WO2023058555A1 - 過渡電圧吸収素子 - Google Patents

過渡電圧吸収素子 Download PDF

Info

Publication number
WO2023058555A1
WO2023058555A1 PCT/JP2022/036484 JP2022036484W WO2023058555A1 WO 2023058555 A1 WO2023058555 A1 WO 2023058555A1 JP 2022036484 W JP2022036484 W JP 2022036484W WO 2023058555 A1 WO2023058555 A1 WO 2023058555A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output terminal
signal line
transient voltage
absorbing element
Prior art date
Application number
PCT/JP2022/036484
Other languages
English (en)
French (fr)
Inventor
達也 大原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023058555A1 publication Critical patent/WO2023058555A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention relates to a transient voltage absorption element that absorbs transient abnormal voltages caused by ESD (electrostatic discharge) and the like, and surges such as lightning surges and switching surges.
  • ESD electrostatic discharge
  • Patent Literature 1 discloses a repeater surge protection circuit that protects the amplifier section of a repeater from destruction from high voltage surges or high current surges that occur due to cable faults, etc., and reduces the occurrence of group delay distortion. .
  • FIG. 12 is a circuit diagram of the repeater surge protection circuit shown in Patent Document 1.
  • This repeater surge protection circuit includes input/output terminals (9, 10), (11, 12), surge absorbing elements 17, 18, a DC blocking capacitor 19, and T-shaped four-terminal circuits 20, 21.
  • the resistive elements in the T-type four-terminal circuits 20 and 21 are provided to act in a low frequency band including DC, the insertion loss of the transmission line is reduced in all frequency bands. becomes larger.
  • the capacitors in the T-type four-terminal circuits 20 and 21 are mounted on the circuit board, a resistance component R is generated in the wiring and capacitors to which these capacitors are connected. Since this resistance component R is connected in series with the transmission line, the insertion loss is large even in the operating frequency band. In addition, the large number of components inevitably increases the mounting area.
  • an object of the present invention is to provide a transient voltage absorption element that reduces insertion loss in a high frequency band, which is a frequency band used, while having a resistance component in series with a transmission line.
  • An exemplary transient voltage absorbing element of the present disclosure includes: A transient voltage absorbing element connected in series to a signal line and shunt connected between a reference potential, a substrate; a first input/output terminal formed on the base material and connected to the signal line; a second input/output terminal formed on the base material and connected to the signal line; a reference potential connection terminal formed on the base material and connected to the reference potential; an internal signal line formed inside the base material and electrically connected between the first input/output terminal and the second input/output terminal; a surge absorbing element connected between the internal signal line and the reference potential connection terminal; with the magnitude of the impedance in the frequency band of the signal propagating through the internal signal line of the parasitic capacitance component generated between the first input/output terminal and the second input/output terminal is smaller than the resistance component of the internal signal line; It is characterized by
  • FIG. 1 is a circuit diagram of a transient voltage absorbing element 101A according to the first embodiment.
  • FIG. 2 is a plan view of the main part of the transient voltage absorbing element 101A.
  • FIG. 3 is a cross-sectional view of the XX portion in FIG.
  • FIG. 4 is a circuit diagram of the transient voltage absorbing element 101B according to the first embodiment.
  • FIG. 5A is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element according to the first embodiment, and FIG. It is a circuit diagram.
  • FIG. 6 is a cross-sectional view of the diode BD.
  • FIG. 7 is a circuit diagram of the diode BD.
  • FIG. 8 is a plan view of the main part of the transient voltage absorbing element 102 according to the second embodiment.
  • FIG. 9A is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element according to the second embodiment, and FIG. It is a circuit diagram.
  • FIG. 10 is a plan view of the main part of the transient voltage absorbing element 103 according to the third embodiment.
  • FIG. 11A is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element 103 according to the third embodiment, and FIG. It is an equivalent circuit diagram.
  • FIG. 12 is a circuit diagram of a repeater surge protection circuit disclosed in Patent Document 1. As shown in FIG.
  • FIG. 1 is a circuit diagram of a transient voltage absorbing element 101A according to the first embodiment.
  • the transient voltage absorbing element 101A is a transient voltage absorbing element connected in series to the signal line SL and shunt-connected between it and the reference potential.
  • the transient voltage absorbing element 101A has a first input/output terminal T1 connected to the signal line SL, a second input/output terminal T2 connected to the signal line SL, and a reference potential connection terminal T3 connected to the reference potential. And prepare.
  • An internal signal line SL0 is provided between the first input/output terminal T1 and the second input/output terminal T2.
  • the internal signal line SL0 includes a first resistance component R1 and a second resistance component R2.
  • a diode BD is connected between the internal signal line SL0 and the reference potential connection terminal T3.
  • a first parasitic capacitance component Cp1 and a second parasitic capacitance component Cp2 exist between the first input/output terminal T1 and the second input/output terminal T2.
  • the first resistance component R1 and the second resistance component R2 act as current limiting resistors that limit low frequency (mainly DC) current. Alternatively, it acts as a terminating resistor for impedance matching.
  • the first parasitic capacitance component Cp1 has a lower impedance than the first resistance component R1
  • the second parasitic capacitance component Cp2 has a lower impedance than the second resistance component R2.
  • Low impedance That is, the impedance ABS (1/j ⁇ Cp1) with the first parasitic capacitance component Cp1 is smaller than the first resistance component R1
  • the impedance ABS (1/j ⁇ Cp2) with the second parasitic capacitance component Cp2 is smaller than the second resistance component R1. It is smaller than the resistance component R2.
  • ABS( ) represents an absolute value.
  • the transient voltage absorbing element 101A can ignore the existence of the first resistance component R1 and the second resistance component R2 in a high frequency band (for example, 10 GHz band) which is the operating frequency band, and can realize low insertion loss.
  • a high frequency band for example, 10 GHz band
  • FIG. 2 is a plan view of the transient voltage absorbing element 101A
  • FIG. 3 is a cross-sectional view taken along line XX in FIG.
  • the transient voltage absorbing element 101A is composed of a semiconductor substrate portion and a rewiring portion.
  • the semiconductor substrate portion and the rewiring portion correspond to the "base material" according to the present invention.
  • the semiconductor substrate portion includes a semiconductor substrate Sub, an epitaxial layer Epi, an insulator Ins1, and conductors Cond11, Cond12, Cond13.
  • the semiconductor substrate Sub is, for example, a Si substrate, a GaAs substrate, or the like.
  • a SiO 2 film may be used as the material of the insulator Ins1.
  • Al or Cu for example, may be used as the material of the conductors Cond11, Cond12, and Cond13.
  • the rewiring portion includes insulators Ins2, Ins3, Ins4, and Ins5, a conductor Cond2, and a pad Pad.
  • the insulator Ins2 is, for example, SiN, and the insulators Ins3, Ins4, and Ins5 are, for example, an organic resin such as epoxy.
  • Cu may be used as the material of the conductor Cond2.
  • the pad Pad is composed of, for example, a plurality of layers of electrode-forming conductors.
  • the pad Pad may include an underlying layer and a surface layer.
  • an adhesion layer may be further included between the base layer and the surface layer.
  • Ni may be used as the material of the underlayer, Ti as the material of the adhesion layer, and Au as the material of the surface layer.
  • the first terminal electrode E1, the second terminal electrode E2 and the third terminal electrode E3 shown in FIG. 2 are composed of the pads Pad shown in FIG.
  • the conductor Cond2 in the lower layer of the rewiring portion constitutes the first resistance component R1 and the second resistance component R2. That is, the conductor Cond2 in the lower layer of the rewiring portion is a conductor wiring pattern having a predetermined resistivity.
  • the conductor Cond2 in the upper layer and the conductor Cond2 in the lower layer are connected by via conductors V11 and V12.
  • the conductor Cond2 in the lower layer and the conductor Cond11 in the semiconductor substrate are connected by via conductors V21.
  • a diode BD is configured between the conductor Cond11 and the conductor Cond13.
  • the conductor Cond3 and the third terminal electrode E3 are connected through the via conductor V22 and the conductor.
  • the first parasitic capacitance component Cp1 is generated in a region where the upper layer pattern and the lower layer pattern face each other at the location forming the first resistance component R1.
  • the second parasitic capacitance component Cp2 is generated in a region where the upper layer pattern and the lower layer pattern face each other at the location forming the second resistance component R2.
  • the first terminal electrode E1 shown in FIG. 2 corresponds to the first input/output terminal T1 shown in FIG. 1
  • the second terminal electrode E2 corresponds to the second input/output terminal T2
  • the third terminal electrode E3 is connected to the reference potential. It corresponds to the terminal T3.
  • FIG. 4 is a circuit diagram of another transient voltage absorbing element 101B according to the first embodiment.
  • the resistance component R1 exists in the front stage of the connection point of the diode BD to the internal signal line SL0, and the resistance component R2 exists in the rear stage.
  • the resistance component R2 exists only after the connection point of the diode BD to the internal signal line SL0. This resistance component R2 is used, for example, as a terminating resistor.
  • the present invention can be similarly applied to a transient voltage absorption element in which the resistance component inserted into the internal signal line is provided only after the diode BD.
  • the present invention can be similarly applied to a transient voltage absorbing element in which the resistance component inserted in the internal signal line is provided only in the front stage of the diode BD.
  • FIG. 5(A) is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element 101A
  • FIG. 5(B) is its equivalent circuit diagram.
  • a parasitic capacitance is formed between the conductor Cond2 forming the first resistance component R1 and the first terminal electrode E1, as shown in FIG. 5(A). If this parasitic capacitance is equivalently represented by a single capacitor, as shown in FIG. 5B, a circuit in which the first parasitic capacitance component Cp1 is connected in parallel to the first resistance component R1 is obtained. The same applies to the relationship between the second resistance component R2 and the second parasitic capacitance component Cp2.
  • FIG. 6 is a cross-sectional view of the diode BD forming region. However, FIG. 6 shows the semiconductor substrate portion.
  • the semiconductor substrate portion of the diode BD forming region includes a semiconductor substrate Sub, an epitaxial layer Epi, a trench TR, and an insulator Ins1.
  • the epitaxial layer Epi is, for example, an n-type epitaxial layer, and is formed on the surface of the semiconductor substrate Sub.
  • a p+ region and an n+ region are formed in the surface layer of the epitaxial layer Epi.
  • An insulator Ins1 is formed on the surface of the epitaxial layer Epi.
  • Conductors Cond11, Cond12, Cond13 are formed from the surface of the epitaxial layer Epi to the p+ region and the n+ region.
  • a trench TR is formed from the insulator Ins1 to the semiconductor substrate Sub.
  • a diode is composed of the epitaxial layer Epi, the p+ region and the n+ region. If the epitaxial layer Epi is an n-type epitaxial layer, a depletion layer is formed at the interface between the epitaxial layer Epi and the p+ region. Trench TR separates the diodes.
  • the surge absorbing diode may be a Zener diode that conducts when the Zener voltage is exceeded, in addition to the diode that conducts when the forward voltage drop is exceeded.
  • FIG. 7 is a circuit diagram of the diode BD. Broken arrows in FIG. 7 indicate the path and direction of the current flowing through the diode BD.
  • conductor Cond13 ⁇ diode D21 ⁇ conductor Cond12 ⁇ diode D22 ⁇ conductive A current flows in the path of the body Cond11.
  • the resistance component is composed of a conductor, but the resistance component may be composed of a pattern of other resistors or conductors.
  • FIG. 8 is a plan view of the main part of the transient voltage absorbing element 102 according to the second embodiment.
  • the surface of the transient voltage absorbing element 102 is covered with the insulator Ins5 in the same manner as in the example shown in FIG. E2 and a third terminal electrode E3.
  • the first terminal electrode E1, the second terminal electrode E2, and the third terminal electrode E3 are composed of a part of a conductor and a pad Pad, similarly to the example shown in FIG. 3 in the first embodiment. .
  • the conductor Cond2 constitutes a first resistance component R1 and a second resistance component R2.
  • the conductor Cond2 forming the first resistance component R1 forms a first parasitic capacitance component Cp1 between its patterns.
  • the conductor Cond2 forming the second resistance component R2 forms a second parasitic capacitance component Cp2 between its patterns.
  • a diode BD is provided between a connecting portion between one end of the first resistance component R1 and the second resistance component R2 and the third terminal electrode E3.
  • this diode BD is represented by a circuit symbol.
  • the basic structure of this diode BD is similar to that of the diode BD shown in FIG.
  • FIG. 9A is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element according to the second embodiment, and FIG. It is a circuit diagram.
  • the first parasitic capacitance component Cp1 is formed between the conductors Cond2 in the plane. If the first parasitic capacitance component Cp1 is equivalently represented by a single capacitor, as shown in FIG. 9B, a circuit in which the first parasitic capacitance component Cp1 is connected in parallel to the first resistance component R1 is obtained. . The same applies to the relationship between the second resistance component R2 and the second parasitic capacitance component Cp2.
  • the parasitic capacitance may be a parasitic capacitance generated between pattern portions of resistors or conductors that constitute a resistance component.
  • the length of the conductor pattern is extended, or the conductor pattern is It is effective to reduce the film thickness.
  • the parasitic capacitance generated between the wiring patterns may be used.
  • the resistance component is composed of a conductor, but the resistance component may be composed of a pattern of other resistors or conductors.
  • the third embodiment shows an example of forming a parasitic capacitance with a structure different from the examples shown in the first and second embodiments.
  • FIG. 10 is a plan view of the main part of the transient voltage absorbing element 103 according to the third embodiment.
  • the transient voltage absorbing element 103 is composed of a semiconductor substrate portion and a rewiring portion, as in the example shown in the first embodiment.
  • the first terminal electrode E1 shown in FIG. 10 corresponds to the first input/output terminal T1 shown in FIG. 1
  • the second terminal electrode E2 corresponds to the second input/output terminal T2
  • the third terminal electrode E3 is connected to the reference potential. It corresponds to the terminal T3.
  • a conductor Cond12 that is electrically connected to the conductors Cond11 and Cond13 is formed in the rewiring portion.
  • the first terminal electrode E1, the second terminal electrode E2, and the third terminal electrode E3 shown in FIG. 10 are composed of the conductor Cond2 and the pad Pad in the upper layer of the rewiring portion.
  • a first resistance component R1 and a second resistance component R2 are formed by the conductor Cond2 in the lower layer of the rewiring portion.
  • the conductor Cond2 in the upper layer and the conductor Cond2 in the lower layer are connected by via conductors V11 and V12.
  • the conductor Cond2 in the lower layer and the conductor Cond11 in the semiconductor substrate are connected by via conductors V21.
  • a diode BD is configured between the conductor Cond11 and the conductor Cond13.
  • the conductor Cond13 and the third terminal electrode E3 are connected through the via conductor V22 and the conductor.
  • the configuration of the diode BD is as shown in the first embodiment.
  • FIG. 11(A) is a diagram showing a circuit configured by the first resistance component R1 and the first parasitic capacitance component Cp1 of the transient voltage absorbing element 103
  • FIG. 11(B) is its equivalent circuit diagram.
  • a first parasitic capacitance component Cp1 is formed between the conductors Cond2 forming the first resistance component R1.
  • a first parasitic capacitance component Cp1 is also formed between the conductor Cond2 that constitutes the first resistance component R1 and the first terminal electrode E1. If this parasitic capacitance is equivalently represented by a single capacitor, as shown in FIG. 11B, a circuit in which the first parasitic capacitance component Cp1 is connected in parallel to the first resistance component R1 is obtained. The same applies to the relationship between the second resistance component R2 and the second parasitic capacitance component Cp2.
  • transient voltage absorbing element 103 having the structure shown in the third embodiment, it is effective to lengthen the pattern of the conductor Cond2 in order to increase the resistance values of the first resistance component R1 and the second resistance component R2. be. It is also effective to reduce the film thickness of the wiring pattern by the conductor Cond2 or to narrow the line width of this wiring pattern. It is also effective to reduce the diameters of V11 and V12.
  • transient voltage absorbing elements connected to a single signal line are shown in the above-described embodiments, a pair of transient voltage absorbing elements for a differential signal line can be provided on a single substrate.
  • a transient voltage absorbing element may be constructed.
  • the surge absorption element is composed of a plurality of diodes
  • the surge absorption element may be composed of a Zener diode or a thyristor.

Abstract

信号ラインにシリーズに接続され且つ基準電位との間にシャントに接続される過渡電圧吸収素子(101A)は、基材と、基材に形成されて信号ライン(SL)に接続される第1入出力端子(T1)と、基材に形成されて信号ライン(SL)に接続される第2入出力端子(T2)と、基材に形成されて基準電位に接続される基準電位接続端子(T3)と、基材の内部に形成されて第1入出力端子(T1)と第2入出力端子(T2)との間に電気的に接続された内部信号ライン(SLO)と、内部信号ライン(SLO)と基準電位接続端子(T3)との間に接続されたサージ吸収素子と、を備える。第1入出力端子(T1)と第2入出力端子(T2)との間に生じる寄生容量成分(Cp1、Cp2)の内部信号ライン(SLO)を伝搬する信号の周波数帯におけるインピーダンスの大きさは、内部信号ライン(SLO)の抵抗成分(R1、R2)より小さい。

Description

過渡電圧吸収素子
 本発明は、ESD(静電気放電)等による過渡的な異常電圧や、雷サージ、開閉サージ等のサージを吸収する過渡電圧吸収素子に関する。
 特許文献1には、ケーブル障害等により発生する高電圧サージまたは高電流サージから中継器の増幅部の破壊を防御するとともに、群遅延歪の発生を軽減させる中継器サージ防御回路が示されている。
 図12は特許文献1に示されている中継器サージ防御回路の回路図である。この中継器サージ防御回路は、入出力端子(9,10),(11,12)、サージ吸収素子17,18、直流遮断用コンデンサ19、T型4端子回路20,21を備える。
特開昭47-27614号公報
 図12に示す中継器サージ防御回路では、T型4端子回路20,21内の抵抗素子はDCを含む低周波数帯で作用させるために設けられているので、全周波数帯で伝送線路の挿入損失が大きくなってしまう。また、T型4端子回路20,21内のコンデンサは回路基板への実装によって組み込まれるので、このコンデンサが接続される配線やコンデンサに抵抗成分Rが生じる。この抵抗成分Rは伝送線路に対して直列に接続されるため、使用周波数帯でも挿入損失が大きい。また、全体の部品点数が多いことにより、実装面積が大きくならざるを得ない。
 そこで、本発明の目的は、伝送線路に対して直列に抵抗成分を備えながらも、使用周波数帯である高周波数帯での挿入損失を低減した過渡電圧吸収素子を提供することにある。
 本開示の一例としての過渡電圧吸収素子は、
 信号ラインにシリーズに接続され且つ基準電位との間にシャントに接続される過渡電圧吸収素子であり、
 基材と、
 前記基材に形成されて前記信号ラインに接続される第1入出力端子と、
 前記基材に形成されて前記信号ラインに接続される第2入出力端子と、
 前記基材に形成されて前記基準電位に接続される基準電位接続端子と、
 前記基材の内部に形成されて前記第1入出力端子と前記第2入出力端子との間に電気的に接続された内部信号ラインと、
 前記内部信号ラインと前記基準電位接続端子との間に接続されたサージ吸収素子と、
 を備え、
 前記第1入出力端子と前記第2入出力端子との間に生じる寄生容量成分の前記内部信号ラインを伝搬する信号の周波数帯におけるインピーダンスの大きさは、前記内部信号ラインの抵抗成分より小さい、
 ことを特徴とする。
 本発明によれば、伝送線路に対して直列に抵抗成分を備えながらも、使用周波数帯である高周波数帯での挿入損失が低い過渡電圧吸収素子が得られる。
図1は第1の実施形態に係る過渡電圧吸収素子101Aの回路図である。 図2は過渡電圧吸収素子101Aの主要部の平面図である。 図3は図2におけるX-X部分の断面図である。 図4は第1の実施形態に係る過渡電圧吸収素子101Bの回路図である。 図5(A)は第1の実施形態に係る過渡電圧吸収素子の第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図5(B)はその等価回路図である。 図6はダイオードBDの断面図である。 図7はダイオードBDの回路図である。 図8は第2の実施形態に係る過渡電圧吸収素子102の主要部の平面図である。 図9(A)は第2の実施形態に係る過渡電圧吸収素子の第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図9(B)はその等価回路図である。 図10は第3の実施形態に係る過渡電圧吸収素子103の主要部の平面図である。 図11(A)は第3の実施形態に係る過渡電圧吸収素子103の第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図11(B)はその等価回路図である。 図12は特許文献1に示されている中継器サージ防御回路の回路図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係る過渡電圧吸収素子101Aの回路図である。この過渡電圧吸収素子101Aは、信号ラインSLにシリーズに接続され且つ基準電位との間にシャントに接続される過渡電圧吸収素子である。
 また、過渡電圧吸収素子101Aは、信号ラインSLに接続される第1入出力端子T1と、信号ラインSLに接続される第2入出力端子T2と、基準電位に接続される基準電位接続端子T3と、を備える。
 第1入出力端子T1と第2入出力端子T2との間には内部信号ラインSL0が設けられている。この内部信号ラインSL0は第1抵抗成分R1及び第2抵抗成分R2を含む。内部信号ラインSL0と基準電位接続端子T3との間にはダイオードBDが接続されている。
 第1入出力端子T1と第2入出力端子T2との間には、第1寄生容量成分Cp1及び第2寄生容量成分Cp2が存在する。
 第1抵抗成分R1及び第2抵抗成分R2は低周波数(主に直流)電流を制限する電流制限抵抗として作用する。または、インピーダンス整合用の終端抵抗として作用する。
 内部信号ラインSL0を伝搬する信号の周波数帯において、第1寄生容量成分Cp1は第1抵抗成分R1に比較して低インピーダンスであり、第2寄生容量成分Cp2は第2抵抗成分R2に比較して低インピーダンスである。すなわち、第1寄生容量成分をCp1とするインピーダンスABS(1/jωCp1)は、第1抵抗成分R1に比べて小さく、第2寄生容量成分をCp2とするインピーダンスABS(1/jωCp2)は、第2抵抗成分R2に比べて小さい。なお、ABS()は絶対値を表す。
 そのため、過渡電圧吸収素子101Aは、使用周波数帯である高周波数帯(例えば10GHz帯)では、第1抵抗成分R1及び第2抵抗成分R2の存在が無視でき、低挿入損失が実現できる。
 次に、上記過渡電圧吸収素子101Aの構造の一例を示す。図2は過渡電圧吸収素子101Aの平面図であり、図3は図2におけるX-X部分の断面図である。
 図3に示すように、過渡電圧吸収素子101Aは、半導体基板部と再配線部とで構成されている。半導体基板部及び再配線部は本発明に係る「基材」に相当する。
 半導体基板部は、半導体基板Sub、エピタキシャル層Epi、絶縁体Ins1及び導電体Cond11,Cond12,Cond13を備える。半導体基板Subは、例えばSi基板、GaAs基板等である。絶縁体Ins1の材質には、SiO膜が用いられてもよい。導電体Cond11,Cond12,Cond13の材質には、例えばAl又はCuが用いられてもよい。
 再配線部は、絶縁体Ins2,Ins3,Ins4,Ins5、導電体Cond2、パッドPadを備える。
 絶縁体Ins2は例えばSiN、絶縁体Ins3,Ins4,Ins5は例えばエポキシ等の有機樹脂である。導電体Cond2の材質には、例えばCuが用いられてもよい。パッドPadは例えば複数層の電極形成用導電体で構成されている。例えば、パッドPadは、下地層および表面層を含むようにしてもよい。また、下地層と表面層との間に密着層をさらに含むようにしてもよい。下地層の材質にはNiが、密着層の材質にはTiが、表面層の材質にはAuが用いられてもよい。
 図2に示す第1端子電極E1、第2端子電極E2及び第3端子電極E3は、図3に示すパッドPadにより構成されている。また、再配線部の下層の導電体Cond2により第1抵抗成分R1及び第2抵抗成分R2が構成されている。すなわち、再配線部の下層の導電体Cond2は、所定の抵抗率を有する導体の配線パターンである。上層の導電体Cond2と下層の導電体Cond2とはビア導体V11,V12で接続されている。下層の導電体Cond2と半導体基板部の導電体Cond11とはビア導体V21で接続されている。
 このような構造において、図1に示した第1抵抗成分R1及び第2抵抗成分R2の抵抗値を高めるには、導電体Cond2による配線パターンの膜厚を薄くしたり、配線パターンの線幅を細くしたりすることが有効である。また、ビア導体V11,V12の長さを長くしたり、ビア導体V11,V12の径を細くしたりすることも有効である。
 図2に示すように、導電体Cond11と導電体Cond13との間にダイオードBDが構成されている。導電体Cond3と第3端子電極E3とはビア導体V22及び導電体を通して接続されている。
 内部信号ラインSLOを構成する導電体Cond2の上層パターンと下層パターンとは絶縁体Ins4を介して対向する。第1寄生容量成分Cp1は、第1抵抗成分R1を構成する場所での上層パターンと下層パターンが対向する領域で生じる。第2寄生容量成分Cp2は、第2抵抗成分R2を構成する場所での上層パターンと下層パターンが対向する領域で生じる。
 図2に示す第1端子電極E1は図1に示した第1入出力端子T1に相当し、第2端子電極E2は第2入出力端子T2に相当し、第3端子電極E3は基準電位接続端子T3に相当する。
 図4は第1の実施形態に係る別の過渡電圧吸収素子101Bの回路図である。図1に示した過渡電圧吸収素子101Aでは、内部信号ラインSL0に対するダイオードBDの接続点の前段に抵抗成分R1が存在し、後段に抵抗成分R2が存在する例を示したが、過渡電圧吸収素子101Bでは、内部信号ラインSL0に対するダイオードBDの接続点の後段にのみ抵抗成分R2が存在している。この抵抗成分R2は例えば終端抵抗として用いる。
 このように、内部信号ラインに挿入される抵抗成分がダイオードBDの後段のみに設けた過渡電圧吸収素子についても本発明は同様に適用できる。同様に、内部信号ラインに挿入される抵抗成分がダイオードBDの前段のみに設けた過渡電圧吸収素子についても本発明は同様に適用できる。
 図5(A)は過渡電圧吸収素子101Aの第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図5(B)はその等価回路図である。
 絶縁体Ins4は誘電体層であるので、図5(A)に示すように、第1抵抗成分R1を構成する導電体Cond2と第1端子電極E1との間に寄生容量が形成される。この寄生容量を等価的に単一のキャパシタで表すと、図5(B)に示すように、第1抵抗成分R1に第1寄生容量成分Cp1が並列接続された回路となる。第2抵抗成分R2と第2寄生容量成分Cp2との関係についても同様である。
 図6はダイオードBD形成領域の断面図である。但し、図6では半導体基板部について表している。ダイオードBD形成領域の半導体基板部は、半導体基板Sub、エピタキシャル層Epi、トレンチTR、絶縁体Ins1を備える。
 エピタキシャル層Epiは例えばn型エピタキシャル層であり、半導体基板Subの表面に形成されている。エピタキシャル層Epiの表層にはp+領域及びn+領域が形成されている。エピタキシャル層Epiの表面には絶縁体Ins1が形成されている。エピタキシャル層Epiの表面からp+領域及びn+領域にかけて導電体Cond11,Cond12,Cond13が形成されている。また、絶縁体Ins1から半導体基板SubにかけてトレンチTRが形成されている。
 エピタキシャル層Epi、p+領域及びn+領域によってダイオードを構成している。エピタキシャル層Epiがn型エピタキシャル層である場合、エピタキシャル層Epiとp+領域との界面に空乏層が形成される。トレンチTRはダイオード間を分離する。
 なお、サージ吸収用のダイオードは、順方向降下電圧を超えるときに導通するダイオード以外に、ツェナー電圧を超えるときに導通するツェナーダイオードであってもよい。
 図7はダイオードBDの回路図である。図7中の破線の矢印はダイオードBDに流れる電流の経路及び方向を示している。つまり、図7中の導電体Cond11に正電位が印加され、且つ各ダイオードに対してその順方向電圧を超える電圧が印加されたとき、導電体Cond11→ダイオードD11→導電体Cond12→ダイオードD12→導電体Cond13の経路で電流が流れる。また、図7中の導電体Cond13に正電位が印加され、且つ各ダイオードに対してその順方向電圧を超える電圧が印加されたとき、導電体Cond13→ダイオードD21→導電体Cond12→ダイオードD22→導電体Cond11の経路で電流が流れる。
 なお、以上に示した例では、抵抗成分を導電体で構成したが、抵抗成分はその他の抵抗体又は導電体のパターンで構成してもよい。
《第2の実施形態》
 第2の実施形態では、第1の実施形態で示した例とは異なる構造で寄生容量を形成する例について示す。
 図8は第2の実施形態に係る過渡電圧吸収素子102の主要部の平面図である。過渡電圧吸収素子102の表面は、第1の実施形態において図3に示した例と同様に絶縁体Ins5が被覆されていて、絶縁体Ins5の開口部が第1端子電極E1、第2端子電極E2及び第3端子電極E3である。これら第1端子電極E1、第2端子電極E2及び第3端子電極E3は、第1の実施形態において図3に示した例と同様に、導電体の一部、及びパッドPadで構成されている。
 上記導電体Cond2によって第1抵抗成分R1及び第2抵抗成分R2が構成されている。第1抵抗成分R1を構成する導電体Cond2は、そのパターン間に第1寄生容量成分Cp1を形成している。同様に、第2抵抗成分R2を構成する導電体Cond2は、そのパターン間に第2寄生容量成分Cp2を形成している。
 第1抵抗成分R1の一端と第2抵抗成分R2との接続部と、第3端子電極E3と、の間にはダイオードBDが設けられている。但し、図8においてはこのダイオードBDを回路記号で表している。このダイオードBDの基本的な構造は図2に示したダイオードBDと同様である。
 図9(A)は第2の実施形態に係る過渡電圧吸収素子の第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図9(B)はその等価回路図である。
 第1抵抗成分R1を構成する導電体Cond2は、ミアンダライン状のような屈曲したパターンであるので、平面内での導電体Cond2間に第1寄生容量成分Cp1が形成される。これらの第1寄生容量成分Cp1を等価的に単一のキャパシタで表すと、図9(B)に示すように、第1抵抗成分R1に第1寄生容量成分Cp1が並列接続された回路となる。第2抵抗成分R2と第2寄生容量成分Cp2との関係についても同様である。
 本実施形態に示したように、寄生容量は抵抗成分を構成する抵抗体又は導電体によるパターンの部分同士の間に生じる寄生容量であってもよい。
 この第2の実施形態で示す構造の過渡電圧吸収素子102では、第1抵抗成分R1及び第2抵抗成分R2の抵抗値を高めるには、導電体のパターンの引き回しを長くしたり、導電体の膜厚を薄くしたりすることが有効である。
 このように、単層の導電体Cond2で抵抗成分を構成する場合には、その配線パターン間に生じる寄生容量を利用してもよい。
 なお、以上に示した例では、抵抗成分を導電体で構成したが、抵抗成分はその他の抵抗体又は導電体のパターンで構成してもよい。
《第3の実施形態》
 第3の実施形態では、第1、第2の実施形態で示した例とは異なる構造で寄生容量を形成する例について示す。
 図10は第3の実施形態に係る過渡電圧吸収素子103の主要部の平面図である。過渡電圧吸収素子103は、第1の実施形態で示した例と同様に、半導体基板部と再配線部とで構成されている。図10に示す第1端子電極E1は図1に示した第1入出力端子T1に相当し、第2端子電極E2は第2入出力端子T2に相当し、第3端子電極E3は基準電位接続端子T3に相当する。
 再配線部には導電体Cond11,Cond13に導通する導電体Cond12が形成されている。図10に示す第1端子電極E1、第2端子電極E2及び第3端子電極E3は、再配線部の上層の導電体Cond2及びパッドPadにより構成されている。また、再配線部の下層の導電体Cond2により第1抵抗成分R1及び第2抵抗成分R2が形成されている。上層の導電体Cond2と下層の導電体Cond2とはビア導体V11,V12で接続されている。下層の導電体Cond2と半導体基板部の導電体Cond11とはビア導体V21で接続されている。
 図10に示すように、導電体Cond11と導電体Cond13との間にダイオードBDが構成されている。導電体Cond13と第3端子電極E3とはビア導体V22及び導電体を通して接続されている。ダイオードBDの構成は第1の実施形態で示したとおりである。
 図11(A)は過渡電圧吸収素子103の第1抵抗成分R1と第1寄生容量成分Cp1とにより構成される回路を示す図であり、図11(B)はその等価回路図である。
 図11(A)に示すように、第1抵抗成分R1を構成する導電体Cond2間に第1寄生容量成分Cp1が形成される。また、第1抵抗成分R1を構成する導電体Cond2と第1端子電極E1との間にも第1寄生容量成分Cp1が形成される。この寄生容量を等価的に単一のキャパシタで表すと、図11(B)に示すように、第1抵抗成分R1に第1寄生容量成分Cp1が並列接続された回路となる。第2抵抗成分R2と第2寄生容量成分Cp2との関係についても同様である。
 この第3の実施形態で示す構造の過渡電圧吸収素子103において、第1抵抗成分R1及び第2抵抗成分R2の抵抗値を高めるには、導電体Cond2のパターンの引き回しを長くすることが有効である。また、導電体Cond2による配線パターンの膜厚を薄くしたり、この配線パターンの線幅を細くしたりすることも有効であり、さらにはビア導体V11,V12の長さを長くしたり、ビア導体V11,V12の径を細くしたりすることも有効である。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上に示した各実施形態では単一の信号ラインに接続される過渡電圧吸収素子について示したが、この過渡電圧吸収素子を単一の基材に一対設けることによって差動信号ライン用の過渡電圧吸収素子を構成してもよい。
 また、以上に示した各実施形態では、サージ吸収素子を複数のダイオードで構成した例を示したが、ツェナーダイオードやサイリスタでサージ吸収素子を構成してもよい。
BD…ダイオード
Cond11,Cond12,Cond13,Cond2,Cond3…導電体
Cp1…第1寄生容量成分
Cp2…第2寄生容量成分
D11,D12,D21,D22…ダイオード
E1…第1端子電極
E2…第2端子電極
E3…第3端子電極
Epi…エピタキシャル層
Ins1,Ins2,Ins3,Ins4,Ins5…絶縁体
Pad…パッド
R1…第1抵抗成分
R2…第2抵抗成分
Sub…半導体基板
SL…信号ライン
SL0…内部信号ライン
T1…第1入出力端子
T2…第2入出力端子
T3…基準電位接続端子
TR…トレンチ
V11,V12,V21,V22…ビア導体
17,18…サージ吸収素子
19…直流遮断用コンデンサ
20,21…T型4端子回路
101A,101B,102,103…過渡電圧吸収素子

Claims (10)

  1.  信号ラインにシリーズに接続され且つ基準電位との間にシャントに接続される過渡電圧吸収素子であり、
     基材と、
     前記基材に形成されて前記信号ラインに接続される第1入出力端子と、
     前記基材に形成されて前記信号ラインに接続される第2入出力端子と、
     前記基材に形成されて前記基準電位に接続される基準電位接続端子と、
     前記基材の内部に形成されて前記第1入出力端子と前記第2入出力端子との間に電気的に接続された内部信号ラインと、
     前記内部信号ラインと前記基準電位接続端子との間に接続されたサージ吸収素子と、
     を備え、
     前記第1入出力端子と前記第2入出力端子との間に生じる寄生容量成分の前記内部信号ラインを伝搬する信号の周波数帯におけるインピーダンスの大きさは、前記内部信号ラインの抵抗成分より小さい、
     ことを特徴とする過渡電圧吸収素子。
  2.  前記内部信号ラインは、前記基材に形成された所定の抵抗成分を有する導電体の配線パターンであり、
     前記第1入出力端子および前記第2入出力端子と直接接続されている、
     ことを特徴とする請求項1に記載の過渡電圧吸収素子。
  3.  前記内部信号ラインは1層で形成されており、前記寄生容量成分は前記配線パターンにより平面上に生じる、
     ことを特徴とする請求項2に記載の過渡電圧吸収素子。
  4.  前記内部信号ラインはミアンダ形状を含む、
     請求項3に記載の過渡電圧吸収素子。
  5.  前記寄生容量成分は、前記内部信号ラインと、少なくとも前記第1入出力端子および前記第2入出力端子の1つとの間で生じる、
     ことを特徴とする請求項2に記載の過渡電圧吸収素子。
  6.  前記基材は誘電体層を、さらに備え、
     前記内部信号ラインは、少なくとも前記第1入出力端子および前記第2入出力端子の1つと、前記誘電体層を挟んで対向位置に配置される、
     ことを特徴とする請求項5に記載の過渡電圧吸収素子。
  7.  前記基材は誘電体層を、さらに備え、
     前記内部信号ラインは誘電体膜を挟んだ位置に2層以上形成されており、誘電体を挟んだ領域で前記寄生容量成分を形成する、
     ことを特徴とする請求項2に記載の過渡電圧吸収素子。
  8.  前記抵抗成分および前記寄生容量成分は、
      前記第1入出力端子と前記基準電位接続端子の間と、
      前記第2入出力端子と前記基準電位接続端子の間と、でそれぞれ生じる、
     ことを特徴とする請求項2に記載の過渡電圧吸収素子。
  9.  前記内部信号ラインの前記配線パターンは、サージ吸収素子を基準にて対称形状である、
     ことを特徴とする請求項8に記載の過渡電圧吸収素子。
  10.  前記第1入出力端子と前記第2入出力端子は、前記基準電位接続端子を基準にて対称位置に配置される、
     ことを特徴とする請求項8に記載の過渡電圧吸収素子。
PCT/JP2022/036484 2021-10-04 2022-09-29 過渡電圧吸収素子 WO2023058555A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-163296 2021-10-04
JP2021163296 2021-10-04

Publications (1)

Publication Number Publication Date
WO2023058555A1 true WO2023058555A1 (ja) 2023-04-13

Family

ID=85803396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036484 WO2023058555A1 (ja) 2021-10-04 2022-09-29 過渡電圧吸収素子

Country Status (1)

Country Link
WO (1) WO2023058555A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217043A (ja) * 2004-01-28 2005-08-11 Toshiba Corp 静電破壊保護回路
JP2008244406A (ja) * 2007-03-29 2008-10-09 Seiko Epson Corp 半導体装置
JP2009033462A (ja) * 2007-07-26 2009-02-12 Kawasaki Heavy Ind Ltd 信号伝送路の電圧制限装置
JP2012009481A (ja) * 2010-06-22 2012-01-12 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
WO2012023394A1 (ja) * 2010-08-18 2012-02-23 株式会社村田製作所 Esd保護デバイス
WO2014132938A1 (ja) * 2013-02-28 2014-09-04 株式会社村田製作所 半導体装置
WO2017159282A1 (ja) * 2016-03-15 2017-09-21 株式会社村田製作所 Esd保護回路、差動伝送線路、コモンモードフィルタ回路、esd保護デバイスおよび複合デバイス
JP2020205342A (ja) * 2019-06-17 2020-12-24 ローム株式会社 チップ部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217043A (ja) * 2004-01-28 2005-08-11 Toshiba Corp 静電破壊保護回路
JP2008244406A (ja) * 2007-03-29 2008-10-09 Seiko Epson Corp 半導体装置
JP2009033462A (ja) * 2007-07-26 2009-02-12 Kawasaki Heavy Ind Ltd 信号伝送路の電圧制限装置
JP2012009481A (ja) * 2010-06-22 2012-01-12 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
WO2012023394A1 (ja) * 2010-08-18 2012-02-23 株式会社村田製作所 Esd保護デバイス
WO2014132938A1 (ja) * 2013-02-28 2014-09-04 株式会社村田製作所 半導体装置
WO2017159282A1 (ja) * 2016-03-15 2017-09-21 株式会社村田製作所 Esd保護回路、差動伝送線路、コモンモードフィルタ回路、esd保護デバイスおよび複合デバイス
JP2020205342A (ja) * 2019-06-17 2020-12-24 ローム株式会社 チップ部品

Similar Documents

Publication Publication Date Title
US9601920B2 (en) Transient voltage protection circuits and devices
US7750439B2 (en) ESD protection device
TW477055B (en) Improved ESD diode structure
US10886730B2 (en) Filter having an ESD protection device
JP2988480B2 (ja) フィルタに係合できる保護回路
US10593662B2 (en) Protection device
US7019382B2 (en) Arrangement for ESD protection of an integrated circuit
US11444078B2 (en) ESD protection element
US20140167781A1 (en) Sensor device
WO2023058555A1 (ja) 過渡電圧吸収素子
CN107431042B (zh) 具有片上噪声保护电路的半导体芯片
CN209249442U (zh) Esd保护器件以及信号传输线路
KR100730231B1 (ko) 반도체 장치
JP5072282B2 (ja) 半導体装置
WO2023021994A1 (ja) 過渡電圧吸収素子
US7071514B1 (en) Electrostatic discharge protection device
KR20220040518A (ko) 감소된 고조파 왜곡을 갖는 esd 보호 디바이스
CN117836944A (zh) 过渡电压吸收元件
US20240039275A1 (en) Transient voltage absorbing element and transient voltage absorbing circuit
JP4925996B2 (ja) 減衰器および電子デバイス
WO2023058553A1 (ja) 過渡電圧吸収素子
WO2023021993A1 (ja) 過渡電圧吸収素子
WO2019202774A1 (ja) Esd保護素子
WO2022196642A1 (ja) 過渡電圧吸収回路
US11177251B2 (en) Circuit overvoltage protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878425

Country of ref document: EP

Kind code of ref document: A1