WO2023054066A1 - 薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物 - Google Patents

薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物 Download PDF

Info

Publication number
WO2023054066A1
WO2023054066A1 PCT/JP2022/035000 JP2022035000W WO2023054066A1 WO 2023054066 A1 WO2023054066 A1 WO 2023054066A1 JP 2022035000 W JP2022035000 W JP 2022035000W WO 2023054066 A1 WO2023054066 A1 WO 2023054066A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
alkyl group
carbon atoms
raw material
molybdenum
Prior art date
Application number
PCT/JP2022/035000
Other languages
English (en)
French (fr)
Inventor
雅子 畑▲瀬▼
圭介 武田
千瑛 満井
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to KR1020247014231A priority Critical patent/KR20240064026A/ko
Publication of WO2023054066A1 publication Critical patent/WO2023054066A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Definitions

  • the present invention relates to a raw material for thin film formation containing a molybdenum compound having a specific structure, a method for producing a thin film, a thin film, and a molybdenum compound.
  • thin films containing molybdenum atoms can be used for electronic devices, semiconductor devices, liquid crystal members, coating materials, heat-resistant materials, alloys, aircraft members, and the like.
  • Examples of the method for producing the thin film include a sputtering method, an ion plating method, a coating pyrolysis method, a MOD method such as a sol-gel method, and a chemical vapor deposition method.
  • a sputtering method an ion plating method
  • a coating pyrolysis method a coating pyrolysis method
  • a MOD method such as a sol-gel method
  • a chemical vapor deposition method suitability for mass production, possibility of hybrid integration, etc.
  • chemical vapor deposition including atomic layer deposition hereinafter sometimes simply referred to as "ALD"
  • the CVD method is the optimum manufacturing process.
  • Patent Document 1 discloses molybdenum-oxo-tetra(sec-butoxide) and molybdenum-oxo-tetra(tert-butoxide).
  • Patent Documents 2 and 3 disclose bis(tert-butylimide)-bis(dimethylamido)molybdenum and bis(tert-butylimide)-bis(diethylamido)molybdenum.
  • the important property required for the compound (precursor) used as the raw material for thin film formation is the ability to produce a high-quality thin film.
  • conventional molybdenum compounds that have been used as thin film forming materials have not sufficiently satisfied this point.
  • an object of the present invention is to provide a molybdenum compound that can produce a high-quality thin film when used as a raw material for thin film formation.
  • the present invention is a raw material for thin film formation containing a molybdenum compound represented by the following general formula (1).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms
  • L 1 is the following general formula (L-1) or (L-2).
  • n represents an integer of 1 to 4.
  • R 1 represents a fluorine atom-containing alkyl group having 1 to 5 carbon atoms.
  • each of R 2 to R 12 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms, and * represents a bond.
  • the present invention is a method for producing a thin film, which comprises forming a thin film containing molybdenum atoms on the surface of a substrate using the raw material for forming a thin film.
  • the present invention is a molybdenum-containing thin film produced using the above thin film-forming material.
  • the present invention is a molybdenum compound represented by the following general formula (2).
  • R 21 represents an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms
  • L 2 is the following general formula (L-3) or (L-4).
  • m represents an integer of 1 to 4.
  • R 21 is a fluorine atom-containing alkyl group having 1 to 8 fluorine atoms and having 1 to 5 carbon atoms represents.
  • R 22 to R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms, and * represents a bond.
  • the present invention it is possible to provide a raw material for thin film formation that can produce a thin film containing molybdenum atoms. Moreover, according to the present invention, it is possible to provide a method for producing a high-quality thin film containing molybdenum atoms.
  • FIG. 1 is a schematic diagram showing an example of an ALD apparatus used in the thin film manufacturing method according to the present invention.
  • FIG. 2 is a schematic diagram showing another example of an ALD apparatus used in the thin film manufacturing method according to the present invention.
  • FIG. 3 is a schematic diagram showing still another example of the ALD apparatus used in the thin film manufacturing method according to the present invention.
  • FIG. 4 is a schematic diagram showing still another example of the ALD apparatus used in the thin film manufacturing method according to the present invention.
  • the raw material for thin film formation of the present invention is characterized by containing the molybdenum compound represented by the general formula (1).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms
  • L 1 represents the following general formula (L-1) or (L -2)
  • n represents an integer of 1-4.
  • R 1 represents a fluorine atom-containing alkyl group having 1 to 5 carbon atoms.
  • each of R 2 to R 12 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms. represents a group, and * represents a bond.
  • alkyl group having 1 to 5 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, isopentyl group, and neopentyl group. etc.
  • fluorine-containing alkyl group having 1 to 5 carbon atoms examples include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trifluoroethyl group, a trifluoropropyl group, a dimethyltrifluoroethyl group, (trifluoro methyl)tetrafluoroethyl group, hexafluorotertiarybutyl group, di-(trifluoromethyl)ethyl group, nonafluorotertiarybutyl group and the like.
  • R 1 to R 12 , L 1 and n are appropriately selected according to the thin film manufacturing method to be applied.
  • the compound When used in a method for producing a thin film having a step of vaporizing a compound, the compound should have at least one property selected from high vapor pressure, low melting point, and high thermal stability.
  • R 1 to R 12 , L 1 and n are preferably selected, and more preferably R 1 to R 12 , L 1 and n are selected so as to provide a compound with high thermal stability.
  • R 1 is an alkyl group having 2 to 4 carbon atoms or a A fluorine atom-containing alkyl group is preferred.
  • n 1 to 3
  • an alkyl group having 3 to 4 carbon atoms is preferable, a secondary butyl group or a tertiary butyl group is more preferable, a tertiary butyl group is particularly preferable
  • n is 4, preferably a fluorine atom-containing alkyl group having 3 to 4 carbon atoms, more preferably a fluorine atom-containing alkyl group having 4 carbon atoms, dimethyltrifluoroethyl group, di-(trifluoromethyl)ethyl group or a nonafluoro-tertiary-butyl group is particularly preferred, and a dimethyltrifluoroethyl group is most preferred.
  • R 1 is a fluorine atom-containing alkyl group
  • the number of fluorine atoms in R 1 is from 1 to 1, because the compound has high thermal stability and can produce high-quality thin films with good productivity when used as a raw material for thin film formation. 12 is preferred, 1 to 8 are more preferred, 1 to 4 are particularly preferred, and 3 is most preferred.
  • the compound has a low melting point, high thermal stability, and can produce a high-quality thin film with good productivity when used as a raw material for thin film formation.
  • n is preferably 3 or 4, more preferably 4.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 2 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as raw materials for thin film formation.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 3 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • each of R 4 and R 5 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferred, and a hydrogen atom is particularly preferred.
  • the compound has a high vapor pressure and high thermal stability, and when used as a raw material for thin film formation, can produce a high- quality thin film with good productivity.
  • An alkyl group having 1 to 5 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 8 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 9 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • each of R 10 and R 11 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. is preferred, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferred, and a hydrogen atom is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is used as R 12 because the compound has a high vapor pressure and high thermal stability, and when used as a raw material for forming a thin film, a high-quality thin film can be produced with good productivity.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • R 1 to R 12 , L 1 and n can be arbitrarily determined depending on the solubility in the solvent used, the thin film formation reaction, etc. can be selected.
  • Preferred specific examples of the molybdenum compound represented by the general formula (1) include the following compound No. 1 to No. 120 can be mentioned.
  • the following compound No. 1 to No. at 120 “Me” represents a methyl group, “Et” represents an ethyl group, “iPr” represents an isopropyl group, “iBu” represents an isobutyl group, “sBu” represents a secondary butyl group; tBu” represents a tertiary butyl group.
  • No. Compounds of 4, 10, 11, 12, 50, 85, 86, 90, 91 and 109 are preferred. From the viewpoint of the thermal stability of the compound and the productivity of the thin film, No. Compounds No. 10, 11, 12, 86, 90 and 91 are more preferred. More preferred are compounds of Nos. 10, 11 and 12; 10 compounds are most preferred.
  • the method for producing the molybdenum compound represented by the above general formula (1) is not particularly limited, and the compound is produced by applying well-known reactions.
  • a production method in the case of a molybdenum compound in which n is 4 in the general formula (1), for example, molybdenum tetrachloride oxide, a fluorine atom-containing alcohol compound having a corresponding structure, and alkyllithium are reacted in a diethyl ether solvent. After drying, the molybdenum compound represented by the general formula (1) can be obtained by performing solvent exchange, filtration, desolvation and purification by distillation.
  • Examples of the alcohol compound include 2-trifluoromethyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, nonafluoro-tert-butyl alcohol, 1,1 , 1-trifluoroethanol and the like.
  • Examples of the alcohol compound 1 include isopropyl alcohol, sec-butyl alcohol, and tert-butyl alcohol.
  • Examples of the alcohol compound 2 include 2-dimethylaminoethanol, 1-dimethylamino-2-propanol, 1-dimethylamino-2-methyl-2-propanol, 1-dimethylamino-3,3-dimethylbutane-2- ol, 1-methoxy-2-methyl-2-propanol, and the like.
  • the raw material for thin film formation of the present invention contains the molybdenum compound represented by the above general formula (1) as a thin film precursor. Its form varies depending on the manufacturing process to which the thin film forming raw material is applied. For example, when producing a thin film containing only molybdenum atoms as metal, the raw material for thin film formation of the present invention does not contain metal compounds and metalloid compounds other than the molybdenum compound represented by the general formula (1). On the other hand, when producing a thin film containing two or more kinds of metals and/or metalloids, the raw material for thin film formation of the present invention contains a desired metal in addition to the molybdenum compound represented by the general formula (1).
  • a compound and/or a compound containing a metalloid (hereinafter sometimes referred to as “another precursor”) can also be contained.
  • the thin film-forming raw material of the present invention may further contain an organic solvent and/or a nucleophilic reagent, as described later.
  • the physical properties of the molybdenum compound represented by the general formula (1), which is a precursor are suitable for the CVD method. It is useful as a raw material for CVD).
  • the molybdenum compound represented by the above general formula (1) has an ALD window, so the raw material for thin film formation of the present invention can be used by an atomic layer deposition (hereinafter sometimes referred to as "ALD") method.
  • ALD atomic layer deposition
  • the thickness of the thin film is preferably 0.1-100 nm, more preferably 0.3-30 nm.
  • the thickness of the thin film obtained per cycle by atomic layer deposition is preferably 0.01 to 10 nm, more preferably 0.03 to 3 nm.
  • the raw material for thin film formation of the present invention is a raw material for chemical vapor deposition
  • its form is appropriately selected according to the method of transportation and supply of the CVD method used.
  • the raw material for CVD is heated and/or depressurized in a container in which the raw material is stored (hereinafter sometimes referred to as a "raw material container") to be vaporized into a raw material gas,
  • a gas that introduces the raw material gas into a film formation chamber in which the substrate is installed (hereinafter sometimes referred to as a “deposition reaction section”) together with a carrier gas such as argon, nitrogen, or helium that is used as necessary.
  • Transportation method transporting raw materials for CVD in a liquid or solution state to a vaporization chamber, vaporizing them by heating and/or reducing pressure in the vaporization chamber to obtain a raw material gas, and introducing the raw material gas into the film formation chamber;
  • the molybdenum compound itself represented by the general formula (1) can be used as the CVD raw material.
  • the molybdenum compound itself represented by the general formula (1) or a solution obtained by dissolving the compound in an organic solvent can be used as the raw material for CVD.
  • These CVD raw materials may further contain other precursors, nucleophilic reagents, and the like.
  • the multi-component CVD method there is a method of vaporizing and supplying CVD raw materials independently for each component (hereinafter sometimes referred to as a “single-source method"), and a method in which a multi-component raw material is prepared in advance with a desired composition.
  • a method of vaporizing and supplying mixed raw materials hereinafter sometimes referred to as “cocktail sauce method”
  • a mixture of the molybdenum compound represented by the general formula (1) and other precursors or a mixed solution obtained by dissolving the mixture in an organic solvent can be used as the raw material for CVD.
  • This mixture or mixed solution may further contain a nucleophilic reagent or the like.
  • organic solvent examples include acetic esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; Ketones such as butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, oc
  • the raw material for thin film formation of the present invention is a mixed solution with the above organic solvent, the thin film can be produced with high productivity. It is preferably 0 mol/liter, more preferably 0.05 mol/liter to 1.0 mol/liter.
  • the total amount of the precursor means, when the thin film forming raw material of the present invention does not contain metal compounds and metalloid compounds other than the molybdenum compound represented by the general formula (1), ) means the amount of the molybdenum compound represented by the above general formula (1), and the raw material for thin film formation of the present invention contains a compound containing other metals and / or metalloids in addition to the molybdenum compound represented by the above general formula (1) When a compound (another precursor) is contained, it means the total amount of the molybdenum compound represented by the general formula (1) and the other precursor.
  • Other precursor metal species include lithium, sodium, potassium, magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, rhodium, iridium, nickel.
  • alcohol compounds used as organic ligands for the other precursors mentioned above include methanol, ethanol, propanol, isopropyl alcohol, butanol, secondary butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, pentyl alcohol, isopentyl alcohol, 3 Alkyl alcohols such as higher pentyl alcohol; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2-(2-methoxyethoxy)ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1,1 -dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2-(2-methoxyethoxy)-1,1 -ether alcohols such as dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-s-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol; dimethyl
  • Glycol compounds used as organic ligands for other precursors mentioned above include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, 2,2- Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol, 2 -ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexanediol, 2,4-dimethyl-2,4-pentanediol and the like.
  • ⁇ -diketone compounds used as organic ligands for the other precursors mentioned above include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, heptane-2,4-dione, 2 -methylheptane-3,5-dione, 5-methylheptane-2,4-dione, 6-methylheptane-2,4-dione, 2,2-dimethylheptane-3,5-dione, 2,6-dimethyl heptane-3,5-dione, 2,2,6-trimethylheptane-3,5-dione, 2,2,6,6-tetramethylheptane-3,5-dione, octane-2,4-dione, 2 , 2,6-trimethyloctane-3,5-dione, 2,6-dimethyloctane-3,5-dione, 2,9-dimethylnonane
  • Cyclopentadiene compounds used as organic ligands for other precursors mentioned above include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, sec-butylcyclopentadiene, and isobutylcyclopentadiene. pentadiene, tert-butylcyclopentadiene, dimethylcyclopentadiene, tetramethylcyclopentadiene, and the like.
  • organic amine compounds used as organic ligands for other precursors mentioned above include methylamine, ethylamine, propylamine, isopropylamine, butylamine, sec-butylamine, tertiary-butylamine, isobutylamine, dimethylamine, diethylamine, and dipropyl.
  • the other precursors mentioned above are known in the art, and their production methods are also known.
  • the aforementioned inorganic salt of the metal or its hydrate is reacted with an alkali metal alkoxide of the alcohol compound.
  • the precursor can be produced.
  • metal inorganic salts or hydrates thereof include metal halides, nitrates, and the like
  • alkali metal alkoxides include sodium alkoxide, lithium alkoxide, potassium alkoxide, and the like.
  • the other precursor a compound whose thermal decomposition and/or oxidative decomposition behavior is similar to that of the molybdenum compound represented by the general formula (1).
  • the behavior of thermal decomposition and / or oxidative decomposition is similar to that of the molybdenum compound represented by the general formula (1), and in addition, the chemical reaction during mixing It is preferable to use a compound that does not cause a change that impairs the desired properties as a precursor due to, for example, the ability to produce a high-quality thin film with good productivity.
  • the raw material for forming a thin film of the present invention may contain a nucleophilic reagent in order to impart stability to the molybdenum compound represented by the general formula (1) and other precursors, if necessary.
  • a nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8 and dicyclohexyl-24-crown-8.
  • crown ethers such as dibenzo-24-crown-8, ethylenediamine, N,N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7- Polyamines such as pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine, cyclic polyamines such as cyclam and cyclene, pyridine, pyrrolidine, piperidine, morpholine, N -methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, heterocyclic compounds such as oxathiolane, methyl acetoacetate, ethyl acetoacetate, acetoacetate-2- ⁇ -
  • the raw material for thin film formation of the present invention should contain as little as possible impurity metal elements, impurity halogens such as impurity chlorine, and impurity organics other than the constituent components. Since high-quality thin films can be produced with good productivity, the impurity metal element content is preferably 100 ppb or less, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less. In particular, when used as an LSI gate insulating film, gate film, or barrier layer, it is necessary to reduce the content of alkali metal elements and alkaline earth metal elements that affect the electrical characteristics of the resulting thin film.
  • the impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and most preferably 1 ppm or less, so that high-quality thin films can be produced with good productivity.
  • the total amount of organic impurities is preferably 500 ppm or less, more preferably 50 ppm or less, and most preferably 10 ppm or less, so that high-quality thin films can be produced with good productivity.
  • Moisture causes particle generation in raw materials for chemical vapor deposition and particle generation during thin film formation. is preferably removed.
  • the water content of each of the precursor, organic solvent and nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
  • the raw material for thin film formation of the present invention preferably contains particles as little as possible.
  • the number of particles larger than 0.3 ⁇ m in 1 mL of the liquid phase is preferably 100 or less, and is larger than 0.2 ⁇ m. More preferably, the number of particles per mL of liquid phase is 1000 or less, and most preferably the number of particles larger than 0.2 ⁇ m per mL of liquid phase is 100 or less.
  • the method for producing a thin film of the present invention is a method for forming a thin film containing molybdenum atoms on the surface of a substrate using the raw material for forming a thin film of the present invention, and more specifically, the thin film of the present invention.
  • a method for producing a thin film can be used, in which a thin film containing molybdenum atoms is formed on the surface of a substrate using a raw material gas obtained by vaporizing a forming raw material.
  • the production method of the present invention includes a raw material introduction step of introducing a raw material gas obtained by vaporizing the above-mentioned thin film forming raw material into a film formation chamber in which the substrate is installed, and a general gas contained in the raw material gas. and a thin film forming step of decomposing and/or chemically reacting the molybdenum compound represented by formula (1) to form a thin film containing molybdenum atoms on the surface of the substrate.
  • a raw material gas obtained by vaporizing the thin film forming raw material of the present invention and a reactive gas used as necessary are introduced into a film forming chamber (processing atmosphere) in which a substrate is installed, and then, A CVD method is preferred in which the precursor in the source gas is decomposed and/or chemically reacted on the substrate to grow and deposit a thin film containing molybdenum atoms on the substrate surface.
  • the raw material transportation and supply method, deposition method, manufacturing conditions, manufacturing equipment, etc. are not particularly limited, and well-known general conditions and methods can be used.
  • Examples of the reactive gas used as necessary include oxidizing gases such as oxygen, ozone and water vapor, hydrocarbon compounds such as methane and ethane, and reducing gases such as hydrogen, carbon monoxide and organometallic compounds. , organic amine compounds such as monoalkylamines, dialkylamines, trialkylamines and alkylenediamines, and nitriding gases such as hydrazine and ammonia. These reactive gases may be used alone, or two or more of them may be mixed and used.
  • the molybdenum compound represented by the general formula (1) has a property of reacting well with reducing gases, and has a property of reacting particularly well with hydrogen. Therefore, it is preferable to use a reducing gas as the reactive gas, and it is particularly preferable to use hydrogen.
  • examples of the transportation and supply method include the gas transportation method, the liquid transportation method, the single source method, the cocktail source method, and the like.
  • the above deposition methods include thermal CVD in which a thin film is deposited by reacting a raw material gas or a raw material gas with a reactive gas only with heat, plasma CVD using heat and plasma, optical CVD using heat and light, and thermal CVD. , optical plasma CVD that uses light and plasma, and ALD that divides the deposition reaction of CVD into elementary processes and performs stepwise deposition at the molecular level.
  • Examples of materials for the substrate include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide; glass; metals such as metal molybdenum.
  • Examples of the shape of the substrate include plate-like, spherical, fibrous, and scale-like.
  • the substrate surface may be flat or may have a three-dimensional structure such as a trench structure.
  • the above manufacturing conditions include reaction temperature (substrate temperature), reaction pressure, deposition rate, and the like.
  • the reaction temperature is preferably 25 to 700° C., more preferably 100 to 400° C., since a high-quality thin film can be produced with good productivity.
  • the reaction pressure is preferably from 10 Pa to atmospheric pressure in the case of thermal CVD or optical CVD, and from 10 Pa to 2,000 Pa in the case of using plasma, since high-quality thin films can be produced with good productivity.
  • the deposition rate can be controlled by the raw material supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure. If the deposition rate is high, the properties of the resulting thin film may deteriorate, and if it is low, problems may occur in productivity. /min is more preferred. Further, in the case of the ALD method, the number of cycles is controlled so as to obtain a desired film thickness.
  • the above manufacturing conditions include the temperature and pressure when vaporizing the thin film forming raw material to form a raw material gas.
  • the step of vaporizing the thin film forming raw material to obtain the raw material gas may be performed in the raw material container or in the vaporization chamber. In any case, it is preferable to evaporate the thin film forming material of the present invention at 0°C to 150°C.
  • the pressure in the raw material container and the pressure in the vaporization chamber are both 1 Pa or higher. 10,000 Pa is preferred.
  • the thin film manufacturing method of the present invention is preferably a method that employs the ALD method.
  • the production method includes forming a precursor thin film on the surface of the substrate using the thin film forming raw material between the raw material introducing step and the thin film forming step.
  • the thin film forming step is preferably a step of reacting the precursor thin film with a reactive gas to form a thin film containing molybdenum atoms on the surface of the substrate.
  • the thin film manufacturing method includes an exhaust step of exhausting unreacted compound gas.
  • the precursor thin film forming step may include a step of depositing the thin film forming raw material on the surface of the substrate.
  • each step of the above ALD method will be described in detail, taking as an example the case of forming a metal molybdenum film, which is a type of thin film containing molybdenum atoms.
  • the raw material introduction step described above is performed.
  • the preferred temperature and pressure when using the thin film forming raw material as the raw material gas are the same as those described in the thin film manufacturing method by the CVD method.
  • a precursor thin film is formed on the substrate surface by bringing the raw material gas introduced into the film forming chamber into contact with the surface of the substrate (precursor thin film forming step).
  • heat may be applied by heating the substrate or heating the film forming chamber.
  • the substrate temperature at this time is preferably 25 to 700.degree. C., more preferably 100 to 400.degree.
  • the pressure of the system (inside the film formation chamber) when this step is performed is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.
  • the other precursor is also deposited on the surface of the substrate together with the molybdenum compound of the present invention.
  • Exhaust step the gas of the thin film forming raw material that has not deposited on the surface of the substrate is exhausted from the deposition chamber (exhaust step).
  • Exhaust methods include a method of purging the inside of the system with an inert gas such as nitrogen, helium, and argon, a method of evacuating the inside of the system by reducing the pressure, and a method combining these methods.
  • the degree of pressure reduction is preferably from 0.01 Pa to 300 Pa, more preferably from 0.01 Pa to 100 Pa, since a high-quality thin film can be produced with good productivity.
  • a reducing gas is introduced as a reactive gas into the deposition chamber, and metal molybdenum is removed from the precursor thin film obtained in the previous precursor thin film formation step by the action of the reducing gas or the action of the reducing gas and heat.
  • a film is formed (molybdenum-containing thin film forming step).
  • the temperature at which heat is applied in this step is preferably 25 to 700° C., more preferably 100 to 400° C., since a high-quality thin film can be produced with good productivity. Since a high-quality thin film can be produced with good productivity, the pressure of the system (inside the deposition chamber) when this step is performed is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa. Since the molybdenum compound represented by the general formula (1) has good reactivity with reducing gases, it is possible to obtain a high-quality metallic molybdenum film with a low residual carbon content.
  • thin film deposition is performed by a series of operations consisting of the raw material introduction step, precursor thin film formation step, evacuation step, and molybdenum-containing thin film formation step.
  • This cycle may be repeated multiple times until a thin film of the required thickness is obtained.
  • energy such as plasma, light, or voltage may be applied, or a catalyst may be used.
  • the timing of applying the energy and the timing of using the catalyst are not particularly limited. It may be when the system is evacuated, when a reducing gas is introduced in the molybdenum-containing thin film formation step, or during each of the above steps.
  • annealing may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere in order to obtain better electrical characteristics after thin film deposition. If embedding is required, a reflow process may be provided.
  • the temperature in this case is 200°C to 1,000°C, preferably 250°C to 500°C.
  • a well-known ALD apparatus can be used for the thin film manufacturing method of the present invention.
  • Specific examples of the ALD apparatus include an apparatus capable of supplying a precursor by bubbling as shown in FIGS. 1 and 3, and an apparatus having a vaporization chamber as shown in FIGS. 3 and 4, there is also an apparatus capable of performing plasma processing on reactive gases.
  • the ALD apparatus includes an apparatus capable of supplying a precursor by bubbling as shown in FIGS. 1 and 3, and an apparatus having a vaporization chamber as shown in FIGS. 3 and 4, there is also an apparatus capable of performing plasma processing on reactive gases.
  • a deposition reaction section not only a single-wafer type apparatus equipped with a film formation chamber (hereinafter referred to as a "deposition reaction section") as shown in FIGS. can also These devices can also be used as CVD devices.
  • the thin film produced using the raw material for thin film formation of the present invention can be made of desired types such as metals, oxide ceramics, nitride ceramics, glass, etc. by appropriately selecting other precursors, reactive gases and production conditions. It can be a thin film.
  • the thin film is known to exhibit electrical properties, optical properties, etc., and is applied to various uses. Examples thereof include metal thin films, metal oxide thin films, metal nitride thin films, alloy thin films, and metal-containing composite oxide thin films. These thin films are used, for example, in the production of electrode materials for memory elements represented by DRAM elements, wiring materials, resistive films, diamagnetic films used in the recording layers of hard disks, catalyst materials for polymer electrolyte fuel cells, and the like. Widely used.
  • the compound of the present invention is a molybdenum compound represented by the above general formula (2).
  • the compound of the present invention has a low melting point, a high vapor pressure, excellent thermal stability, can be applied to the ALD method, and is a suitable compound as a precursor for a thin film manufacturing method having a vaporization step such as the ALD method. .
  • R 21 represents an alkyl group having 1 to 5 carbon atoms or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms
  • L 2 represents general formula (L-3) or (L -4)
  • m represents an integer of 1-4.
  • R 21 represents a fluorine atom-containing alkyl group having 1 to 8 fluorine atoms and having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms represented by R 21 is the same alkyl group as exemplified as the alkyl group having 1 to 5 carbon atoms represented by R 1 in the general formula (1). is mentioned.
  • Examples of the C 1-5 fluorine atom-containing alkyl group represented by R 21 include the C 1-5 fluorine atom-containing alkyl group represented by R 1 in the general formula (1). and the same alkyl groups as above.
  • the fluorine atom-containing alkyl group having 1 to 5 carbon atoms and having 1 to 8 fluorine atoms represented by R 21 includes a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trifluoroethyl group, A trifluoropropyl group, a dimethyltrifluoroethyl group, a (trifluoromethyl)tetrafluoroethyl group, a hexafluorotertiarybutyl group, a di-(trifluoromethyl)ethyl group, and the like.
  • each of R 22 to R 32 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorine atom-containing alkyl group having 1 to 5 carbon atoms. represents a group, and * represents a bond.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R 22 to R 32 include the alkyl group having 1 to 5 carbon atoms represented by R 2 to R 12 in the general formula (1). and the same alkyl groups as above.
  • R 21 to R 32 , L 2 and m are appropriately selected according to the thin film manufacturing method to be applied.
  • the compound When used in a method for producing a thin film having a step of vaporizing a compound, the compound should have at least one property selected from high vapor pressure, low melting point, and high thermal stability.
  • R 21 to R 32 , L 2 and m are preferably selected, and more preferably R 21 to R 32 , L 2 and m are selected so as to provide a compound with high thermal stability. stomach.
  • R 21 is an alkyl group having 2 to 4 carbon atoms or an alkyl group having 2 to 4 carbon atoms.
  • a fluorine atom-containing alkyl group is preferred.
  • an alkyl group having 3 to 4 carbon atoms is preferable, a secondary butyl group or a tertiary butyl group is more preferable, a tertiary butyl group is particularly preferable, and m is When 4, a fluorine atom-containing alkyl group having 3 to 4 carbon atoms is preferable, a fluorine atom-containing alkyl group having 4 carbon atoms is more preferable, and a dimethyltrifluoroethyl group is particularly preferable.
  • R 21 is a fluorine atom-containing alkyl group
  • the number of fluorine atoms in R 21 is from 1 to 1, because the compound has high thermal stability and can produce a high-quality thin film with good productivity when used as a raw material for thin film formation.
  • 12 is preferred, 1 to 8 are more preferred, 1 to 4 are particularly preferred, and 3 is most preferred.
  • the compound has a low melting point, high thermal stability, and can produce a high-quality thin film with good productivity when used as a raw material for thin film formation.
  • m is preferably 3 or 4, more preferably 4, because the compound has high thermal stability and can produce a high-quality thin film with good productivity when used as a raw material for thin film formation.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 22 because the vapor pressure of the compound is high, and high-quality thin films can be produced with high productivity when used as a raw material for thin film formation.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 23 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • each of R 24 and R 25 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. is preferred, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferred, and a hydrogen atom is particularly preferred.
  • the compound has a high vapor pressure and high thermal stability, and when used as a raw material for thin film formation , can produce a high- quality thin film with good productivity.
  • An alkyl group having 1 to 5 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 28 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is preferable as R 29 because the vapor pressure of the compound is high, and high-quality thin films can be produced with good productivity when used as a raw material for thin film formation.
  • each of R 30 and R 31 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. is preferred, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferred, and a hydrogen atom is particularly preferred.
  • a hydrogen atom or an alkyl group having 1 to 5 carbon atoms is used as R 32 because the compound has a high vapor pressure and high thermal stability, and when used as a raw material for thin film formation, a high-quality thin film can be produced with good productivity.
  • An alkyl group having 1 to 5 carbon atoms is more preferred, an alkyl group having 1 to 3 carbon atoms is even more preferred, and a methyl group is particularly preferred.
  • R 21 to R 32 , L 2 and m are arbitrarily selected according to the solubility in the solvent used, the thin film formation reaction, etc. can be selected.
  • molybdenum compound represented by the general formula (2) examples include the compound No. 1 to No. 11 and no. 13 to No. 120 can be mentioned.
  • the molybdenum compound represented by the above general formula (2) can be produced by the same method as for the molybdenum compound represented by the above general formula (1).
  • Examples 1-10 below show the results of preparing the molybdenum compounds of the present invention.
  • Example 1 Compound No. Production of 4 1.00 g (0.0039 mol) of molybdenum tetrachloride oxide and 12 ml of diethyl ether were placed in a 100 mL three-necked flask under an Ar atmosphere and stirred at room temperature. A solution prepared from 1.58 g (0.0158 mol) of 1,1,1-trifluoroethanol, 15 ml of diethyl ether, and 10 ml (0.0158 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice cooling. . After dropping, the temperature was returned to room temperature, the mixture was stirred for 14 hours, and the solvent was exchanged with hexane, followed by filtration. The solvent was removed from the resulting filtrate, and the residue was distilled at a bath temperature of 110° C. and a pressure of 50 Pa to give compound No. 2 as a yellow solid. Got 4. The yield was 0.11 g and the yield was 5.5%.
  • Example 2 Compound no. Production of 10 Under an Ar atmosphere, 0.82 g (0.00322 mol) of molybdenum tetrachloride oxide and 15 ml of diethyl ether were placed in a 100 mL three-necked flask and stirred at room temperature. A solution prepared from 1.65 g (0.0129 mol) of 2-trifluoromethyl-2-propanol, 10 ml of diethyl ether, and 8.2 ml (0.0129 mol) of n-butyllithium-hexane solution was placed therein under ice cooling. Dripped.
  • Example 3 Compound No. Production of 11 In a 100 mL three-necked flask under Ar atmosphere, 0.61 g (0.0024 mol) of molybdenum tetrachloride oxide and 10 mL of diethyl ether were charged and stirred at room temperature. In it, 1.74 g (0.0096 mol) of 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 10 ml of diethyl ether, 6.1 ml of n-butyllithium-hexane solution ( 0.0096 mol) was added dropwise under ice cooling.
  • Example 4 Compound no. Production of 12 In a 100 mL three-necked flask under Ar atmosphere, 0.48 g (0.0019 mol) of molybdenum tetrachloride oxide and 10 mL of diethyl ether were charged and stirred at room temperature. A solution prepared from 1.79 g (0.0076 mol) of nonafluoro-tert-butyl alcohol, 10 ml of diethyl ether, and 4.8 ml (0.0076 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice cooling.
  • Example 5 Compound No. Production of 50 1.17 g (0.0046 mol) of molybdenum tetrachloride oxide and 19 ml of diethyl ether were placed in a 100 mL three-necked flask under an Ar atmosphere and stirred at room temperature. A solution prepared from 1.37 g (0.018 mol) of sec-butyl alcohol, 14 ml of diethyl ether, and 11.7 ml (0.0018 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice-cooling. After dropping, the temperature was returned to room temperature, the mixture was stirred for 18 hours, and the solvent was exchanged with hexane, followed by filtration.
  • Example 6 Compound no. Production of 85 1.21 g (0.0048 mol) of molybdenum tetrachloride oxide and 15 ml of diethyl ether were placed in a 100 mL three-necked flask under an Ar atmosphere and stirred at room temperature. A solution prepared from 1.41 g (0.0191 mol) of tert-butyl alcohol, 20 ml of diethyl ether, and 12.2 ml (0.0191 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice-cooling.
  • Example 7 Compound no. Production of 86 In a 100 mL three-necked flask under an Ar atmosphere, 2.93 g (0.0115 mol) of molybdenum tetrachloride oxide and 48 ml of diethyl ether were charged and stirred at room temperature. A solution prepared from 3.43 g (0.0460 mol) of tert-butyl alcohol, 35 ml of diethyl ether, and 29.3 ml (0.0460 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice-cooling.
  • Example 8 Compound no. Production of 90 In a 100 mL three-necked flask under an Ar atmosphere, 1.17 g (0.0046 mol) of molybdenum tetrachloride oxide and 20 ml of diethyl ether were charged and stirred at room temperature. A solution prepared from 1.37 g (0.0184 mol) of tert-butyl alcohol, 15 ml of diethyl ether, and 11.7 ml (0.0184 mol) of n-butyllithium-hexane solution was added dropwise to the solution under ice-cooling.
  • Example 9 Compound no. Production of 91 In a 100 mL three-necked flask under Ar atmosphere, 1.13 g (0.0045 mol) of molybdenum tetrachloride oxide and 19 ml of diethyl ether were charged and stirred at room temperature. A solution prepared from 1.33 g (0.018 mol) of tert-butyl alcohol, 14 ml of diethyl ether, and 11.4 ml (0.0018 mol) of n-butyllithium-hexane solution was added dropwise thereto under ice cooling. After dropping, the temperature was returned to room temperature, the mixture was stirred for 18 hours, and the solvent was exchanged with hexane, followed by filtration.
  • Example 10 Compound No. Production of 109 Under Ar atmosphere, 1.17 g (0.0046 mol) of molybdenum tetrachloride oxide and 20 ml of diethyl ether were placed in a 100 mL three-necked flask and stirred at room temperature. A solution prepared from 1.37 g (0.0184 mol) of tert-butyl alcohol, 15 ml of diethyl ether, and 11.7 ml (0.00184 mol) of n-butyllithium-hexane solution was added dropwise to the mixture under ice cooling. After dropping, the temperature was returned to room temperature, the mixture was stirred for 15 hours, and the solvent was exchanged with hexane, followed by filtration.
  • the thermal decomposition initiation temperatures of Comparative Compounds 1 and 2 are 130° C.
  • the compounds of the present invention obtained in Examples 1 to 10 all have thermal decomposition initiation temperatures of is a compound having a temperature of 170° C. or higher, it was found to be a compound with high thermal stability.
  • Compound No. Since compounds 10, 11, 12, 50, 86, 90 and 91 have a thermal decomposition initiation temperature of 195° C. or higher, they were found to have higher thermal stability.
  • Detection limit is 0.1 atm%.
  • the carbon content in the metal molybdenum film obtained by the ALD method is 4 atm% or more in Comparative Examples 1 and 2, while it is less than the detection limit of 0.1 atm% in Examples 11 to 20.
  • a high-quality thin film can be obtained by using the compound of the present invention.
  • the film thickness of the obtained thin film is 2.4 nm or less in Comparative Examples 1 and 2, it is 3.3 nm or more in Examples 11 to 20, and high productivity is achieved by using the compound of the present invention. It was shown that a thin film can be obtained at Among them, in Examples 12, 13, 14, 17, 18, and 19, the thickness of the obtained thin film was 4.0 nm or more, and the metal molybdenum film was obtained with higher productivity.
  • the film thickness of the obtained thin film was 5.0 nm or more, and the metal molybdenum film was obtained with higher productivity.
  • the film thickness of the obtained thin film was 5.5 nm or more, and the metal molybdenum film was obtained with particularly high productivity.
  • the compound of the present invention has high thermal stability, and when it is used as a raw material for thin film formation, a thin film can be obtained with high productivity. shown.
  • Compound No. 10, 11, 12, 86, 90 and 91 have high thermal stability, and when used as raw materials for thin film formation, thin films can be obtained with higher productivity. shown to be superior.
  • compound no. 10, 11 and 12 have high thermal stability, and when used as raw materials for thin film formation, thin films can be obtained with particularly high productivity, so they are particularly excellent as raw materials for thin film formation. shown.
  • the thin film forming material of the present invention is particularly suitable for the ALD method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、下記一般式(1)で表されるモリブデン化合物を含有する薄膜形成用原料、該薄膜形成材料を用いた薄膜の形成方法、特定の構造を有するモリブデン化合物を提供する。(式中、R1は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L1は下記一般式(L-1)又は(L-2)で表される基を表し、nは1~4の整数を表す。但し、nが4である場合、R1は炭素原子数1~5のフッ素原子含有アルキル基を表す。)(式中、R2~R12は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。)

Description

薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物
 本発明は、特定の構造を有するモリブデン化合物を含有する薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物に関する。
 モリブデン原子を含有する薄膜は、電子デバイス、半導体デバイス、液晶部材、被覆材、耐熱材、合金、航空機の部材などに使用され得ることが知られている。
 上記の薄膜の製造法としては、スパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、化学気相成長法等が挙げられるが、組成制御性、段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能である等、多くの長所を有しているので、原子層堆積(以下、単に「ALD」と記載することもある)法を含む化学気相成長(以下、単に「CVD」と記載することもある)法が最適な製造プロセスである。
 化学気相成長法に用いられるモリブデン原子供給源として、様々な原料が多数報告されている。例えば、特許文献1には、モリブデン-オキソ-テトラ(sec-ブトキシド)やモリブデン-オキソ-テトラ(tert-ブトキシド)が開示されている。また、特許文献2及び3には、ビス(tert-ブチルイミド)-ビス(ジメチルアミド)モリブデンやビス(tert-ブチルイミド)-ビス(ジエチルアミド)モリブデンが開示されている。
特表2017-532385号公報 特表2016-516892号公報 特開2018-150627号公報
 CVD法等の化合物を気化させて薄膜を形成する方法において、薄膜形成原料として用いられる化合物(プレカーサ)に要求される重要な性質は、高品質な薄膜を製造できることである。しかしながら、薄膜形成材料として用いられてきた従来のモリブデン化合物は、この点を充分に満足していなかった。
 従って、本発明は、薄膜形成用原料として用いた際に高品質な薄膜を製造できる、モリブデン化合物を提供することを目的とする。
 本発明者らは、検討を重ねた結果、特定の構造を有するモリブデン化合物が上記課題を解決し得ることを知見し、本発明に到達した。
 すなわち、本発明は、下記一般式(1)で表されるモリブデン化合物を含有する薄膜形成用原料である。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L1は下記一般式(L-1)又は(L-2)で表される基を表し、nは1~4の整数を表す。但し、nが4である場合、R1は炭素原子数1~5のフッ素原子含有アルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R2~R12は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。)
 本発明は、上記薄膜形成用原料を用いて、基体の表面にモリブデン原子を含有する薄膜を形成する、薄膜の製造方法である。
 本発明は、上記薄膜形成材料を用いて製造されるモリブデン含有薄膜である。
 本発明は、下記一般式(2)で表されるモリブデン化合物である。
Figure JPOXMLDOC01-appb-C000007
(式中、R21は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L2は下記一般式(L-3)又は(L-4)で表される基を表し、mは1~4の整数を表す。但し、mが4である場合、R21はフッ素原子数が1~8である炭素原子数1~5のフッ素原子含有アルキル基を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、R22~R32は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。)
 本発明によれば、モリブデン原子を含有する薄膜を製造することができる薄膜形成用原料を提供することができる。また、本発明によれば、モリブデン原子を含有する高品質な薄膜を製造する方法を提供することができる。
図1は、本発明に係る薄膜の製造方法に用いられるALD装置の一例を示す概要図である。 図2は、本発明に係る薄膜の製造方法に用いられるALD装置の別の例を示す概要図である。 図3は、本発明に係る薄膜の製造方法に用いられるALD装置の更に別の例を示す概要図である。 図4は、本発明に係る薄膜の製造方法に用いられるALD装置の更に別の例を示す概要図である。
 本発明の薄膜形成用原料は、上記一般式(1)で表されるモリブデン化合物を含有することを特徴とする。
 上記一般式(1)において、R1は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L1は下記一般式(L-1)又は(L-2)で表される基を表し、nは1~4の整数を表す。但し、nが4である場合、R1は炭素原子数1~5のフッ素原子含有アルキル基を表す。
 上記一般式(L-1)及び(L-2)において、R2~R12は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。
 上記「炭素原子数1~5のアルキル基」として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、二級ブチル基、三級ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などが挙げられる。
 上記「炭素原子数1~5のフッ素原子含有アルキル基」として、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、ジメチルトリフルオロエチル基、(トリフルオロメチル)テトラフルオロエチル基、ヘキサフルオロターシャリーブチル基、ジ-(トリフルオロメチル)エチル基、ノナフルオロターシャリーブチル基などが挙げられる。
 上記一般式(1)、(L-1)及び(L-2)において、R1~R12、L1及びnは、適用される薄膜の製造方法に応じて適宜選択される。化合物を気化させる工程を有する薄膜の製造方法に用いる場合には、蒸気圧が高いこと、融点が低いこと、及び熱安定性が高いことから選択される少なくとも1つの性質を有する化合物となるようにR1~R12、L1及びnを選択することが好ましく、熱安定性が高い化合物となるように、R1~R12、L1及びnを選択することがより好ましい。
 化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R1としては炭素原子数2~4のアルキル基又は炭素原子数2~4のフッ素原子含有アルキル基が好ましい。より具体的に、nが1~3である場合は、炭素原子数3~4のアルキル基が好ましく、二級ブチル基又は三級ブチル基がより好ましく、三級ブチル基が特に好ましく、nが4である場合は、炭素原子数3~4のフッ素原子含有アルキル基が好ましく、炭素原子数4のフッ素原子含有アルキル基がより好ましく、ジメチルトリフルオロエチル基、ジ-(トリフルオロメチル)エチル基又はノナフルオロターシャリーブチル基が特に好ましく、ジメチルトリフルオロエチル基が最も好ましい。化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R1がフッ素原子含有アルキル基である場合、R1のフッ素原子数は1~12が好ましく、1~8がより好ましく、1~4が特に好ましく、3が最も好ましい。
 化合物の融点が低く、熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、L1としては一般式(L-1)で表される基が好ましい。化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、nとしては3又は4が好ましく、4がより好ましい。
 化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R2としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R3としては水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子又はメチル基が更に好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R4及びR5としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、熱安定が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R6及びR7としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。
 化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R8としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R9としては水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子又はメチル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R10及びR11としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、熱安定が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R12としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。
 また、気化工程を伴わないMOD法による薄膜の製造方法に用いる場合には、R1~R12、L1及びnは、使用される溶媒に対する溶解性、薄膜形成反応等に応じて、任意に選択することができる。
 上記一般式(1)で表されるモリブデン化合物の好ましい具体例としては、下記化合物No.1~No.120が挙げられる。なお、下記化合物No.1~No.120において、「Me」はメチル基を表し、「Et」はエチル基を表し、「iPr」はイソプロピル基を表し、「iBu」はイソブチル基を表し、「sBu」は二級ブチル基を表し、tBu」は三級ブチル基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記の化合物のうち、No.4、10、11、12、50、85、86、90、91及び109の化合物が好ましい。化合物の熱安定性及び薄膜の生産性の観点から、No.10、11、12、86、90及び91の化合物がより好ましく、No.10、11及び12の化合物が更に好ましく、No.10の化合物が最も好ましい。
 上記一般式(1)で表されるモリブデン化合物の製造方法は特に制限されることはなく、当該化合物は周知の反応を応用して製造される。製造方法として、一般式(1)においてnが4であるモリブデン化合物の場合、例えば、ジエチルエーテル溶媒下、四塩化酸化モリブデンと、対応する構造のフッ素原子含有アルコール化合物と、アルキルリチウムと、を反応させた後、溶媒交換、濾過、脱溶媒及び蒸留精製を行い、上記一般式(1)で表されるモリブデン化合物を得ることができる。
 前記アルコール化合物として、例えば、2-トリフルオロメチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、ノナフルオロ-tert-ブチルアルコール、1,1,1-トリフルオロエタノール等が挙げられる。
 別の製造方法として、一般式(1)においてnが1~3であるモリブデン化合物の場合、例えば、ジエチルエーテル溶媒下、四塩化酸化モリブデンと、対応する構造のアルコール化合物1と、アルキルリチウムと、を反応させた後、溶媒交換、濾過、脱溶媒を行い、その後、ジエチルエーテル溶媒下で、対応する構造のアルコール化合物2と反応させた後、脱溶媒及び蒸留精製を行い、上記一般式(1)で表されるモリブデン化合物を得ることができる。
 前記アルコール化合物1として、例えば、イソプロピルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等が挙げられる。
 前記アルコール化合物2として、例えば、2-ジメチルアミノエタノール、1-ジメチルアミノ-2-プロパノール、1-ジメチルアミノ-2-メチル-2-プロパノール、1-ジメチルアミノ-3,3-ジメチルブタン-2-オール、1-メトキシ-2-メチル-2-プロパノール等が挙げられる。
 本発明の薄膜形成用原料は、薄膜のプレカーサとして、上記一般式(1)で表されるモリブデン化合物を含有する。その形態は、該薄膜形成用原料が適用される製造プロセスによって異なる。例えば、金属としてモリブデン原子のみを含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記一般式(1)で表されるモリブデン化合物以外の金属化合物及び半金属化合物を含まない。一方、2種類以上の金属及び/又は半金属を含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記一般式(1)で表されるモリブデン化合物に加えて、所望の金属を含む化合物及び/又は半金属を含む化合物(以下、「他のプレカーサ」と記載することもある)を含有することもできる。本発明の薄膜形成用原料は、後述するように、更に、有機溶剤及び/又は求核性試薬を含有してもよい。上記説明のとおり、プレカーサである上記一般式(1)で表されるモリブデン化合物の物性がCVD法に好適であるので、本発明の薄膜形成用原料は、化学気相成長用原料(以下、「CVD用原料」と記載することもある)として有用である。なかでも、上記一般式(1)で表されるモリブデン化合物は、ALDウィンドウを有することから、本発明の薄膜形成用原料は、原子層堆積(以下、「ALD」と記載することもある)法に特に好適である。薄膜の厚みとしては、0.1~100nmが好ましく、0.3~30nmがより好ましい。原子層堆積法により、1サイクル当たりで得られる薄膜の厚みとしては、0.01~10nmが好ましく、0.03~3nmがより好ましい。
 本発明の薄膜形成用原料が化学気相成長用原料である場合、その形態は使用されるCVD法の輸送供給方法等の手法により適宜選択されるものである。
 上記の輸送供給方法としては、CVD用原料を該原料が貯蔵される容器(以下、「原料容器」と記載することもある)中で加熱及び/又は減圧することにより気化させて原料ガスとし、必要に応じて用いられるアルゴン、窒素、ヘリウム等のキャリアガスと共に、該原料ガスを基体が設置された成膜チャンバー内(以下、「堆積反応部」と記載することもある)へと導入する気体輸送法、CVD用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて原料ガスとし、該原料ガスを成膜チャンバー内へと導入する液体輸送法がある。気体輸送法の場合は、上記一般式(1)で表されるモリブデン化合物そのものをCVD原料とすることができる。液体輸送法の場合は、上記一般式(1)で表されるモリブデン化合物そのもの又は該化合物を有機溶剤に溶かした溶液をCVD用原料とすることができる。これらのCVD原料は更に他のプレカーサや求核性試薬等を含んでいてもよい。
 また、多成分系のCVD法においては、CVD用原料を各成分独立で気化、供給する方法(以下、「シングルソース法」と記載することもある)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、「カクテルソース法」と記載することもある)がある。カクテルソース法の場合、上記一般式(1)で表されるモリブデン化合物と他のプレカーサとの混合物若しくは該混合物を有機溶剤に溶かした混合溶液をCVD用原料とすることができる。この混合物や混合溶液は更に求核性試薬等を含んでいてもよい。
 上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることができる。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられる。これらの有機溶剤は、溶質の溶解性、使用温度と沸点、引火点の関係等に応じて、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。
 本発明の薄膜形成用原料が、上記の有機溶剤との混合溶液である場合、薄膜を生産性よく製造できることから、薄膜形成用原料中におけるプレカーサ全体の量が0.01モル/リットル~2.0モル/リットルであることが好ましく、0.05モル/リットル~1.0モル/リットルであることがより好ましい。
 ここで、プレカーサ全体の量とは、本発明の薄膜形成用原料が、上記一般式(1)で表されるモリブデン化合物以外の金属化合物及び半金属化合物を含まない場合は、上記一般式(1)で表されるモリブデン化合物の量を意味し、本発明の薄膜形成用原料が、上記一般式(1)で表されるモリブデン化合物に加えて他の金属を含む化合物及び/又は半金属を含む化合物(他のプレカーサ)を含有する場合は、上記一般式(1)で表されるモリブデン化合物と他のプレカーサとの合計量を意味する。
 また、多成分系のCVD法の場合において、上記一般式(1)で表されるモリブデン化合物と共に用いられる他のプレカーサとしては、特に制限を受けず、CVD用原料に用いられている周知一般のプレカーサを用いることができる。
 上記の他のプレカーサとしては、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物等の有機配位子として用いられる化合物からなる群から選択される1種類又は2種類以上と、珪素や金属との化合物が挙げられる。他のプレカーサの金属種としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、ジルコニウム、ハフニウム、バナジウム、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、アルミニウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテニウム又はルテチウムが挙げられる。
 上記の他のプレカーサの有機配位子として用いられるアルコール化合物としては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、2級ブチルアルコール、イソブチルアルコール、3級ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、3級ペンチルアルコール等のアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-s-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノール等のエーテルアルコール類;ジメチルアミノエタノール、エチルメチルアミノエタノール、ジエチルアミノエタノール、ジメチルアミノ-2-ペンタノール、エチルメチルアミノ-2―ペンタノール、ジメチルアミノ-2-メチル-2―ペンタノール、エチルメチルアミノ-2-メチル-2-ペンタノール、ジエチルアミノ-2-メチル-2-ペンタノール等のジアルキルアミノアルコール類等が挙げられる。
 上記の他のプレカーサの有機配位子として用いられるグリコール化合物としては、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。
 上記の他のプレカーサの有機配位子として用いられるβ-ジケトン化合物としては、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、5-メチルヘプタン-2,4-ジオン、6-メチルヘプタン-2,4-ジオン、2,2-ジメチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオン、2,2,6-トリメチルヘプタン-3,5-ジオン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン、オクタン-2,4-ジオン、2,2,6-トリメチルオクタン-3,5-ジオン、2,6-ジメチルオクタン-3,5-ジオン、2,9-ジメチルノナン-4,6-ジオン、2-メチル-6-エチルデカン-3,5-ジオン、2,2-ジメチル-6-エチルデカン-3,5-ジオン等のアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオン等のフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオン等のエーテル置換β-ジケトン類等が挙げられる。
 上記の他のプレカーサの有機配位子として用いられるシクロペンタジエン化合物としては、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、第2ブチルシクロペンタジエン、イソブチルシクロペンタジエン、第3ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエン等が挙げられる。
 上記の他のプレカーサの有機配位子として用いられる有機アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、第2ブチルアミン、第3ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン等が挙げられる。
 上記の他のプレカーサは、当該技術分野において公知であり、その製造方法も公知である。製造方法の一例を挙げれば、有機配位子としてアルコール化合物を用いた場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プレカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、金属のハロゲン化物、硝酸塩等を挙げることができ、アルカリ金属アルコキシドとしては、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。
 シングルソース法の場合は、上記の他のプレカーサとして、熱分解及び/又は酸化分解の挙動が上記一般式(1)で表されるモリブデン化合物と類似している化合物を用いることが好ましい。カクテルソース法の場合は、上記の他のプレカーサとして、熱分解及び/又は酸化分解の挙動が上記一般式(1)で表されるモリブデン化合物と類似していることに加え、混合時の化学反応等によりプレカーサとしての所望の特性を損なう変化を起こさない化合物を用いることが、高品質な薄膜を生産性よく製造できることから好ましい。
 また、本発明の薄膜形成用原料は、必要に応じて、上記一般式(1)で表されるモリブデン化合物並びに他のプレカーサの安定性を付与するため、求核性試薬を含有してもよい。該求核性試薬としては、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられる。高品質な薄膜を生産性よく製造できることから、これら求核性試薬の使用量は、プレカーサ全体の量1モルに対して0.1モル~10モルであることが好ましく、1~4モルであることがより好ましい。
 本発明の薄膜形成用原料には、これを構成する成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分が極力含まれないようにする。高品質な薄膜を生産性よく製造できることから、不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素及びアルカリ土類金属元素の含有量を少なくすることが必要である。高品質な薄膜を生産性よく製造できることから、不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下が最も好ましい。高品質な薄膜を生産性よく製造できることから、不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が最も好ましい。また、水分は、化学気相成長用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プレカーサ、有機溶剤及び求核性試薬については、それぞれ使用の前にできる限り水分を取り除くことが好ましい。プレカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下であることが好ましく、1ppm以下であることがより好ましい。
 また、本発明の薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにすることが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1mL中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1mL中に1000個以下であることがより好ましく、0.2μmより大きい粒子の数が液相1mL中に100個以下であることが最も好ましい。
 次に、本発明の薄膜形成用原料を用いた薄膜の製造方法について説明する。本発明の薄膜の製造方法は、上述の本発明の薄膜形成用原料を用いて、基体の表面にモリブデン原子を含有する薄膜を形成する製造方法であり、より具体的には、本発明の薄膜形成用原料を気化させて得られる原料ガスを用い、基体の表面にモリブデン原子を含有する薄膜を形成する、薄膜の製造方法を用いることができる。好ましくは、本発明の製造方法が、上述の薄膜形成用原料を気化させて得られる原料ガスを、基体が設置された成膜チャンバー内に導入する原料導入工程と、前記原料ガスに含まれる一般式(1)で表されるモリブデン化合物を分解及び/又は化学反応させて前記基体の表面にモリブデン原子を含有する薄膜を形成する薄膜形成工程とを含む。具体的には、本発明の薄膜形成用原料を気化させた原料ガス、及び必要に応じて用いられる反応性ガスを、基体が設置された成膜チャンバー内(処理雰囲気)に導入し、次いで、原料ガス中のプレカーサを基体上で分解及び/又は化学反応させてモリブデン原子を含有する薄膜を基体表面に成長、堆積させるCVD法であることが好ましい。原料の輸送供給方法、堆積方法、製造条件、製造装置等については、特に制限を受けるものではなく、周知一般の条件及び方法を用いることができる。
 上記の必要に応じて用いられる反応性ガスとしては、例えば、酸素、オゾン、水蒸気等の酸化性ガス、メタン、エタン等の炭化水素化合物、水素、一酸化炭素、有機金属化合物等の還元性ガス、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等の窒化性ガス等が挙げられる。これらの反応性ガスは、単独で用いてもよいし、二種類以上を混合して用いてもよい。上記一般式(1)で表されるモリブデン化合物は、還元性ガスと良好に反応する性質を有しており、水素と特に良好に反応する性質を有している。そのため、反応性ガスとしては、還元性ガスを用いることが好ましく、水素を用いることが特に好ましい。
 また、上記の輸送供給方法としては、前述した気体輸送法、液体輸送法、シングルソース法、カクテルソース法等が挙げられる。
 また、上記の堆積方法としては、原料ガス又は原料ガスと反応性ガスを熱のみにより反応させ薄膜を堆積させる熱CVD、熱とプラズマを使用するプラズマCVD、熱と光を使用する光CVD、熱、光及びプラズマを使用する光プラズマCVD、CVDの堆積反応を素過程に分け、分子レベルで段階的に堆積を行うALDが挙げられる。
 上記基体の材質としては、例えば、シリコン;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属モリブデン等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。
 また、上記の製造条件としては、反応温度(基体温度)、反応圧力、堆積速度等が挙げられる。高品質な薄膜を生産性よく製造できることから、反応温度については、25~700℃が好ましく、100℃~400℃がより好ましい。また、高品質な薄膜を生産性よく製造できることから、反応圧力は、熱CVD又は光CVDの場合、10Pa~大気圧が好ましく、プラズマを使用する場合、10Pa~2,000Paが好ましい。
 また、堆積速度は、原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力によりコントロールすることができる。堆積速度は、大きいと得られる薄膜の特性が悪化する場合があり、小さいと生産性に問題を生じる場合があるので、0.01nm/分~100nm/分が好ましく、0.1nm/分~50nm/分がより好ましい。また、ALD法の場合は、所望の膜厚が得られるようにサイクルの回数でコントロールされる。
 更に、上記の製造条件として、薄膜形成用原料を気化させて原料ガスとする際の温度や圧力が挙げられる。薄膜形成用原料を気化させて原料ガスとする工程は、原料容器内で行ってもよく、気化室内で行ってもよい。いずれの場合においても、本発明の薄膜形成用原料は0℃~150℃で蒸発させることが好ましい。また、高品質な薄膜を生産性よく製造できることから、原料容器内又は気化室内で薄膜形成用原料を気化させて原料ガスとする場合に原料容器内の圧力及び気化室内の圧力はいずれも1Pa~10,000Paであることが好ましい。
 本発明の薄膜の製造方法は、CVD法の中でも、ALD法を採用した方法であることが好ましい。ALD法を採用した方法である場合は、例えば、上記製造方法は、上述の原料導入工程及び薄膜形成工程の間に、上記薄膜形成用原料を用いて、上記基体の表面に前駆体薄膜を形成する前駆体薄膜形成工程を含み、上記薄膜形成工程が、上記前駆体薄膜を反応性ガスと反応させて上記基体の表面にモリブデン原子を含有する薄膜を形成する工程であることが好ましい。更に、未反応の化合物ガスを排気する排気工程を含む薄膜の製造方法であることがより好ましい。上記前駆体薄膜形成工程は、上記薄膜形成用原料を、上記基体の表面に堆積させる工程を含んでもいてもよい。
 以下では、上記のALD法の各工程について、モリブデン原子を含有する薄膜の1種である金属モリブデン膜を形成する場合を例に詳しく説明する。まず、上述した原料導入工程を行う。薄膜形成用原料を原料ガスとする際の好ましい温度や圧力は、CVD法による薄膜の製造方法で説明したものと同様である。次に、成膜チャンバーに導入した原料ガスと基体の表面とが接触することにより、基体表面に前駆体薄膜を形成する(前駆体薄膜形成工程)。
 上記前駆体薄膜形成工程では、基体を加熱するか、成膜チャンバーを加熱して、熱を加えてもよい。この際の基体温度は、25~700℃が好ましく、100℃~400℃がより好ましい。本工程が行われる際の系(成膜チャンバー内)の圧力は1Pa~10,000Paが好ましく、10Pa~1,000Paがより好ましい。なお、薄膜形成原料が、本発明のモリブデン化合物以外の他のプレカーサを含む場合は、本発明のモリブデン化合物とともに他のプレカーサも基体の表面に堆積される。
 次に、基体の表面に堆積しなかった薄膜形成用原料のガスを成膜チャンバーから排気する(排気工程)。未反応の薄膜形成用原料のガスや副生したガスは、成膜チャンバーから完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、窒素、ヘリウム、アルゴンなどの不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。高品質な薄膜を生産性よく製造できることから、減圧する場合の減圧度は、0.01Pa~300Paが好ましく、0.01Pa~100Paがより好ましい。
 次に、成膜チャンバーに反応性ガスとして還元性ガスを導入し、該還元性ガスの作用又は還元性ガス及び熱の作用により、先の前駆体薄膜形成工程で得た前駆体薄膜から金属モリブデン膜を形成する(モリブデン含有薄膜形成工程)。高品質な薄膜を生産性よく製造できることから、本工程において熱を作用させる場合の温度は、25~700℃が好ましく、100~400℃がより好ましい。高品質な薄膜を生産性よく製造できることから、本工程が行われる際の系(成膜チャンバー内)の圧力は1Pa~10,000Paが好ましく、10Pa~1,000Paがより好ましい。上記一般式(1)で表されるモリブデン化合物は、還元性ガスとの反応性が良好であるため、残留炭素含有量が少ない高品質な金属モリブデン膜を得ることができる。
 本発明の薄膜の製造方法において、上記のようにALD法を採用した場合、上記の原料導入工程、前駆体薄膜形成工程、排気工程及びモリブデン含有薄膜形成工程からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返してもよい。この場合、1サイクル行った後、上記排気工程と同様にして、堆積反応部から未反応の化合物ガス及び反応性ガス、更に副生したガスを排気した後、次の1サイクルを行うことが好ましい。
 また、金属モリブデン膜のALD法による形成においては、プラズマ、光、電圧などのエネルギーを印加してもよく、触媒を用いてもよい。該エネルギーを印加する時期及び触媒を用いる時期は、特には限定されず、例えば、原料導入工程における化合物ガス導入時、前駆体薄膜成膜工程又はモリブデン含有薄膜形成工程における加温時、排気工程における系内の排気時、モリブデン含有薄膜形成工程における還元性ガス導入時でもよく、上記の各工程の間でもよい。
 また、本発明の薄膜の製造方法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200℃~1,000℃であり、250℃~500℃が好ましい。
 本発明の薄膜の製造方法には、周知のALD装置を用いることができる。具体的なALD装置の例としては、図1及び図3のようなプレカーサをバブリング供給することのできる装置や、図2及び図4のように気化室を有する装置が挙げられる。また、図3及び図4のように反応性ガスに対してプラズマ処理を行うことのできる装置が挙げられる。なお、図1~図4のような成膜チャンバー(以下、「堆積反応部」と称する)を備えた枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。なお、これらはCVD装置としても用いることができる。
 本発明の薄膜形成用原料を用いて製造される薄膜は、他のプレカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。該薄膜は電気特性及び光学特性等を示すことが知られており、種々の用途に応用されている。例えば、金属薄膜、金属酸化物薄膜、金属窒化物薄膜、合金薄膜、及び金属含有複合酸化物薄膜等が挙げられる。これらの薄膜は、例えば、DRAM素子に代表されるメモリー素子の電極材料、配線材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いられている。
 本発明の化合物は、上記一般式(2)で表されるモリブデン化合物である。本発明の化合物は、融点が低く、蒸気圧が高く、熱安定性に優れ、ALD法への適応が可能であり、ALD法等の気化工程を有する薄膜製造方法のプレカーサとして好適な化合物である。
 上記一般式(2)において、R21は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L2は下記一般式(L-3)又は(L-4)で表される基を表し、mは1~4の整数を表す。但し、mが4である場合、R21はフッ素原子数が1~8である炭素原子数1~5のフッ素原子含有アルキル基を表す。
 上記R21で表される炭素原子数1~5のアルキル基として、上記一般式(1)中のR1で表される炭素原子数1~5のアルキル基として例示されたものと同じアルキル基が挙げられる。
 上記R21で表される炭素原子数1~5のフッ素原子含有アルキル基として、上記一般式(1)中のR1で表される炭素原子数1~5のフッ素原子含有アルキル基として例示されたものと同じアルキル基が挙げられる。
 上記R21で表されるフッ素原子数が1~8である炭素原子数1~5のフッ素原子含有アルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、ジメチルトリフルオロエチル基、(トリフルオロメチル)テトラフルオロエチル基、ヘキサフルオロターシャリーブチル基ジ-(トリフルオロメチル)エチル基などが挙げられる。
 上記一般式(L-3)及び(L-4)において、R22~R32は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。
 上記R22~R32で表される炭素原子数1~5のアルキル基として、上記一般式(1)中のR2~R12で表される炭素原子数1~5のアルキル基として例示されたものと同じアルキル基が挙げられる。
 上記R22~R32で表される炭素原子数1~5のフッ素原子含有アルキル基として、上記一般式(1)中のR2~R12で表される炭素原子数1~5のフッ素原子含有アルキル基として例示されたものと同じアルキル基が挙げられる。
 上記一般式(2)、(L-3)及び(L-4)において、R21~R32、L2及びmは、適用される薄膜の製造方法に応じて適宜選択される。化合物を気化させる工程を有する薄膜の製造方法に用いる場合には、蒸気圧が高いこと、融点が低いこと、及び熱安定性が高いことから選択される少なくとも1つの性質を有する化合物となるようにR21~R32、L2及びmを選択することが好ましく、熱安定性が高い化合物となるように、R21~R32、L2及びmを選択することがより好ましい。
い。
 化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R21としては炭素原子数2~4のアルキル基又は炭素原子数2~4のフッ素原子含有アルキル基が好ましい。より具体的に、mが1~3である場合は、炭素原子数3~4のアルキル基が好ましく、二級ブチル基又は三級ブチル基がより好ましく、三級ブチル基が特に好ましく、mが4である場合は、炭素原子数3~4のフッ素原子含有アルキル基が好ましく、炭素原子数4のフッ素原子含有アルキル基がより好ましく、ジメチルトリフルオロエチル基が特に好ましい。化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R21がフッ素原子含有アルキル基である場合、R21のフッ素原子数は1~12が好ましく、1~8がより好ましく、1~4が特に好ましく、3が最も好ましい。化合物の融点が低く、熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、L2としては一般式(L-3)で表される基が好ましい。化合物の熱安定性が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、mとしては3又は4が好ましく、4がより好ましい。
 化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R22としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R23としては水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子又はメチル基が更に好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R24及びR25としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、熱安定が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R26及びR27としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。
 化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R28としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R29としては水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子又はメチル基が更に好ましく、メチル基が特に好ましい。化合物の蒸気圧が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R30及びR31としては各々独立に、水素原子又は炭素原子数1~5のアルキル基が好ましく、水素原子又は炭素原子数1~3のアルキル基がより好ましく、水素原子が特に好ましい。化合物の蒸気圧が高く、熱安定が高く、薄膜形成用原料として用いた際に高品質な薄膜を生産性よく製造できることから、R32としては水素原子又は炭素原子数1~5のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、炭素原子数1~3のアルキル基が更に好ましく、メチル基が特に好ましい。
 また、気化工程を伴わないMOD法による薄膜の製造方法に用いる場合には、R21~R32、L2及びmは、使用される溶媒に対する溶解性、薄膜形成反応等に応じて、任意に選択することができる。
 上記一般式(2)で表されるモリブデン化合物の具体例としては、上記化合物No.1~No.11及びNo.13~No.120が挙げられる。
 上記一般式(2)で表されるモリブデン化合物は、上記一般式(1)で表されるモリブデン化合物と同様の方法により製造することができる。
 以下、実施例、比較例及び評価例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。尚、以下の実施例中、%は特に記載が無い限り質量基準である。
<本発明の化合物の製造>
 下記の実施例1~10に、本発明のモリブデン化合物の製造結果を示す。
[実施例1]化合物No.4の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.00g(0.0039mol)、ジエチルエーテル12mlを仕込み、室温下で撹拌した。その中に、1,1,1-トリフルオロエタノール1.58g(0.0158mol)、ジエチルエーテル15ml、n-ブチルリチウム-ヘキサン溶液10ml(0.0158mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し14時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度110℃、圧力50Paで蒸留を行い、黄色固体の化合物No.4を得た。収量は0.11g、収率は5.5%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:151℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.443mg)
(2)減圧TG-DTA
質量50%減少温度:95℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:9.654mg)
(3)1H-NMR(重ベンゼン)
4.403ppm(8H,singlet)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 18.5質量%(理論値 18.9質量%)
[実施例2]化合物No.10の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン0.82g(0.00322mol)、ジエチルエーテル15mlを仕込み、室温下で撹拌した。その中に、2-トリフルオロメチル-2-プロパノール1.65g(0.0129mol)、ジエチルエーテル10ml、n-ブチルリチウム-ヘキサン溶液8.2ml(0.0129mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間攪拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度105℃、圧力74Paにて蒸留し、黄褐色固体の化合物No.10を得た。収量は0.29g、収率15%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:179℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:9.773mg)
(2)減圧TG-DTA
質量50%減少温度:107℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.、サンプル量:10.041mg)
(3)1H-NMR(重ベンゼン)
1.39ppm(24H,singlet)
(4)19F-NMR(重ベンゼン)
-81.343ppm
(5)元素分析(金属分析:ICP-AES)
Mo含有量: 15.5質量%(理論値 15.5質量%)
[実施例3]化合物No.11の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン0.61g(0.0024mol)、ジエチルエーテル10mlを仕込み、室温下で撹拌した。その中に、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール1.74g(0.0096mol)、ジエチルエーテル10ml、n-ブチルリチウム-ヘキサン溶液6.1ml(0.0096mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間攪拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度100℃、圧力150Paにて蒸留し、黄褐色固体の化合物No.11を得た。収量は0.25g、収率13%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:152℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.415mg)
(2)減圧TG-DTA
質量50%減少温度:95℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.、サンプル量:9.984mg)
(3)1H-NMR(重ベンゼン)
1.45ppm(12H,singlet)
(3)19F-NMR(重ベンゼン)
-75.904ppm
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 11.4質量%(理論値 11.5質量%)
[実施例4]化合物No.12の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン0.48g(0.0019mol)、ジエチルエーテル10mlを仕込み、室温下で撹拌した。その中に、ノナフルオロ-tert-ブチルアルコール1.79g(0.0076mol)、ジエチルエーテル10ml、n-ブチルリチウム-ヘキサン溶液4.8ml(0.0076mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度115℃、圧力55Paで蒸留を行い、黄緑色固体の化合物No.12を得た。収量は0.10g、収率は5%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:176℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.321mg)
(2)減圧TG-DTA
質量50%減少温度:108℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:9.502mg)
(3)19F-NMR(重ベンゼン)
-74.268ppm
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 9.2質量%(理論値 9.1質量%)
[実施例5]化合物No.50の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.17g(0.0046mol)、ジエチルエーテル19mlを仕込み、室温下で撹拌した。その中に、sec-ブチルアルコール1.37g(0.018mol)、ジエチルエーテル14ml、n-ブチルリチウム-ヘキサン溶液11.7ml(0.0018mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル10mlを加えた。次に1-ジメチルアミノ-2-プロパノール0.48g(0.0046mol)を室温下で滴下し18時間攪拌した。その後溶媒を除去し、残渣をバス温度128℃、圧力36Paで蒸留を行い、赤褐色液体の化合物No.50を得た。収量は0.21g、収率は10.5%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:208℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.157mg)
(2)減圧TG-DTA
質量50%減少温度:145℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:9.980mg)
(3)1H-NMR(重ベンゼン)
0.953-1.060ppm(9H,broad)、1.312-2.009ppm(18H,broad)、2.171-2.390ppm(8H,broad)、4.082-4.855ppm(4H,broad)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 22.0質量%(理論値 22.14質量%)
[実施例6]化合物No.85の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.21g(0.0048mol)、ジエチルエーテル15mlを仕込み、室温下で撹拌した。その中に、tert-ブチルアルコール1.41g(0.0191mol)、ジエチルエーテル20ml、n-ブチルリチウム-ヘキサン溶液12.2ml(0.0191mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル20mlを加えた。次に2-ジメチルアミノエタノール0.43g(0.0048mol)を室温下で滴下し17時間攪拌した。その後溶媒を除去し、残渣をバス温度155℃、圧力70Paで蒸留を行い、黒色液体の化合物No.85を得た。収量は0.07g、収率は3.5%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:225℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:9.596mg)
(2)減圧TG-DTA
質量50%減少温度:149℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:9.624mg)
(3)1H-NMR(重ベンゼン)
1.482ppm(27H,singlet)、1.819-1.848ppm(2H,triplet)、2.249ppm(6H,singlet)、3.898-3.927ppm(2H,triplet)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 22.5質量%(理論値 22.9質量%)
[実施例7]化合物No.86の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン2.93g(0.0115mol)、ジエチルエーテル48mlを仕込み、室温下で撹拌した。その中に、tert-ブチルアルコール3.43g(0.0460mol)、ジエチルエーテル35ml、n-ブチルリチウム-ヘキサン溶液29.3ml(0.0460mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間攪拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル80mlを加えた。次に1-ジメチルアミノ-2-プロパノール1.20g(0.0115mol)を室温下で滴下し17時間撹拌した。その後溶媒を除去し、残渣をバス温度120℃、圧力63Pa、塔頂温度108℃にて蒸留し、茶褐色固体の化合物No.86を得た。収量は0.96g、収率19%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:198℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.351mg)
(2)減圧TG-DTA
質量50%減少温度:129℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.、サンプル量:9.531mg)
(3)1H-NMR(重ベンゼン)
1.09-1.10ppm(3H,doublet)、1.49ppm(27H,singlet)、1.93-1.97ppm(1H,double doublet)、2.29ppm(3H,singlet)2.35ppm(3H,singlet)、2.42-2.47ppm(1H,triplet)、4.41-4.50ppm(1H,multiplet)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 22.2質量%(理論値 22.1質量%)
[実施例8]化合物No.90の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.17g(0.0046mol)、ジエチルエーテル20mlを仕込み、室温下で撹拌した。その中に、tert-ブチルアルコール1.37g(0.0184mol)、ジエチルエーテル15ml、n-ブチルリチウム-ヘキサン溶液11.7ml(0.0184mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間攪拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル20mlを加えた。次に1-ジメチルアミノ-3,3-ジメチルブタン-2-オール0.67g(0.0046mol)を室温下で滴下し17時間撹拌した。その後溶媒を除去し、残渣をバス温度150℃、圧力180Paにて蒸留し、赤色粘性液体の化合物No.90を得た。収量は0.17g、収率8.0%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:226℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:9.931mg)
(2)減圧TG-DTA
質量50%減少温度:151℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.、サンプル量:9.890mg)
(3)1H-NMR(重ベンゼン)
0.71ppm(9H,singlet)、1.43-1.52ppm(27H,multiplet)、1.67-1.71ppm(1H,double doublet)、2.25-2.39ppm(7H,multiplet)、3.78-3.82ppm(1H,double doublet)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 20.1質量%(理論値 20.2質量%)
[実施例9]化合物No.91の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.13g(0.0045mol)、ジエチルエーテル19mlを仕込み、室温下で撹拌した。その中に、tert-ブチルアルコール1.33g(0.018mol)、ジエチルエーテル14ml、n-ブチルリチウム-ヘキサン溶液11.4ml(0.0018mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し18時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル10mlを加えた。次に1-ジメチルアミノ-2-メチル-2-プロパノール0.52g(0.0045mol)を室温下で滴下し18時間攪拌した。その後溶媒を除去し、残渣をバス温度125℃、圧力54Paで蒸留を行い、赤褐色液体の化合物No.91を得た。収量は0.25g、収率は12.5%であった。
 (分析値)
(1)常圧TG-DTA
質量50%減少温度:210℃(Ar流量:100ml/min.,昇温10℃/min.、サンプル量:10.387mg)
(2)減圧TG-DTA
質量50%減少温度:146℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:10.235mg)
(3)1H-NMR(重ベンゼン)
1.280ppm(6H,singlet)、1.492ppm(27H,singlet)、2.331ppm(2H,singlet)、2.354ppm(6H,singlet)
(4)元素分析(金属分析:ICP-AES)
Mo含有量: 21.2質量%(理論値 21.44質量%)
[実施例10]化合物No.109の製造
 Ar雰囲気下、100mL三つ口フラスコに、四塩化酸化モリブデン1.17g(0.0046mol)、ジエチルエーテル20mlを仕込み、室温下で撹拌した。その中に、tert-ブチルアルコール1.37g(0.0184mol)、ジエチルエーテル15ml、n-ブチルリチウム-ヘキサン溶液11.7ml(0.00184mol)により調製した溶液を氷冷下で滴下した。滴下後室温に戻し15時間撹拌し、ヘキサンにより溶媒交換を行った後、濾過を行った。得られた濾液から溶媒を除去し、ジエチルエーテル10mlを加えた。次に1-メトキシ-2-メチル-2-プロパノール0.48g(0.0046mol)を室温下で滴下し17時間攪拌した。その後溶媒を除去し、残渣をバス温度135℃、圧力70Paで蒸留を行い、橙色固体の化合物No.109を得た。収量は0.18g、収率は9%であった。
 (分析値)
(1)減圧TG-DTA
質量50%減少温度:135℃(10Torr,Ar流量:50ml/min.,昇温10℃/min.,サンプル量:9.686mg)
(2)1H-NMR(重ベンゼン)
1.276ppm(6H,singlet)、1.517ppm(27H,singlet)、3.268ppm(2H,singlet)、3.337ppm(3H,singlet)
(3)元素分析(金属分析:ICP-AES)
Mo含有量: 22.3質量%(理論値 22.1質量%)
[評価例]
 実施例1~10で得られた本発明の化合物並びに下記の比較化合物1及び2について、以下の評価を行った。
(1)熱安定性評価
 DSC測定装置を用いて、熱分解開始温度を測定した。熱分解開始温度が高いものは熱分解が発生しにくく、薄膜形成用原料として好ましいと判断することができる。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-T000017
 上記表1に示されるように、比較化合物1及び2の熱分解開始温度が130℃であることに対して、実施例1~10で得られた本発明の化合物は、いずれも熱分解開始温度が170℃以上の化合物であることから、熱安定性が高い化合物であることが分かった。なかでも、化合物No.10、11、12、50、86、90及び91は熱分解開始温度が195℃以上の化合物であることから、熱安定性がより高い化合物であることが分かった。更に化合物No.10、11及び12は熱分解開始温度が225℃以上の化合物であることから、熱安定性が更に高い化合物であることが分かった。特に化合物No.10は熱分解開始温度が270℃以上の化合物であることから、熱安定性が特に高い化合物であることが分かった。
<ALD法による薄膜の製造>
 実施例1~10で得られた本発明の化合物並びに比較化合物1及び2を薄膜形成用原料とし、図1に示す装置を用いて以下の条件のALD法により、シリコン基板上に金属モリブデン薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定、X線回折法により薄膜の化合物の確認及びX線光電子分光法による薄膜中の炭素含有量の測定を行った。結果を表3に示す。
[実施例11~20、比較例1及び2]ALD法による金属モリブデン薄膜の製造
(条件)
 反応温度(基板温度):250℃、反応性ガス:水素
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、50サイクル繰り返した。
(1)原料容器加熱温度50℃~120℃、原料容器内圧力100Paの条件で気化させた薄膜形成用原料のガスを導入し、系圧100Paで30秒間堆積させる。(原料導入工程、前駆体薄膜形成工程)
(2)10秒間のアルゴンパージにより、未反応原料を除去する。(排気工程)
(3)反応性ガスを導入し、系圧力100Paで30秒間反応させる。(薄膜形成工程)
(4)10秒間のアルゴンパージにより、未反応原料を除去する。(排気工程)
Figure JPOXMLDOC01-appb-T000018
※1:検出限界は0.1atm%である。
 ALD法によって得られる金属モリブデン膜中の炭素含有量が、比較例1及び2では4atm%以上であるのに対し、実施例11~20では検出限界の0.1atm%未満である。つまり、本発明の化合物を用いることにより高品質な薄膜が得られることが示された。また、得られる薄膜の膜厚が、比較例1及び2では2.4nm以下であるのに対し、実施例11~20では3.3nm以上であり、本発明の化合物を用いることにより高い生産性で薄膜が得られることが示された。なかでも、実施例12、13、14、17、18、及び19では、得られる薄膜の膜厚が4.0nm以上であり、より高い生産性で金属モリブデン膜が得られた。更に、実施例12、13及び14では、得られる薄膜の膜厚が5.0nm以上であり、更に高い生産性で金属モリブデン膜が得られた。特に、実施例12では、得られる薄膜の膜厚が5.5nm以上であり、特に高い生産性で金属モリブデン膜が得られた。
 以上より、本発明の化合物は、熱安定性が高く、更に薄膜形成用原料として用いた場合に、高い生産性で薄膜を得ることができたことから、薄膜形成用原料として優れていることが示された。
 なかでも、化合物No.10、11、12、86、90及び91は、熱安定性が高く、更に薄膜形成用原料として用いた場合に、より高い生産性で薄膜を得ることができたことから、薄膜形成用原料としてより優れていることが示された。更に、化合物No.10、11及び12は、熱安定性が高く、更に薄膜形成用原料として用いた場合に、特に高い生産性で薄膜を得ることができたことから、薄膜形成用原料として特に優れていることが示された。更に、化合物No.10は、熱安定性が高く、更に薄膜形成用原料として用いた場合に、最も高い生産性で薄膜を得ることができたことから、薄膜形成用原料として最も優れていることが示された。また、本発明の薄膜形成用原料は、ALD法に特に適していることが示された。

Claims (7)

  1.  下記一般式(1)で表されるモリブデン化合物を含有する薄膜形成用原料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、L1は下記一般式(L-1)又は(L-2)で表される基を表し、nは1~4の整数を表す。但し、nが4である場合、R1は炭素原子数1~5のフッ素原子含有アルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R2~R12は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。)
  2.  一般式(1)のnが4であるモリブデン化合物を含有する、請求項1に記載の薄膜形成材料。
  3.  請求項1又は2に記載の薄膜形成用原料を用いて、基体の表面にモリブデン原子を含有する薄膜を形成する、薄膜の製造方法。
  4.  前記薄膜形成用原料を気化させて得られる原料ガスを、基体が設置された成膜チャンバー内に導入する原料導入工程と、
     前記原料ガスに含まれる一般式(1)で表される薄膜形成用原料を分解及び/又は化学反応させて前記基体の表面にモリブデン原子を含有する薄膜を形成する薄膜形成工程と、
    を含む、請求項3に記載の薄膜の製造方法。
  5.  前記原料導入工程及び薄膜形成工程の間に、前記薄膜形成用原料を用いて前記基体の表面に前駆体薄膜を形成する前駆体薄膜形成工程を含み、
     前記薄膜形成工程が、前記前駆体薄膜を反応性ガスと反応させて前記基体の表面にモリブデン原子を含有する薄膜を形成する工程である、請求項4に記載の薄膜の製造方法。
  6.  請求項1又は2に記載の薄膜形成材料を用いて製造されるモリブデン含有薄膜。
  7.  下記一般式(2)で表されるモリブデン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R21は炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、
     L2は下記一般式(L-3)又は(L-4)で表される基を表し、
     mは1~4の整数を表す。
     但し、mが4である場合、R21はフッ素原子数が1~8である炭素原子数1~5のフッ素原子含有アルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R22~R32は各々独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のフッ素原子含有アルキル基を表し、*は結合手を表す。)
PCT/JP2022/035000 2021-10-01 2022-09-20 薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物 WO2023054066A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247014231A KR20240064026A (ko) 2021-10-01 2022-09-20 박막 형성용 원료, 박막의 제조 방법, 박막 및 몰리브덴 화합물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162907 2021-10-01
JP2021162907 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054066A1 true WO2023054066A1 (ja) 2023-04-06

Family

ID=85782550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035000 WO2023054066A1 (ja) 2021-10-01 2022-09-20 薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物

Country Status (3)

Country Link
KR (1) KR20240064026A (ja)
TW (1) TW202323264A (ja)
WO (1) WO2023054066A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014140672A1 (en) 2013-03-15 2014-09-18 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Bis(alkylimido)-bis(alkylamido)molybdenum molecules for deposition of molybdenum-containing films
TW201606115A (zh) 2014-07-07 2016-02-16 液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於薄膜沉積之含鉬及鎢之前驅物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHNSON D.A., TAYLOR J.C., WAUGH A.B.: "Crystal and molecular structure of tetra (tert-perfluoro butoxy) oxo Mo(VI)", JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY, vol. 42, no. 9, 1 January 1980 (1980-01-01), pages 1271 - 1275, XP093053362, ISSN: 0022-1902, DOI: 10.1016/0022-1902(80)80285-5 *
JOHNSON, D.A. ; TAYLOR, J.C. ; WAUGH, A.B.: "Volatile perfluoro-t-butoxides of oxo molybdenum (VI)", INORGANIC AND NUCLEAR CHEMISTRY LETTERS, vol. 15, no. 3-4, 1 January 1979 (1979-01-01), GB , pages 205 - 206, XP026623048, ISSN: 0020-1650, DOI: 10.1016/0020-1650(79)80031-8 *
TAFAZOLIAN HOSEIN, SCHROCK RICHARD R., MÜLLER PETER: "Synthesis of Molybdenum(VI) Neopentylidene Neopentylidyne Complexes", ORGANOMETALLICS, vol. 38, no. 15, 12 August 2019 (2019-08-12), pages 2888 - 2891, XP093053366, ISSN: 0276-7333, DOI: 10.1021/acs.organomet.9b00412 *

Also Published As

Publication number Publication date
KR20240064026A (ko) 2024-05-10
TW202323264A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2019203035A1 (ja) 原子層堆積法用薄膜形成用原料及び薄膜の製造方法
WO2020071175A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜形成用原料、薄膜の製造方法および化合物
WO2013018413A1 (ja) アルコキシド化合物及び薄膜形成用原料
WO2022190877A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜、薄膜の製造方法及び亜鉛化合物
KR102634502B1 (ko) 루테늄 화합물, 박막 형성용 원료 및 박막의 제조 방법
WO2022145267A1 (ja) 原子層堆積法用薄膜形成原料、薄膜の製造方法及びアルミニウム化合物
WO2022009695A1 (ja) アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
WO2022014344A1 (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
JP7418349B2 (ja) 原子層堆積法用薄膜形成原料、薄膜の製造方法及びアルコキシド化合物
WO2020170853A1 (ja) 原子層堆積法用窒化ガリウム含有薄膜形成用原料及び窒化ガリウム含有薄膜の製造方法
KR20220161372A (ko) 아연 화합물, 박막 형성용 원료, 박막 및 그 제조 방법
WO2023054066A1 (ja) 薄膜形成用原料、薄膜の製造方法、薄膜及びモリブデン化合物
JP2013145787A (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
WO2023276716A1 (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
WO2023286589A1 (ja) コバルト化合物、薄膜形成用原料、薄膜及び薄膜の製造方法
WO2023282104A1 (ja) 化合物、薄膜形成用原料、薄膜及び薄膜の製造方法
WO2022196491A1 (ja) スズ化合物、薄膜形成用原料、薄膜、薄膜の製造方法及びハロゲン化合物
WO2020203783A1 (ja) 薄膜形成用原料、薄膜の製造方法及び新規なスカンジウム化合物
WO2022220153A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜、薄膜の製造方法及びルテニウム化合物
CN114787168B (zh) 化合物、薄膜形成用原料和薄膜的制造方法
WO2020255822A1 (ja) ルテニウム化合物、薄膜形成用原料及び薄膜の製造方法
WO2022059571A1 (ja) 原子層堆積法用薄膜形成原料及び薄膜の製造方法
JP6429352B1 (ja) ルテニウム化合物、薄膜形成用原料及び薄膜の製造方法
WO2021200218A1 (ja) 原子層堆積法用薄膜形成用原料及び薄膜の製造方法
WO2023171489A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜及び薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551347

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247014231

Country of ref document: KR

Kind code of ref document: A