WO2022257800A1 - 金属箔、带载体金属箔、覆铜层叠板及印刷线路板 - Google Patents

金属箔、带载体金属箔、覆铜层叠板及印刷线路板 Download PDF

Info

Publication number
WO2022257800A1
WO2022257800A1 PCT/CN2022/095933 CN2022095933W WO2022257800A1 WO 2022257800 A1 WO2022257800 A1 WO 2022257800A1 CN 2022095933 W CN2022095933 W CN 2022095933W WO 2022257800 A1 WO2022257800 A1 WO 2022257800A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
layer
carrier
protrusion
copper
Prior art date
Application number
PCT/CN2022/095933
Other languages
English (en)
French (fr)
Inventor
高强
朱宇华
张美娟
张可
蒋卫平
朱开辉
苏陟
Original Assignee
广州方邦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州方邦电子股份有限公司 filed Critical 广州方邦电子股份有限公司
Priority to KR1020237036332A priority Critical patent/KR20230160367A/ko
Priority to JP2023566916A priority patent/JP2024515884A/ja
Publication of WO2022257800A1 publication Critical patent/WO2022257800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper

Definitions

  • the invention relates to the field of material technology, in particular to a metal foil, a metal foil with a carrier, a copper-clad laminate and a printed circuit board.
  • PCB Printed circuit board
  • the structure of the printed circuit board is composed of a metal foil and a dielectric layer glued between the metal foils. After the metal foil is etched, a signal transmission line for signal transmission is formed.
  • the dielectric layer is mainly used for insulation.
  • the metal foil is generally The copper foil layer and the dielectric layer are generally resin layers; the signal transmission lines etched on the metal foil are bonded to the resin layer through the surface of the lines.
  • Physical mechanisms of transmission loss to signals in a printed wiring board include conductor loss due to the metal foil of the printed wiring board and dielectric loss due to the dielectric layer.
  • the dielectric loss caused by the dielectric layer by selecting a resin layer made of a special material, the dielectric loss of the dielectric layer can be reduced to an ideal level. Therefore, the conductor loss of the metal foil becomes a major factor in the transmission loss of the printed circuit board signal.
  • One of the most important characteristics of conductor loss is that it increases with increasing signal frequency due to electromagnetic skin effect. The internal reason is that the high-frequency signal current will flow in the thinner surface layer of the metal surface of the transmission line. Wherein, the higher the frequency of the signal, the shallower the depth of the current flowing in the signal transmission line of the metal foil.
  • the bonding force between the copper foil layer and the dielectric layer is another important factor affecting the performance of the printed circuit board. Because the signal transmission line of the copper foil layer is attached to the resin layer through the roughness of the surface to generate a bonding force with the dielectric layer. As the signal transmission lines become thinner and thinner, in this regard, the article "Non-Classical Conductor Losses due to Copper Foil Roughness and Treatment" points out that: the adhesion between copper foil and dielectric layer is related to the roughness of copper foil, The greater the roughness of the copper foil, the greater its adhesion to the dielectric layer of the printed circuit board, and the higher the peel strength with the dielectric layer. Therefore, the trend of small signal transmission lines brought about by the high integration of printed circuit boards requires that the surface roughness of copper foil should be increased to ensure the bonding force with the dielectric layer.
  • the existing technology requires the roughness of the metal foil to be as small as possible; Bigger is better. That is to say, the two requirements of the existing technology on the surface morphology of the metal foil are contradictory, and it is impossible to take into account the high-frequency signal transmission loss of the metal foil and the peeling between the high-density signal transmission line on the metal foil and the dielectric layer. strength.
  • At least one object of the embodiments of the present invention is to provide a metal foil, a metal foil with a carrier, a copper-clad laminate, and a printed circuit board, which can not only reduce the high-frequency signal transmission loss of the metal foil, but also enable the formation of the metal foil.
  • Some signal transmission lines and the dielectric layer have good peel strength so that the two are not easy to delaminate and fall off, so that high-frequency circuit boards with high density and thin lines can be made with the metal foil.
  • an embodiment of the present invention provides a metal foil, a plurality of protrusions are distributed on one side of the metal foil, and the protrusions have the following microscopic appearance:
  • the lower half of the protrusion connected to the one side of the metal foil has a restriction, and the diameter of the circumscribed circle of the cross section of the restriction is smaller than the skin depth of the metal foil;
  • the surface area of the portion above the restricting portion is larger than the surface area of the rest of the protrusion.
  • the skin depth ⁇ is equal to: ⁇ is the electrical conductivity of the raised material, f is the signal frequency when the metal foil is used as a signal transmission carrier, and ⁇ is the magnetic permeability.
  • the height of the restricting portion relative to the one side of the metal foil is not greater than 2 microns, and the height of the protrusion relative to the one side of the metal foil is not greater than 3 microns.
  • the ratio of the longitudinal length of the portion of the protrusion above the restricting portion to the height of the protrusion is: 1/2-5/6.
  • the protrusions are tree-shaped, ice-hanging or drop-shaped.
  • the protrusion includes a main part and a branch part; the main part extends outward from the one surface, the main part has the restriction part, and the branch part is formed by the main part. The surface of the portion above the restricting portion extends outward.
  • the material composition of the trunk portion is the same as that of the metal foil.
  • the material composition of the main body is different from that of the metal foil, and the material of the main body is selected from at least one of copper, nickel, zinc, chromium, aluminum, silicon, aluminum oxide particles, and industrial diamond particles. one.
  • At least 10% of the protrusions have the microscopic topography.
  • At least 50% of the protrusions have the microscopic topography.
  • At least 90% of the protrusions have the microscopic topography.
  • the signal frequency f is 1 Hz-100 GHz.
  • the metal foil includes copper foil and/or aluminum foil.
  • the metal foil is a single-layer metal structure or a multi-layer metal structure composed of at least two single-metal layers.
  • Another embodiment of the present invention provides a metal foil with a carrier, which includes a carrier layer and the metal foil described in any of the above schemes; on the one hand.
  • the metal foil with a carrier further includes a peeling layer; the peeling layer is located between the carrier layer and the metal foil, so that the metal foil and the carrier layer can be peeled off. .
  • the metal foil with a carrier further includes a first adhesive layer; the first adhesive layer is arranged between the carrier layer and the peeling layer.
  • the first bonding layer is a metal bonding layer; the metal bonding layer is made of any one or more materials among copper, zinc, nickel, iron and manganese; or, the The metal bonding layer is made of one of copper or zinc and one of nickel, iron and manganese.
  • the metal foil with a carrier further includes a first anti-oxidation layer, and the first anti-oxidation layer is provided on a side of the metal foil close to the carrier layer.
  • the material of the first anti-oxidation layer is at least one of nickel, copper alloy, and chromium.
  • the metal foil with a carrier further includes a second anti-oxidation layer, and the second anti-oxidation layer is provided on a side of the metal foil away from the carrier layer.
  • the material of the second anti-oxidation layer is at least one of nickel, chromium and zinc.
  • Another embodiment of the present invention provides a copper-clad laminate, which is obtained by using the metal foil described in any of the above schemes or the metal foil with a carrier described in any of the above schemes.
  • the copper-clad laminate further includes a dielectric layer, and the dielectric layer is disposed on the one side of at least one of the metal foils.
  • the material of the medium layer is selected from polyimide (such as thermoplastic polyimide), modified epoxy resin, modified acrylic resin, polyethylene terephthalate, polyethylene terephthalate Butylene dicarboxylate, polyethylene, polyethylene naphthalate, polystyrene, polyvinyl chloride, polysulfone, polyphenylene sulfide, polyether ether ketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal At least one of polymers, polyoxalylurea, epoxy glass cloth, and BT resin.
  • polyimide such as thermoplastic polyimide
  • modified epoxy resin such as thermoplastic polyimide
  • modified acrylic resin such as polyethylene terephthalate
  • polyethylene terephthalate Butylene dicarboxylate polyethylene, polyethylene naphthalate, polystyrene, polyvinyl chloride, polysulfone, polyphenylene sulfide, polyether ether ketone, polyphenylene
  • the copper-clad laminate further includes a second adhesive layer, and the second adhesive layer is provided on the one side of the metal foil.
  • the material of the second adhesive layer is selected from polystyrene, vinyl acetate, polyester, polyethylene, polyamide, rubber or acrylic thermoplastic resin, phenolic , epoxy, thermoplastic polyimide, urethane, melamine or alkyd thermosetting resin, BT resin, at least one of ABF resin.
  • Another embodiment of the present invention provides a printed circuit board, which uses the metal foil described in any of the above schemes, the metal foil with a carrier described in any of the above schemes, or the copper-clad laminate described in any of the above schemes And get.
  • the manufacturing method of the metal foil, the metal foil with a carrier, the copper clad laminate, the printed circuit board and the metal foil provided by the embodiment of the present invention has the following advantages At least one aspect of the effect:
  • the protrusions Since a plurality of protrusions are distributed on one side of the metal foil, and the protrusions have the following microscopic appearance: the lower half of the protrusion connected to the one side has a restricting portion, and the lateral portion of the restricting portion The diameter of the circumscribed circle of the section is smaller than the skin depth of the metal foil; the surface area of the portion of the protrusion above the restricting portion is greater than the surface area of the rest of the protrusion.
  • the restriction part of the protrusion has a relatively large impedance, and the narrower the restriction part of the protrusion is, the greater the impedance of the protrusion is, and Since the diameter of the circumscribed circle of the cross-section of the limiting portion of the lower half of the protrusion is smaller than the skin depth, the high-frequency signal in the metal foil is limited by the limiting portion of the lower half of the protrusion.
  • the surface area of the portion raised above the restricting portion is increased, so that the protrusion has a relatively large surface area, thereby enabling a large gap between the signal transmission line formed by the metal foil and the dielectric layer.
  • the contact area is large, so that the signal transmission signal and the dielectric layer have good peel strength so that the two are not easy to delaminate and fall off, so that high-frequency circuit boards with high density and thin lines can be made with the metal foil.
  • Fig. 1 is a schematic diagram of a longitudinal section of a metal foil provided by an embodiment of the present invention
  • Fig. 2 shows the overall structure of the protrusion in Fig. 1;
  • Fig. 3 shows a schematic diagram of the flow of high-frequency signal current on the metal foil when the width of the lower part of the protrusion in the metal foil is greater than the skin depth;
  • Fig. 4 shows a schematic diagram of the flow of high-frequency signal current on the metal foil when the minimum width of the lower half of the protrusion of the metal foil provided by an embodiment of the present invention is smaller than the skin depth;
  • Fig. 5 is a schematic structural view of a metal foil provided by an embodiment of the present invention.
  • Fig. 6 is an electron microscope observation view of a metal foil provided with a plurality of protrusions on one side provided by an embodiment of the present invention
  • Fig. 7 is an electron microscope observation view of a metal foil with a plurality of protrusions provided on one side provided by another embodiment of the present invention.
  • Fig. 8 is the electron microscope observation figure of conventional metal foil
  • Fig. 9 is a convex slice scanning curve of a metal foil according to an embodiment of the present application and a conventional metal foil;
  • Figure 10 is the corresponding spatial Fourier transform logarithmic spectrogram of the curve in Figure 9;
  • Fig. 11 is a schematic structural view of the pressing assembly used in the process of testing the peel strength between the raised side of the metal foil and the resin layer according to an embodiment of the present invention
  • Fig. 12 is a schematic structural view of a metal foil with a carrier provided by an embodiment of the present invention.
  • Fig. 13 is a schematic structural view of a metal foil with a carrier provided by another embodiment of the present invention.
  • Fig. 14 is a schematic structural view of a metal foil with a carrier provided by another embodiment of the present invention.
  • Fig. 15 is a schematic structural view of a metal foil with a carrier provided by another embodiment of the present invention.
  • Fig. 16 is a schematic structural view of a metal foil with a carrier provided by another embodiment of the present invention.
  • Fig. 17 is a schematic structural diagram of a copper-clad laminate provided by an embodiment of the present invention.
  • Fig. 18 is a schematic structural diagram of a copper-clad laminate provided by another embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a copper-clad laminate provided by another embodiment of the present invention.
  • an embodiment of the present invention provides a metal foil 1 , a plurality of protrusions 2 are distributed on one side of the metal foil 1 , and the protrusions 2 have the following microscopic appearance:
  • the The lower half of the protrusion 2 connected to the one side of the metal foil 1 has a restriction part 100, and the diameter of the circumscribed circle of the cross section of the restriction part 100 is smaller than the skin depth of the metal foil 1;
  • the surface area of the portion of the protrusion 2 above the restricting portion 100 is larger than the surface area of the rest of the protrusion 2 .
  • the skin depth ⁇ is equal to: ⁇ is the electrical conductivity of the material of the protrusion 2 on the metal foil 1 , f is the signal frequency when the metal foil 1 is used as a signal transmission carrier, and ⁇ is the magnetic permeability.
  • the protrusion 2 can be understood as: the protruding part on the surface of the metal foil 1 can be called a protrusion 2; The raised parts in other places are bumps 2 .
  • the protrusions 2 are distributed on one side of the metal foil 1 to a certain extent.
  • the protrusion 2 may be formed in the following manner: forming the protrusion 2 on the one side of the metal foil 1 by means of electroplating.
  • the protrusion 2 may be formed during the process of preparing the metal foil 1, for example, the metal foil 1 is formed by electroplating, and the protrusion 2 is formed by electroplating the metal
  • the foil 1 is formed by electroplating on the surface of the metal foil 1 during the process.
  • the protrusion 2 is not integrally formed with the surface of the one side of the metal foil 1 .
  • the protrusion 2 is formed on the one side of the metal foil 1 by sputtering.
  • the protrusion 2 may be formed by a plurality of particle clusters, or may be a single structure, and the structure of the protrusion 2 is not specifically limited here.
  • the lower half of the protrusion 2 refers to: referring to FIG. 2 , in the height direction of the protrusion 2 , the half of the height of the protrusion 2 is the dividing line , the part of the protrusion 2 below the boundary line (this part is close to the side of the metal foil) is the lower half of the protrusion 2 .
  • the measurement method of the height of the protrusion 2 can generally be: referring to FIG.
  • both sides of the protrusion 2 are at a preset sampling length (which can be set as The maximum diameter value R of the diameters of the circumscribed circles of the cross-sections of the protrusions 2 everywhere, the two sides are at the first lowest point on one side of the metal foil 1 (for example, the protrusions in FIG.
  • the first lowest point of this side on one side of the metal foil is a; and on the right side of the longitudinal section of the protrusion 2, this side is on the one side of the metal foil
  • the first lowest point is b
  • the midpoint in the height direction of the two lowest points is c, which can be regarded as the midpoint of the bottom of the protrusion
  • the height of the protrusion 2 is : the vertical distance between the highest point d of the protrusion 2 and the midpoint c of the bottom of the protrusion 2 .
  • the line ab can be regarded as the boundary line between the protrusion 2 and the metal foil 1 .
  • the portion where the diameter of the circumscribed circle of the cross section in the lower half of the protrusion 2 is smaller than the skin depth of the metal foil 1 is called a “restricted portion” in the present invention.
  • the embodiments of the present invention have at least one of the following beneficial effects: since a plurality of protrusions are distributed on one side of the metal foil, and the protrusions have the following microscopic appearance: the lower half of the protrusions has The diameter of the circumscribed circle of the cross section is smaller than the restriction portion of the skin depth; the surface area of the portion of the protrusion above the restriction portion is greater than the surface area of the rest of the protrusion.
  • the restriction part of the protrusion has a relatively large impedance, and the narrower the restriction part of the protrusion is, the greater the impedance of the protrusion is, and Since the diameter of the circumscribed circle of the cross-section of the limiting portion of the lower half of the protrusion is smaller than the skin depth, the high-frequency signal in the metal foil is limited by the limiting portion of the lower half of the protrusion.
  • the surface area of the portion raised above the restricting portion is increased, so that the protrusion has a relatively large surface area, thereby enabling a large gap between the signal transmission line formed by the metal foil and the dielectric layer.
  • the contact area is large, so that the signal transmission signal and the dielectric layer have good peel strength so that the two are not easy to delaminate and fall off, so that high-frequency circuit boards with high density and thin lines can be made with the metal foil.
  • a plurality of protrusions 2 are distributed on the one side, and the lower half of the protrusions 2 has a restriction part where the diameter of the circumscribed circle of the cross section is smaller than the skin depth, which limits the flow of high-frequency signal current to all
  • the upper part of the protrusion 2 can reduce the loss effect of the protrusion 2 of the metal foil 1 on the high-frequency current, so that the high-frequency signal loss of the signal transmission line formed by the metal foil 1 of the embodiment of the present invention is affected.
  • the influence of the protrusions 2 on the surface of the metal foil 1 is small, so that the high-frequency signal transmission loss of the signal transmission line formed by the metal foil 1 can be reduced.
  • the bonding strength between the metal foil 1 with the signal transmission line and the dielectric layer 9 mainly depends on the physical and chemical adhesion between the interface between the metal foil 1 and the dielectric layer 9 . Reducing the surface profile of the metal foil 1 means reducing the above-mentioned adhesion ability. Peel strength (P/S) is used to measure the bond strength of laminated materials. A low P/S will cause delamination problems between the metal foil 1 and the dielectric layer 9 of the printed wiring board. Specifically, in the process of manufacturing, assembling and using the printed circuit board, the bonding at the interface between the metal foil 1 formed with the signal transmission line and the dielectric layer 9 must be very firm.
  • the metal foil 1 of the printed circuit board and the dielectric There must be a certain peel strength between the layer 9 to prevent the two from easily delaminating and coming off.
  • the factors that affect the high peel strength between the metal foil 1 and the dielectric layer 9 mainly include: metal foil 1 enters the thickness y 0 of the dielectric layer 9 , the tensile strength ⁇ N of the dielectric layer 9 , the thickness ⁇ of the metal foil 1 and the ratio of the modulus E of the metal foil 1 to the modulus Y of the dielectric layer 9 .
  • the prior art believes that the thickness of the metal foil 1 entering the dielectric layer 9 can be equal to the height that the side 2 of the metal foil 1 that is in contact with the dielectric layer 9 enters the height of the dielectric layer 9, and the thickness of the metal foil 1 and the dielectric layer 9
  • the height of the contact side 2 entering the dielectric layer 9 is related to the roughness of the side of the metal foil 1, so the thickness y0 of the metal foil 1 entering the dielectric layer 9 can also be determined by the thickness of the metal foil 1.
  • the roughness of the side is characterized. It can be seen from formula 1 that, under the condition that other parameter variables remain unchanged, the higher the roughness of the protrusion 2, the higher the peel strength between the metal foil 1 and the dielectric layer 9, and vice versa. The lower the peel strength between the metal foil 1 and the dielectric layer 9 is.
  • the prior art has the following teachings: on the one hand, the development trend of high-density fine lines of printed circuit boards requires that the roughness of the copper foil be as high as possible, so as to improve the peel strength between the metal foil 1 and the dielectric layer 9 .
  • the related art in order to reduce the transmission loss of high-frequency signals, the related art requires that the roughness of the metal foil 1 be as small as possible. That is, the two requirements of the prior art on the surface topography of the metal foil 1 are contradictory. Among them, the roughness can reflect the profile height of the surface of the metal foil 1 .
  • the prior art believes that: to reduce the high-frequency signal transmission loss of the metal foil 1, the profile height of the surface of the metal foil 1 needs to be smaller; and to improve the high-density signal transmission lines and resin on the metal foil 1 The peel strength between the layers requires a larger profile height of the surface of the metal foil 1 .
  • the present invention creatively does not improve the surface morphology of the metal foil 1 in the printed circuit board of high-density fine lines from the perspective of the roughness of the metal foil 1, but creatively starts from the structure of the bump 2 of the metal foil 1 , so that there are a plurality of protrusions 2 on one side of the metal foil 1, and the lower half of the protrusions connected to the one side has a restricting portion, and the diameter of the circumscribed circle of the cross section of the restricting portion is smaller than the The skin depth of the metal foil; the surface area of the portion of the protrusion above the restriction is greater than the surface area of the remaining portion of the protrusion.
  • the surface area of the portion of the protrusion above the restricting portion is greater than the surface area of the rest of the protrusion
  • the upper part has a large surface area, while the lower part has a small (at least smaller than the upper part) surface area structure.
  • the part where the entire protrusion 2 is in contact with the dielectric layer 9 (such as a resin layer) is mostly the upper structure of the protrusion 2.
  • the peeling force between the metal foil 1 and the dielectric layer 9 can be significantly improved, that is, the metal foil 1 There is greater peel strength between the foil 1 and the dielectric layer 9 .
  • the lower half of the protrusion 2 has a limiting portion whose diameter of the circumscribed circle of the cross section is smaller than the skin depth, that is, less than the skin depth of the material of the protrusion 2, and the minimum width of the high-frequency signal current flows on the surface of the metal foil 1.
  • the impedance at the location is relatively large, so that the high-frequency signal current will not continue to flow along the protrusion 2 to the upper part of the protrusion 2, that is, limited by the minimum width of the protrusion 2, the high-frequency signal current will basically not flow to the upper part of the minimum width , that is, the high-frequency signal current flowing through the protrusion 2 is limited, so that the high-frequency signal loss of the signal transmission line formed by the metal foil 1 in the embodiment of the present invention is less affected by the protrusion 2 on the surface of the metal foil 1, so that The high-frequency signal transmission loss of the signal transmission line formed by the metal foil 1 can be reduced.
  • the metal foil 1 by forming a plurality of protrusions 2 on the surface of the metal foil 1, the metal foil 1 can simultaneously take into account the high-frequency signal transmission loss of the metal foil 1 and the metal foil 1.
  • the two aspects of the peel strength between the formed high-density signal transmission line and the dielectric layer overcome the technical prejudice that the profile height of the surface topography of the metal foil 1 in the prior art cannot take into account the two aspects, and open a high New technological innovation of raw materials for dense and fine-line printed circuit boards.
  • the current of the signal transmission line on the metal foil 1 can only flow on the outer surface of the metal layer, the surface layer whose thickness is the skin depth.
  • the current can flow along the entire surface of the protrusion 2, and the signal transmission loss of the current is relatively large at this time; while as shown in Figure 4 It shows that when the width of the lower half of the protrusion 2 (the root at this time) is smaller and smaller than the skin depth, the impedance of the root is relatively large, and the current of the signal transmission line on the metal foil 1 cannot flow on the protrusion. Instead, it flows on the surface of the signal transmission line and avoids the protrusion 2.
  • the protrusion 2 basically does not increase the signal transmission loss of the current in the metal foil 1.
  • the gap between the protrusion 2 and the dielectric layer 9 can be improved.
  • the contact area can further improve the peel strength between the high-density signal transmission lines on the metal foil 1 and the resin layer.
  • FIG. 6 is an electron microscope observation view of a metal foil 1 provided with a plurality of protrusions 2 on one side provided by an embodiment of the present invention, and there are many protrusions among the plurality of protrusions 2
  • the lower half of 2 has a restricting part 100, the diameter of the circumscribed circle of the cross section of the restricting part 100 is smaller than the skin depth of the metal foil, as shown in Figure 6, most of the protrusions in the metal foil 1 2 is a structure with a lower width at the bottom and a wider average width at the upper part.
  • the skin effect of the current of the protrusion 2 on the metal foil 1 is small and the protrusion 2 also has a larger The contact area in contact with the dielectric layer 9.
  • FIG. 7 is an electron microscope observation view of a metal foil 1 provided with a plurality of protrusions 2 on one side provided by another embodiment of the present invention, among the plurality of protrusions 2, the lower half of many protrusions 2 have restricting parts 100.
  • the diameter of the circumscribed circle of the cross-section of the restriction part 100 is smaller than the skin depth of the metal foil, and the surface area of the protrusion above the restriction part is larger than the rest of the protrusion In this way, the skin effect of the current of the protrusion 2 on the metal foil 1 is smaller and the protrusion 2 also has a larger contact area with the dielectric layer 9 .
  • FIG. 8 is an electron microscope observation diagram of a conventional metal foil 1, one side of the conventional metal foil is formed as a rough surface, and there are many contour peaks on the rough surface, and the diameter of the circumscribed circle of the cross-section of the restriction part of the lower half of the contour peak is larger than that of the tendon.
  • the skin depth, that is, the profile peak has a larger width at the bottom and a smaller average width of the upper part, which has a lower width and upper narrow structure, so that the skin effect of the current of the profile peak on the metal foil 1 is relatively large and easily produces a higher High frequency signal transmission loss.
  • FIG. 9 and FIG. 10 In actual production, due to the statistical characteristics of the electrochemically formed metal lattice, the size and shape of the protrusions 2 formed on the surface of the copper foil have a certain distribution. Generally speaking, the shape, size and distribution of the protrusions 2 are determined by the process.
  • Fig. 9 is a slice scanning curve of one side of two kinds of copper foils, which is used to reflect the profile of the said one side of two kinds of copper foil products, and the convex side is scanned from top to bottom by laser.
  • the upper curve is the contour curve of the copper foil of the present application provided with the convex side
  • the lower curve is the conventional copper foil without the convex surface of the present application.
  • the contour curve of the raised side It can be seen from FIG. 9 that the one side of the copper foil of the present application has higher protrusions 2 than the one side of the conventional copper foil. It should be pointed out that the bump 2 in the curve is not the real shape of the bump 2, because the scanning is from top to bottom with laser. When the diameter of the root of the protrusion 2 is smaller than the diameter of the upper part of the protrusion, the measurement fails to obtain the shape of the root of the protrusion.
  • Fig. 10 is the corresponding spatial Fourier transform logarithmic spectrogram of the curve in Fig.
  • the size and distribution of the protrusions on one side of the copper foil of the present application shown in the figures are different from those of the conventional copper foil.
  • the conventional copper foil mentioned above is not an existing copper foil product, but is used as a comparative example of the copper foil of the present application.
  • the height of the restricting portion relative to the one side of the metal foil may be no greater than 2 microns (such as less than 1.5 microns, 1.2 microns, 1 micron, 0.8 microns, 0.5 microns, etc.), so that the The skin effect generated by some currents on the protrusions will be relatively weak, so that it can more effectively avoid the higher high frequency easily generated due to the larger skin effect of the current on the metal foil 1 by the protrusions 2 Signal transmission loss.
  • the height of the protrusion 2 is not particularly limited, for example, it may not be greater than 3 microns. Therefore, under the condition that the protrusions 2 have the above-mentioned microscopic morphology of the present application, when the protrusions 2 have the above-mentioned height, the peel strength of the metal foil 1 can be further improved, so that the metal foil 1 is more suitable for high Density thin line high frequency circuit board.
  • the ratio of the longitudinal length of the protrusion above the restricting portion to the height of the protrusion is: 1/2-5/6;
  • the part above the restricting part is relatively longer in the entire protrusion, which can make the surface of the part of the protrusion above the restricting part larger than the surface of the rest of the protrusion, so that The surface area of the upper part of the protrusion will be relatively increased, so that there is a larger contact area between the signal transmission line formed by the metal foil and the dielectric layer, and then there is a large contact area between the signal transmission signal and the dielectric layer.
  • Good peel strength makes the two not easy to delaminate.
  • the shape of the protrusion 2 is not particularly limited, for example, it may be tree-like, ice-hanging or water-drop-like. Furthermore, when the shape of the protrusion 2 is tree-like, ice-hanging or water-drop-like, the specific structure of the wider upper part is not particularly limited, and those skilled in the art can choose according to actual needs.
  • the protrusion 2 when the shape of the protrusion 2 is tree-like, ice-hanging or drop-shaped, the protrusion 2 can not only have a lower high-frequency signal transmission loss, but also because the shape of the tree-like, ice-hanging, water drop
  • the upper part of the protrusion 2 has a larger surface area, making it possible for the protrusion 2 and the dielectric layer 9 to have a larger contact area, which is conducive to improving the bonding force between the metal foil 1 and the dielectric layer 9, that is, the metal foil 1 and the dielectric layer 9 have relatively high peel strength, which meets the requirements of high-density fine-line high-frequency circuit boards.
  • the protrusion 2 may also be in the shape of a tooth, as long as the protrusion 2 has the above-mentioned microscopic appearance.
  • the shape and structure of the protrusion 2 are not specifically limited here.
  • the metal foil 1 includes copper foil and/or aluminum foil, that is, the metal foil 1 can be copper foil or aluminum foil, or include copper foil and aluminum foil (equivalent to the metal foil 1 consisting of a copper foil layer and an aluminum foil layer). layer by layer), or a layer of metal foil 1 may include both copper and aluminum.
  • the metal foil 1 may have a single-layer structure or a multi-layer structure composed of at least two single metal layers.
  • the thickness of the metal foil 1 is less than or equal to 9 ⁇ m.
  • the thickness of the metal foil 1 can be 6 ⁇ m, 5 ⁇ m, 4 ⁇ m or 2 ⁇ m, etc., so as to obtain an extremely thin metal foil 1 that is conducive to the formation of fine signal transmission lines .
  • the metal foil 1 provided by the embodiment of the present invention can not only reduce the high-frequency signal transmission loss of the metal foil 1 compared with the prior art, but also enable the metal foil 1 to make both the existing signal transmission line and the resin layer There is a good peel strength between them so that the two are not easy to delaminate and fall off.
  • the metal foil 1 as an example of copper foil, the inventor provides the following test samples:
  • test sample 1 is copper foil of the present invention
  • test sample 2 is conventional copper foil as a comparative example of the present application
  • conventional copper foil refers to a product that does not have protrusion 2 and its microscopic appearance described in the present invention .
  • Test sample 1 a plurality of protrusions 2 are distributed on one side of the copper foil, and when the frequency is 1Ghz, more than 1/3 of the protrusions 2 have the following microscopic appearance: the protrusions and the protrusions
  • the lower half of the one-side connection has a restricting portion, the diameter of the circumscribed circle of the cross section of the restricting portion is smaller than the skin depth of the metal foil; the surface area of the protrusion above the restricting portion, greater than the surface area of the remainder of the protrusion; where the skin depth ⁇ is equal to: ⁇ is the electrical conductivity of the material of the protrusion 2 on the copper foil, f is the signal frequency when the copper foil is used as a signal transmission carrier, and ⁇ is the magnetic permeability.
  • the peel strength between the one side of the copper foil and the resin layer is 10N/cm, and the high-frequency signal of the copper foil
  • the transmission loss is shown in Table 1.
  • test method for the peel strength between the one side of the copper foil and the resin layer is:
  • This test method is a test method for thermal stress peel strength. It is used to test the peel strength of the metal coating after thermal shock, and to evaluate the deterioration of the peel strength of the copper foil sample after thermal shock.
  • the specific introduction is as follows (the test standard of this test method can refer to the standard IPC-TM-650 2.4.8):
  • Lamination parameters Lamination by press machine, lamination size 120 ⁇ 180mm, quantity 1pcs;
  • auxiliary materials kraft paper 81, steel plate 82, release film 83, PP sheet 84, PI cover film 85.
  • the lamination is carried out in a stacked manner of copper foil/PP sheet 84/PI cover film 85;
  • the lamination condition is: use the press transfer machine to laminate the metal foil 1, and the lamination parameters are as follows:
  • the pressure refers to the surface pressure, which means the pressure applied per unit area.
  • the test method of the transmission loss of the high-frequency signal of the copper foil is:
  • the signal line is a 50-ohm microstrip line.
  • the dielectric layer is 25 micron polyimide.
  • Lamination parameters lamination size 200 ⁇ 250mm, quantity 1pcs, 185°C*3min*120kg/cm 2 ;
  • auxiliary materials kraft paper 81, steel plate 82, TPX, PET, prepreg, Jiangtong.
  • Electroplating is thickened to 20 microns, and baked in a 160°C oven for 30 minutes before testing;
  • the lamination condition is: use the press transfer machine to laminate the metal foil 1, and the lamination parameters are as follows:
  • the pressure refers to the surface pressure, which means the pressure applied per unit area.
  • test Example 1 For the test method of the peel strength between the copper foil and the resin layer and the test method of the transmission loss of the high-frequency signal of the copper foil in the following test examples, reference may be made to the relevant description of Test Example 1.
  • Test Example 1 Routine sample testing.
  • the copper foil described in this application in Test Example 1 was replaced with conventional copper foil (conventional copper foil without protrusions 2 and its microscopic appearance described in this application), and other test conditions were consistent with Test Example 1.
  • the copper foil of the present application is compared with the conventional copper foil, that is, the copper foil with the protrusion 2 structure of the present application and its microscopic appearance is compared with the conventional copper foil without the protrusion 2 of the present application and its microscopic appearance.
  • the copper foil of the present application it has lower high-frequency signal transmission loss and higher peel strength with the dielectric layer, and has significant advantages when used to make high-frequency circuit boards with high density and thin lines.
  • the protrusion 2 includes a trunk portion 20 and a branch portion 21; the trunk portion 20 extends outward from the one side, and the branch portion 21 The surface of the trunk portion 20 extends outward.
  • the current flows along the metal surface, and is restricted by the restriction of the trunk portion 20, it is difficult for the current to continue to flow upward along the trunk portion 20 to the stub portion 21, thereby making the The loss of the high-frequency signal current transmission of the metal foil 1 by the protrusion 2 is extremely limited.
  • the branch portion 21 extending outward from the surface of the main portion 20 can increase the bonding area between the signal transmission line formed by the metal foil 1 and the dielectric layer, and further improve the thickness of the metal foil 1.
  • the bonding force between the formed signal transmission line and the dielectric layer can further make the metal foil 1 have good peel strength between the formed signal transmission line and the dielectric layer, so that both It is not easy to delaminate and fall off, and it can be further realized to use the metal foil 1 to make a high-frequency circuit board with high density and fine lines.
  • the number and shape of the branch portions 21 on the trunk portion 20 are not particularly limited, and those skilled in the art can select according to actual needs.
  • the material composition of the trunk portion 20 may be the same as that of the metal foil 1 or different from that of the metal foil 1 .
  • the material composition of the trunk portion 20 can be at least one of copper, nickel, zinc, chromium, aluminum, silicon, alumina particles, and industrial diamond particles.
  • the industrial diamond particles are micron-level industrial diamond particles.
  • the proportion of the protrusions 2 with the microscopic topography in the metal foil 1 is not particularly limited, for example, at least 10% of the protrusions 2 have the The microscopic appearance, preferably, at least 50% of the protrusions 2 have the microscopic appearance, more preferably, at least 90% of the protrusions 2 have the microscopic appearance.
  • the specific value of the signal frequency f when the metal foil 1 is used as a signal transmission carrier is not particularly limited, it can be determined according to the actual use environment of the product, for example, it can be 1 Hz-100 GHz.
  • another embodiment of the present invention provides a metal foil 1 with a carrier, which includes a carrier layer 3 and the metal foil 1 described in any of the above schemes; the carrier layer 3 can be peeled off and arranged on the metal foil 1 on the side where the protrusion 2 is provided.
  • the metal foil with carrier 1 further includes a peeling layer 4; the peeling layer 4 is located between the carrier layer 3 and the metal foil 1, so that the metal foil 1 and the Both carrier layers 3 are arranged peelable.
  • the peel strength between the metal foil 1 and the release layer 4 is greater than that of the release layer 4
  • the peel strength between the carrier layer 3 and the carrier layer 3 can be smoothly peeled off from the metal foil 1 .
  • the carrier layer 3 is used as a carrier substrate of the metal foil 1 .
  • the function of the release layer 4 is: on the one hand, to reduce the phenomenon of mutual penetration between the carrier layer 3 and the metal foil 1, and on the other hand, to facilitate the contact between the carrier layer 3 and the metal foil 1 peel off.
  • the embodiment of the present invention applies the above-mentioned metal foil 1, not only can reduce the high-frequency signal transmission loss of the metal foil 1, but also can make the metal foil 1 have a good connection between the signal transmission line and the resin layer.
  • the peeling strength makes it difficult for the two to delaminate and fall off, so that high-frequency circuit boards with high density and fine lines can be manufactured with the metal foil 1 .
  • the peeling layer 4 is made of any one or more materials of nickel, silicon, molybdenum, graphite, titanium and niobium; or, the peeling layer 4 is made of an organic polymer material.
  • the thickness of the peeling layer 4 is preferably Since it is difficult to form a uniform metal foil 1 when the peeling layer 4 is too thick, it is easy to cause a large number of pinholes on the metal foil 1 (when there are pinholes on the metal foil 1, after it is etched into a circuit, it will easily appear.
  • the thickness of the peeling layer 4 is preferably Therefore, it is ensured that a uniform metal foil 1 can be formed, a large number of pinholes are avoided on the metal foil 1 , and at the same time, the separation between the peeling layer 4 and the metal foil 1 is easy.
  • the carrier layer 3 can be a carrier copper, a carrier aluminum or an organic thin film, etc., because the carrier layer 3 mainly plays a supporting role, so it needs a certain thickness.
  • the carrier layer 3 is a carrier copper or a carrier aluminum
  • the The thickness of the carrier layer 3 is preferably 9-50 ⁇ m; when the carrier layer 3 is an organic film, the thickness of the carrier layer 3 is preferably 10-100 ⁇ m.
  • the metal foil with carrier 1 further includes a first adhesive layer 7; the first adhesive layer 7 is provided on the carrier layer 3 and the release layer 4 between.
  • the first adhesive layer 7 is provided, so that the first adhesive layer 7 not only makes the peeling layer 4 and the carrier layer 3 have a strong peel strength, but also effectively ensures that the carrier layer 3 can be stably Peel off from the metal foil 1 to obtain a complete ultra-thin metal foil 1, and also use the first adhesive layer 7 to treat the surface of the carrier layer 3, so that the entire surface of the carrier layer 3 is more uniform and dense, Therefore, it is beneficial to peel off from the carrier layer 3 to obtain an ultra-thin metal foil 1 with fewer pinholes, which in turn facilitates the fabrication of subsequent circuits.
  • the first adhesive layer 7 is a metal adhesive layer.
  • the metal bonding layer is made of any one or more materials of copper, zinc, nickel, iron and manganese; or, the metal first bonding layer is made of one of copper or zinc material and one of nickel, iron and manganese.
  • a first anti-oxidation layer 5 is provided on the side of the carrier layer 3 in this embodiment close to the metal foil 1; A first anti-oxidation layer 5 is provided on the side of the carrier layer 3 close to the metal foil 1 to prevent the carrier layer 3 from being oxidized, thereby protecting the carrier layer 3 .
  • a second anti-oxidation layer 6 is provided on the side of the metal foil 1 away from the carrier layer 3 . A second anti-oxidation layer 6 is provided on one side to prevent the metal foil 1 from being oxidized, thereby protecting the metal foil 1 .
  • the material of the first anti-oxidation layer 5 is at least one of nickel, copper alloy, and chromium.
  • the second anti-oxidation layer 6 contains nickel and zinc.
  • Another embodiment of the present invention provides a copper-clad laminate, which is obtained by using the metal foil 1 described in any of the above schemes or the metal foil with a carrier 1 described in any of the above schemes.
  • the copper-clad laminate further includes a dielectric layer, and the dielectric layer is disposed on the one side of at least one metal foil.
  • the material of the medium layer is selected from polyimide (such as thermoplastic polyimide), modified epoxy resin, modified acrylic resin, polyethylene terephthalate, polybutylene terephthalate Glycol ester, polyethylene, polyethylene naphthalate, polystyrene, polyvinyl chloride, polysulfone, polyphenylene sulfide, polyether ether ketone, polyphenylene oxide, polytetrafluoroethylene, liquid crystal polymer, At least one of polyoxalylurea, epoxy glass cloth, and BT resin.
  • polyimide such as thermoplastic polyimide
  • modified epoxy resin such as thermoplastic polyimide
  • modified acrylic resin modified acrylic resin
  • polyethylene terephthalate polybutylene terephthalate Glycol ester
  • polyethylene polyethylene naphthalate
  • polystyrene polyvin
  • the copper-clad laminate further includes a second adhesive layer, and the second adhesive layer is disposed on the one side of the metal foil.
  • the material of the second adhesive layer is selected from polystyrene, vinyl acetate, polyester, polyethylene, polyamide, rubber or acrylic thermoplastic resin, phenolic, epoxy Class, thermoplastic polyimide, urethane, melamine or alkyd thermosetting resin, BT resin, at least one of ABF resin.
  • Another embodiment of the present invention provides a printed circuit board (not shown), which uses the metal foil 1 described in any of the above solutions, the metal foil with carrier 1 described in any of the above solutions, or any of the above solutions
  • the above-mentioned copper-clad laminated board is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种金属箔、带载体金属箔、覆铜层叠板及印刷线路板,所述金属箔的一面上分布有多个凸起,所述凸起具有以下微观形貌:所述凸起的与所述金属箔的所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。采用本发明实施例,不仅能够降低金属箔的高频信号传输损耗,还同时能够使得金属箔制作形成有的信号传输线路与介质层两者之间具有良好的剥离强度。

Description

金属箔、带载体金属箔、覆铜层叠板及印刷线路板 技术领域
本发明涉及材料技术领域,特别是涉及一种金属箔、带载体金属箔、覆铜层叠板及印刷线路板。
背景技术
印刷线路板(Printed circuit board,PCB)被广泛用于电子设备中,而随着半导体电子元器件功能的不断提升,电子设备中的电子元器件的集成度和数据传输速度越来越高。这样作为信号传输载体的印刷线路板,其上的信号传输线路的密集度也越来越高,使得信号传输线路越来越细,并且信号传输线路的信号电流的频率也越来越高。因此高频信号的传输效果已经成为衡量印刷线路板性能的标准之一。其中,印刷线路板的结构由金属箔和粘在金属箔之间的介质层构成,金属箔经过蚀刻后会形成有供信号进行传输的信号传输线路,介质层主要起绝缘作用,金属箔一般为铜箔层,介质层一般为树脂层;在金属箔上蚀刻形成有的信号传输线路通过线路的表面结合在树脂层上。
印刷线路板中的对信号的传输损耗的物理机制包括起因于印刷线路板的金属箔的导体损耗和起因于介质层的电介质损耗。其中,对于起因于介质层的电介质损耗,通过选取特殊材质的树脂层,可以使得介质层的电介质的损耗降低到理想的程度。所以,金属箔的导体损耗也就成为印刷线路板信号的传输损耗的一个主要因素。导体损耗最主要的特性之一,是由于电磁趋肤效应会随着信号频率上升而增加。其内在原因是因为高频信号电流会在传输线路金属表面更薄的表层流动。其中,信号频率越高,电流在金属箔的信号传输线路中流动的深度就越浅。有大量的文献研究线路板传输线信号损耗和金属表面粗糙度的关系,例如《Signal Transmission Loss due to Copper Surface Roughness in High-Frequency Region》一文中介绍了铜箔表面粗糙度引起的信号损耗,其指出:铜箔的表面粗糙度越低,信号的损耗也就越低。因此,高频信号传输要求金属表面的粗糙度越低越好。然而,随着印刷线路板的集成度不断增加,在印刷线路板的铜箔层上形成的信号传输线路也越来越细,铜箔的信号传输线路和介质层之间的结合面积也就越小,导致铜箔的信号传输线路和介质层之间的结合力也就越小,因而也就越容易脱落分层。而铜箔层和介质层之间的结合力是影响到印刷线路板的性能的另外一个重要的因素。因为铜箔层的信号传输线路是通过表面的粗糙度来与介质层产生结合力而附着在树脂层上的。随着信号传输线路越来越细,那么关于该方面,《Non-Classical Conductor Losses due to Copper Foil Roughness and Treatment》一文指出:铜箔与介质层之间的附着力与铜箔的粗糙度有关,铜箔的粗糙度越大,其与印刷线路板的介质层的附着力越大,从而与介质层之间的剥离强度越高。因此,印刷线路板的高集成度所带来的细小信号传输线路趋势,要求铜箔的表面粗糙度应该有所增加来保证与介质层之间的结合力。
总体而言,一方面为了降低高频信号传输损耗,已有技术要求金属箔的粗糙度越小越好;另一方面,印刷线路板 的高密度细线路的发展趋势要求金属箔的粗糙度越大越好。即已有技术对金属箔的表面形貌的这两个要求是互相矛盾的,无法同时兼顾金属箔的高频信号传输损耗及金属箔上的高密度的信号传输线路与介质层之间的剥离强度。
发明内容
本发明实施例的至少一个目的是提供一种金属箔、带载体金属箔、覆铜层叠板及印刷线路板,其不仅能够降低金属箔的高频信号传输损耗,还同时能够使得金属箔制作形成有的信号传输线路与介质层两者之间具有良好的剥离强度而使得两者不容易分层脱落,从而能够实现用所述金属箔制作高密度及细线路的高频线路板。
为了解决上述技术问题,本发明实施例提供了一种金属箔,所述金属箔的一面上分布有多个凸起,所述凸起具有以下微观形貌:
所述凸起的与所述金属箔的所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。
作为上述方案的改进,趋肤深度δ等于:
Figure PCTCN2022095933-appb-000001
σ为所述凸起的材料的电导率,f为所述金属箔作为信号传输载体时的信号频率,μ是磁导率。
作为上述方案的改进,所述限制部相对于所述金属箔的所述一面的高度不大于2微米,所述凸起相对于所述金属箔的所述一面的高度不大于3微米。
作为上述方案的改进,所述凸起的在所述限制部之上的部位的纵向长度与所述凸起的高度的比值为:1/2-5/6。
作为上述方案的改进,所述凸起为树状、挂冰状或水滴状。
作为上述方案的改进,所述凸起包括主干部及枝节部;所述主干部由所述一面向外延伸出来,所述主干部具有所述限制部,所述枝节部由所述主干部的在所述限制部之上的部位的表面向外延伸出来。
作为上述方案的改进,所述主干部的材料成分和所述金属箔相同。
作为上述方案的改进,所述主干部的材料成分和所述金属箔不同,所述主干部的材料选自铜、镍、锌、铬、铝、硅、氧化铝粒子、工业钻石粒子中的至少之一。
作为上述方案的改进,在所述一面上,至少10%的所述凸起具有所述微观形貌。
作为上述方案的改进,在所述一面上,至少50%的所述凸起具有所述微观形貌。
作为上述方案的改进,在所述一面上,至少90%的所述凸起具有所述微观形貌。
作为上述方案的改进,所述信号频率f为1Hz-100GHz。
作为上述方案的改进,所述金属箔包括铜箔和/或铝箔。
作为上述方案的改进,所述金属箔为单层金属结构或至少两层单金属层构成的多层金属结构。
本发明另一实施例提供了一种带载体金属箔,其包括载体层及上述任一方案所述的金属箔;所述载体层可剥离设置于所述金属箔的与所述一面相反的另一面上。
作为上述方案的改进,所述带载体金属箔还包括剥离层;所述剥离层位于所述载体层与所述金属箔之间,以使所述金属箔与所述载体层两者可剥离设置。
作为上述方案的改进,所述带载体金属箔还包括第一粘接层;所述第一粘接层设于所述载体层与所述剥离层之间。
作为上述方案的改进,所述第一粘接层为金属粘接层;所述金属粘接层由铜、锌、镍、铁和锰中的任意一种或多种材料制成;或者,所述金属粘接层由铜或锌中的其中一种材料以及镍、铁和锰中的其中一种材料制成。
作为上述方案的改进,所述带载体金属箔还包括第一防氧化层,所述第一防氧化层设于所述金属箔的靠近所述载体层的一面上。
作为上述方案的改进,所述第一防氧化层的材质为镍、铜合金、铬中的至少之一。
作为上述方案的改进,所述带载体金属箔还包括第二防氧化层,所述第二防氧化层设于所述金属箔的远离所述载体层的一面上。
作为上述方案的改进,所述第二防氧化层的材质为镍、铬、锌中的至少之一。
本发明另一实施例提供了一种覆铜层叠板,其是使用上述任一方案所述的金属箔或上述任一方案所述的带载体金属箔而得到的。
作为上述方案的改进,所述覆铜层叠板还包括介质层,所述介质层设于至少一所述金属箔的所述一面上。
作为上述方案的改进,所述介质层材质选自聚酰亚胺(例如热塑性聚酰亚胺)、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯、聚萘二甲酸乙二醇酯、聚苯烯、聚氯乙烯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲、环氧玻璃布、BT树脂中的至少一种。
作为上述方案的改进,所述覆铜层叠板还包括第二粘接层,所述第二粘接层设于所述金属箔的所述一面上。
作为上述方案的改进,所述第二粘接层的材质选自聚苯乙烯系、乙酸乙烯酯类、聚酯类、聚乙烯类、聚酰胺类、橡胶类或丙烯酸酯类热塑性树脂,酚醛类、环氧类、热塑性聚酰亚胺、氨基甲酸酯类、三聚氰胺类或醇酸类热固性树脂,BT树脂,ABF树脂中的至少一种。
本发明另一实施例提供了一种印刷线路板,其是使用上述任一方案所述的金属箔、上述任一方案所述的带载体金属箔或上述任一方案所述的覆铜层叠板而得到的。
相比于现有技术,本发明实施例提供的所述金属箔、所述带载体金属箔、所述覆铜层叠板、所述印刷线路板及所 述金属箔的制造方法,具有以下的有益效果中的至少一个方面:
由于所述金属箔的一面上分布有多个凸起,且所述凸起具有以下微观形貌:所述凸起的与所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。这样,在金属箔制作形成有信号传输线路时,所述凸起的限制部具有较大的阻抗,且所述凸起的限制部越窄,所述凸起的该处的阻抗越大,而由于所述凸起的下半部的限制部的横截面的外接圆的直径小于趋肤深度,这样受所述凸起的下半部的所述限制部的限制,金属箔内的高频信号电流难以通过所述凸起的限制部,从而减少了流向所述凸起的上方的高频信号电流,使得由本发明实施例的所述金属箔制作形成的信号传输线路的高频信号损耗受金属箔表面的凸起的影响小,从而能够降低金属箔制作形成的信号传输线路的高频信号传输损耗。而且,因所述凸起的在所述限制部之上的部位的表面积大于所述凸起的其余部位的表面积,这样所述凸起的在所述限制部之上的部位的表面积会相对凸起的在所述限制部之上的部位的表面积增大,使得所述凸起相对具有较大的表面积,从而能够使得金属箔制作形成有的信号传输线路与介质层两者之间具有较大的接触面积,进而使得信号传输信号与介质层之间具有良好的剥离强度而使得两者不容易分层脱落,而能够实现用所述金属箔制作高密度及细线路的高频线路板。
附图说明
图1是本发明一实施例提供的一种金属箔的纵向截面的示意图;
图2示出了图1中的凸起的整体结构;
图3示出了金属箔中凸起的下部的宽度大于趋肤深度时高频信号电流在金属箔上的流动情况示意图;
图4示出了本发明一实施例提供的金属箔的凸起的下半部的最小宽度小于趋肤深度时高频信号电流在金属箔上的流动情况示意图;
图5是本发明一实施例提供的一种金属箔的结构示意图;
图6是本发明实施例提供的一面设有多个所述凸起的金属箔的电镜观察图;
图7是本发明再一实施例提供的一面设有多个所述凸起的金属箔的电镜观察图;
图8是常规金属箔的电镜观察图;
图9是本申请一实施例金属箔与常规金属箔的凸起切片扫描曲线图;
图10是图9中曲线的相应的空间傅立叶变换对数频谱图;
图11是本发明一实施例的测试金属箔的设有凸起的一面与树脂层之间的剥离强度过程中用到的压合组件的结构示意图;
图12是本发明一实施例提供的一种带载体金属箔的结构示意图;
图13是本发明另一实施例提供的一种带载体金属箔的结构示意图;
图14是本发明又一实施例提供的一种带载体金属箔的结构示意图;
图15是本发明又一实施例提供的一种带载体金属箔的结构示意图;
图16是本发明又一实施例提供的一种带载体金属箔的结构示意图;
图17是本发明一实施例提供的一种覆铜层叠板的结构示意图;
图18是本发明另一实施例提供的一种覆铜层叠板的结构示意图;
图19是本发明又一实施例提供的一种覆铜层叠板的结构示意图。
附图标注说明:1.金属箔;2.凸起;20.主干部;21.枝节部;3.载体层;4.剥离层;5.第一防氧化层;6.第二防氧化层;7.第一粘接层;81.牛皮纸;82.钢板;83.离型膜;84.PP片;85.PI覆盖膜;9.介质层;10.第二粘接层;100.限制部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考图1所示,本发明实施例提供了一种金属箔1,所述金属箔1的一面上分布有多个凸起2,所述凸起2具有以下微观形貌:参见图2,所述凸起2的与所述金属箔1的所述一面连接的下半部具有限制部100,所述限制部100的横截面的外接圆的直径小于所述金属箔1的趋肤深度;所述凸起2的在所述限制部100之上的部位的表面积,大于所述凸起2的其余部位的表面积。
具体地,趋肤深度δ等于:
Figure PCTCN2022095933-appb-000002
σ为所述金属箔1上的所述凸起2的材料的电导率,f为所述金属箔1作为信号传输载体时的信号频率,μ是磁导率。
其中,所述凸起2可以理解为:在所述金属箔1的表面上凸出来的部分可以称之为凸起2;具体而言,所述金属箔1的所述一面上的相对周围的其他的地方隆起的部分为凸起2。所述凸起2在所述金属箔1的一面上是有一定分布的。所述凸起2的形成方式可以为:通过电镀的方式在所述金属箔1的所述一面上形成所述凸起2。具体而言,所述凸起2可以在制备所述金属箔1的过程中伴随着形成,如所述金属箔1是通过电镀的方式形成,且所述凸起2是在电镀形成所述金属箔1的过程中在所述金属箔1的表面来电镀形成。作为另一可选方法,所述凸起2与所述金属箔1的所述一面的表面不是一体成型的。例如,所述凸起2的形成方式为通过溅射的方式在所述金属箔1的所述一面上形成。
具体地,所述凸起2可以是多个颗粒团簇形成的,也可以是单体结构,在此不对所述凸起2的结构构成做具体限定。
可以理解的是,所述凸起2的下半部指的是:参见图2,在所述凸起2的高度方向上,以所述凸起2的高度的二分之一处为分界线,所述凸起2的位于该分界线之下的部分(该部分靠近所述金属箔的所述一面)为所述凸起2的下半部。其中,所述凸起2的高度的测量方式一般可以为:参见图2,在所述金属箔1的纵截面图中,所述凸起2的两侧在预设的取样长度(可以设为所述凸起2的各处的横截面的外接圆的直径中的最大直径值R)内,该两侧在所述金属箔1的一面上的第一个最低点(例如图2中的凸起2的纵截面的左侧,该侧在所述金属箔的一面上的第一个最低点为a;而凸起2的纵截面的右侧,该侧在所述金属箔的一面上的第一个最低点为b),两个最低点的高度方向上的中点为c,可以将该点c看做是所述凸起的底部的中点,则所述凸起2的高度为:所述凸起2的最高点d与所述凸起2的底部的中点c之间的垂直距离。此外,在图2中,ab连线可以看做是所述凸起2与所述金属箔1的分界线。需要说明的是,上述的描述仅是一般示例。
此外,可以理解的是,在所述凸起2的下半部中的横截面的外接圆的直径小于所述金属箔1的趋肤深度的部位,为本发明所称的“限制部”。
本发明实施例具有以下的有益效果中的至少一个方面:由于所述金属箔的一面上分布有多个凸起,且所述凸起具有以下微观形貌:所述凸起的下半部具有横截面外接圆的直径小于趋肤深度的限制部;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。这样,在金属箔制作形成有信号传输线路时,所述凸起的限制部具有较大的阻抗,且所述凸起的限制部越窄,所述凸起的该处的阻抗越大,而由于所述凸起的下半部的限制部的横截面的外接圆的直径小于趋肤深度,这样受所述凸起的下半部的所述限制部的限制,金属箔内的高频信号电流难以通过所述凸起的限制部,从而减少了流向所述凸起的上方的高频信号电流,使得由本发明实施例的所述金属箔制作形成的信号传输线路的高频信号损耗受金属箔表面的凸起的影响小,从而能够降低金属箔制作形成的信号传输线路的高频信号传输损耗。而且,因所述凸起的在所述限制部之上的部位的表面积大于所述凸起的其余部位的表面积,这样所述凸起的在所述限制部之上的部位的表面积会相对凸起的在所述限制部之上的部位的表面积增大,使得所述凸起相对具有较大的表面积,从而能够使得金属箔制作形成有的信号传输线路与介质层两者之间具有较大的接触面积,进而使得信号传输信号与介质层之间具有良好的剥离强度而使得两者不容易分层脱落,而能够实现用所述金属箔制作高密度及细线路的高频线路板。
为了便于对上述描述的理解,在此做如下具体说明:
首先,所述一面上分布有多个凸起2,所述凸起2的下半部具有横截面的外接圆的直径小于趋肤深度的限制部,这样限制了高频信号电流会流到所述凸起2的上部,从而能够降低所述金属箔1的凸起2对高频电流的损耗作用,使得由本发明实施例的所述金属箔1制作形成的信号传输线路的高频信号损耗受金属箔1表面的凸起2的影响小,从而能够降低金属箔1制作形成的信号传输线路的高频信号传输损耗。
此外,制作有信号传输线路的金属箔1与介质层9之间的粘结强度主要取决于金属箔1与介质层9两者界面之间的物理和化学粘附力。降低金属箔1的表面轮廓意味着减少上述粘合能力。剥离强度(P/S)用于测量层压材料的粘合强度。低P/S会引起印刷线路板的金属箔1与介质层9之间的分层问题。具体而言,在制造、组装及使用印刷线路板的过程中,印刷线路板的制作形成有信号传输线路的金属箔1与介质层9之间的界面处的粘合必须非常牢固。因为该界面在加工过程中暴露于腐蚀性化学物质中,并且在使用过程中暴露于高温、高湿、寒冷、冲击、振动和剪切应力等场景下,所以印刷线路板的金属箔1与介质层9两者之间必须要有一定的剥离强度以防止两者容易分层脱落。
关于金属箔与介质层之间的剥离强度的问题,现有技术认为:根据弹性理论,参见公式1,影响金属箔1与介质层9两者之间的高剥离强度的因素主要有:金属箔1进入介质层9的厚度y 0,介质层9的抗拉强度σ N,金属箔1的厚度δ以及金属箔1的模量E与介质层9的模量Y的比。其中,现有技术认为,金属箔1进入介质层9的厚度可以等同于金属箔1的与介质层9接触的一面2进入到所述介质层9的高度,而金属箔1的与介质层9接触的一面2进入到所述介质层9的高度与所述金属箔1的所述一面的粗糙度相关,所以,金属箔1进入介质层9的厚度y 0也可以用所述金属箔1的所述一面的粗糙度进行表征。由公式1可知,在其他参数变量不变的情况下,所述凸起2的粗糙度越高,那么所述金属箔1与所述介质层9之间的剥离强度越高,反之则所述金属箔1与所述介质层9之间的剥离强度越低。
Figure PCTCN2022095933-appb-000003
由此可见,现有技术有以下教导:一方面,印刷线路板的高密度细线路的发展趋势要求铜箔的粗糙度越高越好,以提高金属箔1与介质层9两者的剥离强度。另一方面,现有技术还有以下相悖的教导:为了降低高频信号传输损耗,相关技术要求金属箔1的粗糙度越小越好。即现有技术对金属箔1的表面形貌的这两个要求是互相矛盾的。其中,粗糙度能够反映金属箔1的表面的轮廓高度。所以,总体而言,现有技术认为:要降低金属箔1的高频信号传输损耗,需要金属箔1的表面的轮廓高度越小;而要改善金属箔1上高密度的信号传输线路与树脂层之间的剥离强度,需要金属箔1的表面的轮廓高度越大。
而本发明创造性地不再从金属箔1的粗糙度角度来改善高密度细线路的印刷线路板中的金属箔1的表面形貌,而是创造性的从金属箔1的凸起2的结构入手,使得金属箔1中的一面上具有多个凸起2,且所述凸起的与所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。其中,可以理解的是,本申请中所述的“所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积”是指如树、头与脖子或图1或2所示的一般上部具有大的表面积,而下部具有小的(至少比上部小的)表面积的结构。整个凸起2与介质层9(如树脂层)接触的部分多为凸起2的上部结构,当凸起2的上部结构具有大的表面积时,相应地,凸起2与介质层9接触的面积较大,而两者的接触面 积越大,两者之间的结合力就越强,即金属箔1与介质层9之间的剥离力就越大。由此可知,当金属箔1具有本申请所述的多个凸起2且所述凸起2具有上述微观形貌时,可显著提高金属箔1与介质层9之间的剥离力,即金属箔1与介质层9之间具有较大的剥离强度。而凸起2的下半部具有横截面外接圆的直径小于趋肤深度的限制部,即小于凸起2材料的趋肤深度,高频信号电流在金属箔1表面流动的过程中,最小宽度处阻抗较大,使得高频信号电流不会沿着凸起2继续往凸起2上部流动,即受凸起2中上述最小宽度的限制,高频信号电流基本不会流至最小宽度的上部,即流经凸起2的高频信号电流有限,使得由本发明实施例的所述金属箔1制作形成的信号传输线路的高频信号损耗受金属箔1表面的凸起2的影响小,从而能够降低金属箔1制作形成的信号传输线路的高频信号传输损耗。
由此可见,本发明实施例,通过在所述金属箔1的表面上形成多个所述凸起2,这样所述金属箔1能够同时兼顾金属箔1的高频信号传输损耗及金属箔1形成的高密度的信号传输线路与介质层之间的剥离强度这两方面,克服了现有技术的金属箔1的表面形貌的轮廓高度不能兼顾所述两方面的技术偏见,且开启了高密度细线路印刷线路板原材料的新技术变革。
为了便于理解所述凸起2的下半部具有横截面外接圆的直径小于趋肤深度的限制部,能够使得所述凸起2在金属箔1的所述一面上产生的电流趋肤效应大大减弱,在此结合图3与图4进行说明:
基于电流的趋肤效应,金属箔1上的信号传输线路的电流只能在金属层的外表、厚度为趋肤深度的表层流动。如图3所示,当凸起2的下半部较宽并大于趋肤深度时,电流可沿着整个凸起2的表面流动,此时电流的信号传输损耗较大;而如图4所示,当凸起2的下半部(此时为根部)的宽度较小且小于趋肤深度时,根部的阻抗较大,金属箔1上的信号传输线路的电流不能够流上所述凸起2,而是在所述信号传输线路的表层流动而避开流上所述凸起2,此时凸起2基本不会增加电流在金属箔1中的信号传输损耗。此外,在本发明实施例中,因所述凸起2的在所述限制部之上的部位的表面积大于所述凸起的其余部位的表面积,即能够改善凸起2与介质层9之间接触的面积,进而可改善金属箔1上的高密度的信号传输线路与树脂层之间的剥离强度。
此外,在此进一步进行举例说明:图6是本发明一实施例提供的一面设有多个所述凸起2的金属箔1的电镜观察图,多个所述凸起2中有许多凸起2的下半部具有限制部100,所述限制部100的横截面的外接圆的直径小于所述金属箔的趋肤深度,从图6所示可知,该金属箔1中大部分的凸起2为底部的宽度较小,上部的平均宽度较宽的下窄上宽结构,所述凸起2在金属箔1上的电流的趋肤效应较小且所述凸起2也具有较大的与所述介质层9接触的接触面积。图7是本发明另一实施例提供的一面设有多个所述凸起2的金属箔1的电镜观察图,多个所述凸起2中有许多凸起2的下半部具有限制部100,所述限制部100的横截面的外接圆的直径小于所述金属箔的趋肤深度,且所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积,这样所述凸起2在金属箔1上的电流的趋肤效应较小且所述凸起2也具有较大的与所述介质层9接触的接触面积。图8是常规金属箔1的电镜观察图,该常规金属箔的一面形成为 粗糙面,粗糙面上有很多轮廓峰,轮廓峰的下半部的限制部的横截面的外接圆的直径大于趋肤深度,即轮廓峰为底部的宽度较大,上部的平均宽度较小的下宽上窄结构,这样所述轮廓峰在金属箔1上的电流的集肤效应较大而容易产生较高的高频信号传输损耗。
进一步的,请参阅图9与图10。在实际生产中,因为电化学形成金属晶格的统计特性,铜箔表面形成的凸起2的大小形状有一定的分布。一般来说,凸起2的形状、大小、分布是由工艺决定的。图9为两种铜箔的一面的切片扫描曲线,用来反映两种铜箔产品的所述一面的形貌轮廓,是通过激光对凸起的一面从上至下进行扫描的。由图9所示,里面有两条曲线,其中上面的一条曲线为本申请的铜箔设有所述凸起的一面的轮廓曲线,下面一条曲线为常规铜箔的没有设有本申请的凸起的一面的轮廓曲线。从图9可知,本申请铜箔的所述一面相较常规铜箔的所述一面具有较高的凸起2。需要特别指出的是,曲线中的凸起2并不是凸起2的真实形状,因为扫描是用激光从上至下的。当凸起2的根部的直径小于凸起的上部的直径时,该测量无法得到凸起的根部的形状。但是,该测量能快速的确定凸起2的直径的大小分布,为比较不同的形成凸起2的工艺及其优化提供一个有效方法。傅立叶的频谱分析是分析金属箔1的表面上微观的凸起2的大小和统计所述凸起2的分布最有效的方法之一。图10是图9中曲线的相应的空间傅立叶变换对数频谱图,该对数频谱图中有两条频谱曲线,下面一条频谱曲线代表的是上述常规铜箔的频谱曲线,上面一条频谱曲线代表的是本申请实施例提供的一面设有多个所述凸起2的铜箔的频谱曲线。频谱曲线是上述两个铜箔的表面的面貌测试数据经过傅里叶变换后得到的。所述对数频谱图中的横坐标是归一化了的空间频率的数据,所述对数频谱图中的纵坐标是对原振幅作了对数计算(20logA)后得到的对数形式的谱强度,所以其纵坐标的单位是dB(分贝),这个变换的目的是使那些振幅较低的成分相对高振幅成分得以拉高,以便观察掩盖在低幅噪声中的周期信号。
从图9与图10可知,显然图中所示出的本申请的铜箔的一面上的凸起与常规的铜箔的一面上的凸起的大小和分布是不一样的。需要说明的是,上述所提及的常规的铜箔并非为现有的铜箔产品,而是在本申请中作为本申请的铜箔的对比样例。
作为示例的,所述限制部相对于所述金属箔的所述一面的高度可以不大于2微米(例如小于1.5微米、1.2微米、1微米、0.8微米、0.5微米等),这样金属箔上通有的电流在所述凸起上产生的集肤效应会比较弱,从而能够更有效避免因为所述凸起2在金属箔1上的电流的集肤效应较大而容易产生较高的高频信号传输损耗。
作为示例的,所述凸起2的高度也不受特别限制,如可以不大于3微米。由此,在所述凸起2具有本申请上述微观形貌的条件下,当所述凸起2具有上述高度时,可进一步提高金属箔1的剥离强度,使得金属箔1更加适配于高密度细线路高频线路板。
示例性地,所述凸起的在所述限制部之上的部位的纵向长度与所述凸起的高度的比值为:1/2-5/6;这样,所述凸起的在所述限制部之上的部位在整个所述凸起中相对会更加长,能够使得所述凸起的在所述限制部之上的部位的表面相 对所述凸起的其余部位的表面增大,这样所述凸起的上部的表面积会相对增大,从而能够使得金属箔制作形成有的信号传输线路与介质层两者之间具有较大的接触面积,进而使得信号传输信号与介质层之间具有良好的剥离强度而使得两者不容易分层脱落。
示例性地,所述凸起2的形状并不受特别限制,如可以为树状、挂冰状或水滴状。进一步的,当凸起2的形状为树状、挂冰状或水滴状时,上部较宽大的部分的具体结构也不受特别限制,本领域技术人员可以根据实际需要进行选择。发明人发现,当凸起2的形状为树状、挂冰状或水滴状时,此时凸起2不仅可以具有较低的高频信号传输损耗,而且因为树状、挂冰状、水滴状的凸起2的上部具有较大的表面积,使得凸起2与介质层9具有较大的接触面积成为可能,如此有利于提高金属箔1与介质层9之间的结合力,即使得金属箔1与介质层9之间具有较大的剥离强度,满足高密度细线路高频线路板的需求。进一步的,所述凸起2还可以为牙齿状等,只要所述凸起2具有上述微观形貌即可。在此不对所述凸起2的形状结构做具体限定。
作为示例的,所述金属箔1包括铜箔和/或铝箔,即所述金属箔1可以为铜箔或铝箔,也可以是包括铜箔与铝箔(相当于金属箔1由铜箔层与铝箔层层叠设置而成),或者也可以是一层金属箔1中同时包括铜和铝。
作为示例的,所述金属箔1可以单层结构也可以为至少两层单金属层构成的多层结构。
作为示例的,所述金属箔1的厚度小于或等于9μm。为满足线路板微细的信号传输线路制作的要求,优选地,所述金属箔1的厚度可为6μm、5μm、4μm或2μm等,从而得到有利于形成微细的信号传输线路的极薄金属箔1。
为了验证本发明实施例提供的金属箔1相比于现有技术的确不仅能够降低金属箔1的高频信号传输损耗,还同时能够使得金属箔1制作形成有的信号传输线路与树脂层两者之间具有良好的剥离强度而使得两者不容易分层脱落,以所述金属箔1是铜箔为例,本发明人提供了以下的测试样例:
其中,测试样例1为本发明铜箔,测试样例2为作为本申请的对比样例的常规铜箔,常规铜箔是指不具有本发明所述凸起2及其微观形貌的产品。
测试样例1:所述铜箔的一面上分布有多个凸起2,且在频率为1Ghz时,超过1/3的所述凸起2具有以下微观形貌:所述凸起的与所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积;其中,趋肤深度δ等于:
Figure PCTCN2022095933-appb-000004
σ为所述铜箔上的所述凸起2的材料的电导率,f为所述铜箔作为信号传输载体时的信号频率,μ是磁导率。
以介质层9为树脂层为例(以下测试样例亦如此),经过测试,所述铜箔的所述一面与所述树脂层的剥离强度为10N/cm,所述铜箔的高频信号的传输损耗为见表1。
此外,所述铜箔的所述一面与所述树脂层的剥离强度的测试方法为:
本测试方法为热应力剥离强度的测试方法,用来测试经过热冲击的金属覆盖层的剥离强度,评价铜箔样板经过热 冲击后剥离强度的劣化情况。具体介绍如下(本测试方法的测试标准可参考标准IPC-TM-650 2.4.8):
(1)样品制备阶段:
1.压合参数:传压机压合,压合尺寸120×180mm,数量1pcs;
2.压合辅材:牛皮纸81、钢板82、离型膜83、PP片84、PI覆盖膜85。
(2)测试操作阶段:
1.如图11所示,以铜箔/PP片84/PI覆盖膜85的叠构方式进行压合;
2.按要求判断是否进行电镀加厚处理,电镀后在160℃烘箱中烘烤90min;
3.在288℃焊锡槽中漂锡10s;
4.用美工刀划出5mm宽的测试样条;
5.将PI面粘在剥离强度测试仪滚轮上,起剥约2cm的薄铜,夹在夹头上;
6.向上垂直拉伸,分别记录6组稳定后的剥离强度数据,计算6个剥离强度数据平均值记为F(N/cm)。
其中,压合条件为:使用传压机压合金属箔1,压合参数如下:
1)升温段(<90℃)压力维持8kgf/cm 2,升温速率~3.5℃/min;
2)90℃转高压,压力维持30kgf/cm 2,升温速率~4.5℃/min;
3)高温段(200℃)压力维持30kgf/cm 2,持续时间2h;
4)降温至~50℃,卸压取样。
注:压力均指面压,表示单位面积施加的压力。
所述铜箔的高频信号的传输损耗的测试方法为:
常规双面板叠构,信号线为50欧姆微带线。介电层为25微米聚酰亚胺。
压合参数:压合尺寸200×250mm,数量1pcs,185℃*3min*120kg/cm 2
压合辅材:牛皮纸81、钢板82、TPX、PET、半固化片、江铜。
1.以铜箔/半固化片/硬板/半固化片/江铜的叠构方式进行压合;
2.电镀加厚至20微米,测试前在160℃烘箱中烘烤30min;
其中,压合条件为:使用传压机压合金属箔1,压合参数如下:
1)升温段(<90℃)压力维持8kgf/cm 2,升温速率~3.5℃/min;
2)90℃转高压,压力维持30kgf/cm 2,升温速率~4.5℃/min;
3)高温段(200℃)压力维持30kgf/cm 2,持续时间2h;
4)降温至~50℃,卸压取样。
注:压力均指面压,表示单位面积施加的压力。
3.将烘烤后样品裁剪、贴合于热固板上,得到测试板;
4.将测试板进行焊接,然后利用网络分析仪进行测试。
可以理解的是,下面的测试样例的所述铜箔与所述树脂层的剥离强度的测试方法及铜箔的高频信号的传输损耗的测试方法,可以参考测试样例1的相关描述。
测试样例2
常规样品测试。将测试样例1中的本申请所述铜箔替换为常规铜箔(不具有本申请所述凸起2及其微观形貌的常规铜箔),其他测试条件与测试样例1一致。
经过测试,该常规铜箔与所述树脂层的剥离强度为4N/cm,该常规铜箔的高频信号的传输损耗见表1。
表1本申请铜箔与常规铜箔的高频信号传输损耗对比表
Figure PCTCN2022095933-appb-000005
经上述测试可知,本申请铜箔相较于常规铜箔,即具有本申请凸起2结构及其微观形貌的铜箔与不具有本申请凸起2及其微观形貌的常规铜箔相比,本申请铜箔具有较低的高频信号传输损耗和与介质层之间具有较高的剥离强度,用于制作高密度及细线路的高频线路板时具有显著的优势。
在上述实施例中,作为示例的,参见图5,所述凸起2包括主干部20及枝节部21;所述主干部20由所述一面向外延伸出来,所述枝节部21由所述主干部20的表面向外延伸出来。这样,在高频信号电流传输过程中,电流沿着金属表面流动,受所述主干部20的限制部的限制,电流难以继续往上沿主干部20流至枝节部21,由此使得所述凸起2对金属箔1的高频信号电流传输的损耗极其有限。此外,所述主干部20的表面向外延伸出来的所述枝节部21,能够提高所述金属箔1制作形成有的信号传输线路与介质层之间的结合面积,进一步提升所述金属箔1制作形成有的信号传输线路与所述介质层之间的结合力,从而能够进一步使得所述金属箔1制作形成有的信号传输线路与介质层两者之间具有良好的剥离强度而使得两者不容易分层脱落,而能够进一步实现用所述金属箔1制作高密度及细线路的高频线路板。需要说明的是,在主干部20上枝节部21的数量和形状并不受特别限制,本领域技术人员可以根据实际需要进行选择。
进一步的,主干部20的材料成分可以与所述金属箔1相同,也可以与所述金属箔1不同。如当金属箔1为铜箔或铝箔或含铜和铝时,主干部20的材料成分可以为铜、镍、锌、铬、铝、硅、氧化铝粒子、工业钻石粒子中的至少之一。由此,使得凸起2、主干部20或枝节部21的形成方式具有更多的可能性,也使得凸起2、主干部20或枝节部21具有更多的设计可能性。其中,工业钻石粒子,是微米级别的工业钻石颗粒。
作为示例的,在所述一面上,所述金属箔1中具有所述微观形貌的所述凸起2的占比不受特别限制,如可以为至少10%的所述凸起2具有所述微观形貌,优选的,至少50%的所述凸起2具有所述微观形貌,进一步优选的,至少90%的所述凸起2具有所述微观形貌。发明人发现,在所述一面上,所述金属箔1中具有所述微观形貌的所述凸起2的占比越大,则因所述凸起2而具有更低的高频信号传输损耗和更高的与介质层之间的剥离强度,更加适用于对高频信号传输损耗和剥离强度要求高的产品。
作为示例的,金属箔1作为信号传输载体时的信号频率f的具体值并不受特别限制,这可以根据产品的实际使用环境确定,如可以为1Hz-100GHz。
参见图12,本发明另一实施例提供了一种带载体金属箔1,其包括载体层3及上述任一方案所述的金属箔1;所述载体层3可剥离设置于所述金属箔1的设有所述凸起2的一面上。
参见图13,具体地,所述带载体金属箔1还包括剥离层4;所述剥离层4位于所述载体层3与所述金属箔1之间,以使所述金属箔1与所述载体层3两者可剥离设置。
可以理解的是,当所述载体层3、所述剥离层4和所述金属箔1依次层叠设置时,所述金属箔1与所述剥离层4之间的剥离强度大于所述剥离层4与所述载体层3之间的剥离强度,这样能够顺利地将所述载体层3从所述金属箔1上剥离。
需要说明的是,所述载体层3是用于作为所述金属箔1的载体基板。所述剥离层4的作用是:一方面为了减少所述载体层3与所述金属箔1产生互相渗入的现象,另一方面是为了便于所述载体层3与所述金属箔1之间的剥离。
本发明实施例通过应用有上述的金属箔1,不仅能够降低金属箔1的高频信号传输损耗,还同时能够使得金属箔1制作形成有的信号传输线路与树脂层两者之间具有良好的剥离强度而使得两者不容易分层脱落,而能够实现用所述金属箔1制作高密度及细线路的高频线路板。
作为示例的,所述剥离层4由镍、硅、钼、石墨、钛和铌中的任意一种或多种材料制成;或,所述剥离层4由有机高分子材料制成。其中,所述剥离层4的厚度优选为
Figure PCTCN2022095933-appb-000006
由于当所述剥离层4过厚时难以形成均匀的金属箔1,从而容易导致金属箔1上产生大量针孔(当金属箔1上具有针孔时,在其蚀刻成线路后,将容易出现断路现象);当所述剥离层4过薄时,容易导致其与金属箔1之间难以剥离;因此通过将所述剥离层4的厚度优选为
Figure PCTCN2022095933-appb-000007
从而确保了能够形成均匀的金属箔1,避免了在金属箔1上产生大量针孔,同时使得所述剥离层4与所述金属箔1之间易于剥离。
此外,所述载体层3可以是载体铜、载体铝或有机薄膜等,由于载体层3主要起承载作用,因此需要一定的厚度,当所述载体层3为载体铜或载体铝时,所述载体层3的厚度优选为9-50μm;当所述载体层3为有机薄膜时,所述载体层3的厚度优选为10-100μm。
参见图14,在上述实施例中,进一步地,所述带载体金属箔1还包括第一粘接层7;所述第一粘接层7设于所述载体层3与所述剥离层4之间。
在本实施例中,设置了第一粘接层7,从而利用第一粘接层7不仅使得剥离层4与载体层3之间具有较强的剥离强度,有效确保了载体层3能够稳定地从金属箔1上剥离下来,进而得到完整的极薄金属箔1,而且还利用第一粘接层7对载体层3的表面进行了处理,以使得载体层3的整个表面更加均一、致密,从而有利于从载体层3上剥离获得针孔较少的极薄金属箔1,进而有利于后续电路的制作。
具体地,所述第一粘接层7为金属粘接层。示例性地,所述金属粘接层由铜、锌、镍、铁和锰中的任意一种或多种材料制成;或者,所述金属第一粘接层由铜或锌中的其中一种材料以及镍、铁和锰中的其中一种材料制成。
参见图15,在本发明实施例中,为了防止所述载体层3氧化,本实施例中的所述载体层3靠近所述金属箔1的一侧上设有第一防氧化层5;通过在所述载体层3靠近所述金属箔1的一侧上设有第一防氧化层5,以防止所述载体层3氧化,从而保护所述载体层3。参见图16,为了防止所述金属箔1氧化,所述金属箔1远离所述载体层3的一侧上设有第二防氧化层6,通过在所述金属箔1远离所述载体层3的一侧上设有第二防氧化层6,以防止所述金属箔1氧化,从而保护所述金属箔1。
具体地,所述第一防氧化层5的材质为镍、铜合金、铬中的至少之一。
具体地,所述第二防氧化层6含有镍和锌。
本发明另一实施例提供了一种覆铜层叠板,其是使用上述任一方案所述的金属箔1或上述任一方案所述的带载体金属箔1而得到的。
示例性地,参见图17-18,所述覆铜层叠板还包括介质层,所述介质层设于至少一所述金属箔的所述一面上。具体地,所述介质层材质选自聚酰亚胺(例如热塑性聚酰亚胺)、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯、聚萘二甲酸乙二醇酯、聚苯烯、聚氯乙烯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲、环氧玻璃布、BT树脂中的至少一种。
进一步地,参见图19,所述覆铜层叠板还包括第二粘接层,所述第二粘接层设于所述金属箔的所述一面上。具体地,所述第二粘接层的材质选自聚苯乙烯系、乙酸乙烯酯类、聚酯类、聚乙烯类、聚酰胺类、橡胶类或丙烯酸酯类热塑性树脂,酚醛类、环氧类、热塑性聚酰亚胺、氨基甲酸酯类、三聚氰胺类或醇酸类热固性树脂,BT树脂,ABF树脂中的至少一种。
本发明另一实施例提供了一种印刷线路板(图未示),其是使用上述任一方案所述的金属箔1、上述任一方案所述的带载体金属箔1或上述任一方案所述的覆铜层叠板而得到的。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (26)

  1. 一种用于线路板的金属箔,其特征在于,所述金属箔的一面上分布有多个凸起,所述凸起具有以下微观形貌:
    所述凸起的与所述金属箔的所述一面连接的下半部具有限制部,所述限制部的横截面的外接圆的直径小于所述金属箔的趋肤深度;所述凸起的在所述限制部之上的部位的表面积,大于所述凸起的其余部位的表面积。
  2. 如权利要求1所述的用于线路板的金属箔,其特征在于,趋肤深度δ等于:
    Figure PCTCN2022095933-appb-100001
    σ为所述凸起的材料的电导率,f为所述金属箔作为信号传输载体时的信号频率,μ是磁导率。
  3. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述限制部相对于所述金属箔的所述一面的高度不大于2微米,所述凸起相对于所述金属箔的所述一面的高度不大于4微米。
  4. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述凸起的在所述限制部之上的部位的纵向长度与所述凸起的高度的比值为:1/2-5/6。
  5. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述凸起为树状、挂冰状或水滴状。
  6. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述凸起包括主干部及枝节部;所述主干部由所述一面向外延伸出来,所述主干部具有所述限制部,所述枝节部由所述主干部的在所述限制部之上的部位的表面向外延伸出来。
  7. 如权利要求6所述的用于线路板的金属箔,其特征在于,所述主干部的材料成分和所述金属箔的材料成分相同。
  8. 如权利要求6所述的用于线路板的金属箔,其特征在于,所述主干部的材料成分和所述金属箔的材料成分不同,所述主干部的材料选自铜、镍、锌、铬、铝、硅、氧化铝粒子、工业钻石粒子中的至少之一。
  9. 如权利要求1所述的用于线路板的金属箔,其特征在于,在所述一面上,至少10%的所述凸起具有所述微观形貌;
    或,在所述一面上,至少50%的所述凸起具有所述微观形貌;
    或,在所述一面上,至少90%的所述凸起具有所述微观形貌。
  10. 如权利要求2所述的用于线路板的金属箔,其特征在于,所述信号频率f为:
    1Hz-100GHz。
  11. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述金属箔包括铜箔和/或铝箔。
  12. 如权利要求1所述的用于线路板的金属箔,其特征在于,所述金属箔为单层金属结构或至少两层单金属层构成的多层金属结构。
  13. 一种带载体金属箔,其特征在于,包括载体层及如权利要求1-12任一项所述的用于线路板的金属箔;所述载体层可剥离设置于所述金属箔的与所述一面相反的另一面上。
  14. 如权利要求13所述的带载体金属箔,其特征在于,所述带载体金属箔还包括剥离层;所述剥离层位于所述载体层与所述金属箔之间,以使所述金属箔与所述载体层两者可剥离设置。
  15. 如权利要求14所述的带载体金属箔,其特征在于,所述带载体金属箔还包括第一粘接层;所述第一粘接层设于所述载体层与所述剥离层之间。
  16. 如权利要求15所述的带载体金属箔,其特征在于,所述第一粘接层为金属粘接层;所述金属粘接层由铜、锌、镍、铁和锰中的任意一种或多种材料制成;或者,所述金属粘接层由铜或锌中的其中一种材料以及镍、铁和锰中的其中一种材料制成。
  17. 如权利要求13所述的带载体金属箔,其特征在于,所述带载体金属箔还包括第一防氧化层,所述第一防氧化层设于所述金属箔的靠近所述载体层的一面上。
  18. 如权利要求17所述的带载体金属箔,其特征在于,所述第一防氧化层的材质为镍、铬、铜合金中的至少之一。
  19. 如权利要求13所述的带载体金属箔,其特征在于,所述带载体金属箔还包括第二防氧化层,所述第二防氧化层设于所述金属箔的远离所述载体层的一面上。
  20. 如权利要求19所述的带载体金属箔,其特征在于,所述第二防氧化层的材质为镍、铬、锌中的至少之一。
  21. 一种覆铜层叠板,其特征在于,包括如权利要求1-12任一项所述的金属箔或如权利要求13-20任一项所述的带载体金属箔。
  22. 根据权利要求21所述的覆铜层叠板,其特征在于,所述覆铜层叠板还包括介质层,所述介质层设于至少一所述金属箔的所述一面上。
  23. 根据权利要求22所述的覆铜层叠板,其特征在于,所述介质层材质选自聚酰亚胺、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯、聚萘二甲 酸乙二醇酯、聚苯烯、聚氯乙烯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲、环氧玻璃布、BT树脂中的至少一种。
  24. 根据权利要求21所述的覆铜层叠板,其特征在于,所述覆铜层叠板还包括第二粘接层,所述第二粘接层设于所述金属箔的所述一面上。
  25. 根据权利要求24所述的覆铜层叠板,其特征在于,所述第二粘接层的材质选自聚苯乙烯系、乙酸乙烯酯类、聚酯类、聚乙烯类、聚酰胺类、橡胶类或丙烯酸酯类热塑性树脂,酚醛类、环氧类、热塑性聚酰亚胺、氨基甲酸酯类、三聚氰胺类或醇酸类热固性树脂,BT树脂,ABF树脂中的至少一种。
  26. 一种印刷线路板,其特征在于,其是使用如权利要求1-12任一项所述的用于线路板的金属箔、如权利要求13-20任一项所述的带载体金属箔或如权利要求21-25中任一项所述的覆铜层叠板而得到的。
PCT/CN2022/095933 2021-06-08 2022-05-30 金属箔、带载体金属箔、覆铜层叠板及印刷线路板 WO2022257800A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237036332A KR20230160367A (ko) 2021-06-08 2022-05-30 금속박, 캐리어가 있는 금속박, 동 클래드 적층판 및 인쇄회로기판
JP2023566916A JP2024515884A (ja) 2021-06-08 2022-05-30 金属箔、キャリア付き金属箔、銅張積層板及びプリント回路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110634320.2A CN113099605B (zh) 2021-06-08 2021-06-08 金属箔、带载体金属箔、覆铜层叠板及印刷线路板
CN202110634320.2 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022257800A1 true WO2022257800A1 (zh) 2022-12-15

Family

ID=76666087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095933 WO2022257800A1 (zh) 2021-06-08 2022-05-30 金属箔、带载体金属箔、覆铜层叠板及印刷线路板

Country Status (4)

Country Link
JP (1) JP2024515884A (zh)
KR (1) KR20230160367A (zh)
CN (1) CN113099605B (zh)
WO (1) WO2022257800A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240017842A (ko) * 2021-06-03 2024-02-08 미쓰이금속광업주식회사 조화 처리 동박, 동장 적층판 및 프린트 배선판
CN113099605B (zh) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 金属箔、带载体金属箔、覆铜层叠板及印刷线路板
CN114919254A (zh) * 2022-05-27 2022-08-19 广州方邦电子股份有限公司 金属箔、挠性覆金属板、半导体、负极材料和电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155415A (ja) * 2012-01-31 2013-08-15 Furukawa Electric Co Ltd:The 高周波伝送用表面処理銅箔、高周波伝送用積層板及び高周波伝送用プリント配線板
CN104332217A (zh) * 2014-10-08 2015-02-04 广州方邦电子有限公司 自由接地膜及其制作方法、包含自由接地膜的屏蔽线路板及接地方法
JP2015147978A (ja) * 2014-02-06 2015-08-20 古河電気工業株式会社 高周波回路用銅箔、銅張積層板及びプリント配線板
CN106574389A (zh) * 2014-09-05 2017-04-19 古河电气工业株式会社 铜箔、覆铜层压板以及基板
CN107113971A (zh) * 2015-08-12 2017-08-29 古河电气工业株式会社 高频电路用铜箔、覆铜层压板、印刷布线基板
CN113099605A (zh) * 2021-06-08 2021-07-09 广州方邦电子股份有限公司 金属箔、带载体金属箔、覆铜层叠板及印刷线路板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200424359A (en) * 2003-02-04 2004-11-16 Furukawa Circuit Foil Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil
JP6294862B2 (ja) * 2015-12-09 2018-03-14 古河電気工業株式会社 プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板
CN108603303B (zh) * 2016-02-10 2020-11-13 古河电气工业株式会社 表面处理铜箔及使用其制造而成的覆铜层叠板
TWI652163B (zh) * 2017-11-15 2019-03-01 財團法人工業技術研究院 高頻電路用銅箔及其製造方法
JP7243724B2 (ja) * 2018-06-27 2023-03-22 Agc株式会社 樹脂付金属箔
CN112351961A (zh) * 2018-06-29 2021-02-09 Agc株式会社 玻璃树脂层叠体、复合层叠体以及它们的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155415A (ja) * 2012-01-31 2013-08-15 Furukawa Electric Co Ltd:The 高周波伝送用表面処理銅箔、高周波伝送用積層板及び高周波伝送用プリント配線板
JP2015147978A (ja) * 2014-02-06 2015-08-20 古河電気工業株式会社 高周波回路用銅箔、銅張積層板及びプリント配線板
CN106574389A (zh) * 2014-09-05 2017-04-19 古河电气工业株式会社 铜箔、覆铜层压板以及基板
CN104332217A (zh) * 2014-10-08 2015-02-04 广州方邦电子有限公司 自由接地膜及其制作方法、包含自由接地膜的屏蔽线路板及接地方法
CN107113971A (zh) * 2015-08-12 2017-08-29 古河电气工业株式会社 高频电路用铜箔、覆铜层压板、印刷布线基板
CN113099605A (zh) * 2021-06-08 2021-07-09 广州方邦电子股份有限公司 金属箔、带载体金属箔、覆铜层叠板及印刷线路板

Also Published As

Publication number Publication date
CN113099605B (zh) 2022-07-12
JP2024515884A (ja) 2024-04-10
KR20230160367A (ko) 2023-11-23
CN113099605A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022257800A1 (zh) 金属箔、带载体金属箔、覆铜层叠板及印刷线路板
TWI722763B (zh) 表面處理銅箔及銅箔基板
KR0127665B1 (ko) 구리부착적층판 및 프린트배선판
JP6543001B2 (ja) 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
TWI619851B (zh) 具近似絨毛狀銅瘤的電解銅箔與線路板組件的製造方法
TWI619852B (zh) 具近似橄欖球狀銅瘤的電解銅箔與線路板組件的製造方法
US20060088723A1 (en) Surface treated copper foil and circuit board
JP6893572B2 (ja) 表面処理銅箔の製造方法
WO2022255420A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
WO2016158775A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP7374298B2 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
JP2020122189A (ja) 表面処理銅箔、銅張積層板及びプリント配線板
CN115038237B (zh) 一种金属箔、覆铜层叠板和印刷线路板
TWI585245B (zh) 單面薄型金屬基板之製造方法
JP7392996B2 (ja) アドバンスド電解銅箔及びそれを適用した銅張積層板
CN116685051B (zh) 金属箔、载体箔、覆金属层叠板、印刷线路板及电池
TWI808700B (zh) 粗化處理銅箔、銅箔積層板及印刷佈線板
TWM543248U (zh) 表層具有橄欖球狀結構的電解銅箔以及線路板組件
WO2022209990A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
TWI808777B (zh) 粗化處理銅箔、銅箔積層板及印刷佈線板
TWM543249U (zh) 表層具有絨毛狀結構的電解銅箔以及線路板組件
TWI805902B (zh) 表面處理銅箔、覆銅積層板及印刷線路板
WO2022202540A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP2023006022A (ja) 高周波回路基板用導電性フィルム及び高周波回路基板
TW202344716A (zh) 粗化處理銅箔、附載體銅箔、銅箔積層板及印刷配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237036332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036332

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023566916

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18559749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE