WO2023062743A1 - 積層鉄心の製造方法及び積層鉄心 - Google Patents

積層鉄心の製造方法及び積層鉄心 Download PDF

Info

Publication number
WO2023062743A1
WO2023062743A1 PCT/JP2021/037867 JP2021037867W WO2023062743A1 WO 2023062743 A1 WO2023062743 A1 WO 2023062743A1 JP 2021037867 W JP2021037867 W JP 2021037867W WO 2023062743 A1 WO2023062743 A1 WO 2023062743A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
thin plates
adhesive thin
laminated
core
Prior art date
Application number
PCT/JP2021/037867
Other languages
English (en)
French (fr)
Inventor
裕介 蓮尾
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to PCT/JP2021/037867 priority Critical patent/WO2023062743A1/ja
Publication of WO2023062743A1 publication Critical patent/WO2023062743A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a laminated core used as a rotor or stator of a rotating electric machine.
  • laminated iron cores are generally used as cores in which coils and permanent magnets are arranged.
  • Laminated iron cores are made by, for example, punching adhesive steel plates coated on both sides with an adhesive into a predetermined shape using a pressing device, stacking the adhesive steel plates in the predetermined shape, and applying heat and pressure in the stacking direction to crimp them together.
  • Manufactured by An example of such a conventional method for manufacturing a laminated core is disclosed in Japanese Patent No. 3276505.
  • a laminated core is also manufactured by laminating a plurality of bonded steel plates to form a block core, and laminating a plurality of these block cores. Since there is almost no difference in appearance, it is difficult to distinguish the boundary between block core units in a state in which a large number of bonded steel plates are stacked before forming a block core.
  • the block core is selected from among a large number of bonded steel plates piled up in this tumbling process. It took a lot of time and effort to find the position corresponding to the boundary between the cores, and it was very difficult to roll up each block core, resulting in a problem of lowering production efficiency.
  • the present invention has been made to solve the above-mentioned problems, and even if bonded thin plates continuously produced by a press machine are piled up, they can be handled in units of laminated cores or in units of block cores. , a laminated core manufacturing method and a laminated core obtained by the manufacturing method.
  • a method for manufacturing a laminated core according to the present invention comprises laminating a plurality of adhesive thin plates made of a magnetic metal material having, on at least one surface, an adhesive insulating coating capable of exhibiting an adhesive function by at least one of heating and pressing.
  • a plurality of adhesive thin plates forming a block iron core are connected to each other by caulking in which the caulking projections are fitted into the caulking holes
  • a block iron core formed by connecting a plurality of adhesive thin plates to each other by caulking is stacked singly or in a plurality of sets and bonded in a bonding process, thereby continuously producing and stacking.
  • the bonded thin plates that make up the block core are grouped into one, and can be easily handled in units of laminated cores or in units of block cores, preventing defects and repairs caused by humans and machines. Improve production efficiency.
  • FIG. 1 is a plan view of a laminated core according to a first embodiment of the present invention
  • FIG. 1 is a side view of a laminated core according to a first embodiment of the present invention
  • FIG. FIG. 2 is an enlarged sectional view taken along line AA of FIG. 1
  • FIG. 5 is a plan view of a laminated core according to a second embodiment of the present invention
  • 5 is an enlarged cross-sectional view taken along line BB of FIG. 4
  • FIG. FIG. 11 is a side view of a laminated core according to a third embodiment of the present invention
  • FIG. 11 is a plan view of a laminated core according to a fourth embodiment of the present invention
  • FIG. 11 is a plan view of the lowermost bonding thin plate in the block core according to the fourth embodiment of the present invention.
  • 8 is an enlarged cross-sectional view taken along line CC of FIG. 7;
  • FIG. FIG. 4 is a plan view of a thin plate that can be inserted between block cores during the manufacturing process;
  • FIG. 1 An example of a laminated iron core forming a stator of an electric motor as a rotating electrical machine will be described.
  • the laminated core 10 has a plurality of adhesive thin plates 13 made of a magnetic metal material having an adhesive insulating coating capable of exerting an adhesive function on at least one of the substantially annular front surface and back surface.
  • This configuration is formed by stacking and integrating one or a plurality of sets of block cores 12 that are stacked and connected.
  • a rotating electric machine using the laminated core 10 includes a stator having coils wound around the laminated core 10, a rotor rotatably arranged inside the stator, It is a known configuration including a hollow box-shaped case covering the stator and rotor, and detailed description thereof will be omitted.
  • the laminated core 10 is formed by laminating and integrating one or more sets of block cores 12, preferably three or more block cores 12.
  • Each block core 12 is formed by laminating a plurality of adhesive thin plates 13 made of a magnetic metal material.
  • the adhesive thin plates 13 forming the block core 12 are punched from a thin plate material made of electromagnetic steel, amorphous alloy, or the like.
  • the laminated adhesive thin plates 13 are connected to each other by bonding with an adhesive forming an adhesive insulating coating and by caulking.
  • the thin adhesive plate 13 has a crimped portion 14 consisting of a crimped projection 14a having a V-shaped cross section and a recessed portion 14b which is a space behind the crimped projection 14a.
  • the crimping projection 14a may have a trapezoidal cross section, a rectangular cross section, or the like.
  • the crimping projections 14a are formed, for example, at the peripheral edge of the adhesive thin plate 13 at intervals of 90 degrees in the circumferential direction.
  • the block core 12 has, at its lowest stage, an adhesion thin plate 15 having a caulking hole 16 formed by punching a thin plate material.
  • the crimped holes 16 are formed in the peripheral edge of the adhesive thin plate 15 at intervals of 90 degrees in the circumferential direction, similarly to the crimped portions 14 of the adhesive thin plate 13 .
  • the crimping projections 14a of each bonding thin plate 13 are fitted into the recesses 14b of the adjacent bonding thin plates 13, and the crimping projections 14a of the bonding thin plates 13 are fitted into the crimping holes 16 of the bonding thin plates 15 at the bottom. It is formed by combining Since the block core 12 is formed by fitting the caulking projections 14a into the recesses 14b of the adjacent adhesive thin plates 13 in this way, the plurality of adhesive thin plates 13 and adhesive thin plates 15 are integrally formed, and each 10 units of the laminated core is formed. , or the handling of each block core 12 units can be improved.
  • the depth of the crimping protrusion 14a in the adhesive thin plate 13 is set to be equal to or less than the depth of the crimping hole 16 so as not to protrude from the lower surface 15a side of the adhesive thin plate 15, which is the end face side in the stacking direction of the block core 12. but not limited to.
  • two or more adhesion thin plates 15 can be laminated on the end surface side of the block core 12 in the lamination direction.
  • the plate thickness deviation of the adhesive thin plates 13 and 15 is offset to suppress the variation in the thickness of each part of the laminated core 10 in the lamination direction.
  • a transproduct with the objective of is performed. This rolling is performed each time the block cores 12 formed by laminating a plurality of adhesive thin plates 13 and adhesive thin plates 15 are stacked, and the block cores 12 to be stacked are rotated in a predetermined circumferential direction of the target block cores 12 to be stacked. By rotating the block cores 12, the angles between the block cores 12 are shifted.
  • the laminated core 10 When the laminated core 10 is a stator, it has magnetic pole portions inside it, but since it is a well-known configuration, detailed description thereof will be omitted.
  • a method for manufacturing a laminated core will be described.
  • a plurality of adhesive thin plates 13 and adhesive thin plates 15 are laminated in advance by punching out a desired shape from a thin plate material having an adhesive insulating coating with a press machine by a known manufacturing method.
  • the adhesive insulating film is formed by, for example, applying a coating liquid containing a thermosetting resin, a thermoplastic resin, or both resins to a thin plate material by a known coating method such as a roll coater, and then baking and curing the coating. can do.
  • a part of the material is processed and two or more metal thin plates are fitted together by a known caulking process, and half-blanking or bending is performed on the adhesive thin plates 13 having the same shape and having a predetermined plurality of laminated sheets.
  • a plurality of adhesive thin plates 13 and adhesive thin plates 15 are crimped to form a block core 12 .
  • the laminated core 10 is composed of a plurality of sets of the block cores 12, a plurality of sets of the produced block cores 12, preferably three or more block cores 12 are appropriately tumbled in the lamination/rolling process. are laminated together to form a laminate.
  • one or a plurality of adhesive thin plates having the same shape as the adhesive thin plates 13 and 15 may be added between the end surfaces of the laminate in the stacking direction or between the block cores 12 .
  • the crimping projections 14a and the crimping holes 16 may not be formed in the additional adhesive thin plate.
  • one or a plurality of thin adhesive plates 13 may be peeled off from the stacking direction end face of the laminate or the stacking direction end face of the block core 12 .
  • the rotor may be composed of a single block core, in which case the lamination and rolling processes are unnecessary.
  • the single block core 12 or the entire laminate in which a plurality of sets of block cores 12 are stacked is subjected to at least one of heat and pressure, thereby bonding the bonding thin plates 13 and 15 together.
  • the laminated core 10 is obtained.
  • a hot press is used to press them under predetermined temperature and pressure conditions. It is performed by heating and pressurizing with Of these, the pressurization may be performed using only the jig, or may be performed using the self weight of the block iron core 12 or the adhesive thin plates 13 and 15 forming the laminate together with the jig.
  • This laminated core 10 is supplied to post-processes such as coil arrangement, and is finally ready for use as a stator of a rotating electric machine by winding arrangement and mounting to a case.
  • the block core 12 formed by connecting the plurality of adhesive thin plates 13 and the adhesive thin plates 15 to each other by caulking is stacked singly or in a plurality of sets.
  • the adhesive thin plates 13 and the adhesive thin plates 15 that form the block core 12 are united into one, and the laminated core 10 units can be easily assembled.
  • block iron cores can be handled in units of 12 units, which prevents defects and repairs caused by humans or machines and improves production efficiency.
  • the need for an inspection device becomes unnecessary or the minimum necessary, and the manufacturing cost can be suppressed.
  • the electric rotating machine using the laminated core 10 includes a stator in which coils are wound around the laminated core 10, a rotor rotatably arranged inside the stator, and a rotor.
  • the stator and the hollow box-shaped case covering the rotor have been described as an example, the stator is provided with a coil wound around the laminated core 10 inside the rotor. can also also, a coil may be wound on the rotor side.
  • the crimping projections 14a of the adhesive thin plates 13 of the block cores 12 forming the laminated core 10 are fitted into the recesses 14b of the adjacent adhesive thin plates 13, but this is not the only option.
  • the crimping projections 18 of the adhesive thin plates 17 may be fitted into the crimping holes 19 of the adjacent adhesive thin plates 17 .
  • the adhesive thin plate 17 in the block iron core 12 has four crimping protrusions 18 at intervals of 90 degrees in the circumferential direction at the peripheral edge of the adhesive thin plate 17, and at positions shifted in phase from the crimping protrusions 18 by 45 degrees in the circumferential direction. It has four caulking holes 19 .
  • the adhesive strips 17 adjacent below the adhesive strip 17 are configured in the same shape, but are arranged in a state rotated by 45 degrees in the circumferential direction with respect to the adhesive strip 17 above or below.
  • the block core 12 is formed by alternately repeating the crimping projections 18 and the crimping holes 19 in the stacking direction, and by fitting the crimping projections 18 of the adhesive thin plates 17 into the crimping holes 19 of the adjacent adhesive thin plates 17 . is.
  • the adhesive thin plate 20 forming the lowest stage of the block core 12 has four caulking holes 21 at positions corresponding to the caulking protrusions 18 of the adhesive thin plate 17 adjacent above.
  • the position of the crimping projection 18 of the adhesive thin plate 17 adjacent above the adhesive thin plate 20 may be shifted by 45 degrees in the circumferential direction from the crimping hole 21 of the adhesive thin plate 20. Therefore, the adhesive thin plate 20 may have eight caulking holes 21 at every 45 degrees in the circumferential direction at the peripheral edge.
  • the depth of the crimping protrusion 18 in the adhesive thin plate 17 is set so that the crimping protrusion 18 does not protrude from the lower surface 20a side of the adhesive thin plate 20, which is the end surface side in the stacking direction of the block core 12. It is defined as below the depth, but is not limited to this.
  • two or more adhesion thin plates 20 can be laminated on the end surface side of the block core 12 in the lamination direction.
  • the step of punching the thin plates in the method of manufacturing the laminated core according to the present embodiment will be described.
  • the crimping protrusions 14a and the concave portions 14b of the plurality of adhesive thin plates 13 punched into a desired shape from the thin plate material having the adhesive insulating coating are fitted.
  • the adhesive thin plates 17 are sequentially stamped out at the same station of the press device, and every other adhesive thin plate 17 is formed in the blank die on the downstream side by 45 in the circumferential direction. Rotate by degrees to alternately fit the caulking projections 18 of the adhesive thin plates 17 and the caulking holes 19 of the adjacent adhesive thin plates 17 to stack them.
  • the crimping protrusions 18 of the bonding thin plates 17 are fitted into the crimping holes 19 of the adjacent bonding thin plates 17 to form the block core 12.
  • the bonded thin plates 17 and 20 forming the block core 12 are united in the continuously produced and stacked plurality of bonded thin plates 17 and 20, and can be easily separated into units of 10 laminated cores or It can be handled in units of 12 block cores, preventing defects and rework caused by humans and machines, and improving production efficiency.
  • the crimping projections 18 are not continuous but alternately formed in the stacking direction, the magnetic flux density in the vicinity of the crimping projections 18 does not increase, and the occurrence of eddy currents is also suppressed, thereby reducing iron loss. .
  • one block core 12 or a plurality of block cores 12 are laminated to form the laminated core 10.
  • the present invention is not limited to this.
  • FIG. 6 it is also possible to adopt a configuration in which protective plates 22 are provided at both ends of the laminated core 10 in the lamination direction.
  • An outer surface 22a of the protective plate 22 opposite to the surface in contact with the adhesive thin plate 13 is not coated with an adhesive or the like, and is not provided with an adhesive function.
  • each block core 12 of the laminated core 10 has an adhesive insulating coating only on one side of the adhesive thin plates 13 and 15, for example, only the bottom surface 13a of the adhesive thin plate 13 and the bottom surface 15a of the adhesive thin plate 15 have the adhesive insulating coating. In this case, since the protective plate 22 and the adhesive thin plate 13 adjacent thereto are not adhered, the inner surface 22b of the uppermost protective plate 22 is provided with an adhesive function.
  • the protective plate 22 may be a normal electromagnetic steel plate, an adhesive steel plate having an adhesive insulating coating only on one side, or a SUS plate. be able to. Moreover, when the thickness of the laminated core 10 is small, the overall thickness of the laminated core 10 can be adjusted by laminating one or more protective plates 22 .
  • a plurality of laminated adhesive thin plates 13 are subjected to a half-blanking process or a bending process by a publicly known crimping process in which two or more thin metal plates are fitted by processing a part of the material.
  • the adhesive thin plate 13 and the adhesive thin plate 15 are caulked together to form the block core 12 .
  • the laminated core 10 is composed of a plurality of sets of block cores 12, a plurality of produced block cores 12, preferably three or more block cores 12 are appropriately transcribed in a lamination/rolling process.
  • Lamination to form a laminate This laminate is laminated on the inner surface 22b of the protective plate 22 whose outer surface 22a does not have an adhesive function, and the protective plate 22 whose outer surface 22a does not have an adhesive function is laminated on the upper end face of the laminate.
  • the laminated core 10 is used as a rotor of an electric motor, the rotor may be composed of a single block core, in which case the lamination and rolling processes are unnecessary.
  • the single block core 12 including the protective plate 22 or the entire laminate in which a plurality of sets of the block cores 12 are stacked is subjected to at least one of heating and pressurization to thereby obtain a block core.
  • the laminated core 10 is obtained by bonding the laminated thin plates 13 and 15 and the protective plate 22 together.
  • one or more block cores 12 or laminated bonding thin plates 13, 15 and protective plates 22 are superimposed at the same position using an alignment jig, and then hot press is used. It is carried out by heating and pressurizing under predetermined temperature and pressure conditions.
  • the pressurization may be performed using only the jig, or may be performed using the self weight of the block iron core 12 or the adhesive thin plates 13 and 15 forming the laminate together with the jig.
  • This laminated core 10 is supplied to post-processes such as coil arrangement, and is finally ready for use as a stator of a rotating electric machine by winding arrangement and mounting to a case.
  • the outer surfaces 22a which are the surfaces opposite to the surfaces in contact with the adhesive thin plates 13 and 15, are attached to both ends of the adhesive thin plates 13 and 15 in the lamination direction.
  • the protective plate 22 By bonding and integrating the protective plate 22 to which is not provided by the bonding process, when the block core 12 and the protective plate 22 are bonded by heating and pressurizing using a dedicated jig or device, the laminated core 10 is attached to the jig. Since it does not stick to the jig or the device itself, there is no need to apply surface treatment to the working surface of the jig or the device itself, or to apply a mold release agent, so that the manufacturing cost can be reduced. In addition, since there is no need to perform surface treatment or the like, there is no occurrence of defects or stoppage of the production line due to deterioration of the anti-sticking function.
  • the crimped portion 14 is formed on the adhesive thin plate 13 in each block core 12 forming the laminated core 10.
  • the fourth embodiment is not limited to this.
  • the crimped portion 24 may be formed at the processed portion 23b protruding from the body portion 23a of the adhesive thin plate 23.
  • the adhesive thin plate 23 immediately after being punched out from the thin plate material by the press machine has a crimping projection 24a on the processed portion 23b protruding from the main body portion 23a of the adhesive thin plate 23, and a recessed portion 24b which is a space behind the crimping projection 24a. It has a part 24 .
  • the body portion 23a and the processed portion 23b are connected by a connecting portion 23c narrower than the processed portion 23b.
  • the processed portion 23b is formed, for example, at the peripheral edge portion of the adhesive thin plate 23 so as to protrude from the main body portion 23a at every 90 degrees in the circumferential direction.
  • the processed portion 23b is finally separated and removed from the main body portion 23a in a removing step.
  • the adhesive thin plate 25 which is the lowest stage of the block core 12 immediately after being punched out from the thin plate material by the press device, has a caulking hole 26 punched out of the thin plate material in the processed portion 25b protruding from the main body portion 25a.
  • the processed portion 25b and the connecting portion 25c are formed, for example, so as to protrude from the main body portion 25a at intervals of 90 degrees in the circumferential direction at the peripheral portion of the adhesive thin plate 25. .
  • the crimping projections 24a of the processed portions 23b of the adhesive thin plates 23 are fitted into the recesses 24b of the processed portions 23b of the adjacent adhesive thin plates 23, and the crimping of the processed portions 23b of the adhesive thin plates 23 is performed at the lowest level. It is formed by fitting the protrusion 24a into the caulking hole 26 in the processed portion of the adhesive thin plate 25. As shown in FIG. Since the block core 12 is formed by fitting the caulking projections 24a into the recesses 24b of the adjacent adhesive thin plates 23 in this manner, the plurality of adhesive thin plates 23 and adhesive thin plates 25 are integrally formed, and each ten laminated core units are assembled. , or the handling of each block core 12 units can be improved.
  • the depth of the crimping protrusion 24a at the processed portion 23b of the adhesive thin plate 23 is set to be equal to or less than the depth of the crimped hole 26 at the processed portion 25b of the adhesive thin plate 25, which is the end face side in the stacking direction of the block core 12. but not limited to.
  • two or more adhesion thin plates 25 can be laminated on the end surface side of the block core 12 in the lamination direction.
  • half-blanking or bending is performed on the processed portion 23b of the plurality of stacked adhesive thin plates 23 by a known caulking process in which a part of the material is processed and two or more thin metal plates are fitted together.
  • a plurality of adhesive thin plates 23 and adhesive thin plates 25 are crimped to form a block core 12 .
  • the laminated core 10 is composed of a plurality of block cores 12, the plurality of block cores 12 produced, preferably three or more block cores 12, are appropriately transcribed in the lamination/rolling process. Lamination to form a laminate.
  • one or a plurality of adhesive thin plates having the same shape as the adhesive thin plates 23 and 25 may be added between the end faces of the laminate in the stacking direction or between the block cores 12 .
  • the crimping projections 24a and the crimping holes 26 may not be formed in the additional adhesive thin plate.
  • one or a plurality of thin adhesive plates 23 may be peeled off from the stacking direction end face of the laminate or the stacking direction end face of the block core 12 .
  • the rotor may be composed of a single block core, in which case the lamination and rolling processes are unnecessary.
  • a bonding step at least one of heat and pressure is applied to the entire laminate to bond the block iron core 12 or the plurality of adhesive thin plates 23 and adhesive thin plates 25 forming the laminate.
  • a hot press is used to apply them under predetermined temperature and pressure conditions. It is performed by heating and pressurizing with Of these, the pressurization may be performed by using only the jig, or may be performed by utilizing the self weight of the block iron core 12 or the adhesive thin plates 23 and 25 forming the laminate together with the jig.
  • the crimped portion 24 of the adhesive thin plate 23 is scooped out to break the connecting portion 23c of the adhesive thin plate 23 and the connecting portion 25c of the adhesive thin plate 25, thereby removing the processed portions 23b and 25b from the adhesively bonded laminate. And the connecting portions 23c and 25c are removed to obtain the laminated core 10.
  • FIG. This removing process may be performed before the bonding process, but is preferably performed after the bonding process in order to prevent the adhesive thin plates 23 and 25 from being dislocated.
  • This laminated core 10 is supplied to post-processes such as coil arrangement, and is finally ready for use as a stator of a rotating electric machine by winding arrangement and mounting to a case.
  • the plurality of adhesive thin plates 23 and the adhesive thin plates 25 are connected by caulking at the processed portion 23b protruding from the main body portion 23a of the adhesive thin plate 23.
  • the adhesive thin plates 23 and 25 forming the block core 12 are united into one, and can be easily separated into units of 10 laminated cores or blocks. It can be handled in units of 12 iron cores, preventing the occurrence of defects and reworking by humans and machines, and improving production efficiency.
  • the processed portion 23b of the adhesive thin plate 23 has the crimped portion 24, even if distortion occurs in the vicinity of the crimped portion 24 due to the crimping process, the processed portion 23b is removed in the removal process. Since no gap is formed between the layers, the electrical characteristics are not degraded. Furthermore, since the removal step of removing the processed portion 23b and the processed portion 25b having the crimped portion 24 is provided, the magnetic flux density does not increase in the adhesive thin plates 23 and 25, and excessive eddy currents do not occur. , iron loss can be suppressed.
  • the configuration is such that the crimped portions 14 are formed in the adhesive thin plates 13 of the block cores 12 forming the laminated core 10.
  • the fifth embodiment is not limited to this.
  • an adhesive that adheres at room temperature such as an instant adhesive or an anaerobic adhesive, is applied in dots to temporarily fix the adhesive thin plates 13 and 15 together.
  • the bonding unit that applies the adhesive is placed in front of the press device or in the press device (including the case where the bonding unit is arranged before the blanking step separately from the mold of the press device). .
  • the caulking projections 14a (recesses 14b) and the processed portions 23b and 25b (connecting portions 23c and 25c) are formed by intermittent punching as boundary marks between the 10 units of the laminated core and between the 12 units of the block core. It is also possible to insert a non-bonded adhesive sheet. As for the shape of the adhesive thin plate to be inserted, an adhesive thin plate 27 having at least one notch 27a as shown in FIG. There are a thin plate 28 and a disk-shaped adhesive thin plate 29 as shown in FIG. 10(c). The cutout portions 27a and the convex portions 28a shown in FIGS. 10(a) to 10(c) can be used in appropriate combination with one adhesive thin plate.
  • a disk-shaped adhesive thin plate 29 having cutouts 27a and projections 28a may be used. Further, among the adhesive thin plates 27 to 29, a plurality of adhesive thin plates having the same and/or different shapes can be used in combination.
  • the adhesive thin plates 27 to 29 are removed when the block core 12 is rolled and laminated. By inserting the adhesive thin plates 27 or 29 between 10 units of laminated cores or 12 units of block cores, it is possible to handle every 10 units of laminated cores or every 12 units of block cores. You can prevent rework and improve production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

プレス装置で連続的に生産される接着薄板が積み重なった状態にあっても、積層鉄心単位ごと、又はブロック鉄心単位ごとに取り扱うことのできる、積層鉄心の製造方法を提供する。 本発明に係る積層鉄心の製造方法は、加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板(17)を、複数積層状態で接着一体化して積層鉄心(10)とする積層鉄心の製造方法において、複数枚積層させた同一形状の接着薄板(17)をカシメで互いに連結してブロック鉄心(12)を形成するカシメ工程と、ブロック鉄心(12)を単独で、又は複数組積み重ねた上で、接着薄板(17)同士を接着一体化する接着工程と、を含み、接着薄板(17)が、周方向にカシメ突起(18)及びカシメ孔(19)が交互に配置される形状とされ、カシメ工程で、接着薄板(17)のカシメ突起(18)を隣接する接着薄板(17)のカシメ孔(19)に嵌合させるカシメにより、ブロック鉄心(12)をなす複数枚の接着薄板(17)を互いに連結する。

Description

積層鉄心の製造方法及び積層鉄心
 本発明は、回転電機の回転子又は固定子として用いられる積層鉄心に関する。
 電動機や発電機といった回転電機の固定子又は回転子において、コイルや永久磁石が配設されるコアには、積層鉄心が一般に用いられる。
 積層鉄心は、例えば、接着剤が両面に被覆された接着鋼板をプレス装置によって所定形状に打ち抜いた後、この所定形状の接着鋼板を積層して、加熱とともに積層方向に圧力を加えて圧着することによって製造される。
 こうした従来の積層鉄心の製造方法の一例として、特許第3276505号公報に開示されるものがある。
特許第3276505号公報
 従来の積層鉄心の製造は、前記特許文献に示される方法でなされており、所定形状の接着鋼板はプレス装置で連続的に生産され、最終的に複数枚の接着鋼板が積み重なった状態とされる。
 しかし、それらの接着鋼板は互いに外見上の違いが見られないため、これらを積み重なった状態で排出した場合、後工程で積層鉄心単位ごとの境目を見分けることが困難であり、人や機械による不良が発生するという課題を有していた。
 また、積層鉄心は、複数枚の接着鋼板を積層してブロック鉄心とし、これらブロック鉄心を複数積層して製造することもなされているが、ブロック鉄心ごとに形状の異なる接着鋼板であっても、外見上の違いはほとんどないことから、ブロック鉄心とする前の多数枚の接着鋼板が積み重なった状態で、これらブロック鉄心単位ごとの境目を見分けることは困難である。
 特に、積層鉄心の積層方向厚さの調整のため、各ブロック鉄心を所定の角度だけ回転させて積層する転積を行う場合、この転積工程で多数枚の接着鋼板が積み重なった中からブロック鉄心間の境目に相当する位置を探すのに手間がかかり、ブロック鉄心ごとの転積が非常に困難となり、生産効率を低下させるという課題を有していた。
 本発明は前記課題を解消するためになされたもので、プレス装置で連続的に生産される接着薄板が積み重なった状態にあっても、積層鉄心単位ごと、又はブロック鉄心単位ごとに取り扱うことのできる、積層鉄心の製造方法及び当該製造方法で得られる積層鉄心を提供することを目的とする。
 本発明の開示に係る積層鉄心の製造方法は、加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板を、複数積層状態で接着一体化して積層鉄心とする積層鉄心の製造方法において、複数枚積層させた同一形状の接着薄板をカシメで互いに連結してブロック鉄心を形成するカシメ工程と、ブロック鉄心を単独で、又は複数組積み重ねた上で、接着薄板同士を接着一体化する接着工程と、を含み、接着薄板が、周方向にカシメ突起及びカシメ孔が交互に配置される形状とされ、カシメ工程で、接着薄板のカシメ突起を隣接する接着薄板のカシメ孔に嵌合させるカシメにより、ブロック鉄心をなす複数枚の接着薄板を互いに連結するものである。
 このように本発明の開示によれば、複数の接着薄板をカシメ結合により互いに連結して形成されるブロック鉄心を単独で又は複数組積み重ねて接着工程で接着することにより、連続生産されて積み重なった複数枚の接着薄板において、ブロック鉄心をなす接着薄板が一つにまとまり、容易に積層鉄心単位ごと、又はブロック鉄心単位ごとに取り扱うことができ、人や機械による不良・手直しの発生を防止し、生産効率を向上させられる。
本発明の第1の実施形態に係る積層鉄心の平面図である。 本発明の第1の実施形態に係る積層鉄心の側面図である。 図1のA-A断面拡大図である。 本発明の第2の実施形態に係る積層鉄心の平面図である。 図4のB-B断面拡大図である。 本発明の第3の実施形態に係る積層鉄心の側面図である。 本発明の第4の実施形態に係る積層鉄心の平面図である。 本発明の第4の実施形態に係るブロック鉄心における最下段の接着薄板の平面図である。 図7のC-C断面拡大図である。 製造過程においてブロック鉄心間に挿入可能な薄板の平面図である。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態に係る積層鉄心を図1ないし図3に基づいて説明する。本実施形態においては、回転電機としての電動機の固定子をなす積層鉄心の例について説明する。
 各図において本実施形態に係る積層鉄心10は、略円環状の表面及び裏面のうち、少なくとも一方の面に接着機能を発現可能な接着性絶縁被膜を有する磁性金属材料製の接着薄板13を複数積層し連結したブロック鉄心12を、一又は複数組積層一体化させて形成される構成である。
 本実施形態に係る積層鉄心10を用いる回転電機は、積層鉄心10にコイルを巻回状態で配設してなる固定子と、この固定子の内側に回転可能に配設される回転子と、これら固定子及び回転子を覆う中空箱状のケースとを備える公知の構成であり、詳細な説明を省略する。
 積層鉄心10は、一又は複数組のブロック鉄心12、好ましくは、三つ以上のブロック鉄心12を積層一体化させて形成されるものである。そして、各ブロック鉄心12は、磁性金属材料製の接着薄板13を複数積層して形成されたものである。
 ブロック鉄心12をなす接着薄板13は、電磁鋼やアモルファス合金等からなる薄板材から打抜き形成されるものである。
 ブロック鉄心12において、重ね合わせた接着薄板13同士は、接着性絶縁被膜をなす接着剤による接着、及びカシメにより連結される。
 接着薄板13は、断面V字状のカシメ突起14a及びこのカシメ突起14a裏側の空間部である凹部14bからなるカシメ部14を有する。カシメ突起14aは、断面台形状、断面矩形状などとすることも可能である。カシメ突起14aは、例えば、接着薄板13の周縁部にて周方向に90度ごとに形成される。
 また、ブロック鉄心12は、その最下段に、薄板材を打ち抜いて形成されたカシメ孔16を有する接着薄板15を備える。カシメ孔16は、接着薄板13のカシメ部14と同様に、接着薄板15の周縁部にて周方向に90度ごとに形成される。
 ブロック鉄心12は、各接着薄板13のカシメ突起14aを隣接する接着薄板13の凹部14bに嵌合させるとともに、最下段においては、接着薄板13のカシメ突起14aを接着薄板15のカシメ孔16に嵌合させて形成されたものである。このように、カシメ突起14aを隣接する接着薄板13の凹部14bに嵌合させてブロック鉄心12となすことから、複数の接着薄板13及び接着薄板15を一体的なものとし、積層鉄心10単位ごと、又はブロック鉄心12単位ごとの取扱性を向上させられる。
 ここで、接着薄板13のカシメ突起14aは、ブロック鉄心12の下方向に向かって突出していることから、ブロック鉄心12の上端面にはカシメによる凸形状は現れていない。
 図3に示す例では、接着薄板13におけるカシメ突起14aの深さは、ブロック鉄心12の積層方向端面側となる接着薄板15の下面15a側から突出しないように、カシメ孔16の深さ以下とされているが、これに限定されない。
 また、ブロック鉄心12の積層方向端面側に接着薄板15を2枚以上積層することもできる。
 複数のブロック鉄心12を積層して積層鉄心10を形成する際には、接着薄板13、15の板厚偏差を相殺し、積層鉄心10の各部位ごとの積層方向の厚さのばらつきを抑えることを目的とする転積が実行される。
 この転積は、複数の接着薄板13及び接着薄板15を積層して形成されたブロック鉄心12を積み重ねるごとに行われ、重ねようとするブロック鉄心12を重ねる対象のブロック鉄心12の周方向に所定角度回転させて、ブロック鉄心12同士の角度をずらすようにされる。
 積層鉄心10が固定子である場合、その内側に磁極部を有しているが、公知の構成であることから、詳細な説明を省略する。
 次に、本実施形態に係る積層鉄心の製造方法について説明する。
 前提として、あらかじめ、公知の製法により、プレス装置にて接着性絶縁被膜を有する薄板材から所望の形状に打ち抜いた複数の接着薄板13及び接着薄板15が積層されているものとする。接着性絶縁被膜は、例えば、熱硬化性樹脂若しくは熱可塑性樹脂、又はその両方の樹脂を含む塗布液をロールコータ等の公知の塗布方法により薄板材に塗布した後、焼き付けて硬化させることにより形成することができる。
 まず、カシメ工程として、材料の一部を加工して2枚以上の金属薄板を嵌合する公知のカシメ加工により、所定の複数枚積層させた同一形状の接着薄板13に半抜き加工や曲げ加工などを施して複数の接着薄板13及び接着薄板15をカシメ結合し、ブロック鉄心12とする。
 次に、積層鉄心10を複数組のブロック鉄心12から構成する場合には、積層・転積工程として、作製した複数組のブロック鉄心12、好ましくは三つ以上のブロック鉄心12を適宜転積しつつ積層して積層体を形成する。
 この際、積層方向の厚さを調整するため、積層体の積層方向端面又はブロック鉄心12間に接着薄板13や接着薄板15と同一形状の接着薄板を一又は複数枚追加してもよい。この追加する接着薄板には、カシメ突起14aやカシメ孔16が形成されていなくてもよい。また、積層体の積層方向端面又はブロック鉄心12の積層方向端面から接着薄板13を一又は複数枚剥ぎ取ってもよい。
 なお、積層鉄心10を電動機の回転子をなすものとして使用する場合、この回転子を一つのブロック鉄心で構成することもあり、この場合には積層・転積工程は不要である。
 次に、接着工程として、単独のブロック鉄心12、又は複数組のブロック鉄心12が積み重ねられた積層体全体に対し、加熱又は加圧の少なくとも一方を施すことにより、接着薄板13、15同士を接着して積層鉄心10を得る。接着工程では、例えば、位置合わせの治具を使用してブロック鉄心12又は積層体をなす接着薄板13、15を同じ位置に重ね合わせた後、熱プレスを用いて、所定の温度、圧力条件下で加熱・加圧することにより行われる。このうち、加圧は、治具のみで行ったり、治具とともにブロック鉄心12又は積層体をなす接着薄板13、15の自重を利用しつつ、プレスを行うようにしてもよい。
 この積層鉄心10は、コイルの配設等の後工程に供給され、最終的に巻線の配設やケースへの取付けで回転電機の固定子として使用可能な状態とされる。
 このように、本実施形態に係る積層鉄心10の製造方法は、複数の接着薄板13及び接着薄板15をカシメ結合により互いに連結して形成されるブロック鉄心12を単独で又は複数組積み重ねて接着工程で接着することにより、連続生産されて積み重なった複数枚の接着薄板13及び接着薄板15において、ブロック鉄心12をなす接着薄板13及び接着薄板15が一つにまとまり、容易に積層鉄心10単位ごと、又はブロック鉄心12単位ごとに取り扱うことができ、人や機械による不良・手直しの発生を防止し、生産効率を向上させられる。また、人や機械による不良・手直しの発生を防止できることから、検査装置も不要又は必要最低限となり、製造コストを抑えることができる。
 なお、上記では積層鉄心10を用いる回転電機として、積層鉄心10にコイルを巻回状態で配設してなる固定子と、この固定子の内側に回転可能に配設される回転子と、これら固定子及び回転子を覆う中空箱状のケースとを備えるものを例にとって説明したが、回転子の内側に積層鉄心10にコイルを巻回状態で配設してなる固定子を備える構成とすることもできる。また、回転子側にコイルが巻回されていてもよい。
(本発明の第2の実施形態)
 第1の実施形態に係る積層鉄心においては、積層鉄心10をなす各ブロック鉄心12における接着薄板13のカシメ突起14aを隣接する接着薄板13の凹部14bに嵌合させる構成としているが、これに限らず、第2の実施形態として、図4及び図5に示すように、接着薄板17のカシメ突起18を隣接する接着薄板17のカシメ孔19に嵌合させる構成とすることもできる。
 例えば、ブロック鉄心12における接着薄板17は、接着薄板17の周縁部にて周方向に90度ごとに四つのカシメ突起18を有するとともに、カシメ突起18から周方向に45度位相をずらした位置に四つのカシメ孔19を有する。
 接着薄板17の下方で隣接する接着薄板17は同一形状に構成されるが、上方又は下方の接着薄板17に対して、周方向に45度回転した状態で配置される。
 すなわち、ブロック鉄心12は、積層方向にカシメ突起18及びカシメ孔19が交互に繰り返されるとともに、接着薄板17のカシメ突起18が隣接する接着薄板17のカシメ孔19に嵌合して形成されたものである。
 ブロック鉄心12の最下段となる接着薄板20は、その上方に隣接する接着薄板17のカシメ突起18に対応する位置に四つのカシメ孔21を有する。
 要求されるブロック鉄心12の厚さによっては接着薄板20の上方で隣接する接着薄板17のカシメ突起18の位置が接着薄板20のカシメ孔21に対し周方向に45度ずれた位置となってしまうことがあることから、接着薄板20は周縁部にて周方向に45度ごとに八つのカシメ孔21を有するようにしてもよい。
 図5に示す例では、接着薄板17におけるカシメ突起18の深さは、ブロック鉄心12の積層方向端面側となる接着薄板20の下面20a側からカシメ突起18が突出しないように、カシメ孔21の深さ以下とされているが、これに限定されない。
 また、ブロック鉄心12の積層方向端面側に接着薄板20を2枚以上積層することもできる。
 次に、本実施形態に係る積層鉄心の製造方法における薄板材の打抜き工程について説明する。
 第1の実施形態に係る積層鉄心の製造方法における薄板材の打抜き工程では、接着性絶縁被膜を有する薄板材から所望の形状に打ち抜いた複数の接着薄板13のカシメ突起14aと凹部14bとを嵌合させる構成としたが、第2の実施形態では、プレス装置の同一ステーションにて接着薄板17を順次打ち抜き形成し、下流側のブランクダイ内にて1枚おきに接着薄板17を周方向に45度回転させて、接着薄板17のカシメ突起18と隣接する接着薄板17のカシメ孔19とを交互に嵌合させながら積層させる。
 このように、本実施形態に係る積層鉄心10の製造方法は、接着薄板17のカシメ突起18を、隣接する接着薄板17のカシメ孔19に嵌合させて、ブロック鉄心12をなす複数枚の接着薄板17を互いに連結することにより、連続生産されて積み重なった複数枚の接着薄板17、20において、ブロック鉄心12をなす接着薄板17、20が一つにまとまり、容易に積層鉄心10単位ごと、又はブロック鉄心12単位ごとに取り扱うことができ、人や機械による不良・手直しの発生を防止し、生産効率を向上させられる。
 また、積層方向にカシメ突起18が連続せずに交互に形成されることから、カシメ突起18近傍の磁束密度が高くならず、渦電流の発生も抑えることで、鉄損を低減することができる。
(本発明の第3の実施形態)
 第1の実施形態及び第2の実施形態に係る積層鉄心においては、一つのブロック鉄心12、又は複数のブロック鉄心12を積層して積層鉄心10を形成する構成としているが、これに限らず、図6に示すように、積層鉄心10の積層方向両端に保護板22を有する構成とすることもできる。保護板22の接着薄板13に接する面とは反対側の面となる外面22aは、接着剤等が塗布されておらず、接着機能が付与されていない。
 積層鉄心10をなす各ブロック鉄心12における接着薄板13、15の両面に接着性絶縁被膜を有する場合には、保護板22の外面22aだけでなく、内面22bにも接着機能を付与する必要はない。
 積層鉄心10をなす各ブロック鉄心12における接着薄板13、15の片面のみに接着性絶縁被膜を有する場合、例えば、接着薄板13の下面13a及び接着薄板15の下面15aのみに接着性絶縁被膜を有する場合には、保護板22とこれに隣接する接着薄板13とが接着しないこととなるため、最上段の保護板22の内面22bに接着機能を付与することとなる。
 保護板22は、通常の電磁鋼板や、片面のみに接着性絶縁被膜を有する接着鋼板や、SUS板であってもよく、その板材(素材、材料グレード)、板厚など所望のものを使用することができる。また、積層鉄心10の厚さが小さい場合には、1枚又は複数枚の保護板22を積層して積層鉄心10の全体厚さを調整することもできる。
 次に、本実施形態に係る積層鉄心の製造方法について説明する。
 前提として、あらかじめ、公知の製法により、プレス装置にて接着性絶縁被膜を有する薄板材から所望の形状に打ち抜いた複数の接着薄板13及び接着薄板15が積層されているものとする。
 まず、カシメ工程として、材料の一部を加工して2枚以上の金属薄板を嵌合する公知のカシメ加工により、積層された複数の接着薄板13に半抜き加工や曲げ加工などを施して複数の接着薄板13及び接着薄板15をカシメ結合し、ブロック鉄心12とする。
 次に、積層鉄心10を複数組のブロック鉄心12から構成する場合には、積層・転積工程として、作製した複数のブロック鉄心12、好ましくは三つ以上のブロック鉄心12を適宜転積しつつ積層して積層体を形成する。
 この積層体を、少なくとも外面22aに接着機能を有しない保護板22の内面22b上に積層するとともに、積層体上端面に少なくとも外面22aに接着機能を有しない保護板22を積層する。
 なお、積層鉄心10を電動機の回転子をなすものとして使用する場合、この回転子を一つのブロック鉄心で構成することもあり、この場合には積層・転積工程は不要である。
 次に、接着工程として、保護板22を含む、単独のブロック鉄心12、又は複数組のブロック鉄心12が積み重ねられた積層体全体に対し、加熱又は加圧の少なくとも一方を施すことにより、ブロック鉄心12又は積層体をなす接着薄板13、15同士及び保護板22を接着して積層鉄心10を得る。接着工程では、例えば、位置合わせの治具を使用して一又は複数のブロック鉄心12又は積層体をなす接着薄板13、15、及び保護板22を同じ位置に重ね合わせた後、熱プレスを用いて、所定の温度、圧力条件下で加熱・加圧ことにより行われる。このうち、加圧は、治具のみで行ったり、治具とともにブロック鉄心12又は積層体をなす接着薄板13、15の自重を利用しつつ、プレスを行うようにしてもよい。
 この積層鉄心10は、コイルの配設等の後工程に供給され、最終的に巻線の配設やケースへの取付けで回転電機の固定子として使用可能な状態とされる。
 このように、本実施形態に係る積層鉄心10の製造方法は、接着薄板13、15の積層方向両端に、少なくとも接着薄板13、15に接する面とは反対側の面である外面22aに接着機能が付与されない保護板22を接着工程により接着一体化することにより、専用の治具や装置を用いてブロック鉄心12及び保護板22などを加熱・加圧して接着するに際し、積層鉄心10が治具や装置に貼り付かないため、治具や装置自体の作業面に表面処理加工を施したり、離型剤を塗布したりする必要がなく、製造コストを抑えることができる。また、表面処理加工等を施す必要がないために、貼り付き防止機能の低下による不良の発生や生産ラインの停止を起こすことがない。
(本発明の第4の実施形態)
 第1の実施形態に係る積層鉄心の製造方法においては、積層鉄心10をなす各ブロック鉄心12における接着薄板13にカシメ部14を形成する構成としているが、これに限らず、第4の実施形態として、図7ないし図9に示すように、接着薄板23の本体部23aから突出した加工部23bにおいてカシメ部24を形成する構成としてもよい。
 プレス装置にて薄板材から打ち抜かれた直後の接着薄板23は、接着薄板23の本体部23aから突出した加工部23bにカシメ突起24a及びこのカシメ突起24a裏側の空間部である凹部24bからなるカシメ部24を有する。本体部23aと加工部23bは、加工部23bよりも幅狭な連結部23cによって連結される。加工部23bは、例えば、接着薄板23の周縁部にて周方向に90度ごとに本体部23aから突出して形成される。この加工部23bは、最終的には、除去工程にて本体部23aから切り離されて除去される。
 また、プレス装置にて薄板材から打ち抜かれた直後で、ブロック鉄心12の最下段となる接着薄板25は、薄板材が打ち抜かれたカシメ孔26を本体部25aから突出した加工部25bに有する。加工部25b及び連結部25cは、接着薄板23の加工部23b及び連結部23cと同様に、例えば、接着薄板25の周縁部にて周方向に90度ごとに本体部25aから突出して形成される。
 ブロック鉄心12は、各接着薄板23の加工部23bにおけるカシメ突起24aを隣接する接着薄板23の加工部23bにおける凹部24bに嵌合させるとともに、最下段においては、接着薄板23の加工部23bにおけるカシメ突起24aを接着薄板25の加工部におけるカシメ孔26に嵌合させて形成されたものである。このように、カシメ突起24aを隣接する接着薄板23の凹部24bに嵌合させてブロック鉄心12となすことから、複数の接着薄板23及び接着薄板25を一体的なものとし、積層鉄心10単位ごと、又はブロック鉄心12単位ごとの取扱性を向上させられる。
 図9に示す例では、接着薄板23の加工部23bにおけるカシメ突起24aの深さは、ブロック鉄心12の積層方向端面側となる接着薄板25の加工部25bにおけるカシメ孔26の深さ以下とされているが、これに限定されない。
 また、ブロック鉄心12の積層方向端面側に接着薄板25を2枚以上積層することもできる。
 次に、本実施形態に係る積層鉄心の製造方法について説明する。
 前提として、あらかじめ、公知の製法により、プレス装置にて接着性絶縁被膜を有する薄板材から所望の形状に打ち抜いた複数の接着薄板23及び接着薄板25が積層されているものとする。
 まず、カシメ工程として、材料の一部を加工して2枚以上の金属薄板を嵌合する公知のカシメ加工により、積層された複数の接着薄板23の加工部23bに半抜き加工や曲げ加工などを施して複数の接着薄板23及び接着薄板25をカシメ結合し、ブロック鉄心12とする。
 次に、積層鉄心10が複数のブロック鉄心12から構成される場合には、積層・転積工程として、作製した複数のブロック鉄心12、好ましくは三つ以上のブロック鉄心12を適宜転積しつつ積層して積層体を形成する。
 この際、積層方向の厚さを調整するため、積層体の積層方向端面又はブロック鉄心12間に接着薄板23や接着薄板25と同一形状の接着薄板を一又は複数枚追加してもよい。この追加する接着薄板には、カシメ突起24aやカシメ孔26が形成されていなくてもよい。また、積層体の積層方向端面又はブロック鉄心12の積層方向端面から接着薄板23を一又は複数枚剥ぎ取ってもよい。
 なお、積層鉄心10を電動機の回転子をなすものとして使用する場合、この回転子を一つのブロック鉄心で構成することもあり、この場合には積層・転積工程は不要である。
 次に、接着工程として、積層体全体に対して加熱又は加圧の少なくとも一方を施してブロック鉄心12又は積層体をなす複数の接着薄板23及び接着薄板25同士を接着する。接着工程では、例えば、位置合わせの治具を使用してブロック鉄心12又は積層体をなす接着薄板23、25を同じ位置に重ね合わせた後、熱プレスを用いて、所定の温度、圧力条件下で加熱・加圧することにより行われる。このうち、加圧は、治具のみで行ったり、治具とともにブロック鉄心12又は積層体をなす接着薄板23、25の自重を利用しつつ、プレスを行うようにしてもよい。
 最後に、除去工程として、接着薄板23のカシメ部24を抉って接着薄板23の連結部23c及び接着薄板25の連結部25cを破断させることにより、接着結合された積層体から加工部23b、25b及び連結部23c、25cを除去し、積層鉄心10を得る。この除去工程は、接着工程の前に行ってもよいが、接着薄板23、25の位置ずれを防止するため、接着工程後に行うのがよい。
 この積層鉄心10は、コイルの配設等の後工程に供給され、最終的に巻線の配設やケースへの取付けで回転電機の固定子として使用可能な状態とされる。
 このように、本実施形態に係る積層鉄心10の製造方法は、接着薄板23の本体部23aから突出した加工部23bにおいて複数の接着薄板23及び接着薄板25をカシメで連結することから、上記第1の実施形態同様に、連続生産されて積み重なった複数の接着薄板23及び接着薄板25において、ブロック鉄心12をなす接着薄板23、25が一つにまとまり、容易に積層鉄心10単位ごと、又はブロック鉄心12単位ごとに取り扱うことができ、人や機械による不良・手直しの発生を防止し、生産効率を向上させられる。
 また、接着薄板23の加工部23bにカシメ部24を有することから、カシメ加工によるカシメ部24近傍に歪みが生じても除去工程にて加工部23bが除去されるため、接着薄板23、25の積層間に隙間ができないこととなり、電気的特性を低下させることがない。
 さらに、カシメ部24を有する加工部23b及び加工部25bを除去する除去工程を備えることから、接着薄板23、25において磁束密度が高くなることがなく、余分な渦電流が生じることがないこととなり、鉄損を抑制することができる。
(本発明の第5の実施形態)
 第1の実施形態に係る積層鉄心の製造方法においては、積層鉄心10をなす各ブロック鉄心12における接着薄板13にカシメ部14を形成する構成としているが、これに限らず、第5の実施形態として、カシメ部14の代わりに、瞬間接着剤や嫌気性接着剤などの常温で固着する接着剤を点状(ドット状)に塗布して、接着薄板13及び接着薄板15同士を仮固定する構成としてもよい。この場合、接着剤を塗布する接着ユニットは、プレス装置前又はプレス装置内(プレス装置の金型と別体に接着ユニットをブランク工程前に配設した場合も含む)に配置されることになる。
 なお、上記各実施形態において、積層鉄心10単位間やブロック鉄心12単位間に境目の目印として、間欠抜きにより、カシメ突起14a(凹部14b)や加工部23b、25b(連結部23c、25c)のない接着薄板を挿入するようにしてもよい。
 挿入する接着薄板の形状としては、図10(a)に示すような少なくとも一つの切欠き部27aを有する接着薄板27や、図10(b)に示すような少なくとも一つの凸部28aを有する接着薄板28や、図10(c)に示すような円板状の接着薄板29などがある。図10(a)ないし図10(c)に示す切欠き部27aや凸部28aなどは、1枚の接着薄板に適宜組み合わせて使用することができる。例えば、円板状の接着薄板29に切欠き部27a及び凸部28aを形成したものを使用してもよい。また、接着薄板27ないし接着薄板29のうち、同一及び/又は異なる形状の接着薄板を複数枚組み合わせて使用することもできる。この接着薄板27ないし接着薄板29は、ブロック鉄心12の転積・積層時に取り除かれる。
 この接着薄板27ないし接着薄板29を積層鉄心10単位間やブロック鉄心12単位間に挿入することにより、積層鉄心10単位ごと、又はブロック鉄心12単位ごとに取り扱うことができ、人や機械による不良・手直しの発生を防止し、生産効率を向上させられる。
10 積層鉄心
12 ブロック鉄心
13 接着薄板
13a 下面
14 カシメ部
14a カシメ突起
14b 凹部
15 接着薄板
15a 下面
16 カシメ孔
17 接着薄板
18 カシメ突起
19 カシメ孔
20 接着薄板
20a 下面
21 カシメ孔
22 保護板
22a 外面
22b 内面
23 接着薄板
23a 本体部
23b 加工部
23c 連結部
24 カシメ部
24a カシメ突起
24b カシメ凹部
25 接着薄板
25a 本体部
25b 加工部
25c 連結部
26 カシメ孔
27 接着薄板
27a 切欠き部
28 接着薄板
28a 凸部
29 接着薄板

 

Claims (5)

  1.  加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板を、複数積層状態で接着一体化して積層鉄心とする積層鉄心の製造方法において、
     複数枚積層させた同一形状の接着薄板をカシメで互いに連結してブロック鉄心を形成するカシメ工程と、
     前記ブロック鉄心を単独で、又は複数組積み重ねた上で、接着薄板同士を接着一体化する接着工程と、
    を含み、
     前記接着薄板が、周方向にカシメ突起及びカシメ孔が交互に配置される形状とされ、
     前記カシメ工程で、接着薄板の前記カシメ突起を隣接する接着薄板の前記カシメ孔に嵌合させるカシメにより、ブロック鉄心をなす複数枚の接着薄板を互いに連結することを
     特徴とする積層鉄心の製造方法。
  2.  前記請求項1に記載の積層鉄心の製造方法において、
     前記カシメ工程では、前記接着薄板の本体部から突出させて設けられた加工部をカシメで互いに連結して、ブロック鉄心を形成し、
     前記接着工程の前又は後に、除去工程として、単独のブロック鉄心、又は複数組積み重なったブロック鉄心をなす各接着薄板から前記加工部を除去することを
     特徴とする積層鉄心の製造方法。
  3.  加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板を、複数積層状態で接着一体化して積層鉄心とする積層鉄心の製造方法において、
     積層状態とされた複数の接着薄板に対し、積層方向両端に磁性金属材料製の保護板を配置した上で、接着薄板同士及び接着薄板と保護板とを接着一体化する接着工程を含み、
     当該接着工程に際し、前記保護板における少なくとも接着薄板に接する面とは反対側の面は、接着機能を付与されない面とされることを
     特徴とする積層鉄心の製造方法。
  4.  加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板を、複数積層状態で接着一体化してなる積層鉄心において、
     同一形状の複数枚の接着薄板からなる一又は複数組のブロック鉄心を備え、
     前記接着薄板が、周方向にカシメ突起及びカシメ孔が交互に配置される形状とされ、
     前記ブロック鉄心が、複数枚の前記接着薄板を、接着薄板の前記カシメ突起が隣接する接着薄板の前記カシメ孔に嵌合するカシメで互いに連結して形成され、
     単独のブロック鉄心、又は複数組積み重ねられたブロック鉄心をなす積層状態の接着薄板同士を接着一体化されてなることを
     特徴とする積層鉄心。
  5.  加熱と加圧の少なくとも一方により接着機能を発現可能な接着性絶縁被膜を少なくとも一方の面に有する磁性金属材料製の接着薄板を、複数積層状態で接着一体化してなる積層鉄心において、
     同一形状の複数枚の接着薄板からなる一又は複数組のブロック鉄心と、
     単独のブロック鉄心、又は複数組積み重ねられたブロック鉄心に対し、積層方向両端に配置された磁性金属材料製の保護板と、
    を備え、
     前記保護板が、少なくとも接着薄板に接する面とは反対側の面を接着機能が付与されない面とされ、
     単独のブロック鉄心、又は複数組積み重ねられたブロック鉄心をなす積層状態の接着薄板同士及び保護板を接着一体化されてなることを
     特徴とする積層鉄心。

     
PCT/JP2021/037867 2021-10-13 2021-10-13 積層鉄心の製造方法及び積層鉄心 WO2023062743A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037867 WO2023062743A1 (ja) 2021-10-13 2021-10-13 積層鉄心の製造方法及び積層鉄心

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037867 WO2023062743A1 (ja) 2021-10-13 2021-10-13 積層鉄心の製造方法及び積層鉄心

Publications (1)

Publication Number Publication Date
WO2023062743A1 true WO2023062743A1 (ja) 2023-04-20

Family

ID=85987333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037867 WO2023062743A1 (ja) 2021-10-13 2021-10-13 積層鉄心の製造方法及び積層鉄心

Country Status (1)

Country Link
WO (1) WO2023062743A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450919A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Manufacture of iron core
JPH11308821A (ja) * 1998-04-22 1999-11-05 Mitsui High Tec Inc 積層鉄心の製造方法
JP2002191142A (ja) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp 積層コア
JP2004023829A (ja) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd 積層体の製造方法
JP2015139352A (ja) * 2014-01-24 2015-07-30 日産自動車株式会社 ロータ
JP2017046480A (ja) * 2015-08-27 2017-03-02 日産自動車株式会社 ロータコアの製造方法および回転電機のロータコア

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450919A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Manufacture of iron core
JPH11308821A (ja) * 1998-04-22 1999-11-05 Mitsui High Tec Inc 積層鉄心の製造方法
JP2002191142A (ja) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp 積層コア
JP2004023829A (ja) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd 積層体の製造方法
JP2015139352A (ja) * 2014-01-24 2015-07-30 日産自動車株式会社 ロータ
JP2017046480A (ja) * 2015-08-27 2017-03-02 日産自動車株式会社 ロータコアの製造方法および回転電機のロータコア

Similar Documents

Publication Publication Date Title
TWI733277B (zh) 定子用接著積層鐵芯及旋轉電機
JP4819864B2 (ja) ステータを製作するための方法ならびに該方法により製作されたステータ
TWI717940B (zh) 定子用接著積層鐵芯及旋轉電機
WO2020129923A1 (ja) 積層コアおよび回転電機
WO2020129938A1 (ja) 積層コア、コアブロック、回転電機およびコアブロックの製造方法
WO2020129928A1 (ja) 積層コアおよび回転電機
JP5859297B2 (ja) 回転電機
WO2020129940A1 (ja) 積層コアおよび回転電機
WO2020129935A1 (ja) 積層コアおよび回転電機
WO2011061803A1 (ja) 回転電機のモールドステータの製造方法
WO2006028179A1 (ja) 積層鉄心の製造方法
JP2006353001A (ja) 積層鉄心とその製造方法及び製造装置
JP5104111B2 (ja) ステータコアの製造方法
JP2003219585A (ja) 積層鉄心およびその製造方法
JP2009072014A (ja) コアブロック、コア、電動機用ステータ、およびその電動機
JP6723348B2 (ja) 固定子鉄心、及びその固定子鉄心を備えた電動機
JP3313965B2 (ja) アモルファス合金の箔板条材を用いた積層鉄心の製造方法
JP3749478B2 (ja) 積層コアの製造方法
JP2007221927A (ja) 回転電機の固定子鉄心およびその製造方法
WO2023062743A1 (ja) 積層鉄心の製造方法及び積層鉄心
JP6438731B2 (ja) 打抜き方法及び打抜き装置並びに積層鉄心の製造方法
JP2005191033A (ja) 積層鉄心の製造方法
JPH0716557U (ja) 回転電機用積層鉄心
JP3660532B2 (ja) 電動機および電動機コアの製造方法
JP6069475B2 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960602

Country of ref document: EP

Kind code of ref document: A1