WO2023058455A1 - 蓄電素子の製造方法及び注液装置 - Google Patents

蓄電素子の製造方法及び注液装置 Download PDF

Info

Publication number
WO2023058455A1
WO2023058455A1 PCT/JP2022/035108 JP2022035108W WO2023058455A1 WO 2023058455 A1 WO2023058455 A1 WO 2023058455A1 JP 2022035108 W JP2022035108 W JP 2022035108W WO 2023058455 A1 WO2023058455 A1 WO 2023058455A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
injection
electrolytic solution
storage element
manufacturing
Prior art date
Application number
PCT/JP2022/035108
Other languages
English (en)
French (fr)
Inventor
一弥 岡部
良一 奥山
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023058455A1 publication Critical patent/WO2023058455A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a power storage element and a liquid injection device.
  • lithium-ion secondary batteries Due to their high energy density, storage devices such as lithium-ion secondary batteries are widely used in personal computers, electronic devices such as communication terminals, and automobiles. Lithium ion capacitors and the like are also widely used as power storage elements other than lithium ion secondary batteries.
  • an electric storage element is manufactured by housing an electrode body in which a positive electrode and a negative electrode are superimposed with a separator interposed therebetween in a container, and then injecting an electrolytic solution into the container (see Patent Document 1). As a result, an electric storage element in which the electrode body is impregnated with the electrolytic solution is obtained.
  • the inside of the element container may be decompressed before the electrolyte is injected.
  • the electrolyte does not sufficiently impregnate the center of the electrode body, and air and the like do not penetrate the electrode body. It may remain as bubbles (gas pools) inside.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for manufacturing an electric storage element capable of efficiently injecting an electrolytic solution into an element container in which an electrode assembly is housed, and It is to provide an injection device.
  • a method for manufacturing a power storage device includes degassing the interior of a device container containing an electrode body having a positive electrode and a negative electrode and having a plurality of liquid injection ports provided on one surface; Injecting the electrolytic solution into the degassed element container from one injection container filled with the electrolytic solution through the plurality of injection ports.
  • An injection device is used when injecting an electrolytic solution into an element container containing an electrode body having a positive electrode and a negative electrode and provided with a plurality of injection ports. , one liquid injection container, and piping for connecting the one liquid injection container and the plurality of liquid injection ports.
  • FIG. 1 is a flow chart showing an embodiment of a method for manufacturing an electric storage element.
  • FIG. 2 is a first explanatory diagram of one embodiment of a method for manufacturing an electric storage element.
  • FIG. 3 is a second explanatory view of one embodiment of the method for manufacturing an electric storage device.
  • a method for manufacturing a power storage element includes degassing the inside of an element container containing an electrode assembly having a positive electrode and a negative electrode, and having a plurality of injection ports provided on one surface. and injecting the electrolytic solution into the degassed element container from one injection container filled with the electrolytic solution through the plurality of injection ports.
  • the use of one liquid injection container has the advantage of simplifying the structure of the liquid injection device and facilitating pressure adjustment.
  • the one container for liquid injection is further filled with carbon dioxide at the time of the injection.
  • the number of air bubbles remaining inside the electrode body can be reduced. If the electric storage element is used with air bubbles remaining inside the electrode body, the charge/discharge reaction does not occur in the positive and negative electrodes facing the air bubbles, and current tends to concentrate around the air bubbles.
  • the electric storage element is a lithium ion electric storage element, the deposition of metallic lithium tends to occur on the surface of the negative electrode in the surrounding portion. Precipitation of metallic lithium is not preferable because it causes deterioration of charging/discharging performance and the like.
  • this reaction is a reaction in the electrolyte
  • carbon dioxide is highly soluble in common electrolytes (non-aqueous electrolytes, etc.), and the carbon dioxide in the electrolyte is consumed by this reaction. It is believed that this accelerates the dissolution of carbon dioxide present as air bubbles in the electrolytic solution, and the air bubbles of carbon dioxide shrink, decrease, or disappear.
  • the carbon dioxide filled in the injection container may be filled in the injection container as a gas, and part of the carbon dioxide may be dissolved in the electrolytic solution.
  • the amount of the electrolytic solution that is injected in one operation into the injection container is is preferably filled with an electrolytic solution of In such a case, it becomes easier to control the injection amount of the electrolyte, and in particular, when the injection is divided into multiple operations, it is possible to efficiently perform each injection operation with an accurate amount. Become.
  • the one liquid injection container has a plurality of liquid injection ports of the same number as the plurality of liquid injection ports of the element container. It has a bottom surface provided with a discharge port, and when injecting, the plurality of discharge ports of the one liquid injection container and the plurality of liquid injection ports of the element container are each connected to a pipe. , and the one liquid injection container is preferably arranged such that the bottom surface is horizontal. In this manner, a plurality of discharge ports are provided on the bottom surface of the container for liquid injection, and the bottom surface is arranged so that the bottom surface is horizontal during injection. It becomes easier to complete, and the work of injecting the electrolyte becomes more efficient.
  • each of the pipes is provided with a valve, and it is preferable to simultaneously open each of the valves during the injection.
  • the electrolytic solution simultaneously flows out from the discharge ports on the bottom surface of the injection container, and the electrolytic solution injection operation is made more efficient.
  • the one liquid injection container and the element container are communicated with each other. It is preferable to pressurize the inside of the one liquid injection container while maintaining the state. By performing such an operation, the electrolytic solution remaining in the injection container flows out from the discharge port and the inside of the electrode body is more sufficiently impregnated with the electrolytic solution. Therefore, by such an operation, the electrolytic solution in the liquid injection container can be sufficiently injected into the element container, and air bubbles inside the electrode assembly can be further reduced.
  • the method for manufacturing an electric storage element according to any one of [1] to [6] above further comprises precharging after the injection.
  • the electric storage element is a lithium ion electric storage element, as described above, carbon dioxide reacts with lithium ions in the electrolytic solution or the like to form lithium carbonate, and carbon dioxide bubbles effectively shrink, decrease, or disappear. .
  • Preliminary charging refers to preliminary charging performed after injection.
  • the pre-charge may not be charged to 100% charge, or may be a partial charge below 100% charge.
  • the charging rate means the percentage of the amount of electricity to be charged with respect to the charge capacity when the electric storage element is changed from a fully discharged state to a fully charged state.
  • the temperature of the device container is higher than room temperature during the preliminary charging.
  • the electric storage element is a lithium ion electric storage element
  • precharging is performed with the temperature of the element container raised to promote the reaction of carbon dioxide and lithium ions in the electrolyte to form lithium carbonate. Residual air bubbles can be reduced, reduced or eliminated more effectively.
  • the electrolytic solution is preheated before the injection. Even in such a case, since the viscosity of the electrolytic solution is low, the electrolytic solution efficiently impregnates the electrode assembly.
  • the electrode body is accommodated in the element container in which the electrolytic solution is injected.
  • it further comprises applying a centrifugal force.
  • a centrifugal force By applying a centrifugal force, the inside of the electrode body can be impregnated with the electrolytic solution.
  • the electrode body is wound in a state in which the positive electrode and the negative electrode are superimposed on each other. It is preferable that the electrode body is a mold and the length of the electrode body in the direction of the winding axis is 300 mm or more. In the case of such a wound electrode body that is long in the winding axis direction, it is generally difficult for the electrolytic solution to impregnate the center portion of the electrode body, and air bubbles tend to remain inside the electrode body. Therefore, when one embodiment of the present invention is applied to manufacture a power storage element including such an electrode body, the effect of efficiently injecting the electrolytic solution and reducing the number of bubbles remaining inside the electrode body is achieved. prominently appear.
  • the electrode body is arranged such that the surface of the element container provided with the plurality of liquid injection ports and the winding axis of the electrode body are parallel to each other. is preferably accommodated in the element container.
  • the electrode body is usually impregnated with the electrolyte.
  • air bubbles tend to remain inside the electrode body. Therefore, when one embodiment of the present invention is applied to manufacture a power storage element having such a structure, the advantage of efficiently injecting the electrolytic solution and reducing the number of bubbles remaining inside the electrode assembly is particularly high. prominently appear.
  • a liquid injection device when injecting an electrolytic solution into an element container in which an electrode assembly having a positive electrode and a negative electrode is accommodated and provided with a plurality of liquid injection ports. and includes one liquid injection container and piping for connecting the one liquid injection container and the plurality of liquid injection ports.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • a method for manufacturing a power storage device includes: Degassing the inside of the element container (degassing step S1), injecting the electrolytic solution into the degassed element container (injection step S2); applying centrifugal force to the element container (centrifugal force applying step S3); Preliminary charging (preliminary charging step S4), degassing the inside of the element container again (degassing step S1′); (see FIG. 1).
  • the steps other than the degassing step S1 and the injection step S2 are optional.
  • the method for manufacturing the power storage element includes: Before the degassing step S1, Substituting carbon dioxide (CO 2 ) for the gas inside the element container housing the electrode body (CO 2 substitution step) may be provided.
  • CO 2 carbon dioxide
  • the method for manufacturing the storage element includes: After the preliminary charging step S4, compressing the element container (compression step); Sealing the injection port of the element container with a stopper and welding the stopper (sealing process), and leaving the element container at a temperature of 35°C or higher (high temperature exposure process). at least one of The method for manufacturing the electric storage device may further include steps (storage step, cleaning step, etc.) other than the steps described above.
  • the order of the steps is preferably the above order, but is not limited to the above order as long as the same effect can be achieved.
  • a plurality of steps may be performed simultaneously, or the same step may be performed a plurality of times.
  • the centrifugal force application step S3 may be performed after the injection step S2, after the injection step S2', after the sealing step, or twice or more.
  • the electrode body 1 is a wound electrode body in which a strip-shaped positive electrode and a strip-shaped negative electrode are superimposed with a strip-shaped separator interposed therebetween and wound around a winding shaft 5 .
  • the electrode body 1 has a flat shape whose thickness direction is the direction perpendicular to the winding axis 5 (the Y direction in FIG. 2). That is, the electrode body 1 is a flat wound electrode body.
  • the lower limit of the length of the electrode body 1 in the direction of the winding axis may be, for example, 100 mm or 200 mm, preferably 300 mm, and more preferably 400 mm in some cases. .
  • the upper limit of the length of the electrode body 1 in the winding axis direction may be, for example, 4,000 mm, 2,000 mm, 1,500 mm, or 1,000 mm.
  • the thickness of the electrode body 1 (the length in the Y direction in FIG. 2) is preferably 5 mm or more and 50 mm or less, more preferably 10 mm or more and 30 mm or less.
  • the height of the electrode body 1 (the length in the Z direction in FIG. 2) is preferably 40 mm or more and 300 mm or less, more preferably 80 mm or more and 200 mm or less.
  • the element container 2 has a square (rectangular parallelepiped) shape.
  • a plurality of (three in the present embodiment) injection ports 3 (3a, 3b, 3c) are provided on one surface (upper surface 4) of the element container 2.
  • the liquid inlets 3a and 3c at both ends are preferably provided outside both ends of the electrode body 1 in a plan view (viewed in the Z-axis direction).
  • the electrolytic solution injected from the injection ports 3a and 3c at both ends quickly reaches the bottom side of the element container 2, and the electrode body 1 impregnation is promoted.
  • the size of the element container 2 is appropriately set corresponding to the size of the electrode body 1.
  • the length of the element container 2 (the length in the X direction in FIG. 2) is preferably 100 mm or more and 3,000 mm or less, more preferably 200 mm or more and 2,000 mm or less, and further preferably 300 mm or more and 1,500 mm or less. It is preferable, and 400 mm or more and 1,000 mm or less is more preferable in some cases.
  • the thickness (the length in the Y direction in FIG. 2) of the element container 2 is preferably 5 mm or more and 50 mm or less, more preferably 10 mm or more and 30 mm or less.
  • the height of the element container 2 (the length in the Z direction in FIG. 2) is preferably 40 mm or more and 300 mm or less, more preferably 80 mm or more and 200 mm or less.
  • the material of the element container 2 is not particularly limited, and a resin container, a metal container, or the like can be used.
  • the electrode body 1 is accommodated in the element container 2 so that the surface of the element container 2 (upper surface 4 in FIG. 2) provided with a plurality of injection ports 3 and the winding axis 5 of the electrode body 1 are parallel. ing.
  • one electrode body 1 is housed in one element container 2 .
  • the external terminals of the positive electrode and the negative electrode are not shown, but the positions of these terminals are arbitrary.
  • a positive electrode terminal and a negative electrode terminal are respectively provided on side surfaces (left and right surfaces in FIG. 2) of the element container 2 .
  • a positive electrode terminal and a negative electrode terminal may be provided on the surface (upper surface 4 in FIG. 2) provided with a plurality of injection ports 3 .
  • the method for housing the electrode body 1 in the element container 2 is not particularly limited, and can be carried out by a known method.
  • a plurality of injection ports 3 corresponding to the upper surface 4 are provided. This can be done by covering the opening with a lid and welding the lid and the device container main body together. Further, each step to be described later is usually performed in a state where the element container 2 is placed so that the upper surface 4 provided with the plurality of injection ports 3 is positioned upward.
  • the liquid injection device 11 includes a liquid injection container 12 and pipes 13 (13a, 13b, 13c) for connecting the liquid injection container 12 and the plurality of liquid injection ports 3a, 3b, 3c.
  • the injection container 12 stores the electrolytic solution to be injected into the element container 2 .
  • the injection container 12 may further store carbon dioxide.
  • an injection nozzle 16 (16a, 16b, 16c) is provided at the tip of each pipe 13, an injection nozzle 16 (16a, 16b, 16c) is provided.
  • the injection nozzle 16 has a structure that can be airtightly attached to the injection port 3 of the element container 2 .
  • Each pipe 13 is provided with an injection valve 17 (17a, 17b, 17c).
  • the injection device 11 further includes exhaust means 18 , electrolytic solution supply means 19 and carbon dioxide supply means 20 .
  • the exhaust means 18 evacuates the inside of the element container 2 with the injection nozzle 16 attached to the liquid injection port 3.
  • An exhaust valve 21 is provided between the exhaust means 18 and the injection nozzle 16. ing.
  • the exhaust means 18, for example, a pressure reducing pump or the like can be used.
  • the electrolytic solution supply means 19 supplies electrolytic solution to the injection container 12
  • an electrolytic solution supply valve 22 is provided between the electrolytic solution supply means 19 and the injection container 12 .
  • As the electrolytic solution supply means 19, for example, a combination of a tank for storing the electrolytic solution and a pump connected to the tank can be used.
  • the carbon dioxide supply means 20 supplies carbon dioxide to the injection container 12 , and a carbon dioxide supply valve 23 is provided between the carbon dioxide supply means 20 and the injection container 12 .
  • FIG. 2 schematically shows a state in which the injection container 12 is filled with the electrolyte solution 24 and the carbon dioxide 25 before injection in the injection step S2.
  • each step will be described in accordance with the order of one form that is basically performed.
  • CO2 replacement step In the CO 2 replacement step, which is an optional step, the gas inside the element container 2 in which the electrode body 1 is accommodated and provided with a plurality of injection ports 3 is replaced with carbon dioxide (CO 2 ). From the CO 2 replacement step to the injection step S2, each set of a plurality of injection nozzles 16 is airtightly attached to each of the plurality of injection ports 3 of the element container 2, and the plurality of discharge ports 15a of the injection container 12 are airtightly attached. , 15b, 15c and the plurality of injection ports 3a, 3b, 3c of the element container 2 are connected to each other by pipes 13a, 13b, 13c, respectively. Further, the liquid injection container 12 is arranged so that the bottom surface 14 is horizontal.
  • the inside of the element container 2 is degassed by operating the exhaust means 18 with at least the plurality of injection valves 17 closed and the exhaust valve 21 open. At this time, it is preferable to deaerate until the inside of the element container 2 becomes, for example, 0.1 MPa or less, further 0.05 MPa or less.
  • the exhaust valve 21 is closed, the electrolytic solution supply valve 22 is closed, and the plurality of injection valves 17 and the carbon dioxide supply valve 23 are opened to fill the inside of the element container 2 with carbon dioxide.
  • At least one of the injection valves 17 should be open, but it is preferable to open all the injection valves 17 from the viewpoint of efficiency. Through such an operation, the gas inside the element container 2 can be replaced with carbon dioxide.
  • Degassing step S1 In the degassing step S1, the inside of the element container 2 in which the electrode body 1 is accommodated is degassed by closing the plurality of injection valves 17, opening the exhaust valve 21, and operating the exhaust means 18. FIG. At this time, it is preferable to deaerate until the inside of the element container 2 becomes, for example, 0.1 MPa or less, further 0.05 MPa or less.
  • injection step S2 In the injection step S2, first, the electrolyte solution supply valve 22 and the carbon dioxide supply valve 23 are opened while the plurality of injection valves 17 are closed, and the electrolyte solution supply means 19 and the carbon dioxide supply means 20 The injection container 12 is filled with the electrolytic solution 24 and the carbon dioxide 25 . At this time, it is preferable that the amount of the electrolytic solution 24 is adjusted so that the injection container 12 is filled with the amount of the electrolytic solution 24 that can be injected in one operation. For example, after first opening the carbon dioxide supply valve 23 to fill the injection container 12 with carbon dioxide 25, the electrolytic solution supply valve 22 is opened and a predetermined amount of electrolytic solution 24 is supplied by the electrolytic solution supply means 19 for injection. The container 12 can be filled. Since the injection can be performed in a plurality of times, the injection container 12 does not have to be filled with the entire amount of the electrolytic solution 24 to be finally injected into the element container 2 at one time.
  • the plurality of ejection ports 15 (15a, 15b, 15c) of the liquid injection container 12 and the plurality of liquid injection ports 3 (3a, 3b, 3c) of the element container 2 are set one by one. are respectively connected by pipes 13 (13a, 13b, 13c), and the liquid injection container 12 is arranged so that the bottom surface 14 provided with a plurality of discharge ports 15 is horizontal. Therefore, in the injection step S2, it becomes easy to complete the injection of the electrolytic solution from the plurality of ejection ports 15 almost at the same time, and the efficiency of the electrolytic solution injection operation is high.
  • the amount of the electrolytic solution injected into the element container 2 in this injection step S2 may be 100% by mass or 95% by mass of the total amount of the electrolytic solution finally injected into the element container 2. % by mass or less is preferable, and 90% by mass or less is more preferable. By not injecting the entire amount of the electrolytic solution before pre-charging in this way, it is possible to suppress the ejection of the electrolytic solution to the outside of the element container during pre-charging. On the other hand, the amount of the electrolytic solution injected into the element container 2 in the injection step S2 is preferably 50% by mass or more, more preferably 60% by mass, of the total amount of the electrolytic solution finally injected into the element container 2.
  • the element container 2 and the electrode body 1 housed in the element container 2 are preheated.
  • the electrolytic solution 24 to be injected into the element container 2 is preheated. In such a case, the viscosity of the electrolytic solution 24 is lowered, and the impregnation of the electrode body 1 is promoted.
  • the temperatures of the electrode body 1, the element container 2, and the electrolytic solution 24 are preferably, for example, 35° C. or higher, more preferably 40° C. or higher. Moreover, the upper limit of these temperatures can be set to 70°C, 60°C, or 50°C, for example.
  • the injection step S2 it is preferable to pressurize the inside of the liquid injection container 12 while the liquid injection container 12 and the element container 2 are kept in communication.
  • the electrolytic solution 24 remaining in the injection container 12 flows out from the discharge port 15 and the inside of the electrode body 1 is more sufficiently impregnated with the electrolytic solution.
  • This pressurization can be performed by the carbon dioxide supply means 20 .
  • the carbon dioxide supply means 20 For example, by opening and closing the carbon dioxide supply valve 23 while the plurality of injection valves 17 are open, the inside of the injection container 12 can be pressurized.
  • this pressurization may be performed once or a plurality of times, but it is preferable to perform the pressurization a plurality of times.
  • centrifugal force application step S3 In the method for manufacturing an electric storage element, it is preferable to apply a centrifugal force to the element container 2 containing the electrode body 1 and in which the electrolytic solution 24 is injected at an arbitrary timing after the injection step S2. At this time, as schematically shown in FIG. 3, the electrode body 1 and the electrolytic solution 24 are separated from each other by the centrifugal force applying device 31 so that the centrifugal force G is applied along the direction of the winding axis 5 of the electrode body 1 . is preferably rotated. Rotating in this way promotes the impregnation of the electrolyte solution 24 into the electrode body 1 . Further, when the device container 2 is rotated in this way, leakage of the electrolytic solution 24 from the liquid injection port 3 is suppressed even if the liquid injection port 3 provided on the upper surface 4 of the element container 2 is not sealed.
  • the method for manufacturing an electric storage element it is preferable to store the element container 2 containing the electrode body 1 and the electrolytic solution under a low dew point environment for a predetermined period of time after the filling step S2 and before the preliminary charging step S4. That is, the method for manufacturing the electric storage device may further include a storage step. Thereby, the inside of the electrode body 1 is sufficiently impregnated with the electrolytic solution. In addition, by storing in an environment with a low dew point, the electrolyte absorbs moisture and spurts out of the device container during pre-charging, and variations in the open circuit voltage of the resulting storage device are prevented. can be suppressed.
  • the liquid injection port 3 of the element container 2 When storing in a low dew point environment, the liquid injection port 3 of the element container 2 may be stored in an open state (the inside of the element container 2 is not sealed), and the liquid injection port 3 may be temporarily sealed. It can be stored in condition. From the viewpoint of suppressing the absorption of moisture into the electrolytic solution, it is preferable that each step in which the element container 2 is not sealed is performed under a low dew point environment.
  • the term "low dew point environment” refers to an environment with a dew point of -30°C or less.
  • the storage time is preferably 30 minutes to 4 hours, more preferably 1 hour to 2 hours.
  • Preliminary charging step S4 In the preliminary charging step S4, an unfinished electric storage element (an unsealed electric storage element in which the electrode body 1 and the electrolytic solution are accommodated in the element container 2) is preliminarily charged. In this preliminary charging, charging is preferably performed to a charging rate of, for example, 5% or more and 50% or less, and charging to a charging rate of 10% or more and 30% or less is more preferable. Further, when the electric storage element is a lithium ion electric storage element, preliminary charging is performed when the negative electrode potential is 100 mV vs. It is preferable to charge until Li/Li + or less. By performing such precharging, the carbon dioxide dissolved in the electrolytic solution in the element container 2 reacts with the lithium ions in the electrolytic solution to sufficiently generate lithium carbonate. is effectively reduced, diminished or eliminated.
  • Preliminary charging may be performed in a state in which each injection port 3 of the element container 2 is open (a state in which the interior of the element container 2 is not sealed). preferable.
  • the temperature of the element container 2 is higher than room temperature, and it is more preferable that the temperature of the electrode assembly 1 together with the element container 2 is higher than room temperature.
  • the electric storage element is a lithium ion electric storage element, such a state promotes the generation of lithium carbonate due to the reaction between carbon dioxide and lithium ions in the electrolytic solution, etc., and removes air bubbles remaining in the electrode body 1. It can be reduced, reduced or eliminated more effectively.
  • the temperature of the electrode body 1 and the element container 2 in the preliminary charging step S4 is preferably 35° C. or higher, more preferably 40° C. or higher. Also, the upper limit of this temperature can be, for example, 70°C, 60°C or 50°C.
  • the injection device 11 can be used to perform the combination of the degassing step S1' and the injection step S2' one or more times.
  • the specific methods of the degassing step S1' and the injection step S2' that are performed after the preliminary charging step S4 are the same as those of the degassing step S1 and the injection step S2 that are performed before the preliminary charging step S4.
  • the injection amount in each of the injection steps S2 and S2' is such that the total injection amount of the electrolytic solution in the plural injection steps S2 and S2' becomes the total amount of the electrolytic solution injected into the set element container 2. is adjusted.
  • the combination of the degassing step S1′ and the injection step S2′ performed after the precharging step S4 may be performed only once, or may be performed twice or more.
  • the composition of the injected electrolytic solution may be the same or may be different.
  • the expanded element container 2 is usually compressed by precharging or the like. It is preferable to compress the element container 2 so as to have a constant dimension equal to or smaller than at least the dimensions of the element container 2 (eg, the thickness of the original rectangular parallelepiped shape). Further, for example, the side surface of the element container 2 may be compressed so as to be recessed. By compressing the element container 2, the obtained electricity storage element can be made into a good shape and can be brought into a state in which good charge/discharge performance can be exhibited.
  • the method for manufacturing the electric storage element may further include a cleaning step. If each liquid injection port 3 is sealed by welding or the like without cleaning the periphery of each liquid injection port 3, welding defects may occur. Therefore, welding defects can be suppressed by cleaning the periphery of each injection port 3 before sealing. This cleaning is preferably carried out by wiping off dirt (e.g., spouted electrolytic solution) around each injection port 3 with paper, non-woven fabric, or the like impregnated with an organic solvent.
  • dirt e.g., spouted electrolytic solution
  • the electrolyte salt in the electrolyte tends to remain around each injection port 3 . Therefore, even this electrolyte salt can be sufficiently wiped off by using paper, non-woven fabric, or the like impregnated with an organic solvent.
  • an organic solvent an alcohol, a non-aqueous solvent used for an electrolytic solution, or the like is preferably used. Among these, non-aqueous solvents used in electrolytic solutions are preferred, and chain carbonates such as diethyl carbonate and dimethyl carbonate are more preferred.
  • each injection port 3 is sealed with a plug while the element container 2 is compressed, and the plug is welded to the element container 2 .
  • a plug made of metal is preferably used for sealing.
  • the stopper is preferably made of the same material as the element container 2 .
  • the element container 2 is made of aluminum, it is preferable to use an aluminum stopper. Sealing of the plug can be suitably performed by welding such as laser welding and resistance welding.
  • the element container 2 is left at a temperature higher than room temperature after precharging.
  • the high-temperature exposure step reduces the negative electrode potential to 100 mV vs. 100 mV by precharging. After Li/Li + or less, the negative electrode potential is 100 mV vs.
  • the element container 2 may be left at a temperature of 35° C. or higher in a state of Li/Li + or lower.
  • Li/Li + or less may be subjected to a high temperature standing process.
  • a high-temperature standing step accelerates the production of lithium carbonate through the reaction between carbon dioxide and lithium ions in the electrolytic solution, and the bubbles remaining in the electrode body 1 shrink, decrease, or disappear.
  • the temperature of the environment to be left is preferably 35° C. or higher, more preferably 40° C. or higher. Also, the upper limit of this temperature can be, for example, 80°C, 60°C, or 50°C.
  • the electric storage element after sealing the injection port may be subjected to activation treatment (chemical conversion treatment), charge/discharge for capacity confirmation, and the like.
  • This charging/discharging may be performed up to a charging rate of 100%, or may be performed at a charging rate of less than 100%.
  • the positive electrode, negative electrode, separator, and electrolytic solution used in the method for manufacturing a power storage device according to one embodiment of the present invention will be described in detail below.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
  • a positive electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
  • the material for the positive electrode substrate metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloy include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H-4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • a positive electrode active material for lithium ion secondary batteries a material capable of intercalating and deintercalating lithium ions is usually used.
  • positive electrode active materials include lithium-transition metal composite oxides having an ⁇ -NaFeO 2 -type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4 , Li3V2 ( PO4 ) 3 , Li2MnSiO4 , Li2CoPO4F and the like.
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
  • Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
  • Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
  • wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
  • a sieve, an air classifier, or the like is used as necessary, both dry and wet.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
  • Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
  • the shape of the conductive agent may be powdery, fibrous, or the like.
  • As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • the functional group may be previously deactivated by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
  • the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
  • typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
  • the negative electrode has a negative electrode base material and a negative electrode active material layer disposed directly on the negative electrode base material or via an intermediate layer.
  • the structure of the intermediate layer is not particularly limited, and can be selected from, for example, the structures exemplified for the positive electrode.
  • the negative electrode base material has conductivity.
  • materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
  • the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
  • Examples of copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains arbitrary components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
  • Optional components such as conductive agents, binders, thickeners, and fillers can be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W are used as negative electrode active materials, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries.
  • Examples of negative electrode active materials include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; be done.
  • carbon dioxide reacts with lithium ions in the electrolytic solution to form lithium carbonate, which is easily fixed on the surface of the negative electrode.
  • Materials with Li/Li + or less are preferred, Si, Si oxides and carbon materials are more preferred, carbon materials are even more preferred, and graphite and non-graphitic carbon are even more preferred.
  • one type of these materials may be used alone, or two or more types may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm as determined by X-ray diffraction before charging/discharging or in a discharged state.
  • Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. say.
  • Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon.
  • Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
  • the open circuit voltage is 0.7 V or higher.
  • non-graphitizable carbon refers to a carbon material having the above d 002 of 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material having the above d 002 of 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
  • the average particle size may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like
  • the average particle size may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the negative electrode active material layer is improved.
  • a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
  • the pulverization method and classification method can be selected from, for example, the methods exemplified for the positive electrode.
  • the negative electrode active material is metal such as metal Li
  • the negative electrode active material layer may be foil-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • the separator can be appropriately selected from known separators.
  • a separator consisting of only a substrate layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one or both surfaces of a substrate layer, or the like can be used.
  • Examples of the shape of the base layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a non-woven fabric is preferred from the viewpoint of non-aqueous electrolyte retention.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide, aramid, and the like are preferable from the viewpoint of oxidative decomposition resistance.
  • a material obtained by combining these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less.
  • An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate
  • covalent crystals such as silicon and diamond
  • Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the inorganic compound a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a volume-based value and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with the porous resin film or non-woven fabric as described above.
  • the electrolytic solution can be appropriately selected from known electrolytic solutions.
  • the electrolytic solution is preferably a non-aqueous electrolytic solution.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in this non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, EC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.
  • the non-aqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • a chain carbonate By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts and the like. Among these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB).
  • lithium oxalate salts such as lithium bis ( oxalate) difluorophosphate (LiFOP), LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiC(SO 2 C 2 F 5 ) 3 and other lithium salts having a halogenated hydrocarbon group.
  • inorganic lithium salts are preferred, and LiPF 6 is more preferred.
  • the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, more preferably 0.3 mol/dm 3 or more and 2.0 mol/dm at 20° C. and 1 atm. 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate ) oxalates such as difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene
  • the content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolyte. More preferably, it is 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less.
  • an electrolytic solution other than a non-aqueous electrolytic solution can be used.
  • the power storage device manufactured by the method for manufacturing a power storage device according to the present embodiment can be used as a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV) and plug-in hybrid vehicles (PHEV), electronic devices such as personal computers and communication terminals. It can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements in a device power supply, power storage power supply, or the like.
  • a power storage unit battery module
  • the method for manufacturing an electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments can be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the injection container may not be filled with carbon dioxide, but may be filled with a gas other than carbon dioxide (for example, air), and this gas may be injected into the element container together with the electrolyte.
  • the carbon dioxide supply means 20 provided in the injection device of FIG. 2 may be gas supply means.
  • the degassing inside the electric storage element may be performed only through some of the plurality of liquid injection ports.
  • the number of liquid injection ports provided on one surface (upper surface) of the element container is not particularly limited as long as it is two or more.
  • the number of injection ports is preferably 2 or more and 5 or less, more preferably 3 or more and 4 or less.
  • one electrode body is housed in one element container
  • the number of electrode bodies housed in the element container is not limited to this.
  • one element container may accommodate two or more electrode bodies connected in parallel.
  • the number of electrode bodies housed in the element container may be, for example, two to five, typically two or three.
  • the electrolytic solution can be efficiently injected into the element container containing the electrode bodies by using the liquid injection device described above. can be done.
  • "a state in which two or more electrode bodies are connected in parallel” means a state in which the positive electrodes and the negative electrodes of the respective electrode bodies are connected to each other and electrically connected in parallel. do.
  • a so-called monoblock storage battery one element container is partitioned into a plurality of partition walls, each partition has a plurality of electrode bodies, and adjacent electrode bodies are electrically connected in series. Conditions in which two or more electrode bodies are electrically connected in series, such as in connected accumulators, are excluded from this aspect.
  • the case where the power storage element is used as a lithium ion secondary battery has been mainly described, but the type, shape, size, capacity, etc. of the power storage element are arbitrary.
  • the present invention can also be applied to capacitors such as lithium ion capacitors.
  • the method for manufacturing an electric storage element of the present invention can also be applied to a method for manufacturing an electric storage element having a laminated electrode body, an electric storage element having an element container other than a rectangular container, and the like.
  • the present invention can be applied to a method of manufacturing an electric storage element used as a power source for electronic devices such as personal computers, communication terminals, and automobiles.
  • Electrolyte solution supply means 20 Carbon dioxide supply means 21 Exhaust valve 22 Electrolyte solution supply valve 23 Carbon dioxide supply valve 24 Electrolyte solution 25 Carbon dioxide 31 Centrifugal force applying device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本発明の一態様に係る蓄電素子の製造方法は、正極と負極とを有する電極体が収容され、1つの面に複数の注液口が設けられた素子容器の内部を脱気すること、及び電解液が充填されている1つの注液用容器から、脱気された上記素子容器の内部へ、上記複数の注液口を通じて上記電解液を注入することを備える。

Description

蓄電素子の製造方法及び注液装置
 本発明は、蓄電素子の製造方法及び注液装置に関する。
 リチウムイオン二次電池等の蓄電素子は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。また、リチウムイオン二次電池以外の蓄電素子としてリチウムイオンキャパシタ等も広く普及している。
 一般的に蓄電素子は、正極と負極とがセパレータを介して重ね合わされた電極体を容器に収容し、その後、電解液を容器に注入することにより製造される(特許文献1参照)。これにより、電極体内に電解液が含浸した状態の蓄電素子が得られる。
日本国特許出願公開2001-110399号公報
 蓄電素子の製造においては、効率的に電解液を素子容器へ注入し電極体に含浸させるために、素子容器内を減圧して電解液を注入することがある。しかし、特に電極体が大きい場合等は、電極体の内部に電解液が含浸するのに時間を要し、また、電極体の中央部まで電解液が十分に含浸せず、空気等が電極体内部に気泡(ガスだまり)として残存することがある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、電極体が収容された素子容器への電解液の注入を効率的に行うことができる蓄電素子の製造方法及び注液装置を提供することである。
 本発明の一態様に係る蓄電素子の製造方法は、正極と負極とを有する電極体が収容され、1つの面に複数の注液口が設けられた素子容器の内部を脱気すること、及び電解液が充填されている1つの注液用容器から、脱気された上記素子容器の内部へ、上記複数の注液口を通じて上記電解液を注入することを備える。
 本発明の他の一態様に係る注液装置は、正極と負極とを有する電極体が収容され、複数の注液口が設けられた素子容器の内部へ、電解液を注入する際に用いられ、1つの注液用容器と、上記1つの注液用容器と上記複数の注液口とを連結するための配管とを備える。
 本発明の一態様によれば、電極体が収容された素子容器への電解液の注入を効率的に行うことができる蓄電素子の製造方法及び注液装置を提供することができる。
図1は、蓄電素子の製造方法の一実施形態を示すフロー図である。 図2は、蓄電素子の製造方法の一実施形態の第一の説明図である。 図3は、蓄電素子の製造方法の一実施形態の第二の説明図である。
 初めに、本明細書によって開示される蓄電素子の製造方法及び注液装置の概要について説明する。
 [1]本発明の一態様に係る蓄電素子の製造方法は、正極と負極とを有する電極体が収容され、1つの面に複数の注液口が設けられた素子容器の内部を脱気すること、及び電解液が充填されている1つの注液用容器から、脱気された上記素子容器の内部へ、上記複数の注液口を通じて上記電解液を注入することを備える。
 上記[1]に記載の蓄電素子の製造方法によれば、電極体が収容された素子容器への電解液の注入を効率的に行うことができる。当該蓄電素子の製造方法がこのような効果を奏する理由は、以下のように推測される。まず、当該蓄電素子の製造方法においては、素子容器の1つの面に複数の注液口が設けられており、これらの複数の注液口を通じて電解液が注入されるため効率的である。ここで、各注液口に対応した複数の注液用容器を用いて電解液を注入することも考えられる。しかしこの場合、複数の注液用容器のうちの1つの注液用容器中の電解液が先に全て注入されたとき、この空になった注液用容器の体積及び注液用容器の内部の圧力分だけ素子容器の内部の真空度が低下し、残りの注液用容器からの電解液の注入が十分に進まず、場合によっては全ての電解液が注入されないことがある。これに対し、当該蓄電素子の製造方法においては、1つの注液用容器から複数の注液口に電解液を注入するため、複数の注液口からの電解液の注入をほぼ同時に完了させることが容易になり、注液用容器内の電解液の全量を効果的に注入することができる。また、1つの注液用容器を用いることで、注液装置の構造が簡素化されること、圧力調整が容易になること等の利点もある。
 [2]上記[1]に記載の蓄電素子の製造方法においては、上記注入することの際、上記1つの注液用容器には、二酸化炭素がさらに充填されていることが好ましい。このような場合、電極体内部に残存する気泡を少なくすることができる。なお、電極体内部に気泡が残存した状態で蓄電素子を使用すると、気泡に面している部分の正極及び負極では充放電反応が生じず気泡の周囲部分に電流が集中しやすくなる。特に、当該蓄電素子がリチウムイオン蓄電素子の場合、この周囲部分の負極表面において金属リチウムの析出等が発生しやすくなる。金属リチウムの析出は、充放電性能の低下等を引き起こすため好ましくない。上記1つの注液用容器に電解液と共に二酸化炭素が充填されている場合に、電極体内部に残存する気泡を少なくすることができる理由は、以下のように推測される。電極体が収容され且つ脱気された素子容器の内部へ、電解液と二酸化炭素とを注入した場合、注入後に電極体内部に気泡が残存する場合も、気泡の大部分は二酸化炭素の気泡として残存することとなる。この二酸化炭素の気泡は、後述する予備充電等の際に二酸化炭素と電解液中等のリチウムイオンとが反応して炭酸リチウムとなって負極表面に固定されることにより縮小、減少又は消失する。この反応は、電解液中の水の存在下、以下のスキームによって進行すると考えられる。また、この反応は電解液中の反応であるが、二酸化炭素は一般的な電解液(非水電解液等)への溶解性が高く、電解液中の二酸化炭素がこの反応によって消費されることにより、気泡として存在する二酸化炭素の電解液への溶解が促進され、二酸化炭素の気泡が縮小、減少又は消失すると考えられる。
 Li++2H2O→LiOH・H2O+H+
 LiOH+H2O+CO2→LiHCO3+H2
 2LiHCO3→Li2CO3+H2O+CO2
 また、電解液と二酸化炭素とが充填された注液用容器を用いて素子容器内にこれらを注入する場合、電解液と二酸化炭素とが実質的に同時に素子容器内へ流入し、電解液と共に二酸化炭素が効率的に電極体内部にまで浸透すると考えられる。従って、電解液と共に二酸化炭素が充填された注液用容器を用いることで、効率的に素子容器内にこれらを注入することができる。
 なお、注液用容器に充填された二酸化炭素は、気体として注液用容器内に充填されており、二酸化炭素の一部は電解液に溶解していてもよい。
 [3]上記[1]又は[2]に記載の蓄電素子の製造方法においては、上記注入することの際、上記注液用容器には、上記電解液として1度の操作で注入される量の電解液が充填されていることが好ましい。このような場合、電解液の注入量の制御が容易となり、特に複数回の操作に分けて注入を行う場合等において、正確な量で効率的に1回毎の注入操作を行うことが可能となる。
 [4]上記[1]から[3]のいずれか一つに記載の蓄電素子の製造方法においては、上記1つの注液用容器は、上記素子容器の複数の注液口と同数の複数の吐出口が設けられた底面を有し、上記注入することの際、上記1つの注液用容器の複数の吐出口と上記素子容器の上記複数の注液口とは、1組ずつがそれぞれ配管で連結され、上記1つの注液用容器は、上記底面が水平になるように配置されることが好ましい。このように、注液用容器の底面に複数の吐出口が設けられ、注入の際にこの底面が水平になるように配置されることにより、複数の吐出口からの電解液の注入をほぼ同時に完了させることが容易になり、電解液の注入作業がより効率化される。
 [5]上記[4]に記載の蓄電素子の製造方法においては、上記配管にはそれぞれ弁が設けられており、上記注入することの際、それぞれの上記弁を同時に開放することが好ましい。これにより、注液用容器底面の各吐出口から同時に電解液が流れ出し、電解液の注入作業がより効率化される。
 [6]上記[1]から[5]のいずれか一つに記載の蓄電素子の製造方法においては、上記注入することの最後に、上記1つの注液用容器と上記素子容器とが連通した状態のまま、上記1つの注液用容器の内部を加圧することが好ましい。このような操作をすることで、注液用容器に残存する電解液が吐出口から流れ出ると共に電極体内部に電解液がより十分に含浸する。従って、このような操作により、注液用容器内の電解液を十分に素子容器に注入でき、また、電極体内部の気泡もより少なくなる。
 [7]上記[1]から[6]のいずれか一つに記載の蓄電素子の製造方法は、上記注入することの後に、予備充電をすることをさらに備えることが好ましい。当該蓄電素子がリチウムイオン蓄電素子の場合、予備充電により、上述のように二酸化炭素と電解液中等のリチウムイオンとが反応して炭酸リチウムとなり二酸化炭素の気泡が効果的に縮小、減少又は消失する。
 なお、「予備充電」とは、注入することの後に行う予備的な充電をいう。予備充電は、充電率100%まで充電がされなくてよく、充電率100%未満の部分的な充電であってよい。充電率とは、蓄電素子の完全放電状態から満充電状態にしたときの充電容量に対する、充電する電気量の百分率を意味する。
 [8]上記[7]に記載の蓄電素子の製造方法においては、上記予備充電をすることの際、上記素子容器の温度が室温より高いことが好ましい。当該蓄電素子がリチウムイオン蓄電素子の場合、素子容器の温度を高くした状態で予備充電を行うことで、二酸化炭素と電解液中等のリチウムイオンとが炭酸リチウムとなる反応が促進され、電極体内に残存する気泡をより効果的に縮小、減少又は消失させることができる。
 [9]上記[7]又は[8]に記載の蓄電素子の製造方法は、上記予備充電をすることの後に、上記脱気すること及び上記注入することの組み合わせを1回以上行うことが好ましい。素子容器内に封入する電解液の全量を注入した後に予備充電を行う場合、予備充電の際のガス発生により、電解液が素子容器外へ噴出しやすくなる。そこで、予備充電の前には素子容器内に封入する電解液の全量を注入せず、予備充電の後に残りの電解液を注入することで、予備充電の際の電解液の素子容器外への噴出を抑制することができる。
 [10]上記[1]から[9]のいずれか一つに記載の蓄電素子の製造方法においては、上記注入することの際、上記素子容器及び上記素子容器に収容されている上記電極体が予め加温されていることが好ましい。素子容器及び電極体が加温されている場合、注入される電解液の温度も上昇する。これにより電解液の粘度が低下し、電解液が電極体へ効率的に含浸する。
 [11]上記[1]から[10]のいずれか一つに記載の蓄電素子の製造方法においては、上記注入することの際、上記電解液が予め加温されていることが好ましい。このような場合も、電解液の粘度が低くなっているため、電解液が電極体へ効率的に含浸する。
 [12]上記[1]から[11]のいずれか一つに記載の蓄電素子の製造方法は、上記注入することの後に、上記電極体が収容され上記電解液が注入された上記素子容器に遠心力を付与することをさらに備えることが好ましい。遠心力の付与により、電極体の内部にまで電解液をより含浸させることができる。
 [13]上記[1]から[12]のいずれか一つに記載の蓄電素子の製造方法においては、上記電極体が、上記正極と上記負極とが重ね合わされた状態で巻回された巻回型の電極体であり、上記電極体の巻回軸方向の長さが300mm以上であることが好ましい。このように巻回軸方向に長い巻回型の電極体の場合、一般的に電解液が電極体の中央部まで特に含浸し難く、電極体の内部に気泡が残りやすい傾向にある。そのため、このような電極体を備える蓄電素子を製造する際に本発明の一態様を適用した場合、電解液の注入を効率的に行い、電極体の内部に残存する気泡を減少させるという効果が顕著に表れる。
 [14]上記[13]に記載の蓄電素子の製造方法においては、上記複数の注液口が設けられた素子容器の面と上記電極体の巻回軸とが平行になるよう、上記電極体が上記素子容器に収容されていることが好ましい。注液口が設けられた素子容器の面と電極体の巻回軸とが平行になるよう、巻回型の電極体が素子容器に収容されている場合、通常、電極体へ電解液が含浸し難く、電極体の内部に特に気泡が残りやすくなる。このため、このような構造の蓄電素子を製造する際に本発明の一態様を適用した場合、電解液の注入を効率的に行い、電極体の内部に残存する気泡を減少させるという利点が特に顕著に表れる。
 [15]本発明の他の一態様に係る注液装置は、正極と負極とを有する電極体が収容され、複数の注液口が設けられた素子容器の内部へ、電解液を注入する際に用いられ、1つの注液用容器と、上記1つの注液用容器と上記複数の注液口とを連結するための配管とを備える。
 上記[15]に記載の注液装置によれば、電極体が収容された素子容器への電解液の注入を効率的に行うことができる。
 以下、本発明の一実施形態に係る蓄電素子の製造方法、注液装置及びその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<蓄電素子の製造方法>
 本発明の一実施形態に係る蓄電素子の製造方法は、
 素子容器の内部を脱気すること(脱気工程S1)、
 脱気された素子容器の内部へ電解液を注入すること(注入工程S2)、
 素子容器に遠心力を付与すること(遠心力付与工程S3)、
 予備充電すること(予備充電工程S4)、
 再度、素子容器の内部を脱気すること(脱気工程S1’)、及び
 再度、脱気された素子容器の内部へ電解液を注入すること(注入工程S2’)
 を備える(図1参照)。
 なお、脱気工程S1及び注入工程S2以外は任意の工程である。
 さらに、当該蓄電素子の製造方法は、
 脱気工程S1の前に、
 電極体が収容された素子容器の内部の気体を二酸化炭素(CO2)に置換すること(CO2置換工程)
 を備えていてもよい。
 また、当該蓄電素子の製造方法は、
 予備充電工程S4より後に、
 素子容器を圧縮すること(圧縮工程)、
 素子容器の注液口を栓で封止し、栓を溶接すること(封止工程)、及び
 素子容器を35℃以上の温度下に放置すること(高温放置工程)
 の少なくとも1つを備えていてよい。
 当該当該蓄電素子の製造方法は、上記した工程以外の工程(保管工程、清掃工程等)をさらに備えていてもよい。
 当該蓄電素子の製造方法において、各工程の順は、上記の順が好ましいが、同様の効果が奏される限り上記の順に限定されるものではない。また、複数の工程を同時に行ってもよく、同一の工程を複数回行ってもよい。例えば、遠心力付与工程S3は、注入工程S2の後の他、注入工程S2’の後に行ってもよく、封止工程の後に行ってもよく、2回以上行ってもよい。
(電極体及び素子容器の構造)
 まず、図2を参照して、本実施形態で用いられる電極体1及び素子容器2の構造等について説明する。電極体1は、帯状の正極と帯状の負極とが帯状のセパレータを介して重ね合わされた状態で巻回軸5を中心として巻回された巻回型の電極体である。また、電極体1は、巻回軸5と直交する方向(図2におけるY方向)を厚さ方向とする扁平形状を有する。すなわち、電極体1は、扁平状の巻回型電極体である。
 電極体1の巻回軸方向(図2におけるX方向)の長さの下限としては、例えば100mmであってもよく、200mmであってもよいが、300mmが好ましく、400mmがより好ましい場合もある。このように電極体1を巻回軸方向に長い構造とすることで、蓄電素子のエネルギー密度を高めることができる。一方で、電極体1を巻回軸方向に長い構造とした場合、電極体1の中央部分まで電解液が含浸し難くなるため、本発明の一実施形態を適用する利点が大きい。電極体1の巻回軸方向の長さの上限としては、例えば4,000mmであってもよく、2,000mm、1,500mm又は1,000mmであってもよい。
 電極体1の厚さ(図2におけるY方向の長さ)としては、5mm以上50mm以下が好ましく、10mm以上30mm以下がより好ましい。電極体1の高さ(図2におけるZ方向の長さ)としては、40mm以上300mm以下が好ましく、80mm以上200mm以下がより好ましい。
 素子容器2は、角型(直方体状)の形状を有する。素子容器2における1つの面(上面4)には、複数(本実施形態においては3つ)の注液口3(3a、3b、3c)が設けられている。なお、両端の注液口3a、3cは、平面視(Z軸方向視)において、電極体1の両端よりも外側に設けられていることが好ましい。このような位置に両端の注液口3a、3cが設けられている場合、両端の注液口3a、3cから注入された電解液が素子容器2の底側まで速やかに到達し、電極体1への含浸が促進される。
 素子容器2のサイズは、電極体1のサイズと対応して適宜設定される。例えば、素子容器2の長さ(図2におけるX方向の長さ)は、内寸として100mm以上3,000mm以下が好ましく、200mm以上2,000mm以下がより好ましく、300mm以上1,500mm以下がさらに好ましく、400mm以上1,000mm以下がよりさらに好ましい場合もある。素子容器2の厚さ(図2におけるY方向の長さ)は、内寸として、5mm以上50mm以下が好ましく、10mm以上30mm以下がより好ましい。素子容器2の高さ(図2におけるZ方向の長さ)は、内寸として、40mm以上300mm以下が好ましく、80mm以上200mm以下がより好ましい。
 素子容器2の材質は特に限定されず、樹脂容器、金属容器等を用いることができるが、溶接により注液口3の封止を行う場合等は金属容器であることが好ましい。
 電極体1は、複数の注液口3が設けられた素子容器2の面(図2における上面4)と電極体1の巻回軸5とが平行になるように、素子容器2に収容されている。この実施形態では、1つの電極体1が1つの素子容器2に収容されている。なお、図2において、正極及び負極の外部端子は図示していないが、これらの端子の位置は任意である。例えば素子容器2における側面(図2における左右の面)に正極端子及び負極端子がそれぞれ設けられていることが好ましい。複数の注液口3が設けられた面(図2における上面4)に正極端子及び負極端子が設けられていてもよい。
 素子容器2に電極体1を収容する方法は特に限定されず、公知の方法により行うことができる。例えば、上面4に対応する蓋の部分を有さない開口した形状の素子容器2(素子容器本体)に電極体1を収容した後、上面4に対応する複数の注液口3が設けられた蓋により開口部分を覆い、蓋と素子容器本体とを溶接等することにより行うことができる。また、後述する各工程においては、通常、複数の注液口3が設けられた上面4が上側に位置するように素子容器2が載置された状態で行われる。
 なお、電極体1を構成する正極、負極及びセパレータ、並びに電解液の具体的形態は後に詳述する。
(注液装置)
 次いで、本実施形態の注液装置11について説明する。注液装置11は、注液用容器12、及び注液用容器12と複数の注液口3a、3b、3cとを連結するための配管13(13a、13b、13c)を備える。
 注液用容器12は、素子容器2内に注入する電解液を貯留するものである。注液用容器12は、さらに二酸化炭素を貯留するものであってもよい。注液用容器12の底面14には、素子容器2に設けられた複数の注液口3(3a、3b、3c)と同数の複数(本実施形態においては3つ)の吐出口15(15a、15b、15c)が設けられ、複数の吐出口15にはそれぞれ配管13(13a、13b、13c)が接続されている。各配管13の先端には、注入ノズル16(16a、16b、16c)が設けられている。注入ノズル16は、素子容器2の注液口3に気密に装着可能な構造を有する。また、各配管13には、それぞれ注入弁17(17a、17b、17c)が設けられている。
 注液装置11は、さらに、排気手段18、電解液供給手段19及び二酸化炭素供給手段20を備える。排気手段18は、注入ノズル16を注液口3に装着した状態で素子容器2の内部を脱気するものであり、排気手段18と注入ノズル16との間には、排気弁21が設けられている。排気手段18としては、例えば減圧用のポンプ等を用いることができる。電解液供給手段19は、注液用容器12に電解液を供給するものであり、電解液供給手段19と注液用容器12との間には、電解液供給弁22が設けられている。電解液供給手段19としては、例えば電解液を貯蔵するタンクとこのタンクに接続されるポンプとの組み合わせ等を用いることができる。二酸化炭素供給手段20は、注液用容器12に二酸化炭素を供給するものであり、二酸化炭素供給手段20と注液用容器12との間には、二酸化炭素供給弁23が設けられている。二酸化炭素供給手段20としては、二酸化炭素を貯蔵するボンベ等を用いることができる。
 なお、図2は、注入工程S2における注入を行う前の、注液用容器12に電解液24と二酸化炭素25とが充填された状態を模式的に表している。以下、各工程について基本的に行われる一形態の順に沿って説明する。
(CO2置換工程)
 任意の工程であるCO2置換工程においては、電極体1が収容され、複数の注液口3が設けられた素子容器2の内部の気体を二酸化炭素(CO2)に置換する。CO2置換工程から注入工程S2までにおいては、複数の注入ノズル16が素子容器2の複数の注液口3に1組ずつがそれぞれ気密に装着され、注液用容器12の複数の吐出口15a、15b、15cと素子容器2の複数の注液口3a、3b、3cとは、1組ずつがそれぞれ配管13a、13b、13cで連結された状態となっている。また、注液用容器12は、底面14が水平になるように配置される。
 CO2置換工程においては、まず、少なくとも複数の注入弁17が閉じ且つ排気弁21が開いた状態で、排気手段18を作動させることにより、素子容器2の内部を脱気する。このとき、例えば素子容器2の内部が0.1MPa以下、更には0.05MPa以下となるまで脱気することが好ましい。その後、排気弁21を閉じ、電解液供給弁22が閉じた状態で、複数の注入弁17及び二酸化炭素供給弁23が開いた状態とすることにより、素子容器2の内部に二酸化炭素を充填させる。なお、複数の注入弁17のうちの少なくとも1つが開いていればよいが、効率性等の観点から全ての注入弁17を開くことが好ましい。このような操作により、素子容器2の内部の気体を二酸化炭素に置換することができる。
(脱気工程S1)
 脱気工程S1においては、複数の注入弁17を閉じ、排気弁21を開き、排気手段18を作動させることにより、電極体1が収容された素子容器2の内部を脱気する。このとき、例えば素子容器2の内部が0.1MPa以下、更には0.05MPa以下となるまで脱気することが好ましい。
(注入工程S2)
 注入工程S2においては、まず、複数の注入弁17が閉じられた状態で、電解液供給弁22及び二酸化炭素供給弁23を開いた状態とし、電解液供給手段19及び二酸化炭素供給手段20により、注液用容器12に電解液24と二酸化炭素25とを充填する。このとき、注液用容器12には、1度の操作で注入される量の電解液24が充填されるよう、電解液24の量が調整されることが好ましい。例えば、先に二酸化炭素供給弁23を開いて二酸化炭素25で注液用容器12を満たした後、電解液供給弁22を開いて電解液供給手段19により所定量の電解液24を注液用容器12に充填することができる。なお、複数回に分けて注液を行うことができるため、注液用容器12には、素子容器2に最終的に注入される電解液24の全量が1度に充填されていなくてよい。
 次いで、複数の注入弁17以外の弁(排気弁21、電解液供給弁22及び二酸化炭素供給弁23)が閉じられた状態で複数の注入弁17を開くことで、注液用容器12から、脱気された素子容器2の内部へ、複数の配管13及び複数の注液口3を通じて電解液と二酸化炭素とが注入される。すなわち、注液用容器12から、脱気された素子容器2の内部へ、複数の配管13及び複数の注液口3を通じて電解液と二酸化炭素とが連続的に(貯留タンクや計量管のような他の貯留部に一時的に貯留されることなく)注入される。複数の注液口3を通じて素子容器2の内部へ注入された電解液は、素子容器2の内部で混ざり合い、電極体1に含侵される。なお、このとき、二酸化炭素供給弁23は開いた状態であってもよい。また、複数の注入弁17(17a、17b、17c)は、全て同時に開放することが好ましい。
 この注入工程S2の際、注液用容器12の複数の吐出口15(15a、15b、15c)と、素子容器2の複数の注液口3(3a、3b、3c)とは、1組ずつがそれぞれ配管13(13a、13b、13c)で連結され、且つ注液用容器12は、複数の吐出口15が設けられた底面14が水平になるように配置されている。このため、注入工程S2においては、電解液の注入が複数の吐出口15からほぼ同時に完了させることが容易になり、電解液の注入作業の効率性が高い。
 この注入工程S2で素子容器2の内部へ注入される電解液の量は、最終的に素子容器2の内部へ注入される電解液の総量に対して100質量%であってもよいが、95質量%以下が好ましく、90質量%以下がより好ましい。このように電解液の総量を予備充電の前に全て注入しないことで、予備充電の際の電解液の素子容器外への噴出を抑制することができる。一方、注入工程S2で素子容器2の内部へ注入される電解液の量は、最終的に素子容器2の内部へ注入される電解液の総量に対して50質量%以上が好ましく、60質量%以上、70質量%以上又は80質量%以上がより好ましい場合がある。予備充電の前にある程度十分に電解液を注入しておくことで、電極体1の内部に十分に電解液が含浸し、予備充電の効果を高めることができる。
 注入工程S2においては、素子容器2及び素子容器2に収容されている電極体1が予め加温されていることが好ましい。また、注入工程S2においては、素子容器2へ注入する電解液24が予め加温されていることが好ましい。このような場合、電解液24の粘度が低下し、電極体1への含浸が促進される。電極体1、素子容器2及び電解液24の温度としては、例えば35℃以上が好ましく、40℃以上がより好ましい。また、これらの温度の上限は例えば、70℃、60℃又は50℃とすることができる。
 注入工程S2の最後には、注液用容器12と素子容器2とが連通した状態のまま、注液用容器12の内部を加圧することが好ましい。このような操作により、注液用容器12に残存する電解液24が吐出口15から流れ出ると共に電極体1内部に電解液がより十分に含浸する。この加圧は、二酸化炭素供給手段20により行うことができる。例えば、複数の注入弁17が開いた状態で、二酸化炭素供給弁23の開閉を行うことで、注液用容器12の内部の加圧を行うことができる。また、この加圧することは1回行ってもよく、複数回行ってもよいが、複数回行うことが好ましい。
(遠心力付与工程S3)
 当該蓄電素子の製造方法は、注入工程S2の後の任意のタイミングで、電極体1が収容され電解液24が注入された素子容器2に遠心力を付与することが好ましい。この際、図3に模式的に示すように、遠心力付与装置31により、電極体1の巻回軸5の方向に沿って遠心力Gが付与されるように、電極体1及び電解液24が収容された素子容器2を回転させることが好ましい。このように回転させることで、電極体1への電解液24の含浸が促進される。また、このように回転させた場合、素子容器2の上面4に設けられた注液口3が封止されていなくても、注液口3からの電解液24の漏れは抑制される。
(保管工程)
 当該蓄電素子の製造方法は、注入工程S2の後かつ予備充電工程S4の前において、電極体1と電解液とが収容された素子容器2を低露点環境下で所定時間保管することが好ましい。すなわち、当該蓄電素子の製造方法は、保管工程をさらに備えていてもよい。これにより、電極体1の内部に電解液が十分に含浸する。また、低露点環境下で保管することにより、電解液が水分を吸収し予備充電の際に電解液が素子容器外へ噴出すること、得られる蓄電素子の開回路電圧にばらつきが生じること等を抑制することができる。低露点環境下で保管する場合、素子容器2の注液口3が開いた状態(素子容器2の内部が密閉されていない状態)で保管してもよく、注液口3を仮封止した状態で保管してもよい。なお、電解液への水分の吸収を抑制する観点から、素子容器2が密閉状態となっていない各工程は、いずれも低露点環境下で行うことが好ましい。なお、「低露点環境」とは、露点が-30℃以下の環境をいう。
 保管時間としては、30分以上4時間以下が好ましく、1時間以上2時間以下がより好ましい。保管時間を上記下限以上とすることで、電極体1の内部により十分に電解液を含浸させることができる。また、保管時間を上記上限以下とすることで生産性を高めることができる。
(予備充電工程S4)
 予備充電工程S4においては、未完成の蓄電素子(素子容器2内に電極体1と電解液とが収容され、封止されていない状態の蓄電素子)に対して予備的な充電を行う。この予備充電は、例えば充電率5%以上50%以下の範囲まで充電することが好ましく、10%以上30%以下まで充電することがより好ましい。また、当該蓄電素子がリチウムイオン蓄電素子の場合、予備充電は、負極電位が100mV vs.Li/Li+以下となるまで充電することが好ましい。このような予備充電を行うことにより、素子容器2中の電解液に溶解した二酸化炭素と電解液中等のリチウムイオンとの反応による炭酸リチウムの生成が十分に生じ、電極体1内に残存する気泡が効果的に縮小、減少又は消失する。
 予備充電は、素子容器2の各注液口3が開いた状態(素子容器2の内部が密閉されていない状態)で行ってもよく、この場合、予備充電は低露点環境下で行うことが好ましい。
 予備充電工程S4においては、素子容器2の温度が室温より高い状態となっていることが好ましく、素子容器2と共に電極体1の温度が室温より高い状態となっていることがより好ましい。当該蓄電素子がリチウムイオン蓄電素子の場合、このような状態とすることで、二酸化炭素と電解液中等のリチウムイオンとの反応による炭酸リチウムの生成が促進され、電極体1内に残存する気泡をより効果的に縮小、減少又は消失させることができる。予備充電工程S4における電極体1及び素子容器2の温度としては、例えば35℃以上が好ましく、40℃以上がより好ましい。また、この温度の上限は例えば、70℃、60℃又は50℃とすることができる。
(脱気工程S1’及び注入工程S2’)
 上記のように、予備充電工程S4の後に、注液装置11を用い脱気工程S1’及び注入工程S2’の組み合わせを1回以上再度行うことができる。予備充電工程S4の後に行う脱気工程S1’及び注入工程S2’の具体的方法は、予備充電工程S4の前に行う脱気工程S1及び注入工程S2と同様である。但し、複数回の注入工程S2、S2’の合計の電解液の注入量が、設定した素子容器2の内部へ注入される電解液の総量となるように各注入工程S2、S2’における注入量は調整される。予備充電工程S4の後に行う脱気工程S1’及び注入工程S2’の組み合わせは1回のみ行ってもよく、2回以上行ってもよい。また、複数回の注入工程S2、S2’においては、注入される電解液の組成は同一であってもよく、異なっていてもよい。また、予備充電工程S4の後の注入工程S2’においても電解液と共に二酸化炭素を注入することにより、空気の気泡等が電極体1内に発生すること等を抑制し、得られる蓄電素子が良好な充放電性能を発揮することができる。
(圧縮工程)
 圧縮工程においては、通常、予備充電等を行うことで膨張した素子容器2を圧縮する。この素子容器2の圧縮は、少なくとも素子容器2の寸法(元々の例えば直方体形状における厚さ)以下の定寸法になるように圧縮することが好ましい。また、例えば、素子容器2の側面が凹むように圧縮してもよい。素子容器2を圧縮することで、得られる蓄電素子を良好な形状とし、良好な充放電性能を発揮できる状態とすることができる。
(清掃工程)
 当該蓄電素子の製造方法においては、圧縮工程と封止工程との間に、各注液口3の周囲を清掃することが好ましい。すなわち、当該蓄電素子の製造方法は、清掃工程をさらに備えていてもよい。各注液口3の周囲を清掃せずに溶接等により各注液口3を封止した場合、溶接欠陥が生じることがある。そのため、封止前に各注液口3の周囲を清掃することで溶接欠陥を抑制することができる。この清掃は、有機溶媒をしみ込ませた紙、不織布等により各注液口3の周囲の汚れ(噴出した電解液等)を拭きとることにより行うのが好ましい。例えば、乾燥した紙、不織布等を用いた場合、電解液中の電解質塩が各注液口3の周囲に残留しやすくなる。そこで、有機溶媒をしみ込ませた紙、不織布等を用いることで、この電解質塩までも十分にふき取ることができる。この有機溶媒としては、アルコール、電解液に用いられる非水溶媒等が好適に用いられる。これらの中でも、電解液に用いられる非水溶媒が好ましく、中でも、ジエチルカーボネート、ジメチルカーボネート等の鎖状カーボネートがより好ましい。このような有機溶媒を用いることで、素子容器2内にこれらの有機溶媒が混入した場合に、充放電の際に蓄電素子の正極及び負極でこれらの有機溶媒が分解してガスが発生すること等が抑制される。
 各注液口3の周囲の清掃は、低露点環境下で行うことが好ましい。低露点環境下で行うことで、素子容器2内に水分が混入することによる素子容器2の膨れ等を抑制することができる。
(封止工程)
 封止工程においては、素子容器2が圧縮された状態で各注液口3を栓で封止し、上記栓を素子容器2に溶接する。素子容器2が圧縮された状態で封止を行うことで、膨れが抑制され、厚さの均一性の高い蓄電素子を得ることができる。
 封止に用いられる栓は、金属製のものが好適に用いられる。また、栓は素子容器2と同じ材質のものが好適である。例えば、素子容器2がアルミニウム製である場合、アルミニウム製の栓を用いることが好ましい。栓の封止は、レーザ溶接、抵抗溶接等の溶接により好適に行うことができる。
(高温放置工程)
 高温放置工程においては、予備充電した後に、素子容器2を室温より高い温度下に放置する。当該蓄電素子がリチウムイオン蓄電素子の場合、高温放置工程は、予備充電により、負極電位を100mV vs.Li/Li+以下とした後に、負極電位が100mV vs.Li/Li+以下の状態で、素子容器2を35℃以上の温度下に放置することであってもよい。封止前に行う予備充電工程S4とは別に再度予備充電を行って負極電位を100mV vs.Li/Li+以下とし、高温放置工程に供してもよい。このような高温放置工程により、二酸化炭素と電解液中のリチウムイオンとの反応による炭酸リチウムの生成が進み、より電極体1内に残存する気泡が縮小、減少又は消失する。放置する環境の温度としては、35℃以上が好ましく、40℃以上がより好ましい。また、この温度の上限としては、例えば80℃、60℃又は50℃とすることができる。
 さらに当該蓄電素子の製造方法においては、注液口を封止した後の蓄電素子に対して、活性化処理(化成処理)、容量確認等のための充放電を行ってもよい。この充放電は、充電率100%まで充電がなされるものであってもよく、充電率100%未満で充電がなされるものであってもよい。
 以下、本発明の一実施形態の蓄電素子の製造方法に用いられる正極、負極、セパレータ及び電解液について詳説する。
(正極)
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が107Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LixNi(1-x)]O2(0≦x<0.5)、Li[LixNiγCo(1-x-γ)]O2(0≦x<0.5、0<γ<1、0<1-x-γ)、Li[LixCo(1-x)]O2(0≦x<0.5)、Li[LixNiγMn(1-x-γ)]O2(0≦x<0.5、0<γ<1、0<1-x-γ)、Li[LixNiγMnβCo(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1、0<1-x-γ-β)、Li[LixNiγCoβAl(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1、0<1-x-γ-β)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LixMn24、LixNiγMn(2-γ)4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li32(PO43、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、蓄電素子のエネルギー密度を高めることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、正極活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;Li4Ti512、LiTiO2、TiNb27等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、二酸化炭素と電解液中のリチウムイオンとが反応して炭酸リチウムとなって負極表面に固定されやすくなる観点から、リチウムイオンを吸蔵するときの負極電位が1V vs.Li/Li+以下となる材料が好ましく、Si、Si酸化物及び炭素材料がより好ましく、炭素材料がさらに好ましく、黒鉛及び非黒鉛質炭素がよりさらに好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、負極活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記正極で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質層は、箔状であってもよい。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(電解液)
 電解液としては、公知の電解液の中から適宜選択できる。電解液は、非水電解液であることが好ましい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。 
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF6、LiPO22、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、LiC(SO2253等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPF6がより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm3以上2.5mol/dm3以下であると好ましく、0.3mol/dm3以上2.0mol/dm3以下であるとより好ましく、0.5mol/dm3以上1.7mol/dm3以下であるとさらに好ましく、0.7mol/dm3以上1.5mol/dm3以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
 電解液としては、非水電解液以外の電解液を用いることもできる。
 本実施形態の蓄電素子の製造方法により製造される蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。
<その他の実施形態>
 尚、本発明の蓄電素子の製造方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 例えば、注液用容器に二酸化炭素を充填していなくてもよく、二酸化炭素以外の気体(例えば空気等)を充填し、電解液と共にこの気体を素子容器内へ注入するようにしてもよい。この場合、図2の注液装置が備える二酸化炭素供給手段20は、気体供給手段であってよい。但し、気体として二酸化炭素を素子容器内へ注入することで、上記のように電極体に残存する気泡をより少なくすることができる。また、蓄電素子の内部の脱気は、複数の注液口のうちの一部のみから行ってもよい。
 また、素子容器の1つの面(上面)に設けられる注液口の数は、2以上であれば特に限定されるものではない。注液口の数としては、例えば2以上5以下が好ましく、3以上4以下がより好ましい。
 また、上記実施形態では、1つの素子容器に1つの電極体が収容されている場合を例示したが、素子容器に収容される電極体の数は、これに限定されない。例えば、1つの素子容器に2つ以上の電極体が並列に接続された状態で収容されていてもよい。素子容器に収容される電極体の数は、例えば2つから5つであってもよく、典型的には2つ又は3つであり得る。このように、1つの素子容器に2つ以上の電極体が収容されている場合でも、前述した注液装置を用いることにより、電極体が収容された素子容器への電解液の注入を効率的に行うことができる。なお、本明細書において、「2つ以上の電極体が並列に接続された状態」とは、各々の電極体における正極同士及び負極同士が接続され、電気的に並列に接続された状態を意味する。したがって、所謂モノブロック式蓄電池(1つの素子容器の内部が隔壁によって複数に区画されており、各々の区画に収容された複数個の電極体を有し、隣接する電極体を電気的に直列に接続した蓄電池)のような、2つ以上の電極体が電気的に直列に接続された状態は、本態様から除外される。
 上記実施形態では、蓄電素子がリチウムイオン二次電池として用いられる場合について中心に説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、リチウムイオンキャパシタ等のキャパシタにも適用できる。また、本発明の蓄電素子の製造方法は、積層型の電極体を備える蓄電素子、角型容器以外の素子容器を備える蓄電素子等の製造方法にも適用できる。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される蓄電素子を製造する方法等に適用できる。
1 電極体
2 素子容器
3(3a、3b、3c) 注液口
4 上面
5 巻回軸
11 注液装置
12 注液用容器
13(13a、13b、13c) 配管
14 底面
15(15a、15b、15c) 吐出口
16(16a、16b、16c) 注入ノズル
17(17a、17b、17c) 注入弁
18 排気手段
19 電解液供給手段
20 二酸化炭素供給手段
21 排気弁
22 電解液供給弁
23 二酸化炭素供給弁
24 電解液
25 二酸化炭素
31 遠心力付与装置

Claims (15)

  1.  正極と負極とを有する電極体が収容され、1つの面に複数の注液口が設けられた素子容器の内部を脱気すること、及び
     電解液が充填されている1つの注液用容器から、脱気された上記素子容器の内部へ、上記複数の注液口を通じて上記電解液を注入すること
     を備える、蓄電素子の製造方法。
  2.  上記注入することの際、上記1つの注液用容器には、二酸化炭素がさらに充填されている、請求項1に記載の蓄電素子の製造方法。
  3.  上記注入することの際、上記注液用容器には、上記電解液として1度の操作で注入される量の電解液が充填されている、請求項1又は請求項2に記載の蓄電素子の製造方法。
  4.  上記1つの注液用容器は、上記素子容器の複数の注液口と同数の複数の吐出口が設けられた底面を有し、
     上記注入することの際、上記1つの注液用容器の複数の吐出口と上記素子容器の上記複数の注液口とは、1組ずつがそれぞれ配管で連結され、上記1つの注液用容器は、上記底面が水平になるように配置される、請求項1又は請求項2に記載の蓄電素子の製造方法。
  5.  上記配管にはそれぞれ弁が設けられており、上記注入することの際、それぞれの上記弁を同時に開放する、請求項4に記載の蓄電素子の製造方法。
  6.  上記注入することの最後に、上記1つの注液用容器と上記素子容器とが連通した状態のまま、上記1つの注液用容器の内部を加圧する、請求項1又は請求項2に記載の蓄電素子の製造方法。
  7.  上記注入することの後に、
     予備充電をすること
     をさらに備える請求項1又は請求項2に記載の蓄電素子の製造方法。
  8.  上記予備充電をすることの際、上記素子容器の温度が室温より高い、請求項7に記載の蓄電素子の製造方法。
  9.  上記予備充電をすることの後に、上記脱気すること及び上記注入することの組み合わせを1回以上行う、請求項7に記載の蓄電素子の製造方法。
  10.  上記注入することの際、上記素子容器及び上記素子容器に収容されている上記電極体が予め加温されている、請求項1又は請求項2に記載の蓄電素子の製造方法。
  11.  上記注入することの際、上記電解液が予め加温されている、請求項1又は請求項2に記載の蓄電素子の製造方法。
  12.  上記注入することの後に、
     上記電極体が収容され上記電解液が注入された上記素子容器に遠心力を付与すること
     をさらに備える、請求項1又は請求項2に記載の蓄電素子の製造方法。
  13.  上記電極体が、上記正極と上記負極とが重ね合わされた状態で巻回された巻回型の電極体であり、
     上記電極体の巻回軸方向の長さが300mm以上である、請求項1又は請求項2に記載の蓄電素子の製造方法。
  14.  上記複数の注液口が設けられた素子容器の面と上記電極体の巻回軸とが平行になるよう、上記電極体が上記素子容器に収容されている、請求項13に記載の蓄電素子の製造方法。
  15.  正極と負極とを有する電極体が収容され、複数の注液口が設けられた素子容器の内部へ、電解液を注入する際に用いられ、
     1つの注液用容器と、
     上記1つの注液用容器と上記複数の注液口とを連結するための配管と
     を備える注液装置。
PCT/JP2022/035108 2021-10-06 2022-09-21 蓄電素子の製造方法及び注液装置 WO2023058455A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021165080 2021-10-06
JP2021-165080 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058455A1 true WO2023058455A1 (ja) 2023-04-13

Family

ID=85804171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035108 WO2023058455A1 (ja) 2021-10-06 2022-09-21 蓄電素子の製造方法及び注液装置

Country Status (1)

Country Link
WO (1) WO2023058455A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125725U (ja) * 1974-03-29 1975-10-15
JPS51109439A (ja) * 1975-02-24 1976-09-28 Oogasuto Haabusuto S Kurarensu
JPS63244558A (ja) * 1987-03-30 1988-10-12 Aisin Seiki Co Ltd 自動注液装置付き鉛蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125725U (ja) * 1974-03-29 1975-10-15
JPS51109439A (ja) * 1975-02-24 1976-09-28 Oogasuto Haabusuto S Kurarensu
JPS63244558A (ja) * 1987-03-30 1988-10-12 Aisin Seiki Co Ltd 自動注液装置付き鉛蓄電池

Similar Documents

Publication Publication Date Title
US20230113038A1 (en) Positive electrode for energy storage device and energy storage device
WO2023058455A1 (ja) 蓄電素子の製造方法及び注液装置
JP2023055576A (ja) リチウムイオン蓄電素子の製造方法
WO2022176836A1 (ja) 蓄電素子
WO2022176925A1 (ja) 蓄電素子
US20230055952A1 (en) Energy storage device and energy storage apparatus
EP4300524A1 (en) Electricity storage element
WO2022138452A1 (ja) 非水電解質蓄電素子、電子機器及び自動車
US20230155180A1 (en) Energy storage device, method for manufacturing the same and energy storage apparatus
US20240154180A1 (en) Energy storage device and method for manufacturing the same
EP4343910A1 (en) Power storage element
WO2023224070A1 (ja) 非水電解質蓄電素子
EP4322258A1 (en) Nonaqueous electrolyte power storage element and power storage device
WO2023204049A1 (ja) 非水電解質蓄電素子及び蓄電装置
EP4297122A1 (en) Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device
EP4280330A1 (en) Nonaqueous electrolyte power storage element
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
WO2023074559A1 (ja) 蓄電素子
WO2023195434A1 (ja) 蓄電素子及び蓄電装置
EP4310939A1 (en) Electric power storage element
WO2023199942A1 (ja) 非水電解質蓄電素子
JP2022129314A (ja) 蓄電素子
JP2022189147A (ja) 蓄電素子及び蓄電装置
JP2024064196A (ja) 蓄電素子及びその製造方法
JP2024030099A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552790

Country of ref document: JP