WO2023060864A1 - 一种超薄轻柔韧性高的铜箔及其制备方法和应用 - Google Patents

一种超薄轻柔韧性高的铜箔及其制备方法和应用 Download PDF

Info

Publication number
WO2023060864A1
WO2023060864A1 PCT/CN2022/087351 CN2022087351W WO2023060864A1 WO 2023060864 A1 WO2023060864 A1 WO 2023060864A1 CN 2022087351 W CN2022087351 W CN 2022087351W WO 2023060864 A1 WO2023060864 A1 WO 2023060864A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
ultra
carrier layer
thin
Prior art date
Application number
PCT/CN2022/087351
Other languages
English (en)
French (fr)
Inventor
王荣福
易典
Original Assignee
深圳市汉嵙新材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汉嵙新材料技术有限公司 filed Critical 深圳市汉嵙新材料技术有限公司
Publication of WO2023060864A1 publication Critical patent/WO2023060864A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of ultra-thin copper foil shielding film and battery negative electrode materials, and in particular relates to an ultra-thin, light, high-flexibility copper foil and its preparation method and application.
  • electromagnetic shielding films In electronic equipment, in order to reduce electromagnetic interference between parts, it is usually necessary to use electromagnetic shielding films.
  • multi-layer arrangements are usually adopted, such as an electromagnetic shielding film disclosed in patent CN113038812A, an electromagnetic shielding film disclosed in CN111447819A, and the like.
  • the electromagnetic shielding film of this structure has a problem of low connectivity between functional layers.
  • the method usually used is to increase the roughness of the surface of the functional layer, which is similar to the way of improving the connectivity between the electroplated parts and the coating, but the prepared in this way
  • the structural strength of the electromagnetic shielding film such as tensile strength and elongation at break, is relatively low. Under high-number bending tests, it is difficult to ensure that the change in electromagnetic shielding effectiveness is within 0.1%.
  • the technical problem to be solved by the present invention is to provide an ultra-thin copper foil with high toughness.
  • a preparation method of the electromagnetic shielding film is further provided.
  • the present invention provides an ultra-thin, light and highly flexible copper foil, which has:
  • a carrier layer having at least one through hole on its surface
  • the beneficial effect of the present invention is that at least one through hole is provided on the carrier layer, and an I-shaped or non-I-shaped lock structure is formed on both sides of the carrier layer and the through hole by using magnetron sputtering and water plating technology , the carrier layer is locked in the lock structure through the lock structure, which can effectively improve the structural strength and toughness of the copper foil; and the electromagnetic shielding film made of the copper foil provided by the present invention is compared with the traditional Electromagnetic shielding film, the electromagnetic shielding performance stability of the electromagnetic shielding film provided by the present invention is significantly enhanced, and after being folded in half within 400 times, the change of electromagnetic shielding performance remains within 0.1%.
  • Fig. 1 shows the structural representation of the electromagnetic shielding film in Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of the electromagnetic shielding film in Comparative Example 1 of the present invention.
  • An ultra-thin, light and flexible copper foil with:
  • a carrier layer having at least one through hole on its surface
  • the I-shaped or non-I-shaped lock structure is a continuous coating structure formed on both sides of the carrier layer and in the through hole by magnetron sputtering and water plating.
  • the I-shaped lock structure is composed of the coating on both sides of the carrier layer and the coating in the through hole; the non-I-shaped lock structure is any other structure except the aforementioned I-shaped lock structure, for example In other words, the coatings on both sides of the carrier layer can be connected to each other at the edge of the carrier layer during magnetron sputtering or water plating.
  • the formed lock structure is a non-I-shaped lock structure.
  • the material of the carrier layer is selected from one of PET, PI, PA, PEK, LCP, PC and fiber film.
  • the material of the carrier layer is preferably PET, and the thickness is preferably 0.5-5 ⁇ m.
  • the diameters of the through holes are the same or different; the shapes of the through holes are regular or irregular.
  • the diameters of the through holes are the same or different, that is, the through holes on the carrier layer may adopt the same diameter or different diameters. It should be noted that the aperture of the through hole should be suitable for magnetron sputtering or water plating. applicable to the present invention, the present invention is not limited thereto.
  • the porosity is preferably 30-50%; when the pore size is 10 ⁇ m, the porosity is preferably 50-70%.
  • the smaller the pore size is selected the higher the mechanical properties of the obtained copper foil.
  • the overall mechanical properties of the copper foil obtained by the technical solution of 1 ⁇ m and porosity of 30-50% are 30% higher.
  • the shape of the through-holes is regular or irregular, that is, during the drilling process, conventional columnar through-holes or other irregular-shaped through-holes can be made.
  • the irregular-shaped through hole can be understood as a continuous channel on the carrier layer extending from one side of the carrier layer to the other side thereof.
  • the copper foil includes a first copper layer, a carrier layer and a second copper layer arranged sequentially from the top layer to the bottom layer, and the first copper layer and the second copper layer are formed by magnetron sputtering and water plating. Formed on both sides of the carrier layer.
  • the magnetron sputtering process can be used to form continuous coatings on both sides of the carrier layer and in the through holes, but there are parts of the carrier layer that are not coated, parts of the through holes that are not coated, and parts of the through holes that are not covered. Therefore, after the magnetron sputtering process, the water plating process is continued to make the coating completely cover both sides of the carrier layer and fill all the through holes on the carrier layer.
  • Optional thicknesses of the first copper layer and the second copper layer are 0-2 ⁇ m.
  • the copper foil also includes a third copper layer and a fourth copper layer, and the third copper layer and the fourth copper layer are respectively formed on the surfaces of the first copper layer and the second copper layer by water plating .
  • a third copper layer and a fourth copper layer can be continuously formed on the first copper layer and the second copper layer by using a water plating process.
  • Optional thicknesses of the third copper layer and the fourth copper layer are 0-5 ⁇ m.
  • a method for preparing an ultra-thin, light, and highly flexible copper foil comprising the step of opening holes on the surface of the carrier layer;
  • the preparation method of the electromagnetic shielding film is as follows:
  • the electromagnetic shielding film includes a 0.5 ⁇ m third copper layer 5, a 0.2 ⁇ m first copper layer 2, a 5 ⁇ m carrier layer 1, a 0.2 ⁇ m second copper layer 3, and a 0.5 ⁇ m fourth copper layer arranged in sequence from the top layer to the bottom layer.
  • Copper layer 6, the material of the carrier layer 1 is PET;
  • the preparation method of described electromagnetic shielding film comprises the steps:
  • Drill holes 4 on the carrier layer with a pore diameter of 1 ⁇ m and a porosity of 30%;
  • the difference between the electromagnetic shielding film and Embodiment 1 is that there is no through hole on the carrier layer.
  • the electromagnetic shielding films prepared in Example 1 and Comparative Example 1 were tested for tensile strength, elongation at break, adhesion, and stability of electromagnetic shielding performance respectively. See Table 1 for the experimental data.
  • the method of electromagnetic shielding effectiveness stability test is: at room temperature, conduct the electromagnetic shielding effectiveness test on the electromagnetic shielding film under folding respectively. Specifically:
  • the bending test method is:
  • a round rod with a diameter of 3mm is selected as the bending radius. Place the test sample on the paint film bending tester, set the number of experiments to "x100" and adjust the bending angle to 180°. Observe the appearance of the test sample every 10 minutes. If there are cracks, breaks, paint film falling and other adverse conditions, record the number of bending times in time. When the bottom line of the experimental requirements is reached, the experiment is stopped immediately.
  • through holes are set on the carrier layer, and an I-shaped or non-I-shaped lock structure is formed on the carrier layer by magnetron sputtering and water plating, which can effectively improve the copper provided by the present invention.
  • the tensile strength, elongation at break and adhesion of the electromagnetic shielding film prepared from foil also show that the change rate of electromagnetic shielding effectiveness does not meet the requirement of 0.1% under high times (400 times) of double folding.
  • the electromagnetic shielding film produced by the copper foil of the present invention has significantly enhanced the stability of the electromagnetic shielding performance. After being folded in half within 400 times, the change in electromagnetic shielding performance remains unchanged. Within 0.1%.

Abstract

本发明属于超薄铜箔屏蔽膜及电池负极材料技术领域,特别涉及一种超薄轻柔韧性高的铜箔及其制备方法和应用,所述超薄轻柔韧性高的铜箔,具有:表面具有至少一个通孔的载体层;以及采用磁控溅射及水镀在所述载体层的两面和所述通孔内所形成工字型或非工字型锁状结构。本发明所提供的铜箔结构强度和韧性佳,可有效提高由所述铜箔制备得到的电磁屏蔽膜的韧性和电磁屏蔽效能的稳定性。

Description

一种超薄轻柔韧性高的铜箔及其制备方法和应用 技术领域
本发明属于超薄铜箔屏蔽膜及电池负极材料技术领域,特别涉及一种超薄轻柔韧性高的铜箔及其制备方法和应用。
背景技术
在电子设备中,为了减少零件与零件之间的电磁干扰,通常需要使用电磁屏蔽膜。为了提高电磁屏蔽膜的电磁屏蔽效能以及提高电磁屏蔽膜的结构强度,通常采用多层设置,如专利CN113038812A所公开的一种电磁屏蔽膜、CN111447819A所公开的电磁屏蔽膜等。但是该结构的电磁屏蔽膜存在功能层与功能层之间连接性低的问题。为了提高电磁屏蔽膜中各个功能层之间的连接性,通常采用的方法为提高功能层表面的粗糙度,类似于提高电镀件与镀层之间连接性的方式,但是采用此种方式制备得到的电磁屏蔽膜的结构强度,如抗拉强度和断裂伸长率都相对较低,在高次数弯折测试下,难以保证电磁屏蔽效能的变化在0.1%以内。
技术问题
为了克服上述现有技术的缺陷,本发明所要解决的技术问题是:提供一种超薄且具有高韧性的铜箔。
进一步提供所述电磁屏蔽膜的制备方法。
技术解决方案
为了解决上述技术问题,本发明提供一种超薄轻柔韧性高的铜箔,具有:
表面具有至少一个通孔的载体层;
以及采用磁控溅射及水镀在所述载体层的两面和所述通孔内所形成工字型或非工字型锁状结构。
进一步提供所述超薄轻柔韧性高的铜箔在制备电磁屏蔽膜或电池负极材料的应用。
进一步提供超薄轻柔韧性高的铜箔的制备方法,包括在载体层表面进行开孔的步骤;
以及在所述载体层两面及其边缘以及孔内采用磁控溅射及水镀形成工字型或非工字型锁状结构的步骤。
有益效果
本发明的有益效果在于:在载体层上设置至少一个通孔,并采用磁控溅射及水镀工艺在载体层的两面和所述通孔内形成工字型或非工字型锁状结构,通过该锁状结构将载体层锁在锁状结构中,可有效提高铜箔的结构强度和韧性;并且由本发明所提供的铜箔所制造的电磁屏蔽膜相较于传统采用简单层叠结构的电磁屏蔽膜,本发明所提供的电磁屏蔽膜的电磁屏蔽效能稳定性显著加强,经过400次以内对折,电磁屏蔽效能变化保持在0.1%内。
附图说明
图1所示为本发明在实施例1中电磁屏蔽膜的结构示意图;
图2所示为本发明在对比例1中电磁屏蔽膜的结构示意图。
标号说明:1、载体层;2、第一铜层;3、第二铜层;4、通孔;5、第三铜层;6、第四铜层。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
一种超薄轻柔韧性高的铜箔,具有:
表面具有至少一个通孔的载体层;
以及采用磁控溅射及水镀在所述载体层的两面和所述通孔内所形成工字型或非工字型锁状结构。
其中,所述工字型或非工字型锁状结构为采用磁控溅射及水镀在载体层的两面和通孔内所形成的连续的镀层结构。工字型锁状结构由在载体层两面的镀层以及在通孔内的镀层所构成;所述非工字型锁状结构为除了前述工字型锁状结构的其他任一一种结构,举例而言,位于载体层两面的镀层可在磁控溅射时或水镀时在载体层的边缘可相互连接,此时由载体层两面的镀层、通孔内的镀层以及位于载体层边缘的镀层所组成的锁状结构为非工字型锁状结构。
进一步的所述载体层的材质选用PET、PI、PA、PEK、LCP、PC和纤维膜中的一种。所述载体层的材质优选为PET,厚度优选为0.5~5μm。
进一步的,所述通孔的孔径相同或不同;所述通孔的形状为规则或不规则。
其中,所述通孔的孔径相同或不同,即在所述载体层上的通孔可以采用相同的孔径,也可以采用不同的孔径。需要说明的是,所述通孔的孔径应当适合于磁控溅射或水镀,可以理解为,可在磁控溅射或水镀过程中可在通孔内沉积金属以形成镀层的孔径均适用于本发明,本发明并不对此进行限制。
可选的,当所述孔径采用1μm时,孔隙率优选的30~50%;当孔径为10μm时,孔隙率优选为50~70%。根据实验发现,选择越小的孔径,所获得的铜箔的力学性能越高。相较于采用10μm、孔隙率为50~70%的技术方案,采用1μm,孔隙率为30~50%的技术方案所获得铜箔的整体力学性能高30%。
所述通孔的形状为规则或不规则的,即在打孔过程中可以打常规柱状通孔,也可以打其他不规则形状通孔。所述不规则形状通孔可以理解为在载体层上,由载体层的一侧面延伸至其另一侧面的连续通道。
进一步的,所述铜箔包括由顶层至底层依次设置的第一铜层、载体层和第二铜层,所述第一铜层和第二铜层为采用磁控溅射及水镀在所述载体层的两面形成。
具体的,采用磁控溅射工艺可在载体层的两面和通孔内形成连续的镀层,但是存在部分载体层表面并未形成镀层、部分的通孔内未形成镀层以及部分的通孔未被镀层所填满的问题,因此在磁控溅射工艺后继续采用水镀工艺,以使镀层完全包覆载体层的两面以及将载体层上的通孔全部填满。所述第一铜层和第二铜层的可选厚度为0~2μm。
进一步的,所述铜箔还包括第三铜层和第四铜层,所述第三铜层和第四铜层均采用水镀分别在所述第一铜层及第二铜层的表面形成。
在一种实施方式中,为了进一步提高铜箔的结构强度以及电磁屏蔽效能,可继续采用水镀工艺在所述第一铜层和第二铜层上继续形成第三铜层和第四铜层。所述第三铜层和第四铜层的可选厚度为0~5μm。所述超薄轻柔韧性高的铜箔在制备电磁屏蔽膜或电池负极材料的应用。
超薄轻柔韧性高的铜箔的制备方法,包括在载体层表面进行开孔的步骤;
以及在所述载体层两面及其边缘以及孔内采用磁控溅射及水镀形成工字型或非工字型锁状结构的步骤。
具体的,当采用所述铜箔制备电磁屏蔽膜时,所述电磁屏蔽膜的制备方法如下:
S1、在载体层上形成至少一个通孔;
S2、对载体层依次进行磁控溅射和水镀,以在所述载体层的两面分别形成第一铜层和第二铜层;
S3、继续进行水镀,以在第一铜层和第二铜层的表面分别形成第三铜层和第四铜层,获得电磁屏蔽膜。
实施例1
参见图1所述,电磁屏蔽膜包括由顶层至底层依次设置的0.5μm第三铜层5、0.2μm第一铜层2、5μm载体层1、0.2μm第二铜层3、0.5μm第四铜层6,所述载体层1的材质均选用PET;
所述电磁屏蔽膜的制备方法包括如下步骤:
S1、在载体层上打通孔4,孔径为1μm,孔隙率为30%;
S2、对载体层依次进行磁控溅射和水镀,以在所述载体层的两面分别形成第一铜层和第二铜层;
S3、继续进行水镀,以在第一铜层和第二铜层的表面分别形成第三铜层和第四铜层,获得电磁屏蔽膜。
对比例1
参见图2所示,电磁屏蔽膜,与实施例1的区别在于,载体层上没有通孔。
检测例
将实施例1与对比例1所制备得到的电磁屏蔽膜分别进行抗拉强度、断裂伸长率、附着力以及电磁屏蔽效能稳定性测试,实验数据参见表1。其中电磁屏蔽效能稳定性测试的方法为:在室温下,分别对电磁屏蔽膜进行对折下电磁屏蔽效能测试,测试标准为电磁屏蔽效能变化在0.1%为合格,并记录初次不合格时对折次数,具体为:
实验设备:漆膜弯曲试验机;
折弯测试方法为:
选取直径为3mm圆棒做弯曲半径。将检测样品放置在漆膜弯曲试验机上,将实验次数设置成“x100”并调节设置弯折角度为180°。每间隔10min观察检测样品的外观状态。若有裂纹、断裂、漆膜掉落等不良情况及时记录弯折次数。达到实验要求底线时,即刻停止实验。
实验要求:弯曲半径:3mm;弯折角度:180°;弯折次数:x100;
表1
项目 抗拉强度(MPa) 断裂伸长率(%) 稳定性(次) 附着力
参照标准 ASTM D412 ASTM D412 - GB/T 5210拉开法
实施例1 70 10 400 15MPa
对比例1 40 5 100 10N/cm2
从表1可以看出,在载体层上设置通孔,以及通过磁控溅射及水镀在载体层上形成工字型或非工字型锁状结构,可有效提高由本发明所提供的铜箔制备得到的电磁屏蔽膜的抗拉强度、断裂伸长率和附着力,同时表现出在高次数(400次)对折下,电磁屏蔽效能的变化率才不符合0.1%的要求。
综上所述,本发明所提供的超薄轻柔韧性高的铜箔及其制备方法和应用,在载体层上设置至少一个通孔,并采用磁控溅射及水镀工艺在载体层的两面和所述通孔内形成工字型或非工字型锁状结构,通过该锁状结构将载体层锁在锁状结构中,可有效提高铜箔的结构强度和韧性;并且由本发明所提供的铜箔所制造的电磁屏蔽膜相较于传统采用简单层叠结构的电磁屏蔽膜,本发明所提供的电磁屏蔽膜的电磁屏蔽效能稳定性显著加强,经过400次以内对折,电磁屏蔽效能变化保持在0.1%内。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种超薄轻柔韧性高的铜箔,其特征在于,具有:
    表面具有至少一个通孔的载体层;
    以及采用磁控溅射及水镀在所述载体层的两面和所述通孔内所形成工字型或非工字型锁状结构。
  2. 根据权利要求1所述超薄轻柔韧性高的铜箔,其特征在于,所述载体层的材质选用PET、PI、PA、PEK、LCP、PC和纤维膜中的一种。
  3. 根据权利要求1所述超薄轻柔韧性高的铜箔,其特征在于,所述通孔的孔径相同或不同。
  4. 根据权利要求1所述超薄轻柔韧性高的铜箔,其特征在于,所述通孔的形状为规则或不规则。
  5. 根据权利要求1所述超薄轻柔韧性高的铜箔,其特征在于,包括由顶层至底层依次设置的第一铜层、载体层和第二铜层,所述第一铜层和第二铜层为采用磁控溅射及水镀在所述载体层的两面所形成。
  6. 根据权利要求5所述超薄轻柔韧性高的铜箔,其特征在于,还包括第三铜层和第四铜层,所述第三铜层和第四铜层均采用水镀分别在所述第一铜层及第二铜层的表面形成。
  7. 如权利要求1至6任一项所述超薄轻柔韧性高的铜箔在制备电磁屏蔽膜或电池负极材料的应用。
  8. 超薄轻柔韧性高的铜箔的制备方法,其特征在于:包括在载体层表面进行开孔的步骤;
    以及在所述载体层两面及其边缘以及孔内采用磁控溅射及水镀形成工字型或非工字型锁状结构的步骤。
PCT/CN2022/087351 2021-10-14 2022-04-18 一种超薄轻柔韧性高的铜箔及其制备方法和应用 WO2023060864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111195882.8 2021-10-14
CN202111195882.8A CN113923965A (zh) 2021-10-14 2021-10-14 一种超薄轻柔韧性高的铜箔及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023060864A1 true WO2023060864A1 (zh) 2023-04-20

Family

ID=79240286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087351 WO2023060864A1 (zh) 2021-10-14 2022-04-18 一种超薄轻柔韧性高的铜箔及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113923965A (zh)
WO (1) WO2023060864A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923965A (zh) * 2021-10-14 2022-01-11 深圳市汉嵙新材料技术有限公司 一种超薄轻柔韧性高的铜箔及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189589A (ja) * 1999-12-27 2001-07-10 Bridgestone Corp 電磁波シールドフィルム、電磁波シールド性光透過窓材及び表示装置
CN201160362Y (zh) * 2008-02-03 2008-12-03 赖仁寿 电磁屏蔽用箔片
WO2014024878A1 (ja) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 キャリア付金属箔
JP2014198884A (ja) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 キャリア付銅箔、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
CN104853577A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超薄电磁屏蔽膜及其生产工艺
CN205249699U (zh) * 2015-09-15 2016-05-18 东莞市万丰纳米材料有限公司 电磁屏蔽膜
CN113923965A (zh) * 2021-10-14 2022-01-11 深圳市汉嵙新材料技术有限公司 一种超薄轻柔韧性高的铜箔及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189589A (ja) * 1999-12-27 2001-07-10 Bridgestone Corp 電磁波シールドフィルム、電磁波シールド性光透過窓材及び表示装置
CN201160362Y (zh) * 2008-02-03 2008-12-03 赖仁寿 电磁屏蔽用箔片
WO2014024878A1 (ja) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 キャリア付金属箔
JP2014198884A (ja) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 キャリア付銅箔、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
CN104853577A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超薄电磁屏蔽膜及其生产工艺
CN205249699U (zh) * 2015-09-15 2016-05-18 东莞市万丰纳米材料有限公司 电磁屏蔽膜
CN113923965A (zh) * 2021-10-14 2022-01-11 深圳市汉嵙新材料技术有限公司 一种超薄轻柔韧性高的铜箔及其制备方法和应用

Also Published As

Publication number Publication date
CN113923965A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
TWI627886B (zh) 一種超薄金屬層的印刷線路板的製備方法
TWI609043B (zh) Resin copper foil, copper-clad laminate and printed wiring board
WO2023060864A1 (zh) 一种超薄轻柔韧性高的铜箔及其制备方法和应用
JP6543001B2 (ja) 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
TWI704048B (zh) 表面處理銅箔及使用其製成的覆銅積層板
TWI486260B (zh) 具有黑色極薄銅箔之銅箔結構及其製造方法
CN104717850B (zh) 一种局部厚铜电路板的制作方法和局部厚铜电路板
EP3048864A2 (en) Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
TWI735651B (zh) 銅箔以及具有該銅箔的覆銅層積板
WO2022257800A1 (zh) 金属箔、带载体金属箔、覆铜层叠板及印刷线路板
CN101720175A (zh) 具有高纵横比盲孔的多层线路板制作方法及多层线路板
CN105746004B (zh) 带有电路形成层的支持基板、两面带有电路形成层的支持基板、多层层压板、多层印刷线路板的制造方法及多层印刷线路板
WO2019033839A1 (zh) 一种石墨、铜复合导热材料的制备方法
TWI551437B (zh) And the use of a carrier copper foil of the printed wiring board thereof, printed circuit boards and copper-clad laminates
TWI526303B (zh) Surface-treated copper foil, laminated board, carrier copper foil, printed wiring board, printed circuit board, electronic machine and printed wiring board manufacturing method
CN101665017B (zh) 具有非对称树脂层厚度的半固化片及其应用
KR20180040068A (ko) 극 박막 제조용 회전 음극드럼
CN101742828A (zh) 多层电路板的制造方法
WO2020119339A1 (zh) 一种带载体的金属箔及其制备方法
TW201829171A (zh) 用於fpc及cof材料的奈米金屬基板
TW201638398A (zh) 單面薄型金屬基板之製造方法
KR102118455B1 (ko) 표면 처리 동박 및 이를 이용하여 제조되는 동 클래드 적층판 또는 프린트 배선판
KR101768799B1 (ko) 전착도금에 의한 구리/철-니켈계 합금 접합박판 및 이의 제조방법
TW202208157A (zh) 具複合材料之多層板
CN102975425B (zh) 具有过渡结合层的聚酰亚胺薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879814

Country of ref document: EP

Kind code of ref document: A1