined distance therebetween, and an annular peripheral wall member 16 that is attached to the outer peripheral side of the two disk-shaped members 12 and 14. And a cone member 18 attached to the lower part of the peripheral wall member 16.
  • a centrifuge chamber 22 is formed between the two disk-shaped members 12 and 14 and inside the peripheral wall member 16. Further, as shown in FIGS.
  • the powder classifier 10 has a predetermined radius from the center of the upper disk-shaped member 12 so as to communicate with the inside of the outer edge portion above the centrifuge chamber 22.
  • the center of the upper disk-shaped member 12 is communicated with a plurality of, for example, six powder supply ports 24a, which are equally arranged on the circumference, and a central portion above the centrifuge chamber 22 and the powder supply portion 24.
  • the fine powder collection unit 26 provided with a fine powder collection port 26a that collects fine powder of a predetermined particle size (classification point) or less together with air, and a central portion in the vertical direction of the outer edge of the centrifugal separation chamber 22 are arranged in the unit.
  • a coarse powder collecting portion 30 provided with a slit-shaped annular opening 28 for collecting coarse powder exceeding a predetermined particle size (classification point), which is disposed at the center in the vertical direction of the peripheral wall member 16, and the annular opening of the peripheral wall member 16
  • a predetermined particle size classification point
  • the fine powder recovery unit 26 and the coarse powder recovery unit 30 constitute the discharge unit and the recovery unit of the present invention, respectively, and the first and second air introduction units 32 and 34 constitute the air introduction device of the present invention. To do.
  • the upper disk-shaped member 12 includes the inner member 12a and the outer member 12b, but may be formed as one member in which these members are integrated.
  • the inner member 12a is supported by being fixed to the lower surface of the outer member 12b by a fixture such as a bolt or a screw.
  • the lower surface of the inner member 12 a forms the upper surface of the centrifuge chamber 22. Since the lower surface of the inner member 12a is inclined upward in the vicinity of the outer peripheral portion, the upper surface of the centrifuge chamber 22 extends upward in the vicinity of the outer edge portion.
  • a ring-shaped edge portion 12 c that protrudes toward the centrifuge chamber 22 is formed at the open end of the fine powder collection port 26 a that faces the centrifuge chamber 22 at the center of the inner member 12 a.
  • the fine powder collection port 26a is formed by a circular hole at the center of the inner member 12a and a circular pipe (cylindrical tube) 26b attached to the central part of the outer member 12b, and an appropriate fine powder collection filter 90 such as a bag filter ( It is connected to a suction blower 92 (see FIG. 7) via As a result, the air containing the fine powder classified in the centrifugal separation chamber 22 is discharged from the fine powder recovery port 26 a sucked by the suction blower 92.
  • a plurality of, for example, Six powder supply ports 24a are attached uniformly. These powder supply ports 24a extend from the outside of the upper disk-shaped member 12 (outer member 12b) toward the centrifuge chamber 22 so as to follow the swirling direction of the swirling air flow in the centrifuge chamber 22. It attaches with respect to the upper surface of the shaped member 12 (outer member 12b). From the plurality of powder supply ports 24a, the powder that is conveyed by airflow from the distributor 84 (see FIG.
  • the lower disk-shaped member 14 includes an inner edge portion 14a having an inner surface (upper surface) substantially symmetrical to the inner member 12a of the upper disk-shaped member 12, and an outer edge portion 14b fixedly supported by a lower peripheral wall member 16b of the peripheral wall member 16 described later. It consists of.
  • the upper surface of the inner edge portion 14a is inclined downward in the vicinity of the outer peripheral portion symmetrically with the lower surface of the inner member 12a, the lower surface of the centrifugal separation chamber 22 extends downward in the vicinity of the outer edge portion. .
  • the centrifuge chamber 22 becomes a disk-shaped cavity that is substantially symmetrical in the vertical direction.
  • the ring-shaped edge part 12c formed in the central part of the inner member 12a of the upper disk-shaped member 12 is opposed to the centrifuge chamber 22.
  • a protruding ring-shaped edge portion 14c is formed. That is, these edge portions 12 c and 14 c are arranged to face each other with the centrifuge chamber 22 interposed therebetween. Since the ring-shaped edges 12c and 14c determine the classification performance in the powder classifying apparatus 10, the mounting position, the ring size and the edge height are determined depending on the powder to be classified. It is necessary to set according to the fine powder to be collected. However, the present invention is not limited to the illustrated example. In the illustrated example, the ring-shaped edge portions 12c and 14c are arranged to face each other with the centrifuge chamber 22 interposed therebetween, but only one of the edge portions 12c and 14c may be formed.
  • the peripheral wall member 16 includes an upper peripheral wall member 16a and a lower peripheral wall member 16b, and is fixed by a fixing tool such as a bolt at a predetermined interval.
  • the upper peripheral wall member 16a has an upper surface fixed to and supported by a lower surface of the outer member 12b of the upper disk-shaped member 12 with a fixing device such as a bolt, and the upper surface of the cone member 18 is fixed to the lower surface with a bolt or the like. It is fixed and supported by tools.
  • the lower peripheral wall member 16b supports the outer edge portion 14b of the lower disk-like member 14 fixed to the lower surface thereof by a fixing tool such as a bolt.
  • the structure of the upper disk-shaped member 12, the lower disk-shaped member 14, the surrounding wall member 16, and the cone member 18 and the state of a fixed support are not necessarily limited to the thing of an example of illustration.
  • a slit-like annular opening 28 connected to the coarse powder collection port 30a of the coarse powder collection unit 30 is formed. Since the slit-shaped annular opening 28 is located at the substantially central portion in the vertical direction of the outer edge of the centrifugal separation chamber 22, coarse powder having a large centrifugal force in the swirling air flow in the centrifugal separation chamber 22 is smoothly slit-shaped annular opening. 28 and extracted from the centrifuge chamber 22. As a result, the coarse powder can be smoothly taken out from the centrifugal separation chamber 22 which is a classification field.
  • the upper peripheral wall member 16a and the lower peripheral wall member 16b of the peripheral wall member 16 are respectively provided with first and second sets of air introduction portions 32 and 34 at symmetrical positions in the vertical direction with respect to the slit-shaped annular opening 28, respectively.
  • the first air introduction part 32 is formed from a plurality of, for example, six first air nozzles 32 a arranged to face the inside of the centrifuge chamber 22 on the inner circumference of the upper peripheral wall member 16 a facing the centrifuge chamber 22.
  • the second air introduction part 34 is a plurality of, for example, six second air nozzles arranged on the inner peripheral part of the lower peripheral wall member 16b facing the centrifugal separation chamber 22 so as to face the centrifugal separation chamber 22 respectively. 34a.
  • the first air nozzle 32 a ejects compressed air toward the lower surface (inclination start portion of the outer periphery) of the inner member 12 a of the upper disk-shaped member 12, and the second air nozzle 34 a is the inner edge portion 14 a of the lower disk-shaped member 14. Compressed air is spouted toward the upper surface (inclination start portion of the outer periphery).
  • the first air nozzle 32a is formed in the nozzle member 32b, and the outer member 12b of the upper disk-shaped member 12, the upper peripheral wall member 16a of the peripheral wall member 16, and the nozzle member 32b interposed therebetween. Is communicated with a space 32c that is a compressed air reservoir, and this space 32c communicates with a pipe 32d connected to the outer member 12b. Further, the pipe 32d is connected to a compressed air supply source 82 (see FIG. 7). Thus, the first air nozzle 32a is connected to the compressed air supply source 82.
  • the second air nozzle 34a is formed in the nozzle member 34b, and the outer peripheral portion 14b of the lower disk-shaped member 14, the lower peripheral wall member 16b of the peripheral wall member 16, and the nozzle interposed therebetween. It communicates with a space 34c formed by the member 34b and serving as a compressed air reservoir. This space 34c is communicated with the space 32c of the first air introduction part 32 by a through hole 34e in a communication member 34d inserted between the upper peripheral wall member 16a and the lower peripheral wall member 16b of the peripheral wall member 16.
  • the through hole 34e in the communication member 34d is configured not to communicate with the slit-shaped annular opening 28 between the upper peripheral wall member 16a and the lower peripheral wall member 16b.
  • the second air nozzle 34a is connected to the compressed air supply source 82 (see FIG. 7).
  • the six first air nozzles 32a are respectively arranged on the outer circumference of the centrifuge chamber 22, that is, on a predetermined circumference, in the tangential direction. For example, they are arranged at equal intervals in the circumferential direction while having a predetermined angle with respect to the tangential direction.
  • the six second air nozzles 34a are respectively arranged on the outer circumference of the centrifugal separation chamber 22, that is, on a predetermined circumference. For example, they are arranged at equal intervals in the circumferential direction while having a predetermined angle with respect to the tangential direction so as to follow the tangential direction.
  • these first and second air nozzles 32a and 34a are connected to a compressed air supply source 82 (see FIG. 7), respectively, and compressed air is supplied from the first and second air nozzles 32a and 34a, respectively.
  • a symmetrical swirling air flow swirling in the same direction is formed above and below in the centrifuge chamber 22. Due to the symmetrical upper and lower swirling air flows in the centrifuge chamber 22 formed in this way, a swirling air flow is also formed in the central portion of the centrifuge chamber 22 in the vertical direction. A simple swirling air flow is formed.
  • the powder supply ports 24a are respectively connected to the centrifuge chamber 22 by the six air nozzles 32a.
  • the swirling airflow formed above is arranged so as to be inclined along the swirling direction, that is, in the tangential direction from the upper side to the lower side. For this reason, the powder that is conveyed by airflow, together with the carrier air (compressed air), passes through the six powder supply ports 24a from the diagonally upper side to the swirling direction with respect to the swirling airflow above the centrifugal separation chamber 22.
  • the air is supplied in the same direction, the dispersion of the powder is promoted in the swirling air flow above the centrifugal separation chamber 22, and the turbulence of the swirling air flow above the powder is kept as it is. Compared to the case where the product is dropped and supplied vertically, it can be suppressed and reduced.
  • the region in the centrifuge chamber 22, that is, the disc-shaped cavity portion forms a classification field (zone) for classifying the supplied powder, but the second region above the centrifuge chamber 22 to which the powder is supplied.
  • the region where the compressed air is ejected from one air nozzle 32a disperses the powder supplied into the centrifugal separation chamber 22, and thus can also be said to serve as a powder dispersion zone.
  • region where compressed air is ejected from the 2nd air nozzle 34a under the centrifuge chamber 22 was mixed with the coarse powder and fine powder which were not collect
  • the powder that has not been completely classified has the function of returning the centrifuge chamber 22 upward.
  • first and second air nozzles 32a and 34a are equally arranged on the circumference, and the powder supply port 24a is an air nozzle adjacent to the six first air nozzles 32a.
  • the number of the first and second air nozzles 32a and 34a and the number and arrangement of the powder supply ports 24a are classified according to the present invention. It can be appropriately changed according to the powder to be subjected to the above.
  • the fine powder collection unit 26 includes the fine powder collection port 26a formed by the opening of the upper disk-shaped member 12 and the circular pipe 26b, and the circular pipe 26b is sucked through an appropriate filter 90 such as a bag filter. Connected to the blower 92 (see FIG. 7).
  • the coarse powder collecting unit 30 includes a slit-like annular opening 28 between the upper peripheral wall member 16a and the lower peripheral wall member 16b of the peripheral wall member 16, an outer peripheral wall of the lower peripheral wall member 16b, an inner peripheral wall of the upper peripheral wall member 16a, and the cone member 18.
  • the slit-shaped annular opening 28a formed between the upper peripheral wall member 16a and the lower peripheral wall member 16b of the peripheral wall member 16 has a centrifuge chamber. You may make it have the taper shape expanded toward the disk shaped cavity part which is 22. FIG. That is, the degree of opening of the entrance 28b of the slit-shaped annular opening 28a or the opening degree of the tip on the centrifuge chamber 22 side may be increased.
  • the powder is equally distributed from the six powder supply ports 24a into the centrifugal separation chamber 22.
  • the present invention is not limited to this, and has a powder supply port 25a that opens toward the first air nozzle 32a of the nozzle member 32b as in the powder classification device 10A shown in FIG.
  • the powder supply unit 25 may carry the powder in an air flow and supply the ejector into the centrifuge chamber 22.
  • the powder supply unit 25 includes a hopper 25b having a powder supply port 25a at the lower end and storing powder.
  • the powder in the hopper 25b is supplied into the centrifugal separation chamber 22 together with the compressed air by the ejector effect by the compressed air in the first air nozzle 32a from the powder supply port 25a at the lower end.
  • the powder supply unit 25 includes one hopper 25b having one powder supply port 25a.
  • the powder supply unit 25 may include a plurality of, for example, six hoppers.
  • recovery part 26 of the powder classification apparatus 10 shown in FIG. 1 consists of a straight pipe
  • the powder classifier according to the first embodiment of the present invention is basically configured as described above.
  • the suction blower 92 (see FIG. 7) sucks air from the centrifuge chamber 22 through the fine powder collection port 26a of the fine powder collection unit 26 with a predetermined air volume, and also from the compressed air supply source 82 (see FIG. 7).
  • the centrifuging chamber 22 is symmetric with respect to the upper side and the lower side. A swirling air flow is formed, and a swirling air flow is formed throughout the centrifugal separation chamber 22.
  • the powder Since the swirling air flow that is vertically symmetrical is formed in the centrifugal separation chamber 22 by the ejection of the compressed air from the first and second air nozzles 32 a and 34 a, the powder is swirling in the centrifugal separation chamber 22. , Subject to centrifugation. As a result, by the ring-shaped edge portions 12c and 14c formed at the center of the rotation of the centrifugal separation chamber 22, fine powder having a size below the classification point is sucked and discharged from the fine powder collection port 26a together with the air flow. They are collected by an appropriate fine powder collecting filter 90 (see FIG. 7) such as a bag filter. For this reason, fine powder can be classified and recovered from powder having a particle size distribution.
  • the fine powder collected in this manner rarely contains coarse powder exceeding the classification point.
  • the coarse powder having a particle size exceeding the classification point receives a large centrifugal force, so that it smoothly moves to the outside in the radial direction of the swirling air flow and is smoothly formed at the center in the vertical direction of the centrifugal separation chamber 22. It enters into the slit-like annular opening 28 of the coarse powder collecting section 30, passes through the space 30 b and the internal space 18 a of the cone member 18, and is discharged from the coarse powder collection port 30 a and collected.
  • the remainder of the powder that has not been discharged from the fine powder collection port 26a and the slit-shaped annular opening 28 goes further down the centrifuge chamber 22, but not only coarse powder exceeding the classification point but also fine powder below the classification point. Since it is often contained, it rides on the swirling air flow formed by the jet of compressed air from the second air nozzle 34a and moves upward in the centrifugal separation chamber 22 to receive a centrifugal separation action. As described above, the fine powder is discharged and collected from the fine powder collection port 26a, and the coarse powder enters the slit-shaped annular opening 28 and is discharged from the coarse powder collection port 30a and collected.
  • the lower surface of the upper disk-shaped member and the lower disk-shaped The amount of adhesion increased as the powder adhered to the upper surface of the member or the speed difference increased. Further, since a non-uniform swirling air flow is formed in the centrifuge chamber, the classification accuracy deteriorates. As a result, it is difficult to classify submicron particles having a particle size of less than 1 ⁇ m with high accuracy, for example. .
  • the powder is supplied from vertically above the swirling air flow in the centrifugal separation chamber through one powder supply port. Even if dispersed by the upper swirling air flow due to, the swirling air flow for the classification of the centrifugal chamber is disturbed, and as a result, a non-uniform swirling air flow with a speed difference is formed in the centrifugal separation chamber, The adhesion of the powder to the lower surface of the upper disk-shaped member and the deterioration of the classification accuracy were caused.
  • the conventional powder classifying apparatus described in Patent Documents 1 and 2 is a method of dropping and collecting coarse powder below the outer periphery of the centrifugal separation chamber, and in order to increase the classification efficiency, Since the powder containing fine powder that has fallen into the body reclassification zone is returned to the centrifuge chamber by the air nozzle, the coarse powder (coarse particles) stagnates near the upper surface of the lower disk-shaped member due to blow-up from this air nozzle. Not only did it cause the body to stick, but there was also a bias in the attachment.
  • the lower surface of the upper disk-shaped member and the lower disk-shaped member It is possible to prevent adhesion of powder on the upper surface and deterioration of classification accuracy, and classify submicron particles with high accuracy and stability. Fine particles such as sub-micron particles have a property of easily aggregating with each other.
  • classification can be performed efficiently.
  • various powders can be used for classification, from low specific gravity such as silica and toner to high specific gravity such as metal and alumina.
  • a movable member such as a guide vane is not used, a small powder classifier can be realized.
  • FIG. 4 is a schematic cross-sectional view of a powder classifier according to the second embodiment of the present invention.
  • the powder classification apparatus 50 of embodiment shown in FIG. 4 has the point which has the cyclic
  • the powder classifying apparatus 50 shown in the figure is further compared with the powder classifying apparatus 10 shown in FIG. 1 in the coarse powder larger than the fine powder classification point (granularity) on the lower surface of the lower disk-shaped member 14. And an annular collection container 52 serving as a medium powder collection unit for collecting medium powder below the second classification point (particle size) larger than the first classification point (particle size).
  • the annular collection container 52 is provided on the lower surface (lower side) of the annular region straddling the inner edge portion 14 a and the outer edge portion 14 b of the lower disk-shaped member 14.
  • the inner edge portion 14a is provided with an annular inclined opening 54 that allows the inside of the centrifuge chamber 22 and the inside of the recovery container 52 to communicate with each other.
  • the inclined opening 54 is inclined in the outer peripheral direction (radial direction) from the position on the centrifuge chamber 22 side of the lower disk-shaped member 14 facing the inclination start point toward the outer periphery of the inner portion 12a of the upper disk-shaped member 12, and the recovery container. 52 is a groove-like discharge path that reaches the inside of the outer edge portion 14b.
  • the powder charged in the centrifuge chamber 22 is centrifuged by the swirling air flow in the centrifuge chamber 22 from the central portion of the swirling air flow toward the outer peripheral portion according to the particle size. Therefore, fine powder with small particle size is at the center of the swirling air flow, coarse powder such as coarse particles with large particle size is at the outer periphery of the swirling air flow, and coarse powder with intermediate particle size is at the center and outer periphery of the swirling air flow. It is separated into the area between the parts.
  • fine powder having a predetermined particle size (first particle size) or less is discharged from the central portion of the swirling air flow through the fine powder recovery port 26a together with the suction air, and coarse particles larger than the second particle size such as coarse particles are It is easily discharged from the outer periphery of the swirling air flow through the slit-like annular opening 28 by centrifugal force.
  • the coarse particle having an intermediate particle size that is larger than the first particle size and smaller than the coarse particle larger than the second particle size, i.e., the intermediate powder finally becomes the outer periphery of the swirling airflow by centrifugal force.
  • a recovery container 52 having an inclined opening 54 is provided on the lower surface of the lower disk-shaped member 14 in an annular region where the medium powder easily stays, and When the powder is dropped, the powder is positively collected from the inclined opening 54 to the collection container 52, and the newly supplied powder can be classified, so that the powder classification efficiency can be improved.
  • the collection container 52 having the inclined opening 54 constitutes a second collection unit of the present invention.
  • An annular opening 28a may be provided.
  • FIG. 5 is a schematic cross-sectional view of a powder classifier according to the third embodiment of the present invention.
  • the powder classification device 60 of the embodiment shown in FIG. 5 has a powder classification device 62 shown in FIG. 1 and a medium powder collection unit 62 outside the fine powder collection unit 26 at the center of the upper disk-shaped member 12. Since it has the same structure except the point which has carried out, the same referential mark is attached
  • the powder classifying device 60 shown in the figure is an integral upper disk-shaped member 12 and a central portion of the upper disk-shaped member 12 toward the centrifugal separation chamber 22 with respect to the powder classifying device 10 shown in FIG. And a fine powder collecting portion 26 having an inner tube (inner cylindrical tube) 26d that constitutes a fine powder collecting port 26a.
  • the opening 64 and the outer tube (outer cylindrical tube) 62b of the upper disk-shaped member 12 constituting the medium powder collection port 62a for collecting the middle powder below the second classification point (particle size) described above. It has the inside powder collection
  • the outer tube 62b of the medium powder collecting unit 62 is connected so as to extend from the opening 64 of the upper disk-shaped member 12 with the same inner diameter, and constitutes an inner tube 26d of the fine powder collecting unit 26 and a double tube.
  • the medium powder collection port 62 a of the medium powder collection unit 62 is formed between the central opening 64 of the upper disk-shaped member 12 and the inside of the outer tube 62 b and the outside of the inner tube 26 d that becomes the fine powder collection port 26 a of the fine powder collection unit 26. Is done.
  • the front end of the medium powder collection port 62 a is formed by the central opening 64 of the upper disk-shaped member 12, and is positioned above the opening at the front end of the inner tube 26 d that becomes the fine powder collection port 26 a of the fine powder collection unit 26. That is, the tip of the inner tube 26d that becomes the fine powder collection port 26a protrudes toward the centrifugal separation chamber 22 from the tip of the medium powder collection port 62a to form the ring-shaped edge 12c.
  • the medium powder collection port 62a is connected to a suction blower (not shown) through an appropriate medium powder collection filter such as a bag filter (not shown).
  • an appropriate medium powder collection filter such as a bag filter (not shown).
  • Fine powder can be classified with high accuracy over a long period of time without adhering to the lower wall surface.
  • the annular opening 28a may be provided, or as in the powder classifier 50 shown in FIG. 4, an annular collection container 52 for collecting medium powder may be provided, or both may be provided.
  • FIG. 6 is a schematic cross-sectional view of a powder classifier according to the fourth embodiment of the present invention.
  • the powder classification apparatus 70 of the embodiment shown in FIG. 6 has a fine powder collection unit at the center of the upper disk-shaped member 12 as well as the powder classification apparatus 10 shown in FIG. 26, the same components are denoted by the same reference numerals, and the description thereof is omitted. The difference will be mainly described.
  • the powder classifying apparatus 70 shown in the figure is similar to the powder classifying apparatus 10 shown in FIG. 1 and collects fine powder at the central portion of the upper disc-like member 12 at the central portion of the inner edge portion 14a of the lower disc-like member 14. It has the 2nd fine powder collection part 72 which has the 2nd fine powder collection mouth 72a symmetrical with fine powder collection mouth 26a of part 26. Of course, the tip of the opening of the fine powder collection port 72a protrudes toward the centrifuge chamber 22 and forms a ring-shaped edge 14c.
  • the fine powder collection port 72a of the second fine powder collection unit 72 on the lower side of the centrifuge chamber 22 is symmetrical to the fine powder collection port 26a of the fine powder collection unit 26 on the upper side of the centrifuge chamber 22, but the second fine powder collection port 72a.
  • the opening at the center of the inner edge portion 14a of the lower disk-shaped member 14 constituting 72a is connected to the extension circular tube 72b.
  • the extension circular pipe 72b first descends vertically, then curves horizontally and is disposed outside the cone-shaped member 18, and is connected to the suction blower 92 via the filter 90, for example.
  • the symmetry of the upper and lower swirling air flow in the centrifugal separation chamber 22 can be improved.
  • the swirling air flow in the entire centrifugal separation chamber 22 can be made more uniform.
  • the fine powder is increased over a long period of time without adhering the powder to the wall surface of the centrifugal separation chamber 22, particularly the upper wall surface and the lower wall surface. Can be classified to accuracy.
  • An annular opening 28a may be provided, or at least one of an annular collection container 52 and a middle powder collecting unit 62 for collecting the middle powder, like the powder classifiers 50 and 60 shown in FIGS. Or all of them may be provided.
  • FIG. 7 is a schematic diagram showing the overall configuration of a classification system using the powder classification apparatus according to the present invention.
  • the classification system 80 shown in the figure supplies compressed air to the powder classification device 10 of the first embodiment shown in FIG. 1 and the plurality of air nozzles 32a and 34a of the air introduction parts 32 and 34 of the powder classification device 10.
  • Compressed air supply source 82 Compressed air supply source 82, distributor 84 for air-flowing the powder to be classified to the powder supply port 24a of the powder supply unit 24 of the powder classification apparatus 10, and supplying the powder to the distributor 84 Screw feeder 86 that performs the above operation, a compressed air supply source 88 that supplies compressed air for air-conveying the powder supplied from the screw feeder 86 in the distributor 84, and fine powder of the fine powder collecting unit 26 of the powder classification device 10
  • a fine powder collecting filter 90 such as a bag filter for collecting fine powder discharged from the collection port 26a, a suction blower 92 for sucking air mixed with the fine powder from the fine powder collection port 26a, and a filter 90.
  • An orifice 94 provided between the suction blower 92 and measuring the air flow rate by the suction blower 92; a display unit 96 for displaying the air flow rate measured by the orifice 94; and a pipe constituting a pipe line connecting each part And have.
  • compressed air is supplied from the compressed air supply source 82 to the plurality of air nozzles 32a and 34a of the air introducing units 32 and 34 of the powder classifying apparatus 10 via a pipe.
  • Compressed air is jetted into the centrifuge chamber 22 to form a swirling air flow that is symmetrical in the vertical direction, and a uniform swirling air flow is formed throughout the centrifuge chamber 22.
  • compressed air is supplied from the compressed air supply source 88 to the ejector 84a of the distributor 84 via a pipe, and the powder is supplied from the screw feeder 86 to the distributor 84 to be injected into the compressed air ejected from the ejector 84a.
  • the powder is carried in the air stream and is carried in the pipe, and the powder carried in the air stream is supplied to the plurality of powder supply ports 24a of the powder supply unit 24 of the powder classifying apparatus 10 and is turned into the swirling air flow in the centrifugal separation chamber 22. It is made to eject from diagonally upward along the turning direction.
  • the powder ejected into the centrifugal separation chamber 22 together with air is centrifuged by the swirling air flow in the centrifugal separation chamber 22, and the fine powder is piped from the fine powder collection port 26 a of the fine powder collection unit 26 of the powder classification device 10.
  • the air is sucked and exhausted by the suction blower 92 and collected by the filter 90.
  • the coarse powder is discharged to the slit-shaped annular opening 28 of the coarse powder collection unit 30 of the powder classification device 10, passes through the space 30 b and the internal space 18 a of the cone member 18, and is collected from the coarse powder collection port 30 a. .
  • the powder classifying apparatus of the present invention will be specifically described based on examples.
  • a classification system 80 shown in FIG. 7 using the powder classification apparatus 10 shown in FIG. 1, 1 kg / h of metal powder having a median diameter of 1 ⁇ m or less was supplied to conduct a classification test.
  • the size of the disk-shaped cavity of the centrifuge chamber 22 of the powder classifier 10 was 174 mm ⁇ in diameter.
  • the powder was uniformly supplied into the centrifugal separation chamber 22 from the six powder supply ports 24a from the upper side with respect to the swirling air flow.
  • the total amount of powder supplied was 1 kg / h.
  • the lower surface of the upper disk-shaped member 12 (inner member) and the upper surface of the lower disk-shaped member 14 were inspected. As a result, no adhesion of powder was observed on the lower surface of the upper disk-shaped member 12 and the upper surface of the lower disk-shaped member 14 as shown in FIGS. 8 (A) and (B).
  • a powder classification device shown in FIG. A metal powder was supplied at 1 kg / h to conduct a classification test.
  • the size of the disk-shaped cavity of the centrifugal separation chamber of the powder classifier was 174 mm ⁇ in diameter.
  • the powder was supplied as it was from vertically above the swirling air flow in the centrifuge chamber from one powder supply port.
  • the amount of powder supplied was 1 kg / h.
  • the amount of air sucked by the suction blower is 2.0 m 3 / L / min, the pressure and amount of the air nozzle for dispersing the upper powder are 0.65 MPa and 510 L / min, and the lower air nozzle for reclassification
  • the jet pressure and the jet quantity were 0.5 MPa and 180 L / min, and the air quantity from the guide vane was 100 L / min.
  • Powder classifier 12 Upper disk member 12c, 14c Ring-shaped edge 14 Lower disk member 16 Peripheral wall member 18 Cone member 20 Casing 22 Centrifugal chamber 24, 25 Powder supply unit 24a , 25a Powder supply port 26, 72 Fine powder collection unit 26a, 72a Fine powder collection port 28, 28a Slit annular opening 30 Coarse powder collection unit 30a Coarse powder collection port 32, 34 Air introduction unit 32a, 34a Air nozzle 52 Annular collection container 62 Medium Powder Collection Unit 62a Medium Powder Collection Port

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

 粒度分布を有する粉体を分級して微粉を回収する粉体分級装置は、2つの円盤状部材及び周壁部材を備え、内部の旋回空気流によって粉体を分級する円盤状空洞部が内側に形成されるケーシングと、粉体を円盤状空洞部内に供給する1以上の粉体供給口と、円盤状空洞部から排出される微粉を含む空気を排出する排出部と、ケーシングの周壁部材の厚さ方向の中央部に形成され、円盤状空洞部から排出される粗粉を回収するスリット状開口を備える回収部と、円盤状空洞部の内部に旋回空気流を形成するために、円盤状空洞部の内部に空気を導入する複数の空気導入デバイスを備える2組の空気導入部とを有する。

Description

粉体分級装置
 本発明は、粒度分布を持つ粉体を所望の粒径(分級点)において分級する粉体分級装置に関し、より詳細には、旋回空気流により粉体に与えられる遠心力と、抗力とのバランスを利用して、好ましくは数μm程度からサブミクロン程度の粉体を長期間に亘って高精度に分級可能な粉体分級装置に関する。
 従来より、ガイドベーンやエアノズルを用いて分級室内に旋回空気流を形成し、分級室内に供給された粉体に旋回運動を与えて粗粉と微粉とに遠心分離し、微粉は旋回空気流の中央部から、粗粉は旋回空気流の外縁部下方から回収する分級装置が知られている。
 また、近年、コンデンサ等の電子部品等の技術の進歩に伴って、狭い粒子サイズ分布を有する微細粒子が必要とされるようになってきている。
 このため、本出願人は、例えば、特許文献1に、2枚の円盤状部材の間に粒度分布を持つ粉体を遠心分離する分級場となる円盤状空洞部を形成し、円盤状空洞部の外周に複数のガイドベーンを円盤状空洞部の外周から所定の角度で内部方向に延びるように配置し、粉体を円盤状空洞部に供給する粉体供給口を上部円盤状部材に設け、また、円盤状空洞部の中央部から排出される微粉を含む空気流の排出部を上部円盤状部材の中央部に設け、かつ円盤状空洞部から排出される粗粉の回収部を下部円盤状部材の外縁部の下方と円盤状空洞部の外周壁との間に設け、更に、円盤状空洞部の内部に圧縮空気を吹き込む複数の第1のエアノズルを円盤状空洞部の外周壁にその接線方向に沿って、粉体供給口近傍でかつ複数のガイドベーンの上方に配置し、円盤状空洞部の内部に圧縮空気を吹き込む複数の第2のエアノズルを円盤状空洞部の外周壁にその接線方向に沿って粗粉の回収部でかつ複数のガイドベーンの下方に配置した粉体分級装置を提案している。
 こうして、特許文献1に開示の粉体分級装置は、ブロアを用いて排出部から吸引排気することにより、装置の外側から吸引した空気をガイドベーンの間を通過させて、遠心分離室(分級場)となる円盤状空洞部内に旋回空気流を形成し、粉体に旋回運動を与えて粗粉と微粉とに遠心分離することができる。この時、この装置では、複数の第1のエアノズルから円盤状空洞部の内部に圧縮空気を吹き込んで、粉体供給口から供給された粉体を旋回空気流を乗せると共に、複数の第2のエアノズルから円盤状空洞部外縁部下方に圧縮空気を吹き込んで、粗粉の回収口から回収される粗粉の中に含まれる微粉を円盤状空洞部に戻すことにより、数μm程度以下やサブミクロンの微粉を高精度に分級することを可能にしている。
 その結果、特許文献1では、数μm程度以下やサブミクロンの微小粉体を高精度に分級可能で、更に粒度コントロールが容易であり、かつ保守も容易な粉体分級装置を実現している。
 また、本出願人は、例えば、特許文献2に、粒度分布を持つ粉体を遠心分離する円盤形状の遠心分離室と、この両側に同軸上に配置されかつ遠心分離室に連通するリング状の粉体分散室及び粉体再分級室とをケーシング内に形成し、また、遠心分離室の周方向外周部を周壁部で閉鎖し、粉体分散室内に粉体を供給するための粉体供給口と、遠心分離室から微粉を含む空気流を排出するための微粉排出口と、粉体再分級室から粗粉を排出するための粗粉排出口とを、ケーシングに形成し、更に、粉体分散室の内部に圧縮空気を噴出する複数の第1のエアノズルと、粉体再分級室の内部に圧縮空気を噴出するための複数の第2のエアノズルとを、ケーシングの周壁部にその周方向に沿って配列して、粉体分散室内に粉体を分散させるための第1の旋回空気流、及び粉体再分級室内の粗粉中の微粉を浮上させて遠心分離室内に戻すための第2の旋回空気流を形成し、これらの2つの旋回空気流によって遠心分離室内に粒度分布を持つ粉体を分級(遠心分離)するための第3の旋回空気流を形成する粉体分級装置を提案している。
 こうして、特許文献2に開示の粉体分級装置は、粉体供給口から供給された粉体を、複数の第1のエアノズルからリング状粉体分散室に噴出された圧縮空気によって粉体分散室内に第1の旋回空気流を形成し、粉体を第1の旋回空気流に乗せて分散すると共に、粉体分散室と連通する遠心分離室となる円盤状空洞部内に流入させ、かつ、複数の第2のエアノズルからリング状粉体再分級室に噴出された圧縮空気によって粉体再分級室内に第2の旋回空気流を形成して粗粉中の微粉を浮上させて遠心分離室内に戻すと共に、粉体再分級室と連通する遠心分離室となる円盤状空洞部内に流入させることにより、粉体を分級するための第3の旋回空気流を円盤状空洞部内に形成して、粉体に旋回運動を与えて粗粉と微粉とに遠心分離して、数μm程度以下やサブミクロンの微粉を高精度に分級することを可能にしている。
 その結果、特許文献2では、微細な粒子を高精度に分級することを可能にしている。
特開2009-34560号公報 特開2011-45819号公報
 ところで、近年の一層の微粉化に対応するために、より強力な渦(旋回空気流)を分級場である円盤状空洞部内に形成させる必要性が求められている。
 しかしながら、特許文献1に開示の粉体分級装置では、分級場となる円盤状空洞部内においては、ブロア吸引によってガイドベーンの間を通過した空気によって遠心分離に用いる旋回空気流を形成しているために、即ちガイドベーンの間から流入する空気の流入速度は、エアノズルから噴出流入する空気の流入速度に比べて非常に小さいために、ガイドベーンからの流入速度を大きくしても、分級(遠心分離)に用いる旋回空気流の流量を大きくするのには限界があり、大流量の旋回空気流が必要となるより微細な粒子を分級することができないという問題があった。
 このため、特許文献1に開示の粉体分級装置では、第1のエアノズルから噴出させる圧縮空気の空気量を大幅に増加させる必要がある。ここで、従来のガイドベーンから吸引する空気量が多い場合、分級場となる円盤状空洞部内に形成される渦(旋回空気流)は均一であるものの、第1のエアノズルからの空気量を増加させるにつれ、渦(旋回空気流)の不均一化が生じ、図8(C)及び(D)に示すように、円盤状空洞部の上壁面(上部円盤状部材の下壁面)や下壁面(下部円盤状部材の上壁面)に粉体の付着が発生することにより、分級精度が大幅に低下する問題があった。なお、この粉体の付着は、長時間分級を続けていると益々増大し、その結果、剥がれ等を生じ、分級精度の悪化や、粗大粒子の混入等の問題を引き起こす恐れがあった。
 一方、特許文献2に開示の粉体分級装置においては、第1のエアノズル及び第2のエアノズルから噴出する圧縮空気による第1及び第2の渦(旋回空気流)によって分級のための第3の渦(旋回空気流)を形成しているため、特許文献1に開示の粉体分級装置に比べて、第3の渦(旋回空気流)の空気量を増加させることができるものの、さらに微細な粒子を分級するために、第1のエアノズル又は第2のエアノズルから噴出する圧縮空気の空気量を増加させると、特許文献1に開示の粉体分級装置の場合と同様に、渦(旋回空気流)の不均一化が生じ、分散精度の悪化を招き、円盤状空洞部の上壁面(上部円盤状部材の下壁面)に粉体の付着が発生することで、分級精度が大幅に悪化する問題を引き起こしてしまう。
 本発明の目的は、上記従来技術の問題点を解消し、分級場となる円盤状空洞部内の旋回空気流の均一化を図ることができ、かつ均一な旋回空気流を長時間に亘って維持することができることから、粉体を円盤状空洞部の壁面、特に上壁面や下壁面に付着させることなく、数μm程度以下からサブミクロン程度までの微小粉体を長時間に亘って高精度に分級できる粉体分級装置を提供することにある。
 上記目的を達成するために、本発明に係る粉体分級装置は、粒度分布を有する粉体を分級して所定の粒度以下の微粉を回収する粉体分級装置であって、所定間隔をおいて配置される2つの円盤状部材、及びこの2つの円盤状部材の外周側に取り付けられる周壁部材を備え、内部の旋回空気流によって前記粉体を分級する円盤状空洞部が前記2つの円盤状部材の間及び前記周壁部材の内側に形成されるケーシングと、前記円盤状空洞部の外縁部の内側に連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方の側に設けられ、空気流によって気流搬送される前記粉体を前記円盤状空洞部内に供給する1つ又は複数の粉体供給口と、前記円盤状空洞部の半径方向の中央部と連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方に形成され、前記円盤状空洞部から排出される前記微粉を含む空気を排出する排出部と、前記円盤状空洞部の前記外縁部に連通するように前記ケーシングの前記周壁部材の厚さ方向の中央部に形成され、前記円盤状空洞部から排出される、前記所定の粒度よりも大きな粗粉を回収するスリット状開口を備える回収部と、前記ケーシングの前記周壁部材の前記スリット状開口の、前記厚さ方向の両側にそれぞれ1組ずつ設けられ、それぞれ、前記円盤状空洞部の外縁部にその接線方向に沿うように前記ケーシングの前記周壁部材に配置され、前記円盤状空洞部の内部に前記旋回空気流を形成するために、前記円盤状空洞部の内部に空気を導入する複数の空気導入デバイスを備える2組の空気導入部とを有することを特徴とする。
 ここで、前記2つの円盤状部材は、上部円盤状部材及び下部円盤状部材からなり、さらに、前記円盤状空洞部に連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方に形成され、前記円盤状空洞部から排出される前記粗粉の一部を回収する第2の回収部を有することが好ましい。
 また、前記排出部は、前記ケーシングの前記上部円盤状部材に直立し、先端が前記円盤状空洞部内に突出する内側円筒管で構成され、前記第2の回収部は、前記ケーシングの前記上部円盤状部材に直立し、前記内側円筒管より直径の大きい同軸の外側円筒管で構成され、前記外側円筒管の先端は、前記内側円筒管の先端より上側に後退して前記円盤状空洞部に連通することが好ましい。
 又は、前記第2の回収部は、前記円盤状空洞部の前記外縁部の内側に連通するように前記ケーシングの前記下部円盤状部材に、その下側に形成される溝状排出路を備えることが好ましい。
 また、前記回収部の前記スリット状開口は、前記円盤状空洞部に向かって拡大するテーパ状を有することが好ましい。
 また、前記排出部は、前記ケーシングの前記2つの円盤状部材にそれぞれ設けられることが好ましい。
 また、さらに、前記円盤状空洞部内の上面及び下面をそれぞれ構成する前記ケーシングの前記2つの円盤状部材の対向する内面の少なくとも一方の中央部に設けられているリング状のエッジを有することが好ましい。
 また、前記複数の粉体供給口は、前記円盤状空洞部の外縁部の内側に向かって前記旋回空気流の旋回方向に傾斜するように前記ケーシングの前記2つの円盤状部材の一方の上部円盤状部材に均等に形成され、前記粉体は、エゼクタによって形成された前記空気流によって気流搬送され、前記1つ又は複数の粉体供給口から、前記円盤状空洞部内に、前記旋回空気流の旋回方向に前記空気流と共に噴霧して供給されることが好ましい。
 また、前記粉体供給口は、前記2組の空気導入部の一方の1つの空気導入デバイス内に開口するものであり、前記粉体は、前記空気導入デバイスによって導入される空気によるエゼクタ効果によって気流搬送されて、前記円盤状空洞部に供給されるものであることが好ましい。
 また、前記空気流によって気流搬送される前記粉体は、予め、分配器において前記粉体を圧縮空気によって前記複数の粉体供給口のそれぞれに向かう複数の管路に分配されたものであることが好ましい。
 また、前記空気導入デバイスは、前記円盤状空洞部の内部に圧縮空気を吹き込むエアノズルであることが好ましい。
 本発明によれば、分級場となる円盤状空洞部内の渦(旋回空気流)の均一化を図ることができ、かつ均一な旋回空気流を長時間に亘って維持することができ、粉体を円盤状空洞部の壁面、特に上壁面や下壁面に付着させることなく、数μm程度以下からサブミクロン程度までの微小粉体を長時間に亘って高精度に分級でき、さらに粒度コントロールが容易であり、かつ保守も容易な粉体分級装置を実現できるという効果が得られる。
本発明の一実施形態に係る粉体分級装置の構成を模式的に示す断面図である。 (A)及び(B)は、それぞれ図1に示す粉体分級装置のIIA-IIA線断面図及びIIB-IIB線断面図である。 本発明の一実施形態に係る粉体分級装置の他の構成例の模式的断面図である。 本発明の他の実施形態に係る粉体分級装置の構成の模式的断面図である。 本発明の更なる他の実施形態に係る粉体分級装置の模式的断面図である。 本発明の更なる他の実施形態に係る粉体分級装置の模式的断面図である。 本発明の粉体分級装置を用いた分級システムの全体の構成を示す模式図である。 (A)、(B)及び(C)、(D)は、それぞれ本発明及び従来の粉体分級装置の上部円盤状部材及び下部円盤状部材の内側表面の状態を示す図面代用写真である。
 以下、本発明に係る粉体分級装置を添付の図面に示す好適実施形態に基づいて詳細に説明する。
(第1実施形態)
 図1は、本発明の第1の実施形態に係る粉体分級装置の構成を模式的に示す断面図であり、この粉体分級装置の中心軸を通る面で切断した断面図ある。
 図2(A)及び(B)は、それぞれ図1に示す粉体分級装置のIIA-IIA線断面図及びIIB-IIB線断面図である。
 図1に示す本発明の第1の実施形態の粉体分級装置10は、頂点を鉛直下方に向けて配置された、ほぼ円錐台形状のケーシング20を有している。ケーシング20は、所定の間隔を保って対向させて配置される上部円盤状部材12及び下部円盤状部材14と、これらの2つの円盤状部材12及び14の外周側に取り付けられる環状の周壁部材16と、周壁部材16の下部に取り付けられるコーン部材18とを備える。これらの2つの円盤状部材12及び14の間及び周壁部材16の内側に、略上下対称な円盤状空洞部からなる遠心分離室22が形成されている。
 また、粉体分級装置10は、図1及び図2(A)に示すように、遠心分離室22の上方の外縁部の内側に連通するように、上部円盤状部材12の中心から所定半径の円周上に均等に配置される複数、例えば6つの粉体供給口24aからなる粉体供給部24と、遠心分離室22の上方の中央部に連通するように、上部円盤状部材12の中央部に配置される、所定の粒度(分級点)以下の微粉を空気と共に回収する微粉回収口26aを備える微粉回収部26と、遠心分離室22の外縁部の上下方向の中央部に連通するように、周壁部材16の上下方向の中央部に配置される、所定の粒度(分級点)を超える粗粉を回収するスリット状環状開口28を備える粗粉回収部30と、周壁部材16の環状開口28の上下両側に配置されるそれぞれ複数、例えば6つのエアノズル32a及び34aからなる2組の第1及び第2の空気導入部32及び34とを有する。ここで、微粉回収部26及び粗粉回収部30は、それぞれ本発明の排出部及び回収部を構成し、第1及び第2の空気導入部32及び34は、本発明の空気導入デバイスを構成するものである。
 上部円盤状部材12は、内側部材12a及び外側部材12bからなるが、これらを一体とした1つの部材として形成されていても良い。
 内側部材12aは、外側部材12bの下面にボルトやねじ等の固定具により固定されて支持されている。内側部材12aの下面は、遠心分離室22の上面を形成する。内側部材12aの下面は外周部近傍において上側に傾斜しているので、遠心分離室22の上面は、外縁部近傍で上側に拡がっている。
 内側部材12aの中央部には遠心分離室22を臨む微粉回収口26aの開口端に遠心分離室22に向かって突出するリング状のエッジ部12cが形成されている。微粉回収口26aは、内側部材12aの中央部の円孔及び外側部材12bの中央部に取り付けられている円管(円筒管)26bによって形成され、バグフィルタ等の適宜の微粉回収用フィルタ90(図7参照)を介して吸引ブロワ92(図7参照)に接続されている。その結果、遠心分離室22において分級された微粉を含む空気は、吸引ブロア92により吸引される微粉回収口26aから排出される。
 内側部材12aの外周端部と周壁部材16の内周端部との間の外側部材12bの環状の領域、即ち、上述した外側部材12bの中心から所定半径の円周上には、複数、例えば6つの粉体供給口24aが均等に取り付けられる。これらの粉体供給口24aは、遠心分離室22内の旋回空気流の旋回方向に沿うように、上部円盤状部材12(外側部材12b)の外側から遠心分離室22内に向かって、上部円盤状部材12(外側部材12b)の上面に対して傾斜して取り付けられる。
 複数の粉体供給口24aからは、分配器84(図7参照)から圧縮空気に気流搬送される粉体が、遠心分離室22内の旋回空気流の旋回方向に沿って旋回空気流に乗るように、遠心分離室22の外縁部内の均等な複数の位置に配置される。即ち、気流搬送される粉体は、遠心分離室22内の旋回空気流の旋回方向と同じ方向、即ち、旋回空気流の接線方向に複数の位置から均等に供給、好ましくは噴出されるので、旋回空気流と同じように旋回することができる。このため、従来装置のように、遠心分離室内の旋回空気流の乱れの大きい、粉体供給口からの旋回空気流の旋回方向に垂直な方向からの粉体の供給(鉛直下向き供給)に比べて、複数の粉体供給口24aから粉体の供給による遠心分離室22内の旋回空気流の乱れを少なくすることができる。
 下部円盤状部材14は、上部円盤状部材12の内側部材12aと略対称な内側表面(上面)を持つ内縁部分14aと、後述する周壁部材16の下部周壁部材16bに固定支持される外縁部分14bとからなる。なお、内縁部分14aの上面は、内側部材12aの下面と対称的に、外周部近傍において下側に傾斜しているので、遠心分離室22の下面は、外縁部近傍で下側に拡がっている。
 こうして、遠心分離室22は、上下方向に略対称な円盤状空洞部となる。
 下部円盤状部材14の内縁部分14aの中央部には、上部円盤状部材12の内側部材12aの中央部に形成されているリング状のエッジ部12cに対向して、遠心分離室22に向かって突出するリング状のエッジ部14cが形成されている。すなわち、これらエッジ部12c及び14cが遠心分離室22を挟んで対向配置されている。
 なお、このリング状のエッジ12c、14cは、粉体分級装置10における分級性能を決定するものであるので、その取り付け位置、リングのサイズ及びエッジの高さは、分級の対象とする粉体や回収する微粉等に応じて設定する必要がある。しかしながら、本発明は図示例のものに限定されるわけではない。
 なお、図示例では、リング状のエッジ部12c及び14cが遠心分離室22を挟んで互いに対向配置されていたが、これらエッジ部12c及び14cのうち一方のみを形成するようにしてもよい。
 周壁部材16は、上部周壁部材16aと下部周壁部材16bとからなり、所定間隔を開けてボルト等の固定具により固定されている。また、上部周壁部材16aは、その上面が上部円盤状部材12の外側部材12bの下面にボルト等の固定具により固定されて支持されており、その下面にコーン部材18の上面をボルト等の固定具により固定して支持している。また、下部周壁部材16bは、その下面に下部円盤状部材14の外縁部分14bをボルト等の固定具により固定して支持している。なお、上部円盤状部材12、下部円盤状部材14、周壁部材16及びコーン部材18の構成及び固定支持の状態は、図示例のものに限定される訳ではない。
 所定間隔を開けて固定された上部周壁部材16aと下部周壁部材16bとの間には、粗粉回収部30の粗粉回収口30aに接続されるスリット状環状開口28が形成される。
このスリット状環状開口28は、遠心分離室22の外縁部の上下方向略中央部に位置するので、遠心分離室22内の旋回空気流において遠心力の大きい粗粉は、スムーズにスリット状環状開口28に移動し、遠心分離室22から抜き取られる。その結果、粗粉を分級場である遠心分離室22からスムーズに取りだすことができる。
 周壁部材16の上部周壁部材16a及び下部周壁部材16bには、それぞれ、スリット状環状開口28に対して上下方向の対称な位置に、それぞれ第1及び第2の2組の空気導入部32及び34が設けられている。
 第1の空気導入部32は、遠心分離室22に面した上部周壁部材16aの内周部にそれぞれ遠心分離室22内に対向するように配列される複数、例えば6つの第1のエアノズル32aからなり、第2の空気導入部34は、遠心分離室22に面した下部周壁部材16bの内周部にそれぞれ遠心分離室22内に対向するように配列される複数、例えば6つの第2のエアノズル34aからなる。
 第1のエアノズル32aは、上部円盤状部材12の内側部材12aの下面(外周の傾斜開始部分)に向けて圧縮空気を噴出し、第2のエアノズル34aは、下部円盤状部材14の内縁部分14aの上面(外周の傾斜開始部分)に向けて圧縮空気を噴出する。
 第1の空気導入部32において、第1のエアノズル32aは、ノズル部材32bに形成され、上部円盤状部材12の外側部材12b、周壁部材16の上部周壁部材16a及びその間に介挿されるノズル部材32bによって形成される、圧縮空気溜となる空間32cに連通しており、この空間32cは、外側部材12bに接続されている配管32dに連通している。更に、配管32dは、圧縮空気供給源82(図7参照)に接続されている。こうして、第1のエアノズル32aは、圧縮空気供給源82に接続される。
 一方、第2の空気導入部34において、第2のエアノズル34aは、ノズル部材34bに形成され、下部円盤状部材14の外縁部分14b、周壁部材16の下部周壁部材16b及びその間に介挿されるノズル部材34bによって形成される、圧縮空気溜となる空間34cに連通している。この空間34cは、周壁部材16の上部周壁部材16aと下部周壁部材16bとの間に介挿される連通部材34d内の貫通孔34eによって第1の空気導入部32の空間32cに連通されている。なお、連通部材34d内の貫通孔34eは、上部周壁部材16aと下部周壁部材16bとの間のスリット状環状開口28とは連通しないように構成されるのは勿論である。こうして、第2のエアノズル34aは、圧縮空気供給源82(図7参照)に接続される。
 第1の空気導入部32では、図2(A)に示すように、6つの第1のエアノズル32aは、それぞれ遠心分離室22の外周に、即ち、所定の円周上に、その接線方向に沿うように、例えばこの接線方向に対して所定の角度を有しながら、周方向に互いに均等な間隔で配置されている。
 同様に、第2の空気導入部34では、図2(B)に示すように、6つの第2のエアノズル34aは、それぞれ遠心分離室22の外周に、即ち、所定の円周上に、その接線方向に沿うように、例えば、この接線方向に対して所定の角度を有しながら、周方向に互いに均等な間隔で配置されている。
 これらの第1及び第2のエアノズル32a及び34aは、上述したように、それぞれ圧縮空気供給源82(図7参照)に接続されており、第1及び第2のエアノズル32a及び34aからそれぞれ圧縮空気を噴出することにより、遠心分離室22内の上方及び下方に互いに同一方向に旋回する対称な旋回空気流が形成される。こうして形成された遠心分離室22内の上方及び下方の対称な旋回空気流によって、遠心分離室22の上下方向中央部にも旋回空気流が形成され、その結果、遠心分離室22内全体に均一な旋回空気流が形成される。
 このように、遠心分離室22内全体に均一な旋回空気流が形成されるので、遠心分離室22の外周部の上下方向中央部のスリット状環状開口28からスムーズに遠心力の大きな粗粉を排出することができる。また、このように、粗粉を遠心分離室22からスリット状環状開口28を通してスムーズに取りだすことができるので、遠心分離室22内に形成された旋回空気流を乱すことがない。
 ところで、図2(A)に示すように、6つの第1のエアノズル32aの隣接する2つのエアノズル32aの間には、それぞれ、粉体供給口24aが、6つのエアノズル32aによって遠心分離室22の上方に形成される旋回空気流に対して、その旋回方向に沿うように、即ちその接線方向にその上方から下方に傾斜させて配列されている。このため、気流搬送されて来る粉体が、搬送空気(圧縮空気)と共に、6つの粉体供給口24aを通って斜め上方から、遠心分離室22の上方の旋回空気流に対して旋回方向と同じ方向に向かって供給されることになるので、遠心分離室22の上方の旋回空気流において、粉体の分散が促進されると共に、この上方の旋回空気流の乱れを、粉体をそのまま上方から垂直に落下させて供給する場合に比べて抑制し、少なくすることができる。
 なお、遠心分離室22内の領域、即ち円盤状空洞部は、供給された粉体を分級する分級場(ゾーン)を形成するが、粉体が供給される遠心分離室22の上方の、第1のエアノズル32aから圧縮空気が噴出される領域は、遠心分離室22内に供給された粉体を分散するので、粉体分散ゾーンをも兼ねていると言える。また、遠心分離室22の下方の、第2のエアノズル34aから圧縮空気が噴出される領域は、噴出された圧縮空気によって、遠心分離室22内からそれぞれ回収されなかった粗粉及び微粉が混じった、完全に分級されていない粉体を遠心分離室22内の上方に戻す働きがある。
 また、図示例においては、第1及び第2のエアノズル32a及び34aは、それぞれ円周上に6個均等に配置され、粉体供給口24aは、6個の第1のエアノズル32aの隣接するエアノズル32aの間にそれぞれ6個均等に配置されているが、本発明はこれに限定されず、第1及び第2のエアノズル32a及び34a、並びに粉体供給口24aの数、及び配置等は、分級の対象となる粉体等に応じて適宜変更可能である。
 微粉回収部26は、上述したように、上部円盤状部材12の開口及び円管26bによって形成される微粉回収口26aを備え、円管26bは、バグフィルタ等の適宜のフィルタ90を介して吸引ブロワ92に接続される(図7参照)。
 粗粉回収部30は、周壁部材16の上部周壁部材16aと下部周壁部材16bとの間のスリット状環状開口28と、下部周壁部材16bの外周壁と上部周壁部材16a及びコーン部材18の内周壁との間に形成され、スリット状環状開口28と連通する空間30bと、空間30bと連通するコーン部材18の内部空間18aと、コーン部材18の先端の粗粉回収口30aとを備える。
 なお、本発明においては、図3に示す粉体分級装置10Aのように、周壁部材16の上部周壁部材16aと下部周壁部材16bとの間に形成されるスリット状環状開口28aが、遠心分離室22である円盤状空洞部に向かって拡大するテーパ状を有するようにしても良い。即ち、スリット状環状開口28aの入り口28bの開き具合を、或いは遠心分離室22側の先端の開度を、大きくしても良い。
 この粉体分級装置10Aでは、大きい粗粉をよりスムーズにスリット状環状開口28aに移動させることができ、よりスムーズに遠心分離室22から抜き取ることができ、その結果、粗粉を分級場である遠心分離室22からよりスムーズに取り出すことができる。
 また、本発明においては、図1及び図2(A)に示す粉体分級装置10の粉体供給部24のように、6つの粉体供給口24aから均等に粉体を遠心分離室22内に供給しているが、本発明はこれに限定されず、図3に示す粉体分級装置10Aのように、ノズル部材32bの第1のエアノズル32aに向かって開口する粉体供給口25aを持つ粉体供給部25によって粉体を気流搬送して遠心分離室22内にエゼクタ供給しても良い。
 粉体供給部25は、下端に粉体供給口25aを持ち、粉体を貯留するホッパー25bからなる。ホッパー25b内の粉体は、下端の粉体供給口25aから第1のエアノズル32a内の圧縮空気によるエゼクタ効果によって圧縮空気と共に遠心分離室22内に供給される。なお、図示例では、粉体供給部25は、1つの粉体供給口25aを持つ1つのホッパー25bからなるが、複数、例えば、6つのホッパーからなるものであっても良い。
 さらに、図1に示す粉体分級装置10の微粉回収部26は、微粉回収口26aと同じ内径の直管からなるが、本発明はこれに限定されず、図3に示す粉体分級装置10Aのように、微粉回収口26aの内径より大きな内径まで拡径する部分と、大きな内径を持つ直管部分とからなるものであっても良い。
 本発明の第1実施形態に係る粉体分級装置は、基本的に以上のように構成される。
 次に、本発明の第1実施形態に係る粉体分級装置の動作について説明する。
 まず、吸引ブロワ92(図7参照)により微粉回収部26の微粉回収口26aを介して遠心分離室22内から所定の風量で吸気を行うと共に、圧縮空気供給源82(図7参照)から第1及び第2の空気導入部32及び34のそれぞれ6つの第1及び第2のエアノズル32a及び34aにそれぞれ圧縮(加圧)空気を供給することにより、遠心分離室22の上方及び下方に対称な旋回空気流を形成し、遠心分離室22内全体に旋回空気流を形成する。
 この状態で、分配器84(図7参照)から気流搬送される粒度分布を有する粉体を、所定の流量で粉体供給部24の6つの粉体供給口24aから供給すると、粉体は、遠心分離室22の上方に旋回空気流の旋回方向と同じ方向に斜め上から搬送空気と共に供給され、旋回空気流に晒されて旋回運動を行い、遠心分離室22内において旋回空気流に乗って旋回する。
 第1及び第2のエアノズル32a及び34aからの圧縮空気の噴出によって遠心分離室22内には上下対称な旋回空気流が形成されているため、粉体は、遠心分離室22内において旋回しながら、遠心分離作用を受ける。
 その結果、遠心分離室22の旋回の中央部に形成されているリング状のエッジ部12c及び14cにより、分級点以下のサイズを有する微粉が空気流と共に微粉回収口26aから吸引されて排出されて、バグフィルタ等の適宜の微粉回収用フィルタ90(図7参照)によって回収される。このため、粒度分布を有する粉体から微粉を分級して回収することができる。このようにして回収された微粉中には、分級点を越えるような粗粉が含まれることは極めて少ない。
 一方、分級点を越える粒径の大きな粗粉は、大きな遠心力を受けるために、スムーズに旋回空気流の半径方向外側に移動し、スムーズに遠心分離室22の上下方向の中央部に形成されている粗粉回収部30のスリット状環状開口28に入り、空間30b及びコーン部材18の内部空間18aを通って粗粉回収口30aから排出されて回収される。
 一方、微粉回収口26a及びスリット状環状開口28から排出されなかった粉体の残部は、遠心分離室22の更に下方に向かうが、分級点を越える粗粉だけでなく、分級点以下の微粉も含まれていることが多いので、第2のエアノズル34aからの圧縮空気の噴出により形成されている旋回空気流に乗って遠心分離室22内上方に向かい、遠心分離作用を受け、微粉と粗粉とが効率的に遠心分離され、上述したように、微粉は微粉回収口26aから排出されて回収され、粗粉は、スリット状環状開口28に入り、粗粉回収口30aから排出されて回収される。
 ここで、分級点を小さくする、すなわち、より微細な粒子を分級するためには、遠心分離室内に形成される旋回空気流(渦)の速度を大きくする必要がある。特許文献1に記載のガイドベーンを利用した従来の粉体分級装置では、遠心分離室の上側に設けられている粉体分散用のエアノズルから大流量の空気を強制的に遠心分離室内に流入させると、より微細な粒子を分級することはできるが、遠心分離室内に形成される旋回空気流(渦)の速度が、エアノズルによる上方の旋回空気流とガイドベーンによる旋回空気流とで大きく異なってしまうため、すなわち、遠心分離室内に速度差のある不均一な旋回空気流が形成されるために、図8(C)及び(D)に示すように、上部円盤状部材の下面及び下部円盤状部材の上面に粉体が付着したり、速度差が大きくなるに従って、付着量が増加していた。また、遠心分離室内に、不均一な旋回空気流が形成されるために、分級精度が悪化し、その結果、例えば粒径が1μmを下回るサブミクロン粒子を精度よく分級することは困難であった。
 また、従来の特許文献1及び2に記載の粉体分級装置では、遠心分離室内の旋回空気流に対して、粉体を1個の粉体供給口を通して鉛直上方から供給しているため、エアノズルによる上方の旋回空気流で分散させても、遠心分離室の分級のための旋回空気流を乱してしまい、その結果、遠心分離室内に速度差のある不均一な旋回空気流が形成され、上部円盤状部材の下面への粉体の付着や分級精度の悪化を招いていた。
 更に、従来の特許文献1及び2に記載の粉体分級装置では、遠心分離室内外周下方に粗粉を落下させて回収する方式であり、分級効率を上げるために、遠心分離室内外周下方の粉体再分級ゾーンに落下した微粉を含む粉体をエアノズルによって遠心分離室に戻しているので、このエアノズルからのブローアップによって粗粉(粗大粒子)が下部円盤状部材の上面付近に停滞し、粉体の付着を生じるばかりか、付着にも偏りを生じていた。
 これに対して、本第1実施形態の粉体分級装置10では、ガイドベーンを使用せず、ほぼ円盤形状の遠心分離室22の周方向外周部が環状の周壁部材16の上下にそれぞれ複数の第1及び第2のエアノズル32a及び34aを備える第1及び第2の空気導入部32及び34を設けて、第1及び第2のエアノズル32a及び34aから大流量の圧縮空気を強制的に流入させて、遠心分離室22内の上下に大流量の対称な旋回空気流を形成して、遠心分離室22内に均一な旋回空気流を形成すると共に、環状の周壁部材16の上下方向の中央部にスリット状環状開口28を設けて、粗粉を遠心分離室22の側面から取り出すようにして、分級場である遠心分離室22からスムーズに出すようにし、更に、均等配置された複数の粉体供給口から気流搬送される粉体を、遠心分離室22内の旋回空気流に対して斜め上から旋回空気流の旋回方向に沿うように供給して、遠心分離室22内の旋回空気流の乱れを抑えて小さくしている。
 このため、特に遠心分離室22内の旋回空気流を均一、かつ大流量とすることにより、図8(A)及び(B)に示すように、上部円盤状部材の下面及び下部円盤状部材の上面への粉体の付着や分級精度の悪化を防止し、サブミクロン粒子を高精度に且つ安定して分級することが可能となる。
 サブミクロン粒子のように微細な粒子は互いに凝集しやすい性質を有するが、本実施形態の粉体分級装置によれば、効率よく分級することができる。また、粉体としては、シリカ、トナー等の低比重のものから、金属、アルミナ等の高比重のものまで各種の粉体を分級対象として用いることができる。
 また、ガイドベーン等の可動部材を使用しないので、小型の粉体分級装置を実現することができる。
 次に、本発明の他の実施形態に係る粉体分級装置の構成例について説明する。
 図4は、本発明の第2の実施形態に係る粉体分級装置の模式断面図である。
 なお、図4に示す実施形態の粉体分級装置50は、図1に示す粉体分級装置10と、下部円盤状部材14の下面に環状の回収容器52を有している点を除いて、同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明は省略し、主として相違点について説明する。
 同図に示す粉体分級装置50は、図1に示す粉体分級装置10に対して、更に、下部円盤状部材14の下面に、微粉の分級点(粒度)よりも大きな粗粉の中で、微粉の分級点、即ち第1の分級点(粒度)より大きい第2の分級点(粒度)以下の中粉を回収する中粉回収部となる環状の回収容器52を有するものである。
 環状の回収容器52は、下部円盤状部材14の内縁部分14aと外縁部分14bに跨る環状領域の下面(下側)に設けられている。内縁部分14aには、遠心分離室22内と回収容器52内とを連通する環状の傾斜開口54が設けられている。傾斜開口54は、上部円盤状部材12の内側部分12aの外周への傾斜開始点に対向する下部円盤状部材14の遠心分離室22側の位置から外周方向(半径方向)に傾斜して回収容器52内に至る溝状排出路であり、外縁部分14bの内側に連通する。
 遠心分離室22内に投入された粉体は、遠心分離室22内の旋回空気流によって、粒度に応じて旋回空気流の中央部から外周部に向かって遠心分離される。このため、粒度の小さい微粉は旋回空気流の中央部に、粒度の大きな粗大粒子等の粗粉は旋回空気流の外周部に、中間の粒度の粗粉は、旋回空気流の中央部と外周部との間の領域に分離される。
 このため、所定粒度(第1の粒度)以下の微粉は、旋回空気流の中央部から吸引空気と共に微粉回収口26aを通って排出され、粗大粒子等の第2の粒度よりも大きな粗粉は遠心力により旋回空気流の外周部からスリット状環状開口28を通って容易に排出される。しかし、第1の粒度より粒度が大きく、第2の粒度よりも大きな粗粉より粒度が小さい中間の粒度の粗粉、即ち中粉は、最終的には、遠心力により旋回空気流の外周部からスリット状環状開口28を通って排出されることになるが、下部円盤状部材14の上面に落下したり、第2のエアノズル34aによる噴出空気によって再度浮上したりすることを繰り返して、微粉や第2の粒度よりも大きな粗粉より長い時間遠心分離室22内に留まり、粉体の分級効率の向上を阻む恐れがある。
 このため、下部円盤状部材14の下面に、中粉が留まり易い環状の領域に傾斜開口54を持つ回収容器52を設け、遠心分離室22内に留まり易い中粉を下部円盤状部材14の上面に落下した時に積極的に傾斜開口54から回収容器52に回収して、新しく供給された粉体の分級を可能にすることにより、粉体の分級効率の向上を上げることができる。
 なお、傾斜開口54を持つ回収容器52は、本発明の第2の回収部を構成する。
 その結果、本発明の第2の実施形態の粉体分級装置50では、粉体を遠心分離室22の壁面、特に上壁面や下壁面に付着させることなく、微粉を長時間に亘ってより高精度に分級できる。
 なお、本実施形態の粉体分級装置50においても、スリット状環状開口28の代わりに、図3に示す粉体分級装置10Aのように、遠心分離室22に向かって拡大するテーパ状を有するスリット状環状開口28aを設けても良い。
 次に、本発明の更なる他の実施形態に係る粉体分級装置の構成例について説明する。
 図5は、本発明の第3の実施形態に係る粉体分級装置の模式断面図である。
 なお、図5に示す実施形態の粉体分級装置60は、図1に示す粉体分級装置10と、上部円盤状部材12の中央部の微粉回収部26の外側に中粉回収部62を有している点を除いて、同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明は省略し、主として相違点について説明する。
 同図に示す粉体分級装置60は、図1に示す粉体分級装置10に対して、一体型の上部円盤状部材12と、上部円盤状部材12の中央部に、遠心分離室22に向かって突出するリング状エッジ12cとなる先端部を持ち、微粉回収口26aを構成する内管(内側円筒管)26dからなる微粉回収部26とを有するものであり、更に、この微粉回収部26の微粉回収口26aの外側に、上述した第2の分級点(粒度)以下の中粉を回収する中粉回収口62aを構成する上部円盤状部材12の開口64及び外管(外側円筒管)62bからなる中粉回収部62を有するものである。
 中粉回収部62の外管62bは、上部円盤状部材12の開口64から同じ内径で延長するように接続されており、微粉回収部26の内管26dと2重管を構成する。中粉回収部62の中粉回収口62aは、上部円盤状部材12の中央開口64及び外管62bの内側と微粉回収部26の微粉回収口26aとなる内管26dの外側との間に形成される。中粉回収口62aの先端は、上部円盤状部材12の中央開口64によって形成され、微粉回収部26の微粉回収口26aとなる内管26dの先端の開口より上側に位置する。即ち、微粉回収口26aとなる内管26dの先端は、中粉回収口62aの先端より、遠心分離室22に向かって突出し、リング状エッジ12cを形成する。
 中粉回収口62aは、微粉回収口26aの場合のように、図示しないバグフィルタ等の適宜の中粉回収用フィルタを介して図示しない吸引ブロワに接続される。
 こうして、上述したように、旋回空気流の中央部と外周部との間の領域の旋回空気流に留まり易い中粉を中粉回収口62aから吸引空気と共に回収することにより、新しく供給された粉体の分級を可能にし、粉体の分級効率の向上を上げることができる。
 その結果、本発明の第3の実施形態の粉体分級装置60では、上述した第2の実施形態の粉体分級装置50と同様に、粉体を遠心分離室22の壁面、特に上壁面や下壁面に付着させることなく、微粉を長時間に亘って高精度に分級できる。
 なお、本実施形態の粉体分級装置60においても、スリット状環状開口28の代わりに、図3に示す粉体分級装置10Aのように、遠心分離室22に向かって拡大するテーパ状を有するスリット状環状開口28aを設けても良いし、図4に示す粉体分級装置50のように、更に中粉回収用の環状の回収容器52を設けても良いし、両方設けても良い。
 次に、本発明の更なる他の実施形態に係る粉体分級装置の構成例について説明する。
 図6は、本発明の第4の実施形態に係る粉体分級装置の模式断面図である。
 なお、図6に示す実施形態の粉体分級装置70は、図1に示す粉体分級装置10と、下部円盤状部材14の中央部にも、上部円盤状部材12の中央部の微粉回収部26に対応する第2の微粉回収部72を有している点を除いて、同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明は省略し、主として相違点について説明する。
 同図に示す粉体分級装置70は、図1に示す粉体分級装置10に対して、下部円盤状部材14の内縁部分14aの中央部にも、上部円盤状部材12の中央部の微粉回収部26の微粉回収口26aと対称な第2の微粉回収口72aを持つ第2の微粉回収部72を有するものである。勿論、微粉回収口72aの開口部の先端は、遠心分離室22に向かって突出しており、リング状エッジ14cを形成している。
 遠心分離室22の下側の第2の微粉回収部72の微粉回収口72aは、遠心分離室22の上側の微粉回収部26の微粉回収口26aと対称であるが、第2の微粉回収口72aを構成する下部円盤状部材14の内縁部分14aの中央部の開口は、延長円管72bに接続される。延長円管72bは、始め鉛直に下降し、その後水平に湾曲してコーン状部材18の外部に配置され、例えば、フィルタ90を介して吸引ブロア92に接続される。
 こうして、遠心分離室22に対して、微粉回収口26aと、第2の微粉回収口72aとを対称に配置することにより、遠心分離室22内における上下の旋回空気流の対称性を高めることができ、遠心分離室22内全体の旋回空気流をより均一なものとすることができる。
 その結果、本発明の第4の実施形態の粉体分級装置70では、粉体を遠心分離室22の壁面、特に上壁面や下壁面に付着させることなく、微粉を長時間に亘ってより高精度に分級できる。
 なお、本実施形態の粉体分級装置70においても、スリット状環状開口28の代わりに、図3に示す粉体分級装置10Aのように、遠心分離室22に向かって拡大するテーパ状を有するスリット状環状開口28aを設けても良いし、図4及び図5に示す粉体分級装置50及び60のように、更に中粉回収用の環状の回収容器52及び中粉回収部62の少なくとも1つを設けても良いし、全て設けても良い。
 上述した本発明の種々の実施形態の粉体分級装置は、図7に示す分級システムを構成することができる。
 図7は、本発明に係る粉体分級装置を用いた分級システムの全体の構成を示す模式図である。
 同図に示す分級システム80は、図1に示す第1実施形態の粉体分級装置10と、粉体分級装置10の空気導入部32及び34の複数のエアノズル32a及び34aに圧縮空気を供給する圧縮空気供給源82と、分級対象となる粉体を粉体分級装置10の粉体供給部24の粉体供給口24aに気流搬送するための分配器84と、分配器84に粉体を供給するスクリューフィーダ86と、分配器84において、スクリューフィーダ86から供給された粉体を気流搬送するための圧縮空気を供給する圧縮空気供給源88と、粉体分級装置10の微粉回収部26の微粉回収口26aから排出される微粉を回収するバグフィルタ等の微粉回収用フィルタ90と、微粉回収口26aから微粉が混合された空気を吸引する吸引ブロア92と、フィルタ90と吸引ブロア92との間に設けられ、吸引ブロア92による空気の流量を計測するオリフィス94と、オリフィス94によって計測された空気流量を表示する表示部96と、各部を接続する管路を構成する配管とを有する。
 分級システム80においては、まず、圧縮空気供給源82から配管を介して粉体分級装置10の空気導入部32及び34の複数のエアノズル32a及び34aに圧縮空気を供給し、粉体分級装置10の遠心分離室22内に圧縮空気を噴出させて、それぞれ上下に対称な旋回空気流を形成して、遠心分離室22内全体に均一な旋回空気流を形成する。
 次いで、圧縮空気供給源88から配管を介して分配器84のエゼクタ84aに圧縮空気を供給すると共に、スクリューフィーダ86から分配器84に粉体を供給してエゼクタ84aから噴出される圧縮空気中に乗せて配管中を気流搬送させ、気流搬送される粉体を粉体分級装置10の粉体供給部24の複数の粉体供給口24aに供給して、遠心分離室22内の旋回空気流にその旋回方向に沿って斜め上方から噴出させる。
 遠心分離室22内に空気と共に噴出された粉体は、遠心分離室22内の旋回空気流によって遠心分離され、微粉は、粉体分級装置10の微粉回収部26の微粉回収口26aから配管を介して空気と共に、吸引ブロア92によって吸引排気され、フィルタ90によって回収される。
 一方、粗粉は、粉体分級装置10の粗粉回収部30のスリット状環状開口28に排出され、空間30b、及びコーン部材18の内部空間18aを通り、粗粉回収口30aから回収される。
 以下に、本発明の粉体分級装置を実施例に基づいて具体的に説明する。
 実施例として、図1に示す粉体分級装置10を用いた図7に示す分級システム80を用いて、中位径1μm以下の金属粉を1kg/h供給して分級試験を行った。
 粉体分級装置10の遠心分離室22の円盤状空洞部のサイズは、直径174mmφであった。
 粉体は、6つの粉体供給口24aから遠心分離室22内に均等に、その旋回空気流に対して斜め上から供給した。粉体供給量は、全体で1kg/hとした。
 吸引ブロア92による吸引空気量は、2.5m/minとし、上下のエアノズル32a及び34aの噴出圧は、共に0.58MPaとし、噴出量は、共に430L/minとした。
 こうして、金属粉の分級試験を1時間行った後に、上部円盤状部材12(内側部材)の下面及び下部円盤状部材14の上面を検査した。
 その結果、上部円盤状部材12の下面及び下部円盤状部材14の上面には、図8(A)及び(B)に示すように、粉体の付着は全く見られなかった。
 一方、比較例として、図7に示す分級システム80において、図1に示す粉体分級装置10の代わりに、特許文献1の図1に示す粉体分級装置を用いて、中位径1μm以下の金属粉を1kg/h供給して分級試験を行った。
 粉体分級装置の遠心分離室の円盤状空洞部のサイズは、直径174mmφであった。
 粉体は、1つの粉体供給口から遠心分離室内の旋回空気流に対して鉛直上方からそのまま供給した。粉体供給量は、1kg/hとした。
 吸引ブロアによる吸引空気量は、2.0m/L/minとし、上側の粉体分散用のエアノズルの噴出圧及び噴出量は、0.65MPa及び510L/minとし、下側の再分級用エアノズルの噴出圧及び噴出量は、0.5MPa及び180L/minとし、ガイドベーンからの空気量は、100L/minとした。
 こうして、金属粉の分級試験を1時間行った後に、上部円盤状部材の下面及び下部円盤状部材の上面を検査した。
 その結果、上部円盤状部材には、図8(C)に示すように、かなりの量の粉体の付着が見られた。また、下部円盤状部材の上面にも、図8(D)に示すように、うっすらと粉体の付着が見られた。
 以上の結果から、本発明の効果は明らかである。
 上記実施形態並びに実施例は、いずれも本発明の一例を示したものであり、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々の変更や改良を行ってもよいことはいうまでもない。
  10、10A、50、60、70 粉体分級装置
  12 上部円盤状部材
  12c、14c リング状のエッジ
  14 下部円盤状部材
  16 周壁部材
  18 コーン部材
  20 ケーシング
  22 遠心分離室
  24、25 粉体供給部
  24a、25a 粉体供給口
  26、72 微粉回収部
  26a、72a 微粉回収口
  28、28a スリット状環状開口
  30 粗粉回収部
  30a 粗粉回収口
  32、34 空気導入部
  32a、34a エアノズル
  52 環状の回収容器
  62 中粉回収部
  62a 中粉回収口

Claims (11)

  1.  粒度分布を有する粉体を分級して所定の粒度以下の微粉を回収する粉体分級装置であって、
     所定間隔をおいて配置される2つの円盤状部材及びこの2つの円盤状部材の外周側に取り付けられる周壁部材を備え、内部の旋回空気流によって前記粉体を分級する円盤状空洞部が前記2つの円盤状部材の間及び前記周壁部材の内側に形成されるケーシングと、
     前記円盤状空洞部の外縁部の内側に連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方の側に設けられ、空気流によって気流搬送される前記粉体を前記円盤状空洞部内に供給する1つ又は複数の粉体供給口と、
     前記円盤状空洞部の半径方向の中央部と連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方に形成され、前記円盤状空洞部から排出される前記微粉を含む空気を排出する排出部と、
     前記円盤状空洞部の前記外縁部に連通するように前記ケーシングの前記周壁部材の厚さ方向の中央部分に形成され、前記円盤状空洞部から排出される、前記所定の粒度よりも大きな粗粉を回収するスリット状開口を備える回収部と、
     前記ケーシングの前記周壁部材の前記スリット状開口の、前記厚さ方向の両側にそれぞれ1組ずつ設けられ、それぞれ、前記円盤状空洞部の外縁部にその接線方向に沿うように前記ケーシングの前記周壁部材に配置され、前記円盤状空洞部の内部に前記旋回空気流を形成するために、前記円盤状空洞部の内部に空気を導入する複数の空気導入デバイスを備える2組の空気導入部とを有することを特徴とする粉体分級装置。
  2.  前記2つの円盤状部材は、上部円盤状部材及び下部円盤状部材からなり、
     さらに、前記円盤状空洞部に連通するように前記ケーシングの前記2つの円盤状部材の少なくとも一方に形成され、前記円盤状空洞部から排出される前記粗粉の一部を回収する第2の回収部を有する請求項1に記載の粉体分級装置。
  3.  前記排出部は、前記ケーシングの前記上部円盤状部材に直立し、先端が前記円盤状空洞部内に突出する内側円筒管で構成され、
     前記第2の回収部は、前記ケーシングの前記上部円盤状部材に直立し、前記内側円筒管より直径の大きい同軸の外側円筒管で構成され、
     前記外側円筒管の先端は、前記内側円筒管の先端より上側に後退して前記円盤状空洞部に連通する請求項2に記載の粉体分級装置。
  4.  前記第2の回収部は、前記円盤状空洞部の前記外縁部の内側に連通するように前記ケーシングの前記下部円盤状部材に、その下側に形成される溝状排出路を備える請求項2に記載の粉体分級装置。
  5.  前記回収部の前記スリット状開口は、前記円盤状空洞部に向かって拡大するテーパ状を有する請求項1~4のいずれか1項に記載の粉体分級装置。
  6.  前記排出部は、前記ケーシングの前記2つの円盤状部材にそれぞれ設けられる請求項1~5のいずれか1項に記載の粉体分級装置。
  7.  さらに、前記円盤状空洞部内の上面及び下面をそれぞれ構成する前記ケーシングの前記2つの円盤状部材の対向する内面の少なくとも一方の中央部に設けられているリング状のエッジを有する請求項1~6のいずれか1項に記載の粉体分級装置。
  8.  前記複数の粉体供給口は、前記円盤状空洞部の外縁部の内側に向かって前記旋回空気流の旋回方向に傾斜するように前記ケーシングの前記2つの円盤状部材の一方の上部円盤状部材に均等に形成され、
     前記粉体は、エゼクタによって形成された前記空気流によって気流搬送され、前記複数の粉体供給口から、前記円盤状空洞部内に、前記旋回空気流の旋回方向に前記空気流と共に噴霧して供給される請求項1~7のいずれか1項に記載の粉体分級装置。
  9.  前記空気流によって気流搬送される前記粉体は、予め、分配器において前記粉体を圧縮空気によって前記複数の粉体供給口のそれぞれに向かう複数の管路に分配されたものである請求項1~8のいずれか1項に記載の粉体分級装置。
  10.  前記粉体供給口は、前記2組の空気導入部の一方の1つの空気導入デバイス内に開口するものであり、
     前記粉体は、前記空気導入デバイスによって導入される空気によるエゼクタ効果によって気流搬送されて、前記円盤状空洞部に供給されるものである請求項1~8のいずれか1項に記載の粉体分級装置。
  11.  前記空気導入デバイスは、前記円盤状空洞部の内部に圧縮空気を吹き込むエアノズルである請求項1~10のいずれか1項に記載の粉体分級装置。
PCT/JP2014/064972 2013-07-05 2014-06-05 粉体分級装置 WO2015001905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167000148A KR102201557B1 (ko) 2013-07-05 2014-06-05 분체 분급장치
US14/903,016 US9597712B2 (en) 2013-07-05 2014-06-05 Powder classifying apparatus
CN201480038499.3A CN105358265B (zh) 2013-07-05 2014-06-05 粉体分级装置
JP2015525108A JP6224101B2 (ja) 2013-07-05 2014-06-05 粉体分級装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-141819 2013-07-05
JP2013141819 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001905A1 true WO2015001905A1 (ja) 2015-01-08

Family

ID=52143491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064972 WO2015001905A1 (ja) 2013-07-05 2014-06-05 粉体分級装置

Country Status (6)

Country Link
US (1) US9597712B2 (ja)
JP (1) JP6224101B2 (ja)
KR (1) KR102201557B1 (ja)
CN (1) CN105358265B (ja)
TW (1) TWI587934B (ja)
WO (1) WO2015001905A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065315A1 (ja) * 2017-09-27 2019-04-04 株式会社日清製粉グループ本社 粉体分級装置
WO2023063173A1 (ja) * 2021-10-14 2023-04-20 株式会社日清製粉グループ本社 気流式分級機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114234A1 (ja) * 2015-01-16 2016-07-21 株式会社日清製粉グループ本社 粉体分級装置
CN110331448B (zh) * 2019-07-18 2021-01-12 虞群 一种纺织棉花粗加工设备
DE102022119138B3 (de) 2022-07-29 2023-10-05 Hosokawa Alpine Aktiengesellschaft Verfahren zur Vorhersage einer real erzielbaren interessierenden Partikelgröße einer Kornverteilungskurve eines Stoffes und das Verfahren ausführende Klassiervorrichtung
KR20240122211A (ko) 2023-02-03 2024-08-12 (주)엘엑스하우시스 마이크로 파우더의 입도 분포 조절 방법 및 이를 이용한 마이크로 파우더의 분급 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000862A (ja) * 2005-05-26 2007-01-11 Nippon Pneumatic Mfg Co Ltd 気流分級機および分級プラント
JP2009034560A (ja) * 2007-07-31 2009-02-19 Nisshin Seifun Group Inc 粉体分級装置
JP2011045819A (ja) * 2009-08-26 2011-03-10 Nisshin Seifun Group Inc 粉体分級装置
WO2012066885A1 (ja) * 2010-11-16 2012-05-24 株式会社日清製粉グループ本社 粉体分級装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL74216C (ja) * 1948-04-24
US3048271A (en) * 1960-02-24 1962-08-07 Sharples Corp Particle classification
US3615009A (en) * 1969-03-03 1971-10-26 Georgia Marble Co Classifying system
US4793917A (en) * 1987-04-15 1988-12-27 Institut Khimii Tverdogo Tela I Pererabotki Mineralnogo Syrya Sibirskogo Otdelenia Akademii Nauk Ussr Centrifugal classifier for superfine powders
JPH105696A (ja) * 1996-06-20 1998-01-13 Nisshin Flour Milling Co Ltd 粉体分級機
US6260708B1 (en) * 1996-10-18 2001-07-17 Hosokawa Alpine Aktiengesellschaft Method for air classification of toner
US6276534B1 (en) * 1998-04-03 2001-08-21 Hosokawa Micron Powder Systems Classifier apparatus for particulate matter/powder classifier
CZ295879B6 (cs) * 1998-05-11 2005-11-16 Psp Engineering A.S. Způsob odstředivého třídění částic prachu a zařízení k provedení tohoto způsobu
KR101961966B1 (ko) * 2011-03-16 2019-03-25 가부시키가이샤 닛신 세이훈 구루프혼샤 분체의 분급 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000862A (ja) * 2005-05-26 2007-01-11 Nippon Pneumatic Mfg Co Ltd 気流分級機および分級プラント
JP2009034560A (ja) * 2007-07-31 2009-02-19 Nisshin Seifun Group Inc 粉体分級装置
JP2011045819A (ja) * 2009-08-26 2011-03-10 Nisshin Seifun Group Inc 粉体分級装置
WO2012066885A1 (ja) * 2010-11-16 2012-05-24 株式会社日清製粉グループ本社 粉体分級装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065315A1 (ja) * 2017-09-27 2019-04-04 株式会社日清製粉グループ本社 粉体分級装置
JPWO2019065315A1 (ja) * 2017-09-27 2020-10-15 株式会社日清製粉グループ本社 粉体分級装置
US11154907B2 (en) 2017-09-27 2021-10-26 Nisshin Seifun Group Inc. Powder classifying apparatus
WO2023063173A1 (ja) * 2021-10-14 2023-04-20 株式会社日清製粉グループ本社 気流式分級機

Also Published As

Publication number Publication date
US9597712B2 (en) 2017-03-21
TWI587934B (zh) 2017-06-21
CN105358265B (zh) 2017-06-09
JPWO2015001905A1 (ja) 2017-02-23
US20160151806A1 (en) 2016-06-02
KR102201557B1 (ko) 2021-01-11
CN105358265A (zh) 2016-02-24
JP6224101B2 (ja) 2017-11-01
TW201524621A (zh) 2015-07-01
KR20160029792A (ko) 2016-03-15

Similar Documents

Publication Publication Date Title
JP6224101B2 (ja) 粉体分級装置
TWI490050B (zh) 粉體分級裝置
US9415421B2 (en) Powder classifying device
US5201422A (en) Classifier for powdery material
US6269955B1 (en) Air current classifying separator
JP2010149090A (ja) 気流分級機
JP2011045819A (ja) 粉体分級装置
JP6533522B2 (ja) サイクロン型粉体分級装置
US12103047B2 (en) Cyclone with rotating rod basket
US20180009004A1 (en) Powder classifying apparatus
JP6842087B2 (ja) 廃棄物選別機
JP2008272627A (ja) 粉体分級装置
WO2023063173A1 (ja) 気流式分級機
JP3091289B2 (ja) 衝突式気流粉砕装置
CN115254387A (zh) 超细金属粉末及其颗粒粒径分选方法与使用的分选装置
JP2819459B2 (ja) 空気分級機
JPH0585449U (ja) 分級機
JP2733488B2 (ja) ジェット気流式の粉体粉砕機
JPH07171504A (ja) 気流分級機
JP2001104887A (ja) 分級機
JPH07132241A (ja) 微粉砕装置
JPH0975852A (ja) 気流分級機
JPH05131157A (ja) 衝突式気流粉砕装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038499.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167000148

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14903016

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14819721

Country of ref document: EP

Kind code of ref document: A1