WO2023058288A1 - 樹脂組成物及び絶縁電線 - Google Patents

樹脂組成物及び絶縁電線 Download PDF

Info

Publication number
WO2023058288A1
WO2023058288A1 PCT/JP2022/027474 JP2022027474W WO2023058288A1 WO 2023058288 A1 WO2023058288 A1 WO 2023058288A1 JP 2022027474 W JP2022027474 W JP 2022027474W WO 2023058288 A1 WO2023058288 A1 WO 2023058288A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyimide precursor
conductor
insulated wire
insulating layer
Prior art date
Application number
PCT/JP2022/027474
Other languages
English (en)
French (fr)
Inventor
秀明 齋藤
雅晃 山内
博紹 持田
云龍 崔
健吾 吉田
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to CN202280050198.7A priority Critical patent/CN117677672A/zh
Priority to JP2023552700A priority patent/JPWO2023058288A1/ja
Publication of WO2023058288A1 publication Critical patent/WO2023058288A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present disclosure relates to resin compositions and insulated wires.
  • This application claims priority based on Japanese application No. 2021-164106 filed on October 5, 2021, and incorporates all the descriptions described in the above Japanese application.
  • Patent Document 1 describes a resin composition containing a polyamic acid having a specific molecular structure and a solvent as a resin composition used for forming an insulating layer of an insulated wire.
  • a resin composition according to an aspect of the present disclosure contains a polyimide precursor that is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, an organic solvent, and water, and has a water content of 0. less than .5% by mass.
  • FIG. 1 is a schematic cross-sectional view showing an insulated wire according to one embodiment of the present disclosure.
  • a film having a desired thickness is usually formed by repeating the coating step and heating step.
  • the concentration of resin varnish is increased.
  • the inventors of the present invention found that the viscosity changes over time when storing a high-concentration resin varnish in the course of their studies, so the change in viscosity over time was suppressed (hereinafter referred to as "storage There is a demand for a resin varnish that is said to be "excellent in stability”.
  • the present disclosure has been made based on the circumstances as described above, and an object thereof is to provide a resin composition having excellent storage stability.
  • a resin composition according to an aspect of the present disclosure is excellent in storage stability.
  • a resin composition according to an aspect of the present disclosure contains a polyimide precursor that is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, an organic solvent, and water, and has a water content of 0. less than .5% by mass.
  • the storage stability of the resin composition can be improved by keeping the water content below the above upper limit.
  • Water content means the content of water in the resin composition.
  • the imidization rate of the polyimide precursor is preferably 5% or more and 25% or less. In this case, the storage stability of the resin composition can be further improved.
  • “Imidization rate” means the ratio of the number of imide ring structures to the total number of amic acid structures and imide ring structures in the polyamic acid. A part of the imide ring may be an isoimide ring.
  • the aromatic tetracarboxylic dianhydride preferably contains pyromellitic dianhydride.
  • a polyimide film having both good heat resistance and toughness can be formed.
  • the aromatic diamine preferably contains 4,4'-diaminodiphenyl ether.
  • a polyimide film having both good heat resistance and toughness can be formed.
  • the concentration of the polyimide precursor is preferably 25% by mass or more. In this case, it is possible to reduce the number of repeated coatings when forming the insulating layer of the insulated wire, which contributes to the improvement of manufacturing efficiency.
  • An insulated wire according to another aspect of the present disclosure includes a conductor and an insulating layer covering the conductor, and the insulating layer is formed of the above-described resin composition according to one aspect of the present disclosure.
  • the insulated wire has an insulating layer formed from the resin composition described above, it is excellent in film uniformity, heat resistance, and toughness.
  • the resin composition contains a polyimide precursor that is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, an organic solvent, and water.
  • the water content of the resin composition is less than 0.5% by mass. By setting the water content to less than the above upper limit, the storage stability of the resin composition can be improved.
  • the water content of the resin composition can be calculated by dividing the water content measured by the Karl Fischer method according to JIS-K-0113 (2005) by the total mass of the resin composition.
  • the lower limit of the water content is preferably 0.05% by mass, more preferably 0.15% by mass.
  • the storage stability of the resin composition can be further improved by making the water content equal to or higher than the above lower limit.
  • polyimide precursor is a reaction product obtained by a polymerization condensation reaction between an aromatic tetracarboxylic dianhydride and an aromatic diamine.
  • the molar ratio of the aromatic tetracarboxylic dianhydride and the aromatic diamine (aromatic tetracarboxylic dianhydride/aromatic diamine) used as raw materials for the polyimide precursor is from the viewpoint of ease of synthesis of the polyimide precursor. , for example, 95/105 or more and 105/95 or less, more preferably 97/103 or more and 103/97 or less, and still more preferably 99/101 or more and 101/99 or less.
  • the aromatic tetracarboxylic dianhydride preferably contains pyromellitic dianhydride (PMDA). Moreover, the aromatic tetracarboxylic dianhydride may contain an aromatic tetracarboxylic dianhydride other than PMDA.
  • PMDA pyromellitic dianhydride
  • Aromatic tetracarboxylic dianhydrides other than PMDA include, for example, 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3′,4′-biphenyltetracarboxylic dianhydride Carboxylic dianhydride (a-BPDA), 2,2′,3,3′-biphenyltetracarboxylic dianhydride (i-BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride 4,4'-oxydiphthalic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1
  • Aromatic tetracarboxylic dianhydrides other than PMDA may be used singly or in combination of two or more.
  • the lower limit of the PMDA content relative to 100 mol% of the aromatic tetracarboxylic dianhydride is 10 mol%, preferably 15 mol%, and more preferably 20 mol%. Good heat resistance can be imparted at low cost by setting the content of PMDA to the above lower limit or more.
  • the upper limit of the PMDA content is, for example, 100 mol %.
  • the aromatic diamine preferably contains 4,4'-diaminodiphenyl ether (4,4'-ODA).
  • the aromatic diamine may contain aromatic diamines other than 4,4'-ODA.
  • aromatic diamines other than 4,4'-ODA examples include 3,4'-diaminodiphenyl ether (3,4'-ODA), 3,3'-diaminodiphenyl ether (3,3'-ODA), 2, Diaminodiphenyl ethers (ODA) such as 4'-diaminodiphenyl ether (2,4'-ODA), 2,2'-diaminodiphenyl ether (2,2'-ODA), 2,2-bis[4-(4-aminophenoxy ) phenyl]propane (BAPP), 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 2,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 4, 4'-diaminodiphenylsulfone, 3,
  • the lower limit of the content of 4,4'-ODA relative to 100 mol% of the aromatic diamine is preferably 50 mol%, more preferably 70 mol%, and even more preferably 90 mol%.
  • the content of 4,4'-ODA is particularly preferably 100 mol %.
  • the polyimide precursor it is preferable that part or all of the carboxylic anhydride groups at the ends of the molecules are ring-opened by hydrolysis reaction with water contained in the resin composition. That is, it is preferable that part or all of the carboxylic anhydride groups at the ends of the molecules of the polyimide precursor are dicarboxylic acid groups. In this case, the storage stability of the resin composition can be further improved.
  • the lower limit of the imidization rate of the polyimide precursor is preferably 5%, more preferably 6%, and even more preferably 8%.
  • the upper limit of the imidization rate is preferably 25%, more preferably 20%.
  • the lower limit of the concentration of the polyimide precursor in the resin composition is preferably 25% by mass, more preferably 27% by mass.
  • the upper limit of the concentration is preferably 40% by mass, more preferably 35% by mass.
  • the lower limit of the weight average molecular weight of the polyimide precursor is preferably 15,000, more preferably 16,000.
  • the upper limit of the weight average molecular weight of the polyimide precursor is preferably 100,000, more preferably 50,000. If the weight-average molecular weight is less than the lower limit, film elongation may be insufficient when forming an insulating layer of an insulated wire. On the other hand, if the weight average molecular weight of the polyimide precursor exceeds the upper limit, the viscosity of the resin composition may be too high.
  • the "weight average molecular weight” of the polyimide precursor is in accordance with JIS-K7252-1 (2008) "Plastics-How to determine the average molecular weight and molecular weight distribution of a polymer by size exclusion chromatography-Part 1: General rules". A value measured by gel permeation chromatography in terms of polystyrene.
  • the polyimide precursor can be obtained by a polymerization condensation reaction between the aromatic tetracarboxylic dianhydride and the aromatic diamine described above.
  • the method of the polymerization condensation reaction can be the same as in the synthesis of conventional polyimide precursors.
  • a specific method of the polymerization condensation reaction includes, for example, a method of mixing an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic solvent and heating the mixed solution. By this method, the aromatic tetracarboxylic dianhydride and the aromatic diamine are polymerized, and a solution of the polyimide precursor dissolved in the organic solvent can be obtained.
  • the reaction conditions for the above polymerization may be appropriately set according to the raw materials used, etc.
  • the reaction temperature can be 10° C. or higher and 100° C. or lower
  • the reaction time can be 0.5 hours or longer and 24 hours or shorter.
  • Examples of the organic solvent used in the polymerization condensation reaction include those similar to the organic solvent contained in the resin composition, which will be described later.
  • organic solvent examples include aprotic polar organic solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, and ⁇ -butyrolactone. can. These organic solvents may be used alone or in combination of two or more.
  • Aprotic polar organic solvent refers to a polar organic solvent that does not have proton-releasing groups.
  • the amount of the organic solvent used is not particularly limited as long as it is an amount that can uniformly dissolve and disperse the aromatic tetracarboxylic dianhydride and the aromatic diamine. is required to evaporate a large amount of solvent, and it may take a long time to form the insulating layer. Therefore, the amount of the organic solvent used can be, for example, 100 parts by mass or more and 1,000 parts by mass or less with respect to a total of 100 parts by mass of the aromatic tetracarboxylic dianhydride and the aromatic diamine.
  • the water contained in the resin composition may be water present in the reaction system when synthesizing the polyimide precursor, or may be water added when preparing the resin composition. , water generated by a dehydration ring closure reaction of the amic acid structure in the polyimide precursor.
  • the insulated wire includes a conductor and an insulating layer covering the conductor.
  • 1 is a schematic cross-sectional view of an insulated wire according to an embodiment of the present disclosure; FIG. As shown in FIG. 1 , an insulated wire 1 includes a conductor 2 and an insulating layer 3 covering the conductor 2 .
  • the conductor 2 is usually made mainly of metal. Although the metal is not particularly limited, copper, a copper alloy, aluminum, or an aluminum alloy is preferable. By using the above metal for the conductor 2, an insulated wire having good workability and conductivity can be obtained.
  • the conductor 2 may contain other components such as known additives in addition to the metal as the main component.
  • the cross-sectional shape of the conductor 2 is not particularly limited, and various shapes such as circular, square, and rectangular can be adopted.
  • the cross-sectional size of the conductor 2 is also not particularly limited, and the diameter (width of the short side) can be, for example, 0.2 mm or more and 8.0 mm or less.
  • the insulating layer 3 is laminated on the peripheral surface side of the conductor 2 so as to cover the conductor 2 .
  • the insulating layer 3 is a layer formed of the resin composition described above.
  • the insulating layer 3 may directly cover the conductor 2 or may cover it indirectly via another layer. In the case of indirect covering, for example, a multi-layer structure in which the covering layer of the conductor 2 includes layers other than the insulating layer 3 can be used.
  • the average thickness of the insulating layer 3 is not particularly limited, and is usually 2 ⁇ m or more and 200 ⁇ m or less.
  • the insulated wire 1 may have another layer laminated on the outer peripheral side of the insulating layer 3 .
  • Examples of the other layer include a surface lubricating layer.
  • the insulated wire is produced by, for example, applying the resin composition described above to the outer peripheral side of the conductor (hereinafter also referred to as a “coating step”) and heating the resin composition applied to the conductor. (hereinafter also referred to as “heating step”).
  • the resin composition described above is coated on the outer peripheral side of the conductor.
  • the method of applying the above resin composition to the outer circumference of the conductor include a method using a coating device equipped with a liquid composition tank in which the resin composition is stored and a coating die. According to this coating device, the resin composition adheres to the outer periphery of the conductor by passing the conductor through the liquid composition tank, and then the resin composition is coated to a uniform thickness by passing through the coating die. be.
  • the above resin composition applied to the conductor in the coating step is heated. This heating volatilizes the solvent in the resin composition and cures the polyimide precursor to form polyimide. In this way, an insulating layer having excellent electrical properties, mechanical properties, thermal properties, etc. can be obtained.
  • the device used in the heating step is not particularly limited, but for example, a cylindrical baking furnace that is long in the running direction of the conductor can be used.
  • the heating method is not particularly limited, but conventionally known methods such as hot air heating, infrared heating, and high-frequency heating can be used.
  • the heating temperature can be, for example, 300° C. or higher and 800° C. or lower, and the heating time can be 5 seconds or longer and 1 minute or shorter. If the heating temperature or the heating time is less than the lower limit, volatilization of the solvent and formation of the insulating layer may be insufficient, and the appearance, electrical properties, mechanical properties, thermal properties, etc. of the insulated wire may be deteriorated. Conversely, if the heating temperature exceeds the upper limit, excessive rapid heating may cause foaming of the insulating layer and deterioration of mechanical properties. Moreover, if the heating time exceeds the upper limit, the productivity of the insulated wire may be lowered.
  • the coating step and the heating step are usually repeated multiple times. By doing so, the thickness of the insulating layer can be increased. At this time, the hole diameter of the coating die is appropriately adjusted according to the number of repetitions.
  • Resin composition No. Preparation of Nos. 2 to 8 Resin composition Nos. 2 to 8 was prepared in the same manner as in Preparation Example 1 except that the types and amounts of each component shown in Table 1 below were used. 2-8 were prepared. The obtained resin composition No. The concentrations of the polyimide precursors in Nos. 2 to 8 are also shown in Table 1 below.
  • Water content The water content was calculated by dividing the water content measured by the Karl Fischer method according to JIS-K-0113 (2005) by the total mass of the resin composition.
  • the imidization rate was measured by 1 H-NMR. 50 mg of the resin composition was weighed into a vial, and 1 mL of DMSO-d6 was added and dissolved. After confirming the dissolution, 0.5 mL of the sample solution was placed in the NMR sample tube. Based on the integrated value of 1H derived from the benzene ring of the acid dianhydride from the analyzed chart, the number of amide groups obtained from the number of protons derived from the amide protons was calculated, and the imidization rate was calculated assuming that the rest were imidized. Calculated.
  • resin composition No. 1 to No. 7 is resin composition No. Storage stability was better than 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本開示の一態様に係る樹脂組成物は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応生成物であるポリイミド前駆体と、有機溶媒と、水とを含有し、含水率が0.5質量%未満である。

Description

樹脂組成物及び絶縁電線
 本開示は、樹脂組成物及び絶縁電線に関する。
 本出願は、2021年10月5日出願の日本出願第2021-164106号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、絶縁電線の絶縁層を形成するために用いられる樹脂組成物として、特定の分子構造を有するポリアミック酸と溶媒とを含有する樹脂組成物が記載されている。
国際公開第2020/255360号
 本開示の一態様に係る樹脂組成物は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応生成物であるポリイミド前駆体と、有機溶媒と、水とを含有し、含水率が0.5質量%未満である。
図1は、本開示の一実施形態に係る絶縁電線を示す模式的断面図である。
[本開示が解決しようとする課題]
 ポリイミドにより絶縁電線の絶縁層を形成する方法として、例えばポリイミド前駆体(ポリアミック酸)と溶媒とを含有する樹脂組成物(樹脂ワニス)を導体の外周側に塗工する塗工工程と、得られた塗膜を加熱する加熱工程とを備える方法があり、上記加熱工程においてポリイミド前駆体がイミド化してポリイミドが形成される。上記方法では、一回の塗工工程及び加熱工程では比較的薄い皮膜しか形成できないため、通常、塗工工程及び加熱工程を繰り返すことで所望の厚さの皮膜を形成する。一回の塗工工程及び加熱工程で形成される皮膜をできる限り厚くして絶縁電線の製造効率の向上等を図るために、樹脂ワニスを高濃度化することが行われている。
 樹脂ワニスを高濃度化すると樹脂ワニスの粘度が増大するため、上記塗工工程における樹脂ワニスの塗布性を損なう場合があり、高濃度化と塗工性とが両立した樹脂ワニスが求められており、様々な検討が行われている。
 本発明者らは、検討を進める中で高濃度の樹脂ワニスを保管した場合に粘度が経時的に変化してしまうことを見出したことから、粘度の経時変化が抑制された(以下、「保存安定性に優れる」ともいう)樹脂ワニスが求められている。
 本開示は、上述のような事情に基づいてなされたものであり、保存安定性に優れる樹脂組成物を提供することを課題とする。
[本開示の効果]
 本開示の一態様に係る樹脂組成物は、保存安定性に優れる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る樹脂組成物は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応生成物であるポリイミド前駆体と、有機溶媒と、水とを含有し、含水率が0.5質量%未満である。
 当該樹脂組成物は、含水率を上記上限未満とすることにより、保存安定性を向上させることができる。「含水率」とは、樹脂組成物における水の含有量を意味する。
 上記ポリイミド前駆体のイミド化率としては、5%以上25%以下が好ましい。この場合、当該樹脂組成物の保存安定性をより向上させることができる。「イミド化率」とは、ポリアミック酸におけるアミック酸構造の数とイミド環構造の数との合計数に対するイミド環構造の数の占める割合を意味する。なお、イミド環の一部がイソイミド環であってもよい。
 上記芳香族テトラカルボン酸二無水物がピロメリット酸二無水物を含むとよい。この場合、良好な耐熱性と靭性とを兼ね備えたポリイミド皮膜を形成することができる。
 上記芳香族ジアミンが4,4’-ジアミノジフェニルエーテルを含むとよい。この場合、良好な耐熱性と靭性とを兼ね備えたポリイミド皮膜を形成することができる。
 上記ポリイミド前駆体の濃度としては、25質量%以上が好ましい。この場合、絶縁電線の絶縁層を形成する際の繰り返し塗工回数を減らすことが可能となり、製造効率向上に寄与する。
 本開示の別の一態様に係る絶縁電線は、導体と、上記導体を被覆する絶縁層とを備え、上記絶縁層が上述の本開示の一態様に係る樹脂組成物により形成されている。
 当該絶縁電線は、上述の当該樹脂組成物により形成された絶縁層を有しているため、皮膜均一性、耐熱性及び靭性に優れる。
[本開示の実施形態の詳細]
 以下、本開示の一態様に係る樹脂組成物及び絶縁電線について詳説する。
<樹脂組成物>
 当該樹脂組成物は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応生成物であるポリイミド前駆体と、有機溶媒と、水とを含有する。
 当該樹脂組成物の含水率は、0.5質量%未満である。含水率を上記上限未満とすることにより、当該樹脂組成物の保存安定性を向上させることができる。当該樹脂組成物の含水率は、JIS-K-0113(2005)に準拠するカールフィッシャー法により測定した水分量を樹脂組成物の全質量で除すことで算出することができる。
 上記含水率の下限としては、0.05質量%が好ましく、0.15質量%がより好ましい。含水率を上記下限以上とすることで、当該樹脂組成物の保存安定性をより向上させることができる。
 以下、当該樹脂組成物が含有する各成分について説明する。
(ポリイミド前駆体)
 ポリイミド前駆体は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重合縮合反応によって得られる反応生成物である。
 上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物と芳香族ジアミンとのモル比(芳香族テトラカルボン酸二無水物/芳香族ジアミン)としては、ポリイミド前駆体の合成容易性の観点から、例えば95/105以上105/95以下、より好ましくは97/103以上103/97以下、さらにより好ましくは99/101以上101/99以下とすることができる。
 上記芳香族テトラカルボン酸二無水物は、ピロメリット酸二無水物(PMDA)を含むことが好ましい。また、上記芳香族テトラカルボン酸二無水物はPMDA以外の芳香族テトラカルボン酸二無水物を含んでいてもよい。
 PMDA以外の芳香族テトラカルボン酸二無水物としては、例えば3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。これらの中でも、耐熱性、靭性及び耐加水分解性を付与することができる観点から、s-BPDAが好ましい。上記PMDA以外の芳香族テトラカルボン酸二無水物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 上記芳香族テトラカルボン酸二無水物100モル%に対するPMDAの含有量の下限としては、10モル%であり、15モル%が好ましく、20モル%がより好ましい。PMDAの含有量を上記下限以上とすることで、良好な耐熱性を安価に付与できる。上記PMDAの含有量の上限としては、例えば100モル%である。
 上記芳香族ジアミンは4,4’-ジアミノジフェニルエーテル(4,4’-ODA)を含むことが好ましい。上記芳香族ジアミンは4,4’-ODA以外の芳香族ジアミンを含んでいてもよい。
 4,4’-ODA以外の芳香族ジアミンとしては、、例えば3,4’-ジアミノジフェニルエーテル(3,4’-ODA)、3,3’-ジアミノジフェニルエーテル(3,3’-ODA)、2,4’-ジアミノジフェニルエーテル(2,4’-ODA)、2,2’-ジアミノジフェニルエーテル(2,2’-ODA)等のジアミノジフェニルエーテル(ODA)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、2,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、2,4’-ジアミノジフェニルスルフィド、2,2’-ジアミノジフェニルスルフィド、パラフェニレンジアミン、メタフェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,5-ジアミノナフタレン、4,4’-ベンゾフェノンジアミン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン等が挙げられる。これらの芳香族ジアミンは、単独で用いてもよいし、2種以上を併用してもよい。
 上記芳香族ジアミン100モル%に対する4,4’-ODAの含有量の下限としては、50モル%が好ましく、70モル%がより好ましく、90モル%がさらに好ましい。上記4,4’-ODAの含有量を上記下限以上とすることで、良好な耐熱性と靭性とを安価に付与できる。また、上記ODAの含有量としては、100モル%が特に好ましい。
 上記ポリイミド前駆体は、分子末端の無水カルボン酸基の一部又は全部が当該樹脂組成物に含まれる水との加水分解反応により開環していることが好ましい。すなわち、上記ポリイミド前駆体は、分子末端の無水カルボン酸基の一部又は全部がジカルボン酸基となっていることが好ましい。この場合、当該樹脂組成物の保存安定性をより向上させることができる。
 上記ポリイミド前駆体のイミド化率の下限としては、5%が好ましく、6%がより好ましく、8%がさらに好ましい。上記イミド化率の上限としては、25%が好ましく、20%がさらに好ましい。上記イミド化率を上記範囲とすることで、当該樹脂組成物の保存安定性をより向上させることができる。
 上記ポリイミド前駆体の当該樹脂組成物中の濃度の下限としては、25質量%が好ましく、27質量%がより好ましい。上記濃度の上限としては、40質量%が好ましく、35質量%がより好ましい。上記濃度を上記下限以上とすることで、当該樹脂組成物を用いて絶縁層を形成する際に所望の厚さの絶縁層を得るために製造工程全体で必要となる樹脂組成物量を低下させることや、塗工工程及び加熱工程の回数を低減させることができる。上記濃度を上記上限以下とすることで、良好な皮膜特性を維持しつつ当該樹脂組成物の粘度を適度に調節することができ、塗布性を向上させることができる。
 上記ポリイミド前駆体の重量平均分子量の下限としては、15,000が好ましく、16,000がより好ましい。上記ポリイミド前駆体の重量平均分子量の上限としては、100,000が好ましく、50,000がより好ましい。上記重量平均分子量が上記下限未満であると、絶縁電線の絶縁層を形成する際の皮膜伸びが不十分となるおそれがある。一方、上記ポリイミド前駆体の重量平均分子量が上記上限を超えると、当該樹脂組成物の粘度が高まり過ぎるおそれがある。ポリイミド前駆体の「重量平均分子量」は、JIS-K7252-1(2008)の「プラスチック-サイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方-第1部:通則」に準拠してゲル浸透クロマトグラフィーによりポリスチレン換算で測定した値をいう。
(ポリイミド前駆体の合成方法)
 上記ポリイミド前駆体は、上述した芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重合縮合反応により得ることができる。上記重合縮合反応の方法としては、従来のポリイミド前駆体の合成と同様とすることができる。上記重合縮合反応の具体的な方法としては、例えば芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機溶媒中で混合し、この混合液を加熱する方法等が挙げられる。この方法により、芳香族テトラカルボン酸二無水物と芳香族ジアミンとが重合し、ポリイミド前駆体が有機溶媒に溶解した溶液を得ることができる。なお、反応系中に水分を適度な量存在させた状態で反応を行うことで、末端封止剤等を使用することなく重合度を制御することが可能となる。
 上記重合の際の反応条件としては、使用する原料等により適宜設定すればよいが、例えば反応温度を10℃以上100℃以下、反応時間を0.5時間以上24時間以下とすることができる。
 上記重合縮合反応に用いる有機溶媒としては、後述する当該樹脂組成物が含有する有機溶媒と同様のものが挙げられる。
(有機溶媒)
 有機溶媒としては、例えばN-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性極性有機溶媒を使用できる。これらの有機溶媒は単独で用いてもよいし、2種以上を併用してもよい。「非プロトン性極性有機溶媒」とは、プロトンを放出する基を持たない極性有機溶媒をいう。
 上記有機溶媒の使用量は、芳香族テトラカルボン酸二無水物及び芳香族ジアミンを均一に溶解、分散させることができる使用量であれば特に制限されないが、あまりに多量であると絶縁電線の絶縁層を形成する際、多量の溶媒を揮発させる必要があり、絶縁層の形成に時間を要するおそれがある。そのため、上記有機溶媒の使用量としては、例えば芳香族テトラカルボン酸二無水物及び芳香族ジアミンの合計100質量部に対し、100質量部以上1,000質量部以下とすることができる。
(水)
 当該樹脂組成物が含有する水は、ポリイミド前駆体を合成する際に反応系中に存在させる水であってもよいし、当該樹脂組成物を調製する際に添加する水であってもよいし、ポリイミド前駆体におけるアミック酸構造の脱水閉環反応により生じる水であってもよい。
<絶縁電線>
 当該絶縁電線は、導体と、上記導体を被覆する絶縁層とを備える。図1は、本開示の一実施形態に係る絶縁電線の模式的断面図である。図1に示すように、絶縁電線1は、導体2と、導体2を被覆する絶縁層3とを備える。
(導体)
 導体2は、通常金属を主成分とする。上記金属としては、特に限定されないが、銅、銅合金、アルミニウム、又はアルミニウム合金が好ましい。導体2に上記金属を用いることで、良好な加工性や導電性等を兼ね備えた絶縁電線を得ることができる。導体2は、上記主成分の金属以外に公知の添加剤等の他の成分を含有していてもよい。
 導体2の断面形状は、特に限定されず、円形、方形、矩形等の種々の形状を採用することができる。また、導体2の断面の大きさも、特に限定されず、直径(短辺幅)を例えば0.2mm以上8.0mm以下とすることができる。
(絶縁層)
 絶縁層3は、導体2を被覆するように導体2の周面側に積層される。絶縁層3は、上述の当該樹脂組成物により形成される層である。絶縁層3は、導体2を直接に被覆してもよいし、他の層を介して間接に被覆してもよい。間接に被覆する場合としては、例えば導体2の被覆層が絶縁層3以外の層を含む多層構造などが挙げられる。
 絶縁層3の平均厚さは、特に限定されず、通常2μm以上200μm以下とされる。
 絶縁電線1は、絶縁層3の外周側にさらに他の層が積層されていてもよい。上記他の層としては、例えば表面潤滑層等が挙げられる。
(絶縁電線の製造方法)
 当該絶縁電線は、例えば上述の当該樹脂組成物を導体の外周側に塗工する工程(以下、「塗工工程」ともいう)と、上記導体に塗工された上記樹脂組成物を加熱する工程(以下、「加熱工程」ともいう)とを備える方法により製造することができる。
 上記塗工工程では、上述の当該樹脂組成物を導体の外周側に塗工する。上述の当該樹脂組成物を導体の外周側に塗工する方法としては、例えば樹脂組成物を貯留した液状組成物槽と塗布ダイスとを備える塗布装置を用いた方法を挙げることができる。この塗布装置によれば、導体が液状組成物槽内を挿通することで樹脂組成物が導体の外周側に付着し、その後塗布ダイスを通過することで樹脂組成物が均一な厚みに塗工される。
 上記加熱工程では、上記塗工工程で導体に塗工された上述の当該樹脂組成物を加熱する。この加熱により、当該樹脂組成物中の溶媒が揮発すると共に、ポリイミド前駆体が硬化し、ポリイミドが形成される。このようにして電気特性や機械特性、熱特性等に優れた絶縁層が得られる。
 上記加熱工程で用いる装置としては、特に限定されないが、例えば導体の走行方向に長い筒状の焼付炉を用いることができる。加熱方法は特に限定されないが、熱風加熱、赤外線加熱、高周波加熱など、従来公知の方法により行うことができる。
 また、加熱温度としては、例えば300℃以上800℃以下とすることができ、加熱時間としては5秒以上1分以下とできる。上記加熱温度又は上記加熱時間が上記下限未満であると、溶媒の揮発や絶縁層の形成が不十分となり、絶縁電線の外観や電気特性、機械特性、熱特性等が劣るおそれがある。逆に、上記加熱温度が上記上限を超えると、過度の急加熱により絶縁層の発泡や機械特性の低下を招くおそれがある。また、上記加熱時間が上記上限を超えると、絶縁電線の生産性が低下するおそれがある。
 上記塗工工程と上記加熱工程とは、通常、複数回繰り返される。このようにすることで、絶縁層の厚みを増加させていくことができる。このとき、塗布ダイスの孔径は繰り返し回数にあわせて適宜調整される。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<樹脂組成物の調製>
 樹脂組成物の調製に用いた各成分の略称を以下に示す。
 ODA:4,4’-ジアミノジフェニルエーテル
 PMDA:ピロメリット酸二無水物
 BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 NMP:N-メチル-2-ピロリドン
 DMAc:N,N-ジメチルアセトアミド
[調製例1]樹脂組成物No.1の調製
 NMPにPMDA全量を分散させた後、水をPMDA投入量に対して7mol%添加し、30℃で1h攪拌した。その後、ODAを下記表1に示すモル比となるように加え、窒素雰囲気下で攪拌した。その後、粘度が安定するまで撹拌して反応させることにより、樹脂組成物No.1を調製した。
[調製例2~8]樹脂組成物No.2~8の調製
 下記表1に示す種類及び使用量の各成分を用いたこと以外は調製例1と同様にして樹脂組成物No.2~8を調製した。得られた樹脂組成物No.2~8におけるポリイミド前駆体の濃度を下記表1に合わせて示す。
<樹脂組成物の物性>
 上記調製した樹脂組成物No.1~8について、以下の方法により、ポリイミド前駆体の濃度、含水率及びイミド化率を測定した。結果を下記表1に合わせて示す。
[ポリイミド前駆体の濃度]
 樹脂組成物を250℃で2時間乾燥させ、乾燥前の質量W0及び乾燥後の質量W1を測定し、W1/W0×100により濃度(単位:質量%)を算出した。
[含水率]
 JIS-K-0113(2005)に準拠するカールフィッシャー法により測定した水分量を樹脂組成物の全質量で除すことで含水率を算出した。
[イミド化率]
 イミド化率はH-NMRで測定した。バイアル瓶に樹脂組成物を50mg秤量し、DMSO-d6を1mL加え、溶解させた。溶解確認後、サンプル溶液0.5mLをNMR試料管に入れた。分析したチャートから酸二無水物のベンゼン環由来の1Hの積分値を基準にして、アミドプロトン由来のプロトン数から求めたアミド基の数を算出し、残りがイミド化したものとしてイミド化率を算出した。
<保存安定性の評価>
 上記調製した樹脂組成物No.1~8について、B型粘度計を用いて調製時点の30℃における粘度(初期粘度η)を測定した。その後、樹脂組成物を5℃で30日間密閉保管し、30日経過時点の30℃における粘度(保管後粘度η)を測定した。初期粘度ηに対する保管後粘度ηの比η/ηを算出した。比η/ηが1.0以上2.0以下である場合を保存安定性が良好であると評価した。結果を下記表1に合わせて示す。
 下記表1中、「-」は該当する成分を使用していないことを示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、樹脂組成物No.1~No.7は樹脂組成物No.8と比較して保存安定性が良好であった。
 1 絶縁電線
 2 導体
 3 絶縁層

 

Claims (6)

  1.  芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応生成物であるポリイミド前駆体と、
     有機溶媒と、
     水と
     を含有し、
     含水率が0.5質量%未満である樹脂組成物。
  2.  上記ポリイミド前駆体のイミド化率が5%以上25%以下である請求項1に記載の樹脂組成物。
  3.  上記芳香族テトラカルボン酸二無水物がピロメリット酸二無水物を含む請求項1又は請求項2に記載の樹脂組成物。
  4.  上記芳香族ジアミンが4,4’-ジアミノジフェニルエーテルを含む請求項1、請求項2又は請求項3に記載の樹脂組成物。
  5.  上記ポリイミド前駆体の濃度が25質量%以上である請求項1から請求項4のいずれか1項に記載の樹脂組成物。
  6.  導体と、
     上記導体を被覆する絶縁層と
     を備え、
     上記絶縁層が請求項1から請求項5のいずれか1項に記載の樹脂組成物により形成されている絶縁電線。

     
PCT/JP2022/027474 2021-10-05 2022-07-12 樹脂組成物及び絶縁電線 WO2023058288A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280050198.7A CN117677672A (zh) 2021-10-05 2022-07-12 树脂组合物以及绝缘电线
JP2023552700A JPWO2023058288A1 (ja) 2021-10-05 2022-07-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164106 2021-10-05
JP2021164106 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058288A1 true WO2023058288A1 (ja) 2023-04-13

Family

ID=85804119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027474 WO2023058288A1 (ja) 2021-10-05 2022-07-12 樹脂組成物及び絶縁電線

Country Status (3)

Country Link
JP (1) JPWO2023058288A1 (ja)
CN (1) CN117677672A (ja)
WO (1) WO2023058288A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258836A (ja) * 1985-05-10 1986-11-17 Hitachi Chem Co Ltd ポリアミド酸溶液の製造方法
JPH08127715A (ja) * 1994-10-27 1996-05-21 Hitachi Chem Co Ltd 保存安定性に優れた含フッ素ポリイミド系前駆体溶液及びその製造法
JP2005132904A (ja) * 2003-10-29 2005-05-26 Toyobo Co Ltd ポリイミドベンゾオキサゾール前駆体の製造方法
WO2008059801A1 (fr) * 2006-11-13 2008-05-22 Ube Industries, Ltd. Procédé de fabrication d'une solution d'acide polyamide et solution d'acide polyamique
WO2017047778A1 (ja) * 2015-09-17 2017-03-23 日本電気株式会社 樹脂組成物
JP2018048307A (ja) * 2016-09-16 2018-03-29 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
WO2020255360A1 (ja) * 2019-06-20 2020-12-24 住友電気工業株式会社 樹脂組成物、樹脂組成物の製造方法及び絶縁電線

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258836A (ja) * 1985-05-10 1986-11-17 Hitachi Chem Co Ltd ポリアミド酸溶液の製造方法
JPH08127715A (ja) * 1994-10-27 1996-05-21 Hitachi Chem Co Ltd 保存安定性に優れた含フッ素ポリイミド系前駆体溶液及びその製造法
JP2005132904A (ja) * 2003-10-29 2005-05-26 Toyobo Co Ltd ポリイミドベンゾオキサゾール前駆体の製造方法
WO2008059801A1 (fr) * 2006-11-13 2008-05-22 Ube Industries, Ltd. Procédé de fabrication d'une solution d'acide polyamide et solution d'acide polyamique
WO2017047778A1 (ja) * 2015-09-17 2017-03-23 日本電気株式会社 樹脂組成物
JP2018048307A (ja) * 2016-09-16 2018-03-29 旭化成株式会社 ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
WO2020255360A1 (ja) * 2019-06-20 2020-12-24 住友電気工業株式会社 樹脂組成物、樹脂組成物の製造方法及び絶縁電線

Also Published As

Publication number Publication date
JPWO2023058288A1 (ja) 2023-04-13
CN117677672A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP5374817B2 (ja) ポリイミドフィルムおよびその製造方法
CN111295411B (zh) 具有改善的表面品质的聚酰亚胺膜及其制备方法
TWI714944B (zh) 具改良儲存穩定性的聚醯胺酸組成物、使用其製備聚醯亞胺膜之方法、以其所製備的聚醯亞胺膜以及電子裝置
TWI736867B (zh) 聚醯亞胺清漆及其製備方法、聚醯亞胺塗層製品及其製備方法、電線以及電子裝置
TW202118816A (zh) 聚醯亞胺薄膜、其製造方法及包含其的多層薄膜、可撓性金屬箔層壓板和電子部件
TW202120606A (zh) 聚醯亞胺薄膜之製造方法、由該方法製得的聚醯亞胺薄膜、及包含其的多層薄膜、可撓性金屬箔層壓板和電子部件
CN114616269A (zh) 低介电质的聚酰亚胺薄膜及其制备方法
CN114729137B (zh) 高弹性和高耐热聚酰亚胺膜及其制造方法
KR20200030442A (ko) 연성금속박적층판
US20220135797A1 (en) Polyimide film and method for manufacturing same
TW202118814A (zh) 聚醯亞胺薄膜、其製造方法及包含其的多層薄膜、可撓性金屬箔層壓板和電子部件
JP2022538916A (ja) ポリアミド酸組成物、ポリアミド酸組成物の製造方法及びそれを含むポリイミド
WO2023058288A1 (ja) 樹脂組成物及び絶縁電線
JP2021070727A (ja) 樹脂組成物、樹脂フィルム及び金属張積層板
CN116438254A (zh) 含液晶粉末低介电聚酰胺酸、聚酰亚胺膜及其制造方法
JP2018115272A (ja) 樹脂ワニス、絶縁電線及び絶縁電線の製造方法
JP6964412B2 (ja) 絶縁電線及びその製造方法
JP2023550951A (ja) ポリアミック酸組成物およびこれを含むポリイミド
WO2020016954A1 (ja) 樹脂ワニス、絶縁電線及び絶縁電線の製造方法
JP7179132B2 (ja) 絶縁電線
TWI836691B (zh) 聚醯亞胺膜、包括其的可撓性金屬箔層疊板及電子部件
TWI843190B (zh) 聚醯亞胺膜、其製造方法、包括其的多層膜及電子部件
KR102564597B1 (ko) 폴리이미드 피복물
KR102472532B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
KR102564595B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 피복물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552700

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280050198.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401001644

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE