WO2023056748A1 - Nasicon型固态电解质、用其包覆的正极材料及制备方法 - Google Patents

Nasicon型固态电解质、用其包覆的正极材料及制备方法 Download PDF

Info

Publication number
WO2023056748A1
WO2023056748A1 PCT/CN2022/092263 CN2022092263W WO2023056748A1 WO 2023056748 A1 WO2023056748 A1 WO 2023056748A1 CN 2022092263 W CN2022092263 W CN 2022092263W WO 2023056748 A1 WO2023056748 A1 WO 2023056748A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
nasicon
positive electrode
hours
electrode material
Prior art date
Application number
PCT/CN2022/092263
Other languages
English (en)
French (fr)
Inventor
邵宗普
刘亚飞
陈彦彬
Original Assignee
北京当升材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京当升材料科技股份有限公司 filed Critical 北京当升材料科技股份有限公司
Priority to PCT/CN2022/092263 priority Critical patent/WO2023056748A1/zh
Publication of WO2023056748A1 publication Critical patent/WO2023056748A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a NASICON solid electrolyte and a preparation method thereof, as well as a positive electrode material coated with the NASICON solid electrolyte and a preparation method thereof.
  • Solid-state batteries can fundamentally solve the safety problem of batteries by using solid-state electrolytes instead of traditional electrolytes, and replace traditional graphite or silicon-carbon anodes with metal-lithium-containing anodes, which can further increase the energy density of batteries. It has become a recognized next-generation battery. The development direction of lithium battery.
  • Solid electrolytes include organic polymers, sulfides, halides, perovskite types, NASICON types, garnet types, and the like.
  • the NASICON solid electrolyte has the advantages of high conductivity, good thermal stability, and wide electrochemical window, and has become one of the solid electrolytes with the most potential for industrialization.
  • NASICON-type solid electrolytes have the problems of unstable structure and easy phase separation after nanoscale, which is not conducive to the long-term storage of nano-slurries.
  • researchers use more wet chemical reaction methods such as hydrothermal method and sol-gel method to improve performance, which cannot be produced at low cost and on a large scale.
  • Traditional solid-state reactions are prone to the generation of heterogeneous phases due to uneven mixing of raw materials.
  • the mainstream multi-component cathode materials in the market as the nickel content increases, the energy density gradually increases but the thermal stability gradually decreases, which seriously affects the safety performance of the battery.
  • Some studies have improved the safety performance of multi-element cathode materials by coating them with structurally stable cathode materials such as lithium iron phosphate.
  • lithium iron phosphate has a one-dimensional lithium ion transport channel and poor conductivity, so it will be coated with multi-element cathode materials. As a result, the overall capacity and rate performance of the material are deteriorated.
  • the present invention provides a multi-site doped NASICON structure solid electrolyte prepared by a gel casting method and a preparation method thereof.
  • the NASICON structure solid electrolyte provided by the present invention is prepared by the gel casting method, which has the characteristics of simple operation, high controllability, and easy mass production, and introduces doping elements in the process of forming the gel to achieve the consistency between the elements and the main phase. homogeneous mixing at the atomic level.
  • the prepared solid electrolyte has uniform composition, high ionic conductivity, and the average particle size can reach nanoscale.
  • the presence of doping elements inside the lattice makes its structure stable, and its nanoscale slurry can maintain a pure phase state for a long time without Phase decomposition occurs.
  • the prepared nanoscale solid electrolyte slurry and powder have high specific surface area and strong specific surface energy, and are suitable for the preparation of composite solid electrodes and ceramic coating separators.
  • the nano-scale NASICON structure solid electrolyte prepared by the above method can effectively improve the thermal stability of the multi-component positive electrode material by coating the surface of the multi-component positive electrode material, and has a certain effect on the electrochemical properties of the multi-component positive electrode material such as capacity, rate, and cycle. enhancement effect.
  • a more obvious characteristic titration peak will appear when the acid-base titration treatment is performed on the coated ternary material.
  • the present invention provides a NASICON type solid electrolyte conforming to the following formula,
  • M is at least one element selected from Mg, Na, K,
  • M is at least one element selected from Al, Ga, In, Y, Sc,
  • M is at least one element selected from Ti, Zr, Ge,
  • R is at least one element selected from Si, Cl, Br, S, Sb, Sn,
  • the difference between the unit cell volume calculated according to the XRD test data of the NASICON type solid electrolyte and the standard value of 1.31031nm 3 is greater than 0.01nm 3 .
  • the present invention also provides the method I for preparing the NASICON type solid electrolyte according to the present invention, which comprises the following steps:
  • the present invention also provides a coated positive electrode material, wherein the matrix of the positive electrode material is coated with the NASICON type solid electrolyte according to the present invention.
  • the present invention also provides the method II for preparing the coated cathode material according to the present invention, which comprises the following steps:
  • Fig. 1 shows the XRD of the product of comparative example and embodiment
  • Figure 2 shows the XRD of the products of the comparative example and the embodiment after the abuse test.
  • Fig. 3 shows the titration curve of the product of embodiment 4.
  • the invention relates to a NASICON-type solid electrolyte conforming to the formula
  • M is at least one element selected from Mg, Na, K,
  • M is at least one element selected from Al, Ga, In, Y, Sc,
  • M is at least one element selected from Ti, Zr, Ge,
  • R is at least one element selected from Si, Cl, Br, S, Sb, Sn,
  • 0 ⁇ x ⁇ 5 preferably 0.6 ⁇ x ⁇ 3.2, more preferably 1.0 ⁇ x ⁇ 2.0
  • 0 ⁇ y ⁇ 0.5 preferably 0 ⁇ y ⁇ 0.3, more preferably 0 ⁇ y ⁇ 0.1, especially preferably 0.05
  • 0 ⁇ z ⁇ 1 preferably 0.2 ⁇ z ⁇ 0.7, more preferably 0.2 ⁇ z ⁇ 0.4, especially preferably 0.3,
  • the difference between the unit cell volume calculated according to the XRD test data of the NASICON type solid electrolyte and the standard value of 1.31031nm 3 is greater than 0.01nm 3 .
  • the multi-site doped NASICON structure solid electrolyte has a certain degree of change in the unit cell parameters of the sample due to the uniform element doping at different sites, wherein the unit cell volume calculated according to the XRD test data and the standard value ( With 1.31031nm 3 ), the difference is greater than 0.01nm 3 . And by testing the atomic arrangement in the sample with a high-resolution transmission microscope, obvious point defects can be found at the positions corresponding to Li, M, and P.
  • the average particle diameter D 50 of the NASICON solid electrolyte is 0.01 to 5 ⁇ m, preferably 0.05 to 1 ⁇ m, more preferably 0.1 to 0.5 ⁇ m.
  • the specific surface area of the NASICON solid electrolyte is >10m 2 /g.
  • the pH of the NASICON type solid electrolyte is >5.
  • the ionic conductivity of the NASICON type solid electrolyte is >10 ⁇ 4 S/cm.
  • the electronic conductivity of the NASICON solid electrolyte is >10 ⁇ 10 S/cm.
  • the nanoscale slurry of the solid electrolyte does not appear precipitation, phase decomposition and the like after standing for a long time.
  • the present invention also relates to the method I for preparing the NASICON type solid electrolyte according to the present invention, which comprises the following steps:
  • the preparation method of the NASICON solid electrolyte provided by the invention is a gel casting method.
  • the gel casting method uses less solvent and chelating dosage, and has a higher solid content; the added organic monomers are polymerized
  • the reaction can make the raw material elements of the NASICON material uniformly combined at the molecular level. After sintering, the polymer is oxidized and volatilized, and the raw materials react easily to form a uniform NASICON phase.
  • doping elements are introduced during thermal polymerization, so that element doping is more uniform.
  • the raw material compound of the NASICON type solid state electrolyte is the oxide, hydroxide, nitrate, oxalate, organic compound corresponding to each element. alkoxide or carbonate.
  • the organic monomer is one or more selected from acrylamide (AM), methylene bisacrylamide (MBAM), styrene, butadiene and methyl methacrylate.
  • the solvent is one or more selected from water, N-methyl-2-pyrrolidone, phthalate, dibasic fat, long-chain alcohol and pyrrolidone.
  • the initiator is one or more selected from benzoyl peroxide, (NH 4 ) 2 S 2 O 8 and K 2 S 2 O 8 .
  • the catalyst is N,N,N'N'-tetramethylethylenediamine (TEMED). Mixing is performed using a ball mill selected from a planetary ball mill and a high energy ball mill.
  • the temperature of the polymerization reaction is 80 to 200°C, preferably 90 to 150°C, more preferably 96 to 120°C.
  • the temperature of the pre-sintering is 300 to 600°C, preferably 350 to 575°C, more preferably 380 to 560°C, so
  • the duration of the pre-sintering is 2 to 6 hours, preferably 2 to 5 hours, more preferably 2 to 4 hours.
  • Pre-sintering is performed in an oxygen-containing atmosphere, such as air or oxygen.
  • the temperature of the sintering is 650 to 900°C, preferably 700 to 875°C, preferably 730 to 860°C, the sintering
  • the duration is from 4 to 10 hours, preferably from 5 to 9 hours, more preferably from 6 to 8 hours.
  • Sintering is performed in an oxygen-containing atmosphere, such as air or oxygen.
  • the average particle size D50 of the slurry is 5 nm to 500 nm, preferably 10 nm to 300 nm, more preferably 50 nm to 100 nm. Drying is carried out by a method selected from blast drying, vacuum drying and freeze drying.
  • the present invention also relates to the NASICON type solid electrolyte prepared according to the method I of the present invention.
  • the present invention also relates to a coated positive electrode material, wherein the matrix of the positive electrode material is coated with the NASICON type solid electrolyte according to the present invention.
  • the mass fraction of the NASICON type solid electrolyte is 0.05 to 1.00%, preferably 0.28 to 0.9%, more preferably 0.41 to 0.84%.
  • This product is a fast ion conductor and can be used as a buffer layer to balance the potential difference between the NASICON solid electrolyte and the positive electrode material. Alleviate the generation of the space charge layer, reduce the interface impedance, and thus make the electrochemical performance of the positive electrode material better.
  • the matrix of the positive electrode material is one or more selected from lithium nickelate, lithium cobaltate, lithium manganate, lithium nickel manganate, nickel cobalt Lithium manganate, lithium nickel cobalt aluminate, lithium nickel cobalt manganese aluminate, layered oxides of lithium-rich manganese base and its derivatives, or lithium iron phosphate, lithium iron manganese phosphate.
  • the present invention also relates to the method II for preparing the coated cathode material according to the present invention, which comprises the following steps:
  • the ratio of the NASICON-type solid electrolyte to the matrix of the positive electrode material is 0.05:100 to 1:100, preferably 0.28:100 to 0.9:100, more preferably 0.41:100 to 0.84:100.
  • a mixing device selected from ball mills, high mixers, vertical, horizontal, and inclined mixers for mixing.
  • the temperature of the heat treatment is 300 to 700°C, preferably 375 to 625°C, more preferably 420 to 580°C.
  • the duration of the heat treatment is 2 to 10 hours, preferably 4 to 10 hours, more preferably 5 to 10 hours.
  • the heat treatment is performed using a heating device selected from a tube furnace, an atmosphere furnace, a muffle furnace, and a roller kiln.
  • the doping elements are introduced in the thermal polymerization process to achieve atomic-level uniform mixing of the elements and the main phase.
  • the prepared solid electrolyte has uniform composition, high ionic conductivity, and the average particle size can reach nanoscale.
  • the presence of doping elements inside the lattice makes its structure stable, and its nanoscale slurry can maintain a pure phase state for a long time without Phase decomposition occurs.
  • the prepared nanoscale solid electrolyte slurry and powder have high specific surface area and strong specific surface energy, and are suitable for the preparation of composite solid electrodes and ceramic coating separators.
  • the invention provides a gel casting method for preparing a NASICON structure solid electrolyte, which has the characteristics of simple operation, high controllability, easy mass production and the like.
  • the surface coating of NASICON-type solid electrolyte makes the material have high capacity, excellent rate, cycle and thermal stability.
  • the multi-element cathode material LiNi 0.93 Co 0.05 Mn 0.02 O 2 was heat-treated in an atmosphere furnace at 500°C for 6 hours to obtain the heat-treated LiNi 0.93 Co 0.05 Mn 0.02 O 2 material.
  • the 0.1C discharge specific capacity of the sample in the solid-state battery was measured to be 204mAh/g; the capacity retention rate of the 1C cycle for 50 cycles was 85.6%.
  • the exothermic peak position is at 194°C.
  • the multi-element cathode material LiNi 0.6 Co 0.1 Mn 0.3 O 2 was heat-treated in an atmosphere furnace at 550°C for 6 hours to obtain the heat-treated LiNi 0.6 Co 0.1 Mn 0.3 O 2 material.
  • the 0.1C discharge specific capacity of the sample in the solid-state battery was measured to be 196mAh/g; the capacity retention rate of the 1C cycle for 50 cycles was 90.2%.
  • the exothermic peak position is at 241°C.
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , Al 2 O 3 , TiO 2 , and NH 4 H 2 PO 4 according to the stoichiometric ratio, and mix them in a ball mill mixer at 900rmp for 6 hours to obtain a mixture ;
  • Step (1-4): The solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 obtained in step (1-3) is mixed with pure water in a sand mill at 1000 rpm for 2 hours to obtain a solid content of 50%, D 50 0.2 ⁇ m nanoscale slurry, freeze-drying the slurry to obtain a powdery, nanoscale solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the main body of the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2. The results showed that the ionic conductivity of the sample was 3.7 ⁇ 10 -5 S/cm, and a large number of alumina heterophases appeared in the sample after being abused, indicating that the sample had phase transformation and poor structural stability.
  • the unit cell volume calculated according to the XRD test data is 1.31031nm 3 .
  • the 0.1C discharge specific capacity of the sample in the solid-state battery was measured to be 207mAh/g; the capacity retention rate of the 1C cycle for 50 cycles was 87.8%.
  • the exothermic peak position is at 200°C.
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , Al 2 O 3 , TiO 2 , and NH 4 H 2 PO 4 according to the stoichiometric ratio, and mix them in a ball mill mixer at 900rmp for 6 hours to obtain a mixture ;
  • Step (1-4): The solid electrolyte Li 1.1 Ca 0.1 Al 0.3 Ti 1.7 (PO 4 ) 3 obtained in step (1-3) is mixed with pure water and sanded in a sand mill at 1200 rpm for 2 hours to obtain a solid content of 50%. , D 50 0.2 ⁇ m nanoscale slurry, freeze-drying the slurry to obtain a powdery, nanoscale solid electrolyte Li 1.1 Ca 0.1 Al 0.3 Ti 1.7 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the main body of the sample was a pure phase, but there were some AlPO 4 miscellaneous peaks.
  • the ionic conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2. The results showed that the ionic conductivity of the sample was 3.7 ⁇ 10 -5 S/cm, and a large number of alumina heterophases appeared in the sample after being abused, indicating that the sample had phase transformation and poor structural stability.
  • the volume of the unit cell calculated according to the XRD test data is 1.3102nm 3 , and the difference from the volume of the standard unit cell is 0.00011nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , Al 2 O 3 , TiO 2 , and NH 4 H 2 PO 4 according to the stoichiometric ratio, add a certain amount of pure water and mix them, and then put them in the ball mill Mixing and crushing are carried out to obtain a mixed slurry A with a solid content of 50%; add 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiator) and TEMED (catalyst) is uniformly dispersed in a stirring device to obtain a mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 obtained in step (4) is mixed with pure water and sanded in a sand mill at 1000 rpm for 2 hours to obtain a nanoscale slurry with a solid content of 50%. The slurry was freeze-dried, and the dried powder was further dissociated using a jet mill to obtain a powdery, nano-scale solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2.
  • the results showed that the ionic conductivity of the sample was 1.3 ⁇ 10 -4 S/cm, and a small amount of alumina impurity phase appeared in the sample after being abused, indicating that the sample had a phase transformation and the structural stability was poor.
  • the unit cell volume calculated according to the XRD test data is 1.33nm 3 , and the difference from the standard unit cell volume is 0.01969nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , MgCO 3 , Al 2 O 3 , TiO 2 , NH 4 H 2 PO 4 according to the stoichiometric ratio, add a certain amount of pure water to mix, and then mix them Perform mixing and crushing in a ball mill to obtain a mixed slurry A with a solid content of 50%; add 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiated agent) and TEMED (catalyst), uniformly dispersed in the stirring device to obtain mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Ti 1.7 (PO 4 ) 3 obtained in step (4) is mixed with pure water and sanded in a sand mill at 1000 rpm for 2 hours to obtain a nanometer with a solid content of 50%. Grade slurry, freeze-dry the slurry, and use jet mill to further dissociate the dried powder to obtain powdery, nano-scale solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Ti 1.7 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2. The results showed that the ionic conductivity of the sample was 5.2 ⁇ 10 -4 S/cm, and the sample had basically no impurity phase after being abused, and the structure stability was good.
  • the volume of the unit cell calculated according to the XRD test data is 1.35nm 3
  • the difference from the volume of the standard unit cell is 0.03969nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , Al 2 O 3 , GeO 2 , ZrO 2 , NH 4 H 2 PO 4 according to the stoichiometric ratio, add a certain amount of pure water to mix, and then mix them Perform mixing and crushing in a ball mill to obtain a mixed slurry A with a solid content of 50%; add 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiated agent) and TEMED (catalyst), uniformly dispersed in the stirring device to obtain mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.3 Al 0.3 Zr 0.05 Ge 1.65 (PO 4 ) 3 obtained in step (4) is mixed with pure water and sanded in a sand mill at 1000rpm for 2 hours to obtain a nanometer with a solid content of 50%. Grade slurry, freeze-dry the slurry, and use jet mill to further dissociate the dried powder to obtain powdery, nano-scale solid electrolyte Li 1.3 Al 0.3 Zr 0.05 Ge 1.65 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2. The results show that the ionic conductivity of the sample is 7.6 ⁇ 10 -4 S/cm, and the sample has no impurity phase after being abused and has excellent structural stability.
  • the volume of the unit cell calculated according to the XRD test data is 1.325nm 3 , and the difference from the volume of the standard unit cell is 0.01469nm 3 .
  • the 0.1C discharge specific capacity of the sample in the solid-state battery was measured to be 220mAh/g.
  • the capacity retention rate of 1C cycle for 50 weeks was 91.0%.
  • the position of the DSC exothermic peak of the sample was measured at 208°C.
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , MgCO 3 , Al 2 O 3 , TiO 2 , ZrO 2 , NH 4 H 2 PO 4 according to the stoichiometric ratio, add a certain amount of pure water and mix, Then it is mixed and crushed in a ball mill to obtain a mixed slurry A with a solid content of 50%; 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiator) and TEMED (catalyst), uniformly dispersed in the stirring device, to obtain mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Zr 0.05 Ti 1.65 (PO 4 ) 3 obtained in step (4) is mixed with pure water and sanded in a sand mill at 1000 rpm for 2 hours to obtain a solid content of 50%.
  • the nano-scale slurry was freeze-dried, and the dried powder was further dissociated by jet mill to obtain a powder-like, nano-scale solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Zr 0.05 Ti 1.65 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2. The results showed that the ionic conductivity of the sample was 9.5 ⁇ 10 -4 S/cm, and the sample had no impurity phase after being abused and had excellent structural stability.
  • the unit cell volume calculated according to the XRD test data is 1.33nm 3 , and the difference from the standard unit cell volume is 0.01969nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , MgCO 3 , Al 2 O 3 , GeO 2 , YO 2 , NH 4 H 2 PO 4 according to the stoichiometric ratio, add a certain amount of pure water and mix, Then it is mixed and crushed in a ball mill to obtain a mixed slurry A with a solid content of 50%; 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiator) and TEMED (catalyst), uniformly dispersed in the stirring device, to obtain mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Y 0.05 Ge 1.65 (PO 4 ) 3 obtained in step (4) is mixed with pure water and sanded in a sand mill at 1000 rpm for 2 hours to obtain a solid content of 50%.
  • the nano-scale slurry was freeze-dried, and the dried powder was further dissociated by jet mill to obtain a powder-like, nano-scale solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Y 0.05 Ge 1.65 (PO 4 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2.
  • the results show that the ionic conductivity of the sample is 8.3 ⁇ 10 -4 S/cm, and the sample has no impurity phase after being abused, and has excellent structural stability.
  • the unit cell volume calculated according to the XRD test data is 1.41nm 3 , and the difference from the standard unit cell volume is 0.09969nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , MgCO 3 , Sc 2 O 3 , ZrO 2 , TiO 2 , NH 4 H 2 PO 4 , and NH4Cl according to the stoichiometric ratio, and add a certain amount of pure water Mix, then mix and crush it in a ball mill to obtain a mixed slurry A with a solid content of 50%; add 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiator) and TEMED (catalyst), uniformly dispersed in a stirring device to obtain a mixed slurry B;
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2.
  • the results show that the ionic conductivity of the sample is 5.1 ⁇ 10 -4 S/cm, and the sample has no impurity phase after being abused, and the structure stability is excellent.
  • the unit cell volume calculated according to the XRD test data is 1.53nm 3 , and the difference from the standard unit cell volume is 0.21969nm 3 .
  • Step (1-1) Weigh the compounds of Li 2 CO 3 , MgCO 3 , Al 2 O 3 , ZrO 2 , TiO 2 , NH 4 H 2 PO 4 , and SiO 2 according to the stoichiometric ratio, and add a certain amount of pure mixed with water, and then mixed and crushed in a ball mill to obtain a mixed slurry A with a solid content of 50%; 55% by weight of acrylamide (monomer), (NH 4 ) 2 S 2 O 8 (initiator) and TEMED (catalyst), uniformly dispersed in a stirring device to obtain a mixed slurry B;
  • Step (1-5) The solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Zr 0.05 Ti 1.65 (PO 4 )(SiO 3 ) 3 obtained in step ( 4 ) is mixed with pure water and sanded in a sand mill at 1000rpm for 2 hours to obtain Nano-scale slurry with a solid content of 50%, freeze-drying the slurry, and using a jet mill to further dissociate the dried powder to obtain a powder-like, nano-scale solid electrolyte Li 1.2 Mg 0.05 Al 0.3 Zr 0.05 Ti 1.65 (PO 4 )(SiO 3 ) 3 .
  • the prepared solid electrolyte was characterized by XRD and found that the sample was a pure phase, and the ion conductivity and structural stability were tested according to the steps described in Test Example 1 and Test Example 2.
  • the results show that the ionic conductivity of the sample is 4.5 ⁇ 10 -4 S/cm, and the sample has no impurity phase after abuse treatment and has excellent structural stability.
  • the unit cell volume calculated according to the XRD test data is 1.55nm 3 , and the difference from the standard unit cell volume is 0.23969nm 3 .
  • the prepared positive pole piece and PEO electrolyte membrane were assembled into a 2025-type button-type all-solid-state battery in an Ar gas glove box with a water content and an oxygen content of less than 5 ppm.
  • the above-mentioned solid-state battery was tested for charge and discharge capacity at 3.0-4.3V, 0.1C, and 60°C. Charge and discharge 50 times at 3.0-4.3V, 1C, 60°C for charge and discharge cycle performance test.
  • the negative electrode uses a Li metal sheet with a diameter of 17 mm and a thickness of 1 mm; the separator uses a polyethylene porous membrane with a thickness of 25 ⁇ m; the electrolyte uses 1 mol/L of LiPF 6 , ethylene carbonate (EC) and diethyl carbonate (DEC) Equal volume mixture.
  • the positive pole piece, separator, negative pole piece and electrolyte were assembled into a 2025-type button battery in an Ar gas glove box with water content and oxygen content less than 5ppm.
  • the difference between the unit cell volume and the standard value is greater than 0.01, which means that the elements in the corresponding NASICON solid state electrolyte are doped into the unit cell to form a solid solution (according to Vegard's law), and the valence state of the doping element is the same as
  • the charge balance will be maintained in the form of point defects (for example, one atom missing in a certain position of the unit cell) in the matrix.
  • point defects especially vacancy defects, will increase the transmission channel of lithium ions and improve Ionic conductivity, some will cause the reconstruction of the electric field in the unit cell, and improve the electronic conductivity. Therefore, the coating layer has excellent ion and electron transport channels, which is beneficial to the capacity and magnification of the sample. Therefore the sample capacity in the embodiment is significantly better than that of the comparative example.
  • the DSC exothermic peak temperature of the sample is significantly higher than that of the comparative example, which reflects the increase of the thermal runaway temperature of the positive electrode material in the charged state, indicating that the NASICON solid electrolyte has achieved a dense coating on the positive electrode material matrix, and the structure is stable.

Abstract

本发明涉及NASICON型固态电解质及其制备方法,以及用所述NASICON型固态电解质包覆的正极材料及其制备方法。

Description

NASICON型固态电解质、用其包覆的正极材料及制备方法 技术领域
本发明涉及NASICON型固态电解质及其制备方法,以及用所述NASICON型固态电解质包覆的正极材料及其制备方法。
背景技术
动力电池和储能电池市场的迅猛发展,促使人们对锂离子电池的能量密度和安全性能提出更高的要求。传统的锂离子电池由于结构中使用电解液导致其安全性能存在较大隐患,且局限于使用不含金属锂的负极,电池能量密度的提升空间已接近瓶颈。固态电池由于采用固态电解质代替传统电解液,可以从根本上解决电池的安全问题,并且以含金属锂的负极代替传统的石墨或硅碳负极,可以进一步提升电池能量密度,已经成为公认的下一代锂电池发展方向。
在固态电池体系中,目前最关键的材料之一就是固态电解质。固态电解质包括有机聚合物、硫化物、卤化物、钙钛矿型、NASICON型、石榴石型等种类。其中NASICON型固态电解质具备电导率高、热稳定性好、电化学窗口宽等优点,成为最具有产业化潜力的固态电解质之一。
NASICON型固态电解质理论离子电导率可达10 -3S/cm以上,但目前研究报道的数据普遍低于0.5×10 -3S/cm,因此其离子电导率还有很大的提升空间。NASICON型固态电解质在纳米化后存在结构不稳定、易分相的问题,不利于纳米浆料的长期保存。除此之外,为了有效提升其离子电导率,研究人员更多利用水热法、溶胶凝胶法等湿化学反应方法来进行性能改善,无法低成本、大规模的生产。传统的固相反应极易由于原材料混合不均匀造成杂相的生成。
另一方面,市场主流的多元正极材料,随着镍含量提高,能量密度提升逐渐提升但热稳定性逐渐下降,严重影响电池的安全性能。一些研究通过在多元正极材料表面包覆磷酸铁锂等结构稳定的正极材料来改善其安全性能,但磷酸铁锂具有一维锂离子传输通道,且导电性差,因此其包覆多元正极材料后会造成材料整体容量、倍率性能变差。
发明内容
针对上述现有技术中存在的问题,本发明提供一种采用凝胶浇注法制备的多位点掺杂NASICON结构固态电解质及其制备方法。本发明提供的NASICON结构固态电解质采用凝胶浇注方法进行制备,该方法具有操作简便、可控度高、易于大批量生产等特点,在形成凝胶过程中引入掺杂元素,达到元素与主相的原子级均匀混合。所制备的固态电解质成分均一,离子电导率高,平均粒径可以达到纳米级,晶格内部掺杂元素的存在使得其结构稳定性优异,其纳米级浆料可以长时间保持纯相状态,不出现物相分解。所制备的纳米级固态电解质浆料及粉体具有较高的比表面积,具备很强的比表面能,适用于复合固态电极及陶瓷涂覆隔膜的制备。
采用上述方法制备的纳米级NASICON结构固态电解质,对多元正极材料进行表面包覆处理,可以有效改善多元正极材料的热稳定性,并且对多元正极材料的容量、倍率、循环等电化学性能具有一定的提升效果。对包覆处理后的三元材料进行酸碱滴定处理会出现较为明显的特征滴定峰。
一方面,本发明提供符合下式的NASICON型固态电解质,
Li xM 1 yM 2 zM 3 u(PO 4) w1(RO v) w2
其中,
M 1为至少一种选自Mg、Na、K的元素,
M 2为至少一种选自Al、Ga、In、Y、Sc的元素,
M 3为至少一种选自Ti、Zr、Ge的元素,
R为至少一种选自Si、Cl、Br、S、Sb、Sn的元素,
0≤x<5,0≤y≤0.5,0≤z≤1,0≤u≤9,
1≤v≤3,1≤w1≤3,0≤w2≤3,其条件是:阴离子总电荷数为9,
其中所述NASICON型固态电解质根据XRD测试数据计算得到的晶胞体积与标准值1.31031nm 3的差值大于0.01nm 3
另一方面,本发明还提供制备根据本发明的NASICON型固态电解质的方法I,其包括以下步骤:
(1-1)将NASICON型固态电解质的原料化合物与有机单体和溶剂混合,经破碎得到混合料A,然后加入引发剂和催化剂得到混合料B;
(1-2)将所述混合料B浇注到容器中,并进行加热以引发聚合反应,得到块体状的固态电解质前驱体A;
(1-3)将所述固态电解质前驱体A预烧结,经破碎得到粉体状的固态电解质前驱体B;
(1-4)将所述固态电解质前驱体B烧结,经破碎得到粉体状、微米级的固态电解质A;及
(1-5)将所述固态电解质A研磨得到纳米级粒度的浆料,经烘干得到粉体状、纳米级的NASICON型固态电解质。
另一方面,本发明还提供经包覆的正极材料,其中所述正极材料的基体被根据本发明的NASICON型固态电解质包覆。
另一方面,本发明还提供制备根据本发明的经包覆的正极材料的方法II,其包括以下步骤:
(2-1)将所述NASICON型固态电解质与所述正极材料的基体混合,(2-2)经热处理得到所述经包覆的正极材料。
附图说明
图1所示为对比例和实施例的产品的XRD;
图2所示为对比例和实施例的产品经滥用测试后的XRD;及
图3所示为实施例4的产品的滴定曲线。
具体实施方式
若没有另外说明,将在此提及的所有的出版物、专利申请、专利及其他参考文献的全部内容出于所有目的明确地引入本申请作为参考,如同充分地阐述。
除非另有定义,在此使用的所有的技术和科学术语具有与本发明所属技术领域的普通技术人员通常的理解相同的含义。若有冲突,则以本说明书为准,包括定义。
若数量、浓度或其他数值或参数作为范围、优选的范围或者一系列优选的上限和优选的下限给出,则应当理解为特别地公开了由任意一对的任意范围上限或优选的数值与任意范围下限或优选的数值形成的所有的范围,无论这些范围是否被分别地公开。在此提及数值的范围时,除非另有说明,意味着该范围包括其端点以及在该范围内的所有的整数和分数。
一方面,本发明涉及符合下式的NASICON型固态电解质,
Li xM 1 yM 2 zM 3 u(PO 4) w1(RO v) w2
其中,
M 1为至少一种选自Mg、Na、K的元素,
M 2为至少一种选自Al、Ga、In、Y、Sc的元素,
M 3为至少一种选自Ti、Zr、Ge的元素,
R为至少一种选自Si、Cl、Br、S、Sb、Sn的元素,
0≤x<5,优选为0.6≤x<3.2,更优选为1.0≤x<2.0,
0≤y≤0.5,优选为0≤y≤0.3,更优选为0≤y≤0.1,特别优选为0.05,
0≤z≤1,优选为0.2≤z≤0.7,更优选为0.2≤z≤0.4,特别优选为0.3,
0≤u≤9,优选为0.9≤u≤5.4,更优选为1.4≤u≤3.2,特别优选为1.7,
1≤v≤3,1≤w1≤3,0≤w2≤3,其条件是:阴离子总电荷数为9,
其中所述NASICON型固态电解质根据XRD测试数据计算得到的晶胞体积与标准值1.31031nm 3的差值大于0.01nm 3
所述多位点掺杂NASICON结构固态电解质由于在不同位点进行了均匀的元素掺杂,使得样品晶胞参数存在一定程度的变化,其中根据XRD测试数据计算得到的晶胞体积与标准值(以1.31031nm 3)的差值大于0.01nm 3。且通过高分辨透射显微镜测试样品中原子排布,可以在Li、M、P对应的位置发现较为明显的点缺陷。
依照根据本发明的NASICON型固态电解质的一个实施方案,所述NASICON型固态电解质的平均粒径D 50为0.01至5μm,优选为0.05至1μm,更优选为0.1至0.5μm。所述NASICON型固态电解质的比表面积>10m 2/g。所述NASICON型固态电解质的pH>5。所述NASICON型固态电解质的离子电导率>10 -4S/cm。所述NASICON型固态电解质的电子电导率>10 -10S/cm。所述固态电解质的纳米级浆料长时间静置不出现沉淀、物相分解等现象。
另一方面,本发明还涉及制备根据本发明的NASICON型固态电解质的方法I,其包括以下步骤:
(1-1)将NASICON型固态电解质的原料化合物与有机单体和溶剂混合,经破碎得到混合料A,然后加入引发剂和催化剂得到混合料B;
(1-2)将所述混合料B浇注到容器中,并进行加热以引发聚合反应,得到块体状的固态电解质前驱体A;
(1-3)将所述固态电解质前驱体A预烧结,经破碎得到粉体状的固态电解质前驱体B;
(1-4)将所述固态电解质前驱体B烧结,经破碎得到粉体状、微米级的固态电解质A;及
(1-5)将所述固态电解质A研磨得到纳米级粒度的浆料,经烘干得到粉体状、纳米级的NASICON型固态电解质。
本发明提供的NASICON型固态电解质的制备方法为凝胶浇注法,与溶胶凝胶法相比,凝胶浇注法使用的溶剂和螯合剂量更少,固含量更高;加入的有机单体发生聚合反应,可以使NASICON材料的原材料元素在分子层面均匀结合,烧结后,聚合物被氧化挥发,原材料之间发生反应容易形成均匀的NASICON物相。
根据本发明的方法I通过在热聚合过程中引入掺杂元素,使得元素掺杂更加均匀。此外,在固态电解质的Li、P及过渡金属等不同位置位置均有不同程度的元素掺杂。
依照根据本发明的方法I的一个实施方案,在步骤(1-1)中,所述NASICON型固态电解质的原料化合物为各元素对应的氧化物、氢氧化物、硝酸盐、草酸盐、有机醇盐或碳酸盐。所述有机单体为选自丙烯酰胺(AM)、亚甲基双丙烯酰胺(MBAM)、苯乙烯、丁二烯和甲基丙烯酸甲酯中的一种或多种。所述溶剂为选自水、N-甲基-2-吡咯烷酮、酞酸酯、二元脂、长链醇和吡咯烷酮中的一种或多种。所述引发剂为选自过氧化苯甲酰、(NH 4) 2S 2O 8和K 2S 2O 8中的一种或多种。所述催化剂为N,N,N′N′-四甲基乙二胺(TEMED)。使用选自行星式球磨机、高能球磨机的球磨设备进行混合。
依照根据本发明的方法I的另一个实施方案,在步骤(1-2)中,所述聚合反应的温度为80至200℃,优选为90至150℃,更优选为96至120℃。
依照根据本发明的方法I的另一个实施方案,在步骤(1-3)中,所述预烧结的温度为300至600℃,优选为350至575℃,更优选为380至 560℃,所述预烧结的持续时间为2至6小时,优选为2至5小时,更优选为2至4小时。在含氧气氛中进行预烧结,例如空气或氧气。
依照根据本发明的方法I的另一个实施方案,在步骤(1-4)中,所述烧结的温度为650至900℃,优选为700至875℃,优选为730至860℃,所述烧结的持续时间为4至10小时,优选为5至9小时,更优选为6至8小时。在含氧气氛中进行烧结,例如空气或氧气。
依照根据本发明的方法I的另一个实施方案,在步骤(1-5)中,所述浆料的平均粒度D 50为5nm至500nm,优选为10nm至300nm,更优选为50nm至100nm。采用选自鼓风烘干、真空烘干和冷冻干燥的方式进行烘干。
另一方面,本发明还涉及依照根据本发明的方法I制得的NASICON型固态电解质。
另一方面,本发明还涉及经包覆的正极材料,其中所述正极材料的基体被根据本发明的NASICON型固态电解质包覆。
依照根据本发明的经包覆的正极材料的一个实施方案,基于所述正极材料的基体,所述NASICON型固态电解质的质量分数为0.05至1.00%,优选为0.28至0.9%,更优选为0.41至0.84%。所述经包覆的正极材料经酸碱滴定处理在pH=5-8之间出现特征滴定峰。这说明本发明中NASICON固态电解质在包覆过程中与基体界面处生成了Li 3PO 4,这种产物是一种快离子导体,可以作为缓冲层来平衡NASICON固态电解质与正极材料的电位差,缓解空间电荷层的产生,降低界面阻抗,因而使得正极材料的电化学性能有更好地发挥。
依照根据本发明的经包覆的正极材料的另一个实施方案,所述正极材料的基体为一种或多种选自镍酸锂、钴酸锂、锰酸锂、镍锰酸锂、镍钴锰酸锂、镍钴铝酸锂、镍钴锰铝酸锂、富锂锰基及其衍生物的层状氧化物,或磷酸铁锂、磷酸锰铁锂。
另一方面,本发明还涉及制备根据本发明的经包覆的正极材料的方法II,其包括以下步骤:
(2-1)将所述NASICON型固态电解质与所述正极材料的基体混合,(2-2)经热处理得到所述经包覆的正极材料。
依照根据本发明的方法II的一个实施方案,在步骤(2-1)中,所述NASICON型固态电解质与所述正极材料的基体的比例为0.05:100至1:100,优选为0.28:100至0.9:100,更优选为0.41:100至0.84:100。使用选自球磨机、高混机、立式、卧式、斜式混料机的混料装置进行混合。
依照根据本发明的方法II的另一个实施方案,在步骤(2-2)中,所述热处理的温度为300至700℃,优选为375至625℃,更优选为420至580℃。所述热处理的持续时间为2至10小时,优选为4至10小时,更优选为5至10小时。使用选自管式炉、气氛炉、马弗炉和辊道窑的加热装置进行热处理。
本发明得到的多位点掺杂NASICON结构固态电解质,其掺杂元素在热聚合过程中引入,达到元素与主相的原子级均匀混合。所制备的固态电解质成分均一,离子电导率高,平均粒径可以达到纳米级,晶格内部掺杂元素的存在使得其结构稳定性优异,其纳米级浆料可以长时间保持纯相状态,不出现物相分解。所制备的纳米级固态电解质浆料及粉体具有较高的比表面积,具备很强的比表面能,适用于复合固态电极及陶瓷涂覆隔膜的制备。
本发明提供制备NASICON结构固态电解质的凝胶浇注方法,具有操作简便、可控度高、易于大批量生产等特点。
本发明得到的NASICON型固态电解质包覆的多元正极材料,固态电解质在表面分布均匀,对其进行酸碱滴定处理会在pH=5-8之间出现较为明显的特征滴定峰。表面NASICON型固态电解质的包覆使得材料具有较高的容量,优异的倍率、循环以及热稳定性。
实施例
对比例1
将多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2在气氛炉中500℃热处理6小时,得到热处理后的LiNi 0.93Co 0.05Mn 0.02O 2材料。按照测试例3所述步骤测得样品在pH=4.6、pH=8.5处存在两个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为204mAh/g;1C循环50周容量保持率为85.6%。按照测试例5所述放热峰位置在194℃。
对比例2
将多元正极材料LiNi 0.6Co 0.1Mn 0.3O 2在气氛炉中550℃热处理6小时,得到热处理后的LiNi 0.6Co 0.1Mn 0.3O 2材料。按照测试例3所述步骤测得样品在pH=4.5、pH=8.3处存在两个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为196mAh/g;1C循环50周容量保持率为90.2%。按照测试例5所述放热峰位置在241℃。
对比例3
步骤(1-1):将Li 2CO 3、Al 2O 3、TiO 2、NH 4H 2PO 4的化合物按照化学计量比称量,在球磨混料机中900rmp混合6小时,得到混合料;
步骤(1-2):将步骤(1-1)得到的混合料在马弗炉中700℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体。
步骤(1-3):将步骤(1-2)得到的固态电解质前驱体在马弗炉中950℃烧结6小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3
步骤(1-4):将步骤(1-3)得到的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%、D 50=0.2μm 的纳米级浆料,对浆料进行冷冻干燥处理,得到粉体状、纳米级的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品主体为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为3.7×10 -5S/cm,滥用方式处理后样品出现大量氧化铝杂相,说明样品出现了物相转化,结构稳定性差。根据XRD测试数据计算得到的晶胞体积为1.31031nm 3
步骤(2-1):将步骤(1-4)得到的纳米级固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3粉体同多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2按照1.5:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中750℃热处理12小时,得到Li 1.3Al 0.3Ti 1.7(PO 4) 3粉体包覆的LiNi 0.93Co 0.05Mn 0.02O 2材料。
按照测试例3所述步骤测得样品在pH=4.8、pH=8.1、pH=9.0处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为207mAh/g;1C循环50周容量保持率为87.8%。按照测试例5所述放热峰位置在200℃。
对比例4
步骤(1-1):将Li 2CO 3、Al 2O 3、TiO 2、NH 4H 2PO 4的化合物按照化学计量比称量,在球磨混料机中900rmp混合6小时,得到混合料;
步骤(1-2):将步骤(1-1)得到的混合料在马弗炉中700℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体。
步骤(1-3):将步骤(1-2)得到的固态电解质前驱体在马弗炉中950℃烧结6小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.1Ca 0.1Al 0.3Ti 1.7(PO 4) 3
步骤(1-4):将步骤(1-3)得到的固态电解质Li 1.1Ca 0.1Al 0.3Ti 1.7(PO 4) 3配合纯水在砂磨机中1200rpm砂磨2小时,得到固含量50%、D 50=0.2μm 的纳米级浆料,对浆料进行冷冻干燥处理,得到粉体状、纳米级的固态电解质Li 1.1Ca 0.1Al 0.3Ti 1.7(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品主体为纯相,但存在部分AlPO 4杂峰,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为3.7×10 -5S/cm,滥用方式处理后样品出现大量氧化铝杂相,说明样品出现了物相转化,结构稳定性差。根据XRD测试数据计算得到的晶胞体积为1.3102nm 3,与标准晶胞体积的差值为0.00011nm 3
步骤(2-1):将步骤(1-4)得到的纳米级固态电解质Li 1.1Ca 0.1Al 0.3Ti 1.7(PO 4) 3粉体同多元正极材料LiNi 0.6Co 0.1Mn 0.3O 2按照1.5:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中750℃热处理12小时,得到Li 1.1Ca 0.1Al 0.3Ti 1.7(PO 4) 3粉体包覆的LiNi 0.6Co 0.1Mn 0.3O 2材料。
按照测试例3所述步骤测得样品在pH=4.5、pH=8.1、pH=8.6处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为194mAh/g;1C循环50周容量保持率为92.5%。按照测试例5所述放热峰位置在249℃。
实施例1
步骤(1-1):将Li 2CO 3、Al 2O 3、TiO 2、NH 4H 2PO 4的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中500℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中750℃烧结6小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为1.3×10 -4S/cm,滥用方式处理后样品出现少量氧化铝杂相,说明样品出现了物相转化,结构稳定性较差。根据XRD测试数据计算得到的晶胞体积为1.33nm 3,与标准晶胞体积的差值为0.01969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.3Al 0.3Ti 1.7(PO 4) 3粉体同多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2按照0.8:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中500℃热处理6小时,得到Li 1.3Al 0.3Ti 1.7(PO 4) 3粉体包覆的LiNi 0.93Co 0.05Mn 0.02O 2材料。
按照测试例3所述步骤测得样品在pH=6.1、pH=7.6、pH=9.0处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为210mAh/g。1C循环50周容量保持率为89.9%。按照测试例5所述步骤测得样品的DSC放热峰位置在205℃。
实施例2
步骤(1-1):将Li 2CO 3、MgCO 3、Al 2O 3、TiO 2、NH 4H 2PO 4的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中450℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理3min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中800℃烧结6小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.2Mg 0.05Al 0.3Ti 1.7(PO 4) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.2Mg 0.05Al 0.3Ti 1.7(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.2Mg 0.05Al 0.3Ti 1.7(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为5.2×10 -4S/cm,滥用方式处理后样品基本无杂相,结构稳定性较好。根据XRD测试数据计算得到的晶胞体积为1.35nm 3,与标准晶胞体积的差值为0.03969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.2Mg 0.05Al 0.3Ti 1.7(PO 4) 3粉体同多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2按照0.5:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中550℃热处理6小时,得到Li 1.2Mg 0.05Al 0.3Ti 1.7(PO 4) 3粉体包覆的LiNi 0.93Co 0.05Mn 0.02O 2材料。
按照测试例3所述步骤测得样品在pH=4.4、pH=6.1、pH=8.9处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为218mAh/g。1C循环50周容量保持率为90.4%。按照测试例5所述步骤测得样品的DSC放热峰位置在207℃。
实施例3
步骤(1-1):将Li 2CO 3、Al 2O 3、GeO 2、ZrO 2、NH 4H 2PO 4的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中400℃预烧结3小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中850℃烧结8小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.3Al 0.3Zr 0.05Ge 1.65(PO 4) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.3Al 0.3Zr 0.05Ge 1.65(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.3Al 0.3Zr 0.05Ge 1.65(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为7.6×10 -4S/cm,滥用方式处理后样品无杂相,结构稳定性优异。根据XRD测试数据计算得到的晶胞体积为1.325nm 3,与标准晶胞体积的差值为0.01469nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.3Al 0.3Zr 0.05Ge 1.65(PO 4) 3粉体同多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2按照0.5:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中550℃热处理6小时,得到Li 1.3Al 0.3Zr 0.05Ge 1.65(PO 4) 3粉体包覆的LiNi 0.93Co 0.05Mn 0.02O 2材料。
按照测试例3所述步骤测得样品在pH=4.5、pH=6.7、pH=9.1处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为220mAh/g。1C循环50周容量保持率为91.0%。按照测试例5所述步骤测得样品的DSC放热峰位置在208℃。
实施例4
步骤(1-1):将Li 2CO 3、MgCO 3、Al 2O 3、TiO 2、ZrO 2、NH 4H 2PO 4的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中550℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中800℃烧结6小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为9.5×10 -4S/cm,滥用方式处理后样品无杂相,结构稳定性优异。根据XRD测试数据计算得到的晶胞体积为1.33nm 3,与标准晶胞体积的差值为0.01969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3粉体同多元正极材料LiNi 0.93Co 0.05Mn 0.02O 2按照0.6:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中450℃热处理10小时,得到Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3粉体包覆的LiNi 0.93Co 0.05Mn 0.02O 2材料。
按照测试例3所述步骤测得样品在pH=4.8、pH=7.5、pH=10.4处存在三个滴定曲线,如图3所示。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为223mAh/g。1C循环50周容量保持率为91.8%按照测试例5所述步骤测得样品的DSC放热峰位置在210℃。
实施例5
步骤(1-1):将Li 2CO 3、MgCO 3、Al 2O 3、GeO 2、YO 2、NH 4H 2PO 4的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆 料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中500℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中850℃烧结8小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.2Mg 0.05Al 0.3Y 0.05Ge 1.65(PO 4) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.2Mg 0.05Al 0.3Y 0.05Ge 1.65(PO 4) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.2Mg 0.05Al 0.3Y 0.05Ge 1.65(PO 4) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为8.3×10 -4S/cm,滥用方式处理后样品无杂相,结构稳定性优异。根据XRD测试数据计算得到的晶胞体积为1.41nm 3,与标准晶胞体积的差值为0.09969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3粉体同多元正极材料LiNi 0.6Co 0.1Mn 0.3O 2按照0.6:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中450℃热处理10小时,得到Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4) 3粉体包覆的LiNi 0.6Co 0.1Mn 0.3O 2材料。
按照测试例3所述步骤测得样品在pH=4.9、pH=7.2、pH=8.8处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为202mAh/g。1C循环50周容量保持率为96.3%。按照测试例5所述步骤测得样品的DSC放热峰位置在260℃。
实施例6
步骤(1-1):将Li 2CO 3、MgCO 3、Sc 2O 3、ZrO 2、TiO 2、NH 4H 2PO 4、NH4Cl的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中500℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中850℃烧结8小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.2Mg 0.05Sc 0.3Zr 0.05Ti 1.65(PO 4) 2(ClO 2) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.2Mg 0.05Sc 0.3Zr 0.05Ti 1.65(PO 4) 2(ClO 2) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.2Mg 0.05Sc 0.3Zr 0.05Ti 1.65(PO 4) 2(ClO 2) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为5.1×10 -4S/cm,滥用方式处理后样品无杂相,结构 稳定性优异。根据XRD测试数据计算得到的晶胞体积为1.53nm 3,与标准晶胞体积的差值为0.21969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.2Mg 0.05Sc 0.3Zr 0.05Ti 1.65(PO 4) 2(ClO 2) 3粉体同多元正极材料LiNi 0.6Co 0.1Mn 0.3O 2按照0.6:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中450℃热处理10小时,得到Li 1.2Mg 0.05Sc 0.3Zr 0.05Ti 1.65(PO 4) 2(ClO 2) 3粉体包覆的LiNi 0.6Co 0.1Mn 0.3O 2材料。
按照测试例3所述步骤测得样品在pH=4.6、pH=6.9、pH=8.8处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为200mAh/g。1C循环50周容量保持率为96.5%。按照测试例5所述步骤测得样品的DSC放热峰位置在262℃。
实施例7
步骤(1-1):将Li 2CO 3、MgCO 3、Al 2O 3、ZrO 2、TiO 2、NH 4H 2PO 4、SiO 2的化合物按照化学计量比称量,加入一定量的纯水混合,然后将其在球磨设备中进行混料、破碎处理得到固含量50%的混合浆料A;将混合浆料A中加入55重量%的丙烯酰胺(单体)、(NH 4) 2S 2O 8(引发剂)和TEMED(催化剂),在搅拌装置中分散均匀,得到混合浆料B;
步骤(1-2):将混合浆料B浇注到匣钵容器中并在100℃鼓风烘箱中进行烘干并引发混合浆料B中物质的聚合反应,12小时后得到块体状的固态电解质前驱体A;
步骤(1-3):将步骤(2)得到的固态电解质前驱体A在马弗炉中500℃预烧结2小时,将烧结产物在破壁机中最高档位破碎处理5min,得到粉体状的固态电解质前驱体B。
步骤(1-4):将步骤(3)得到的固态电解质前驱体B在马弗炉中850℃烧结8小时,将烧结产物在气流磨中进行破碎处理,得到粉体状、微米级的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4)(SiO 3) 3
步骤(1-5):将步骤(4)得到的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4)(SiO 3) 3配合纯水在砂磨机中1000rpm砂磨2小时,得到固含量50%的纳米级浆料,对浆料进行冷冻干燥处理,并采用气流磨对干燥后得到的粉体进行进一步解离,得到粉体状、纳米级的固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4)(SiO 3) 3
将制备得到的固态电解质进行XRD表征发现样品为纯相,按照测试例1和测试例2所述步骤进行离子电导率和结构稳定性的测试。结果显示样品离子电导率为4.5×10 -4S/cm,滥用方式处理后样品无杂相,结构稳定性优异。根据XRD测试数据计算得到的晶胞体积为1.55nm 3,与标准晶胞体积的差值为0.23969nm 3
步骤(2-1):将步骤(1-5)得到的纳米级固态电解质Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4)(SiO 3) 3粉体同多元正极材料LiNi 0.6Co 0.1Mn 0.3O 2按照0.6:100的质量比例称量并一同放入高混机中混合均匀。
步骤(2-2):将步骤(2-1)得到的混合料在气氛炉中450℃热处理10小时,得到Li 1.2Mg 0.05Al 0.3Zr 0.05Ti 1.65(PO 4)(SiO 3) 3粉体包覆的LiNi 0.6Co 0.1Mn 0.3O 2材料。
按照测试例3所述步骤测得样品在pH=4.5、pH=7.5、pH=9.0处存在三个滴定曲线。按照测试例4所述步骤测得样品在固态电池中0.1C放电比容量为203mAh/g。1C循环50周容量保持率为96.0%。按照测试例5所述步骤测得样品的DSC放热峰位置在260℃。
测试例1
将上述对比例和实施例制备出的固态电解质样品各取10克,其中2克置于直径为11mm的模具中,在100MPa压强下压制成致密圆片,将 压好的片置于带盖的氧化铝坩埚中,用剩余的8克样品粉末将圆片覆盖均匀,在1200℃下烧结8小时,将圆片取出、抛光,得到烧结致密的锂镧锆氧固态电解质陶瓷片。将制备的固态电解质陶瓷片放置在电化学工作站中测试室温下交流阻抗,频率设置为0.01-10MPa,根据测试得到的阻抗数据,根据公式σ=L/RS(σ为电导率,L为陶瓷片厚度,R为阻抗值,S为陶瓷片面积)计算出样品对应的离子电导率,对应上述不同对比例和实施例的样品测试和计算结果见表1。
测试例2
将上述对比例和实施例制备出的固态电解质样品各取10克,分别放置在90克的100℃沸水中搅拌2小时。将搅拌后的样品蒸发、干燥,进行XRD的测试。
测试例3
称取5克的待测样品放入95克常温去离子水M水中搅拌5min。搅拌后的浆料通过带有滤纸的布氏漏斗抽滤,得到质量为M滤液的滤液。将所得滤液在Metrohm 888电位滴定仪中常温环境下进行滴定测试,得到滴定曲线。记录滴定曲线中等当点值EP x=V x,(x=1,2,3……)。
测试例4
将上述对比例和实施例制备出的固态电解质包覆多元正极材料样品同导电炭黑、PVDF、LiTFSI按照质量比90:3:5:2混合,加入适量的NMP,搅拌均匀后刮涂在铝箔上,在120℃鼓风烘箱中干燥1小时,冲成直径为11mm的正极极片;将PEO和LiTFSI(物质的量比EO:Li=12)溶解在乙腈中,搅拌12小时后,将得到的浆料浇注在聚四氟乙烯模具中,在50℃的烘箱中真空干燥10小时后将PEO电解质膜放在压机中热压5min后取出,冲成直径19mm的圆片型PEO电解质膜。以金属锂为负极,将制备的正极极片与PEO电解质膜在水含量与氧含量均小于5ppm 的Ar气手套箱内组装成2025型扣式全固态电池。将上述固态电池在3.0-4.3V、0.1C、60℃下进行充放电容量测试。在3.0-4.3V、1C、60℃下充放电50次进行充放电循环性能测试。
测试例5
将上述对比例和实施例制备出的固态电解质包覆多元正极材料样品同乙炔黑及聚偏二氟乙烯(PVDF)按照质量比95:2.5:2.5进行混合,涂覆在铝箔上并进行烘干处理,用100MPa的压力冲压成型为直径12mm、厚120μm的正极极片,然后将正极极片放入真空烘干箱中120℃烘干12小时。负极使用直径为17mm,厚度为1mm的Li金属片;隔膜使用厚度为25μm的聚乙烯多孔膜;电解液使用1mol/L的LiPF 6、碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的等量混合液。将正极极片、隔膜、负极极片及电解液在水含量与氧含量均小于5ppm的Ar气手套箱内组装成2025型扣式电池。将上述扣式电池在3.0-4.3V、0.2C、25℃下充放电2次然后充至满电态后拆解得到正极片,将正极片放在差热-热重测试仪中进行测试,得到样品对应的DSC曲线。
上述实施例中晶胞体积与标准值的差值均大于0.01,意味着对应NASICON型固态电解质中元素掺杂进入晶胞位置形成固溶体(依据vegard定律),而所述掺杂元素的价态与基体中元素价态不一致时,就会造成基体中以点缺陷(例如晶胞某位置少一个原子)的形式维持电荷平衡,这种点缺陷尤其是空位缺陷会增大锂离子的传输通道,提高离子电导率,有些则会引起晶胞内电场的重构,提高电子电导率。因而使得包覆层具有优异的离子和电子传输通道,有利于样品的容量和倍率发挥。因此实施例中样品容量显著优于对比例。
实施例样品中在ph=5-8之间存在滴定特征峰,出现该特征滴定峰意味着NASICON固态电解质在包覆过程中与基体界面处生成了Li 3PO 4,这是一种快离子导体,可以作为缓冲层来平衡NASICON固态电解质与 正极材料的电位差,缓解空间电荷层的产生,降低界面阻抗,从而更好地发挥正极材料的电化学性能。因此实施例中样品容量和循环保持率显著优于对比例。
实施例中样品DSC放热峰温度显著高于对比例,体现的是正极材料在充电态下的热失控温度的提高,说明NASICON固态电解质对正极材料基体做到了致密的包覆,并且结构稳定性优异,因为只有能同时完成上述两种效果,才能够延缓电解液与正极材料基体的副反应,尤其在充电态下保持结构的相对稳定,热失控温度以及对应安全性能的提高。
虽然描述了特定的实施方案,这些实施方案仅以示例性的方式给出,并不意味着限制本发明的范围。所附的权利要求及其等价物意味着覆盖落入本发明的范围和精神之内的所有的修改、替换和改变方案。

Claims (25)

  1. 符合下式的NASICON型固态电解质,
    Li xM 1 yM 2 zM 3 u(PO 4) w1(RO v) w2
    其中,
    M 1为至少一种选自Mg、Na、K的元素,
    M 2为至少一种选自Al、Ga、In、Y、Sc的元素,
    M 3为至少一种选自Ti、Zr、Ge的元素,
    R为至少一种选自Si、Cl、Br、S、Sb、Sn的元素,
    0≤x<5,优选为0.6≤x<3.2,更优选为1.0≤x<2.0,
    0≤y≤0.5,优选为0≤y≤0.3,更优选为0≤y≤0.1,特别优选为0.05,
    0≤z≤1,优选为0.2≤z≤0.7,更优选为0.2≤z≤0.4,特别优选为0.3,
    0≤u≤9,优选为0.9≤u≤5.4,更优选为1.4≤u≤3.2,特别优选为1.7,
    1≤v≤3,1≤w1≤3,0≤w2≤3,其条件是:阴离子总电荷数为9,
    其中所述NASICON型固态电解质根据XRD测试数据计算得到的晶胞体积与标准值1.31031nm 3的差值大于0.01nm 3
  2. 根据权利要求1所述的NASICON型固态电解质,其特征在于,所述NASICON型固态电解质的平均粒径D 50为0.01至5μm,优选为0.05至1μm,更优选为0.1至0.5μm。
  3. 根据权利要求1或2所述的NASICON型固态电解质,其特征在于,所述NASICON型固态电解质的比表面积>10m 2/g。
  4. 根据权利要求1至3之一所述的NASICON型固态电解质,其特征在于,所述NASICON型固态电解质的pH>5。
  5. 根据权利要求1至4之一所述的NASICON型固态电解质,其特征在于,所述NASICON型固态电解质的离子电导率>10 -4S/cm。
  6. 根据权利要求1至5之一所述的NASICON型固态电解质,其特征在于,所述NASICON型固态电解质的电子电导率>10 -10S/cm。
  7. 制备根据权利要求1至6之一所述的NASICON型固态电解质的方法,其包括以下步骤:
    (1-1)将NASICON型固态电解质的原料化合物与有机单体和溶剂混合,经破碎得到混合料A,然后加入引发剂和催化剂得到混合料B;
    (1-2)将所述混合料B浇注到容器中,并进行加热以引发聚合反应,得到块体状的固态电解质前驱体A;
    (1-3)将所述固态电解质前驱体A预烧结,经破碎得到粉体状的固态电解质前驱体B;
    (1-4)将所述固态电解质前驱体B烧结,经破碎得到粉体状、微米级的固态电解质A;及
    (1-5)将所述固态电解质A研磨得到纳米级粒度的浆料,经烘干得到粉体状、纳米级的NASICON型固态电解质。
  8. 根据权利要求7所述的方法,其特征在于,所述NASICON型固态电解质的原料化合物为各元素对应的氧化物、氢氧化物、硝酸盐、草酸盐、有机醇盐或碳酸盐。
  9. 根据权利要求7或8所述的方法,其特征在于,所述有机单体为选自丙烯酰胺(AM)、亚甲基双丙烯酰胺(MBAM)、苯乙烯、丁二烯和甲基丙烯酸甲酯中的一种或多种。
  10. 根据权利要求7至9之一所述的方法,其特征在于,所述溶剂为选自水、N-甲基-2-吡咯烷酮、酞酸酯、二元脂、长链醇和吡咯烷酮中的一种或多种。
  11. 根据权利要求7至10之一所述的方法,其特征在于,所述引发剂为选自过氧化苯甲酰、(NH 4) 2S 2O 8和K 2S 2O 8中的一种或多种。
  12. 根据权利要求7至11之一所述的方法,其特征在于,所述催化剂为N,N,N′N′-四甲基乙二胺(TEMED)。
  13. 根据权利要求7至12之一所述的方法,其特征在于,所述聚合反应的温度为80至200℃,优选为90至150℃,更优选为96至120℃。
  14. 根据权利要求7至13之一所述的方法,其特征在于,所述预烧结的温度为300至600℃,优选为350至575℃,更优选为380至560℃,所述预烧结的持续时间为2至6小时,优选为2至5小时,更优选为2至4小时。
  15. 根据权利要求7至14之一所述的方法,其特征在于,所述烧结的温度为650至900℃,优选为700至875℃,优选为730至860℃,所述烧结的持续时间为4至10小时,优选为5至9小时,更优选为6至8小时。
  16. 根据权利要求7至15之一所述的方法,其特征在于,所述浆料的平均粒度D 50为5nm至500nm,优选为10nm至300nm,更优选为50nm至100nm。
  17. 通过根据权利要求7至16之一所述的方法制得的NASICON型固态电解质。
  18. 经包覆的正极材料,其特征在于,所述正极材料的基体被根据权利要求1至6及17之一所述的NASICON型固态电解质包覆。
  19. 根据权利要求18所述的经包覆的正极材料,其特征在于,基于所述正极材料的基体,所述NASICON型固态电解质的质量分数为0.05至1.00%,优选为0.28至0.9%,更优选为0.41至0.84%。
  20. 根据权利要求18或19所述的经包覆的正极材料,其特征在于,所述经包覆的正极材料经酸碱滴定处理在pH=5-8之间出现特征滴定峰。
  21. 根据权利要求18至20之一所述的经包覆的正极材料,其特征在于,所述正极材料的基体为一种或多种选自镍酸锂、钴酸锂、锰酸锂、镍锰酸锂、镍钴锰酸锂、镍钴铝酸锂、镍钴锰铝酸锂、富锂锰基及其衍生物的层状氧化物,或磷酸铁锂、磷酸锰铁锂。
  22. 制备根据权利要求18至21之一所述的经包覆的正极材料的方法,其包括以下步骤:
    (2-1)将所述NASICON型固态电解质与所述正极材料的基体混合,(2-2)经热处理得到所述经包覆的正极材料。
  23. 根据权利要求22所述的方法,其特征在于,所述NASICON型固态电解质与所述正极材料的基体的比例为0.05:100至1:100,优选为0.28:100至0.9:100,更优选为0.41:100至0.84:100。
  24. 根据权利要求22或23所述的方法,其特征在于,所述热处理的温度为300至700℃,优选为375至625℃,更优选为420至580℃。
  25. 根据权利要求22至24之一所述的方法,其特征在于,所述热处理的持续时间为2至10小时,优选为4至10小时,更优选为5至10小时。
PCT/CN2022/092263 2022-05-11 2022-05-11 Nasicon型固态电解质、用其包覆的正极材料及制备方法 WO2023056748A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092263 WO2023056748A1 (zh) 2022-05-11 2022-05-11 Nasicon型固态电解质、用其包覆的正极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092263 WO2023056748A1 (zh) 2022-05-11 2022-05-11 Nasicon型固态电解质、用其包覆的正极材料及制备方法

Publications (1)

Publication Number Publication Date
WO2023056748A1 true WO2023056748A1 (zh) 2023-04-13

Family

ID=85803151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092263 WO2023056748A1 (zh) 2022-05-11 2022-05-11 Nasicon型固态电解质、用其包覆的正极材料及制备方法

Country Status (1)

Country Link
WO (1) WO2023056748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525564A (zh) * 2024-01-04 2024-02-06 东北大学 一种纳米固态电解质材料及其制备方法和极片及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845830A (zh) * 2016-09-20 2018-03-27 株式会社东芝 固体电解质、锂电池、电池包、及车辆
WO2019067675A1 (en) * 2017-09-27 2019-04-04 Imerys Usa, Inc. ELECTROCHEMICAL COMPOSITIONS AND THEIR PREPARATION
CN110858643A (zh) * 2018-08-24 2020-03-03 湖南杉杉新能源有限公司 一种快离子导体改性锂离子电池正极材料及其制备方法
CN110862259A (zh) * 2019-11-25 2020-03-06 贵州梅岭电源有限公司 一种共沉淀法制备的高电导固体电解质
CN114267872A (zh) * 2021-12-13 2022-04-01 溧阳天目先导电池材料科技有限公司 改性nasicon结构钠离子固态电解质材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845830A (zh) * 2016-09-20 2018-03-27 株式会社东芝 固体电解质、锂电池、电池包、及车辆
WO2019067675A1 (en) * 2017-09-27 2019-04-04 Imerys Usa, Inc. ELECTROCHEMICAL COMPOSITIONS AND THEIR PREPARATION
CN110858643A (zh) * 2018-08-24 2020-03-03 湖南杉杉新能源有限公司 一种快离子导体改性锂离子电池正极材料及其制备方法
CN110862259A (zh) * 2019-11-25 2020-03-06 贵州梅岭电源有限公司 一种共沉淀法制备的高电导固体电解质
CN114267872A (zh) * 2021-12-13 2022-04-01 溧阳天目先导电池材料科技有限公司 改性nasicon结构钠离子固态电解质材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BEAUPAIN JEAN PHILIPPE, WAETZIG KATJA, OTTO SVENJA-KATHARINA, HENSS ANJA, JANEK JÜRGEN, MALAKI MICHAEL, POKLE ANUJ, MÜLLER JULIAN,: "Reaction of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 in Co-Sintered Composite Cathodes for Solid-State Batteries", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 40, 13 October 2021 (2021-10-13), US , pages 47488 - 47498, XP093057130, ISSN: 1944-8244, DOI: 10.1021/acsami.1c11750 *
DASHJAV ENKHTSETSEG, HERMANN RAPHAEL, TIETZ FRANK: "High-temperature Neutron Diffraction of Li 1.2 Al 0.2 Ti 1.8 P 3 O 12", DIFFUSION FUNDAMENTALS, 31 December 2014 (2014-12-31), pages 1 - 2, XP093057127 *
WOJCIECH ZAJAC ET AL.: "Towards Control over Redox Behaviour and Ionic Conductivity in LiTi2(PO4)3 Fast Lithium-Ion Conductor", ACTA MATERIALIA, vol. 140, 31 August 2017 (2017-08-31), XP085211942, ISSN: 1359-6454, DOI: 10.1016/j.actamat.2017.08.064 *
WOODCOCK D A, LIGHTFOOT P: "Comparison of the structural behaviour of the low thermal expansion NZP phases MTi sub 2 (PO sub 4 ) sub 3 (M = Li, Na, K)", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 9, no. 11, 1 November 1999 (1999-11-01), GB , pages 2907 - 2911, XP093057125, ISSN: 0959-9428 *
杜青霞 (DU, QINGXIA): "全固态锂离子电池固体电解质及正极材料的制备及表征 (Syntheses and Characterization of Solid Electrolyte and Cathode Materials for All-Solid-State Lithium-Ion Batteries)", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑 (CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II), no. 10, 15 October 2016 (2016-10-15), ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525564A (zh) * 2024-01-04 2024-02-06 东北大学 一种纳米固态电解质材料及其制备方法和极片及电池
CN117525564B (zh) * 2024-01-04 2024-03-19 东北大学 一种纳米固态电解质材料及其制备方法和极片及电池

Similar Documents

Publication Publication Date Title
JP2016506032A (ja) 正極活物質、この製造方法、及びこれを含むリチウム二次電池
Yang et al. Synthesis and electrochemical properties of Zn-doped, carbon coated lithium vanadium phosphate cathode materials for lithium-ion batteries
WO2022025212A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
TWI651272B (zh) 一種富鋰-鋰鎳錳氧化物陰極複合材料的製備方法及其用途
Madram et al. Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO 4/C cathode material for lithium-ion batteries
Thirunakaran et al. Studies on chromium/aluminium-doped manganese spinel as cathode materials for lithium-ion batteries—A novel chelated sol–gel synthesis
Gu et al. Improving the electrochemical properties of Mn-rich Li1. 20 [Mn0. 54Ni0. 13Co0. 13] O2 by Nb and F co-doping
WO2023056748A1 (zh) Nasicon型固态电解质、用其包覆的正极材料及制备方法
Liu et al. Extremely rapid synthesis of disordered LiNi0. 5Mn1. 5O4 with excellent electrochemical performance
JP7187896B2 (ja) リチウムニッケル複合酸化物前駆体混合物、及びリチウムニッケル複合酸化物の製造方法
JP2012166966A (ja) B型酸化チタンとその製造方法、およびそれを用いたリチウムイオン電池
CN116789094A (zh) Nasicon型固态电解质、用其包覆的正极材料及制备方法
KR20210134752A (ko) 전구체, 전구체의 제조 방법, 정극재, 정극재의 제조 방법, 및 리튬이온 2 차 전지
JP7121165B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP5872279B2 (ja) スピネル型リチウム・マンガン複合酸化物
Dai et al. Synthesis and electrochemical study of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries by polymer network gel method
CN104733711B (zh) 一种磷酸锂钒/磷酸锂铁/碳复合材料的制法及其用途
JP2014044897A (ja) リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
CN113161526A (zh) 一种正极材料及其制备方法和应用
JPH08185863A (ja) リチウム二次電池用正極活物質およびそれを用いた二次電池
Wang et al. Diversified Li1. 2Ni0. 2Mn0. 6O2 nanoparticles from birnessite towards application specificity and enhancement in lithium-ion batteries
CN112038624A (zh) 一种利用钽离子对LiMn2O4进行掺杂改性的方法
JP3610439B2 (ja) 非水リチウム二次電池用正極活物質およびリチウム二次電池
JP7284244B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN114927674B (zh) 钴酸锂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877774

Country of ref document: EP

Kind code of ref document: A1