WO2023056821A1 - 自发光显示装置和液晶显示装置 - Google Patents

自发光显示装置和液晶显示装置 Download PDF

Info

Publication number
WO2023056821A1
WO2023056821A1 PCT/CN2022/117535 CN2022117535W WO2023056821A1 WO 2023056821 A1 WO2023056821 A1 WO 2023056821A1 CN 2022117535 W CN2022117535 W CN 2022117535W WO 2023056821 A1 WO2023056821 A1 WO 2023056821A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensor
linear polarizer
same
display device
electrically connected
Prior art date
Application number
PCT/CN2022/117535
Other languages
English (en)
French (fr)
Other versions
WO2023056821A8 (zh
WO2023056821A9 (zh
Inventor
田正
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023056821A1 publication Critical patent/WO2023056821A1/zh
Publication of WO2023056821A9 publication Critical patent/WO2023056821A9/zh
Publication of WO2023056821A8 publication Critical patent/WO2023056821A8/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of display technology, in particular to a self-luminous display device and a liquid crystal display device.
  • the required display brightness of the mobile phone is different. For example, in an outdoor environment with high brightness, the required display brightness of the mobile phone should be high; in an environment where the lights are not turned on at night, the required display brightness of the mobile phone should be low.
  • the display brightness of the mobile phone is too low in an outdoor environment with high brightness, the user may not be able to see the display screen of the mobile phone clearly; if the display brightness of the mobile phone is too high in an environment where the lights are not turned on at night, it may cause visual fatigue , the details of the dark picture displayed by the mobile phone will decline, and the power consumption of the mobile phone will also be increased.
  • the present application provides a self-luminous display device and a liquid crystal display device, which can accurately detect ambient brightness and accurately adjust display brightness based on the ambient brightness.
  • the present application provides a self-luminous display device, a display panel of the self-luminous display device, and a brightness detection structure disposed on the light-emitting side of the display panel.
  • the display device has a display area including sub-pixel areas and non-sub-pixel areas between adjacent sub-pixel areas.
  • the brightness detection structure includes a first linear polarizer, a second linear polarizer, a first photoelectric sensor and a second photoelectric sensor.
  • the first linear polarizer is disposed on the light emitting side of the display panel, and the first linear polarizer may be located between the display panel and the cover plate.
  • the second linear polarizer, the first photosensor and the second photosensor are arranged between the display panel and the first linear polarizer.
  • the polarization direction of the first linear polarizer is perpendicular to the polarization direction of the second linear polarizer.
  • this application arranges the first photoelectric sensor and the second photoelectric sensor on the light emitting side of the display panel, so that the ambient light does not need to pass through the display panel.
  • the panel can project onto the first photoelectric sensor and the second photoelectric sensor, so that the intensity of ambient light received by the first photoelectric sensor and the second photoelectric sensor is closer to the actual intensity of ambient light.
  • the above-mentioned second photosensor and the second linear polarizer can be stacked.
  • the photosensitive area of the first photoelectric sensor is the first photosensitive area
  • the photosensitive area of the second photoelectric sensor is the second photosensitive area.
  • the orthographic projection of the second linear polarizer on the second photosensor completely covers the second photosensitive area, so that the ambient light whose polarization state is the first polarization state passing through the first linear polarizer no longer passes through the second linear polarizer.
  • the first direction may be a vertical direction from the display panel to the first linear polarizer.
  • the second linear polarizer, the first photosensor and the second photosensor are all located in the non-sub-pixel area, and along the first direction, the orthographic projection of the second linear polarizer and the second photosensor on the display panel is consistent with the first photoelectric sensor.
  • the orthographic projection of the sensors on the display panel has no overlap.
  • the first linear polarizer covers at least the second photosensitive area, so that the ambient light can be transmitted to the first photosensor with the first polarization state;
  • the second linear polarizer is blocked and cannot be transmitted to the second photosensor. Therefore, based on the electrical signals converted by the first photosensor and the second photosensor, the ambient light intensity is accurately calculated to determine the display brightness of the self-luminous display device according to the ambient light intensity.
  • the brightness detection structure above further includes a first 1/4 wave plate and a second 1/4 wave plate; along the first direction, the second linear polarizer, the second 1/4 wave plate, the first The 1/4 wave plate and the first linear polarizer are stacked in sequence; along the first direction, the orthographic projection of the first 1/4 wave plate on the display panel completely overlaps the orthographic projection of the first linear polarizer on the display panel; Along the first direction, the orthographic projection of the second 1/4 wave plate on the display panel completely overlaps the orthographic projection of the second linear polarizer on the display panel.
  • the first linear polarizer can be located in the entire display area.
  • the present application can also utilize the existing first 1/4 wave plate and the first linear polarizer to improve user experience and contrast of the display device.
  • the embodiment of the present application arranges the first 1/4 wave plate and the first linear polarizer on the light-emitting side of the display panel, and the first 1/4 wave plate and the first linear polarizer are at least located in the display area, so that the The ambient light with the first polarization state is projected onto the first 1/4 wave plate, the ambient light with the first polarization state passes through the first 1/4 wave plate, and after being reflected by the anode and the cathode, its polarization state changes and is no longer the first polarization state. Therefore, ambient light incident into the display panel cannot be emitted from the display device.
  • the solution of the embodiment of the present application can also reuse the existing first 1/4 wave plate and the first linear polarizer, only need to add the second linear polarizer, the first photosensor, the second photosensor, and The second 1/4 wave plate is enough, so that the thickness of the display device can be reduced, and the thinner design of the display device is facilitated.
  • the first photosensor and the second photosensor are phototransistors, and the first photosensitive region and the second photosensitive region are channel regions of the phototransistor, respectively.
  • Phototransistors can convert light signals into electrical signals, and then calculate the intensity of ambient light based on the electrical signals.
  • the first photosensor and the second photosensor may also be devices capable of converting light signals into electrical signals, such as photodiodes.
  • the above-mentioned first photosensor includes a first gate, a first source and a first drain
  • the second photosensor includes a second gate, a second source and a second drain
  • the light emitting display device further includes first gate lines, first data lines, first conductive leads, second gate lines, second data lines and second conductive leads.
  • the first grid is electrically connected to the first grid line, and the circuit board provides the first grid with a grid voltage through the first grid line.
  • the first source is electrically connected to the first data line, and the circuit board provides source voltage to the first source through the first data line.
  • the first drain is electrically connected to the first conductive lead, and is used for sending the electrical signal converted by the first photoelectric sensor to the amplifying circuit, so as to amplify the electrical signal converted by the first photoelectric sensor to facilitate calculation.
  • the second grid is electrically connected to the second grid line, and the circuit board provides the second grid with a grid voltage through the second grid line.
  • the second source is electrically connected to the second data line, and the circuit board provides source voltage to the second source through the second data line.
  • the second drain is electrically connected to the second conductive lead, and is used for sending the electrical signal converted by the second photoelectric sensor to the amplifying circuit, so as to amplify the electrical signal converted by the second photoelectric sensor to facilitate calculation.
  • the gate voltage of the first gate and the gate voltage of the second gate are the same, and the source voltage of the first source and the second source The source voltages are the same to reduce the difficulty of calculating the ambient light intensity.
  • first photoelectric sensors there are multiple first photoelectric sensors and multiple second photoelectric sensors.
  • Multiple first photosensors are located in the same column, the first grids of the multiple first photosensors located in the same column are electrically connected to the same first grid line, and the first sources of the multiple first photosensors located in the same column It is electrically connected to the same first data line, and the first drains of the plurality of first photosensors in the same column are electrically connected to the same first conductive lead.
  • multiple second photosensors are located in the same row, the second gates of the multiple second photosensors in the same row are electrically connected to the same second grid line, and the second gates of the multiple second photosensors in the same row
  • the second source is electrically connected to the same second data line
  • the second drains of multiple second photosensors located in the same column are electrically connected to the same second conductive lead.
  • the first photosensor is arranged adjacent to the second photosensor; relative to the first drain, the first source is arranged toward the second photosensor; relative to The second drain and the second source are set towards the first photosensor; wherein, the first data line is multiplexed as the second data line.
  • first photosensors are adjacently arranged, and the first sources of two adjacent first photosensors share the same first data line; or, along the row direction, more than one Two second photosensors are adjacently arranged, and the first sources of the two adjacent second photosensors share the same second data line.
  • the first photosensor and the second photosensor are located in the same column, and the first grid of the first photosensor and the second grid of the second photosensor located in the same column are connected to the same first grid. line or the same second gate line, and the first source of the first photosensor and the second source of the second photosensor in the same column are electrically connected to the same first data line or the same second data line .
  • the number of the first gate lines, the first data lines, the second gate lines and the second data lines can be reduced, thereby increasing the aperture ratio of the self-luminous display device.
  • the size of the first photosensitive region is the same as that of the second photosensitive region, so as to simplify the design process of the first photosensor and the second photosensor.
  • the first linear polarizer is located in the non-sub-pixel area.
  • the first linear polarizer may cover the second photosensitive area, or cover the first photosensitive area and the second photosensitive area.
  • the second linear polarizer is located in the sub-pixel area and the non-sub-pixel area
  • the second linear polarizer by arranging the second linear polarizer in the non-sub-pixel area, the light emitted from the sub-pixel area of the display panel without a specific polarization direction can The display light is directly emitted from the display device, instead of first being converted to the second polarization state by the second linear polarizer located in the sub-pixel area, and then emitted from the display device, so that the display light of the first polarization state cannot pass through the second linear polarizer, Furthermore, the display brightness of the display device is affected.
  • a liquid crystal display device in a second aspect, includes a display panel, an upper polarizer, and a brightness detection structure; the display device has a display area, and the display area includes a sub-pixel area and a non-sub-pixel area; along the first direction, the upper
  • the polarizer and the brightness detection structure are sequentially arranged on the light output side of the display panel; the brightness detection structure includes a first linear polarizer, a second linear polarizer arranged between the upper polarizer and the first linear polarizer, a first photoelectric sensor and a second linear polarizer.
  • the polarization direction of the second linear polarizer is orthogonal to the polarization direction of the first linear polarizer, and is the same as the polarization direction of the upper polarizer; along the first direction, the second photosensor and the second linear polarizer are stacked, and the second linear polarizer is stacked.
  • the second line polarizer covers the second photosensitive area of the second photoelectric sensor; the first direction is the vertical direction from the display panel to the first line polarizer; Pixel area: along the first direction, the first linear polarizer is located in the non-sub-pixel area and at least covers the second photosensitive area.
  • the first photosensor and the second photosensor are phototransistors, and the first photosensitive region and the second photosensitive region of the first photosensor are respectively channel regions of the phototransistor.
  • the first photosensor includes a first gate, a first source, and a first drain
  • the second photosensor includes a second gate, a second source, and a second drain
  • self-luminescence The display device also includes a first gate line, a first data line, a first conductive lead, a second gate line, a second data line and a second conductive lead; the first gate is electrically connected to the first gate line, and the first source It is electrically connected to the first data line, the first drain is electrically connected to the first conductive lead; the second gate is electrically connected to the second gate line, the second source is electrically connected to the second data line, and the second drain is electrically connected to the second The two conductive leads are electrically connected.
  • the gate voltage of the first gate and the gate voltage of the second gate are the same, and the source voltage of the first source and the second source The source voltages are the same to reduce the difficulty of calculating the ambient light intensity.
  • first photosensors and second photosensors there are multiple first photosensors and second photosensors; multiple first photosensors are located in the same column, and the first gates of multiple first photosensors located in the same column Electrically connected to the same first gate line, the first sources of multiple first photosensors located in the same column are electrically connected to the same first data line, and the first drains of multiple first photosensors located in the same column Electrically connected to the same first conductive lead; and/or, multiple second photosensors are located in the same column, and the second grids of the multiple second photosensors located in the same column are electrically connected to the same second grid line, located in The second sources of the multiple second photosensors in the same column are electrically connected to the same second data line, and the second drains of the multiple second photosensors in the same column are electrically connected to the same second conductive lead.
  • the first photosensor is arranged adjacent to the second photosensor; relative to the first drain, the first source is arranged toward the second photosensor; relative to The second drain and the second source are set towards the first photosensor; wherein, the first data line is multiplexed as the second data line.
  • the first photosensor and the second photosensor are located in the same column, and the first grid of the first photosensor and the second grid of the second photosensor located in the same column are connected to the same first grid. line or the same second gate line, and the first source of the first photosensor and the second source of the second photosensor in the same column are electrically connected to the same first data line or the same second data line .
  • the size of the first photosensitive area of the first photosensor is the same as that of the second photosensitive area.
  • the first linear polarizer also covers the first photosensitive region of the first photosensor.
  • the second aspect and any implementation manner described in the second aspect correspond to the first aspect and any implementation manner described in the first aspect respectively.
  • the technical effects corresponding to the second aspect and any one of the implementations described in the second aspect refer to the first aspect and the technical effects corresponding to any one of the implementations described in the first aspect, and details are not repeated here.
  • Figure 1a is a plan view of a display device provided by an embodiment of the present application.
  • Figure 1b is an area division diagram of a display device provided by an embodiment of the present application.
  • Fig. 2a is a structural diagram of a self-luminous display device provided by an embodiment of the present application.
  • FIG. 2b is a structural diagram of a display panel of a self-luminous display device provided in an embodiment of the present application.
  • FIG. 3 is a structural diagram of a liquid crystal display device provided in an embodiment of the present application.
  • Fig. 4 is a top view of the display device of the present application corresponding to area A in Fig. 1b;
  • Fig. 5 is a sectional view of B1-B2 direction in Fig. 4;
  • Fig. 6 is another sectional view of B1-B2 in Fig. 4;
  • FIG. 7 is a distribution diagram of the first photoelectric sensor and the second photoelectric sensor in the embodiment of the present application.
  • FIG. 8 is a distribution diagram of the first photoelectric sensor and the second photoelectric sensor in the embodiment of the present application.
  • Fig. 9 is the I-V variation curve of the first photoelectric sensor and the second photoelectric sensor under different light intensities in the embodiment of the present application;
  • Fig. 10 is the I-V variation curve of the first photoelectric sensor and the second photoelectric sensor under different light intensities in the embodiment of the present application;
  • Fig. 11a is another top view of the display device of the present application corresponding to area A in Fig. 1b;
  • Figure 11b is a cross-sectional view of C1-C2 in Figure 11a;
  • Fig. 12a is another top view of the display device of the present application corresponding to area A in Fig. 1b;
  • Figure 12b is a cross-sectional view of D1-D2 in Figure 12a;
  • Fig. 13 is another top view of the display device of the present application corresponding to area A in Fig. 1b;
  • Fig. 14 is a sectional view of E1-E2 in Fig. 13;
  • Figure 15a is a cross-sectional view of C1-C2 in Figure 11a;
  • Fig. 15b is a cross-sectional view along the direction D1-D2 in Fig. 12a.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • An embodiment of the present application provides a display device, which may be a mobile phone, computer, tablet computer, personal digital assistant (personal digital assistant, PDA), vehicle-mounted computer, television, smart watch, and other electronic devices with a display function.
  • a display device which may be a mobile phone, computer, tablet computer, personal digital assistant (personal digital assistant, PDA), vehicle-mounted computer, television, smart watch, and other electronic devices with a display function.
  • PDA personal digital assistant
  • vehicle-mounted computer television, smart watch, and other electronic devices with a display function.
  • the embodiment of the present application does not specifically limit the specific form of the above-mentioned display device.
  • the above-mentioned display device may be a self-luminous display device or a liquid crystal display device.
  • the self-luminous display device may include an organic light emitting diode (organic light emitting diode, OLED) display device, or a quantum dot (quantum dot light emitting diodes, QLED) display device, or a micro light emitting diode (micro light emitting diode display, Micro-LED) display device, etc.
  • OLED display device and the quantum dot display device may realize display through top emission or bottom emission, which is not particularly limited in the embodiment of the present application. For the convenience of description, unless otherwise stated, the OLED display device and the QLED display device realize display through top emission for description.
  • the display device has a display area 101, and the display area 101 includes a plurality of sub-pixel regions 1011 and non-sub-pixel regions between the plurality of sub-pixel regions 1011, and the light emitted from the plurality of sub-pixel regions 1011 interacts with each other for the three primary colors.
  • the plurality of sub-pixel regions 1011 can be red sub-pixel regions, green sub-pixel regions, and blue sub-pixel regions; or, the plurality of sub-pixel regions 1011 can be cyan sub-pixel regions, yellow sub-pixel regions, and magenta sub-pixel regions. sub-pixel area.
  • FIG. 1 the display area 101
  • the display area 101 includes a plurality of sub-pixel regions 1011 and non-sub-pixel regions between the plurality of sub-pixel regions 1011, and the light emitted from the plurality of sub-pixel regions 1011 interacts with each other for the three primary colors.
  • the plurality of sub-pixel regions 1011 can be red sub-pixel regions, green sub-pixel regions, and blue sub-pixel regions
  • the display device further has a non-display area 102 located on the periphery of the display area 101 , and the non-display area 102 is located on at least one side of the display area 101 .
  • the non-display area 102 is only located on one side of the display area 101, and structures such as wiring and circuits can be set in the non-display area 102, for example, a gate driver on array can be set in the non-display area 102. , referred to as GOA) circuit, using the GOA circuit instead of the gate chip.
  • the OLED display device may include a frame 1 , a cover plate 2 , a display panel 3 , a circuit board 4 and other electronic accessories including a camera.
  • the display panel 3, the circuit board 4 and other electronic accessories are arranged in the accommodation cavity formed by the frame 1 and the cover plate 2, the cover plate 2 is arranged on the light emitting side of the display panel 3, and the circuit board 4 is arranged on the side of the display panel 3 away from the cover plate 2. side.
  • the display panel 3 may include an array substrate 31 and an encapsulation layer 32.
  • the array substrate 31 includes a substrate 311 and a plurality of OLED devices 312 disposed on the substrate 311.
  • the plurality of OLED devices 312 are separately arranged in a plurality of sub-pixels. Area 1011.
  • the OLED device 312 includes a first electrode 3121 , a light-emitting functional layer 3122 and a second electrode 3123 which are sequentially stacked on the substrate 311 .
  • the first electrode 3121 is an anode
  • the second electrode 3123 is a cathode; or, the first electrode 3121 is a cathode, and the second electrode 3123 is an anode.
  • the encapsulation layer 32 is used to encapsulate the OLED device 312 to prevent water vapor and oxygen from entering the light-emitting functional layer 3122 and affect the service life of the light-emitting functional layer 3122 .
  • the OLED display device is a flexible display device, for example, the OLED display device is a curved mobile phone, a folding mobile phone, etc., along the vertical direction from the first electrode 3121 to the second electrode 3123
  • the encapsulation layer 32 may include first inorganic encapsulation layers stacked in sequence 321 , an organic encapsulation layer 322 and a second inorganic encapsulation layer 323 .
  • the materials of the first inorganic encapsulation layer 321 and the second inorganic encapsulation layer 323 include inorganic insulating materials, and the inorganic insulating materials can be used to block water vapor and oxygen.
  • the material of the organic encapsulation layer 322 includes an organic insulating material.
  • the liquid crystal display device includes a frame 1, a cover plate 2, a display panel 3, a lower polarizer 301, an upper polarizer 302, and a backlight module 5 , circuit board 4, and other electronic accessories including cameras and the like.
  • the display panel 3 , the backlight module 5 , the circuit board 4 and other electronic accessories are arranged in the cavity formed by the frame 1 and the cover 2 .
  • the backlight module 5 is arranged on the light-incident side of the display panel 3 to provide display light for the display panel 3 .
  • the backlight module 5 can be a direct-type backlight module or an edge-type backlight module.
  • the lower polarizer 301 is disposed between the backlight module 5 and the display panel 3 .
  • the cover plate 2 is disposed on the light emitting side of the display panel 3
  • the upper polarizer 302 is disposed between the display panel 3 and the cover plate 2 .
  • the circuit board 4 is disposed on a side of the backlight module 5 away from the cover 2 .
  • the display panel 3 includes an array substrate 33 , a cell-matching substrate 34 , and a liquid crystal layer 35 between the array substrate 33 and the cell-matching substrate 34 .
  • a plurality of pixel electrodes are disposed on the array substrate 33 , and the plurality of pixel electrodes are divided into a plurality of sub-pixel regions 1011 .
  • the display panel 3 also includes a common electrode, a black matrix, and a color filter layer, and the common electrode, black matrix, and color filter layer can be disposed on the array substrate or on the cell substrate.
  • the display principle of the liquid crystal display device is: after the white light in the backlight module 5 passes through the lower polarizer 301 , it enters the display panel 3 in the first linear polarization state. Voltages are respectively applied to a plurality of pixel electrodes and common electrodes in the display panel 3 so that an electric field is formed between the pixel electrodes and the common electrodes, and the intensity of the electric field can be adjusted by adjusting the voltage input to each pixel electrode.
  • the liquid crystal in the liquid crystal layer 35 deflects, and the linear polarization state of the light incident on the display panel 3 changes from the first linear polarization state to the second linear polarization state, and the light converted into the second linear polarization state can pass through the upper Polarizer 302, and used for display.
  • the voltage on the pixel electrode is different
  • the electric field strength between the pixel electrode and the common electrode is different
  • the deflection angle of the liquid crystal is different
  • the intensity of light converted from the first linear polarization state to the second linear polarization state is different.
  • the display brightness of the sub-pixel region 1011 is different.
  • the polarization direction of the upper polarizer 302 and the polarization direction of the lower polarizer 301 may be orthogonal, the lower polarizer 301 allows the light whose polarization state is the first polarization state to pass through, and the upper polarizer 302 allows the light whose polarization state is the second polarization state to pass through. light through.
  • the light in the first polarization state is s light, and the light in the second polarization state is p light; or, the light in the first polarization state is p light, and the light in the second polarization state is s light.
  • the related art proposes that the sensor for detecting ambient light brightness is usually arranged on the side of the display panel 3 facing away from the cover plate 2, and the display brightness of the display device is automatically adjusted according to the ambient light intensity detected by the sensor to eliminate adverse effects.
  • the display panel 3 will block part of the ambient light, and part of the display light emitted from the display panel 3 will also be reflected or scattered back to the sensor, thus causing the sensor to receive
  • the ambient light intensity does not match the actual ambient light intensity, and the brightness displayed by the display device based on the ambient light intensity received by the sensor is still too high or too low.
  • an embodiment of the present application provides a display device, which includes a brightness detection structure, and can accurately detect ambient brightness by using the brightness.
  • the ambient light and display light detected by the brightness detection structure of the present application may be visible light or infrared light, which is not limited in this embodiment of the present application.
  • the display device may be the above-mentioned self-luminous display device, or may be the above-mentioned liquid crystal display device. The specific structure of the brightness detection structure will be described in detail below in conjunction with the self-luminous display device and the liquid crystal display device respectively.
  • the brightness detection structure includes a first linear polarizer 61, a second linear polarizer 62, a first photosensor 63 and a second Photoelectric sensor 64.
  • the first linear polarizer 61 is disposed on the light emitting side of the display panel 3 , and the first linear polarizer 61 may be located between the display panel 3 and the cover plate 2 .
  • the second linear polarizer 62 , the first photosensor 63 and the second photosensor 64 are disposed between the display panel 3 and the first linear polarizer 61 .
  • the embodiment of the present application arranges the first photoelectric sensor 63 and the second photoelectric sensor 64 on the light output of the display panel 3. side, the ambient light can be projected to the first photosensor 63 and the second photosensor 64 without passing through the display panel 3, so that the intensity of the ambient light received by the first photosensor 63 and the second photosensor 64 is closer to the actual ambient light. strength.
  • the polarization direction of the first linear polarizer 61 is perpendicular to the polarization direction of the second linear polarizer 62 .
  • the first linear polarizer 61 allows light with a first polarization state to pass through, and the second linear polarizer 62 allows light with a second polarization state to pass through.
  • the above-mentioned second photosensor 64 and the second linear polarizer 62 are stacked.
  • the areas of the first photosensor 63 and the second photosensor 64 that actually receive light signals are photosensitive areas, and the photosensitive areas can receive light signals.
  • the photosensitive area of the first photosensor 63 is the first photosensitive area
  • the photosensitive area of the second photosensor 64 is the second photosensitive area.
  • the orthographic projection of the second linear polarizer 62 on the second photosensor 64 completely covers the second photosensitive area, so that the ambient light passing through the first linear polarizer 61 whose polarization state is the first polarization state no longer through the second linear polarizer 62 .
  • the size of the second linear polarizer 62 may be larger than that of the second photosensitive area.
  • the shape of the orthographic projection of the second linear polarizer 62 and the second photosensitive area in the first direction is rectangular, and the size of the orthographic projection of the second linear polarizer 62 in the first direction is larger than that of the second photosensitive area in the first direction.
  • the size of the orthographic projection in the direction is 2 ⁇ m larger.
  • the first direction may be a vertical direction from the display panel 3 to the first linear polarizer 61 .
  • orthographic projection of the second linear polarizer 62 on the second photoelectric sensor 64 refers to the projection of the second linear polarizer 62 vertically projected onto the second photoelectric sensor 64 along the first direction.
  • orthographic projection is the same as here, and will not be described in detail below.
  • the first photoelectric sensor 63 and the second photoelectric sensor 64 can convert the light signal into an electrical signal, and send the electrical signal to the amplification circuit for amplification, so as to calculate the ambient light intensity. Further, the amplifying circuit sends the amplified electrical signal to the control chip, and the control chip determines the display brightness of the display device according to the received amplified electrical signal, and controls the display panel 3 to display.
  • the first photoelectric sensor 63 and the second photoelectric sensor 64 may also directly send electrical signals to the control chip, which is not limited in this embodiment of the present application.
  • the amplifying circuit and the control chip can be independently arranged on the circuit board 4; the amplifying circuit can also be integrated in the control chip, and be arranged on the circuit board 4 together with the control chip.
  • the amplifying circuit may amplify the electrical signal sent by the first photoelectric sensor and the electrical signal sent by the second photoelectric sensor by the same multiple, so as to facilitate calculation.
  • the first photosensor 63 and the second photosensor 64 may be photodiodes or phototransistors.
  • the first photosensor 63 may include a first gate 631, a first gate insulating layer 632, a first active layer 633 , the first source 634 and the first drain 635;
  • the second photosensor 64 may include a second gate 641, a second gate insulating layer 642, a second active layer 643, a second source 644 and a second drain 645.
  • the first gate insulating layer 632 and the second gate insulating layer 642 can be two independent patterns; or, as shown in FIG. 6 , the first gate insulating layer 632 can also be used as the second gate insulating layer 642 .
  • the channel region of the first photosensor 63 is the first photosensitive region. It can also be said that along the first direction, the first active layer 633 overlaps with the first gate 631 and is located between the first source 634 and the first The area where the overlapping area between the drain electrodes 635 is located is the first photosensitive area.
  • the channel region of the second photosensor 64 is the second photosensitive region. It can also be said that along the first direction, the second active layer 643 overlaps with the second gate 641 and is located between the second source 644 and the second The area where the overlapping area between the drain electrodes 645 is located is the second photosensitive area.
  • the material of the first active layer 633 and the second active layer 643 may include polysilicon or oxide semiconductor. If the light signals received by the first photosensor 63 and the second photosensor 64 are infrared light, the materials of the first active layer 633 and the second active layer 643 may include organic compounds and the like.
  • the first gate 631 may be electrically connected to the first gate line 81 , and the circuit board 4 provides the gate voltage Vg1 to the first gate 631 through the first gate line 81 .
  • the first source 634 may be electrically connected to the first data line 82 , and the circuit board 4 provides the first source 634 with a source voltage Vs1 through the first data line 82 .
  • the first drain 635 is electrically connected to the amplifying circuit 84 through the first conductive lead 83 , and is used for sending the electrical signal converted by the first photosensor 63 to the amplifying circuit 84 .
  • the second gate 641 can be electrically connected to the second gate line 85 , and the circuit board 4 provides the gate voltage Vg2 to the second gate 641 through the second gate line 85 .
  • the second source 644 may be electrically connected to the second data line 86 , and the circuit board 4 provides the second source 644 with a source voltage Vs2 through the second data line 86 .
  • the second drain 645 is electrically connected to the amplifying circuit 84 through the second conductive lead 87 , and is used for sending the electrical signal converted by the second photosensor 64 to the amplifying circuit 84 .
  • the circuit board 4 provides the gate voltage Vg1 to the first gate 631 through the first gate line 81 , and the gate voltage Vg2 provided by the circuit board 4 to the second gate 641 through the second gate line 85 may or may not be the same.
  • the source voltage Vs1 provided by the circuit board 4 to the first source 634 through the first data line 82 may be the same as or different from the source voltage Vs2 provided by the circuit board 4 to the second source 644 through the second data line 86 .
  • the gate voltage Vg1 It may be equal to the gate voltage Vg2, and both are collectively denoted as Vg; the source voltage Vs1 may be equal to the source voltage Vs2, and both are denoted as Vs.
  • the first grid 631 and/or the second grid 641 of the phototransistors in the same column can be electrically connected to the same grid line (the first grid line or the second grid line) , so as to reduce the total number of the first gate lines 81 and the second gate lines 85 and increase the aperture ratio of the display device.
  • the first source 634 and/or the second source 644 of the phototransistors in the same column can be electrically connected to the same data line (first data line or second data line), so as to reduce the number of first data lines 82 and second data lines.
  • the total number of data lines 86 increases the aperture ratio of the display device.
  • the plurality of first grids 631 are electrically connected to the same first gate line 81, and the plurality of first source electrodes 634 are connected to the same first data line 81.
  • the plurality of first drain electrodes 635 may also be electrically connected to the same first conductive lead 83, thereby further increasing the aperture ratio of the display device.
  • multiple second photosensors 64 are located in the same row, multiple second gates 641 are electrically connected to the same second gate line 85, and multiple second source electrodes 644 are electrically connected to the same second data line 86.
  • the plurality of second drain electrodes 645 can also be electrically connected to the same second conductive lead 87, so as to further increase the aperture ratio of the display device.
  • the first source electrode 634 and/or the second source electrode 644 of each adjacent two columns can also be connected to the same data line (first source electrode 644).
  • Data lines or second data lines) are electrically connected to further reduce the total number of the first data lines 82 and the second data lines 86 and increase the aperture ratio of the display device.
  • a plurality of first photosensors 63 and a plurality of second photosensors 64 are adjacently arranged along the row direction, then along the row direction, the first source 634 is away from the first drain 635 and faces the first drain 635.
  • the second photosensor 64 is disposed, and the second source 644 is disposed away from the second drain 645 and facing the first photosensor 63 , so that the adjacent first source 634 and the second source 644 share the same data line.
  • the first photosensor 63 and the second photosensor are P-type phototransistors as an example, under the condition that the gate voltage Vg and the source voltage Vs are constant, the light intensity received by the P-type phototransistor The larger the value is, the larger the threshold voltage Vth is (the Vth of the P-type phototransistor is negative, and the smaller the absolute value), according to the current formula The larger the current Ids flowing through the source and drain is obtained.
  • the gate voltage Vg and the source voltage Vs remain unchanged, the greater the intensity of the light received by the P-type phototransistor, the greater the intensity of the electrical signal converted from the optical signal, and then it can be based on the phototransistor
  • the electrical signal sent to the amplifying circuit and the control chip controls the display brightness of the display device.
  • the constant ⁇ , the capacitance C of the first grid 631 and the capacitance C of the second grid 641 , the width W of the channel region of the phototransistor, and the length L of the channel region of the phototransistor are all constant values.
  • the width W of the phototransistor channel may be 3 ⁇ m
  • the length L of the phototransistor channel may be 3 ⁇ 5 ⁇ m.
  • the first photosensor 63 and the second photosensor are N-type phototransistors as an example, under the condition that the grid voltage Vg and the source voltage Vs are constant, the light intensity received by the N-type phototransistor The larger the value, the smaller the threshold voltage Vth (the Vth of the N-type phototransistor is positive), according to the current formula The larger the current Ids flowing through the source and drain is obtained. It can also be said that when the gate voltage Vg and the source voltage Vs remain unchanged, the greater the intensity of light received by the N-type phototransistor, the greater the intensity of the electrical signal converted from the optical signal, and then the phototransistor can The electrical signal sent to the amplifying circuit and the control chip controls the display brightness of the display device.
  • the display area 101 of the display device includes a plurality of sub-pixel regions 1011 and non-sub-pixel regions located between the plurality of sub-pixel regions 1011 .
  • the display area 101 is an area where display light can be emitted in a plane perpendicular to the first direction in the display device. It should be noted here that although the non-sub-pixel area cannot emit light, the large-angle light emitted by the sub-pixel area 1011 can still exit from the non-sub-pixel area. Therefore, the display area 101 includes the sub-pixel area 1011 and the non-sub-pixel area.
  • the stacked second linear polarizer 62 and the second photosensor 64 are staggered with the first photosensor 61 and placed in the non-sub-pixel area. It can also be said that the second linear polarizer 62 , the first photosensor 63 and the second photosensor 64 are all located in the non-sub-pixel area, and along the first direction, the second linear polarizer 62 and the second photosensor 64 are on the display panel 3
  • the orthographic projection of does not overlap with the orthographic projection of the first photosensor 61 on the display panel 3 .
  • the first photosensor 63 and the second photosensor 64 in the non-sub-pixel area, it is possible to prevent the first photosensor 63 and the second photosensor 64 from blocking the display light emitted from the sub-pixel area 1011 and affecting the display.
  • the display effect of the device by arranging the first photosensor 63 and the second photosensor 64 in the non-sub-pixel area, it is possible to prevent the first photosensor 63 and the second photosensor 64 from blocking the display light emitted from the sub-pixel area 1011 and affecting the display. The display effect of the device.
  • the first linear polarizer 61 covers at least the second photosensitive area. It can also be said that the orthographic projection of the first linear polarizer 61 on the display panel 3 completely covers the orthographic projection of the second photosensitive region on the display panel 3 .
  • the orthographic projection of the first linear polarizer 61 on the display panel 3 just overlaps with the orthographic projection of the second photosensitive region on the display panel 3 .
  • the orthographic projection of the first linear polarizer 61 on the display panel 3 completely covers the orthographic projection of the second photosensitive region on the display panel, and the first line
  • the size of the polarizer 61 is larger than the size of the second photosensitive area.
  • the size of the first linear polarizer 61 is at least 1 ⁇ m larger than that of the second photosensitive region, so as to ensure that ambient light will not be projected on the second photosensitive region. As shown in FIGS.
  • the first linear polarizer 61 may only be located in the non-sub-pixel area; or, as shown in FIG. 4 , the first linear polarizer 61 may also be located in the non-sub-pixel area and the sub-pixel area 1011 .
  • the first linear polarizer 61 when the first linear polarizer 61 is located in a non-sub-pixel area, as shown in FIG. 11b, along the first direction, the first linear polarizer 61 can cover the second photosensitive area; or, as shown in FIG. 12b, Along the first direction, the first linear polarizer 61 may also cover the first photosensitive area and the second photosensitive area, which is not limited in this embodiment of the present application.
  • the embodiment of the present application arranges the second linear polarizer 62 in the non-sub-pixel area.
  • the sub-pixel area can make the display light with no specific polarization direction emitted from the sub-pixel area 1011 of the display panel 3 directly exit the display device, instead of first being converted to the second linear polarizer 62 located in the sub-pixel area 1011.
  • the polarization state is emitted from the display device, so that the display light of the first polarization state cannot pass through the second linear polarizer 62, thereby affecting the display brightness of the display device.
  • the embodiment of the present application uses the second linear polarizer 62 is arranged in the non-sub-pixel area, so that the display light without a specific polarization direction emitted from the sub-pixel area 1011 of the display panel 3 can be converted to the first polarization state through the first linear polarizer 61, and then emitted from the display device.
  • the display light cannot be emitted from the display device without first being converted to the second polarization state by the second linear polarizer 62 located in the sub-pixel area 1011 and then projected onto the first linear polarizer 61 orthogonal to the second linear polarizer 62 .
  • the display device may further include an adhesive layer 71 disposed between the first linear polarizer 61 , the first photosensor 63 and the second linear polarizer 62 , so that the first linear polarizer 61 is fixed on the first linear polarizer 61 by the adhesive layer 71 On the first photosensor 63 and the second linear polarizer 62 .
  • the embodiment of the present application does not limit the material and thickness of the adhesive layer 71, as long as the adhesive layer can transmit light and bond the first linear polarizer 61 to the first photosensor 63 and the second linear polarizer 62 That's it.
  • the material of the bonding layer 71 may be pressure sensitive adhesive (pressure sensitive adhesive, PSA) or optically clear adhesive (optical clear adhesive, OCA).
  • PSA pressure sensitive adhesive
  • OCA optical clear adhesive
  • the thickness of the portion of the adhesive layer 71 overlapping with the first photosensor 63 may range from 15 to 30 ⁇ m
  • the thickness of the portion of the adhesive layer 71 overlapping with the second photosensor 64 may range from 3 to 15 ⁇ m.
  • the thickness of the portion of the adhesive layer 71 that overlaps with the area between the first photosensor 63 and the second photosensor 64 may range from 30 to 35 ⁇ m.
  • the first linear polarizer 61 covers the first photosensitive area and the second photosensitive area, based on the installation position and positional relationship of each structure in the brightness detection structure of the embodiment of the present application, the first photoelectric The light signals received by the sensor 63 and the second photoelectric sensor 64 determine the intensity of ambient light in the form of electric current.
  • the specific calculation process is as follows:
  • the first photoelectric sensor 63 in the ambient light without a specific polarization direction, the part whose polarization state is the second polarization state is absorbed by the first linear polarizer 61, and cannot pass through the first linear polarizer 61 and projected to the first photoelectric sensor 63.
  • the first light-sensing area the portion of the ambient light with no specific polarization direction whose polarization state is the first polarization state passes through the first linear polarizer 61 and is projected to the first light-sensing area of the first photosensor 63 .
  • the ambient light intensity projected onto the first photosensitive area of the first photoelectric sensor 63 is half of the actual ambient light intensity, denoted as 0.5a, where a represents the current value converted from ambient light into an electrical signal.
  • a represents the current value converted from ambient light into an electrical signal.
  • Part of the display light with no specific polarization direction emitted from the display panel 3 can be reflected and scattered to the first photosensitive area of the first photosensor 63 , and the current value of this part of display light converted into an electrical signal is denoted as b.
  • the current value X for converting the light projected onto the first photosensitive area into an electrical signal is 0.5a+b.
  • part of the display light with no specific polarization direction emitted from the display panel 3 can be reflected and scattered to the second linear polarizer 62 above the first photosensor 63, and the polarization state of this part of the display light is the first
  • the part of the polarization state is absorbed by the second linear polarizer 62, cannot pass through the second linear polarizer 62 and is projected to the second photosensitive area of the second photosensor 64;
  • the polarizer 62 is projected onto the second photosensitive area of the second photosensor 64 . That is, the display light intensity projected onto the second photosensitive area of the second photosensor 64 is half of the scattered and reflected display light intensity, which is denoted as 0.5b.
  • the positive projection of the first linear polarizer 61 on the display panel 3 completely covers the positive projections of the first photosensitive region and the second photosensitive region on the display panel, and the first linear polarizer 61 and the second linear polarizer 62 are positive Therefore, the ambient light passing through the first linear polarizer 61 cannot pass through the second linear polarizer 62 , and the intensity of ambient light received by the first photosensitive area of the second photosensor 64 is zero.
  • the current value Y for converting the light projected onto the second photosensitive region into an electrical signal is 0.5b.
  • the current value a corresponding to the light is 2X-4Y, which offsets the influence of the display light on the current value a corresponding to the ambient light. That is, the control chip can calculate the actual ambient light intensity according to the total intensity of light received by the first photosensitive area and the total intensity of light received by the second photosensitive area, and then control the display brightness of the display device.
  • the display device of the present application is based on the ambient light intensity The displayed brightness is more accurate, and the phenomenon that the displayed brightness of the display device is too high or too low is avoided.
  • the calculation process for determining the intensity of ambient light in the form of current is: the environment without a specific polarization direction Both light and display light without a specific polarization direction can be projected to the first photosensitive area, and the current value X for converting the light projected to the first photosensitive area into an electrical signal is a+b.
  • the ambient light with the first polarization state cannot be projected to the second photosensitive area, and the display light with the second polarization state is projected to the second photosensitive area, and projected to the second photosensitive area.
  • the current value Y for converting light into an electrical signal is 0.5b.
  • the corresponding current value a is X-2Y, which offsets the influence of the display light on the current value a corresponding to the ambient light.
  • the size of the first photosensitive area and the second photosensitive area may be the same or different.
  • the first photosensitive area and the second photosensitive area may have the same size to simplify the design process of the first photosensor 63 and the second photosensor 64 .
  • the first photosensor 63 and the second photosensor 64 are phototransistors or photodiodes with the same parameters.
  • the source voltage Vs input to all phototransistors is the same, and the gate voltage Vg input to all phototransistors is the same to reduce the ambient light intensity Calculation difficulty.
  • one or more first photosensors 63 can form a photosensor group with the same number of second photosensors 64.
  • X can be one or more first photosensors in a photosensor group.
  • the sum of the current values corresponding to the electrical signals converted by 63, Y may be the sum of the current values corresponding to the electrical signals converted by the same number of second photoelectric sensors 64 in the photosensor group, so as to improve the accuracy of the calculated ambient light intensity.
  • the embodiment of the present application does not limit the number of the first photosensor 63 and the number of the second photosensor 64 , as long as the number of the first photosensor 63 and the number of the second photosensor 64 are the same.
  • the total number of the first photosensor 63 and the second photosensor 64 can be 1/4 to 1/3 of the number of sub-pixels in the short side direction of the display panel 3 .
  • the number of first photoelectric sensors 63 is 135, and the number of second photoelectric sensors 64 is 135.
  • a first photosensor 63 and a second photosensor 64 in a photosensor group can also be located between adjacent sub-pixels (or adjacent sub-pixel regions); One or more sub-pixels (or one or more sub-pixel regions) may be separated between one first photosensor 63 and one second photosensor 64 , which is not limited in this embodiment of the present application.
  • factors such as different illumination angles of ambient light, or different placement positions of display devices may cause the intensity of ambient light received by the first photosensor 63 in one photosensor group to be different from that received by the second photosensor 64.
  • the ambient light intensity varies greatly. Therefore, the first photosensor 63 and the second photosensor 64 in one photosensor group can be arranged at relatively close positions. For example, as shown in FIG.
  • the luminance detection structure of the embodiment of the present application includes the above-mentioned first linear polarizer 61 and second linear polarizer 62 , In addition to the first photosensor 63 and the second photosensor 64, it also includes a first 1/4 wave plate 65 and a second 1/4 wave plate 66. Moreover, the above-mentioned first linear polarizer 61 is at least located in the entire display area 101; along the first direction, the second linear polarizer 62, the second 1/4 wave plate 66, the first 1/4 wave plate 65 and the first linear polarizer 61 are sequentially stacked.
  • the orthographic projection of the first 1/4 wave plate 65 on the display panel 3 completely overlaps the orthographic projection of the first linear polarizer 61 on the display panel 3, and the second 1/4 wave plate 66 in The orthographic projection on the display panel 3 completely overlaps the orthographic projection of the second linear polarizer 62 on the display panel 3 .
  • the ambient light can also be determined in the form of current according to the light signals received by the first photoelectric sensor 63 and the second photoelectric sensor 64. strength.
  • the specific calculation process is as follows:
  • the first photoelectric sensor 63 in the ambient light without a specific polarization direction, the part whose polarization state is the second polarization state is absorbed by the first linear polarizer 61, and cannot pass through the first linear polarizer 61 and projected to the first photoelectric sensor 63.
  • the first photosensitive area the portion of the ambient light with no specific polarization direction whose polarization state is the first polarization state passes through the first linear polarizer 61 and the first 1/4 wave plate 65, and is projected to the first photoelectric sensor in the form of circularly polarized light 63 for the first photosensitive area. That is, the ambient light intensity projected onto the first photosensitive area of the first photosensor 63 is half of the actual ambient light intensity, which is recorded as 0.5a.
  • Part of the display light with no specific polarization direction emitted from the display panel 3 can be reflected and scattered to the first photosensitive area of the first photosensor 63 , and the current value of this part of display light converted into an electrical signal is denoted as b.
  • the current value X for converting the light projected onto the first photosensitive area into an electrical signal is 0.5a+b.
  • part of the display light with no specific polarization direction emitted from the display panel 3 can be reflected and scattered to the second linear polarizer 62 above the first photosensor 63, and the polarization state of this part of the display light is the first
  • the part of the polarization state is absorbed by the second linear polarizer 62, cannot pass through the second linear polarizer 62 and is projected to the second photosensitive area of the second photosensor 64; this part shows that the part of the polarization state in the light that is the second polarization state passes through the second 1/4 wave plate 66 and the second linear polarizer 62 , and project to the second photosensitive area of the second photosensor 64 .
  • the display light intensity projected onto the second photosensitive area of the second photosensor 64 is half of the scattered and reflected display light intensity, which is denoted as 0.5b.
  • the polarization state changes from the first polarization state to circularly polarized light.
  • the circularly polarized light passes through the second 1/4 wave plate 66, its polarization state is converted to the first polarization state again.
  • the current value Y for converting the light projected onto the second photosensitive region into an electrical signal is 0.5b.
  • the current value a corresponding to the light is 2X-4Y, which offsets the influence of the display light on the current value a corresponding to the ambient light. That is, the control chip can calculate the actual ambient light intensity according to the total intensity of light received by the first photosensitive area and the total intensity of light received by the second photosensitive area, and then control the display brightness of the display device.
  • the display device of the present application is based on the ambient light intensity The displayed brightness is more accurate, and the phenomenon that the displayed brightness of the display device is too high or too low is avoided.
  • the embodiment of the present application can also use the existing first 1/4 wave plate 65 and the first linear polarizer 61 to improve user experience and contrast of the display device.
  • the first 1/4 wave plate 65 and the first linear polarizer 61 are arranged on the light output side of the display panel 3, and the first 1/4 wave plate 65 and the first linear polarizer 61 are at least located
  • the display area 101 can make the ambient light with the first polarization state be projected onto the first 1/4 wave plate 65, and the ambient light with the first polarization state pass through the first 1/4 wave plate 65 and pass through the anode After reflection from the cathode, its polarization state changes and is no longer the first polarization state.
  • the ambient light incident into the display panel 3 cannot be emitted from the display device.
  • the solution of the embodiment of the present application can also reuse the existing first 1/4 wave plate 65 and the first linear polarizer 61, only need to add the second linear polarizer 62, the first photosensor 63, the second The photoelectric sensor 64 and the second 1/4 wave plate 66 are sufficient, so that the thickness of the display device can be reduced, and the thinner design of the display device is facilitated.
  • the brightness detection structure of the embodiment of the present application includes the first linear polarizer 61, the second linear polarizer Except for the plate 62, the first photosensor 63 and the second photosensor 64, the first 1/4 wave plate 65 and the second 1/4 wave plate 66 are not included. Moreover, the brightness detection structure is disposed between the upper polarizer 302 and the cover plate 2 , and the first linear polarizer 61 is only located in the non-sub-pixel area.
  • the first linear polarizer 61 covers the first photosensitive area and the second photosensitive area, based on the installation position and positional relationship of each structure in the brightness detection structure of the embodiment of the present application, it can also be based on the first
  • the light signals received by the photoelectric sensor 63 and the second photoelectric sensor 64 determine the intensity of ambient light in the form of electric current. The specific calculation process is as follows:
  • the first photoelectric sensor 63 in the ambient light without a specific polarization direction, the part whose polarization state is the second polarization state is absorbed by the first linear polarizer 61, and cannot pass through the first linear polarizer 61 and projected to the first photoelectric sensor 63.
  • the first light-sensing area the portion of the ambient light with no specific polarization direction whose polarization state is the first polarization state passes through the first linear polarizer 61 and is projected to the first light-sensing area of the first photosensor 63 . That is, the ambient light intensity projected onto the first photosensitive area of the first photosensor 63 is half of the actual ambient light intensity, which is recorded as 0.5a.
  • the polarization state of the display light emitted from the upper polarizer 302 is the second polarization state, part of the display light in the second polarization state can be reflected and scattered to the first photosensitive area of the first photosensor 63, and this part of the display light is converted into an electrical signal
  • the current value is recorded as c. To sum up, the current value X at which the light projected to the first photosensitive area is converted into an electrical signal is 0.5a+c.
  • the polarization state of the upper polarizer 302 is the same as the polarization direction of the second linear polarizer 62
  • the polarization state of the display light emitted from the upper polarizer 302 is the second polarization state
  • the part of the second polarization state displays
  • the light can be reflected and scattered to the second linear polarizer 62 located above the first photoelectric sensor 63 , and projected to the first photosensitive area of the second photoelectric sensor 64 through the second linear polarizer 62 . That is, the current value for converting the display light projected onto the second photosensitive area of the second photosensor 64 into an electrical signal is denoted as c.
  • the positive projection of the first linear polarizer 61 on the display panel 3 completely covers the positive projections of the first photosensitive region and the second photosensitive region on the display panel, and the first linear polarizer 61 and the second linear polarizer 62 are positive Therefore, the ambient light passing through the first linear polarizer 61 cannot pass through the second linear polarizer 62 , and the intensity of ambient light received by the first photosensitive area of the second photosensor 64 is zero.
  • the current value Y for converting the light projected onto the second photosensitive region into an electrical signal is c.
  • the corresponding current value a is 2X-2Y, which offsets the influence of the display light on the current value a corresponding to the ambient light. That is, the control chip can calculate the actual ambient light intensity according to the total intensity of light received by the first photosensitive area and the total intensity of light received by the second photosensitive area, and then control the display brightness of the display device.
  • the display device of the present application is based on the ambient light intensity The displayed brightness is more accurate, and the phenomenon that the displayed brightness of the display device is too high or too low is avoided.
  • the calculation process for determining the intensity of ambient light in the form of current is: the environment without a specific polarization direction Both the light and the display light whose polarization state is the second polarization state can be projected to the first photosensitive area, and the current value X for converting the light projected to the first photosensitive area into an electrical signal is a+c.
  • the ambient light with the first polarization state cannot be projected to the second photosensitive area, and the display light with the second polarization state is projected to the second photosensitive area, and projected to the second photosensitive area.
  • the current value a is X-Y, which offsets the influence of the display light on the current value a corresponding to the ambient light.
  • the polarization state of the display light emitted from the upper polarizer 302 is the second polarization state, and the first linear polarizer 61 that allows the light of the first polarization state to pass through is only located in the non-sub-pixel area, therefore, from the upper polarizer 302
  • the display light emitted from 302 can be emitted from the display device for display.
  • the above three embodiments take the self-luminous display device and the liquid crystal display device as examples to introduce how to use the brightness detection structure to accurately detect the intensity of ambient light in the present application.
  • the display device may also be other, which is not limited in this embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请提供一种自发光显示装置和液晶显示装置,涉及显示技术领域,可以准确检测环境亮度,基于环境光亮度准确调节显示亮度。该自发光显示装置包括显示面板、位于显示面板出光侧的亮度检测结构。亮度检测结构包括第一线偏光片、设置于显示面板与第一线偏光片之间的第二线偏光片、第一光电传感器和第二光电传感器;第一线偏光片与第一线偏光片的偏振方向正交;沿第一方向,第二光电传感器和第二线偏光片层叠设置,第二线偏光片覆盖第二光电传感器的第二感光区;第一方向为显示面板到第一线偏光片的垂直方向;第二光电传感器和第二线偏光片均与第一光电传感器错开设置于非子像素区域;第一线偏光片至少覆盖第二感光区。

Description

自发光显示装置和液晶显示装置
本申请要求于2021年10月09日提交中国国家知识产权局、申请号为202111176846.7、申请名称为“自发光显示装置和液晶显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种自发光显示装置和液晶显示装置。
背景技术
随着显示技术的发展,手机也越来越普及。在不同环境下,手机所需显示的亮度不同。例如,在亮度较高的室外环境,手机所需显示的亮度应较高;在夜晚未开灯的环境,手机所需显示的亮度应较低。
若在亮度较高的室外环境下,手机的显示亮度过低,可能导致用户看不清楚手机的显示画面;若在夜晚未开灯的环境下,手机的显示亮度过高,可能导致用户视觉疲劳,手机显示的暗画面的细节衰退,同时还会增加手机的耗电量。
发明内容
本申请提供一种自发光显示装置和液晶显示装置,可以准确检测环境亮度,基于环境光亮度准确调节显示亮度。
第一方面,本申请提供一种自发光显示装置,自发光显示装置显示面板、设置于显示面板出光侧的亮度检测结构。显示装置具有显示区,显示区包括子像素区域和位于相邻子像素区域之间的非子像素区域。亮度检测结构包括第一线偏光片、第二线偏光片、第一光电传感器和第二光电传感器。第一线偏光片设置于显示面板的出光侧,并且,第一线偏光片可以位于显示面板与盖板之间。第二线偏光片、第一光电传感器和第二光电传感器设置于显示面板与第一线偏光片之间。第一线偏光片的偏振方向与第二线偏光片的偏振方向正交。相较于相关技术将检测环境光亮度的传感器设置在显示面板背离盖板一侧的方案,本申请通过将第一光电传感器和第二光电传感器设置在显示面板的出光侧,环境光无需经过显示面板,即可投射至第一光电传感器和第二光电传感器,使第一光电传感器和第二光电传感器接收的环境光强度,更加接近环境光的实际强度。
沿第一方向,上述第二光电传感器和第二线偏光片可以层叠设置。第一光电传感器的感光区为第一感光区,第二光电传感器的感光区为第二感光区。沿第一方向,第二线偏光片在第二光电传感器上的正投影完全覆盖第二感光区,以使得经过第一线偏光片的偏振态为第一偏振态的环境光,不再通过第二线偏光片。其中,第一方向可以是显示面板到第一线偏光片的垂直方向。
并且,第二线偏光片、第一光电传感器和第二光电传感器均位于非子像素区域,且沿第一方向,第二线偏光片和第二光电传感器在显示面板上的正投影,与第一光电传感器在显示面板上的正投影无重叠。本申请通过将第一光电传感器和第二光电传感器设置在非子像素区域,可以防止第一光电传感器和第二光电传感器遮挡从子像素区域出射的显示光, 影响显示装置的显示效果。同时,沿第一方向,第一线偏光片至少覆盖第二感光区,以使得环境光可以以第一偏振态透射到第一光电传感器上;使得环境光被正交的第一线偏光片和第二线偏光片阻挡,无法透射到第二光电传感器上。从而基于第一光电传感器和第二光电传感器转换的电信号,精确计算环境光强度,以根据环境光强度确定自发光显示装置的显示亮度。
在一些可能实现的方式中,上述亮度检测结构还包括第一1/4波片和第二1/4波片;沿第一方向,第二线偏光片、第二1/4波片、第一1/4波片和第一线偏光片依次层叠设置;沿第一方向,第一1/4波片在显示面板上的正投影与第一线偏光片在显示面板上的正投影完全重叠;沿第一方向,第二1/4波片在显示面板上的正投影与第二线偏光片在显示面板上的正投影完全重叠。其中,第一线偏光片可以位于整个显示区。
本申请还可以利用既有的第一1/4波片和第一线偏光片提高用户体验以及显示装置的对比度。具体的,本申请实施例通过在显示面板的出光侧设置第一1/4波片和第一线偏光片,且第一1/4波片和第一线偏光片至少位于显示区,可以使偏振态为第一偏振态的环境光投射至第一1/4波片,偏振态为第一偏振态的环境光经过第一1/4波片,以及经过阳极和阴极反射后,其偏振态发生变化,不再是第一偏振态。因此,入射至显示面板内的环境光不能从显示装置出射。这样一来,用户在使用显示装置时,不会在显示装置中看到自己的轮廓阴影,从而提高用户体验以及显示装置的对比度。并且,本申请实施例的方案,还可以复用既有的第一1/4波片和第一线偏光片,只需额外增加第二线偏光片、第一光电传感器、第二光电传感器、以及第二1/4波片即可,从而可以减小显示装置的厚度,便于显示装置的薄型化设计。
在一些可能实现的方式中,上述第一光电传感器和第二光电传感器为光电三极管,第一感光区和第二感光区分别为光电三极管的沟道区。光电三极管可以将光信号转换为电信号,进而根据电信号计算环境光的强度。当然,第一光电传感器和第二光电传感器还可以是光电二极管等能够将光信号转换为电信号的器件。
在一些可能实现的方式中,上述第一光电传感器包括第一栅极、第一源极和第一漏极,第二光电传感器包括第二栅极、第二源极和第二漏极;自发光显示装置还包括第一栅线、第一数据线、第一导电引线、第二栅线、第二数据线和第二导电引线。第一栅极与第一栅线电连接,电路板通过第一栅线为第一栅极提供栅极电压。第一源极与第一数据线电连接,电路板通过第一数据线为第一源极提供源极电压。第一漏极与第一导电引线电连接,用于将第一光电传感器转换的电信号发送至放大电路,以将第一光电传感器转换的电信号放大,便于计算。第二栅极与第二栅线电连接,电路板通过第二栅线为第二栅极提供栅极电压。第二源极与第二数据线电连接,电路板通过第二数据线为第二源极提供源极电压。第二漏极与第二导电引线电连接,用于将第二光电传感器转换的电信号发送至放大电路,以将第二光电传感器转换的电信号放大,便于计算。
进一步的,在第一光电传感器和第二光电传感器导通时,第一栅极的栅极电压和第二栅极的栅极电压均相同,第一源极的源极电压和第二源极的源极电压均相同,以降低环境光强度计算难度。
在一些可能实现的方式中,第一光电传感器和第二光电传感器的个数均为多个。多个第一光电传感器位于同一列,位于同一列的多个第一光电传感器的第一栅极与同一根第一 栅线电连接,位于同一列的多个第一光电传感器的第一源极与同一根第一数据线电连接,位于同一列的多个第一光电传感器的第一漏极与同一根第一导电引线电连接。和/或,多个第二光电传感器位于同一列,位于同一列的多个第二光电传感器的第二栅极与同一根第二栅线电连接,位于同一列的多个第二光电传感器的第二源极与同一根第二数据线电连接,位于同一列的多个第二光电传感器的第二漏极与同一根第二导电引线电连接。这样一来,可以减少第一栅线、第一数据线、第一导电引线、第二栅线、第二数据线和第二导电引线的数量,从而提高自发光显示装置的开口率。
在一些可能实现的方式中,沿与列方向垂直的行方向,第一光电传感器与第二光电传感器相邻设置;相对于第一漏极,第一源极朝向第二光电传感器设置;相对于第二漏极,第二源极朝向第一光电传感器设置;其中,第一数据线复用作第二数据线。通过使相邻的第一光电传感器与第二光电传感器共用同一根数据线,可以进一步减少第一数据线和第二数据线的总数量,以进一步提高自发光显示装置的开口率。当然,也可以是,沿行方向,多个第一光电传感器相邻设置,相邻设置的两个第一光电传感器的第一源极共用同一根第一数据线;或者,沿行方向,多个第二光电传感器相邻设置,相邻设置的两个第二光电传感器的第一源极共用同一根第二数据线。
在一些可能实现的方式中,第一光电传感器与第二光电传感器位于同一列,位于同一列的第一光电传感器的第一栅极和第二光电传感器的第二栅极与同一根第一栅线或同一根第二栅线电连接,位于同一列的第一光电传感器的第一源极和第二光电传感器的第二源极与同一根第一数据线或同一根第二数据线电连接。这样一来,可以减少第一栅线、第一数据线、第二栅线和第二数据线的数量,从而提高自发光显示装置的开口率。
在一些可能实现的方式中,相邻的第一光电传感器与第二光电传感器之间间隔有一个子像素区域。防止因环境光的照射角度不同,或者显示装置的放置位置不同等因素,导致一个光电传感器组内的第一光电传感器接收的环境光强度与第二光电传感器接收的环境光强度差别较大。
在一些可能实现的方式中,第一感光区的尺寸与第二感光区的尺寸相同,以简化第一光电传感器和第二光电传感器的设计工艺。
在一些可能实现的方式中,第一线偏光片位于所述非子像素区域。此情况下,第一线偏光片可以覆盖第二感光区,或者覆盖第一感光区和第二感光区。相较于第二线偏光片位于子像素区域和非子像素区域,本申请实施例通过将第二线偏光片设置在非子像素区域,可以使从显示面板的子像素区域出射的无特定偏振方向的显示光,直接从显示装置出射,而非先经位于子像素区域的第二线偏光片转为第二偏振态,再从显示装置出射,导致第一偏振态的显示光不能通过第二线偏光片,进而影响显示装置的显示亮度。
第二方面,提供一种液晶显示装置,液晶显示装置包括显示面板、上偏光片和亮度检测结构;显示装置具有显示区,显示区包括子像素区域和非子像素区域;沿第一方向,上偏光片和亮度检测结构依次设置于显示面板的出光侧;亮度检测结构包括第一线偏光片、设置于上偏光片与第一线偏光片之间的第二线偏光片、第一光电传感器和第二光电传感器;第二线偏光片的偏振方向与第一线偏光片的偏振方向正交、与上偏光片的偏振方向相同;沿第一方向,第二光电传感器和第二线偏光片层叠设置,第二线偏光片覆盖第二光电传感器的第二感光区;第一方向为显示面板到第一线偏光片的垂直方向;第二光电传感器和第 二线偏光片均与第一光电传感器错开设置于非子像素区域;沿第一方向,第一线偏光片位于非子像素区域,且至少覆盖第二感光区。
在一些可能实现的方式中,第一光电传感器和第二光电传感器为光电三极管,第一光电传感器的第一感光区和第二感光区分别为光电三极管的沟道区。
在一些可能实现的方式中,第一光电传感器包括第一栅极、第一源极和第一漏极,第二光电传感器包括第二栅极、第二源极和第二漏极;自发光显示装置还包括第一栅线、第一数据线、第一导电引线、第二栅线、第二数据线和第二导电引线;第一栅极与第一栅线电连接,第一源极与第一数据线电连接,第一漏极与第一导电引线电连接;第二栅极与第二栅线电连接,第二源极与第二数据线电连接,第二漏极与第二导电引线电连接。
进一步的,在第一光电传感器和第二光电传感器导通时,第一栅极的栅极电压和第二栅极的栅极电压均相同,第一源极的源极电压和第二源极的源极电压均相同,以降低环境光强度计算难度。
在一些可能实现的方式中,第一光电传感器和第二光电传感器的个数均为多个;多个第一光电传感器位于同一列,位于同一列的多个第一光电传感器的第一栅极与同一根第一栅线电连接,位于同一列的多个第一光电传感器的第一源极与同一根第一数据线电连接,位于同一列的多个第一光电传感器的第一漏极与同一根第一导电引线电连接;和/或,多个第二光电传感器位于同一列,位于同一列的多个第二光电传感器的第二栅极与同一根第二栅线电连接,位于同一列的多个第二光电传感器的第二源极与同一根第二数据线电连接,位于同一列的多个第二光电传感器的第二漏极与同一根第二导电引线电连接。
在一些可能实现的方式中,沿与列方向垂直的行方向,第一光电传感器与第二光电传感器相邻设置;相对于第一漏极,第一源极朝向第二光电传感器设置;相对于第二漏极,第二源极朝向第一光电传感器设置;其中,第一数据线复用作第二数据线。
在一些可能实现的方式中,第一光电传感器与第二光电传感器位于同一列,位于同一列的第一光电传感器的第一栅极和第二光电传感器的第二栅极与同一根第一栅线或同一根第二栅线电连接,位于同一列的第一光电传感器的第一源极和第二光电传感器的第二源极与同一根第一数据线或同一根第二数据线电连接。
在一些可能实现的方式中,相邻的第一光电传感器与第二光电传感器之间间隔有一个子像素区域。
在一些可能实现的方式中,第一光电传感器的第一感光区的尺寸与第二感光区的尺寸相同。
在一些可能实现的方式中,第一线偏光片还覆盖第一光电传感器的第一感光区。
第二方面以及第二方面所述的任意一种实现方式分别与第一方面以及第一方面所述的任意一种实现方式相对应。第二方面以及第二方面所述的任意一种实现方式所对应的技术效果可参见第一方面以及第一方面所述的任意一种实现方式所对应的技术效果,此处不再赘述。
附图说明
图1a为本申请实施例提供的显示装置的平面图;
图1b为本申请实施例提供的显示装置的区域划分图;
图2a为本申请实施例提供的自发光显示装置的结构图;
图2b为本申请实施例提供的自发光显示装置的显示面板的结构图;
图3为本申请实施例提供的液晶显示装置的结构图;
图4为图1b中A区域对应的本申请的显示装置的一个俯视图;
图5为图4中B1-B2向的一个剖视图;
图6为图4中B1-B2向的另一个剖视图;
图7为本申请实施例中第一光电传感器和第二光电传感器的分布图;
图8为本申请实施例中第一光电传感器和第二光电传感器的分布图;
图9为本申请实施例中第一光电传感器和第二光电传感器在不同光强下的I-V变化曲线;
图10为本申请实施例中第一光电传感器和第二光电传感器在不同光强下的I-V变化曲线;
图11a为图1b中A区域对应的本申请的显示装置的另一个俯视图;
图11b为图11a中C1-C2向的剖视图;
图12a为图1b中A区域对应的本申请的显示装置的又一个俯视图;
图12b为图12a中D1-D2向的剖视图;
图13为图1b中A区域对应的本申请的显示装置的又一个俯视图;
图14为图13中E1-E2向的剖视图;
图15a为图11a中C1-C2向的剖视图;
图15b为图12a中D1-D2向的剖视图。
附图标记:
101-显示区;1011-子像素区域;102-非显示区;1-框架;2-盖板;3-显示面板;31-阵列基板;311-衬底;312-OLED器件;3121-第一电极;3122-发光功能层;3123-第二电极;32-封装层;321-第一无机封装层;322-有机封装层;323-第二无机封装层;301-下偏光片;302-上偏光片;33-阵列基板;34-对盒基板;35-液晶层;4-电路板;5-背光模组;61-第一线偏光片;62-第二线偏光片;63-第一光电传感器;631-第一栅极;632-第一栅绝缘层;633-第一有源层;634-第一源极;635-第一漏极;64-第二光电传感器;641-第二栅极;642-第二栅绝缘层;643-第二有源层;644-第二源极;645-第二漏极;65-第一1/4波片;66-第二1/4波片;71-粘结层;81-第一栅线;82-第一数据线;83-第一导电引线;84-放大电路;85-第二栅线;86-第二数据线;87-第二导电引线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例提供一种显示装置,显示装置可以是手机、电脑、平板电脑、个人数字助理(personal digital assistant,PDA)、车载电脑、电视、智能手表等具有显示功能的电子设备。本申请实施例对上述显示装置的具体形式不作特殊限定。
上述显示装置可以是自发光显示装置,也可以是液晶显示装置。自发光显示装置可以包括有机发光二极管(organic light emitting diode,OLED)显示装置、或量子点(quantum dot light emitting diodes,QLED)显示装置、或微发光二极管(micro light emitting diode display,Micro-LED)显示装置等等。其中,OLED显示装置和量子点显示装置可以通过顶发光或者底发光实现显示,本申请实施例对此不作特殊限定。为方便描述,下文除另外说明以外,均以OLED显示装置和QLED显示装置通过顶发光实现显示进行说明。
如图1a和图1b所示,显示装置具有显示区101,显示区101包括多个子像素区域1011和位于多个子像素区域1011之间的非子像素区域,从多个子像素区域1011出射的光互为三基色。例如,多个子像素区域1011可以互为红色子像素区域、绿色子像素区域、以及蓝色子像素区域;或者,多个子像素区域1011可以互为青色子像素区域、黄色子像素区域、以及品红色子像素区域。在一些实施例中,如图1a所示,显示装置还具有位于显示区101外围的非显示区102,且非显示区102位于显示区101的至少一侧。例如,对于全面屏手机,非显示区102仅位于显示区101的一侧,可以在非显示区102设置走线、电路等结构,例如可以在非显示区102设置栅极驱动(gate driver on array,简称GOA)电路,利用GOA电路代替栅极芯片。
一个示例中,如图2a所示,以显示装置为OLED显示装置为例,OLED显示装置可以包括框架1、盖板2、显示面板3、电路板4以及包括摄像头等的其他电子配件。显示面板3、电路板4以及其他电子配件设置于框架1与盖板2构成的容纳腔中,盖板2设置于显示面板3的出光侧,电路板4设置于显示面板3背离盖板2一侧。
如图2b所示,显示面板3可以包括阵列基板31和封装层32,阵列基板31包括衬底311以及设置于衬底311上的多个OLED器件312,多个OLED器件312分设于多个子像素区域1011。OLED器件312包括依次层叠设置在衬底311上的第一电极3121、发光功能层3122以及第二电极3123。第一电极3121为阳极,第二电极3123为阴极;或者,第一电极3121为阴极,第二电极3123为阳极。通过分别向阳极和阴极施加电压,可以从阳极注入空穴,从阴极注入电子,使电子和空穴在发光功能层3122相遇形成激子,从而激发发光功能层3122发光。同时,通过调节输入至阳极的电压,还可以调节OLED显示装置的显示亮度。
如图2b所示,封装层32用于封装OLED器件312,防止水汽、氧气进入到发光功能层3122中,影响发光功能层3122的使用寿命。若OLED显示装置为柔性显示装置,例如OLED显示装置为曲面手机、折叠手机等,则沿第一电极3121到第二电极3123的垂直方向,封装层32可以包括依次层叠设置的第一无机封装层321、有机封装层322和第二无机封装层323。其中,第一无机封装层321和第二无机封装层323的材料包括无机绝缘材料,可以利用无机绝缘材料阻挡水汽、氧气。有机封装层322的材料包括有机绝缘材料,在封装层32的总厚度相同的情况下,相较于封装层32仅包括无机绝缘材料的方案,可以利用有机绝缘材料提高OLED显示装置的柔韧性。
另一个示例中,如图3所示,以显示装置为液晶显示装置为例,液晶显示装置包括框架1、盖板2、显示面板3、下偏光片301、上偏光片302、背光模组5、电路板4、以及包括摄像头等的其他电子配件。显示面板3、背光模组5、电路板4以及其他电子配件设置于框架1与盖板2构成的容纳腔中。背光模组5设置于显示面板3的入光侧,为显示面板3提供显示用光,背光模组5可以是直下式背光模组,也可以是侧入式背光模组。下偏光片301设置于背光模组5与显示面板3之间。盖板2设置于显示面板3的出光侧,上偏光片302设置于显示面板3与盖板2之间。电路板4设置于背光模组5背离盖板2一侧。
请继续参考图3,显示面板3包括阵列基板33、对盒基板34、以及阵列基板33与对盒基板34之间的液晶层35。阵列基板33上设置有多个像素电极,多个像素电极分设于多个子像素区域1011。显示面板3还包括公共电极、黑矩阵、以及彩色滤光层,公共电极、黑矩阵、以及彩色滤光层可以设置在阵列基板上,也可以设置在对盒基板上。
液晶显示装置的显示原理为:背光模组5中的白光通过下偏光片301后,以第一线偏振态入射至显示面板3。分别向显示面板3中的多个像素电极和公共电极施加电压,使得像素电极与公共电极之间形成电场,可以通过调节输入至各个像素电极的电压,调节电场的强度。在电场的作用下,液晶层35中的液晶发生偏转,入射至显示面板3的光线的线偏振态从第一线偏振态转为第二线偏振态,转换为第二线偏振态的光线可以通过上偏光片302,并用于显示。对于任一子像素区域1011,其像素电极上的电压不同,像素电极与公共电极之间的电场强度不同,液晶的偏转角度不同,从第一线偏振态转换为第二线偏振态的光线的强度不同,子像素区域1011的显示亮度不同。其中,上偏光片302的偏振方向与下偏光片301的偏振方向可以正交,下偏光片301允许偏振态为第一偏振态的光线通过,上偏光片302允许偏振态为第二偏振态的光线通过。第一偏振态的光线为s光,第二偏振态的光线为p光;或者,第一偏振态的光线为p光,第二偏振态的光线为s光。
背景技术中提到,上述显示装置的显示亮度相对于环境亮度过低或过高,都会产生不良影响。基于此,相关技术提出,将用于检测环境光亮度的传感器通常设置在显示面板3背离盖板2一侧,根据传感器检测到的环境光强度自动调节显示装置的显示亮度,以消除不良影响。然而,将传感器设置在显示面板3背离盖板2一侧,显示面板3会遮挡部分环境光,并且,从显示面板3出射的部分显示光还会反射或散射回传感器上,从而导致传感器接收的环境光强度与实际的环境光强度不符,显示装置基于传感器接收的环境光强度显示的亮度仍然过高或过低。
基于此,本申请实施例提供一种显示装置,显示装置包括亮度检测结构,可以利用亮度准确检测环境亮度。本申请的亮度检测结构检测的环境光和显示光可以是可见光、或红 外光等,本申请实施例对此不作限定。该显示装置可以是上述自发光显示装置,也可以是上述液晶显示装置。下面分别结合自发光显示装置和液晶显示装置,对亮度检测结构的具体结构进行详细说明。
一个实施例中,以显示装置为自发光显示装置为例,如图4和图5所示,亮度检测结构包括第一线偏光片61、第二线偏光片62、第一光电传感器63和第二光电传感器64。第一线偏光片61设置于显示面板3的出光侧,并且,第一线偏光片61可以位于显示面板3与盖板2之间。第二线偏光片62、第一光电传感器63和第二光电传感器64设置于显示面板3与第一线偏光片61之间。相较于相关技术将检测环境光亮度的传感器设置在显示面板3背离盖板2一侧的方案,本申请实施例通过将第一光电传感器63和第二光电传感器64设置在显示面板3的出光侧,环境光无需经过显示面板3,即可投射至第一光电传感器63和第二光电传感器64,使第一光电传感器63和第二光电传感器64接收的环境光强度,更加接近环境光的实际强度。
并且,第一线偏光片61的偏振方向与第二线偏光片62的偏振方向正交。第一线偏光片61允许偏振态为第一偏振态的光线通过,第二线偏光片62允许偏振态为第二偏振态的光线通过。
沿第一方向,上述第二光电传感器64和第二线偏光片62层叠设置。第一光电传感器63和第二光电传感器64中实际接收光信号的区域为感光区,感光区可以接收光信号。第一光电传感器63的感光区为第一感光区,第二光电传感器64的感光区为第二感光区。沿第一方向,第二线偏光片62在第二光电传感器64上的正投影完全覆盖第二感光区,以使得经过第一线偏光片61的偏振态为第一偏振态的环境光,不再通过第二线偏光片62。可选的,为了确保第二线偏光片62在第一方向上覆盖第二感光区,第二线偏光片62的尺寸可以大于第二感光区的尺寸。例如,第二线偏光片62和第二感光区在第一方向上的正投影的形状均为矩形,且第二线偏光片62在第一方向上的正投影的尺寸比第二感光区在第一方向上的正投影的尺寸大2μm。第一方向可以是显示面板3到第一线偏光片61的垂直方向。
此处需要说明的是,第二线偏光片62在第二光电传感器64上的正投影,是指:第二线偏光片62沿第一方向垂直投射至第二光电传感器64上的投影。下文中正投影的意思与此处相同,下文不再赘述。
应该理解的是,第一光电传感器63和第二光电传感器64可以将光信号转换为电信号,并将电信号发送至放大电路进行放大,以便于计算环境光强度。进一步的,放大电路将放大后的电信号发送至控制芯片,控制芯片根据接收的放大后的电信号确定显示装置的显示亮度,并控制显示面板3显示。当然,第一光电传感器63和第二光电传感器64也可以直接将电信号发送至控制芯片,本申请实施例对此不作限定。其中,在显示装置包括放大电路的情况下,放大电路与控制芯片可以独立设置在电路板4上;放大电路也可以集成在控制芯片中,与控制芯片一同设置在电路板4上。在本申请实施例中,放大电路可以将第一光电传感器发送的电信号和第二光电传感器发送的电信号放大相同倍数,以便于计算。
在一些可能实现的方式中,第一光电传感器63和第二光电传感器64可以是光电二极管或者光电三极管等。如图6所示,以第一光电传感器63和第二光电传感器64是光电三极管为例,第一光电传感器63可以包括第一栅极631、第一栅绝缘层632、第一有源层 633、第一源极634和第一漏极635;第二光电传感器64可以包括第二栅极641、第二栅绝缘层642、第二有源层643、第二源极644和第二漏极645。其中,第一栅绝缘层632与第二栅绝缘层642可以分别为两个独立的图案;或者,如图6所示,第一栅绝缘层632也可以复用作第二栅绝缘层642。
第一光电传感器63的沟道区为第一感光区,也可以说,沿第一方向,第一有源层633中与第一栅极631重叠、且与位于第一源极634与第一漏极635之间的区域重叠的部分所在的区域为第一感光区。第二光电传感器64的沟道区为第二感光区,也可以说,沿第一方向,第二有源层643中与第二栅极641重叠、且与位于第二源极644与第二漏极645之间的区域重叠的部分所在的区域为第二感光区。若第一光电传感器63和第二光电传感器64接收的光信号为可见光,则第一有源层633和第二有源层643的材料可以包括多晶硅、或氧化物半导体等。若第一光电传感器63和第二光电传感器64接收的光信号为红外光,则第一有源层633和第二有源层643的材料可以包括有机化合物等。
如图7和图8所示,第一栅极631可以与第一栅线81电连接,电路板4通过第一栅线81为第一栅极631提供栅极电压Vg1。第一源极634可以与第一数据线82电连接,电路板4通过第一数据线82为第一源极634提供源极电压Vs1。第一漏极635通过第一导电引线83与放大电路84电连接,用于将第一光电传感器63转换的电信号发送至放大电路84。第二栅极641可以与第二栅线85电连接,电路板4通过第二栅线85为第二栅极641提供栅极电压Vg2。第二源极644可以与第二数据线86电连接,电路板4通过第二数据线86为第二源极644提供源极电压Vs2。第二漏极645通过第二导电引线87与放大电路84电连接,用于将第二光电传感器64转换的电信号发送至放大电路84。
电路板4通过第一栅线81为第一栅极631提供栅极电压Vg1,与电路板4通过第二栅线85为第二栅极641提供栅极电压Vg2可以相同,也可以不相同。电路板4通过第一数据线82为第一源极634提供源极电压Vs1,与电路板4通过第二数据线86为第二源极644提供源极电压Vs2可以相同,也可以不相同。为了使第一光电传感器63与第二光电传感器64在相同条件下导通,以简化第一光电传感器63和第二光电传感器64分别转换的电信号的计算量,可选的,栅极电压Vg1可以等于栅极电压Vg2,二者共同记为Vg;源极电压Vs1可以等于源极电压Vs2,二者共同记为Vs。
并且,如图7和图8所示,位于同一列的光电三极管的第一栅极631和/或第二栅极641可以与同一根栅线(第一栅线或第二栅线)电连接,以减少第一栅线81和第二栅线85的总数量,提高显示装置的开口率。位于同一列的光电三极管的第一源极634和/或第二源极644可以与同一根数据线(第一数据线或第二数据线)电连接,以减少第一数据线82和第二数据线86的总数量,提高显示装置的开口率。在此基础上,若多个第一光电传感器63位于同一列,则在多个第一栅极631与同一根第一栅线81电连接,多个第一源极634与同一根第一数据线82电连接的基础上,多个第一漏极635还可以与同一根第一导电引线83电连接,从而进一步提高显示装置的开口率。若多个第二光电传感器64位于同一列,则在多个第二栅极641与同一根第二栅线85电连接,多个第二源极644与同一根第二数据线86电连接的基础上,多个第二漏极645还可以与同一根第二导电引线87电连接,从而进一步提高显示装置的开口率。
进一步的,如图8所示,若多个光电三极管沿行方向相邻设置,则每相邻两列第一源 极634和/或第二源极644还可以与同一根数据线(第一数据线或第二数据线)电连接,以进一步减少第一数据线82和第二数据线86的总数量,提高显示装置的开口率。例如,如图8所示,多个第一光电传感器63与多个第二光电传感器64沿行方向相邻设置,则沿行方向,第一源极634背离第一漏极635、且朝向第二光电传感器64设置,第二源极644背离第二漏极645、且朝向第一光电传感器63设置,以使得相邻的第一源极634与第二源极644共用同一根数据线。
此处需要说明的是,前述的“行方向”、“列方向”仅是一个相对概念,并非指代某一特定方向,“行方向”与“列方向”可以为互相垂直的两个方向。
如图9所示,第一光电传感器63和第二光电传感器为P型的光电三极管为例,在栅极电压Vg和源极电压Vs不变的情况下,P型的光电三极管接收的光线强度越大,其阈值电压Vth越大(P型光电三极管的Vth为负,其绝对值越小),根据电流公式
Figure PCTCN2022117535-appb-000001
Figure PCTCN2022117535-appb-000002
得到流经源漏的电流Ids越大。也可以说,在栅极电压Vg和源极电压Vs不变的情况下,P型的光电三极管接收的光线强度越大,其由光信号转换的电信号的强度越大,进而可以根据光电三极管发送至放大电路和控制芯片的电信号控制显示装置的显示亮度。其中,常数μ、第一栅极631的电容C和第二栅极641的电容C、光电三极管沟道区的宽度W、光电三极管沟道区的长度L均为定值。例如,光电三极管沟道的宽度W可以是3μm,光电三极管沟道的长度L可以是3~5μm。
如图10所示,第一光电传感器63和第二光电传感器为N型的光电三极管为例,在栅极电压Vg和源极电压Vs不变的情况下,N型的光电三极管接收的光线强度越大,其阈值电压Vth越小(N型光电三极管的Vth为正),根据电流公式
Figure PCTCN2022117535-appb-000003
得到流经源漏的电流Ids越大。也可以说,在栅极电压Vg和源极电压Vs不变的情况下,N型的光电三极管接收的光线强度越大,其由光信号转换的电信号的强度越大,进而可以根据光电三极管发送至放大电路和控制芯片的电信号控制显示装置的显示亮度。
上文提到,显示装置的显示区101包括多个子像素区域1011和位于多个子像素区域1011之间的非子像素区域。本申请实施例中,显示装置中与第一方向垂直的平面中可以使显示光出射的区域为显示区101。此处需要说明的是,虽然非子像素区域不能发光,但子像素区域1011发出的大角度光线仍然可以从非子像素区域出射,因此,显示区101包括子像素区域1011和非子像素区域。
如图4所示,层叠设置的第二线偏光片62和第二光电传感器64均与第一光电传感器61错开设置于非子像素区域。也可以说,第二线偏光片62、第一光电传感器63和第二光电传感器64均位于非子像素区域,且沿第一方向,第二线偏光片62和第二光电传感器64在显示面板3上的正投影,与第一光电传感器61在显示面板3上的正投影无重叠。本申请实施例通过将第一光电传感器63和第二光电传感器64设置在非子像素区域,可以防止第一光电传感器63和第二光电传感器64遮挡从子像素区域1011出射的显示光,影响显示装置的显示效果。
如图4-图6所示,沿第一方向,第一线偏光片61至少覆盖第二感光区。也可以说,第一线偏光片61在显示面板3上的正投影完全覆盖第二感光区在显示面板3上的正投影。
例如,沿第一方向,第一线偏光片61在显示面板3上的正投影,恰好与第二感光区在显示面板3上的正投影重叠。又例如,如图4和图11a所示,沿第一方向,第一线偏光片61在显示面板3上的正投影,完全覆盖第二感光区在显示面板上的正投影,且第一线偏光片61的尺寸大于第二感光区的尺寸。例如,第一线偏光片61的尺寸至少比第二感光 区的尺寸大1μm,以确保环境光不会投射在第二感光区。如图11a-图12b所示,第一线偏光片61可以仅位于非子像素区域;或者,如图4所示,第一线偏光片61也可以位于非子像素区域和子像素区域1011。其中,在第一线偏光片61位于非子像素区域的情况下,如图11b所示,沿第一方向,第一线偏光片61可以覆盖第二感光区;或者,如图12b所示,沿第一方向,第一线偏光片61也可以覆盖第一感光区和第二感光区,本申请实施例对此不作限定。
在第一线偏光片61仅位于非子像素区域的情况下,相较于第二线偏光片62位于子像素区域1011和非子像素区域,本申请实施例通过将第二线偏光片62设置在非子像素区域,可以使从显示面板3的子像素区域1011出射的无特定偏振方向的显示光,直接从显示装置出射,而非先经位于子像素区域1011的第二线偏光片62转为第二偏振态,再从显示装置出射,导致第一偏振态的显示光不能通过第二线偏光片62,进而影响显示装置的显示亮度。
在第一线偏光片61位于子像素区域1011和非子像素区域的情况下,相较于第二线偏光片62位于子像素区域1011和非子像素区域,本申请实施例通过将第二线偏光片62设置在非子像素区域,可以使从显示面板3的子像素区域1011出射的无特定偏振方向的显示光,经过第一线偏光片61转为第一偏振态,再从显示装置出射,而非先经位于子像素区域1011的第二线偏光片62转为第二偏振态,再投射至与第二线偏光片62正交的第一线偏光片61上,导致显示光无法从显示装置出射。
此外,显示装置还可以包括设置于第一线偏光片61与第一光电传感器63和第二线偏光片62之间的粘结层71,以利用粘结层71将第一线偏光片61固定于第一光电传感器63和第二线偏光片62上。
本申请实施例不对粘结层71的材料及厚度进行限定,只要粘结层可以使光线透过,且能将第一线偏光片61粘合在第一光电传感器63和第二线偏光片62上即可。可选的,粘结层71的材料可以是压敏胶(pressure sensitive adhesive,PSA)或者光学透明胶(optically clear adhesive,OCA)等。沿第一方向,粘结层71中与第一光电传感器63重叠的部分的厚度范围可以是15~30μm,粘结层71中与第二光电传感器64重叠的部分的厚度范围可以是3~15μm,粘结层71中与第一光电传感器63和第二光电传感器64之间的区域重叠的部分的厚度范围可以是30~35μm。
如图12b所示,在第一线偏光片61覆盖第一感光区和第二感光区的情况下,基于本申请实施例亮度检测结构中各个结构的设置位置及位置关系,可以根据第一光电传感器63和第二光电传感器64接收的光信号,以电流形式确定环境光的强度。具体计算过程如下:
对于第一光电传感器63,无特定偏振方向的环境光中偏振态为第二偏振态的部分被第一线偏光片61吸收,无法通过第一线偏光片61并投射至第一光电传感器63的第一感光区;无特定偏振方向的环境光中偏振态为第一偏振态的部分通过第一线偏光片61,并投射至第一光电传感器63的第一感光区。即,投射至第一光电传感器63的第一感光区上的环境光强度为实际环境光强度的一半,记为0.5a,a表示环境光转换为电信号的电流值。从显示面板3出射的无特定偏振方向的部分显示光可以反射、散射至第一光电传感器63的第一感光区,该部分显示光转换为电信号的电流值记为b。综上,投射至第一感光区的 光线转换为电信号的电流值X为0.5a+b。
对于第二光电传感器64,从显示面板3出射的无特定偏振方向的部分显示光可以反射、散射至位于第一光电传感器63上方的第二线偏光片62,该部分显示光中偏振态为第一偏振态的部分被第二线偏光片62吸收,无法通过第二线偏光片62并投射至第二光电传感器64的第二感光区;该部分显示光中偏振态为第二偏振态的部分通过第二线偏光片62,并投射至第二光电传感器64的第二感光区。即,投射至第二光电传感器64的第二感光区上的显示光强度为散射、反射的显示光强度的一半,记为0.5b。而由于第一线偏光片61在显示面板3上的正投影,完全覆盖第一感光区和第二感光区在显示面板上的正投影,且第一线偏光片61与第二线偏光片62正交,因此,通过第一线偏光片61的环境光无法通过第二线偏光片62,第二光电传感器64的第一感光区接收的环境光强度为0。综上,投射至第二感光区的光线转换为电信号的电流值Y为0.5b。
进一步的,可以根据投射至第一感光区的光线转换为电信号的电流值X=0.5a+b以及投射至第二感光区的光线转换为电信号的电流值Y=0.5b,计算得到环境光对应的电流值a为2X-4Y,抵消了显示光对环境光对应的电流值a的影响。即,控制芯片可以根据第一感光区接收的光线的总强度和第二感光区接收的光线的总强度,计算得到实际的环境光强度,进而控制显示装置的显示亮度。并且,由于利用本申请的方式计算得到的环境光对应的电流值a不受显示光、以及显示面板3透过率的影响,因此,相较于相关技术,本申请的显示装置基于环境光强度显示的亮度更加准确,避免出现显示装置的显示亮度过高或过低的现象。
同理,如图11b所示,在第一线偏光片覆盖第一感光区、未覆盖第二感光区的情况下,以电流形式确定环境光的强度的计算过程为:无特定偏振方向的环境光和无特定偏振方向的显示光均可投射至第一感光区,投射至第一感光区的光线转换为电信号的电流值X为a+b。经过第一线偏光片61,偏振态为第一偏振态的环境光无法投射至第二感光区,偏振态为第二偏振态的显示光投射至第二感光区,投射至第二感光区的光线转换为电信号的电流值Y为0.5b。进一步的,可以根据投射至第一感光区的光线转换为电信号的电流值X=a+b以及投射至第二感光区的光线转换为电信号的电流值Y=0.5b,计算得到环境光对应的电流值a为X-2Y,抵消了显示光对环境光对应的电流值a的影响。
此处需要说明的是,第一感光区和第二感光区的尺寸可以相同,也可以不相同。可选的,第一感光区和第二感光区的尺寸可以相同,以简化第一光电传感器63和第二光电传感器64的设计工艺。在此基础上,第一光电传感器63与第二光电传感器64为参数相同的光电三极管或光电二极管等。在第一光电传感器63和第二光电传感器64为光电三极管的情况下,输入至所有光电三极管的源极电压Vs均相同,输入至所有光电三极管的栅极电压Vg均相同,以降低环境光强度计算难度。
此外,一个或多个第一光电传感器63可以与相同个数的第二光电传感器64构成一个光电传感器组,上述计算过程中,X可以是一个光电传感器组内的一个或多个第一光电传感器63转换的电信号对应的电流值总和,Y可以是该光电传感器组内相同个数的第二光电传感器64转换的电信号对应的电流值总和,以提高计算得到的环境光强度的准确性。
此处需要说明的是,本申请实施例不对第一光电传感器63和第二光电传感器64的数量进行限定,只要第一光电传感器63与第二光电传感器64的数量相同即可。可选的,考 虑到第一光电传感器63和第二光电传感器64只需检测环境光亮度,而非用于显示画面,因此,第一光电传感器63和第二光电传感器64的总个数可以是显示面板3短边方向的子像素的个数的1/4~1/3。例如,以2K的显示面板3为例,其子像素个数为1920*1080个,短边方向的子像素个数为1080个,则第一光电传感器63和第二光电传感器64的总个数可以是1080/4=270个。第一光电传感器63的个数为135个,第二光电传感器64的个数为135个。
在此基础上,一个光电传感器组内的一个第一光电传感器63与一个第二光电传感器64还可以位于相邻子像素(或者相邻子像素区域)之间;或者,一个光电传感器组内的一个第一光电传感器63与一个第二光电传感器64之间还可以间隔一个或多个子像素(或者一个或多个子像素区域),本申请实施例对此不作限定。在一些可能实现的方式中,环境光的照射角度不同,或者显示装置的放置位置不同等因素,可能导致一个光电传感器组内的第一光电传感器63接收的环境光强度与第二光电传感器64接收的环境光强度差别较大。因此,一个光电传感器组内的第一光电传感器63与第二光电传感器64可以设置在距离较近的位置。例如,如图7和图8所示,一个光电传感器组内的一个第一光电传感器63与一个第二光电传感器64之间仅间隔一个子像素,以提高计算得到的环境光强度的准确性。并且,在沿行方向相邻设置的第一光电传感器63与第二光电传感器64间仅间隔一个子像素的情况下,还可以缩短共用同一根数据线的第一源极634与第二源极644之间的距离,进一步提高显示装置的开口率。
另一个实施例中,如图13和图14所示,仍以显示装置为自发光显示装置为例,本申请实施例的亮度检测结构除包括上述第一线偏光片61、第二线偏光片62、第一光电传感器63和第二光电传感器64以外,还包括第一1/4波片65和第二1/4波片66。并且,上述第一线偏光片61至少位于整个显示区101;沿第一方向,第二线偏光片62、第二1/4波片66、第一1/4波片65和第一线偏光片61依次层叠设置。并且,沿第一方向,第一1/4波片65在显示面板3上的正投影与第一线偏光片61在显示面板3上的正投影完全重叠,第二1/4波片66在显示面板3上的正投影与第二线偏光片62在显示面板3上的正投影完全重叠。
此外,本申请实施例的第二线偏光片62、第一光电传感器63和第二光电传感器64的设置位置、位置关系以及其他解释说明,均与前述实施例相同,在此不再赘述。
如图14所示,基于本申请实施例亮度检测结构中各个结构的设置位置及位置关系,也可以根据第一光电传感器63和第二光电传感器64接收的光信号,以电流形式确定环境光的强度。具体计算过程如下:
对于第一光电传感器63,无特定偏振方向的环境光中偏振态为第二偏振态的部分被第一线偏光片61吸收,无法通过第一线偏光片61并投射至第一光电传感器63的第一感光区;无特定偏振方向的环境光中偏振态为第一偏振态的部分通过第一线偏光片61和第一1/4波片65后,以圆偏光形式投射至第一光电传感器63的第一感光区。即,投射至第一光电传感器63的第一感光区上的环境光强度为实际环境光强度的一半,记为0.5a。从显示面板3出射的无特定偏振方向的部分显示光可以反射、散射至第一光电传感器63的第一感光区,该部分显示光转换为电信号的电流值记为b。综上,投射至第一感光区的光 线转换为电信号的电流值X为0.5a+b。
对于第二光电传感器64,从显示面板3出射的无特定偏振方向的部分显示光可以反射、散射至位于第一光电传感器63上方的第二线偏光片62,该部分显示光中偏振态为第一偏振态的部分被第二线偏光片62吸收,无法通过第二线偏光片62并投射至第二光电传感器64的第二感光区;该部分显示光中偏振态为第二偏振态的部分通过第二1/4波片66和第二线偏光片62,并投射至第二光电传感器64的第二感光区。即,投射至第二光电传感器64的第二感光区上的显示光强度为散射、反射的显示光强度的一半,记为0.5b。偏振态为第一偏振态的环境光通过第一线偏光片61并入射至第一1/4波片65后,偏振态由第一偏振态转为圆偏光。之后,圆偏光经过第二1/4波片66后,其偏振态再次转换为第一偏振态。而由于第一线偏光片61在显示面板3上的正投影,完全覆盖第一感光区和第二感光区在显示面板上的正投影,且第一线偏光片61与第二线偏光片62正交,因此,偏振态为第一偏振态的环境光无法通过第二线偏光片62,第二光电传感器64的第一感光区接收的环境光强度为0。综上,投射至第二感光区的光线转换为电信号的电流值Y为0.5b。
进一步的,可以根据投射至第一感光区的光线转换为电信号的电流值X=0.5a+b以及投射至第二感光区的光线转换为电信号的电流值Y=0.5b,计算得到环境光对应的电流值a为2X-4Y,抵消了显示光对环境光对应的电流值a的影响。即,控制芯片可以根据第一感光区接收的光线的总强度和第二感光区接收的光线的总强度,计算得到实际的环境光强度,进而控制显示装置的显示亮度。并且,由于利用本申请的方式计算得到的环境光对应的电流值a不受显示光、以及显示面板3透过率的影响,因此,相较于相关技术,本申请的显示装置基于环境光强度显示的亮度更加准确,避免出现显示装置的显示亮度过高或过低的现象。
此外,在准确检测环境光强度的基础上,本申请实施例还可以利用既有的第一1/4波片65和第一线偏光片61提高用户体验以及显示装置的对比度。具体的,本申请实施例通过在显示面板3的出光侧设置第一1/4波片65和第一线偏光片61,且第一1/4波片65和第一线偏光片61至少位于显示区101,可以使偏振态为第一偏振态的环境光投射至第一1/4波片65,偏振态为第一偏振态的环境光经过第一1/4波片65,以及经过阳极和阴极反射后,其偏振态发生变化,不再是第一偏振态。因此,入射至显示面板3内的环境光不能从显示装置出射。这样一来,用户在使用显示装置时,不会在显示装置中看到自己的轮廓阴影,从而提高用户体验以及显示装置的对比度。并且,本申请实施例的方案,还可以复用既有的第一1/4波片65和第一线偏光片61,只需额外增加第二线偏光片62、第一光电传感器63、第二光电传感器64、以及第二1/4波片66即可,从而可以减小显示装置的厚度,便于显示装置的薄型化设计。
又一个实施例中,如图11a和图12a、15a和图15b所示,以显示装置为液晶显示装置为例,本申请实施例的亮度检测结构包括上述第一线偏光片61、第二线偏光片62、第一光电传感器63和第二光电传感器64以外,不包括第一1/4波片65和第二1/4波片66。并且,亮度检测结构设置于上偏光片302与盖板2之间,且第一线偏光片61仅位于非子像素区域。
此外,本申请实施例的第二线偏光片62、第一光电传感器63和第二光电传感器64 的设置位置、位置关系以及其他解释说明,均与前述实施例相同,在此不再赘述。
如图15b所示,在第一线偏光片61覆盖第一感光区和第二感光区的情况下,基于本申请实施例亮度检测结构中各个结构的设置位置及位置关系,也可以根据第一光电传感器63和第二光电传感器64接收的光信号,以电流形式确定环境光的强度。具体计算过程如下:
对于第一光电传感器63,无特定偏振方向的环境光中偏振态为第二偏振态的部分被第一线偏光片61吸收,无法通过第一线偏光片61并投射至第一光电传感器63的第一感光区;无特定偏振方向的环境光中偏振态为第一偏振态的部分通过第一线偏光片61后,投射至第一光电传感器63的第一感光区。即,投射至第一光电传感器63的第一感光区上的环境光强度为实际环境光强度的一半,记为0.5a。从上偏光片302出射的显示光的偏振态为第二偏振态,第二偏振态的部分显示光可以反射、散射至第一光电传感器63的第一感光区,该部分显示光转换为电信号的电流值记为c。综上,投射至第一感光区的光线转换为电信号的电流值X为0.5a+c。
对于第二光电传感器64,上偏光片302的偏振态与第二线偏光片62的偏振方向相同,从上偏光片302出射的显示光的偏振态为第二偏振态,第二偏振态的部分显示光可以反射、散射至位于第一光电传感器63上方的第二线偏光片62,并通过第二线偏光片62投射至第二光电传感器64的第一感光区。即,投射至第二光电传感器64的第二感光区上的显示光转换为电信号的电流值记为c。而由于第一线偏光片61在显示面板3上的正投影,完全覆盖第一感光区和第二感光区在显示面板上的正投影,且第一线偏光片61与第二线偏光片62正交,因此,通过第一线偏光片61的环境光无法通过第二线偏光片62,第二光电传感器64的第一感光区接收的环境光强度为0。综上,投射至第二感光区的光线转换为电信号的电流值Y为c。
进一步的,可以根据投射至第一感光区的光线转换为电信号的电流值X=0.5a+c以及投射至第二感光区的光线转换为电信号的电流值Y=c,计算得到环境光对应的电流值a为2X-2Y,抵消了显示光对环境光对应的电流值a的影响。即,控制芯片可以根据第一感光区接收的光线的总强度和第二感光区接收的光线的总强度,计算得到实际的环境光强度,进而控制显示装置的显示亮度。并且,由于利用本申请的方式计算得到的环境光对应的电流值a不受显示光、以及显示面板3透过率的影响,因此,相较于相关技术,本申请的显示装置基于环境光强度显示的亮度更加准确,避免出现显示装置的显示亮度过高或过低的现象。
同理,如图15a所示,在第一线偏光片覆盖第一感光区、未覆盖第二感光区的情况下,以电流形式确定环境光的强度的计算过程为:无特定偏振方向的环境光和偏振态为第二偏振态的显示光均可投射至第一感光区,投射至第一感光区的光线转换为电信号的电流值X为a+c。经过第一线偏光片61,偏振态为第一偏振态的环境光无法投射至第二感光区,偏振态为第二偏振态的显示光投射至第二感光区,投射至第二感光区的光线转换为电信号的电流值Y为c。进一步的,可以根据投射至第一感光区的光线转换为电信号的电流值X=a+c以及投射至第二感光区的光线转换为电信号的电流值Y=c,计算得到环境光对应的电流值a为X-Y,抵消了显示光对环境光对应的电流值a的影响。
同时,由于从上偏光片302出射的显示光的偏振态为第二偏振态,且允许第一偏振态 的光线通过的第一线偏光片61仅位于非子像素区域,因此,从上偏光片302出射的显示光可以从显示装置出射,用于显示。
上述三个实施例以自发光显示装置以及液晶显示装置为例,介绍本申请如何利用亮度检测结构准确检测环境光强度。当然,显示装置还可以是其他,本申请实施例对此不作限定。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种自发光显示装置,其特征在于,包括显示面板、设置于显示面板出光侧的亮度检测结构;所述显示装置具有显示区,所述显示区包括子像素区域和非子像素区域;
    所述亮度检测结构包括第一线偏光片、设置于所述显示面板与所述第一线偏光片之间的第二线偏光片、第一光电传感器和第二光电传感器;所述第一线偏光片的偏振方向与所述第二线偏光片的偏振方向正交;
    沿第一方向,所述第二光电传感器和所述第二线偏光片层叠设置,所述第二线偏光片覆盖所述第二光电传感器的第二感光区;所述第一方向为所述显示面板到所述第一线偏光片的垂直方向;
    所述第二光电传感器和所述第二线偏光片均与所述第一光电传感器错开设置于所述非子像素区域;沿所述第一方向,所述第一线偏光片至少覆盖所述第二感光区。
  2. 根据权利要求1所述的自发光显示装置,其特征在于,所述亮度检测结构还包括第一1/4波片和第二1/4波片;
    沿所述第一方向,所述第二线偏光片、所述第二1/4波片、所述第一1/4波片和所述第一线偏光片依次层叠设置;
    沿第一方向,所述第一1/4波片在所述显示面板上的正投影与所述第一线偏光片在所述显示面板上的正投影完全重叠,且所述第一1/4波片和所述第一线偏光片位于整个所述显示区;
    沿第一方向,所述第二1/4波片在所述显示面板上的正投影与所述第二线偏光片在所述显示面板上的正投影完全重叠。
  3. 根据权利要求1或2所述的自发光显示装置,其特征在于,所述第一光电传感器和所述第二光电传感器为光电三极管,所述第一光电传感器的第一感光区和所述第二感光区分别为所述光电三极管的沟道区。
  4. 根据权利要求3所述的自发光显示装置,其特征在于,所述第一光电传感器包括第一栅极、第一源极和第一漏极,所述第二光电传感器包括第二栅极、第二源极和第二漏极;
    所述自发光显示装置还包括第一栅线、第一数据线、第一导电引线、第二栅线、第二数据线和第二导电引线;
    所述第一栅极与所述第一栅线电连接,所述第一源极与所述第一数据线电连接,所述第一漏极与所述第一导电引线电连接;
    所述第二栅极与所述第二栅线电连接,所述第二源极与所述第二数据线电连接,所述第二漏极与所述第二导电引线电连接。
  5. 根据权利要求4所述的自发光显示装置,其特征在于,所述第一光电传感器和所述第二光电传感器的个数均为多个;
    多个所述第一光电传感器位于同一列,位于同一列的多个所述第一光电传感器的所述 第一栅极与同一根所述第一栅线电连接,位于同一列的多个所述第一光电传感器的所述第一源极与同一根所述第一数据线电连接,位于同一列的多个所述第一光电传感器的所述第一漏极与同一根所述第一导电引线电连接;和/或,
    多个所述第二光电传感器位于同一列,位于同一列的多个所述第二光电传感器的所述第二栅极与同一根所述第二栅线电连接,位于同一列的多个所述第二光电传感器的所述第二源极与同一根所述第二数据线电连接,位于同一列的多个所述第二光电传感器的所述第二漏极与同一根所述第二导电引线电连接。
  6. 根据权利要求4或5所述的自发光显示装置,其特征在于,沿与所述列方向垂直的行方向,所述第一光电传感器与所述第二光电传感器相邻设置;相对于所述第一漏极,所述第一源极朝向所述第二光电传感器设置;相对于所述第二漏极,所述第二源极朝向所述第一光电传感器设置;
    其中,所述第一数据线复用作所述第二数据线。
  7. 根据权利要求4所述的自发光显示装置,其特征在于,所述第一光电传感器与所述第二光电传感器位于同一列,位于同一列的所述第一光电传感器的第一栅极和所述第二光电传感器的第二栅极与同一根所述第一栅线或同一根所述第二栅线电连接,位于同一列的所述第一光电传感器的第一源极和所述第二光电传感器的第二源极与同一根所述第一数据线或同一根所述第二数据线电连接。
  8. 根据权利要求1-7任一项所述的自发光显示装置,其特征在于,相邻的所述第一光电传感器与所述第二光电传感器之间间隔有一个所述子像素区域。
  9. 根据权利要求1-8任一项所述的自发光显示装置,其特征在于,所述第一光电传感器的第一感光区的尺寸与所述第二感光区的尺寸相同。
  10. 根据权利要求1、3-9任一项所述的自发光显示装置,其特征在于,所述第一线偏光片位于所述非子像素区域。
  11. 根据权利要求10所述的自发光显示装置,其特征在于,沿第一方向,所述第一线偏光片还覆盖所述第一光电传感器的第一感光区。
  12. 一种液晶显示装置,其特征在于,包括显示面板、上偏光片和亮度检测结构;所述显示装置具有显示区,所述显示区包括子像素区域和非子像素区域;
    沿第一方向,上偏光片和亮度检测结构依次设置于所述显示面板的出光侧;所述亮度检测结构包括第一线偏光片、设置于所述上偏光片与所述第一线偏光片之间的第二线偏光片、第一光电传感器和第二光电传感器;所述第二线偏光片的偏振方向与所述第一线偏光片的偏振方向正交、与所述上偏光片的偏振方向相同;
    沿第一方向,所述第二光电传感器和所述第二线偏光片层叠设置,所述第二线偏光片覆盖所述第二光电传感器的第二感光区;所述第一方向为所述显示面板到所述第一线偏光片的垂直方向;
    所述第二光电传感器和所述第二线偏光片均与所述第一光电传感器错开设置于所述 非子像素区域;沿所述第一方向,所述第一线偏光片位于所述非子像素区域,且至少覆盖所述所述第二感光区。
  13. 根据权利要求12所述的液晶显示装置,其特征在于,所述第一光电传感器和所述第二光电传感器为光电三极管,所述第一光电传感器的第一感光区和所述第二感光区分别为所述光电三极管的沟道区。
  14. 根据权利要求13所述的液晶显示装置,其特征在于,所述第一光电传感器包括第一栅极、第一源极和第一漏极,所述第二光电传感器包括第二栅极、第二源极和第二漏极;
    所述液晶显示装置还包括第一栅线、第一数据线、第一导电引线、第二栅线、第二数据线和第二导电引线;
    所述第一栅极与所述第一栅线电连接,所述第一源极与所述第一数据线电连接,所述第一漏极与所述第一导电引线电连接;
    所述第二栅极与所述第二栅线电连接,所述第二源极与所述第二数据线电连接,所述第二漏极与所述第二导电引线电连接。
  15. 根据权利要求14所述的液晶显示装置,其特征在于,所述第一光电传感器和所述第二光电传感器的个数均为多个;
    多个所述第一光电传感器位于同一列,位于同一列的多个所述第一光电传感器的所述第一栅极与同一根所述第一栅线电连接,位于同一列的多个所述第一光电传感器的所述第一源极与同一根所述第一数据线电连接,位于同一列的多个所述第一光电传感器的所述第一漏极与同一根所述第一导电引线电连接;和/或,
    多个所述第二光电传感器位于同一列,位于同一列的多个所述第二光电传感器的所述第二栅极与同一根所述第二栅线电连接,位于同一列的多个所述第二光电传感器的所述第二源极与同一根所述第二数据线电连接,位于同一列的多个所述第二光电传感器的所述第二漏极与同一根所述第二导电引线电连接。
  16. 根据权利要求14或15所述的液晶显示装置,其特征在于,沿与所述列方向垂直的行方向,所述第一光电传感器与所述第二光电传感器相邻设置;相对于所述第一漏极,所述第一源极朝向所述第二光电传感器设置;相对于所述第二漏极,所述第二源极朝向所述第一光电传感器设置;
    其中,所述第一数据线复用作所述第二数据线。
  17. 根据权利要求14所述的液晶显示装置,其特征在于,所述第一光电传感器与所述第二光电传感器位于同一列,位于同一列的所述第一光电传感器的第一栅极和所述第二光电传感器的第二栅极与同一根所述第一栅线或同一根所述第二栅线电连接,位于同一列的所述第一光电传感器的第一源极和所述第二光电传感器的第二源极与同一根所述第一数据线或同一根所述第二数据线电连接。
  18. 根据权利要求12-17任一项所述的液晶显示装置,其特征在于,相邻的所述第一光电传感器与所述第二光电传感器之间间隔有一个所述子像素区域。
  19. 根据权利要求12-18任一项所述的液晶显示装置,其特征在于,所述第一光电传感器的第一感光区的尺寸与所述第二感光区的尺寸相同。
  20. 根据权利要求12-19任一项所述的液晶显示装置,其特征在于,沿第一方向,所述第一线偏光片还覆盖所述第一光电传感器的第一感光区。
PCT/CN2022/117535 2021-10-09 2022-09-07 自发光显示装置和液晶显示装置 WO2023056821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111176846.7 2021-10-09
CN202111176846.7A CN115032829A (zh) 2021-10-09 2021-10-09 自发光显示装置和液晶显示装置

Publications (3)

Publication Number Publication Date
WO2023056821A1 true WO2023056821A1 (zh) 2023-04-13
WO2023056821A9 WO2023056821A9 (zh) 2023-06-29
WO2023056821A8 WO2023056821A8 (zh) 2023-11-02

Family

ID=83118465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117535 WO2023056821A1 (zh) 2021-10-09 2022-09-07 自发光显示装置和液晶显示装置

Country Status (2)

Country Link
CN (1) CN115032829A (zh)
WO (1) WO2023056821A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187258A1 (en) * 2013-12-30 2015-07-02 Samsung Display Co., Ltd. Display device
CN110049150A (zh) * 2018-01-16 2019-07-23 广东欧珀移动通信有限公司 移动终端
CN110632794A (zh) * 2019-09-23 2019-12-31 京东方科技集团股份有限公司 一种显示装置及其光补偿方法
CN111489718A (zh) * 2020-05-21 2020-08-04 北京小米移动软件有限公司 终端设备及环境光检测方法
CN111968607A (zh) * 2020-08-28 2020-11-20 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN111988456A (zh) * 2020-08-28 2020-11-24 Oppo广东移动通信有限公司 显示屏组件、电子设备及环境光检测方法
CN112083593A (zh) * 2020-09-29 2020-12-15 Tcl华星光电技术有限公司 显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256663B1 (ko) * 2005-12-28 2013-04-19 엘지디스플레이 주식회사 액정표시장치와 그의 제조 및 구동방법
CN112133723A (zh) * 2019-06-24 2020-12-25 南昌欧菲生物识别技术有限公司 感光模组、显示装置及电子设备
CN112082644A (zh) * 2020-09-14 2020-12-15 深圳市汇顶科技股份有限公司 屏下环境光传感器和终端设备
CN112964359A (zh) * 2021-02-01 2021-06-15 深圳市汇顶科技股份有限公司 一种环境光传感器及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187258A1 (en) * 2013-12-30 2015-07-02 Samsung Display Co., Ltd. Display device
CN110049150A (zh) * 2018-01-16 2019-07-23 广东欧珀移动通信有限公司 移动终端
CN110632794A (zh) * 2019-09-23 2019-12-31 京东方科技集团股份有限公司 一种显示装置及其光补偿方法
CN111489718A (zh) * 2020-05-21 2020-08-04 北京小米移动软件有限公司 终端设备及环境光检测方法
CN111968607A (zh) * 2020-08-28 2020-11-20 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN111988456A (zh) * 2020-08-28 2020-11-24 Oppo广东移动通信有限公司 显示屏组件、电子设备及环境光检测方法
CN112083593A (zh) * 2020-09-29 2020-12-15 Tcl华星光电技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
WO2023056821A8 (zh) 2023-11-02
WO2023056821A9 (zh) 2023-06-29
CN115032829A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN107425038B (zh) 一种有机发光显示面板及其制造方法、以及电子设备
US10817696B2 (en) Fingerprint sensor package and display device including the same
US11994778B2 (en) Color filter substrate and display panel
WO2021063053A1 (zh) 显示基板及其制作方法、显示装置
CN110148374B (zh) 显示面板
CN110047906B (zh) 基于透明光电二极管的显示装置、显示面板及其制造方法
US12075668B2 (en) Display substrate and display device
KR102426269B1 (ko) 터치 스크린 일체형 표시장치
WO2021170079A1 (zh) 显示面板及其制作方法、和显示装置
WO2019192399A1 (zh) 显示基板及其制备方法、显示面板及装置
WO2021238484A1 (zh) 显示基板及显示装置
WO2021258910A1 (zh) 显示基板及显示装置
WO2021051729A1 (zh) 有机发光二极管显示面板及有机发光二极管显示装置
KR20230026979A (ko) 디스플레이 기판 및 디스플레이 장치
WO2019242083A1 (zh) 显示面板及显示装置
CN110061040B (zh) 一种显示装置
KR20210054654A (ko) 표시 장치
CN108922917B (zh) 彩膜基板及oled显示面板、显示装置
KR20230061348A (ko) 화상 표시 장치 및 전자 기기
WO2023056821A1 (zh) 自发光显示装置和液晶显示装置
TWI791397B (zh) 感測裝置
CN112310328B (zh) 一种发光面板及发光装置
WO2021226785A1 (zh) 显示面板和显示装置
TWI692665B (zh) 顯示裝置
KR20220014351A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22877841

Country of ref document: EP

Kind code of ref document: A1