WO2023058179A1 - 冷媒分配器、熱交換器及び空気調和装置 - Google Patents

冷媒分配器、熱交換器及び空気調和装置 Download PDF

Info

Publication number
WO2023058179A1
WO2023058179A1 PCT/JP2021/037091 JP2021037091W WO2023058179A1 WO 2023058179 A1 WO2023058179 A1 WO 2023058179A1 JP 2021037091 W JP2021037091 W JP 2021037091W WO 2023058179 A1 WO2023058179 A1 WO 2023058179A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
gas
heat exchanger
convex portion
Prior art date
Application number
PCT/JP2021/037091
Other languages
English (en)
French (fr)
Inventor
篤史 ▲高▼橋
悟 梁池
宗希 石山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023552621A priority Critical patent/JPWO2023058179A1/ja
Priority to PCT/JP2021/037091 priority patent/WO2023058179A1/ja
Publication of WO2023058179A1 publication Critical patent/WO2023058179A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Definitions

  • the present disclosure relates to a double structure refrigerant distributor comprising an inner tube and an outer tube, and a heat exchanger and an air conditioner having such a refrigerant distributor.
  • the liquid refrigerant condensed by the heat exchanger that functions as a condenser mounted on the indoor unit is decompressed by the expansion device. Then, the refrigerant becomes a gas-liquid two-phase state in which gas refrigerant and liquid refrigerant are mixed, and flows into a heat exchanger functioning as an evaporator mounted on the outdoor unit.
  • the flat tubes of the heat exchanger mounted on the outdoor unit are arranged vertically upward, and the refrigerant distributor is arranged horizontally to reduce the effect of gravity and reduce the refrigerant flow.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a refrigerant distributor capable of evenly distributing refrigerant to each heat transfer tube, and a heat exchanger and an air conditioner having such a refrigerant distributor.
  • a refrigerant distributor includes an outer tube to which a heat transfer tube is connected, and an inner tube that is housed in the outer tube and has a distribution hole for allowing the refrigerant to pass through the outer tube. is formed with a convex portion extending in the extending direction of the inner pipe, and a plurality of the convex portions are formed on the inner wall of the inner pipe in the circumferential direction.
  • the liquid refrigerant of the gas-liquid two-phase refrigerant flowing through the inner pipe is evenly held in the circumferential direction between the projections formed on the inner wall of the inner pipe.
  • the gas-liquid two-phase refrigerant uniformly flows out through the distribution holes and is distributed to each heat transfer tube.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. FIG. 2 is a schematic cross-sectional view of the first heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 as viewed from the front;
  • FIG. 2 is a schematic side cross-sectional view showing a cross section of the first heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 as seen from the side;
  • 4 is a diagram showing a cross section orthogonal to the vertical direction with respect to the extending direction of the inner pipe of the first refrigerant distributor in the refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 5 is a diagram for explaining the extending direction of a convex portion formed on the inner wall of the inner pipe in the first refrigerant distributor according to Embodiment 1;
  • FIG. 8 is a diagram for explaining the extending direction of a modified convex portion formed on the inner wall of the inner pipe in the first refrigerant distributor according to Embodiment 1;
  • FIG. 10 is a diagram showing a cross section orthogonal to the vertical direction with respect to the extension direction of the inner pipe of the first refrigerant distributor in the refrigeration cycle apparatus according to Embodiment 2;
  • FIG. 10 is a diagram for explaining the extending direction of a convex portion formed on the inner wall of the inner pipe in the first refrigerant distributor according to Embodiment 2;
  • FIG. 11 is a diagram showing the height of a protrusion formed on the inner wall of the inner pipe in the first refrigerant distributor according to Embodiment 3;
  • FIG. 12 is a cross-sectional view perpendicular to the extending direction of the inner pipes, showing the positions of the distribution holes of the inner pipes in the first refrigerant distributor according to Embodiment 4; It is the cross-sectional schematic diagram which looked at the 1st heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 5 from the front. It is the cross-sectional schematic diagram which looked at the 1st heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 6 from the front.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of a refrigeration cycle device 200 according to Embodiment 1.
  • FIG. The configuration and operation of the refrigeration cycle device 200 will be described based on FIG.
  • the refrigeration cycle apparatus 200 according to Embodiment 1 includes a first heat exchanger 152 having a first refrigerant distributor 152a and a second heat exchanger 154 having a second refrigerant distributor 154a as elements of a refrigerant circuit. It is prepared.
  • the refrigeration cycle device 200 has an outdoor unit 101 and an indoor unit 102 .
  • the outdoor unit 101 has a compressor 100 , a channel switching device 151 , a first heat exchanger 152 and an expansion device 153 .
  • An accumulator 300 is arranged upstream of the compressor 100 .
  • the first heat exchanger 152 is provided with a first refrigerant distributor 152a.
  • the first refrigerant distributor 152 a distributes the refrigerant to the heat transfer tubes 13 (see FIG. 2) of the first heat exchanger 152 .
  • An outdoor fan 156 is provided near the first heat exchanger 152 .
  • the outdoor unit 101 has a control device 160 .
  • the indoor unit 102 has a second heat exchanger 154.
  • the second heat exchanger 154 is provided with a second refrigerant distributor 154a.
  • the second refrigerant distributor 154 a distributes the refrigerant to heat transfer tubes (not shown) of the second heat exchanger 154 .
  • An indoor fan 157 is provided near the second heat exchanger 154 .
  • the compressor 100, the first heat exchanger 152 and the expansion device 153 are connected by a pipe 155a, and the expansion device 153, the second heat exchanger 154 and the compressor 100 are connected by a pipe 155b to form a refrigerant circuit. ing.
  • the compressor 100 compresses the sucked refrigerant into a high-temperature and high-pressure state.
  • the refrigerant compressed by compressor 100 is discharged from compressor 100 and sent to first heat exchanger 152 or second heat exchanger 154 .
  • the flow path switching device 151 switches the refrigerant flow between heating operation and cooling operation.
  • the flow switching device 151 is switched to connect the compressor 100 and the second heat exchanger 154 during the heating operation, and is switched to connect the compressor 100 and the first heat exchanger 152 during the cooling operation.
  • the channel switching device 151 may be composed of, for example, a four-way valve. However, a combination of two-way valves or three-way valves may be employed as the channel switching device 151 .
  • the first heat exchanger 152 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the first heat exchanger 152 exchanges heat between the low-temperature, low-pressure refrigerant flowing out of the expansion device 153 and the air supplied by the outdoor fan 156 to produce a low-temperature, low-pressure gas-liquid two-phase refrigerant. of the liquid refrigerant evaporates.
  • the first heat exchanger 152 when functioning as a condenser, in the first heat exchanger 152, heat is exchanged between the high temperature and high pressure refrigerant discharged from the compressor 100 and the air supplied by the outdoor fan 156, and high temperature and high pressure gas refrigerant is produced. condensed.
  • the first heat exchanger 152 may be composed of a refrigerant-water heat exchanger. In this case, in the first heat exchanger 152, heat exchange is performed between the refrigerant and the heat medium such as water.
  • the expansion device 153 expands the refrigerant flowing out of the first heat exchanger 152 or the second heat exchanger 154 to reduce the pressure.
  • the expansion device 153 may be composed of, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • the expansion device 153 not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm as a pressure receiving portion, a capillary tube, or the like can be applied.
  • the second heat exchanger 154 functions as a condenser during heating operation and as an evaporator during cooling operation.
  • the second heat exchanger 154 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 100 and the air supplied by the indoor fan 157 to condense the high-temperature and high-pressure gas refrigerant. be.
  • the second heat exchanger 154 heat is exchanged between the low-temperature, low-pressure refrigerant discharged from the expansion device 153 and the air supplied by the indoor fan 157, resulting in a gas-liquid two-phase refrigerant. Low-temperature, low-pressure liquid refrigerant evaporates.
  • the second heat exchanger 154 may be composed of a refrigerant-water heat exchanger. In this case, in the second heat exchanger 154, heat exchange is performed between the refrigerant and the heat medium such as water.
  • the first refrigerant distributor 152a distributes the refrigerant to the plurality of heat transfer tubes 13 of the first heat exchanger 152 (see FIGS. 2 and 3).
  • the outdoor fan 156 blows air for heat exchange to the first heat exchanger 152 .
  • the second refrigerant distributor 154 a distributes the refrigerant to heat transfer tubes (not shown) of the second heat exchanger 154 .
  • the indoor fan 157 blows air for heat exchange to the second heat exchanger 154 .
  • control device 160 comprehensively controls the refrigeration cycle device 200 as a whole. Specifically, control device 160 controls the driving frequency of compressor 100 according to the required cooling capacity or heating capacity. Further, the control device 160 controls the opening degree of the expansion device 153 according to the operating state and each mode. Furthermore, the control device 160 controls the flow path switching device 151 according to each mode.
  • the control device 160 uses information sent from each temperature sensor (not shown) and each pressure sensor (not shown) based on the operation instruction from the user, etc. to control each actuator.
  • the control device 160 can be configured with hardware such as a circuit device that realizes its functions, or can be configured with an arithmetic device such as a microcomputer or a CPU and software executed thereon. can.
  • the control device 160 is composed of dedicated hardware or a CPU (Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor) that executes programs stored in memory. . If the control device 160 is dedicated hardware, the control device 160 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. do. Each functional unit implemented by the control device 160 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware. When the control device 160 is a CPU, each function executed by the control device 160 is implemented by software, firmware, or a combination of software and firmware.
  • a CPU Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor
  • the CPU reads out and executes programs stored in the memory to realize each function of the control device 160 .
  • the memory is, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM.
  • a part of the functions of the control device 160 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • first heat exchanger 152 is provided with the first refrigerant distributor 152a and the second heat exchanger 154 is provided with the second refrigerant distributor 154a. Only one of them may be provided with a refrigerant distributor.
  • the compressor 100 is driven, and high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 100 .
  • the high-temperature and high-pressure gas refrigerant (single-phase) discharged from the compressor 100 flows into the first heat exchanger 152 .
  • the first heat exchanger 152 heat is exchanged between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the outdoor fan 156, and the high-temperature and high-pressure gas refrigerant is condensed into a high-pressure liquid refrigerant. (single phase).
  • the high-pressure liquid refrigerant sent out from the first heat exchanger 152 is turned into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 153 .
  • the gas-liquid two-phase refrigerant is collected by the second refrigerant distributor 154 a , and the collected gas-liquid two-phase refrigerant flows into the second heat exchanger 154 .
  • heat is exchanged between the gas-liquid two-phase refrigerant that is distributed by the second refrigerant distributor 154a and flows in, and the air that is supplied by the indoor fan 157.
  • the liquid refrigerant evaporates to become a low-pressure single-phase gas refrigerant.
  • the low-pressure gas refrigerant sent out from the second heat exchanger 154 flows into the compressor 100 via the accumulator 300, is compressed into high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 100 again. After that, this cycle is repeated.
  • the flow of the refrigerant may be set in a constant direction without providing the flow switching device 151 provided on the discharge side of the compressor 100 .
  • the channel switching device 151 may not be provided.
  • refrigeration cycle device 200 includes, in addition to air conditioners, water heaters, refrigerators, and air conditioning/hot water supply complex machines.
  • FIG. 2 is a cross-sectional schematic diagram of the first heat exchanger 152 of the refrigeration cycle apparatus 200 according to Embodiment 1 as viewed from the front.
  • FIG. 3 is a schematic side cross-sectional view showing a cross section of the first heat exchanger 152 of the refrigeration cycle apparatus 200 according to Embodiment 1 as viewed from the side.
  • the second heat exchanger 154 has the same configuration as the first heat exchanger 152. Also, the second refrigerant distributor 154a of the second heat exchanger 154 employs the same configuration as the first refrigerant distributor 152a of the first heat exchanger 152 . In FIG. 2, white arrows indicate the flow of refrigerant when the first heat exchanger 152 is used as an evaporator.
  • the first heat exchanger 152 has multiple heat transfer tubes 13 .
  • the gas header 14 and the first refrigerant distributor 152a are arranged to extend horizontally.
  • the plurality of heat transfer tubes 13 are provided at intervals in the horizontal direction, one end of each of which is inserted into the outer tube 11 of the first refrigerant distributor 152a and the other end of which is inserted into the gas header 14 .
  • Fins (not shown) are attached to the heat transfer tubes 13 so as to be positioned between adjacent heat transfer tubes 13 . Fins (not shown) transfer heat to the heat transfer tubes 13 .
  • the gas header 14 is provided with an outflow portion 14 a that communicates with the inside of the gas header 14 .
  • the outflow portion 14a is connected to a pipe 155a that is connected to the compressor 100 .
  • the first refrigerant distributor 152a has a double-tube structure including an inner tube 12 and an outer tube 11. As shown in FIG. A plurality of heat transfer tubes 13 are connected to the outer tube 11 along the extending direction of the outer tube 11 . The gas-liquid two-phase refrigerant that has flowed between the inner tube 12 and the outer tube 11 is distributed to the plurality of heat transfer tubes 13 .
  • the first refrigerant distributor 152a is connected to the inlet side of the gas-liquid two-phase refrigerant that flows when the first heat exchanger 152 is operated as an evaporator.
  • the extension direction of the inner tube 12 is held horizontally.
  • a gas-liquid two-phase refrigerant flows into one end of the inner tube 12 .
  • a cap 12b is provided at the most downstream end of the inner pipe 12 for the refrigerant flow when the first heat exchanger 152 functions as an evaporator.
  • a pipe 155a connected to an expansion device 153 of a refrigerating cycle circuit is connected to the most upstream end of the inner pipe 12 for the flow of refrigerant in the inner pipe 12 when the first heat exchanger 152 functions as an evaporator. be.
  • the inner tube 12 has dispersion holes 12a, also called orifice holes, through which the refrigerant passes through the outer tube 11 at intervals in the direction in which the inner tube 12 extends. It is provided at the bottom of the direction.
  • the dispersion hole 12a has a diameter of 0.5 [mm] to 4 [mm].
  • the dispersion holes 12 a may be provided between the heat transfer tubes 13 at the lower part of the inner tube 12 in the direction of gravity. Thereby, the refrigerant distribution performance of the first refrigerant distributor 152a can be improved compared to the case where the distribution holes 12a are provided in the inner pipes 12 directly below the heat transfer pipes 13 .
  • the inner pipe 12 is provided with an inflow portion 12c into which the refrigerant flows.
  • FIG. 4 is a diagram showing a cross section orthogonal to the direction perpendicular to the extension direction of the inner pipe 12 of the first refrigerant distributor 152a in the refrigeration cycle apparatus 200 according to Embodiment 1.
  • FIG. 5 is a diagram for explaining the extending direction of the convex portion 31 formed on the inner wall 12d of the inner pipe 12 in the first refrigerant distributor 152a according to the first embodiment.
  • the inner wall 12d of the inner tube 12 is formed with a plurality of protrusions 31 along the circumferential direction.
  • the plurality of protrusions 31 are provided parallel to each other so as to extend in the extending direction of the inner tube 12, as shown in FIG.
  • the cross-sectional shape of the convex portion 31 is not limited to the triangular shape shown in FIG.
  • the liquid refrigerant 32 of the gas-liquid two-phase refrigerant is held between the convex portions 31 and 31 .
  • the liquid refrigerant 32 is evenly held in the circumferential direction of the inner tube 12 .
  • a gas refrigerant 33 that is a gas-liquid two-phase refrigerant flows through the center of the inner tube 12 .
  • the gas-liquid two-phase refrigerant passes through the dispersion holes 12 a and evenly flows out from the inner tube 12 to the outer tube 11 and is evenly distributed to the plurality of heat transfer tubes 13 .
  • the gas-liquid two-phase refrigerant that has flowed into the inflow portion 12c of the inner pipe 12 flows inside the inner pipe 12 and is dispersed in the outer pipe 11 through the dispersion holes 12a of the inner pipe 12.
  • the gas-liquid two-phase refrigerant dispersed in the outer tube 11 flows into the heat transfer tubes 13 , exchanges heat with the air in the process of flowing through the heat transfer tubes 13 , becomes low-pressure gas refrigerant, and flows into the gas header 14 .
  • the low-pressure gas refrigerant that has flowed into the gas header 14 is output from the outflow portion 14a.
  • the liquid refrigerant 32 of the gas-liquid two-phase refrigerant that has flowed into the inflow portion 12 c of the inner tube 12 flows between the convex portions 31 .
  • the liquid refrigerant 32 flowing between the protrusions 31 is evenly held in the circumferential direction of the inner tube 12 .
  • a gas refrigerant 33 that is a gas-liquid two-phase refrigerant flows through the center of the inner tube 12 .
  • the gas-liquid two-phase refrigerant flowing inside the inner tube 12 flows out to the outer tube 11 through the dispersion holes 12a.
  • the gas-liquid two-phase refrigerant that has flowed into the outer tube 11 is distributed to the plurality of heat transfer tubes 13 .
  • the liquid refrigerant 32 is evenly held in the circumferential direction between the projections 31 extending along the extending direction of the inner tube 12 . Therefore, the gas-liquid two-phase refrigerant passes through the dispersion holes 12a and evenly flows out from the inner tube 12 to the outer tube 11 from upstream to downstream in the flow direction of the refrigerant, and is evenly distributed to the plurality of heat transfer tubes 13 .
  • the gas-liquid two-phase refrigerant distributed to the plurality of heat transfer tubes 13 undergoes heat exchange with air to become gas refrigerant, and is output from the outflow portion 14 a of the gas header 14 via the gas header 14 .
  • the gas refrigerant output from the outflow portion 14 a of the gas header 14 passes through the pipe 155 a and returns to the compressor 100 via the flow path switching device 151 and the accumulator 300 .
  • FIG. 6 is a diagram for explaining the extending direction of the convex portion 31 of the modification formed on the inner wall 12d of the inner pipe 12 in the first refrigerant distributor 152a according to the first embodiment.
  • two protrusions 31 a and 31 b are representatively shown among the plurality of protrusions 31 .
  • the convex portions 31a and the convex portions 31b are formed to extend obliquely to the extending direction of the inner tube 12 and extend in the extending direction of the inner tube 12.
  • FIG. 6 is a diagram for explaining the extending direction of the convex portion 31 of the modification formed on the inner wall 12d of the inner pipe 12 in the first refrigerant distributor 152a according to the first embodiment.
  • two protrusions 31 a and 31 b are representatively shown among the plurality of protrusions 31 .
  • the convex portions 31a and the convex portions 31b are formed to extend obliquely to the extending direction of the inner tube 12 and extend in the
  • the gas-liquid two-phase refrigerant flowing through the inner pipe 12 is formed on the inner wall 12d of the inner pipe 12.
  • the liquid refrigerant is evenly held in the circumferential direction between the convex portions 31a and the convex portions 31b.
  • the gas-liquid two-phase refrigerant flows out evenly through the distribution holes 12 a and is distributed to the heat transfer tubes 13 .
  • the gas-liquid two-phase refrigerant uniformly flows out through the dispersion holes 12a regardless of whether the heating operation or the cooling operation is performed. and distributed to each heat transfer tube 13 .
  • Embodiment 2 Next, a refrigeration cycle device 200 according to Embodiment 2 will be described.
  • the refrigerant circuit configuration of the second embodiment is the same as the refrigerant circuit configuration of the refrigeration cycle apparatus 200 of the first embodiment shown in FIG. is different.
  • FIG. 7 is a diagram showing a cross section orthogonal to the direction perpendicular to the extension direction of the inner pipe 12 of the first refrigerant distributor 152a in the refrigeration cycle apparatus 200 according to Embodiment 2. As shown in FIG.
  • the inner wall 12d of the inner tube 12 is formed with a plurality of projections 31 along the circumferential direction.
  • the plurality of protrusions 31 are provided parallel to each other so as to extend in the extending direction of the inner tube 12 .
  • FIG. 8 is a diagram for explaining the extending direction of the convex portion 31 formed on the inner wall 12d of the inner pipe 12 in the first refrigerant distributor 152a according to the second embodiment.
  • two convex portions 31 c and 31 d are representatively shown among the plurality of convex portions 31 .
  • the convex portions 31c and 31d are formed so as to extend parallel to each other in a helical shape in the extending direction of the inner pipe 12.
  • the remaining protrusions 31 are also spirally provided in parallel to each other, like the protrusions 31c and 31d.
  • the first refrigerant distributor 152a is shown in FIGS. 7 and 8, the second refrigerant distributor 154a also employs the same configuration as the first refrigerant distributor 152a.
  • the liquid refrigerant of the gas-liquid two-phase refrigerant flowing through the inner pipe 12 is held between the convex portions 31 formed on the inner wall 12 d of the inner pipe 12 .
  • the convex portion 31 is formed in a helical shape, the centrifugal force generated in the liquid refrigerant in the course of flowing through the inner pipe 12 increases the force for uniformly holding the inner pipe 12 in the circumferential direction.
  • the gas-liquid two-phase refrigerant uniformly flows out through the dispersion holes 12 a and is distributed to the heat transfer tubes 13 regardless of the flow rate of the refrigerant.
  • the gas-liquid two-phase refrigerant flowing through the inner pipe 12 displaces the convex portion 31 formed in the spiral shape on the inner wall 12d of the inner pipe 12. is formed.
  • a centrifugal force that uniformly holds the liquid refrigerant 32 in the circumferential direction acts between the protrusions 31c and 31d.
  • the gas-liquid two-phase refrigerant uniformly flows out through the distribution holes 12 a and is distributed to the heat transfer tubes 13 regardless of the flow rate of the refrigerant.
  • Embodiment 3 Next, a refrigeration cycle device 200 according to Embodiment 3 will be described.
  • the refrigerant circuit configuration of the third embodiment is the same as the refrigerant circuit configuration of the refrigeration cycle apparatus 200 of the first embodiment shown in FIG. is different.
  • FIG. 9 is a diagram showing the height of the projections 31 formed on the inner wall 12d of the inner pipe 12 in the first refrigerant distributor 152a according to Embodiment 3.
  • white arrows indicate the flow of gas-liquid two-phase refrigerant when the first refrigerant distributor 152a is used as an evaporator.
  • the height h2 of the protrusion 31 on the downstream side of the gas-liquid two-phase refrigerant from the inner wall 12d of the inner tube 12 is equal to the height h2 of the protrusion 31 on the upstream side of the gas-liquid two-phase refrigerant from the inner tube 12. It is higher than the height h1 from the inner wall 12d.
  • FIG. 9 shows the case of the first refrigerant distributor 152a, the second refrigerant distributor 154a also employs the same configuration as the first refrigerant distributor 152a.
  • the gas-liquid two-phase refrigerant continues to flow out to the outer tube 11 through the dispersion holes 12a.
  • the flow rate of the liquid refrigerant 32 flowing through the inner tube 12 is lower on the downstream side than on the upstream side of the gas-liquid two-phase refrigerant.
  • the holding force with which the liquid refrigerant 32 is held by the inner wall 12d of the inner tube 12 decreases toward the downstream side of the gas-liquid two-phase refrigerant.
  • the height h2 from the inner wall 12d of the inner tube 12 of the convex portion 31 on the downstream side of the gas-liquid two-phase refrigerant is reduced to the height h2 on the upstream side of the gas-liquid two-phase refrigerant.
  • the height h1 of the protrusion 31 from the inner wall 12d of the inner tube 12 is set higher than the height h1.
  • the height of the convex portion 31 rises gently from the upstream side to the downstream side of the gas-liquid two-phase refrigerant.
  • the height may be stepwise from the upstream side to the downstream side of the refrigerant.
  • the height h2 on the downstream side of the projection 31 is made higher than the height h1 on the upstream side. Therefore, the holding force with which the liquid refrigerant 32 is held by the inner wall 12d can be increased. Therefore, according to the first refrigerant distributor 152 a of the refrigeration cycle apparatus 200 according to Embodiment 3, the gas-liquid two-phase refrigerant flows out evenly through the dispersion holes 12 a and is distributed to the heat transfer tubes 13 .
  • Embodiment 4 Next, a refrigeration cycle device 200 according to Embodiment 4 will be described.
  • the refrigerant circuit configuration of Embodiment 4 is the same as the refrigerant circuit configuration of refrigeration cycle apparatus 200 of Embodiment 1 shown in FIG.
  • the dispersion holes 12a are provided in the lower portion of the inner tube 12 in the direction of gravity.
  • the positions of the distribution holes 12a of the inner pipe 12 in the first refrigerant distributor 152a are different.
  • the positions of the distribution holes 12a of the inner pipes 12 in the second refrigerant distributor 154a are the same as the positions of the distribution holes 12a of the inner pipes 12 in the first refrigerant distributor 152a. .
  • FIG. 10 is a cross-sectional view perpendicular to the direction in which the inner pipe 12 extends, showing the positions of the distribution holes 12a of the inner pipe 12 in the first refrigerant distributor 152a according to Embodiment 4. As shown in FIG.
  • the angle ⁇ [deg] from the vertical direction of the center of the inner tube 12 to the dispersion hole 12a satisfies the relationships of formulas (1) and (2).
  • ⁇ 20 ⁇ 180 (1) ⁇ 1 ⁇ /180+sin ⁇ cos ⁇ / ⁇ (2) here, ⁇ is the estimated liquid level angle [deg], and ⁇ is the void fraction.
  • the formulas (1) and (2) are calculated from the liquid cross-sectional area calculated from the void ratio ⁇ by trigonometric function as fan-shaped area ⁇ triangular area.
  • the positions of the dispersion holes 12a are calculated from the void fraction of the gas-liquid interface 34 in the laminar flow. from an angle slightly lower than 180°. This is because the gas-liquid interface 34 has a liquid level higher than that in the case of a laminar flow due to surface tension.
  • the first refrigerant distributor 152a and the second refrigerant distributor 154a of the refrigeration cycle apparatus 200 according to Embodiment 4 even when the liquid refrigerant 32 approaches the laminar flow from the annular flow, the gas-liquid interface 34 , the gas-liquid two-phase refrigerant flows out to the dispersion holes 12a. Thereby, the refrigerant can be evenly distributed to each heat transfer tube 13 .
  • Embodiment 5 Next, a refrigeration cycle device 200 according to Embodiment 5 will be described.
  • the refrigerant circuit configuration of Embodiment 5 is the same as the refrigerant circuit configuration of refrigeration cycle apparatus 200 of Embodiment 1 shown in FIG.
  • the position of the protrusion 31 provided on the inner wall 12d of the inner pipe 12 of the first refrigerant distributor 152a is different.
  • the position of the convex portion 31 in the second refrigerant distributor 154a is the same as the position of the convex portion 31 in the first refrigerant distributor 152a.
  • FIG. 11 is a schematic cross-sectional view of the first heat exchanger 152 of the refrigeration cycle apparatus 200 according to Embodiment 5 as viewed from the front.
  • FIG. 11 only some of the protrusions 31 formed on the inner wall 12d of the inner tube 12 in the circumferential direction are shown for the sake of illustration. Note that description of the same parts as in FIG. 2 is omitted, and different parts are described here.
  • the second heat exchanger 154 also has the same configuration as the first heat exchanger 152.
  • white arrows indicate the flow of refrigerant when the first heat exchanger 152 is used as an evaporator.
  • the inner tube 12 has a convex portion forming portion 41 and a smooth portion 42 .
  • the convex portion forming portion 41 is provided on the upstream side of the gas-liquid two-phase refrigerant and upstream of the dispersion hole 12a on the most upstream side.
  • a convex portion 31 is formed on the inner wall 12 d of the inflow portion 12 c of the inner tube 12 in the convex portion forming portion 41 .
  • the smooth portion 42 is provided downstream of the convex portion forming portion 41 for the gas-liquid two-phase refrigerant.
  • the inner wall 12d of the inner tube 12 at the smooth portion 42 is smooth.
  • the convex portion 31 is formed on the upstream side of the gas-liquid two-phase refrigerant, the liquid refrigerant is evenly distributed in the circumferential direction of the inner pipe 12 on the upstream side. Further, even when the liquid refrigerant flows from upstream to downstream, the state of the liquid refrigerant distributed in the circumferential direction is maintained, and even the smooth portion 42 follows the inner wall 12d.
  • the liquid is also distributed in the smooth portion 42 on the downstream side.
  • Refrigerant flows along the inner wall 12 d of the inner tube 12 .
  • Embodiment 6 Next, a refrigeration cycle device 200 according to Embodiment 6 will be described.
  • the refrigerant circuit configuration of Embodiment 6 is the same as the refrigerant circuit configuration of refrigeration cycle apparatus 200 of Embodiment 1 shown in FIG.
  • the positions of the protrusions 31 provided on the inner wall 12d of the inner pipe 12 of the first refrigerant distributor 152a are different from the positions of the protrusions 31 in the fifth embodiment.
  • the position of the convex portion 31 in the second refrigerant distributor 154a is the same as the position of the convex portion 31 in the first refrigerant distributor 152a.
  • FIG. 12 is a schematic cross-sectional view of the first heat exchanger 152 of the refrigeration cycle apparatus 200 according to Embodiment 6 as viewed from the front.
  • FIG. 12 only some of the protrusions 31 formed on the inner wall 12d of the inner tube 12 in the circumferential direction are shown for the sake of illustration. Note that description of the same parts as in FIG. 2 is omitted, and different parts are described here.
  • the second heat exchanger 154 also has the same configuration as the first heat exchanger 152.
  • white arrows indicate the flow of refrigerant when the first heat exchanger 152 is used as an evaporator.
  • the inner tube 12 has a smooth portion 42 and a convex portion forming portion 41 .
  • the smooth portion 42 has a smooth inner wall 12d of the inner tube 12 and is provided upstream of the gas-liquid two-phase refrigerant.
  • the convex portion forming portion 41 is provided downstream of the smooth portion 42 of the gas-liquid two-phase refrigerant, and the convex portion 31 is formed. More specifically, the convex portion forming portion 41 is provided downstream of the range in which the heat transfer tubes 13 are provided.
  • the convex portion 31 formed in the convex portion forming portion 41 is provided on the downstream side of the distribution hole 12a on the most downstream side, and on the inner wall 12d of the inner tube 12 on the downstream side of the range in which the heat transfer tube 13 is provided. formed in
  • the gas-liquid two-phase refrigerant flows in a state in which the pressure loss in the region in the inner pipe 12 where the flow rate of the gas-liquid two-phase refrigerant is high is suppressed.
  • a two-phase refrigerant flows. Since the convex portion 31 is provided in the convex portion forming portion 41 on the downstream side, the liquid refrigerant flows along the inner wall 12d of the inner pipe 12, and even when the flow rate of the gas-liquid two-phase refrigerant is reduced, the gas-liquid refrigerant separation is suppressed.
  • the liquid refrigerant is distributed to the inner wall 12d of the inner pipe 12. flow along.
  • the convex portion 31 is formed only in the convex portion forming portion 41 on the downstream side, the gas-liquid separation is suppressed when the flow rate of the gas-liquid two-phase refrigerant is reduced.
  • the two-phase refrigerant evenly flows out through the distribution holes 12a around the downstream end where the convex portion 31 is formed, and is distributed to each heat transfer tube 13 .

Abstract

冷媒分配器は、伝熱管が接続される外管と、外管内に収容され、冷媒を外管に通す分散用孔を有する内管とを具備し、内管の内壁には、内管の延伸方向に延びる凸部が形成され、凸部は、内管の内壁に周方向に複数形成される。

Description

冷媒分配器、熱交換器及び空気調和装置
 本開示は、内管と外管とを備える二重構造の冷媒分配器、このような冷媒分配器を有する熱交換器及び空気調和装置に関する。
 空気調和装置では、室内機に搭載された凝縮器として機能する熱交換器で凝縮された液冷媒が絞り装置によって減圧される。そして、冷媒は、ガス冷媒と液冷媒とが混在する気液二相状態となって室外機に搭載された蒸発器として機能する熱交換器に流入する。
 気液二相状態の冷媒が蒸発器として機能する熱交換器に流入すると、熱交換器への冷媒の分配性能が悪化する。そこで、冷媒の分配性能が改善するように、室外機に搭載された熱交換器の扁平管を鉛直上向きに配置し、冷媒分配器を水平に配置して、重力の影響を軽減し、冷媒の分配を改善する方法などがある(例えば、特許文献1参照。)。
特許第6576577号公報
 しかし、上記のように冷媒分配器が水平に配置された場合でも、冷媒分配器内部を流動する冷媒流量又は乾き度に依存し、分配性能が変動するなどの課題がある。特に、低冷媒流量及び低渇き度の条件では、二相冷媒が分離され易くなる。液冷媒が内管の内壁に均一に沿って流れていない場合、内管に形成された分散用孔を通じて、液冷媒のみ又はガス冷媒のみが流れる領域が発生し、冷媒分配器の分配性能が低下する。また、このような冷媒分配器を有する熱交換器及び空気調和装置の熱交換性能が低下する。
 本開示は、上記実情に鑑みてなされたものであり、各伝熱管に均等に冷媒を分配できる冷媒分配器、このような冷媒分配器を有する熱交換器及び空気調和装置を提供することを目的とする。
 本開示に係る冷媒分配器は、伝熱管が接続される外管と、前記外管内に収容され、冷媒を前記外管に通す分散用孔を有する内管とを具備し、前記内管の内壁には、前記内管の延伸方向に延びる凸部が形成され、前記凸部は、前記内管の内壁に周方向に複数形成される。
 本開示によれば、内管を流れる気液二相冷媒のうちの液冷媒が、内管の内壁に形成された凸部と凸部との間に周方向に均等に保持される。これにより、冷媒の流量によらず、気液二相冷媒が分散用孔を通じて、均等に流出し、各伝熱管に分配される。
実施の形態1に係る冷凍サイクル装置の冷媒回路構成を概略的に示す冷媒回路図である。 実施の形態1に係る冷凍サイクル装置の第1熱交換器を正面から見た断面模式図である。 実施の形態1に係る冷凍サイクル装置の第1熱交換器を側面から見た断面を示す側面断面模式図である。 実施の形態1に係る冷凍サイクル装置における第1冷媒分配器の内管の延伸方向に対して鉛直方向に直交する断面を示す図である。 実施の形態1に係る第1冷媒分配器における内管の内壁に形成される凸部の延伸方向を説明するための図である。 実施の形態1に係る第1冷媒分配器における内管の内壁に形成される変形例の凸部の延伸方向を説明するための図である。 実施の形態2に係る冷凍サイクル装置における第1冷媒分配器の内管の延伸方向に対して鉛直方向に直交する断面を示す図である。 実施の形態2に係る第1冷媒分配器における内管の内壁に形成される凸部の延伸方向を説明するための図である。 実施の形態3に係る第1冷媒分配器における内管の内壁に形成される凸部の高さを示す図である。 実施の形態4に係る第1冷媒分配器における内管の分散用孔の設けられる位置を示す内管の延伸方向に対して鉛直方向に直交する断面図である。 実施の形態5に係る冷凍サイクル装置の第1熱交換器を正面から見た断面模式図である。 実施の形態6に係る冷凍サイクル装置の第1熱交換器を正面から見た断面模式図である。
 以下、図面を参照して、実施の形態に係る冷媒分配器を有する熱交換器について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置200の冷媒回路構成を概略的に示す冷媒回路図である。図1に基づいて、冷凍サイクル装置200の構成及び動作について説明する。実施の形態1に係る冷凍サイクル装置200は、第1冷媒分配器152aを備えた第1熱交換器152及び第2冷媒分配器154aを備えた第2熱交換器154を冷媒回路の一要素として備えたものである。
<冷凍サイクル装置200の構成>
 図1に示すように、冷凍サイクル装置200は、室外機101と室内機102とを有する。室外機101は、圧縮機100、流路切替装置151、第1熱交換器152及び膨張装置153を有する。また、圧縮機100の上流側にはアキュームレータ300が配置されている。第1熱交換器152には、第1冷媒分配器152aが設けられている。第1冷媒分配器152aは、第1熱交換器152の伝熱管13(図2参照)に冷媒を分配する。第1熱交換器152の近傍には、室外ファン156が設けられている。さらに、室外機101は制御装置160を有する。
 室内機102は、第2熱交換器154を有する。第2熱交換器154には、第2冷媒分配器154aが設けられている。第2冷媒分配器154aは、第2熱交換器154の図示せぬ伝熱管に冷媒を分配する。第2熱交換器154の近傍には、室内ファン157が設けられている。
 圧縮機100、第1熱交換器152及び膨張装置153が配管155aにより配管接続され、膨張装置153、第2熱交換器154及び圧縮機100が、配管155bにより配管接続されて冷媒回路を形成している。
 圧縮機100は、吸入された冷媒を圧縮して高温高圧の状態とするものである。圧縮機100で圧縮された冷媒は、圧縮機100から吐出されて第1熱交換器152又は第2熱交換器154へ送られる。
 流路切替装置151は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。流路切替装置151は、暖房運転時には圧縮機100と第2熱交換器154とを接続するように切り替えられ、冷房運転時には圧縮機100と第1熱交換器152とを接続するように切り替えられる。なお、流路切替装置151は、たとえば四方弁で構成するとよい。ただし、二方弁又は三方弁の組み合わせを流路切替装置151として採用してもよい。
 第1熱交換器152は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。蒸発器として機能する場合、第1熱交換器152では、膨張装置153から流出された低温低圧の冷媒と、室外ファン156により供給される空気とが熱交換され、低温低圧の気液二相冷媒の液冷媒が蒸発する。一方、凝縮器として機能する場合、第1熱交換器152では、圧縮機100から吐出された高温高圧の冷媒と、室外ファン156により供給される空気とが熱交換され、高温高圧のガス冷媒が凝縮される。なお、第1熱交換器152を、冷媒-水熱交換器で構成してもよい。この場合、第1熱交換器152では、冷媒と、水などの熱媒体とで熱交換が実行される。
 膨張装置153は、第1熱交換器152又は第2熱交換器154から流出した冷媒を膨張させて減圧するものである。膨張装置153は、例えば冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、膨張装置153としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又は、キャピラリーチューブ等を適用することも可能である。
 第2熱交換器154は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。凝縮器として機能する場合、第2熱交換器154では、圧縮機100から吐出された高温高圧の冷媒と、室内ファン157により供給される空気とが熱交換され、高温高圧のガス冷媒が凝縮される。一方、蒸発器として機能する場合、第2熱交換器154では、膨張装置153から流出された低温低圧の冷媒と、室内ファン157により供給される空気とが熱交換され、気液二相冷媒の低温低圧の液冷媒が蒸発する。なお、第2熱交換器154を、冷媒-水熱交換器で構成してもよい。この場合、第2熱交換器154では、冷媒と、水などの熱媒体とで熱交換が実行される。
 第1冷媒分配器152aは、第1熱交換器152の複数の伝熱管13(図2及び図3参照)に冷媒を分配する。室外ファン156は、第1熱交換器152に熱交換のための空気を送風する。第2冷媒分配器154aは、第2熱交換器154の図示せぬ伝熱管に冷媒を分配する。室内ファン157は、第2熱交換器154に熱交換のための空気を送風する。
 制御装置160は、冷凍サイクル装置200全体を統括制御する。具体的には、制御装置160は、必要とする冷却能力又は加熱能力に応じて圧縮機100の駆動周波数を制御する。また、制御装置160は、運転状態及びモード毎に応じて膨張装置153の開度を制御する。さらに、制御装置160は、モード毎に応じて流路切替装置151を制御する。
 制御装置160は、ユーザーからの運転指示に基づいて、図示省略の各温度センサー及び図示省略の各圧力センサーから送られる情報を利用し、例えば、圧縮機100、膨張装置153及び流路切替装置151等の各アクチュエーターを制御する。
 なお、制御装置160は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。
 制御装置160は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。制御装置160が専用のハードウェアである場合、制御装置160は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置160が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。制御装置160がCPUの場合、制御装置160が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行し、制御装置160の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。なお、制御装置160の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 なお、図1においては、第1熱交換器152に第1冷媒分配器152aが設けられ、第2熱交換器154に第2冷媒分配器154aが設けられている場合を示しているが、いずれか一方にのみに冷媒分配器が設けられていても良い。
<冷凍サイクル装置200の動作>
 次に、冷凍サイクル装置200の動作について、冷媒の流れとともに説明する。ここでは、第1熱交換器152及び第2熱交換器154での熱交換流体が空気である場合を例に、冷凍サイクル装置200の冷房運転時の動作について説明する。なお、図1では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。
 圧縮機100が駆動され、圧縮機100から高温高圧のガス状態の冷媒が吐出される。圧縮機100から吐出された高温高圧のガス冷媒(単相)は、第1熱交換器152に流れ込む。第1熱交換器152では、流れ込んだ高温高圧のガス冷媒と、室外ファン156によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮されて高圧の液冷媒(単相)になる。
 第1熱交換器152から送り出された高圧の液冷媒は、膨張装置153によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。気液二相状態の冷媒は、第2冷媒分配器154aにより収集され、収集された気液二相状態の冷媒は第2熱交換器154に流れ込む。第2熱交換器154では、第2冷媒分配器154aにより分配され、流れ込んだ気液二相状態の冷媒と、室内ファン157によって供給される空気との間で熱交換が行われて、気液二相状態の冷媒のうち液冷媒が蒸発して低圧であって単相のガス冷媒になる。第2熱交換器154から送り出された低圧のガス冷媒は、アキュームレータ300を介して圧縮機100に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機100から吐出される。以降、このサイクルが繰り返される。
 なお、冷凍サイクル装置200の暖房運転時の動作は、流路切替装置151により冷媒の流れを図1に示す実線矢印の流れにすることで実行される。
 また、圧縮機100の吐出側に設けた流路切替装置151を設けずに、冷媒の流れを一定方向にしてもよい。
 冷凍サイクル装置200が冷房専用又は暖房専用であって冷媒の流れ方向を切り替える必要が無い場合には、流路切替装置151を設けなくてよい。
 さらに、冷凍サイクル装置200の適用例としては、空気調和装置の他、給湯器、冷凍機、又は空調給湯複合機などがある。
<第1熱交換器152>
 図2は、実施の形態1に係る冷凍サイクル装置200の第1熱交換器152を正面から見た断面模式図である。図3は、実施の形態1に係る冷凍サイクル装置200の第1熱交換器152を側面から見た断面を示す側面断面模式図である。
 図2及び図3においては、第1熱交換器152を示したが、第2熱交換器154も第1熱交換器152と同様の構成が採用される。また、第2熱交換器154の第2冷媒分配器154aは、第1熱交換器152の第1冷媒分配器152aと同様の構成が採用される。図2においては、第1熱交換器152が蒸発器として利用された場合の冷媒の流れを白矢印で示している。
 図2及び図3に示すように、第1熱交換器152は、複数の伝熱管13を有する。ガスヘッダ14及び第1冷媒分配器152aは、水平方向に延びるように配置される。複数の伝熱管13は、水平方向に間隔を空けて設けられ、それぞれの一端が第1冷媒分配器152aの外管11に挿入され、他端がガスヘッダ14に挿入される。伝熱管13には図示せぬフィンが隣接する伝熱管13の間に位置するようにして取り付けられる。図示せぬフィンは、伝熱管13に伝熱を行なう。ガスヘッダ14には、ガスヘッダ14内と連通する流出部14aが設けられる。流出部14aは、圧縮機100に接続される配管155aに接続される。
<第1冷媒分配器152a>
 図2及び図3に示すように、第1冷媒分配器152aは、内管12と、外管11とを備える2重管構造である。外管11には、外管11の延出方向に沿って複数の伝熱管13が接続される。内管12と外管11との間に流入した気液二相冷媒は、複数の伝熱管13に分配される。
 第1冷媒分配器152aは、第1熱交換器152が蒸発器として運転される場合に流れる気液二相冷媒の入口側に接続される。
 内管12は、内管12の延伸方向が水平に保持される。気液二相冷媒が内管12の一端に流入する。第1熱交換器152が蒸発器として機能する場合の冷媒の流れの内管12の最下流端部には、キャップ12bが設けられる。第1熱交換器152が蒸発器として機能する場合の内管12内の冷媒の流れの内管12の最上流端部には、冷凍サイクル回路の膨張装置153に接続される配管155aが接続される。
 図2及び図3に示すように、内管12には、内管12の延伸方向に間隔を空けてオリフィス孔とも称される冷媒を外管11に通す分散用孔12aが内管12の重力方向下部に設けられる。分散用孔12aは、分散用孔12aの直径は、0.5[mm]から4[mm]である。分散用孔12aは、内管12の重力方向下部であって、伝熱管13の間に設けられていても良い。これにより、分散用孔12aが伝熱管13の直下の内管12に設けられている場合に比して、第1冷媒分配器152aの冷媒分配性能を向上することができる。また、内管12には、冷媒が流入する流入部12cが設けられている。
 図4は、実施の形態1に係る冷凍サイクル装置200における第1冷媒分配器152aの内管12の延伸方向に対して鉛直方向に直交する断面を示す図である。図5は、実施の形態1に係る第1冷媒分配器152aにおける内管12の内壁12dに形成される凸部31の延伸方向を説明するための図である。
 図4に示すように、内管12の内壁12dには複数の凸部31が周方向に沿って形成されている。これら複数の凸部31は、図5に示すように、内管12の延伸方向に延びるように互いに平行して設けられている。
 凸部31の断面形状は、図4に示す三角形状に限らず、台形、矩形あるいは半円形など他の形状のものであっても良い。
 このように、凸部31を設けることにより、気液二相冷媒の液冷媒32が凸部31と凸部31との間に保持される。これにより、液冷媒32が内管12の周方向に均等に保持される。内管12の中心部には気液二相冷媒のガス冷媒33が流れる。これにより、気液二相冷媒が分散用孔12aを通り、内管12から外管11に均等に流出し、複数の伝熱管13に均等に分配される。
<第1熱交換器152の動作>
 次に、第1熱交換器152が蒸発器として使用される暖房運転の場合の動作について説明する。なお、ここでは、第1熱交換器152が蒸発器として使用される場合の動作について説明するが、第2熱交換器154が蒸発器として使用される場合の動作は、第1熱交換器152の動作と同様である。また、第1熱交換器152が凝縮器として使用される場合には、冷媒の流れの方向が逆方向になる。
 図2において、内管12の流入部12cに流入した気液二相冷媒は、内管12内を流れ、内管12の分散用孔12aを通じて、外管11内に分散される。外管11内に分散された気液二相冷媒は、伝熱管13に流入し、伝熱管13を流れる過程において空気と熱交換が行われ低圧のガス冷媒となり、ガスヘッダ14に流入する。ガスヘッダ14に流入した低圧のガス冷媒は、流出部14aから出力される。
 図4に示すように、内管12の流入部12cに流入した気液二相冷媒のうち液冷媒32は、凸部31の間を流れる。凸部31の間を流れる液冷媒32は、内管12の周方向に均等に保持される。内管12の中心部には気液二相冷媒のガス冷媒33が流れる。
 内管12の内部を流れる気液二相冷媒は、分散用孔12a通り外管11に流出する。外管11に流入した気液二相冷媒は、複数の伝熱管13に分配される。液冷媒32は、内管12の延伸方向に沿って延びる凸部31と凸部31との間に周方向に均等に保持される。従って、気液二相冷媒が分散用孔12aを通り、冷媒の流れ方向の上流から下流にわたって内管12から外管11に均等に流出し、複数の伝熱管13に均等に分配される。
 複数の伝熱管13に分配された気液二相冷媒は、空気と熱交換が行われガス冷媒となり、ガスヘッダ14を介して、ガスヘッダ14の流出部14aから出力する。ガスヘッダ14の流出部14aから出力したガス冷媒は、配管155aを通り、流路切替装置151及びアキュームレータ300を介して圧縮機100に戻る。
<変形例>
 なお、凸部31は、内管12の延伸方向に対して斜め方向に形成されていても良い。図6は、実施の形態1に係る第1冷媒分配器152aにおける内管12の内壁12dに形成される変形例の凸部31の延伸方向を説明するための図である。図6では、複数の凸部31のうち、2つの凸部31aと凸部31bとを代表して示している。図6に示すように、凸部31aと凸部31bとは、内管12の延伸方向に対して斜め方向に延び、かつ内管12の延伸方向に延びるように形成されている。
 実施の形態1に係る冷凍サイクル装置200の第1冷媒分配器152a及び第2冷媒分配器154aによれば、内管12を流れる気液二相冷媒のうち、内管12の内壁12dに形成された凸部31aと凸部31bとの間に液冷媒が、周方向に均等に保持される。これにより、冷媒の流量にかかわらず、気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。また、第1冷媒分配器152a及び第2冷媒分配器154aに凸部31が設けられているので、暖房運転及び冷房運転にかかわらず、気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
実施の形態2.
 次に、実施の形態2に係る冷凍サイクル装置200について説明する。実施の形態2の冷媒回路構成は、図1に示された実施の形態1の冷凍サイクル装置200の冷媒回路構成と同じであるが、第1冷媒分配器152a及び第2冷媒分配器154aの構成が異なる。
 図7は、実施の形態2に係る冷凍サイクル装置200における第1冷媒分配器152aの内管12の延伸方向に対して鉛直方向に直交する断面を示す図である。
 図7に示すように、内管12の内壁12dには複数の凸部31が周方向に沿って形成されている。これら複数の凸部31は、内管12の延伸方向に延びるように互いに平行して設けられている。
 図8は、実施の形態2に係る第1冷媒分配器152aにおける内管12の内壁12dに形成される凸部31の延伸方向を説明するための図である。図8では、複数の凸部31のうち、2つの凸部31cと凸部31dとを代表して示している。図8において、凸部31cと凸部31dとは、内管12の延伸方向に螺旋形状に互いに平行に延びるように形成されている。残りの凸部31も凸部31cと凸部31dと同様に、互いに平行に螺旋形状に設けられている。なお、図7及び図8においては、第1冷媒分配器152aを示したが、第2冷媒分配器154aも第1冷媒分配器152aと同様の構成が採用される。
 このような構成では、内管12を流れる気液二相冷媒のうちの液冷媒が、内管12の内壁12dに形成された凸部31と凸部31との間に保持される。そして、凸部31が螺旋形状に形成されていることから、内管12内を流れる過程において液冷媒に生じる遠心力により、内管12の周方向に均等に保持する力が増大する。これにより、冷媒の流量によらず、気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
 実施の形態2に係る冷凍サイクル装置200の第1冷媒分配器152aによれば、内管12を流れる気液二相冷媒のうち、内管12の内壁12dに螺旋形状に形成された凸部31が形成される。これにより、凸部31cと凸部31dとの間に液冷媒32を周方向に均等に保持する遠心力が働く。その結果、冷媒の流量によらず、気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
実施の形態3.
 次に、実施の形態3に係る冷凍サイクル装置200について説明する。実施の形態3の冷媒回路構成は、図1に示された実施の形態1の冷凍サイクル装置200の冷媒回路構成と同じであるが、第1冷媒分配器152a及び第2冷媒分配器154aの構成が異なる。
 図9は、実施の形態3に係る第1冷媒分配器152aにおける内管12の内壁12dに形成される凸部31の高さを示す図である。図9において、白矢印は、第1冷媒分配器152aが蒸発器として使用されている場合の気液二相冷媒の流れを示す。図9に示すように、気液二相冷媒の下流側における凸部31の内管12の内壁12dからの高さh2が、気液二相冷媒の上流側における凸部31の内管12の内壁12dから高さh1よりも高い。なお、図9においては、第1冷媒分配器152aの場合を示したが、第2冷媒分配器154aも第1冷媒分配器152aと同様の構成が採用される。
 第1熱交換器152が蒸発器として使用される場合、気液二相冷媒が分散用孔12aを通り、外管11に流出し続ける。これにより、内管12を流れる液冷媒32の流量は、気液二相冷媒の上流側に対して、下流側は低下する。その結果、内管12の内壁12dに液冷媒32が保持される保持力は、気液二相冷媒の下流側にいくほど低下する。
 実施の形態3の第1冷媒分配器152aによれば、気液二相冷媒の下流側における凸部31の内管12の内壁12dからの高さh2を、気液二相冷媒の上流側における内管12の内壁12dからの凸部31の高さh1よりも高くする。
 このように凸部31を構成することにより、内管12を流れる液冷媒32の表面張力の影響が大きくなり、液冷媒32が内壁12dに保持される保持力が増大する。
 なお、図9においては、凸部31の高さは、気液二相冷媒の上流側から下流側になだらかに高くなる場合を示しているが、凸部31の高さは、気液二相冷媒の上流側から下流側にかけて階段状に高くなっても良い。
 実施の形態3に係る冷凍サイクル装置200の第1冷媒分配器152aによれば、凸部31の下流側における高さh2を、上流側における高さh1よりも高くする。これにより、液冷媒32が内壁12dに保持される保持力を大きくすることができる。従って、実施の形態3に係る冷凍サイクル装置200の第1冷媒分配器152aによれば、気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
実施の形態4.
 次に、実施の形態4に係る冷凍サイクル装置200について説明する。実施の形態4の冷媒回路構成は、図1に示された実施の形態1の冷凍サイクル装置200の冷媒回路構成と同じである。実施の形態1においては、分散用孔12aは、内管12の重力方向下部に設けられていた。実施の形態4においては、第1冷媒分配器152aにおける内管12の分散用孔12aの設けられている位置が異なる。なお、第2冷媒分配器154aにおける内管12の分散用孔12aの設けられている位置は、第1冷媒分配器152aにおける内管12の分散用孔12aの設けられている位置と同様である。
 図10は、実施の形態4に係る第1冷媒分配器152aにおける内管12の分散用孔12aの設けられる位置を示す内管12の延伸方向に対して鉛直方向に直交する断面図である。
 内管12における中心の鉛直方向から分散用孔12aまでの角度φ[deg]は、(1)式及び(2)式の関係を満たす。
θ-20<φ<180 ・・・(1)
α=1-θ/180+sinθcosθ/π ・・・(2)
ここで、
θは、推定液面角度[deg]、αはボイド率である。(1)式及び(2)式は、ボイド率αから算出される液断面積から三角関数により扇形の面積-三角形の面積として算出したものである。
 このように、上記(1)式及び(2)式を満たす角度φに分散用孔12aを設けることにより、分散用孔12aの位置はボイド率から計算される層状流における気液界面34の位置よりもわずかに低い角度から180°の間に存在する。気液界面34は、表面張力により、層状流になっている場合よりも液面は上の位置にあるからである。
 従って、実施の形態4に係る冷凍サイクル装置200の第1冷媒分配器152a及び第2冷媒分配器154aによれば、液冷媒32が環状流から層状流に近づいた場合にも、気液界面34から分散用孔12aに気液二相冷媒が流出する。これにより、各伝熱管13に冷媒を均等に分配することが可能となる。
実施の形態5.
 次に、実施の形態5に係る冷凍サイクル装置200について説明する。実施の形態5の冷媒回路構成は、図1に示された実施の形態1の冷凍サイクル装置200の冷媒回路構成と同じである。実施の形態5では、第1冷媒分配器152aの内管12の内壁12dに設けられている凸部31の位置が異なる。なお、第2冷媒分配器154aにおける凸部31の位置は、第1冷媒分配器152aにおける凸部31の位置と同様である。
 図11は、実施の形態5に係る冷凍サイクル装置200の第1熱交換器152を正面から見た断面模式図である。図11においては、図示の関係上、内管12の内壁12dに周方向に形成される凸部31のうち、一部の凸部31のみを示している。なお、図2と同一部分には説明を省略し、ここでは異なる部分について説明する。
 図11においては、第1熱交換器152を示したが、第2熱交換器154も第1熱交換器152と同様の構成が採用される。図11においては、第1熱交換器152が蒸発器として利用された場合の冷媒の流れを白矢印で示している。
 図11に示すように、内管12は、凸部形成部41と、平滑部42とを有する。凸部形成部41は、気液二相冷媒の上流側であって、最も上流側の分散用孔12aよりも上流側に設けられる。凸部形成部41における内管12の流入部12cの内壁12dには凸部31が形成される。平滑部42は、気液二相冷媒の凸部形成部41よりも下流側に設けられる。平滑部42における内管12の内壁12dは平滑である。
 このような構成によれば、気液二相冷媒の上流側に凸部31が形成されているため、上流側において、液冷媒が内管12の周方向に均等に分配される。そして、液冷媒が上流から下流に流れる際にも周方向に分配された液冷媒の状態が維持されて平滑部42でも内壁12dに沿う。
 従って、実施の形態5の第1冷媒分配器152aによれば、内管12の内壁12dに凸部31を気液二相冷媒の上流側に設けることにより、下流側の平滑部42においても液冷媒が内管12の内壁12dに沿って流れる。これにより、凸部31を上流側の凸部形成部41にのみ形成する場合であっても、下流側の平滑部42において気液二相冷媒が分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
実施の形態6.
 次に、実施の形態6に係る冷凍サイクル装置200について説明する。実施の形態6の冷媒回路構成は、図1に示された実施の形態1の冷凍サイクル装置200の冷媒回路構成と同じである。実施の形態6では、第1冷媒分配器152aの内管12の内壁12dに設けられている凸部31の位置が第5の実施の形態の凸部31の位置と異なる。なお、第2冷媒分配器154aにおける凸部31の位置は、第1冷媒分配器152aにおける凸部31の位置と同様である。
 図12は、実施の形態6に係る冷凍サイクル装置200の第1熱交換器152を正面から見た断面模式図である。図12においては、図示の関係上、内管12の内壁12dに周方向に形成される凸部31のうち、一部の凸部31のみを示している。なお、図2と同一部分には説明を省略し、ここでは異なる部分について説明する。
 図12においては、第1熱交換器152を示したが、第2熱交換器154も第1熱交換器152と同様の構成が採用される。図12においては、第1熱交換器152が蒸発器として利用された場合の冷媒の流れを白矢印で示している。
 図12に示すように、内管12は、平滑部42と、凸部形成部41とを有する。平滑部42は、内管12の内壁12dが平滑で、気液二相冷媒の上流側に設けられる。凸部形成部41は、気液二相冷媒の平滑部42よりも下流側に設けられ、凸部31が形成される。より具体的には、凸部形成部41は、伝熱管13が設けられた範囲よりも下流側に設けられる。凸部形成部41に形成された凸部31は、最も下流側の分散用孔12aよりも下流側に設けられ、かつ伝熱管13が設けられた範囲よりも下流側の内管12の内壁12dに形成される。
 このような構成によれば、気液二相冷媒の上流側に平滑部42があるので、内管12内の気液二相冷媒の流量が多い領域の圧力損失が抑制された状態で気液二相冷媒が流れる。下流側では、凸部形成部41において凸部31が設けられているので、内管12の内壁12dに液冷媒が沿い、気液二相冷媒の流量が低下した状態であっても、気液が分離することが抑制される。
 従って、実施の形態6の第1冷媒分配器152aによれば、内管12の内壁12dに凸部31を気液二相冷媒の下流側に設けることにより、液冷媒が内管12の内壁12dに沿って流れる。これにより、凸部31を下流側の凸部形成部41にのみ形成する場合であっても、気液二相冷媒の流量が低下した状態で、気液が分離することが抑制され、気液二相冷媒が凸部31を施した下流端部の周辺に存在する分散用孔12aを通じて、均等に流出し、各伝熱管13に分配される。
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。
 11 外管、12 内管、12a 分散用孔、12b キャップ、12c 流入部、12d 内壁、13 伝熱管、14 ガスヘッダ、14a 流出部、31、31a~31d 凸部、32 液冷媒、33 ガス冷媒、34 気液界面、41 凸部形成部、42 平滑部、100 圧縮機、101 室外機、102 室内機、151 流路切替装置、152 第1熱交換器、152a 第1冷媒分配器、153 膨張装置、154 第2熱交換器、154a 第2冷媒分配器、155a、155b 配管、156 室外ファン、157 室内ファン、160 制御装置、200 冷凍サイクル装置、300 アキュームレータ、h1 凸部の気液二相冷媒上流側の高さ、h2 凸部の気液二相冷媒下流側の高さ、θ 推定液面角度、α ボイド率、φ 分散用孔の角度。

Claims (9)

  1.  伝熱管が接続された外管と、
     前記外管内に収容され、冷媒を前記外管に通す分散用孔を有する内管と
    を具備し、
     前記内管の内壁には、前記内管の延伸方向に延びる凸部が形成され、
     前記凸部は、前記内管の内壁に周方向に複数形成される
    冷媒分配器。
  2.  前記凸部は、前記内管の延伸方向に螺旋形状で延びるように形成されている
    請求項1記載の冷媒分配器。
  3.  前記凸部は、前記内管の延伸方向に対して斜め方向に延びるように形成されている
    請求項1記載の冷媒分配器。
  4.  気液二相の前記冷媒の下流側における前記凸部の高さが、前記気液二相の前記冷媒の上流側における前記凸部の高さよりも高い
    請求項1~3のいずれか1項に記載の冷媒分配器。
  5.  前記内管における中心の鉛直方向から前記分散用孔までの角度φは、(1)式及び(2)式の関係を満たす
    請求項1~4のいずれか1項に記載の冷媒分配器。
    θ-20<φ<180 ・・・(1)
    α=1-θ/180+sinθcosθ/π ・・・(2)
    ここで、
    θ:推定液面角度、
    α:ボイド率
    である。
  6.  前記内管は、気液二相の前記冷媒の上流側に設けられ、前記凸部が形成された凸部形成部と、前記気液二相の前記冷媒の前記凸部形成部よりも下流側に設けられ、前記内管の内壁が平滑な平滑部とを有する
    請求項1~5のいずれか1項に記載の冷媒分配器。
  7.  前記内管は、気液二相の前記冷媒の上流側に設けられ、前記内管の内壁が平滑な平滑部と、前記気液二相の前記冷媒の前記平滑部よりも下流側に設けられ、前記凸部が形成された凸部形成部とを有する
    請求項1~5のいずれか1項に記載の冷媒分配器。
  8.  請求項1~7のいずれか1項に記載の前記冷媒分配器を有する
    熱交換器。
  9.  請求項8記載の前記熱交換器を有する
    空気調和装置。
PCT/JP2021/037091 2021-10-07 2021-10-07 冷媒分配器、熱交換器及び空気調和装置 WO2023058179A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023552621A JPWO2023058179A1 (ja) 2021-10-07 2021-10-07
PCT/JP2021/037091 WO2023058179A1 (ja) 2021-10-07 2021-10-07 冷媒分配器、熱交換器及び空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037091 WO2023058179A1 (ja) 2021-10-07 2021-10-07 冷媒分配器、熱交換器及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2023058179A1 true WO2023058179A1 (ja) 2023-04-13

Family

ID=85803291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037091 WO2023058179A1 (ja) 2021-10-07 2021-10-07 冷媒分配器、熱交換器及び空気調和装置

Country Status (2)

Country Link
JP (1) JPWO2023058179A1 (ja)
WO (1) WO2023058179A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102331A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2010139196A (ja) * 2008-12-15 2010-06-24 Sharp Corp 熱交換器
JP2011017505A (ja) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp 冷媒分配器及びヒートポンプ装置
US20110290465A1 (en) * 2010-06-01 2011-12-01 Delphi Technologies, Inc. Orientation insensitive refrigerant distributor tube
JP2012002475A (ja) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
CN110168303A (zh) * 2016-11-30 2019-08-23 法雷奥热系统公司 构成用于均匀化热交换器的管内的制冷剂分配的装置的混合构件
JP6576577B1 (ja) 2018-06-11 2019-09-18 三菱電機株式会社 冷媒分配器、熱交換器及び空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102331A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2010139196A (ja) * 2008-12-15 2010-06-24 Sharp Corp 熱交換器
JP2011017505A (ja) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp 冷媒分配器及びヒートポンプ装置
US20110290465A1 (en) * 2010-06-01 2011-12-01 Delphi Technologies, Inc. Orientation insensitive refrigerant distributor tube
JP2012002475A (ja) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
CN110168303A (zh) * 2016-11-30 2019-08-23 法雷奥热系统公司 构成用于均匀化热交换器的管内的制冷剂分配的装置的混合构件
JP6576577B1 (ja) 2018-06-11 2019-09-18 三菱電機株式会社 冷媒分配器、熱交換器及び空気調和装置

Also Published As

Publication number Publication date
JPWO2023058179A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
EP2851641B1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
US9970688B2 (en) Regenerative air-conditioning apparatus and method of controlling the same
JP6647406B2 (ja) 冷凍サイクル装置
CN101738026A (zh) 分配器和包括该分配器的制冷剂循环系统
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
JP2015108463A (ja) 熱交換器及び冷凍サイクル装置
EP2771627B1 (en) Regenerative air-conditioning apparatus
JP2008267689A (ja) 冷媒分配器
US11112149B2 (en) Heat exchanger and air-conditioning apparatus
US11859883B2 (en) Flow disturbance apparatus and air conditioner comprising the same
WO2023058179A1 (ja) 冷媒分配器、熱交換器及び空気調和装置
KR102337394B1 (ko) 공기조화기
JP6273838B2 (ja) 熱交換器
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP2013148284A (ja) 絞り装置およびその絞り装置を備えた空気調和装置
KR101416939B1 (ko) 실외 열교환기
JP6413692B2 (ja) 空気調和装置
CN215863764U (zh) 分液器及具有其的空调器
JP7210609B2 (ja) 空気調和機
JP2004116809A (ja) 空気調和機用熱交換器の冷媒分配器
KR101039290B1 (ko) 이중관 열교환기
KR101155811B1 (ko) 판형 열교환기 및 이를 포함하는 공기 조화기
KR101640412B1 (ko) 공기조화기
KR20220080743A (ko) 공기조화기
WO2015025414A1 (ja) 冷凍サイクル装置並びにこの冷凍サイクル装置を用いた空気調和機及び給湯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401000877

Country of ref document: TH