WO2023051823A1 - 显示模组及其制作方法 - Google Patents

显示模组及其制作方法 Download PDF

Info

Publication number
WO2023051823A1
WO2023051823A1 PCT/CN2022/123579 CN2022123579W WO2023051823A1 WO 2023051823 A1 WO2023051823 A1 WO 2023051823A1 CN 2022123579 W CN2022123579 W CN 2022123579W WO 2023051823 A1 WO2023051823 A1 WO 2023051823A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
encapsulation layer
layer
display module
Prior art date
Application number
PCT/CN2022/123579
Other languages
English (en)
French (fr)
Inventor
马文波
陈锐冰
郑斌
邢美正
李壮志
鲁兴敏
Original Assignee
深圳市聚飞光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122398449.6U external-priority patent/CN215527138U/zh
Priority claimed from CN202122395097.9U external-priority patent/CN215527137U/zh
Priority claimed from CN202122409206.8U external-priority patent/CN215527753U/zh
Priority claimed from CN202111265275.4A external-priority patent/CN114038344B/zh
Priority claimed from CN202122699980.7U external-priority patent/CN216698361U/zh
Priority claimed from CN202111414585.8A external-priority patent/CN114093907A/zh
Priority claimed from CN202111441754.7A external-priority patent/CN116207210A/zh
Priority claimed from CN202210141646.6A external-priority patent/CN114566494A/zh
Priority claimed from CN202210612159.3A external-priority patent/CN114975394A/zh
Priority claimed from CN202210612146.6A external-priority patent/CN114944448A/zh
Priority claimed from CN202210909811.8A external-priority patent/CN115394763A/zh
Application filed by 深圳市聚飞光电股份有限公司 filed Critical 深圳市聚飞光电股份有限公司
Publication of WO2023051823A1 publication Critical patent/WO2023051823A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • This application relates to LED (Light Emitting Diode, LED chip) display field, especially relates to a display module and a manufacturing method thereof.
  • LED Light Emitting Diode, LED chip
  • LEDs are widely used in display and other fields.
  • the sealing performance of LEDs there are strict requirements on the sealing performance of LEDs and the thickness of display modules made of LEDs.
  • LED lamp beads with better airtightness are generally used in the display field, which includes a bracket, an LED chip arranged in the bracket, and a sealant layer that seals the LED chip in the bracket.
  • the LED lamp beads can meet the sealing requirements, the size and cost are high due to the use of LED brackets, which in turn leads to the overall thick display module made of LED lamp beads and high cost. .
  • the purpose of the present application is to provide a display module and a manufacturing method thereof, aiming at solving the problems in the related art that the display module is relatively thick and costly.
  • the present application provides a display module, which includes a substrate, a number of light-emitting units arranged on the front of the substrate, and an encapsulation layer arranged on the substrate to cover each of the light-emitting units;
  • the light-emitting unit includes at least one LED chip, the encapsulation layer allows the light emitted by the LED chip to pass through, and the thickness of the encapsulation layer is higher than that of the light-emitting unit.
  • the present application also provides a display module manufacturing method, including:
  • a plurality of light-emitting units are arranged on the front surface of the substrate, and each light-emitting unit includes at least one LED chip;
  • An encapsulation layer covering each of the light-emitting units is arranged on the substrate, the encapsulation layer allows the light emitted by the LED chip to pass through, and the thickness of the encapsulation layer is higher than that of the light-emitting units.
  • the display module includes a substrate, a light-emitting unit arranged on the front surface of the substrate, and each light-emitting unit includes at least one LED chip, and each light-emitting unit arranged on the substrate Covered encapsulation layer.
  • the display module no longer uses LED lamp beads as the light source, but directly uses LED chips as the light source, so the use of the bracket included in the LED lamp beads can be omitted, which can not only reduce the cost, but also reduce the overall thickness of the display module , which is more conducive to its thinning; and the provided encapsulation layer covers each light-emitting unit, which can meet the sealing requirements of the display module at the same time, and can form protection for each light-emitting unit at the same time.
  • the display module includes a substrate, a light-emitting unit arranged on the front surface of the substrate, and each light-emitting unit includes at least one LED chip, and each light-emitting unit arranged on the substrate Covered encapsulation layer.
  • the display module no longer uses LED lamp beads as the light source, but directly uses LED chips as the light source, so the use of the bracket included in the LED lamp beads can be omitted, which can not only reduce the cost, but also reduce the overall thickness of the display module , which is more conducive to its thinning; and the provided encapsulation layer covers each light-emitting unit, which can meet the sealing requirements of the display module at the same time, and can form protection for each light-emitting unit at the same time.
  • FIG. 1 is a schematic structural diagram of a display module provided by the present application.
  • Figure 2-1 is a schematic diagram of the structure of the display module provided by the first embodiment of the present application.
  • Figure 2-2 is a top view of the display module shown in Figure 2-1;
  • Figure 2-3 is a bottom view of the display module shown in Figure 2-2;
  • Figures 2-4 are the second structural diagram of the display module provided by the first embodiment of the present application.
  • Figure 2-5 is a top view of the display module shown in Figure 2-4;
  • FIGS. 2-6 are schematic diagrams of the structure of the substrate provided in Embodiment 1 of the present application.
  • Figures 2-7 are schematic diagrams of the second substrate structure provided by the first embodiment of the present application.
  • FIGS 2-8 are schematic diagrams of the third substrate structure provided in Embodiment 1 of the present application.
  • FIGS 2-9 are schematic diagrams 4 of the substrate structure provided in Embodiment 1 of the present application.
  • Figure 2-10 is a schematic diagram of the fifth substrate structure provided by Embodiment 1 of the present application.
  • Figure 2-11 is a schematic diagram six of the substrate structure provided by Embodiment 1 of the present application.
  • Figure 2-12 is a schematic diagram of the substrate structure VII provided in Embodiment 1 of the present application.
  • Figure 2-13 is a schematic diagram eight of the substrate structure provided in Embodiment 1 of the present application.
  • Figure 2-14 is a schematic diagram of the structure of the substrate provided in Embodiment 1 of the present application 9;
  • Figure 2-15 is a schematic diagram of the structure of the substrate provided in Embodiment 1 of the present application 10;
  • Figure 2-16 is the third structural diagram of the display module provided by the first embodiment of the present application.
  • Fig. 2-17 is a schematic diagram 4 of the structure of the display module provided in Embodiment 1 of the present application;
  • Figure 2-18 is a schematic diagram of the fifth structure of the display module provided in Embodiment 1 of the present application.
  • Figure 2-19 is a schematic diagram of the sixth structure of the display module provided in Embodiment 1 of the present application.
  • Figure 2-20 is a schematic diagram of the seventh structure of the display module provided in Embodiment 1 of the present application.
  • FIG. 2-21 is a schematic structural diagram of a display screen provided in Embodiment 1 of the present application.
  • Figure 3-1 is a top view of the display module provided in Embodiment 1 of the present application.
  • Figure 3-2 is a bottom view of the display module provided in Embodiment 1 of the present application.
  • Figure 3-3 is a cross-sectional view of the display module shown in Figure 3-1;
  • Figure 3-4 is the second structural diagram of the display module provided by the first embodiment of the present application.
  • Figures 3-5 are the third structural diagram of the display module provided in the first embodiment of the present application.
  • Figures 3-6 are schematic diagrams 4 of the structure of the display module provided in Embodiment 1 of the present application.
  • Figure 3-7 is a schematic diagram of the fifth structure of the display module provided in Embodiment 1 of the present application.
  • Figure 3-8 is a schematic diagram of the sixth structure of the display module provided in Embodiment 1 of the present application.
  • Figure 3-9 is a schematic diagram of the seventh structure of the display module provided in Embodiment 1 of the present application.
  • Figure 3-10 is a schematic diagram eight of the display module structure provided by Embodiment 1 of the present application.
  • Figure 4-1 is a schematic diagram of the structure of the display module provided by the third embodiment of the present application.
  • Fig. 4-2 is a partially enlarged schematic diagram of the splicing part of the display module provided by Embodiment 3 of the present application;
  • Figure 4-3 is the second structural diagram of the display module provided by the third embodiment of the present application.
  • Figure 4-4 is a schematic diagram of the third structure of the display module provided by the third embodiment of the present application.
  • Figures 4-5 are the fourth schematic diagram of the display module structure provided by the third embodiment of the present application.
  • 4-6 are schematic diagrams of the basic wiring area provided by Embodiment 3 of the present application.
  • Figures 4-7 are the fifth structural diagram of the display module provided in the third embodiment of the present application.
  • Figures 4-8 are the six structural diagrams of the display module provided in the third embodiment of the present application.
  • Figures 4-9 are the seventh structural diagram of the display module provided in the third embodiment of the present application.
  • Figure 4-10 is the eighth structural diagram of the display module provided by the third embodiment of the present application.
  • Figure 4-11 is a schematic diagram of the structure of the display module 9 provided in Embodiment 3 of the present application.
  • Figure 4-12 is a schematic structural diagram ten of the display module provided in the third embodiment of the present application.
  • Figure 4-13 is the eleventh structural diagram of the display module provided by the third embodiment of the present application.
  • Figure 4-14 is a schematic diagram of the structure of the display module twelve provided in the third embodiment of the present application.
  • Figure 4-15 is a schematic diagram of the structure of the display module provided in Embodiment 3 of the present application Thirteen;
  • Figure 4-16 is a fourteenth structural schematic diagram of the display module provided in the third embodiment of the present application.
  • Figure 4-17 is the first schematic diagram of the splicing effect of the display module provided by the third embodiment of the present application.
  • Figure 4-18 is the second schematic diagram of the splicing effect of the display module provided by the third embodiment of the present application.
  • Figure 5-1 is a schematic diagram of the front structure of the substrate provided in Embodiment 4 of the present application.
  • Fig. 5-2 is a schematic diagram of the rear structure of the substrate provided in Embodiment 4 of the present application.
  • Figure 5-3 is a first schematic diagram of the groove structure on the front of the substrate provided in Embodiment 4 of the present application;
  • Figure 5-4 is a schematic structural diagram of the A4-A4 section in Figure 5-3;
  • Fig. 5-5 is a schematic structural view of the front surface of the substrate provided by the fourth embodiment of the present application with the light-emitting unit mounted;
  • Figure 5-6 is a schematic structural view of the A4-A4 section in Figure 5-5;
  • FIG. 5-7 are schematic structural diagrams of the A4-A4 section after molding the first encapsulation layer on the front side of the substrate in Embodiment 4 of the present application;
  • FIG. 5-8 are schematic structural diagrams of the A4-A4 section after cutting off part of the process edge of the substrate in Embodiment 4 of the present application;
  • Fig. 5-9 is a schematic structural view of another section A4-A4 of Fig. 5-3 in Embodiment 4 of the present application;
  • Fig. 5-10 is a schematic structural diagram of another section A4-A4 of Fig. 5-3 in Embodiment 4 of the present application;
  • Fig. 5-11 is a schematic structural diagram of another section A4-A4 of Fig. 5-3 in Embodiment 4 of the present application;
  • Fig. 5-12a is a schematic structural diagram of another section A4-A4 of Fig. 5-3 in Embodiment 4 of the present application;
  • Fig. 5-12b is a schematic structural diagram after cutting off part of the process edge on the basis of Fig. 5-12a in Embodiment 4 of the present application;
  • Fig. 5-13 is a structural schematic diagram of the A4-A4 cross-section where driving electronic components are mounted on the back of the substrate in Embodiment 4 of the present application;
  • Figure 5-14 is a schematic cross-sectional structure diagram of splicing two display modules in Embodiment 4 of the present application.
  • Fig. 5-15 is a schematic cross-sectional structure diagram after molding the second encapsulation layer on the substrate in Embodiment 4 of the present application;
  • Figure 5-16 is a schematic diagram of the structure of Embodiment 4 of the present application after cutting off part of the process edge on the basis of Figure 5-15;
  • Fig. 5-17 is a schematic diagram of the cross-sectional structure of Embodiment 4 of the present application after molding the third encapsulation layer on the basis of Fig. 5-16;
  • Figure 5-18 is a schematic diagram of the cross-sectional structure of the spliced two display modules shown in Figure 5-17 in Embodiment 4 of the present application;
  • Figure 5-19 is a schematic diagram of the front structure of display modules spliced into a screen in Embodiment 4 of the present application;
  • FIG. 5-20 Schematic diagram 1 of the structure of the back groove on the back of the substrate in Embodiment 4 of the present application;
  • FIG. 5-21 Schematic diagram 2 of the structure of the back groove on the back of the substrate in Embodiment 4 of the present application;
  • FIG. 22 Schematic diagram 3 of the structure of the rear groove on the back of the substrate in Embodiment 4 of the present application;
  • FIG. 523 Schematic diagram 4 of the back groove structure on the back of the substrate in Embodiment 4 of the present application.
  • Figure 5-24 is a schematic diagram of another display module splicing structure in Embodiment 4 of the present application.
  • Figure 6-1 is a schematic diagram of the structure of the display module provided in Embodiment 5 of the present application.
  • Figure 6-2 is the second structural diagram of the display module provided by Embodiment 5 of the present application.
  • Figure 6-3 is a schematic diagram of the third structure of the display module provided in Embodiment 5 of the present application.
  • Figure 6-4 is a schematic diagram of the fourth structure of the display module provided in the fifth embodiment of the present application.
  • Figure 6-5a is a schematic diagram of the fifth structure of the display module provided by the fifth embodiment of the present application.
  • Figure 6-5b is the sixth structural diagram of the display module provided by the fifth embodiment of the present application.
  • Figure 6-6a is a schematic diagram of the seventh structure of the display module provided by the fifth embodiment of the present application.
  • Figure 6-6b is the eighth structural diagram of the display module provided in the fifth embodiment of the present application.
  • Figures 6-7 are the ninth structural diagram of the display module provided in the fifth embodiment of the present application.
  • Figure 6-8a is a schematic diagram of the tenth structure of the display module provided by the fifth embodiment of the present application.
  • Figure 6-8b is the eleventh structural diagram of the display module provided by the fifth embodiment of the present application.
  • FIGS. 6-9 are schematic diagrams of display screens provided in Embodiment 5 of the present application.
  • Figure 7-1 is a schematic diagram of a display module structure provided by Embodiment 6 of the present invention.
  • Fig. 7-2 is an orthographic projection view of the display module provided by Embodiment 6 of the present invention.
  • Fig. 7-3 is the second structural diagram of the display module provided by the sixth embodiment of the present invention.
  • Figure 7-4 is a schematic diagram of the encapsulation layer structure provided by Embodiment 6 of the present invention.
  • FIG. 7-6 are schematic structural diagrams of the substrate fixture provided by Embodiment 6 of the present invention.
  • FIG. 7-7 are schematic structural views of the substrate fixed on the substrate fixture provided by Embodiment 6 of the present invention.
  • FIGS. 7-8 are structural schematic diagrams of the encapsulation layer attached to the substrate provided by Embodiment 6 of the present invention.
  • FIG. 7-9 are structural schematic diagrams of lamination of the encapsulation layer to the substrate provided by Embodiment 6 of the present invention.
  • FIGS. 7-10 are structural schematic diagrams after the encapsulation layer is bonded to the substrate according to Embodiment 6 of the present invention.
  • FIG. 7-11 are schematic structural diagrams of electronic components disposed on the back of the substrate provided by Embodiment 6 of the present invention.
  • FIG. 7-12 are schematic structural diagrams of another substrate provided by Embodiment 6 of the present invention.
  • FIGS. 7-13 are schematic structural diagrams of another substrate fixture provided by Embodiment 6 of the present invention.
  • FIG. 7-14 are schematic structural views of another substrate fixed on the substrate fixture provided by Embodiment 6 of the present invention.
  • FIGS. 7-15 are structural schematic diagrams of another encapsulation layer attached to a substrate provided by Embodiment 6 of the present invention.
  • FIGS. 7-16 are structural schematic diagrams of another encapsulation layer being laminated to the substrate according to Embodiment 6 of the present invention.
  • FIGS. 7-17 are structural schematic diagrams of another encapsulation layer provided by Embodiment 6 of the present invention after it is bonded to the substrate;
  • Figure 8-1 is a schematic diagram of the solder paste provided by Embodiment 7 of the present invention.
  • FIG. 8-2 is a first structural schematic diagram of the substrate provided by Embodiment 7 of the present invention.
  • FIG. 8-3 is a second structural schematic diagram of the substrate provided by Embodiment 7 of the present invention.
  • FIG. 8-4 is a first structural schematic diagram of a display module provided by Embodiment 7 of the present invention.
  • Figure 8-5 is a schematic diagram of the welding structure corresponding to a single LED chip in Figure 8-4;
  • Figure 9-1 is a schematic diagram 1 of the structure of the black deposition layer provided in Embodiment 8 of the present application.
  • Figure 9-2 is the second schematic diagram of the structure of the black deposition layer provided in Embodiment 8 of the present application.
  • Figure 9-3 is the third schematic diagram of the structure of the black deposition layer provided in Embodiment 8 of the present application.
  • Figure 9-4 is a schematic diagram of the manufacturing process of the display module provided in the eighth embodiment of the present application.
  • Figure 9-5 is the second schematic diagram of the manufacturing process of the display module provided by the eighth embodiment of the present application.
  • Figure 9-6 is the third schematic diagram of the manufacturing process of the display module provided by the eighth embodiment of the present application.
  • Figure 9-7 is the first schematic diagram of magnetron sputtering provided by Embodiment 8 of the present application.
  • Figure 9-8 is the second schematic diagram of magnetron sputtering provided by Embodiment 8 of the present application.
  • Figures 9-9 are the first structural diagram of the display module provided in the eighth embodiment of the present application.
  • FIGS 9-10 are the second structural diagram of the display module provided in the eighth embodiment of the present application.
  • FIGS 9-11 are the third structural diagram of the display module provided in the eighth embodiment of the present application.
  • FIG. 10-1 is a schematic structural diagram of a substrate provided with a light-emitting unit provided in Embodiment 9 of the present invention.
  • Fig. 10-2 is a schematic diagram of the principle structure of the semi-transparent layer provided by Embodiment 9 of the present invention.
  • FIG. 10-3 is a schematic structural diagram of a reflective layer provided by Embodiment 9 of the present invention.
  • Figure 10-4 is a schematic structural view of the third vinyl layer provided in Embodiment 9 of the present invention.
  • Fig. 10-5 is a schematic diagram of the optical path of the semi-transparent layer provided by the ninth embodiment of the present invention.
  • Fig. 10-6 is the second schematic diagram of the optical path of the semi-transparent layer provided by Embodiment 9 of the present invention.
  • FIG. 10-7 is a first structural schematic diagram of a display module provided by Embodiment 9 of the present invention.
  • Figure 10-8 is a schematic diagram of the optical path of the display module in Figure 10-7;
  • Figure 10-9 is the second schematic diagram of the optical path of the display module in Figure 10-7;
  • FIGS. 10-10 are schematic diagrams of plane mirror images provided by Embodiment 9 of the present invention.
  • Embodiment 9 of the present invention are schematic diagrams of specular reflection provided by Embodiment 9 of the present invention.
  • Embodiment 9 of the present invention are schematic diagrams of diffuse reflection provided by Embodiment 9 of the present invention.
  • 10-13 are the second structural diagrams of the display module provided by Embodiment 9 of the present invention.
  • 10-16 are schematic diagrams five of the structure of the display module provided by the ninth embodiment of the present invention.
  • FIGS. 10-18 are structural schematic diagrams 7 of the display module provided by Embodiment 9 of the present invention.
  • FIGS. 10-20 are structural schematic diagrams of a display module provided by Embodiment 9 of the present invention.
  • FIGS. 10-24 are schematic diagrams 4 of the manufacturing process of the display module provided by Embodiment 9 of the present invention.
  • FIGS. 10-26 are schematic diagrams 6 of the manufacturing process of the display module provided by Embodiment 9 of the present invention.
  • Figure 11-1 is a schematic diagram of the manufacturing process of the display module provided by Embodiment 10 of the present invention.
  • Figure 11-2 is a schematic cross-sectional view of the display module provided by Embodiment 10 of the present invention after removing the fourteenth encapsulation layer;
  • Figure 11-3 is a second schematic diagram of the manufacturing process of the display module provided by Embodiment 10 of the present invention.
  • Fig. 11-4 is a second schematic cross-sectional view of the display module provided by Embodiment 10 of the present invention after removing the fourteenth encapsulation layer;
  • Figure 11-5 is a schematic cross-sectional view of the display module provided by Embodiment 10 of the present invention.
  • Fig. 11-6 is a second schematic cross-sectional view of the display module provided by Embodiment 10 of the present invention.
  • Figure 11-7 is a schematic cross-sectional view of the third display module provided by Embodiment 10 of the present invention.
  • Figure 11-8 is a cross-sectional schematic diagram of the fourth embodiment of the display module provided by the tenth embodiment of the present invention.
  • Figure 11-9 is a schematic cross-sectional view of the display module fifth provided by the tenth embodiment of the present invention.
  • FIG. 11-10 are schematic cross-sectional views of the display module VI provided by Embodiment 10 of the present invention.
  • FIGS 11-11 are schematic cross-sectional views of the display module VII provided by Embodiment 10 of the present invention.
  • Figures 11-12 are the eighth cross-sectional schematic diagram of the display module provided by the tenth embodiment of the present invention.
  • Figures 11-13 are schematic cross-sectional views of the display module ninth provided by the tenth embodiment of the present invention.
  • Fig. 12-1 is a schematic structural diagram of a display module provided in Embodiment 11 of the present application.
  • Fig. 12-2 is a schematic diagram of the uniform light treatment of light by the light diffusion unit provided in Embodiment 11 of the present application;
  • Fig. 12-3 is a schematic diagram of the first projection of the light diffusion unit on the substrate provided by the eleventh embodiment of the present application.
  • Fig. 12-4 is a second schematic diagram of the projection of the light diffusion unit on the substrate provided by the eleventh embodiment of the present application.
  • Figure 12-5 is a schematic diagram of the third projection of the light diffusion unit on the substrate provided by Embodiment 11 of the present application;
  • Fig. 12-6 is a schematic diagram of the fourth projection of the light diffusion unit on the substrate provided by the eleventh embodiment of the present application.
  • Fig. 13-1 is a schematic structural diagram of a display module provided in Embodiment 12 of the present application.
  • Figure 13-2 is a schematic diagram of a light-emitting unit including four rectangular LED chips provided in Embodiment 12 of the present application;
  • Fig. 13-3 is a schematic diagram of an arrangement of LED chips in the spliced substrate provided in Embodiment 12 of the present application;
  • Fig. 13-4 is another schematic diagram of the arrangement of LED chips in the spliced substrate provided by Embodiment 12 of the present application;
  • Figure 13-5 is a schematic diagram of a light emitting unit including three elliptical LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-6 is a schematic diagram of the electrical connection of the LED chip near the center electrode provided in Embodiment 12 of the present application;
  • FIG. 13-7 is a schematic diagram of the electrode orientation of the LED chip in another light-emitting unit provided in Embodiment 12 of the present application;
  • FIG. 13-8 is a schematic diagram of the electrode orientation of the LED chip in another light-emitting unit provided by Embodiment 12 of the present application;
  • Fig. 13-9 is another structural schematic diagram of the display module provided by Embodiment 12 of the present application.
  • FIGS. 13-10 are schematic diagrams of the adjustable distance and adjustable angle of the LED chip relative to the center of rotational symmetry provided by Embodiment 12 of the present application;
  • FIG. 13-11 are schematic diagrams of the first light-emitting unit including three LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-12 are schematic diagrams of a second light-emitting unit including three LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-13 are schematic diagrams of a third light-emitting unit including three LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-14 are schematic diagrams of a fourth light-emitting unit including three LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-15 are schematic diagrams of a fifth light-emitting unit including three LED chips provided in Embodiment 12 of the present application;
  • FIGS. 13-16 are schematic diagrams of the first light-emitting unit including four LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-17 are schematic diagrams of a second light-emitting unit including four LED chips provided in Embodiment 12 of the present application;
  • FIGS. 13-18 are schematic diagrams of a third light-emitting unit including four LED chips provided in Embodiment 12 of the present application;
  • FIG. 13-19 are schematic diagrams of a fourth light-emitting unit including four LED chips provided in Embodiment 12 of the present application;
  • Figure 14-1 is a schematic diagram of a display module structure provided by Embodiment 13 of the present application.
  • Figure 14-2 is the second structural diagram of the display module provided by Embodiment 13 of the present application.
  • Figure 14-3 is a schematic diagram of the third structure of the display module provided by Embodiment 13 of the present application.
  • Fig. 14-4 is a schematic diagram 4 of the structure of the display module provided by Embodiment 13 of the present application.
  • Figure 14-5 is a schematic diagram of the fifth structure of the display module provided by Embodiment 13 of the present application.
  • Figure 14-6 is the sixth structural diagram of the display module provided by Embodiment 13 of the present application.
  • Figure 14-7 is a schematic diagram of the seventh structure of the display module provided by Embodiment 13 of the present application.
  • FIG. 14-8 is a schematic diagram of a blind hole structure of a substrate provided in Embodiment 13 of the present application.
  • Fig. 14-9 is a schematic structural diagram of a display screen provided in Embodiment 13 of the present application.
  • Figures 14-10 are the second structural schematic diagram of the display screen provided by Embodiment 13 of the present application.
  • Fig. 15-1 is a structural schematic diagram 1 of the display module provided in Embodiment 14 of the application;
  • Figure 15-2 is the second structural diagram of the display module provided by the fourteenth embodiment of the application.
  • Figure 15-3 is a schematic diagram of the third structure of the display module provided in Embodiment 14 of the application.
  • Fig. 15-4 is a schematic view 4 of the structure of the display module provided in Embodiment 14 of the application;
  • Figure 15-5 is a schematic diagram of the fifth structure of the display module provided by the fourteenth embodiment of the application.
  • Figure 15-6 is a schematic diagram of the sixth structure of the display module provided in Embodiment 14 of the application.
  • Fig. 16-1 is a structural top view of an encapsulation layer provided in Embodiment 15 of the present application.
  • Figure 16-2 is a schematic cross-sectional view of A5-A5 of the encapsulation layer provided in Embodiment 15 of the present application;
  • Figure 16-3 is the second schematic cross-sectional view of A5-A5 of the encapsulation layer provided in Embodiment 15 of the present application;
  • Fig. 16-4 is a schematic cross-sectional view of A5-A5 of the encapsulation layer provided in the fifteenth embodiment of the present application;
  • Figure 16-5 is a schematic cross-sectional view A5-A5 of the encapsulation layer provided in Embodiment 15 of the present application IV;
  • Fig. 16-6 is a top view of the structure of the encapsulation layer covered on the substrate provided by Embodiment 15 of the present application;
  • Figure 16-7 shows the A6- A6 Sectional Diagram 1
  • Figure 16-8 shows the A6- A6 Sectional Diagram II
  • Figure 16-9 shows the A6- A6 Sectional Diagram III
  • Figures 16-10 are A6- A6 cross-sectional schematic diagram
  • Figures 16-11 are A6- A6 Sectional Diagram 4;
  • Figures 16-12 are A6- A6 cross-sectional schematic diagram
  • 16-13 are a schematic structural diagram of a rectangular window on the seventeenth encapsulation layer provided by Embodiment 15 of the present application;
  • Figures 16-14 are a schematic structural view of the protruding part provided on the long side of the rectangular window of the encapsulation layer provided in Embodiment 15 of the present application;
  • Figures 16-15 are another structural schematic diagram of the protruding part provided on the long side of the rectangular window of the encapsulation layer provided in Embodiment 15 of the present application;
  • FIG. 16-16 are top views of another structure in which the encapsulation layer is covered on the substrate provided by Embodiment 15 of the present application;
  • Fig. 16-17 is a cross-sectional view of A7-A7 of Fig. 16-16 provided by Embodiment 15 of the present application;
  • Figures 16-19 are A8-A8 cross-sectional view 1 of Figures 16-18 provided by Embodiment 15 of the present application;
  • Figures 16-20 are the second cross-sectional view along line A8-A8 of Figures 16-18 provided by Embodiment 15 of the present application.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear” etc. are based on the orientation or position shown in the drawings relation. These terms are mainly used to better describe the present application and its embodiments, and are not used to limit that the indicated devices, elements or components must have a specific orientation, or be constructed and operated in a specific orientation. Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term “upper” may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in this application according to specific situations.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components.
  • the display module includes a substrate 1, several light emitting units 2 and an encapsulation layer 3, wherein:
  • the substrate 1 may be used as a display backplane of a display module, or may be a carrier substrate independent of the display backplane for carrying light-emitting units.
  • the substrate 1 can be a single-layer substrate, or a composite substrate including at least two layers, it can be a flexible substrate, or a rigid substrate, which is not limited in this embodiment;
  • the surface shown by Z in Fig. 1 is The front side of the substrate, the surface indicated by B is the back side of the substrate, and the side between the front side and the back side of the substrate is the side surface of the substrate.
  • the light-emitting unit 2 is arranged on the front side of the substrate, and one light-emitting unit 2 may only include one LED chip, or may include more than two LED chips, and each light-emitting unit 2 includes at least one of the number of LED chips and the light-emitting color It can be the same; it can also be set that the number of LED chips included in the partial light-emitting 2 and at least one of the light-emitting colors are different.
  • the LED chips in this application can be micron-scale LED chips (such as Mini LED chips or Micro LED chips), for example, micron-scale flip-chip LED chips, and of course all or part of them can be replaced by micron-scale formal or vertical LED chips. Of course, the size of the LED chip can also be replaced with a normal size LED chip according to the demand.
  • the encapsulation layer 3 is arranged on the substrate 1, covers each light-emitting unit 2, and can transmit the light emitted by the LED chip of the light-emitting unit 2, and the thickness of the encapsulation layer 3 is higher than the thickness of the light-emitting unit 2; the encapsulation layer 3 can only It is arranged on the front of the substrate, and covers the front of the substrate completely, or only partially covers the front of the substrate; the encapsulation layer 3 can also extend from the front of the substrate to at least one side of the substrate, or even extend to the back of the substrate; the encapsulation layer 3 can be A single-layer structure may also be a multi-layer structure comprising at least two layers.
  • the structure of the display module provided by the present application is flexible and applicable to a wide range of scenarios; and on the basis of meeting the sealing requirements, the overall thickness is smaller and the cost is lower.
  • the specific structures and manufacturing methods of some variations thereof are illustrated below in conjunction with the following embodiments.
  • the LED chips included in each light-emitting unit can be directly arranged on the substrate through but not limited to COB (chip-on-board, that is, chip-on-board package), and the substrate can directly dissipate heat, which not only reduces manufacturing process steps and Its low cost also has the advantage of heat dissipation by reducing thermal resistance, and it can also display higher-definition images and videos, and can be spliced arbitrarily.
  • COB packaging the LED chip is welded on the substrate, and then the packaging layer is placed on the substrate, and finally the process frame on the edge of the substrate is cut off along the predetermined cutting edge, and the unit board display module of the required size can be obtained.
  • the LED chip is very close to the process cutting line, and water vapor can easily enter the display module through the interface between the packaging layer and the substrate, resulting in the failure of the LED chip and the appearance of the packaging layer and the substrate. layered.
  • this embodiment provides a display module, as shown in Figure 2-1 to Figure 2-3, Figure 2-2 is a top view of the display module (in order to facilitate understanding of the figure as a perspective process), Figure 2-1 is a sectional view along A1-A1 in Fig. 2-2; Fig. 2-3 shows the bottom view of the module.
  • the display module in this embodiment includes a substrate 10 , a light emitting unit 21 and an encapsulation layer, and the encapsulation layer includes a first encapsulation layer 31 .
  • the substrate 10 includes a first installation portion 103 and a second installation portion 102 located on the front surface and the rear surface of the substrate respectively, and a path extension portion 101 located around the first installation portion 103 .
  • the path extension portion 101 includes at least one of a raised portion and a first concave portion, wherein the raised portion protrudes from the front surface of the substrate, and the first concave portion is concave from the front surface of the substrate to the back surface of the substrate; the first encapsulation layer 31 is provided On the front of the substrate, cover the path extension part 101 and the light emitting unit 21; as shown in FIG.
  • the first distance L1 between the centers (specifically, the vertical distance from the outer surface of the path extension part 101 to the central point of the light emitting unit 21 ) is smaller than the two adjacent rows of light emitting units 21 parallel to the outer surface on the first installation part
  • the distance between rows (specifically, the distance between the central axes of two adjacent rows of light-emitting units 21, wherein the central axis of each row of light-emitting units 21 is formed by the connection between the center points of the light-emitting units 21 in the row ) 1/2 of L2, so that when multiple display modules are spliced to form a display screen, the splicing gap between the display modules can be reduced, and at the same time, the splicing position between adjacent display modules can be guaranteed.
  • the distance between the centers of two adjacent rows of light-emitting units 21 is the same as the distance L2 between two adjacent rows of light-emitting units 21 in other areas on the substrate 10, even smaller than L2, thereby improving the overall quality of the spliced display modules. performance and display.
  • the setting of the path extension part 101 can make the interface between the first encapsulation layer 31 and the substrate 10 have a non-single straight line structure, thereby prolonging the entry of water vapor from the interface between the first encapsulation layer 31 and the substrate 10 into the display module.
  • the internal path of the group avoids the failure of the light-emitting unit 21 due to the entry of water vapor, which improves the reliability of the display module, and the path extension part 101 and the first packaging layer 31 are also less likely to be delaminated, and the packaging effect is better. .
  • the substrate 10 in this embodiment may be a PCB board, a glass substrate, a silicon substrate, and the like.
  • the shape and size of the substrate 10 can be flexibly set.
  • the thickness of the substrate 10 between the first mounting portion 103 and the second mounting portion 102 may be, but not limited to, 1.5mm-2.5mm.
  • a substrate 10 of this thickness is more conducive to the path extension portion 101
  • the processing can make the path extension part 101 extend the path of water vapor in the thickness direction of the substrate.
  • the substrate 10 can be a rectangular substrate, a circular substrate, a rhombus substrate, a triangular substrate and other regular shapes, and can also be an irregular shaped substrate.
  • the light-emitting unit 21 in this embodiment may include only one LED chip, or may include multiple LED chips.
  • the light-emitting unit may include but not limited to red LED chips, green LED chips, etc. chips and blue LED chips.
  • the second mounting portion 102 on the back of the substrate can be used to set up an electronic drive circuit, and to be electrically connected with the electronic drive circuit to drive the drive element 41 for driving the light emitting unit 21, through the drive element 41
  • the light emitting unit 21 can be flexibly controlled according to specific display modes or display requirements, so as to realize the display control of the display module.
  • the driving element 41 in this embodiment may include but not limited to a driving chip, and the driving chip may be a driving bare chip, or may be a driving chip after packaging the driving bare chip.
  • the path extension portion 101 surrounds the outer periphery of the first installation portion 103 to form a ring structure.
  • the path extension part 101 in this embodiment is not limited to be arranged in a ring structure, and the path extension part 101 can also be provided only on one or more sides of the first installation part 103, but it does not form a closed ring shape. structure.
  • the path extension portion 101 in this embodiment includes at least one of a protruding portion 106 protruding from the front surface of the substrate and a first concave portion recessed from the front surface of the substrate toward the back surface of the substrate.
  • the first encapsulation layer 31 can be formed on the substrate 10 by but not limited to molding, printing, hot pressing, etc., and can also be formed on the substrate 10 by potting, and the specific setting process is not limited. .
  • the material of the first encapsulation layer 31 in this embodiment can be flexibly set, for example, but not limited to, an adhesive layer can be used, and the adhesive layer can be a transparent adhesive layer, or can contain light conversion particles (such as phosphor powder ) and/or a mixed glue layer of diffused particles, etc.
  • the first encapsulation layer 31 in this embodiment can be set as a single-layer structure, or can be set as a multi-layer structure according to requirements.
  • the upper surface of the first encapsulation layer 31 can be set as a plane or a curved surface according to requirements.
  • each light emitting unit 21 is evenly distributed on the substrate 10, and each light emitting unit 21 is mounted on a corresponding position on the front surface of the substrate.
  • the distance between adjacent light-emitting units 21 on the first mounting part 103 is the same;
  • the spacing value between them can be set larger than the spacing value between the light emitting units 21 far away from the driving element 41; at the same time, in order to ensure the uniformity of light emission, the spacing value between adjacent light emitting units 21 can be set from the substrate 10 It gradually decreases from the middle to the edge.
  • the path extension portion 101 may only include The first concave part is concave, and the first concave part can be a groove, or it can be the remaining concave part after cutting a part of the groove; in other application examples, the path extension part 101 can be a protrusion The raised portion 106 on the front side of the substrate. In still some application examples, the path extension part 101 may also include the first concave part and the raised part 106 at the same time.
  • path extension portion 101 is taken as examples to describe the present embodiment below.
  • Figure 2-4 is a cross-sectional view along A2-A2 in Figure 2-5; in this example, the path extension 101 is concave from the front of the substrate to the back of the substrate
  • the first lower recess, and the first lower recess may be a complete groove.
  • grooves may be processed on the outer edge of the substrate 10 to form the path extension 101 , and then the light emitting unit 21 and the first encapsulation layer 31 are disposed on the substrate 10 .
  • the shape of the groove in this embodiment can be flexibly set, for example, as shown in Figure 2-6, the groove 105 can be set as a square groove, as shown in Figure 2-7, or can be set as a V-shaped groove Groove; see Figure 2-8 and Figure 2-9, it can also be set as a U-shaped groove or a trapezoidal groove.
  • the shape of the groove 105 in this embodiment is not limited to the above examples, and can be flexibly set to other regular shapes according to specific application requirements.
  • the groove 105 also Can be set as a stepped groove.
  • the groove 105 in this embodiment can also be set in an irregular shape, which will not be repeated here.
  • the specific size of the first concave portion can be specifically set according to the row spacing between two adjacent rows of light-emitting units 21 , when two adjacent rows of light-emitting units 21 When the row spacing between them is large enough, the first concave part may include but not limited to at least one complete groove in the above examples; and when the row spacing between two adjacent rows of light-emitting units 21 is small, in order to ensure that adjacent After the display modules are spliced, the distance between two adjacent rows of light-emitting units 21 at the splicing position is the same as the distance L2 between two adjacent rows of light-emitting units 21 in other areas on the substrate 10, or even smaller than L2.
  • the first lower concave portion can be set as the remaining concave portion after cutting a part of a complete groove.
  • the path extension part 101 is the remaining concave part after cutting a part of the groove.
  • the first depressed portion shown in FIG. 2-1 may be the first depressed portion obtained by cutting the groove in FIG. 2-6 according to the process cutting line 104 shown in FIG. 2-16.
  • the specific setting position (that is, the cutting position) of the process cutting line 104 in this embodiment can be flexibly set according to application requirements.
  • Figure 2-17 see Figure 2-17.
  • the position of the process cutting line 104 shown in Figure 2-17 is closer to the outer edge than Figure 2-16.
  • the display module obtained after cutting is shown in Figure 2-18.
  • the first encapsulation layer 31 can be disposed on the substrate 10, and then the first encapsulation layer 31 can be cut together with the substrate 10, or the substrate 10 can be cut first, and then the substrate 10 can be cut.
  • a first encapsulation layer 31 is disposed on the upper surface 1 .
  • the path extension part 101 is a raised part 106 protruding from the front of the substrate, and the raised part 106 can be a complete protrusion, or can be The part that remains after a complete protrusion has been cut away.
  • the protrusion 106 shown in FIG. 2-11 is a complete rectangular protrusion
  • the protrusion 106 shown in FIG. 2-12 is a complete triangular protrusion.
  • FIG. 2-20 Another example is shown in FIG. 2-20 .
  • the protruding portion 106 is the remaining protruding portion 106 after cutting off a part of the rectangular protruding portion 106 shown in FIG. 2-11 .
  • An example of cutting is shown in Figure 2-19.
  • the shape of the protrusion 106 can also be flexibly set, and is not limited to the shape of the above example, and can also be a regular shape such as an arc-shaped protrusion, a trapezoidal protrusion, or other irregular shapes.
  • the path extension portion 101 is not limited to the first concave portion and the convex portion 106 shown in the above examples; it may also include the first concave portion and the convex portion 106 at the same time. And in some examples of this embodiment, the number of the first depressed portions included in the path extension portion 101 can be flexibly set according to requirements.
  • the path extension part 101 can be a first concave part provided on the substrate 10, so as to ensure the distance between the outer surface of the path extension part 101 and the light emitting unit 21 on the outer edge of the first mounting part 103 L1 is less than 1/2 of the minimum distance between adjacent light emitting units 21 on the first installation part 103 .
  • the path extension portion 101 may be a raised portion 106 provided on the substrate 10, or a raised portion 106 and a first concave portion are adjacently provided on the substrate 10, and the raised portion 106
  • the size of the first concave part can ensure that the distance L1 between the outer surface of the path extension part 101 and the light emitting unit 21 on the outer edge of the first mounting part 103 is smaller than that between adjacent light emitting units 21 on the first mounting part 103 Under the premise of 1/2 of the minimum spacing, it can be set flexibly.
  • the path extension part 101 shown in the above examples makes the interface between the first encapsulation layer 31 and the edge of the substrate 10 a non-single straight line structure, thereby prolonging the flow of water vapor from between the first encapsulation layer 31 and the substrate 10.
  • the edge of the contact interface enters the intrusion path inside the module, and it is difficult for water vapor to enter between the internal path extension part 101 and the first packaging layer 31 of the display module, and it is also less likely to be delaminated, and the packaging effect is better.
  • it can also ensure that the distance between the edge line of the display module and the display area is small enough.
  • the splicing gap between the display modules can be reduced, and the distance between the display modules after splicing can be reduced. If the distance between the first installation parts is small, the display effect of the display screen is better. And L1 is less than 1/2 of L2, which can ensure that the area of the non-display part on the outer periphery of the first installation part 103 on the display module is small enough to reduce the splicing gap between the display modules.
  • the depth of the first concave part can be set to be greater than or equal to the distance L2 between adjacent light emitting units on the first mounting part 103. 1/2.
  • the first concave portion of this size can not only realize the extension of the path, but also ensure the strength of the substrate 10 at the path extension portion 101 .
  • the ratio of the depth of the first concave portion to the width of the first concave portion may be set to be, but not limited to, 2-20, so as to further improve the extension path.
  • the above dimensions of the first lower concave portion are not limited to the above examples, and can be flexibly replaced with other dimensions according to specific application requirements, which will not be repeated here.
  • the height of the raised part 106 above the front surface of the substrate can be set to be smaller than the height of the light emitting unit 21 and/or smaller than the height of the first encapsulation layer 31.
  • the maximum thickness is more conducive to the display module to present a good display effect.
  • a light reflection layer or a refracting layer may be provided on the surface of the protruding portion 106, so as to further improve the display effect.
  • the surface of the path extension portion 101 in order to further improve the extended path and improve the tightness of the bond between the first encapsulation layer 31 and the substrate 10, the surface of the path extension portion 101 can be set to be concave-convex, or the surface of the path extension portion 101 can be set to be rough surface.
  • the provision of the concave-convex shape or the rough surface can further enhance the extension path, and at the same time enhance the bonding strength between the first encapsulation layer 31 and the path extension portion 101 , and further prevent external water vapor from entering.
  • description will be given below in conjunction with several examples in which the surface of the path extension portion 101 is concave-convex.
  • the path extension 101 shown in this figure is a groove 105.
  • a part of the remaining concave part can also be cut off for the groove, and the bottom surface of the groove 105 is set to be concave-convex.
  • it can also be made according to It is required that at least one side surface of the groove 105 is concave-convex.
  • the groove 105 is a V-shaped groove, and the sides of the groove 105 are all set in a concave-convex shape.
  • the path extension portion 101 shown in this figure is a raised portion 106 , and the top surface and at least one side surface of the raised portion 106 are concave-convex. It should be understood that the path extension part 101 shown in other figures in this embodiment can also refer to the above-mentioned figures 2-13 to 2-15, and its surface is set as a concave-convex or rough surface.
  • the path extension part 101 can be a complete ring structure around the outer circumference of the first installation part 103, and the ring structure corresponds to the shape formed on the outer edge of the first installation part 103, which can be but not limited to a rectangle, a polygon, a Circular and oval structures. In some application examples, the above ring structure may also be an incomplete ring structure composed of multiple segments.
  • the path extension part 101 can be a ring structure surrounding the first installation part 103, or it can be a ring structure surrounding the first installation part 103 composed of multiple turns. When there are multiple turns, the process cutting line 104 is located in the outermost circle of the path On the extension part 101.
  • This embodiment also provides a display screen, which is a spliced display screen, which is formed by splicing at least two display modules shown in the above examples, as shown in FIG. 2-21 .
  • the number of display modules used in this embodiment can be selected according to application requirements, for example, two, three, four, five or more than six display modules can be spliced together to obtain a display screen , the display module of the display screen is less susceptible to the invasion of water vapor, and the light-emitting unit displayed is less likely to fail, prolonging the service life of the display screen.
  • the splicing gap between the display modules is small, which improves the display effect of the display screen.
  • the edge LED chip is close to the edge of the substrate, and the encapsulation layer only covers the front of the substrate, water vapor can easily enter the display module through the interface between the encapsulation layer and the substrate, causing the LED chip to fail, and Delamination easily occurs between the encapsulation layer and the substrate, which reduces the reliability of the display module.
  • This embodiment also provides another structural example of the display module that can solve this problem. And it should be understood that the display module provided in this embodiment can be implemented independently of other embodiments.
  • FIG. 3-1 An example of the display module provided in this embodiment is shown in Fig. 3-1 and Fig. 3-3, wherein Fig. 3-1 is a top view of the display module (for ease of understanding, it is perspectively processed), and Fig. 3- 2 is a bottom view of the display module; Figure 3-3 is a cross-sectional view along A3-A3 in Figure 3-1.
  • the display module in this example includes a substrate 12 and several light emitting units 22, and the several light emitting units 22 are all installed in the display area 121 provided on the front of the substrate.
  • the display area 121 on the front side of the substrate is an area where the light-emitting unit 22 is electrically connected to drive and control the light-emitting unit 22 to light up for display, and this area is also used to carry the light-emitting unit 22 .
  • the number, color, size and type of LED chips included in the light-emitting unit 22 in this embodiment, as well as the material, shape and size of the substrate 12 can be referred to but not limited to the foregoing embodiments, and will not be repeated here.
  • the circuit functional area 122 is arranged on the back of the substrate, and the driving electronic element 42 for driving and controlling the light emitting unit 22 is mounted on the circuit functional area 122 .
  • the display area 121 on the front of the substrate is provided with an encapsulation layer covering all the light emitting units 22 , wherein the encapsulation layer includes a second encapsulation layer 321 covering the front surface of the substrate and a third encapsulation layer 322 .
  • the third encapsulation layer 322 covers the second encapsulation layer 321, extends toward the back of the substrate and covers at least a part of the side surface 123 of the substrate 12, thereby covering the junction of the second encapsulation layer 321 and the substrate 12, see FIG.
  • the specific area covered by the third encapsulation layer 322 on the side surface 123 of the substrate 12 can be flexibly set according to application requirements.
  • the third encapsulation layer 322 can cover only a part of the side surface 123 of the substrate 12
  • the third encapsulation layer 322 can also completely cover the sides of the substrate 12 to further prolong the path for water vapor to intrude into the display module and improve the reliability of the display module.
  • both the second encapsulation layer 321 and the third encapsulation layer 322 may be realized by but not limited to embossing, printing, potting, etc., which are not limited here.
  • Both the second encapsulation layer 321 and the third encapsulation layer 322 are light-transmitting layers, and their materials can be the same (for example, both can be transparent adhesive layers), or they can be different.
  • both the second encapsulation layer 321 and the third encapsulation layer 322 may be a single-layer structure, or at least one of them may be a composite layer structure formed of at least two sub-layers.
  • At least one of light conversion particles and diffusion particles may be provided in at least one of the second encapsulation layer 321 and the third encapsulation layer 322 according to requirements.
  • light conversion particles may be provided in the second encapsulation layer 321 to realize light color conversion
  • diffusion particles may be provided in the third encapsulation layer 322 to further improve light extraction efficiency.
  • the light-emitting unit 22 can be arranged in the display area 121 on the front surface of the substrate first, and then the second encapsulation layer 321 is formed on the front surface of the substrate.
  • the formed second encapsulation layer 321 can enclose the front surface of the substrate.
  • the second encapsulation layer 321 may partially cover the front surface of the substrate, for example, as shown in FIGS.
  • the inner light-emitting unit 22 is covered, and the third encapsulation layer 322 covers the area of the front surface of the substrate exposed to the second encapsulation layer 321 .
  • a second encapsulation layer 321 is formed on the front surface of the substrate, and the second encapsulation layer 321 covers the front surface of the substrate 12.
  • 103 is not completely covered, and then the substrate 12 and the second encapsulation layer 321 are cut along the process cutting plane 124 to obtain the substrate 12 and the second encapsulation layer 321 on the substrate 12 in FIGS. 3-5 .
  • the area where the second encapsulation layer 321 covers the substrate 12 can be flexibly set according to application requirements, and is not limited to the above examples, and will not be repeated here.
  • the third encapsulation layer 322 is formed, and the formed third encapsulation layer 322 extends toward the side surface 123 of the substrate 12 and completely or partially covers the The side surface 123 of the substrate 12 can protect the light-emitting unit 22 through the first encapsulating adhesive layer, avoid dust and the like from affecting the light-emitting unit 22 during cutting, and further improve the reliability of the manufactured display module.
  • the third encapsulation layer 322 protects the second encapsulation layer 321 and the light emitting unit 22, and makes water vapor pass through the interface between the third encapsulation layer 322 and the side surface 123 of the substrate 12 and between the second encapsulation layer 321 and the front surface of the substrate.
  • the interface can only enter the display area 121 of the display module, which prolongs the path of water vapor intruding into the display module, better protects the light-emitting unit 22, makes the light-emitting unit 22 less prone to failure, and improves the reliability of the display module.
  • the second encapsulation layer 321 may cover the process cut surface 124 of the substrate 12 or even exceed the process cut surface 124 , or may not exceed the process cut surface 124 .
  • the side surfaces of the second packaging layer 321 and the side surfaces 123 of the substrate 12 may or may not be flush.
  • the side 123 of 12 gets final product.
  • a second concave portion 125 can also be provided on the outer periphery of the display area 121 of the substrate 12.
  • the arrangement of the second concave portion 125 can be compared with the planar structure. Further extend the path of water vapor intruding into the display module.
  • the second lower recess 125 in this embodiment may be a complete groove, or a recess formed by cutting a part of the groove. The details can be flexibly set according to application requirements.
  • the front surface of the substrate is provided with a second concave portion 125 on the outer periphery of the display area 121 .
  • the second concave portion 125 is a concave portion formed by cutting a part of the groove.
  • grooves may be provided on the outer periphery of the display area 121 on the substrate 12 , and then cut along the process cutting plane 124 . After cutting, the remaining portion of the groove is located at the edge of the substrate 12 to form a second concave portion 125 , so that the side surface 123 of the substrate 12 forms a stepped structure.
  • the contact area between the second encapsulation layer 321 or the third encapsulation layer 322 and the substrate 12 increases, which can also prolong the path for water vapor to enter from the interface between the encapsulation adhesive layer and the substrate 12, and the encapsulation effect of the display module is better.
  • the path of water vapor intrusion is: from the interface between the third encapsulation layer 322 and the side surface 123 of the substrate 12 to the interface between the third encapsulation layer 322 and the groove bottom and the groove wall of the second lower recess 125 , Then to the interface between the second encapsulation layer 321 and the front surface of the substrate, the water vapor intrusion path is extended.
  • the depth of the second concave portion 125 can be flexibly set, for example, but not limited to 0.1 to 0.9 times the thickness of the substrate 12 . It can be understood that the depth of the second concave portion 125 is the distance from the bottom of the second concave portion 125 to the front surface of the substrate. The larger the depth of the second concave portion 125 is set, the longer the path of water vapor entering from the interface between the third encapsulation layer 322 and the substrate 12 is.
  • the second encapsulation layer 321 may cover the second depressed portion 125 on the substrate 12 , or may not cover the second depressed portion 125 on the substrate 12 .
  • the second encapsulation layer 321 does not cover the second depressed portion 125 on the substrate 12 .
  • the second encapsulation layer 321 can be formed on the front surface of the substrate 12 first, but the second encapsulation layer 321 does not cover the groove. Then cut along the process cutting surface 124 to obtain the substrate 12 and the second encapsulation layer 321 shown in FIGS. The two lower recesses 125 are completely covered.
  • the second encapsulation layer 321 covers the second depressed portion 125 on the substrate 12 .
  • a second encapsulation layer 321 can be formed on the front surface of the substrate first, and the second encapsulation layer 321 covers the groove. Then cut along the process cutting surface 124 to obtain the substrate 12 and the second packaging layer 321 shown in FIGS. 3-9 after cutting, and then form the third packaging layer 322 on the substrate 12. Then cover the second lower concave portion 125 .
  • 3-9 is: the interface between the third encapsulation layer 322 and the side surface 123 of the substrate 12, to the interface between the second encapsulation layer 321 and the groove bottom and the groove wall of the second lower recess 125, and then to The interface between the second encapsulation layer 321 and the front surface of the substrate can also extend the water vapor intrusion path.
  • the second concave portion 125 can also be replaced with a boss, or a combination of the second concave portion and the boss. (i.e. replaced by a bump structure).
  • the surface of the second lower recess 125 or the boss can also be set as a rough surface, such as a stepped surface or a serrated surface, which can further prolong the path for water vapor to enter and also improve the encapsulation layer. Bonding strength with the substrate 12.
  • the boss when the second concave portion 125 is replaced by a boss, or a combination of the second concave portion and the boss, the boss can be set not to be higher than the light emitting surface of the light emitting unit 22, thereby avoiding the The table blocks or otherwise interferes with the light emitted by the light emitting surface of the light emitting unit 22 to ensure the light emitting effect.
  • the boss can also be set higher than the light-emitting surface of the light-emitting unit 22, so as to block at least part of the light emitted by the light-emitting surface of the light-emitting unit 22.
  • the refractive index of the second encapsulation layer 321 is greater than or equal to that of the third encapsulation layer 322 . In this way, the light extraction efficiency of the light emitting unit 22 can be improved, and the display effect of the display module can be better.
  • the refractive index of the second encapsulation layer 321 may be selected as 1.50-1.58, and the refractive index of the third encapsulation layer 322 may be selected as 1.50-1.52.
  • the distance C1 between them may be less than half of the row spacing C2 between the light emitting units 22 of adjacent rows.
  • the splicing gap can be guaranteed to be small enough, and the distance between the edge line of the display module and the display area can be ensured to be small enough.
  • the splicing gap between the display modules can be reduced, making the display The integration and display effect of the screen are better.
  • the distance between the process cutting surface 124 and the edge light-emitting unit 22 on the substrate 12 can achieve a good display effect, which is not specifically limited in this embodiment.
  • the third encapsulation layer 322 can also extend along the side surface 123 of the substrate 12 to the back surface of the substrate, so that the third encapsulation layer 322 covers the side surface 123 of the substrate 12 and the back surface of the substrate. Therefore, there will be no water vapor intrusion port on the side surface 123 of the substrate 12 , and the sealing effect of the display module is better.
  • This embodiment also provides a display screen, which includes the display module shown in the above examples.
  • only one of the above-mentioned display modules can be used to produce a display screen.
  • at least two display modules can be used to splicing to obtain a spliced display screen.
  • An example splicing effect is shown in Figure 2 -21 shown.
  • the display module of the display screen is not easy to be invaded by water vapor, and the display module is not easy to fail, which ensures a good display effect of the display screen and prolongs the service life of the display screen; The gap is also smaller and the display is better.
  • a typical application scenario of a display module is to splice multiple display modules together to form a large display screen for display. Since the display module has a certain thickness and rigidity, it is relatively easy to achieve seamless or small gap splicing when splicing in a two-dimensional plane. However, in some special application scenarios, multiple display modules need to be spliced into a curved surface structure. The seams have also become larger, which greatly affects the continuity and sensory effect of the picture.
  • this embodiment provides a new type of display module and a substrate of the display module. And it should be understood that the display module and the substrate in this embodiment can be implemented independently of other embodiments. In order to facilitate understanding, the present embodiment below illustrates the substrate and the display module manufactured using the substrate.
  • the substrate provided in this embodiment can be used to carry and arrange a light-emitting unit.
  • the light-emitting unit can be arranged on the front of the substrate;
  • the fourth encapsulation layer At least one side of the substrate is the splicing side that is spliced with the substrates of other display modules.
  • the area of the splicing side close to the back of the substrate is reduced to form an avoidance area, and the area of the splicing side close to the front of the substrate is used as the splicing area.
  • the avoidance areas on the spliced sides of the two substrates do not interfere with each other. It should be noted that the mutual non-interference of the avoidance areas may mean that they do not touch each other, or they may contact each other but do not interfere. When the avoidance areas do not touch each other, a certain gap is formed in the avoidance areas.
  • the splicing areas of the two substrates are spliced close to each other, and the backs of the two substrates can be spliced at an angle of less than 180°.
  • the visual effect seen from the front side of the substrates The splicing area is slightly protruding outwards. Due to the existence of the avoidance area and the avoidance area is formed by shrinking in the area close to the back of the substrate, the back of the two substrates can be closer, so that the splicing areas of the two substrates are closer, and the two substrates
  • the seams formed between the seams become smaller. Exemplarily, FIG.
  • 4-1 is a schematic cross-sectional view of a display module made using the substrate provided in this embodiment.
  • the light-emitting unit 23 is arranged on the front surface of the substrate
  • the fourth encapsulation layer 34 covers the light-emitting unit 23 on the front surface of the substrate 13 while covering the entire front area of the substrate 13, and the driving electronic element 43 is arranged on the back surface of the substrate.
  • the side is a splicing side.
  • the splicing area 131 close to the front of the substrate is spliced with the corresponding splicing area of the substrates of other display modules, and the area close to the back of the substrate shrinks into an avoidance area 132
  • the avoidance area 132 forms a splicing seam in the visually visible area where the two backplanes are closest to each other when observed from the front side of the substrates.
  • the joining side of the substrate 13 can be formed by means including but not limited to cutting, cutting, machining, etc., as shown in FIG. 4-1 , the dotted line part is the cut part.
  • Figure 4-2 is a partially enlarged schematic diagram of splicing the two substrates shown in Figure 4-1.
  • is the angle between the back surfaces of the two substrates.
  • the angle ⁇ in this embodiment can be set to 160°, 85°, 60°, etc., which can be greater than 0°, any angle less than 180°, the specific angle of the included angle is not limited in this application.
  • the coverage area of the fourth encapsulation layer 34 also includes, as shown in FIG. 4-3 and FIG. 4-4 , the thickness of the fourth encapsulation layer 34 can be controlled at 150 microns to 300 microns, for example, 150 microns.
  • the fourth encapsulation layer 34 shown in FIG. 4-3 covers all the light-emitting units 23 as a whole, and the fourth encapsulation layer 34 shown in FIG. 4-4 covers each light-emitting unit 23 individually.
  • two arrangements are also possible.
  • the combination of modes is not limited in this embodiment. It can be understood that, in some examples, one, two, three or four splicing sides of the substrate 13 can be set according to requirements, for example, the substrate 13 shown in FIGS.
  • the substrate 13 provided in this embodiment is especially suitable for the splicing of thicker substrates, and the effect is more obvious.
  • the continuity of the spliced display images and user experience can be greatly improved.
  • the material of the substrate in this embodiment can be referred to but not limited to the above-mentioned embodiments, and will not be repeated here.
  • the avoidance area 132 of the substrate 13 shrinks into a slope.
  • the slope can be a plane, an arc, or a combination of a plane and an arc.
  • the slope can be the structure shown in Figure 4-1. In some application scenarios, whether the slope is a plane or It can be shown in Figure 4-7 and Figure 4-8.
  • the slope is chamfered and cut on the intersection line between the back and the side of the substrate, and cut just to the intersection line between the front and the side of the substrate
  • the slope is chamfered on the intersection line between the back and the side of the substrate, and the intersection line between the front and the side of the substrate is completely cut off; when the slope is an arc surface, as shown in Figure 4- 9 shows that the slope is an arc-shaped structure, which cuts the avoidance area near the back of the substrate into an arc; when the slope is a combination of a plane and an arc, as shown in Figure 4-10, the slope is A combination of a plane and an arc, which cuts the avoidance area near the back of the substrate into a shape that combines an inclined plane and an arc.
  • the avoidance area 132 of the substrate 13 can also be retracted into a stepped surface. As shown in FIG. 4-11 , the avoidance area 132 close to the back of the substrate is cut into a rectangle, and the area of the rectangle can be set by those skilled in the art according to actual conditions and requirements. It should be noted that the avoidance area 132 is a stepped surface and may also include at least two stepped surfaces. As shown in FIG. Those skilled in the art can set the number of step surfaces according to actual conditions and requirements.
  • each avoidance area 132 can be formed on the substrate 13 without removing the area enclosed by the dotted line.
  • the slope angle of the slope can be set to be greater than or equal to 5° and less than or equal to 60°.
  • the specific slope angle can be set according to actual conditions and needs, such as shown in Figure 4-1
  • the inclination angle of the slope is set to 60°, of course, it can also be set to 5°, 10°, 30°, 45°, 50°, etc. according to requirements.
  • both the front side of the substrate and the back side of the substrate may be set to be rectangular, and one, two, three or four of the four sides of the substrate are spliced sides.
  • the encapsulation layer of the display module may further include a fifth encapsulation layer covering the fourth encapsulation layer 34 .
  • a fifth encapsulation layer 35 is added.
  • the display module is based on the display module shown in FIG. 4-11 , and a fifth encapsulation layer 35 is added.
  • the fifth encapsulation layer 35 completely covers the spliced side surfaces of the fourth encapsulation layer 34 and the substrate 13, thereby improving the overall airtightness and reliability of the display module.
  • the outer surface of the fifth encapsulation layer 35 serves as A new splicing side; correspondingly, the part of the fifth encapsulation layer 35 covering the splicing area 131 is used as a new splicing area, and the part covering the escape area 132 is used as a new escape area. It should be understood that, in some implementations, the fifth encapsulation layer 35 may also not cover the side of the substrate 13 , or cover a part of the side of the substrate 13 (for example, it may only cover the joining region 131 ).
  • the area covered by the fifth encapsulation layer 35 may include the area shown in Figure 4-15 and Figure 4-16 as shown in T3, and then cut this part In this way, the display modules shown in Fig. 4-13 and Fig. 4-14 are produced respectively.
  • the fifth encapsulation layer 35 By setting the fifth encapsulation layer 35, the path for water vapor to enter the interior of the display module can be extended, the airtightness of the display module can be increased, and the The fourth encapsulation layer 34 is not easily detached from the substrate, which improves the reliability of the display module.
  • This embodiment also provides a display device, which includes at least two display modules shown in the above examples spliced together.
  • a schematic diagram of a splicing effect is shown in Figure 4-17.
  • each display module 12 can be connected through an adapter.
  • the adapter includes a connector 51 and an adapter plate 52.
  • the connection between the plug connector 51 and the adapter plate 52 can be a detachable connection, or a non-detachable fixed connection, such as through fasteners, glue, welding, etc., as long as the two can be connected.
  • the adapter plate 52 can be installed and fixed at the place where it needs to be installed by means including but not limited to copper pillars 53 , screws or welding.
  • FIG. 4-18 Another example of the display device is shown in Figure 4-18.
  • the connection between the two substrates also includes a connecting piece 54.
  • the embedded part of the connecting piece 54 cooperates with the angle, fills the accommodation space between the avoidance areas, and contacts the splicing area.
  • the connecting piece 54 can It plays the role of strengthening the display device, and at the same time, when the display module is installed, it is convenient for the rapid positioning of the two substrates and improves the installation efficiency.
  • the module is also supported on the side of the splicing, which has a compact structure and better strength.
  • This embodiment provides a method for making a display module, which can be used but not limited to making the display modules shown in the above-mentioned embodiments, and can also be used alone to make display modules different from those shown in the above-mentioned embodiments. .
  • the prepared display module can be used alone, or several can be spliced together to form a large display.
  • Step a1 providing a substrate.
  • the provided substrate 14 includes a substrate front Z (shown in FIG. 5-1 ), a substrate back B opposite to the substrate front Z (shown in FIG. 5-2 ), and a process edge 141 located around the substrate 14 , defined on the substrate front Z.
  • the display area 142 for installing the light emitting unit is shown (the area covered by the oblique line framed by the dotted line in FIG. 5-1 ).
  • the substrate 14 is a rectangular substrate, and the front Z of the substrate and the back B of the substrate are both planes.
  • the process side 141 surrounds the four sides of the display area 142.
  • the process side 141 can also surround one or two opposite or adjacent sides of the display area 142. side, there is no limitation here.
  • the substrate 14 can also be other polygonal substrates, such as triangles or regular hexagons, which are not limited here; the front Z of the substrate can also present regular or specially designed concave-convex surfaces to create special
  • the visual effect such as wave effect, or embossed effect, can be set according to the effect to be displayed, and there is no limitation here.
  • Step b1 As shown in Figure 5-3 and Figure 5-4, a groove 144 is formed around the display area 142 adjacent to the process side 141 (that is, at the junction of the display area 142 and the process side 141) (surrounded in Figure 5-3 As shown in the area covered by the oblique box outside the dotted box area, the groove 144 is located on the side of the process side 141), wherein the groove 144 does not penetrate the substrate 14 (as shown in Figure 5-4), and the groove 144 The depth is greater than the thickness of the substrate of the non-penetrating part; in this embodiment, the shape of the groove is a rectangular groove, and it is perpendicular to the front of the substrate, which is convenient for processing.
  • the groove The shape of the groove 144 can also be a "V" groove. Within the range that the existing processing technology can meet, this embodiment does not limit the shape of the groove 144, for example, it can also be an inverted trapezoid, U shape, etc.
  • the groove 144 can be formed by partially etching away the position not covered by the mask by machining or etching.
  • Step c1 Referring to Fig. 5-5 and Fig. 5-6, mount the light-emitting unit array 20 on the display area 142.
  • a plurality of light-emitting units 24 are arranged in a rectangular equidistant array.
  • a light-emitting unit array of 5 rows and 9 columns is schematically shown, and other types of arrays can also be used in other embodiments; in order to ensure uniform light emission of the display module,
  • the row spacing value or column spacing value of the light emitting unit 24 of the light emitting unit array 20 will be designed, and the row spacing value or column spacing value of the light emitting unit 24 refers to the center line of the row or column where the light emitting unit 24 of the adjacent row/column is located
  • the straight-line distance is generally fixed at a uniform value. Of course, the uniform value may not be fixed.
  • the row spacing value of the light-emitting unit 24 near the driving electronic component 44 in the substrate 14 is relatively far away from the LED driving electronic component.
  • the row spacing value of the 44 light-emitting units will be larger, but based on the consideration of uniform lighting, the row spacing value of the light-emitting units in adjacent rows or columns changes gradually, but in order to ensure the visual effect of the display module, so visually There is no obvious inconsistency, so the equidistant distribution in this embodiment means that the distances appear to be equal visually, and is not limited to the equidistant distribution in the concept of fine measurement.
  • the light emitting unit 24 of this embodiment can also be only in the horizontal direction Evenly spaced vertically or horizontally but not necessarily equally spaced horizontally and vertically.
  • the light-emitting unit 24 may include an LED chip, or may include an LED package with a packaging structure.
  • the light-emitting unit 24 in this embodiment takes an LED chip as an example, and the LED chip can be selected within the wavelength range of visible light.
  • Light-emitting chips such as red LED chips, green LED chips and blue LED chips.
  • a light emitting unit 24 may only include a red LED chip or a green LED chip or a blue LED chip, or may be a package including one or more of the red LED chip, the green LED chip and the blue LED chip body.
  • Step d1 Referring to FIGS. 5-7 , molding the first encapsulation layer 31 on the substrate 14 , wherein the first encapsulation layer 31 covers the display area 142 and fills the groove 144 .
  • the first encapsulation layer 31 can be transparent resin such as epoxy resin, silicone resin.
  • the first encapsulation layer 31 is preferably made of hard material to protect the light emitting unit 24 .
  • the first encapsulation layer 31 is preferably formed by a process such as transfer molding, compression molding, etc., using a resin having good heat resistance, weather resistance, and light resistance.
  • Step e1 Cut off part of the process side 141 in combination with the side of the process side 141 shown in Figure 5-8 (that is, along the position shown by the dotted line in Figure 5-7), and cut perpendicular to the front surface of the substrate when cutting, so that the display mold A cutting plane P is formed on the outside of the group, so that after cutting, the outer side of the encapsulation adhesive layer is coplanar with the outer side of the substrate on the process side, and the plane where the display area 142 is located is away from the cutting plane P (that is, the remaining part of the process side 141
  • the distance h from the center point of the nearest light-emitting unit 24 to the cutting plane P is less than or equal to the line spacing value between the two rows of light-emitting units parallel to the cutting plane P (that is, the centerline distance between the two rows of light-emitting units ) 1/2 of H.
  • the display modules 200 of this embodiment are spliced into a large screen (refer to FIG. 5-19, which is an example of a large screen spliced by four display modules 200; reference to FIG. 5-14 shows two adjacent After displaying the spliced cross-sectional structure schematic diagram of the module 200), the distance H' between the light emitting units 24 on both sides of the splicing seam is equal or approximately equal to the row spacing value H between the two rows of light emitting units parallel to the cutting plane P, Each light emitting unit array 20 is visually continuous, and each light emitting unit 24 emits light uniformly.
  • step b1 and step c1 can be interchanged.
  • the process side 141 is used to be clamped by the corresponding jig when the display module 200 is produced, so as to avoid damage to the substrate 14 or other parts installed on the substrate 14 during the processing; Part of the group 200 can be cut off during the assembly process without affecting the display effect of the final display module 200 .
  • a groove 144 is provided along the periphery of the display area 142 on the side of the process side 141 in this embodiment.
  • the first encapsulation layer 31 is filled into the groove 144, thereby increasing the contact area between the first encapsulation layer 31 and the substrate 14, so that the water vapor path can extend along the thickness direction of the substrate 14, prolonging the path of water vapor intrusion, so that the water vapor does not It is easy to enter the display area 142 and contact the light-emitting unit 24, reducing the damage caused by water vapor to the light-emitting unit 24.
  • the groove 144 also increases the contact area between the first packaging layer 31 and the substrate 14, and improves the first packaging layer 31 and the substrate 14. the bonding force between them. In this way, the service life of the light-emitting unit 24 is prolonged, and in this embodiment, since the distance h from the center point of the light-emitting unit 24 closest to the cutting plane P on the plane where the display area 142 is located to the cutting plane P is less than or equal to two distances parallel to the cutting plane p, 1/2 of the line spacing value H between rows of light-emitting units, so that when the display module 200 is spliced, as shown in FIG.
  • the row center distance between rows of light-emitting units is equal or approximately equal to the row spacing H between two adjacent rows of light-emitting units 24, so that the spliced display screen emits light evenly, which solves the problems existing in the prior art.
  • the manufacturing method provided in this embodiment cleverly utilizes the process side 141 of the substrate 14, only providing the groove 144 on the process side 141, and filling the groove 144 when molding the first packaging layer 31, so that the display module 200 can be lifted. Excellent waterproof performance, low implementation difficulty and high production efficiency.
  • the cutting position is located in the middle of the groove 144.
  • the bottom surface of the cut groove 144 is connected to the outer surface of the display module 200 (that is, the cutting surface, that is, the outer surface of the cut process edge 141). Pass; the display module of this embodiment is spliced through the cutting plane P.
  • the cutting should be close to the display area 142, so cutting at the groove 144 can reduce the seam, which is convenient for display module splicing.
  • FIG. 5-4 there is one groove 144 created in step b1, but in other embodiments, there may be multiple grooves 144 created in step b1.
  • the substrate 14 shown in FIG. 5-12a four grooves 144 are opened.
  • the first encapsulation layer 31 is molded on the substrate 14 shown in FIG. 5-12a and part of the process edge is cut off.
  • the cross-sectional structure of the display module 200 is shown in FIG. 5-12b.
  • the grooves 144 cannot be opened. Too many, but at least one groove 144 should start. It can be determined according to the actual situation, and is not limited here.
  • the inner wall of the groove 144 in this embodiment is relatively smooth, while in another preferred embodiment, the side wall of the groove 144 opened in step b1 near the display area 142 is uneven .
  • the advantage is that the bonding area between the first encapsulation layer 31 and the sidewall can be increased, so that the two are more tightly bonded and not easy to be separated.
  • the side wall of the groove 144 near the display area 142 is stepped, so that the bonding force between the first packaging layer 31 and the substrate 14 is better; refer to FIG.
  • the side wall of the groove 144 near the display area 142 is jagged, so that the bonding force between the first encapsulation layer 31 and the substrate 14 is improved, and the path for water vapor to intrude into the display area 142 can also be increased.
  • the uneven sidewall of the groove 144 near the display area 142 can also be formed by etching to further increase the extension path of water vapor.
  • step c1 may also include: defining a drive installation area 143 (framed by a dotted line in Fig. The area covered by the slash); mount the driving electronic components 44 in the driving installation area 143 (shown in FIG. 5-13 ).
  • the driving electronic component 44 is electrically connected with the light emitting unit 24 through the prefabricated circuit provided in the substrate 14, and is used to drive the light emitting unit 24 to emit light, and no additional drive circuit is required, which makes the display module more integrated.
  • the electronic drive components may include resistors, capacitors, inductors and integrated circuits.
  • the ratio between the thickness of the remaining part of the process edge 141 and the depth of the groove 144 is between 2 and 20.
  • the thickness of the remaining part of the process side 141 is the thickness of the part of the groove 144 that does not penetrate the substrate 14; and the depth of the groove 144, that is, the distance from the opening of the groove 144 to the bottom of the groove, because the function of the groove 144 is to extend Water vapor invades the light-emitting units in the display area, so the groove 144 should be as deep as possible, but it should not be too deep to cause insufficient strength at the connection between the process side 141 and the substrate 14. In practical applications, the remaining part of the process side 141 The ratio of thickness to width is between 2 and 20.
  • the thickness of the substrate 14 is 1 to 5 mm.
  • the substrate 14 can be a printed circuit board, a glass substrate or other types of substrates, and a suitable substrate can be selected according to the requirements of the use environment.
  • This embodiment is preferably a printed circuit board.
  • a prefabricated circuit can be provided on the substrate, and metal pads can be provided in the display area 142 and the drive installation area, so that the light emitting unit 24 and the drive electronic component 44 can be mounted by SMT (Surface Mount) process.
  • the thickness of the substrate 14 is too thin, the depth of the groove 144 is too shallow so that the water vapor path is too short, so in order to prolong the water vapor path as much as possible, the groove 144 should be as deep as possible and the substrate 14 should be as thick as possible, but the substrate 14 is too thick.
  • the thickness of the substrate 14 is 1 to 5 mm.
  • a multi-layer printed circuit board can be used, which is formed by alternately setting multi-layer insulating substrates and multi-layer circuit layers.
  • the expansion coefficients of the first packaging layer and the substrate may be mismatched between the expansion coefficients of the first packaging layer and the substrate (for example, the expansion coefficient of the substrate and the expansion coefficient of the light-transmitting encapsulant are too different, resulting in temperature rise.
  • the expansion degree of the light-transmitting encapsulation colloid is different.
  • the expansion coefficient of the first encapsulation layer is much larger than the expansion coefficient of the substrate), resulting in a large gap between the first encapsulation layer and the substrate, which reduces the airtightness.
  • water vapor easily enters the interior of the module through the interface between the first encapsulation layer and the substrate, resulting in failure of the light emitting unit.
  • the first encapsulation layer is mixed with nano-powder materials (preferably, the particle size of nano-powder materials is 5nm to 200nm) in light-transmitting colloid to form a mixed colloid (mixing is preferably uniform, so that the characteristics of each part of the mixture Consistent) to improve the expansion coefficient of the first encapsulation layer and narrow the gap with the expansion coefficient of the substrate.
  • nano-powder materials preferably, the particle size of nano-powder materials is 5nm to 200nm
  • mixing is preferably uniform, so that the characteristics of each part of the mixture Consistent) to improve the expansion coefficient of the first encapsulation layer and narrow the gap with the expansion coefficient of the substrate.
  • epoxy resin or silica gel or silicone resin is selected; nano-silica powder or nano-alumina powder or nano-zirconium tungstate powder material or a mixture of at least two of the three materials are used as the mixed transparent material.
  • Photocolloid nanopowder material preferably, the particle size of nano-p
  • the expansion coefficient of nano-silica powder, nano-alumina powder, and nano-zirconium tungstate powder is much smaller than that of epoxy resin, silica gel and silicone resin, especially nano-zirconium tungstate material is a negative expansion coefficient material. , so that the expansion coefficient of the light-transmitting encapsulant formed after mixing is reduced, and the gap between the expansion coefficient of the substrate and the substrate is narrowed.
  • the expansion coefficient of epoxy resin, silica gel, and silicone resin can be effectively adjusted by adding nano-powder material to the light-transmitting colloid for modification, so that the expansion coefficient of epoxy resin, silica gel, and silicone resin is different from that of the substrate.
  • the configuration is improved, thereby increasing the airtightness between the first encapsulation layer and the substrate, so that during the long-term use of the display module, it is possible to prevent water vapor from entering the module through the interface between the encapsulant and the substrate due to the decrease in airtightness, resulting in LED chip failure or adhesive layer and substrate delamination.
  • This embodiment provides another method for manufacturing a display module, which includes the following steps:
  • Step a2 providing a substrate, which is similar to the substrate provided in step a1 above, and will not be repeated here.
  • Step b2 Create grooves around the display area adjacent to the process edge, wherein the grooves do not penetrate the substrate, and the depth of the grooves is greater than the thickness of the substrate in the part that does not penetrate; step b2 in this embodiment is the same as that in Embodiment 1 Step b1 is the same as above, and reference may be made to the description of step b1 in the first embodiment above, which will not be repeated here.
  • Step c2 mount the light-emitting unit on the display area, and mold the second encapsulation layer 32 on the display area; this embodiment is different from step c1, in this embodiment, refer to Figure 5-15, this implementation is in the display area 142 After mounting the light-emitting unit array 20, first mold the second encapsulation layer 32; and the second encapsulation layer 32 covers the light-emitting units 24 in the display area, so as to avoid vibration caused by cutting when part of the process edge is cut in step d2 The light emitting unit 24 is loosened.
  • Step d2 Referring to Fig. 5-16, part of the process side is cut along the side of the process side 141 to form a cut surface P' outside the display module, and make the light on the plane where the display area is closest to the cut surface P'
  • the distance from the center point of the unit 24 to the cutting plane P' is less than 1/2 of the line spacing between two rows of light emitting units parallel to the cutting plane P'.
  • Step e2 Referring to Fig. 5-17, molding the third encapsulation layer 33 on the substrate, wherein the third encapsulation layer 33 covers the second encapsulation layer 32 and the front Z of the substrate (that is, it is located above the front Z of the substrate, directly or indirectly connected to the front Z of the substrate Z contact), and fill the groove 144, extend and cover the cutting surface P' to be flush with the back surface B of the substrate, and make the center point of the light emitting unit 24 closest to the outermost surface of the third encapsulation layer 33 on the plane where the display area 142 is located to
  • the distance h1 of the outermost surface of the third encapsulation layer 33 is less than or equal to 1/2 of the distance H1 between two rows of light emitting units parallel to the outermost surface of the third encapsulation layer 33 .
  • the third encapsulation layer 33 fills the groove 144 and covers the side of the drive mounting area (ie, the back surface B of the substrate 14 ), so that the water vapor path is longer than that of Embodiment 1, so although this embodiment is compared As for the first embodiment, the steps are more complicated, but the moisture-proof effect is better.
  • the steps in the above method of this embodiment can be executed sequentially, and some steps can be changed or new operation steps can be added if there is no conflict.
  • the light-emitting unit 24 is mounted on the display area, and the second encapsulation layer 32 is molded in the display area to protect the light-emitting unit, so that when the process edge is cut, the light-emitting unit is prevented from being damaged due to cutting.
  • the resulting vibration of the substrate causes the light-emitting unit 24 to be separated from the substrate 14, and the third encapsulation layer 33 can be filled into the groove after the cutting process and covered to the drive installation area on the back, thereby increasing the contact between the first encapsulation layer and the substrate.
  • the outer contact area prolongs the water vapor path, making it difficult for water vapor to enter the display area and contact the light emitting unit 24 , thereby prolonging the service life of the light emitting unit 24 .
  • 5-17 and 5-18 since the distance from the center point of the light-emitting unit 24 closest to the outermost surface of the third encapsulation layer 33 on the plane where the display area is located to the outermost surface of the third encapsulation layer 33 is less than or equal to the distance from the outermost surface of the third encapsulation layer 33 1/2 of the line spacing between the two rows of light-emitting units 24 parallel to the outermost sides of the three encapsulation layers 151, so that the distance H between the light-emitting units on both sides of the splicing seam is when the display module for splicing is spliced.
  • the waterproof performance of the display module can be improved. Low difficulty and high production efficiency.
  • the groove 144 when the second encapsulation layer 32 is molded, the groove 144 is not filled, so that the cutting resistance can be reduced during cutting.
  • the groove 144 may be filled firstly when the second encapsulation layer 32 is molded.
  • the third encapsulation layer 33 may also extend to the surface B of the backside of the substrate.
  • a back groove 145 may also be formed on the back surface B of the substrate, so that the third encapsulation layer 33 also fills the back groove 145 , further prolonging the water vapor path, and further enhancing the bonding force between the substrate and the first encapsulation layer.
  • the refractive index of the third encapsulation layer 33 is greater than that of the second encapsulation layer 32, so that the light emitted by the light-emitting unit 24 is refracted by the second encapsulation layer 32 and the third encapsulation layer 33 and then diffuses outward at an angle of Larger, it is beneficial to disperse the light and make the light effect more uniform.
  • the groove 144 in the above step b2, can be opened around the display area 142 (as shown in FIG. 5-3), that is, the groove 144 is formed on the substrate The front Z of the substrate is opened.
  • the back groove 145 is opened on the back surface B of the substrate. Referring to FIGS. 5-22 , after molding the second encapsulation layer 32 , part of the process edge is cut from the back groove 145 , and then the third light-transmitting encapsulation layer 33 is molded.
  • the water vapor path is extended to be flush with the back surface B of the substrate 14 , which is longer than the water vapor path of the display module provided in Embodiment 1, and the third light-transmitting encapsulation layer 33 and the substrate 14 are more closely bonded.
  • the back groove 145 is an inverted "V" groove, which is cut (in Fig. 5-23, the dotted lines at both ends of the substrate 14 indicate the cut away part) and finally forms a one-way substrate on the side of the substrate 14.
  • the inclined surface 1451 in the middle of the rear surface B of the substrate is the advantage of this.
  • Figure 5-24 that is, in addition to plane splicing, angled splicing can also be realized.
  • Figure 5-24 shows that the two display modules are spliced at 90°. Of course, they can also be spliced within the range of greater than 90° and less than or equal to 180°.
  • the slope 1451 can avoid the two display modules being spliced at an angle. put one's oar in. Therefore, the display module of this embodiment has better practicability and wider application range.
  • an LED display screen spliced by using the display modules in the above examples is also provided.
  • the display module 200 connects with the switch
  • the adapter board (not shown) is connected, and then the adapter board is tightly fixed to the structural frame through the copper column to form an LED display with a small seam.
  • COB packaging technology When COB packaging technology is used to make display modules, COB integrated packaging can achieve smaller dot pitches, which can bring better display effects.
  • COB display packaging products There are two main technical advantages of COB display packaging products: First, COB is a modular package, and the entire product surface is protected by colloidal packaging, which effectively reduces the packaging interface and improves product reliability; second, adopts COB integrated packaging. There are natural technical advantages in the field of smaller pitches.
  • the contrast of the product and the black display effect after being installed on the screen are not good, and the ink color is inconsistent after the screen is turned off, and other industry pain points are prominent.
  • this embodiment provides a display module that can improve the contrast and brightness of the entire screen.
  • the display module provided by this embodiment can be implemented independently of other embodiments.
  • An example of the display module provided in this embodiment is shown in Figure 6-1, which includes a substrate 15, a number of light-emitting units 25 arranged on the front of the substrate, each light-emitting unit 25 includes a plurality of LED chips 251;
  • the first black glue layer 51 on the front side of the substrate, the first black glue layer 51 connects the first region 151 between the light emitting units 25 on the front side of the substrate, and the first area 151 between the LED chips 251 in each light emitting unit 25.
  • the second area 152 is covered, and the light-emitting surface of each LED chip 251 is exposed to the first black glue layer 51 ; the sixth encapsulation layer 36 is provided on the front surface of the substrate to cover the first black glue layer 51 and each light emitting unit 25 .
  • an electronic component 45 is provided on the back of the substrate for driving the LED chip 251 to emit light.
  • the LED chip 251 can be arranged on the front surface of the substrate by welding, or can be arranged on the front surface of the substrate by mounting, and the specific arrangement method is not limited in the present invention.
  • the sixth encapsulation layer 36 can be formed on the substrate by methods including but not limited to injection molding, glue dispensing, molding, etc., so that it is closely combined with the first black glue layer 51 and the light emitting unit 25 .
  • the sixth encapsulation layer 36 can cover only the light-emitting unit 25 on the front of the substrate, and can also cover the entire front of the substrate at the same time.
  • the sixth encapsulation layer 36 can include but not limited to add a certain proportion of Diffusion particles to improve their light-emitting effect, for example, a certain proportion of diffusion powder, phosphor powder, etc. can be added.
  • the display module further includes a moisture-proof layer 52, and the moisture-proof layer 52 includes at least one of the following: a first moisture-proof layer 521 disposed between the first black glue layer 51 and the front surface of the substrate; a first moisture-proof layer 521 covering each LED chip 251 Two moisture-proof layer 522.
  • Figure 6-2 is a schematic cross-sectional structure diagram of a moisture-proof layer of a display module. It should be noted that, in Figure 6-2, the first moisture-proof layer 521 is arranged between the first vinyl layer 51 and the front surface of the substrate. , as shown in Figure 6-3, another schematic diagram of the cross-sectional structure of the moisture-proof layer of the display module.
  • the second moisture-proof layer 522 in Figure 6-3 covers each LED chip 251.
  • the above-mentioned moisture-proof layer 52 may include but is not limited to mold pressing, Formed by hot pressing, of course, the setting of the moisture-proof layer 52 can also include setting between the first black glue layer and the front surface of the substrate and covering each LED chip at the same time, for example, as shown in Figure 6-4, it is another display module.
  • the moisture-proof layer 52 in FIG. 6-4 is arranged between the front surface of the substrate and covers each LED chip 251.
  • the side surface of the LED chip 251 is the surface between the top surface and the bottom surface of the LED chip 251.
  • the moisture-proof layer 52 shown in FIG. 6-4 includes a first moisture-proof layer 521 and a second moisture-proof layer 522.
  • the first moisture-proof layer 521 and the second moisture-proof layer 522 may include but are not limited to integrally formed , can also be non-integral molding. It should be noted that when the first moisture-proof layer 521 and the second moisture-proof layer 522 are not integrally formed, when the first moisture-proof layer 521 and the second moisture-proof layer 522 are set, the junction of the two should be Tight connection to prevent water vapor from entering.
  • the moisture-proof layer 52 may include but is not limited to a polymer nano-layer, which can completely prevent the intrusion of water molecules, and can also be well combined with wafers, PCB boards and packaging glue to improve its mechanical strength. The display effect will not be affected, and the user satisfaction is improved.
  • the faces 512 are all parallel.
  • the area of the top surface 511 of the first vinyl layer 51 located in the first area 151 close to the light emitting unit 25 can also be an inclined surface or a curved surface.
  • the maximum height of the top surface 511 of a black glue layer 51 is smaller than the height of the light-emitting surface of the LED chip 251, so that the covered area of the side of the LED chip 251 is larger, thereby significantly reducing light crossing between the light-emitting units,
  • 6-6b are schematic diagrams of another display module, in which the height of the top surface 511 of the first vinyl layer 51 is greater than that of the light emitting surface of the LED chip 251,
  • the height of the first black glue layer between the light-emitting units is set to be higher than the height of the light-emitting surface of the LED chip, so that when the light is mixed between the light-emitting units It will not affect other light-emitting units, so that the display effect is better.
  • the top surface 511 of the first black glue layer 51 can also be a curved surface that is concave toward the front of the substrate, and the top surface 511 of the first black glue layer
  • the maximum height of the top surface 511 is the same as the height of the light-emitting surface of the LED chip, that is, the first vinyl layer can extend along the side of the LED chip toward the light-emitting surface, and finally be flush with the light-emitting surface.
  • FIG. 6-8a and FIG. 6-8b are schematic diagrams of another display module, and the top surface 512 of the first vinyl layer 51 located in the second region 152 can also be A curved surface that is concave toward the front of the substrate. It should be noted that the top surface 512 of the first vinyl layer located in the second area is not higher than the light emitting surface of the LED chip, because the second area is located between the LED chips in the light emitting unit 25, if the second area The height of the top surface of the first vinyl layer inside is higher than the height of the light-emitting surface of the LED chip.
  • the light mixing effect of the LED chip will be greatly affected, and even if it cannot be mixed, in order to improve its light mixing
  • the top surface of the first vinyl layer in the second area should not be higher than the light emitting surface of the LED chip.
  • the top surfaces of the first vinyl layer in the first region and the second region can be parallel to the front surface of the substrate at the same time, or both can be curved surfaces concave toward the front surface of the substrate or
  • the slope can also be that the top surface of the first black glue layer in the first area is parallel, and the top surface of the first black glue layer in the second area is a curved surface or slope that is concave toward the front of the substrate, and it can also be the first area
  • the top surface of the first black glue layer inside is a curved surface or inclined surface that is concave toward the front of the substrate, and the top surface of the first black glue layer in the second area is parallel, of course, it can also be in the first area and in the second area Part of the top surface of the first vinyl layer is parallel, and other parts of the area are curved or inclined surfaces that are concave toward the front of the substrate.
  • a display module in this embodiment may include, but is not limited to, that the height of the top surface of the first vinyl layer in the first region is higher than the height of the light emitting surface of the LED chip, and that in the second region
  • the height of the top surface of the first black glue layer is lower than the height of the light-emitting surface of the LED chip, and it may also include that the height of the top surface of the first black glue layer in the first region is lower than the height of the light-emitting surface of the LED chip, and The height of the top surface of the first black glue layer in the second region is lower than the height of the light-emitting surface of the LED chip, and of course the height of the top surface of the first black glue layer in the first region is equal to the light-emitting surface of the LED chip , and the height of the top surface of the first vinyl layer in the second area is equal to the height of the light-emitting surface of the LED chip, etc., those skilled in the art can adjust the height of the first area and the second area according to
  • the height of the top surface of the first black glue layer is set, as long as the height of the top surface of the first black glue layer in the second region is not higher than the height of the light emitting surface of the LED chip, which is not limited in this embodiment.
  • the height of the top surface of the first vinyl layer in the first region is higher than the height of the light emitting surface of the LED chip, so as to prevent light crossing between the light emitting units.
  • the top surface of the first black glue layer is higher than the light-emitting surface of the LED chip, which means that at least a part of the top surface of the first black glue layer is higher than the light-emitting surface of the LED chip.
  • the top surface is not higher than the light-emitting surface of the LED chip means that any part of the top surface of the first vinyl layer is not higher than the light-emitting surface of the LED chip, but it may include that at least a part of it is flush with the light-emitting surface of the LED chip .
  • the first black glue layer in the first region and the second region is parallel to the front surface of the substrate or concave toward the front surface of the substrate, and the height of the first black glue layer in the first region and the second region is There can be multiple combinations, and those skilled in the art can set them according to actual conditions and requirements.
  • the quantity, primary color and size of the LED chips included in the light emitting unit 25 in this embodiment may refer to, but are not limited to, the configuration of the light emitting unit in other embodiments, which will not be repeated here.
  • the first black glue layer 51 is a molded black glue layer molded on the front surface of the substrate or a heat-pressed black glue layer heat-pressed on the front surface of the substrate.
  • the substrate made of PCB material can be selected, and after cleaning and dehumidification, the LED chip is fixed on the front side of the PCB substrate and placed on the back side of the PCB.
  • the electronic components after a period of aging verification, to ensure that all LED chips can be lit normally, then mold the black glue layer to cover the surface of the LED chips and bake and cure, and then through chemical etching, physical etching, etc.
  • the surface vinyl is etched until the surface of the chip is completely exposed, and finally a package layer is molded on the molded vinyl layer and the surface of the LED chip to improve the reliability of the product and achieve the effect of light mixing.
  • the pre-fabricated hot-pressed vinyl film can be hot-pressed to the surface of the substrate and the LED chip and baked and cured.
  • the hot-pressed vinyl film After hot pressing, the hot-pressed vinyl film forms a concave shape towards the front of the substrate with the periphery of the LED chip, and then etches the hot-pressed vinyl film on the surface of the LED chip by means including but not limited to chemical etching and physical etching , until the surface of the LED chip is completely exposed, to ensure that the light output from the top surface of the LED chip is normal, and finally a layer of encapsulation layer is molded on the surface of the hot-pressed vinyl film and the LED chip to improve the reliability of the product and achieve mixed light Effect
  • first vinyl layers of different heights and shapes are arranged between the light-emitting units on the front of the substrate and between the LED chips in the light-emitting units to increase its contrast and brightness and improve its display effect.
  • the first vinyl layer and the front of the substrate and the surface of the LED chip are provided with a moisture-proof layer to prevent the intrusion of water vapor, which solves the problems of poor ink color consistency, poor contrast, and failure caused by moisture in the display module, and improves the contrast and display. As a result, user satisfaction is greatly improved.
  • This embodiment also provides a display screen, as shown in FIGS. 6-9 , wherein in order to express the structure of the display screen more clearly, the encapsulation layer is transparently treated in the figure.
  • the display screen includes at least one display module shown in the above examples. For example, as shown in Figure 6-9, three display modules 300 are assembled. , glue for fixing, it should be noted that the setting of the display screen can be set as a flat surface, or can be set as a curved surface, the specific setting method can be set by those skilled in the art according to the actual situation and needs, which is not limited in this application.
  • the display module in this embodiment can omit the setting of the moisture-proof layer.
  • the display module in this embodiment can be implemented independently from the above-mentioned embodiments.
  • the encapsulation layer of the display module in this embodiment includes a seventh encapsulation layer and an eighth encapsulation layer disposed on the seventh encapsulation layer, wherein the seventh encapsulation layer is the second vinyl layer (but Not limited to the first black glue layer shown in the previous embodiment), the eighth encapsulation layer is the first light-transmitting glue layer (the sixth encapsulation layer shown in the previous embodiment may be used but not limited to).
  • the encapsulation layer in this embodiment is formed by pressure bonding on the front surface of the substrate after the LED chips of each light emitting unit are disposed on the front surface of the substrate.
  • FIG. 7-1 to FIG. 7-2 An exemplary display module provided in this embodiment is shown in FIG. 7-1 to FIG. 7-2 , which includes a substrate 16 and light emitting units disposed on the substrate, and each light emitting unit includes at least one LED chip 26 ;
  • the encapsulation layers of the display module include a seventh encapsulation layer 37 and an eighth encapsulation layer 38 .
  • the display module may further include a transparent protective film 30 covering the eighth encapsulation layer 38 .
  • the provision of the transparent protective film 30 can further improve the protective performance of the display module.
  • the thickness of the transparent protective film in this embodiment can also be flexibly set according to requirements, for example, but not limited to 10 ⁇ m to 300 ⁇ m. It should be understood that, in this example, the transparent protective film 30 can be a double-layer structure composed of at least two sub-layers, or a single-layer structure; film etc.
  • this embodiment will give an example of the manufacturing method of the display module below, which includes but is not limited to:
  • Step a3 making the substrate and encapsulation layer.
  • making the substrate includes setting the substrate, and setting LED chips on the front of the substrate; and in some examples, electronic components can also be arranged on the back of the substrate, that is, the packaging layer is provided with the seventh packaging layer. Electronic components are placed on the back of the substrate before one side is pressed against the front of the substrate. Of course, in some other examples, electronic components may also be arranged on the back of the substrate after the encapsulation layer is formed on the front of the substrate.
  • making the encapsulation layer includes disposing a first carrier film, disposing an eighth encapsulation layer on the first carrier film, and then disposing a seventh encapsulation layer on the eighth encapsulation layer.
  • the eighth encapsulation layer is disposed on the first carrier film, and the processes adopted for disposing the seventh encapsulation layer on the eighth encapsulation layer can be flexibly selected, for example, but not limited to coating, Screen printing, printing, molding, etc.
  • the substrate and the encapsulation layer can be fabricated simultaneously, or the substrate can be fabricated first, and then the encapsulation layer can be fabricated. Or source substrates and/or encapsulation layers directly from upstream.
  • the eighth encapsulation layer and the seventh encapsulation layer sequentially arranged on the first carrier film may be in a cured state, and subsequently heated to make it The cured state is transformed into a semi-cured state.
  • the eighth encapsulation layer and the seventh encapsulation layer sequentially arranged on the first carrier film may also be in a semi-cured state, so as to facilitate subsequent direct lamination with the front of the substrate main body.
  • the hot pressing method may also adopt other pressing methods, which will not be repeated here.
  • Step b3 Press the side of the encapsulation layer provided with the seventh encapsulation layer with the front surface of the substrate.
  • the eighth encapsulation layer and the seventh encapsulation layer sequentially arranged on the first carrier film are in a semi-cured state, and each LED The light emitting surface of the chip gradually exposes the seventh encapsulation layer, and the eighth encapsulation layer covers the seventh encapsulation layer and the light emitting surface of each LED chip.
  • the side of the packaging layer on which the seventh packaging layer is provided is pressed to the front side of the substrate.
  • the side of the encapsulation layer provided with the seventh encapsulation layer can be bonded to the front surface of the substrate, and the encapsulation layer can be heated and pressure toward the substrate body can be applied to press the encapsulation layer to the substrate body.
  • the eighth encapsulation layer and the seventh encapsulation layer are in a semi-melted state, and at the same time they are pressed toward the main body of the substrate, so that the light emitting surface of each LED chip gradually exposes the seventh encapsulation layer.
  • a substrate fixture in order to improve the yield rate and production efficiency, may be provided, and the substrate fixture is provided with an accommodating chamber adapted to the substrate.
  • the substrate fixture is provided with an accommodating chamber adapted to the substrate.
  • the substrate can be fixed on the substrate fixture.
  • the substrate body is fixed in the accommodation cavity of the substrate fixture, and the back of the substrate faces the accommodation cavity.
  • the bottom of the substrate, the front of the substrate and the top of each LED chip are open towards the top of the containing cavity, so that the side of the packaging layer provided with the seventh packaging layer can be bonded.
  • the bottom of the accommodation cavity is also provided with corresponding electronic components.
  • the accommodating grooves after the substrate is fixed on the substrate fixture, each electronic component is located in the corresponding accommodating grooves. It can be seen that the substrate fixture adopted in this embodiment has a simple structure, is easy to manufacture, and has low cost.
  • the seventh packaging layer used in this embodiment has a certain degree of viscosity, it is easier to combine with the main body of the substrate and the LED chip, which can improve the airtightness and better protect the LED chip;
  • the fluidity of the seventh encapsulation layer can be used to fully fill the gap between the substrate main body and the LED chip, etc., which can further improve the contrast.
  • the eighth encapsulation layer and the seventh encapsulation layer are sequentially arranged on the first carrier film, and then press-bonded to the substrate body at one time.
  • the method of setting the eighth packaging layer on the packaging layer can simplify the process, improve the production efficiency and reduce the production cost; and the eighth packaging layer and the seventh packaging layer are pressed onto the substrate body at one time, and the seventh packaging layer and the eighth packaging layer The integrity of the layer is better, which is more conducive to improving the lamination density.
  • the front surface of the substrate it is not necessary to set the front surface of the substrate to be black by spraying a black ink layer, etc., which can further simplify the manufacturing process and reduce the manufacturing cost, and at the same time, the thickness of the display panel can be reduced due to the omission of the black ink layer.
  • the first carrier film in the encapsulation layer can be directly set as a transparent protective film.
  • the The first carrier film, the retained first carrier film is the transparent protective film formed on the eighth encapsulation layer. At this time, it is not necessary to remove the first carrier film, and it is not necessary to use additional Making a transparent protective film can further simplify the manufacturing process, improve manufacturing efficiency and reduce costs.
  • the first carrier film can also be removed, and then one or more of the eighth packaging layers are sequentially pasted on the eighth packaging layer
  • Multiple precast films form a transparent protective film.
  • a transparent protective film may also be formed on the eighth encapsulation layer by, but not limited to, coating, molding, silk screen or printing.
  • the first carrier film can also be replaced by a carrier substrate.
  • FIG. 7-3 An exemplary production method is shown in Figure 7-4 to Figure 7-11, which includes but is not limited to:
  • Step a4 Make the encapsulation layer shown in Figure 7-4.
  • the film of the first carrier film 62 (the module may be a transparent business card) is laid flat.
  • the thickness of the first carrier film 62 ranges from 10 ⁇ m to 300 ⁇ m, and the thickness uniformity ranges from 1% to 10%.
  • Light transmittance ranges from 30% to 100%.
  • two layers of glue are sequentially arranged on the first carrier film 62 .
  • the eighth encapsulation layer 38 is first provided with light-transmitting glue, and the thickness of the eighth encapsulation layer 38 ranges from 5 ⁇ m to 300 ⁇ m.
  • the thickness uniformity ranges from 1% to 10%, and the light transmittance ranges from 30% to 100%.
  • the thickness of the seventh encapsulation layer 37 ranges from 5 ⁇ m to 200 ⁇ m, the thickness uniformity ranges from 1% to 10%, and the light transmittance ranges from 0% to 10%. 30%.
  • the formed encapsulation layer structure is shown in Figure 7-4.
  • the seventh encapsulation layer 37 and the eighth encapsulation layer 38 formed in step a4 in this example may be in a semi-cured state or in a cured state.
  • the specific value of the thickness of the seventh encapsulation layer 37 can ensure that the seventh encapsulation layer 37 will not cover the light emitting surface of the LED chip 26 as much as possible, resulting in low light extraction efficiency.
  • the seventh encapsulation layer 37 can be flexibly set on the basis of covering as many sides of the LED chips 26 as possible.
  • the seventh encapsulation layer 37 in a semi-cured state is formed by the part hanging on the side of the LED chip 26 when it is pressed through the corresponding LED chip 26
  • the outer surface 371 is an inclined surface or a curved surface, so as to better avoid the influence of light crossing between the LED chips, and further improve the contrast ratio and the yield rate.
  • Step b4 Fabricate the substrate shown in Fig. 7-5.
  • the LED chip 26 includes completing the die-bonding of the LED chip 26 on the front surface of the substrate.
  • various chip transfer methods can be used to transfer the LED chip 26 to the front surface of the substrate.
  • the LED chip 26 can be but not limited to a front-mounted, flip-chip or vertical LED chip.
  • the color may contain at least one of red, green, blue, white, and the like.
  • the pitch of the LED chips 26 is 200 ⁇ m to 1000 ⁇ m.
  • Step c4 Fabricate the substrate fixture 6 shown in Fig. 7-6.
  • the substrate fixture 6 in this example includes an accommodation cavity 61 adapted to the substrate, and in this example, the bottom of the accommodation cavity 61 is not provided with an accommodation groove for accommodating the electronic component 46 .
  • the material of the substrate fixture in this embodiment may be, but not limited to, metal, ceramic or other materials, which will not be repeated here.
  • Step d4 Fix the manufactured substrate on the substrate fixture 6, and a state after fixing is shown in Fig. 7-7.
  • the substrate clamp 6 fixes the substrate and can keep the substrate in a stable state.
  • Step e4 Lay the side of the encapsulation layer provided with the seventh encapsulation layer 37 to the front surface of the substrate. A state after lamination is shown in FIGS. 7-8 .
  • Step f4 heating the encapsulation layer and applying pressure toward the substrate 16, and pressing the encapsulation layer to the substrate 16.
  • the seventh encapsulation layer 37 is in a semi-melted state due to heat, and at the same time it is under pressure toward the substrate 16 , so that the light-emitting surface of each LED chip 26 gradually exposes (that is, passes through) the seventh encapsulation layer 37 , and the outer surface 371 formed by the part hanging on the side of the LED chip 26 is an inclined surface or a curved surface. See Figure 7-9 and Figure 7-10.
  • Step g4 Referring to FIGS. 7-11 , after the seventh encapsulation layer 37 and the eighth encapsulation layer 38 are cured, the substrate fixture 6 is removed, and electronic components 46 are placed on the back of the substrate.
  • FIG. 7-12 to Figure 10-8 Another exemplary production method is shown in Figure 7-12 to Figure 10-8, which includes but is not limited to:
  • Step a5 Fabricate the substrate shown in Fig. 7-12.
  • it includes completing the die-bonding of the LED chip 26 on the front side of the substrate, and disposing the electronic component 46 on the back side of the substrate.
  • Step b5 Fabricate the substrate fixture 6 shown in Fig. 7-13.
  • the substrate fixture 6 in this example includes a housing chamber 61 adapted to the substrate, and in this example, a housing groove 63 for housing electronic components 46 is provided at the bottom of the housing chamber 61 .
  • Step c5 Fix the produced substrate in Fig. 7-12 on the substrate fixture 6 shown in Fig. 7-13, see Fig. 7-14 for a state after fixing, the electronic components 46 on the back of the substrate 16 accommodate In the accommodating groove 63 , the substrate clamp 6 fixes the substrate to keep the substrate in a stable state.
  • Step d5 Lay the side of the encapsulation layer (the encapsulation layer shown in Figure 7-4 is still used in this example) with the seventh encapsulation layer 37 on the front side of the substrate.
  • Figure 7-15 Show.
  • Step e5 heating the encapsulation layer and applying pressure towards the substrate 16, and pressing the encapsulation layer to the substrate 16.
  • the seventh encapsulation layer 37 is in a semi-melted state due to heat, and at the same time it is under pressure towards the substrate 16 , so that the light emitting surface of each LED chip 26 gradually exposes (that is, passes through) the seventh encapsulation layer 37 , as shown in FIGS. 7-16 and 7-17 .
  • Step f5 After the seventh encapsulation layer 37 and the eighth encapsulation layer 38 are cured, the substrate fixture 6 is removed to obtain the display module shown in FIGS. 7-6 .
  • the transparent protective film 30 may be retained. And when the first carrier film 62 is not set as the transparent protective film 30, after the seventh encapsulation layer 37 is pressed onto the substrate 16, after the first carrier film 62 is removed, a transparent protective film can be set on the eighth encapsulation layer 38. protective film 30 .
  • the first carrier film 62 can also be removed in this example.
  • the manufacturing method of the display module provided in this embodiment can use the film production process to expose the light-emitting surface of the LED chip in the COB LED technology by pressing the seventh packaging layer.
  • the seventh packaging layer used With a certain degree of viscosity it is easier to combine with the main body of the substrate and the LED chip, which can improve the airtightness and better protect the LED chip; at the same time, the fluidity of the seventh packaging layer can be used to connect the main body of the substrate and the LED chip during the lamination process.
  • the gaps between the LED chips and the like are fully filled, so that on the front surface of the substrate, other areas other than the LED chips are all filled with black, so that the contrast ratio can be further improved.
  • the light emitting surface of the LED chip is covered with the eighth encapsulation layer, which reduces the loss rate of light transmission.
  • the manufacturing process can be simplified, the manufacturing cost can be reduced, and the thickness of the display panel can be reduced by omitting the black ink layer.
  • the eighth packaging layer is also provided with a transparent protective film, which can optimize the display performance and improve the protection effect. Therefore, the display module and its manufacturing method provided in this embodiment take into account high contrast, low loss of light transmittance, and high protection.
  • the solder paste used will turn silver after melting and cover the pad.
  • the surface, and silver has reflective properties, which makes the display screen not black enough when the screen is black, which reduces the contrast of the display screen and affects the display effect.
  • one method is to package a layer of black adhesive layer covering the surface of the LED chip and the bonding pad on the surface of the LED chip, and the silver outer surface is covered by the black adhesive layer in order to improve the contrast.
  • the black adhesive layer will lead to a decrease in the light output rate of the LED chip, and will increase the power consumption and heat generation of the LED chip.
  • soldering paste that can solve this technical problem, and the soldering paste is suitable for soldering the LED chip and the corresponding pad on the substrate in the above-mentioned embodiments.
  • soldering paste in this embodiment is not limited to be applied to the display module, and can also be applied to other application scenarios.
  • the solder paste provided in this embodiment includes metal solder, flux and melanin mixed together; and in this embodiment, the density of the melanin is less than that of the metal solder, thereby ensuring that the solder paste is heated and melted for soldering , under the agglomeration effect of the metal solder, the melanin can be extruded to the surface of the solder paste, so that the surface of the solder paste appears black.
  • the soldering paste when the soldering paste is applied to the welding of the LED chip, it can be ensured that after the LED chip is welded to the corresponding pad on the substrate, the surface of the soldering paste covering the surface of the pad appears black, compared with the existing covering on the
  • the surface of the solder paste on the surface of the pad is silver, and this embodiment can use the black optical characteristics to absorb the incident light, thereby preventing the pad from appearing silvery and reflective on the surface, which can improve the contrast while not
  • the melanin can be mixed in the solder paste in the physical form of particles, and in some application scenarios, these particles can be uniformly mixed in the solder paste. Of course, in other application scenarios, these particles can also be mixed in the solder paste in a non-uniform state.
  • the size of these particles can be set to micron or nanoscale, that is, the melanin at this time can include but not limited to micron-sized non-metallic black particles and At least one of the nanoscale non-metallic black particles.
  • the melanin can include both micron-sized non-metallic black particles, or include nano-sized non-metallic black particles, and can also be set to include both micron-sized non-metallic black particles and Nanoscale non-metallic black particles.
  • the specific size can be set according to the requirements of specific application scenarios.
  • the melanin may not exist in the solder paste in the physical form of particles.
  • melanin can be dissolved in solder paste.
  • the agglomeration effect of the metal solder means that during the soldering process, when the solder paste is heated and melted, the metal solder in the solder paste sinks and adheres to the objects to be soldered (such as pads and electrodes of the chip), while The melanin in the solder paste is relatively squeezed and floats up during the sinking process of the metal solder, and is finally extruded to the surface of the solder paste, thereby adhering to the surface of the solder paste to make it appear black.
  • the weight ratio of melanin in the solder paste can be set to 1% to 1.4%.
  • the weight ratio of melanin in the solder paste can be set to 1%, 1.1%, 1.12%, 1.15%, 1.2%, 1.25%, 1.3%, 1.35% or 1.4%.
  • the melanin can use various black materials that can achieve the above purpose, such as but not limited to carbon.
  • the melanin in this embodiment includes carbon particles mixed in the solder paste, and the particle size of the carbon particles can be in the order of microns, such as carbon particles less than or equal to 2 microns Particles may also be nanoscale, for example, carbon particles less than or equal to 500 nanometers.
  • the metal solder included in the solder paste may be but not limited to tin alloy solder, and the solder paste in this embodiment may also be referred to as solder paste.
  • the material of the tin alloy solder in this embodiment can be flexibly set, for example, the tin alloy solder can be lead-containing solder alloy, such as tin-lead alloy, tin-lead-bismuth alloy or tin-lead-silver alloys, etc.; tin alloy solder can also use lead-free solder alloys, such as tin-silver alloys, tin-bismuth alloys, tin-zinc alloys, tin-antimony, tin-silver-copper alloys or tin-bismuth- Silver alloys etc.
  • the flux of the solder paste may include but not limited to at least one of the following:
  • the adhesion of the solder paste can be increased, which can play a good role in fixing the object to be welded, and can protect and prevent the re-oxidation of the soldered pad;
  • Thixotropic agent the viscosity and printing performance of the solder paste can be adjusted by setting the thixotropic agent, and it can prevent tailing and adhesion during printing;
  • the activator can be used to remove the oxidation substance on the surface layer of the pad and the welding part of the object to be welded (such as the electrode of the LED chip), and at the same time, it has the effect of reducing the surface tension of tin and lead;
  • Solvent This component is the solvent of the flux component, which can regulate the uniformity during the stirring process of the solder paste.
  • the solder paste shown in Figure 8-1 is taken as an example for description below.
  • the solder paste is a solder paste 64 including tin alloy solder, and the solder paste 64 contains carbon particles 65 as melanin.
  • the solder paste 64 is heated and melted during the soldering process, the solder paste 64 The metal solder in the solder sinks and adheres to the object to be soldered, while the carbon particles 65 in the solder paste are relatively squeezed and float up during the sinking process of the metal solder, and are finally extruded to the surface of the solder paste 64. Therefore, the surface appears black, that is, the surface of the solder paste 64 covering the surface of the pad appears black, so the contrast ratio can be improved, and the lighting or display effect can be improved.
  • This embodiment also provides a substrate, as shown in FIG. 8-2 , the front surface of the substrate 17 is provided with pads 171 for welding electrodes of LED chips.
  • the number of pads 171 and their arrangement on the front surface of the substrate 17 in this embodiment can be flexibly set according to application requirements.
  • a plurality of pads 171 may be provided, and the plurality of pads 171 may be arranged in an array on the substrate 17 , or the pads 171 in adjacent rows may be arranged alternately.
  • the material of the pad 171 may be, but not limited to, copper, silver, gold and the like.
  • the pads 171 can be used for, but not limited to, electrically connecting with the electrodes of the LED chip.
  • the LED chips in this embodiment can refer to but not limited to the LED chips shown in the above embodiments, and will not be repeated here.
  • the substrate 17 in this embodiment may be, but not limited to, the substrates in the above-mentioned embodiments.
  • solder paste 172 is also provided on each pad 171 on the substrate 17 .
  • the method of disposing the solder paste 172 on each pad 171 can be flexibly selected, for example, it can be passed but not printed, molded and so on. Since the solder paste 172 contains melanin, after the electrode of the LED chip is soldered to the corresponding pad 171, the melanin in the solder paste 172 is extruded to the surface of the solder paste 172 under the agglomeration effect of the metal solder, so that the surface appears It is black, so the contrast of the display module made by using the substrate can be improved.
  • the outer area is provided with a black masking layer 173 .
  • the black masking layer 173 in this embodiment can be, but not limited to, a black glue layer or a black ink layer, and when it is a black glue layer, it can be formed by but not limited to molding processes; when it is a black ink layer, it can be formed by but not limited to Formed by spraying and other processes.
  • the contrast ratio of the display module can be prevented from reducing the contrast of the display module due to light reflection in the area other than the front pad 171 of the substrate 17 , and the display or lighting effect can be further improved.
  • solder paste 172 When making a display module with the substrate shown in Figure 8-2 or Figure 8-3, since the solder paste 172 is pre-set on each pad 171, only one LED chip needs to be aligned and soldered to the corresponding pad 171 That's it. However, it should be understood that, in some examples, the solder paste 172 may not be pre-disposed on each pad 171 , but the solder paste 172 may be pre-coated on the electrodes of the LED chip. Of course, in some examples, the solder paste 172 can also be preset on the pads 171 on the substrate and the electrodes of the LED chip, which can be flexibly selected according to application requirements, and will not be repeated here.
  • the backside of the substrate can also refer to the pads 171 on the front side to provide corresponding pads according to requirements, and solder paste 172 can also be preset on the pads on the backside of the substrate. , or no solder paste 172 is preset.
  • the substrate 17 at this time can be used to manufacture a double-sided light emitting display module.
  • This embodiment also provides a display module, which can be used as a display panel in the display field, and can also be used as an illumination source in the lighting field. It includes the substrate shown in the above examples, and also includes an LED chip. The electrodes of the LED chip are welded on the pad through the solder paste. The solder paste covers the pad, and the melanin is located on the surface of the solder paste, which can avoid Solder paste is silver and reflective, resulting in poor contrast.
  • Fig. 8-5 is a schematic diagram of the welding structure of a single LED chip on the substrate in Fig. 8-4.
  • the display module includes the substrate shown in Figure 8-3, and also includes a number of light-emitting units arranged on the front of the substrate, and each light-emitting unit includes at least one LED chip 27, and the electrodes 271 of each LED chip 27 are soldered to their respective LED chips 27 through solder paste. on the corresponding pad 171.
  • the metal solder in the solder paste sinks and adheres to the pad 171 and the electrode 271 of the LED chip 27 respectively to form a metal solder layer 174, while the melanin in the solder paste is on the metal surface of the solder paste.
  • the solder is relatively pressed and floats up, and is finally extruded to the surface of the solder paste, thereby adhering to the surface of the solder paste to form a melanin layer 175 , thereby making the area above the pad 171 appear black.
  • the surface above the pad is a black melanin layer 175 instead of a silver outer surface.
  • the LED chip 27 shown in FIG. 8-4 and FIG. 8-5 is a flip chip, and it should be understood that it can also be replaced by other types of LED chips.
  • one light-emitting unit in the display module can be set as a pixel point, and supports red light, green light and blu ray.
  • the set of LED chips arranged at the same pixel point can be called a light emitting unit, as indicated by the mark K in FIG. 8-6 . Therefore, in some examples of this embodiment, one light emitting unit includes three LED chips 27 , and in other examples, one light emitting unit may include more LED chips.
  • the display module can also include an encapsulation layer 37 disposed on the front of the substrate main body to cover each LED chip; the encapsulation layer 37 in this embodiment
  • the encapsulation layer shown in the above embodiments can be used but not limited to.
  • the light transmittance of the encapsulation adhesive layer may be but not limited to 30% to 100%, and its thickness may be 20 microns to 1000 microns.
  • this embodiment also provides a method for manufacturing a display module, as shown in Figure 8-8, which includes but is not limited to:
  • Step a6 Provide substrate, LED chip and soldering paste.
  • an exemplary substrate includes a substrate 17 on which pads 171 and a black masking layer 173 are disposed. It can be understood that the black masking layer 173 can be lower than the pad 171 , or can be flush with the pad 171 or higher than the pad 171 .
  • the LED chip is used as an example for illustration.
  • Step b6 setting solder paste between the electrodes of the LED chip and the pads.
  • disposing the solder paste between the electrode of the LED chip and the bonding pad may include at least one of the following:
  • Soldering paste is placed on the electrodes of the LED chip
  • Solder paste is provided on the pads of the substrate.
  • solder paste 172 is provided on each pad 171 on the front surface of the substrate 17 .
  • it is optional not to place soldering paste on the electrodes of the LED chip, or it may be selected to also arrange soldering paste on the electrodes of the LED chip according to requirements.
  • Step c6 Align the electrodes of the LED chip with the pads.
  • the LED chips can be transferred to the substrate and arranged in alignment with the corresponding pads through but not limited to various chip transfer methods, such as mass transfer.
  • An example of an alignment setting is shown in step c6 in FIG. 8-8.
  • the electrodes 271 of each LED chip 27 are aligned with the corresponding pads 171 on the substrate 17, and the solder paste 172 is located on the corresponding pads 171. and between electrodes 271.
  • Step d6 heating the soldering paste to weld the electrodes of the LED chip on the soldering pad, and the soldering paste covers the soldering pad, and the melanin is extruded to the surface of the soldering paste.
  • the electrodes 271 of each LED chip 27 are soldered to their corresponding pads 171 by soldering paste.
  • the metal solder in the solder paste sinks and adheres to the pad 171 and the electrode 271 of the LED chip 27 respectively to form a metal solder layer 174, while the melanin in the solder paste is on the metal surface of the solder paste.
  • the solder is relatively pressed and floats up, and is finally extruded to the surface of the solder paste, thereby adhering to the surface of the solder paste to form a melanin layer 175 , thereby making the area above the pad 171 appear black.
  • Step e6 forming an encapsulation layer on the substrate.
  • the encapsulation layer 5 may be formed on the front surface of the substrate by means of, but not limited to, molding and coating.
  • the manufacturing method of the display module does not require additional special processes in the manufacturing process, and the original production process route may not be changed, and the manufacturing process is simple and convenient; , the surface of each pad on the substrate is covered by the melanin layer 175 to appear black, which can improve the contrast of the display module, and further enhance its display or lighting effects. Moreover, since it is no longer necessary to arrange a vinyl layer on the surface of the LED chip, the light transmission loss rate of the LED chip is reduced, and the power consumption and heat generation of the LED chip are reduced.
  • This embodiment also provides another display module and its manufacturing method which can solve the technical problem. Moreover, the display module and its manufacturing method in this embodiment can be implemented independently of other embodiments.
  • Step a7 setting several light emitting units on the front surface of the substrate.
  • a number of pads are provided on the front of the substrate for electrical connection with the electrodes of the light-emitting unit, and the distribution of each pad can be arranged in a matrix, and of course it can also be set to other distribution methods according to requirements. It does not limit.
  • the material of the pads may be, but not limited to, copper, silver, gold and the like.
  • the pads on the front surface of the substrate can be used for but not limited to electrically connect with the electrodes of the light emitting unit, and the electrodes of the light emitting unit can be electrically connected with the corresponding pads through but not limited to solder or conductive glue.
  • the light emitting unit and the substrate in this embodiment may refer to but not limited to the light emitting unit and the substrate in the above examples, and will not be repeated here. It should be understood that, in this embodiment, the light-emitting unit includes multiple LED chips, and the specific arrangement of the LED chips may be a zigzag arrangement, a linear arrangement, a center-symmetrical arrangement, etc., which is not limited in this embodiment.
  • Step b7 Sputter the molecules of the black substrate (this embodiment can also be called particles) onto the front of the substrate and the surface of each light-emitting unit (that is, to cover the light-emitting surface of the light-emitting unit and its sides, and the surface of the light-emitting unit
  • the light-emitting surface is the side away from the front of the substrate, the back of the light-emitting unit is the side close to the front of the substrate, and the side of the light-emitting unit is the surface between the light-emitting surface and the back), so as to form the front of the substrate and each light-emitting unit
  • the black deposition layer also referred to as the black molecular layer in this embodiment covered on the surface.
  • the molecules of the black base material are sputtered onto the front surface of the substrate and the surfaces of the light-emitting units, so they are no longer affected by the front surface of the substrate and the overall flatness after the light-emitting units are arranged on the front surface, and the sputtered molecules can be
  • the area where the black deposition layer needs to be formed is deposited to form a black layer with uniform thickness, and the molecules can be sputtered to any area where the black deposition layer needs to be formed, so there is no coverage dead angle, thereby ensuring the consistency of the formed black deposition layer and reducing black deposition
  • the difference in black chromaticity at each position of the sputtering layer can improve the contrast of the display screen made by using this display module, and can avoid mottled light from the side viewing angle of the display screen; at the same time, the production control difficulty of the sputtering process is low, and the yield rate is high , can reduce production cost.
  • this embodiment will be described below with several exemplary sp
  • Example 1 In a vacuum flux environment, a magnetic field is used to guide ions to bombard a black substrate, and the molecules of the black substrate are uniformly sputtered to the front of the substrate and the surface of each light-emitting unit, thereby depositing and forming a black deposition layer; this example An exemplary structure of the black deposition layer formed in FIG. 9-1 is shown.
  • the black deposition layer 66 in this example is deposited from the first molecules 661 .
  • Example 2 In a vacuum flux environment, use a magnetic field to guide ions to bombard at least two black substrates at the same time, and evenly sputter molecules of at least two black substrates to the front of the substrate and the surface of each light-emitting unit, thereby depositing and forming black sedimentary layer.
  • at least two kinds of black substrates are bombarded at the same time, so the molecules of the at least two kinds of black substrates can be simultaneously sputtered to the area where the black deposition layer needs to be formed, and deposited to form a black layer including a mixture of various molecules.
  • An exemplary structure of the black deposition layer formed in this example is shown in FIG. 9-2 .
  • the black deposition layer 66 in this example is formed by depositing first molecules 661 (from the first black substrate) and second molecules 662 (from the second black substrate) that are simultaneously sputtered into a predetermined area.
  • first molecules 661 from the first black substrate
  • second molecules 662 from the second black substrate
  • this example is not limited to sputtering molecules of two kinds of black substrates to form a black layer. Deposition forms a black layer, which will not be described in detail in this example.
  • Example 3 In a vacuum magnetic flux environment, use a magnetic field to guide ions to bombard at least two black substrates sequentially, and uniformly sputter molecules of at least two black substrates on the front of the substrate and the surface of each light-emitting unit in sequence, thereby depositing and forming Black deposits.
  • at least two kinds of black substrates are bombarded sequentially, so the molecules of the at least two kinds of black substrates can be sequentially sputtered to the area where a black deposition layer needs to be formed, and deposited to form a black layer including various molecules.
  • An exemplary structure of the black deposition layer formed in this example is shown in FIG. 9-3 .
  • a magnetic field can be used to guide ions to bombard the first black substrate within the time period t1, and the first molecules 661 of the first black substrate can be evenly sputtered on the front surface of the substrate and the surface of each light-emitting unit to form the first molecules sub-layer; then use a magnetic field to guide ions to bombard the third black substrate within the time period t2, and evenly sputter the third molecules 663 of the third black substrate on the front surface of the substrate and the surfaces of each light-emitting unit to form a second molecular sub-layer ;
  • the magnetic field is used to guide ions to bombard the second black substrate, and the second molecules 662 of the second black substrate are evenly sputtered on the front surface of the substrate and the surface of each light-emitting unit to form a third molecular sublayer.
  • this example is not limited to sequentially sputtering the molecules of three black substrates to form a black layer, and it is also possible to sequentially sputter molecules of two or more black substrates according to requirements.
  • the black layer is formed by laser deposition, and the above molecular sublayers in this example can also be arranged in an alternating manner, for example, the first molecules 661 and the second molecules 662 alternately form corresponding molecular sublayers. This example will not repeat them one by one.
  • the replacement of different targets in this example can be done by, but not limited to, manual replacement or automatic replacement by equipment.
  • the sputtering process in this embodiment can adopt but not limited to the magnetron sputtering process, the control of the consistency and coverage of the formed black deposition layer is simple, and the yield of the obtained black deposition layer is high. High, high efficiency and low cost.
  • the black deposition layer in this embodiment can be deposited by one kind of molecule, also can have more than two kinds of molecular mixed deposition (for example, see Fig. 9-2) or layered deposition (for example, see Fig. 9-3 ), so the black deposition layer can be flexibly set according to the requirements of the specific application scene for the light transmittance and blackness of the black deposition layer.
  • the black deposition layer in the above-mentioned examples 2 and 3 includes at least two kinds of molecules, so the properties such as blackness and light transmittance of the black deposition layer can be flexibly adjusted to meet the application requirements, so as to ensure the contrast while improving the display Effect.
  • this embodiment is not limited to the magnetron sputtering process, and other sputtering processes capable of achieving a black deposition layer can also be used for equivalent replacement, which is not limited in this embodiment.
  • the black base material in this embodiment can be flexibly selected.
  • the black base material in this embodiment may include but not limited to at least one of oxide, silicide, nitride, and composite, and the composite in this embodiment may be but not limited to oxide Composition of at least two of compounds, silicides, and nitrides.
  • at least one of AZO substrates, SiO2 substrates, SiO substrates, SiC substrates, Si3N4 substrates, or composite substrates of at least two of the above substrates can be used, but not limited to A sort of.
  • the oxide substrates, silicide substrates, nitride substrates, and composite substrates exemplified above in this embodiment are all existing conventional materials, with low cost and good versatility.
  • the thickness of the black deposition layer produced in this embodiment can also be flexibly set according to the light transmittance and blackness requirements of the black deposition layer.
  • the thickness of the formed black deposition layer is greater than or equal to 2 nanometers and less than or equal to 300 nanometers. It can be seen that the black deposition layer in this example is an ultra-thin layer, so the overall thickness of the display module will not be greatly increased. , which is conducive to the ultra-thinning of the display module.
  • Step c7 removing at least a part of the black deposition layer on the light emitting surface of each light emitting unit.
  • the black deposition layer on the light-emitting surface of each light-emitting unit is removed, so as to ensure the light extraction efficiency of each light-emitting unit through its light-emitting surface.
  • the display module When made into a display screen, the display brightness of the display screen can be guaranteed. It should be understood that in this embodiment, whether the black deposition layer on the light emitting surface of the light-emitting unit is completely removed, or only a part is removed, and how much is removed when a part is removed, can be determined according to the requirements of specific application scenarios and the size of the black deposition layer. Transmittance can be set flexibly.
  • the black deposition layer is opaque (the opacity in this embodiment is relative, for example, when the light transmittance of the black deposition layer is less than or equal to 20% or 10%, it can be considered as opaque)
  • the black deposition layers on the light-emitting surface of each light-emitting unit can be removed; of course, even if the black deposition layer is light-transmitting, all the black deposition layers on the light-emitting surface of each light-emitting unit can be removed according to specific requirements.
  • the black deposition layer is light-transmitting
  • the thickness of the black deposition layer before removal is d
  • the thickness of the black deposition layer after removal is X* d, wherein the value of X is greater than or equal to 0 and less than 1.
  • the specific value of X can be flexibly determined according to the current demand for brightness and the light transmittance, blackness and thickness of the black deposition layer itself. No specific restrictions are made.
  • the light transmittance of the area with the largest thickness of the black deposition layer is the lowest, and the corresponding area with the smallest thickness of the black deposition layer has the highest light transmittance, and the light transmittance of the area with the largest thickness of the black deposition layer can be set to be greater than 30 %, the specific value can be set according to the application requirements. For example, in some application scenarios, the light transmittance can be set to be greater than or equal to 30% and less than or equal to 50%. Therefore, while improving the contrast ratio, the requirement of light transmission efficiency is met, and the display effect is ensured.
  • only a part of the black deposition layer on the top exiting light surface of some of the light emitting units can be removed according to the requirement, and all the black deposition layer on the top exit light surface of the other part of the light emitting units can be removed; Only a part of the black deposition layer on the top light emitting surface of some light emitting units is removed, all the black deposition layer on the top light emitting surface of some light emitting units is removed, and the black deposition layer on the top light emitting surface of the remaining part of the light emitting units is not removed. .
  • the details can be flexibly set according to application requirements.
  • the method of removing the black deposition layer in this embodiment is not specifically limited.
  • the black deposition layer on the light-emitting surface of each light-emitting unit can be directly removed, and the removal operation can be performed using but not limited to laser removal.
  • Laser removal has the advantages of high efficiency and precision, mature process and low cost.
  • a laser may be used to directly remove at least a part of the black deposition layer on the light emitting surface of each light emitting unit.
  • laser light can be used to irradiate the black deposition layer on the light emitting surface of each light emitting unit, so as to remove at least a part of the black deposition layer on the light emitting surface of each light emitting unit.
  • removing at least a part of the black deposition layer on the light-emitting surface of each light-emitting unit may further include: forming a sacrificial encapsulation layer on the black deposition layer, the sacrificial encapsulation layer being an adhesive layer;
  • removing at least a part of the black deposition layer on the light emitting surface of each light emitting unit may include: removing the sacrificial encapsulation layer on the light emitting surface of each light emitting unit along with at least a part of the light emitting surface The black deposit layer is removed together.
  • processes such as grinding or plasma etching may be used, but not limited to, to remove the sacrificial encapsulation layer on the top light emitting surface of each light emitting unit together with at least a part of the black deposition layer on the top light exit surface of each light emitting unit.
  • Grinding process and plasma etching process also have the advantages of high efficiency and precision, mature process and low cost.
  • it is not limited to only removing at least a part of the black deposition layer on the light-emitting surface of each light-emitting unit, and can also remove at least a part of the black deposition layer in other regions according to requirements, for example, at least The black deposit on one side was removed.
  • a mask of a corresponding shape can be used to cover the black deposition layer of each light-emitting unit. Covering the ejected light surface, and exposing other areas where the black deposition layer needs to be formed to the mask, so that the black deposition layer is directly formed without covering the ejected light surface of each light-emitting unit in step c7, which is no longer needed in this replacement process. Perform the removal step of the black deposit layer.
  • this method of using a mask requires an additional mask, which has high cost and low efficiency, and the manufacturing accuracy of the mask will directly affect the coverage accuracy of the black deposition layer. It is more difficult to control the precision by removing all or part of the deposition layer according to requirements; of course, this replacement process cannot meet the requirements of forming a black deposition layer on the top light surface of each light-emitting unit, and the application scenarios are more limited. .
  • Step d7 forming a ninth encapsulation layer covering the black deposition layer and each light-emitting unit on the front surface of the substrate, the ninth encapsulation layer being a light-transmitting layer.
  • the formation process and material of the ninth encapsulation layer in this embodiment can be flexibly set, and this embodiment does not limit it.
  • the ninth encapsulation layer may be but not limited to an adhesive layer, and its formation may be through but not limited to coating, molding, printing, pre-filming and then mounting.
  • the ninth encapsulation layer in this embodiment can protect the light emitting unit and the black deposition layer.
  • the ninth encapsulation layer may be a transparent encapsulation layer using transparent epoxy glue, so as to form a sealing protection for the light emitting unit and the black deposition layer on the substrate.
  • white powder such as but not limited to SiO2 powder
  • melanin such as phosphor powder, quantum dots, etc.
  • light diffusion particles can be added to the transparent epoxy glue according to requirements. At least one, so as to further adjust the light emitting effect of the display module.
  • the upper surface of the ninth packaging layer (that is, the side away from the front of the substrate) of the ninth packaging layer can be set to a matte surface, a bright surface, a frosted surface, a matte surface, etc. according to requirements, so as to achieve different appearance effects and light effects, so as to further enrich the display effect and improve user experience satisfaction.
  • FIG. 9-4 An exemplary manufacturing process of a display module is shown in Figure 9-4, which includes but is not limited to:
  • Step a8 setting several light emitting units 28 on the front surface of the substrate 18 .
  • the substrate 18 in this example is a display substrate, and at least two LED chips 281 constitute a light emitting unit 28 , for example, the light emitting unit 28 includes three LED chips 281 emitting red light, blue light and green light respectively.
  • Step b8 sputtering the molecules of the black base material onto the front surface of the substrate 18 and the surfaces of each light-emitting unit 28 to form a black deposition layer 66 covering the front surface of the substrate 18 and the surfaces of each light-emitting unit 28 .
  • the first black substrate J1 such as SiC substrate
  • the second black substrate J2 Si3N4 substrate
  • the first black substrate J1 and the second black base material J2 are set on the platform as targets, and the front side of the substrate 18 and the light-emitting unit 28 provided on the front side are set opposite to the first black base material J1 and the second black base material J2, and guide ions Q bombards the first black substrate J1 and the second black substrate J2 at the same time, so that the first molecules 661 and the second molecules 662 of the first black substrate J1 and the second black substrate J2 are sputtered to the front and back of the substrate 18 respectively.
  • the surface of each light emitting unit 28 forms a black deposition layer 66 similar to that shown in FIG. 9-2 .
  • Step c8 removing all the black deposition layer 66 on the light emitting surface of each light emitting unit 28 .
  • the black deposition layer 66 on the light emitting surface of each light emitting unit 28 can be completely removed, while the black deposition layer 66 in other regions remains.
  • the black deposition layer 66 has light-transmitting properties, only a part of the black deposition layer 66 on the light emitting surface of each light emitting unit 28 may also be removed according to specific application requirements.
  • Step d8 forming the ninth encapsulation layer 39 covering the black deposition layer 66 and each light emitting unit 28 on the front surface of the substrate 18 .
  • FIG. 9-5 Another example of the manufacturing process of the display module is shown in Figure 9-5, which includes but is not limited to:
  • Step a9 setting several light emitting units 28 on the front surface of the substrate 18 .
  • Step b9 sputtering the molecules of the black base material onto the front surface of the substrate 18 and the surfaces of each light-emitting unit 28 to form a black deposition layer 66 covering the front surface of the substrate 18 and the surfaces of each light-emitting unit 28 .
  • the third black substrate J3 (such as SiO substrate) is used, and the third black substrate J3 is set on the platform as a target in a vacuum environment, and the substrate 18 and the light emitting unit 28 arranged on the front surface of the third black substrate J3 are arranged opposite to the third black substrate J3, and guide the ions Q to bombard the third black substrate J3, so that the third molecules 663 of the third black substrate J3 are sputtered to the substrate 18 and the surface of each light-emitting unit 28, thereby forming a black deposition layer 66 similar to that shown in FIG. 9-1.
  • the third black substrate J3 such as SiO substrate
  • Step c9 Form a sacrificial encapsulation layer 664 on the black deposition layer 66.
  • the material and formation process of the sacrificial encapsulation layer 664 in this example can be the same as that of the above-mentioned ninth encapsulation layer 39, or other formation methods can be used, which will not be repeated here. Let me repeat them one by one.
  • Step d9 removing the sacrificial encapsulation layer 664 on the light-emitting surface of each light-emitting unit 28 along with the black deposition layer 66 on the light-emitting surface of each light-emitting unit 28 .
  • the sacrificial encapsulation layer 664 on the light emitting surface of each light emitting unit 28 can be completely removed along with the black deposition layer 66 on the light emitting surface of each light emitting unit 28 by using but not limited to a plasma etching process.
  • the black deposition layer 66 has light-transmitting properties, only a part of the black deposition layer 66 on the light emitting surface of each light emitting unit 28 may also be removed according to specific application requirements.
  • the above plasma etching process can also be replaced by grinding or laser removal process according to requirements.
  • Step d9 Form the ninth encapsulation layer 39 on the sacrificial encapsulation layer 664.
  • the material and formation process of the ninth encapsulation layer 39 refer to the above-mentioned examples and will not be repeated here.
  • FIG. 9-6 Another example of the manufacturing process of the display module is shown in Figure 9-6, which includes but is not limited to:
  • Step a10 setting several light emitting units 28 on the front surface of the substrate 18 .
  • Step b10 sputtering molecules of the black base material onto the front surface of the substrate 18 and the surfaces of the light emitting units 28 to form a black deposition layer 66 covering the front surface of the substrate 18 and the surfaces of the light emitting units 28 .
  • the first black base material J1, the second black base material J2 and the third black base material J3 are used. and the light emitting unit 28 arranged on the front surface of the first black substrate J1 are arranged opposite to the first black substrate J1, and guide the ions Q to bombard the first black substrate J1, so that the first molecules 661 of the first black substrate J1 are sputtered to the substrate 18 the front surface of each light-emitting unit 28; then replace the first black base material J1 with the second black base material J2 to perform the above steps, and finally replace the second black base material J2 with the third black base material J3 to perform the above steps,
  • the above-mentioned black deposition layer structure similar to that shown in Fig. 9-3 above was obtained.
  • Step c10 Form a sacrificial encapsulation layer 664 on the black deposition layer 66.
  • the material and formation process of the sacrificial encapsulation layer 664 in this example can be the same as that of the above-mentioned ninth encapsulation layer 39, or other formation methods can be used, which will not be repeated here. Let me repeat them one by one.
  • Step d10 removing the sacrificial encapsulation layer 664 on the light emitting surface of each light emitting unit 28 along with a part of the black deposition layer 66 on the light emitting surface of each light emitting unit 28 .
  • the sacrificial encapsulation layer 664 on the light-emitting surface of each light-emitting unit 28 can be removed along with a part of the black deposition layer 66 on the light-emitting surface of each light-emitting unit 28 by using but not limited to a grinding process.
  • the black deposition layer 66 in this example has light-transmitting properties. Referring to FIGS.
  • the thickness of the black deposition layer on the light emitting surface of the light emitting unit 28 is smaller than the thickness of the black deposition layer at other places.
  • the thickness of the black deposition layer 66 on the light-emitting surface of each light-emitting unit 28 is 0, which also satisfies the requirements of each light-emitting unit. 28, the thickness of the black deposition layer on the light-emitting surface is less than the rule of the thickness of the black deposition layer at other places.
  • the above grinding process may also be replaced by a plasma etching or laser removal process as required.
  • the transmittance of the black deposition layer in the thickness region is greater than 30%.
  • the light transmittance of the thickness region is greater than the light transmittance of the thickness region rate, so that while improving the contrast, it can meet the demand of light extraction efficiency and ensure the display effect.
  • Step e10 Form the ninth encapsulation layer 39 on the sacrificial encapsulation layer 664 .
  • the material and formation process of the ninth encapsulation layer 39 refer to the above examples and will not be repeated here.
  • a sacrificial encapsulation layer 664 is formed on the black deposition layer 66, so as to A solid support is provided around each light emitting unit 28 to obtain a more integrated package structure, and then the sacrificial encapsulation layer 664 on the light emitting surface of each light emitting unit 28 along with at least a part of the light emitting surface of each light emitting unit 28
  • the black deposition layer 66 is removed together, since the supporting effect of the encapsulation layer on the periphery of the light-emitting unit 28 is sacrificed at this time, it is easier to operate when using processes such as grinding and plasma etching, so that the light-emitting unit 28 is not easy to fall off, and each light-emitting unit The black deposition layer 66 on the surface of 28 is removed more evenly.
  • This embodiment also provides a display module, which is produced by but not limited to the manufacturing method of the display module in the above examples, the display module includes: a substrate, a number of light-emitting units arranged on the front surface of the substrate; The black deposition layer on the front surface of the substrate and the surface of each light-emitting unit, and the thickness of the black deposition layer on the light-emitting surface of each light-emitting unit is smaller than the thickness of the black deposition layer at other places; The deposition layer and the light-transmitting ninth encapsulation layer covered by each light-emitting unit.
  • the thickness of the black deposition layer can be greater than or equal to 2 nanometers and less than or equal to 300 nanometers, and the thickness of the black deposition layer is greater than or equal to 0 and less than the thickness.
  • the black deposition layer can be opaque or transparent; when the thickness of the black deposition layer is greater than 0, the black deposition layer is transparent, and its light transmittance can be set flexibly, for example, it can be set It is but not limited to greater than or equal to 30% and less than or equal to 50%, so as to improve the contrast and ensure the brightness of the display.
  • this embodiment will be illustrated below in conjunction with several structural schematic diagrams of the display module.
  • the display module shown in Figure 9-9 it can be manufactured through but not limited to the manufacturing process shown in Figure 9-4, it includes a substrate 18, a number of solder pads are provided on the front of the substrate 18, and each light emitting unit 28
  • the electrodes of the included LED chip 281 are electrically connected to corresponding pads by welding with solder paste or by conductive glue.
  • the display module also includes a black deposition layer 66 deposited on the front surface of the substrate 18 and the surface of each light-emitting unit 28, and in this example, the thickness of the black deposition layer 66 on the light-emitting surface of each light-emitting unit 28 is 0, and the thickness of the black deposition layer 66 on other places
  • the thickness of the black deposition layer 66 is 2 nanometers to 300 nanometers, such as but not limited to 10 nanometers, 50 nanometers, 100 nanometers, 200 nanometers, 300 nanometers, etc.; the display module is also arranged on the front of the substrate 18, and the The ninth encapsulation layer 39 covered by the black deposition layer 66 and each light-emitting unit 28.
  • the ninth encapsulation layer 39 is a transparent adhesive layer, or mixed with melanin, light diffusion particles, light conversion particles (quantum dots and/or or phosphor) at least one of the adhesive layer.
  • the display module shown in FIGS. 9-10 compared with the display module shown in FIGS. 9-9 , the main difference is that the thickness of the black deposition layer 66 on the light-emitting surface of each light-emitting unit 28 is greater than zero.
  • the display module in this example can also be manufactured through but not limited to the manufacturing process shown in FIG. 9-4 above, but in FIG. It is only necessary to remove some of them but not all of them.
  • the main difference is that there is a Sacrificial encapsulation layer 664 .
  • the display module in this example can be manufactured through, but not limited to, the manufacturing process shown in FIGS. 9-5 above.
  • the sacrificial encapsulation layer 664 in this example may be a transparent adhesive layer, or an encapsulation layer having at least one of melanin, light diffusion particles, light conversion particles, etc., which is not limited in this embodiment.
  • the black deposition layer in the display module provided in this embodiment is formed by sputtering and depositing the molecules of the black base material onto the front surface of the substrate and the surface of each light-emitting unit, so that the molecules of the black base material can be sputtered onto each required formation
  • the position of the black deposition layer is no longer limited by the flatness of the region where the black deposition layer is to be formed, and the black deposition layer can achieve coverage without dead ends; and the formed black deposition layer is uniform, which can reduce the The difference in black chromaticity can improve the contrast of the display screen made by the display module, and can avoid mottled light from the side viewing angle of the display screen; and at least a part of the black deposition layer on the light-emitting surface of each light-emitting unit is removed, thereby ensuring the light extraction efficiency of each light-emitting unit, and improving the display brightness of the display screen made by using the display module, thereby ensuring the display effect of the display screen made by using the display module; at the same
  • This embodiment also provides a display screen, which includes at least one display module in the above-mentioned embodiments, and also includes a driving element, wherein the driving element is arranged on the back or front of the substrate of the display module, and communicates with each The light emitting unit is electrically connected.
  • the driving element in this embodiment can drive the display module in AM active driving mode or PM passive driving mode.
  • this embodiment will be described below by taking the LED display using the display module shown in Figures 9-9 as an example.
  • the driving element 48 of the display is arranged on the back of the substrate 18 , and electrically connected to each light emitting unit 28 on the front surface of the substrate 18 to drive the LED chips in each light emitting unit 28 .
  • other electronic components other than the light emitting unit 288 can also be flexibly arranged on the front and/or back of the substrate 18, and the electronic components provided can include but are not limited to resistors, capacitors, etc., Specifically, the settings can be selected according to application requirements.
  • This embodiment also provides another encapsulation layer, a display module and a manufacturing method thereof that can solve this technical problem, and this embodiment can be implemented independently of other embodiments.
  • the encapsulation layer provided in this embodiment includes a tenth encapsulation layer, the tenth encapsulation layer is a semi-transparent layer (also called a one-way see-through layer), which can be used in a display module to improve the display contrast and display effect.
  • the tenth encapsulation layer 310 includes a reflective layer 3101 and The third vinyl layer 3102 attached to the reflective layer 3101, wherein:
  • the reflective layer 3101 includes reflective particles 301 and gaps between each reflective particle 301 , the gaps form a first light-transmitting channel 302 for light to pass through the reflective layer 3101 .
  • a schematic structural diagram of an example of the reflective layer 3101 is shown in FIG. 301 , one gap constitutes a first light-transmitting channel 302 .
  • the reflective particles 301 in this embodiment may be in the form of molecules or other particle forms.
  • the reflective particles 301 in this embodiment can be disposed on the bearing surface through but not limited to a mature vacuum ion plating or evaporation process, which is easy to manufacture, low in cost and good in controllability.
  • the reflective particles 301 in this embodiment can include various metal optical particles that can have specific light reflection properties (such as, but not limited to, nano-scale aluminum alloy particles, silver nitrate particles, Ag particles, Al particles, Rh particles, At least one of Cr particles, Pt particles, Cu particles, Au particles, Ti particles, preferably including at least one of low cost, high reflection effect and good versatility of aluminum alloy particles, silver nitrate particles) and non-metallic optical At least one of particles (for example, may include but not limited to at least one of nano-sized TiOz particles, ZnO particles, BaSO4 particles, and AlzO3 particles).
  • specific light reflection properties such as, but not limited to, nano-scale aluminum alloy particles, silver nitrate particles, Ag particles, Al particles, Rh particles, At least one of Cr particles, Pt particles, Cu particles, Au particles, Ti particles, preferably including at least one of low cost, high reflection effect and good versatility of aluminum alloy particles, silver nitrate particles
  • non-metallic optical At least one of particles for example, may include but not
  • the reflective particles 301 in this embodiment may be particles with a particle size of nanoscale, and the particle size of the reflective particles 301 determines the thickness of the reflective layer 3101 .
  • the reflective particles 301 may be, but not limited to, particles with a particle diameter of 2 nm to 300 nm, and the correspondingly formed reflective layer 3101 has a thickness of 2 nm to 300 nm. Setting the thickness of the reflective layer 3101 at the nanometer scale can improve the contrast ratio and at the same time reduce the thickness of the display module, which is more conducive to the ultra-thin design of the display module.
  • the reflective particles 301 can specifically adopt particles with a particle diameter of 100 nanometers to 300 nanometers, and the thickness of the correspondingly formed reflective layer 3101 is 100 nanometers to 300 nanometers. Nano, 150nm, 200nm, 250nm, 300nm, etc. It should be understood that, correspondingly, the width and height of each of the first light-transmitting channels 302 (that is, gaps) in this embodiment are also on the order of nanometers.
  • the first light-transmitting channels 302 of the reflective layer 3101 form a similar matrix distribution.
  • the area occupied by the gap of the reflective layer 3101 (that is, the first light-transmitting channel 302 ) in the orthographic projection of the reflective layer 3101 is set to It is 60% to 70% of the orthographic projection area of the reflective layer 3101.
  • the area ratio can be set to 60%, 65% or 70%.
  • the reflective particles 301 in the reflective layer 3101 is 30% to 40% of the orthographic projection area of the reflective layer 3101. This arrangement can greatly reduce the proportion of reflective particles 301 and reduce the use of reflective particles 301, thereby Help reduce costs.
  • the third black glue layer 3102 includes a transparent glue base layer (the transparent glue base layer is used to carry micron-sized glass beads and nano-sized black powder bearing base layers, not shown in Figure 10-2), distributed on the transparent glue
  • the micron-sized glass beads 303 in the substrate layer, and the nano-sized black powder filled between each micron-sized glass beads 303, the nano-sized black powder is deposited on each micron-sized glass beads 303 to form a black light blocking unit 304,
  • Each micron-sized glass bead 303 respectively constitutes a second light-transmitting channel for light to pass through the third vinyl layer 3102.
  • the positions of at least a part of the second light-transmitting channel and at least a part of the position of the first light-transmitting channel 302 can be set.
  • light can pass through the tenth encapsulation layer 310 through the first light-transmitting channel 302 and the second light-transmitting channel with corresponding positions.
  • a schematic structural diagram of an example of the third black glue layer 3102 is shown in FIG.
  • the nano-scale black powder is filled in the transparent adhesive base layer 305 and between the micron-sized glass beads 303 , and the nano-scale black powder is deposited together in the transparent adhesive base layer to form the black light-shielding unit 304 .
  • the micron-scale glass The microbead 303 is charged to make it negatively charged, and the nano-scale black powder is also set to have a negative charge (shown by R in Fig.
  • the volume occupied by the micron-sized glass beads 303 in the third black glue layer 3102 can be set to be the first
  • the volume of the three black adhesive layers is 50% to 70%, and the volume ratio can be set to 50%, 55%, 60%, 65% or 70%.
  • the area occupied by the micron-sized glass beads 303 in the orthographic projection of the third black glue layer 3102 can be set to be 50% to 70% of the orthographic projection area of the third black glue layer.
  • the thickness of the third black glue layer 3102 can be set to be 50 microns to 100 microns, and the thickness of the third black glue layer 3102 can be set to a micron level, which can improve the contrast and reduce the translucency.
  • the thickness of the layer is conducive to the ultra-thin design of the display module.
  • the particle diameter of the micron-sized glass beads 303 and the thickness of the third black glue layer 3102 can be set.
  • the ratio is 0.8 to 1.0, that is, the particle size of the micron-sized glass beads 303 can be but not limited to 40 microns to 100 microns; for example, in some application scenarios, when the particle size of the micron-sized glass beads 303 and the third black
  • the ratio of the thickness of the glue layer 3102 was 0.8, when the thickness of the third black glue layer 3102 was 50 microns, the micron-sized glass beads 303 with a particle diameter of about 40 microns were used;
  • the ratio of the diameter to the thickness of the third black glue layer 3102 is 0.9, when the thickness of the third black glue layer 3102 is 100 microns, the micron-sized glass beads 303 with a particle diameter of about 90 microns are used;
  • the ratio of the particle size of the microbeads 303 to the thickness of the third black glue layer 3102 is 1.0, and the thickness of the third black glue layer 3102 is 100 microns, micron-sized glass microspheres 303 with a particle size of about 100 micro
  • Glass beads can be made from borosilicate raw materials through high-tech processing. It has the advantages of light weight, low thermal conductivity, sound insulation, high dispersion, good electrical insulation, good thermal stability, high strength, good chemical stability and low cost. And because the micron-sized glass beads 303 have low thermal conductivity and good thermal stability, it can also reduce the heat generated by the electronic components on the front side of the substrate from being exported from the third black glue layer 3102, and can ensure that the third black glue Layer 3102 Stability.
  • micron-sized glass beads 303 in this embodiment may be solid glass beads.
  • micron-sized glass beads 303 may be preferably hollow-structured micron-sized glass beads 303, and the use of hollow-structured micron-sized glass beads 303 can further improve the heat insulation performance of the third vinyl layer 3102, And can make the third vinyl layer 3102 lightweight.
  • the wall thickness of the micron-sized glass beads 303 may be, but not limited to, 1 micron to 2 microns.
  • the nano-scale black powder in this embodiment can include but not limited to nano-scale carbon black powder, and can adopt but not limited to nano-scale carbon black powder with a particle size of 1 nm to 100 nm, so as to ensure that the third black glue layer 3102 blackness.
  • the transparent adhesive substrate layer 305 in this embodiment can adopt but not limited to transparent adhesive, the transparent adhesive can adopt but not limited to polyester, polyvinyl chloride, modified epoxy, modified silica gel, etc., and has low cost and versatility Good and other advantages.
  • the side of the third vinyl layer 3102 away from the reflective layer 3101 can also be treated according to visual effect requirements.
  • the top surface of the third black glue layer 3102 can be set as a smooth surface; when it is necessary to avoid the third black glue layer 3102 from appearing black
  • the top surface of the third vinyl layer 3102 can be set as a non-smooth surface, which can include but not limited to a matte surface, a frosted surface, a matte surface, or a rough surface with different degrees of texture, etc.
  • the top surface of the third vinyl layer 3102 is set as a non-smooth surface, which can make the light in the external environment undergo diffuse reflection on the top surface of the third vinyl layer 3102, which can reduce the sharpness of the LED and reduce the interference of ambient light , can reduce the mirror effect on the surface of the display module, thereby eliminating the interference of external ambient light when the display module is turned on, while ensuring a high degree of black contrast, achieve better viewing effects, and can be better applied to various application scenarios.
  • the light emitted Among the incoming light part of the light I1 is reflected by the reflective particles in the reflective layer and emitted through the second light-transmitting channel, part of the light I3 is reflected by the reflective particles to the nano-scale black powder in the third black layer and absorbed, and part of the light I2 enters under the reflective layer through the first light-transmitting channel of the reflective layer and is reflected and/or absorbed by objects (such as substrates, light-emitting units, etc.) Return to the nano-scale black powder in the third vinyl layer and be absorbed.
  • the area covered by the semi-transparent layer appears black in human vision at this time, so it can be Improve contrast; on the contrary, when there is sufficient intensity of light emitted from the reflective layer to the third vinyl layer, normal display can be achieved; that is, while the one-way perspective visual effect of the semi-transparent layer is used to ensure the display effect, Contrast has been improved.
  • the display module includes: a substrate, and a number of pads are provided on the front side of the substrate for electrical connection with the electrodes of the light emitting unit. ; Several light-emitting units are arranged on the front surface of the substrate, and the electrodes of each light-emitting unit are electrically connected to the corresponding pads.
  • the distribution of the pads on the front surface of the substrate can be flexibly set, for example, it can be distributed in a matrix, or can be set in other distributions according to requirements, which is not limited in this embodiment.
  • at least one of the substrate, the pad, and the light emitting unit may refer to but not limited to the above-mentioned embodiments.
  • several light emitting units disposed on the substrate may be configured as a plurality of pixel units.
  • the display module in this embodiment also includes a tenth encapsulation layer arranged on the front surface of the substrate, and the tenth encapsulation layer is the semi-transparent layer in the above examples, which at least covers the front surface of the substrate that is not covered by each light-emitting unit
  • the tenth encapsulation layer is set on the front surface of the substrate, and the tenth encapsulation layer can be directly attached to the front surface of the substrate; it can also be the tenth encapsulation layer indirectly It is arranged above the front of the substrate (that is, there are other layer structures between the tenth packaging layer and the front of the substrate); in this embodiment, the tenth packaging layer at least covers the area on the front of the substrate that is not covered by the orthographic projection of each light-emitting unit Covering means that on the front surface of the substrate, except for the area covered by the orthographic projection of each light emitting unit on the front surface, other areas on the front surface are covered by the tenth en
  • FIG. 10-1 shows the substrate 19 of the display module and several light emitting units 29 arranged on the front of the substrate.
  • the front of the substrate 19 is not covered by the light emitting units 29.
  • the area covered by the orthographic projection includes the areas shown in S0 in Figure 10-1, so the contrast of the display module can be improved and the display effect can be improved.
  • the above-mentioned tenth encapsulation layer used in this embodiment has a one-way perspective effect visually, that is, in a scene where the external ambient light intensity of the display module is greater than or equal to 1.5 times the internal ambient light intensity of the display module, the display module
  • the area covered by the tenth encapsulation layer in the group appears black in human vision, which can improve the contrast; conversely, when the brightness of the internal light of the display module is greater than 1.5 times the brightness of the external light of the display module, the display module A normal display can be achieved.
  • the light-emitting unit when the light-emitting unit is not lit, that is, when the display module is off the screen, there is no light in the internal environment, and the light that can be seen by the human eye theoretically consists of the following three parts: external ambient light
  • the ambient light I2; the external ambient light absorbed by the black light blocking unit 304 in the third vinyl layer is visually black I3 because the light is absorbed; according to the principle of one-way perspective, when the brightness of the external ambient light is greater than the brightness of the internal environment by 1.5 When it is more than 10 times, the received internal ambient light will be ignored in human vision, and the light intensity of I2 in Figure 10-5 is much smaller than the light intensity of I1; at this time, the area covered by the tenth encapsulation layer 310 appears in human vision For a piece of black.
  • the light-emitting unit in the internal environment when the light-emitting unit is on, that is, when the display module displays, the light-emitting unit in the internal environment generates light, and the light that can be seen by the human eye theoretically has the following five parts: External ambient light The light I1 reflected by the reflective particles in the reflective layer 3101; a small part of the external ambient light enters the internal environment through the corresponding first light-transmitting channel and the second light-transmitting channel, and returns to the external environment after being reflected and absorbed many times in the internal environment.
  • the brightness of the screen reaches 300 nit -500 nit, which can already achieve a good display effect, and the light emitted by the LED, that is, the brightness of I4+I5 can reach 800 nit -2000 nit, which is greater than 300-500 nit; See what the LED display shows.
  • the tenth encapsulation layer 310 may be indirectly disposed on the front surface of the substrate 19 , or may be directly attached to the front surface of the substrate 19 .
  • this embodiment will be described below in conjunction with several example structures shown in the accompanying drawings.
  • the display module may further include an eleventh encapsulation layer disposed between the front surface of the substrate and the semi-transparent layer.
  • the eleventh packaging layer in this embodiment is a light-transmitting layer. It should be understood that, the formation process and material of the eleventh encapsulation layer in this embodiment can be flexibly set without any limitation.
  • the eleventh encapsulation layer may be but not limited to an adhesive layer, and its formation may be through but not limited to coating, molding, printing, pre-filming and then mounting.
  • the eleventh encapsulation layer in this embodiment can play the role of waterproof, moistureproof and anti-collision, can protect the light-emitting unit, and can be used as a base for the semi-transparent layer.
  • the eleventh encapsulation layer may be a transparent encapsulation layer using transparent epoxy glue, so as to form a sealing protection for the light emitting unit on the substrate.
  • at least one of white powder including but not limited to SiO2 powder
  • melanin, light diffusion particles, etc. can be added to the transparent epoxy glue according to requirements, so as to further adjust the light output effect of the display module .
  • the upper surface of the eleventh encapsulation layer (that is, the side of the eleventh encapsulation layer away from the front side of the substrate) can be set as a matte surface, a bright surface, a frosted surface, a matte surface, etc. according to requirements, so as to achieve different
  • the appearance effect and light effect can further enrich the display effect and improve user experience satisfaction.
  • the eleventh encapsulation layer 311 that is on the front side and also covers each light emitting unit 29 inside.
  • the side of the light-emitting unit 29 away from the front surface of the substrate is the light-emitting surface
  • the side close to the front surface of the substrate is the bottom surface
  • the surface between the light-emitting surface and the bottom surface is the side surface.
  • the display module further includes a tenth encapsulation layer 310 formed on the eleventh encapsulation layer 311 .
  • the tenth encapsulation layer 310 covers the areas of the front surface of the substrate 19 that are not covered by the orthographic projections of the light emitting units 29, and also covers the light emitting surfaces of the light emitting units 29, that is, the tenth encapsulation layer 310 in this example Layer 310 fully covers the eleventh encapsulation layer.
  • the schematic model of the light path is shown in Fig. 10-8, and the schematic model of the light path when it is on is shown in Fig. 10-9.
  • this embodiment will be described below by taking a scenario where a display module is applied to a display screen, combined with some concepts in the existing display field.
  • Existing liquid crystal display screen refers to the liquid crystal display screen commonly used at present, with a typical brightness of 350 nit, and generally a maximum of 500 nit.
  • the brightness of the existing liquid crystal display is relatively low, because the structure is equipped with a filter, and there is an ultra-black matrix in the filter, the liquid crystal display can display a high degree of black when the screen is turned off.
  • the current liquid crystal display The contrast ratio is actually the best of any kind of display currently available. That is, although the brightness is low, as long as the ratio of the black brightness when the screen is off to the highest brightness when the screen is on is large enough, an ultra-high black contrast ratio can still be achieved. Ordinary COB display screens are leaking from the solder pads.
  • the tenth encapsulation layer 310 set in this embodiment blocks all the silver colors, and when the screen is turned off, due to the principle of one-way perspective, the human eye can only see the tenth encapsulation layer 310 to realize the silver color shielding. pads, and the tenth encapsulation layer 310 is highly black to enhance black contrast.
  • the tenth encapsulation layer 310 Only after returning to the external environment, it is received by human eyes, that is, I2, and part of it is directly absorbed by black, that is, I3, so I outside>1.5*(I1+I2+I3), so the area covered by the tenth encapsulation layer 310 is within the range of human It appears as a black in the vision.
  • the tenth encapsulation layer 310 can be regarded as a black mirror visually.
  • the LED light when the light-emitting unit is on, the LED light is divided into two parts to be received by the human eye, that is, I4+I5; refer to the above paragraph
  • the minimum value of I4+I5 can reach more than 50% of the luminance of the LED. If the LED luminance is expressed as I, then I>I4+I5>50% L, and 50% I can reach 400 nit to 1000 nit, so I4+I5>300 nit, at this time the user can already get a complete display effect.
  • the tenth encapsulation layer 310 can be visually regarded as a black mirror:
  • the principle of the mirror is shown in Figure 10-10:
  • Candle B1 emits The light from the light is reflected by the smooth reflective layer in the mirror C, and the human eye receives the reflected light, and the scene presented in the human brain is candle B2, causing the illusion that the candle bar is in the mirror, which is the principle of mirror reflection.
  • the micron-sized glass microspheres in the third vinyl layer 3102 are glass crystals, and the reflective layer 3101 includes reflective particles.
  • the micron-sized glass microspheres and The reflective particles form a mirror, but at the same time, due to the existence of the black light-blocking unit 304 in the third vinyl layer 3102, it can be imagined that an ultra-black matrix composed of black light-blocking units 304 is added to the mirror, because micron-sized glass Microspheres are micron-sized crystals, so in human vision, they appear as a black mirror.
  • the top surface of the third vinyl layer 3102 is set as a non-smooth surface to form diffuse reflection on the top surface.
  • the specular reflection shown in FIG. 10-11 will be formed on the top surface.
  • the top surface of the third black glue layer 3102 is a non-smooth surface, such as the rough surface shown in Figure 10-12, the diffuse reflection shown in Figure 10-12 will be formed on the top surface, and what the human eye sees at this time is It is not a complete mirror (it can be understood as a matte screen), because diffuse reflection can make the mirror unshaped, so it can reduce ambient light interference and improve the display effect.
  • FIG. 10-13 Another exemplary structure in which the tenth encapsulation layer 310 is indirectly provided on the front surface of the substrate 19 is shown in FIG. 10-13.
  • the thickness of the encapsulation layer 311 is substantially equal to the height of each light-emitting unit 29 , and the light emitting surface of each light-emitting unit 29 (that is, the side of the light-emitting unit 29 away from the substrate 19 ) is exposed to the eleventh encapsulation layer 311 , and is located at the top of each light-emitting unit 29
  • the tenth encapsulation layer 310 above the light-emitting surface is directly attached to the light-emitting surface of each light emitting unit 29 ; and the tenth encapsulation layer 310 completely covers the top surface of the eleventh encapsulation layer 311 .
  • FIG. 10-14 Another exemplary structure in which the tenth encapsulation layer 310 is indirectly provided on the front surface of the substrate 19 is shown in FIG. 10-14. Compared with the display module shown in FIG. The thickness of the encapsulation layer 311 is thinner, and its top surface has a concave-convex distribution according to the layout distribution of the light emitting units 29 .
  • FIG. 10-15 Another exemplary structure in which the tenth encapsulation layer 310 is indirectly provided on the front surface of the substrate 19 is shown in FIG. 10-15.
  • the encapsulation layer 310 covers the areas of the front surface of the substrate 19 that are not covered by the orthographic projections of the light emitting units 29, and the light-emitting surface of each light emitting unit 29 is exposed to the tenth encapsulation layer 310, that is, the tenth encapsulation layer 310 does not cover The light emitting surface of each light emitting unit 29 is covered.
  • the tenth encapsulation layer 310 does not cover the light emitting surface of each light emitting unit 29, so most of the light emitted from the light emitting surface of each light emitting unit 29 can be emitted directly through the eleventh encapsulating layer 311 without going through the first light emitting surface.
  • Ten encapsulation layers 310 so the display brightness can be improved.
  • An exemplary structure in which the tenth encapsulation layer 310 is directly attached to the front surface of the substrate 19 is shown in FIGS.
  • the encapsulation layer 310 so most of the light emitted from the top and side surfaces of the light emitting units 29 can be emitted without passing through the tenth encapsulation layer 310 , which improves the light extraction efficiency and ensures the display brightness.
  • the display module in this example further includes a twelfth encapsulation layer 312 disposed on the tenth encapsulation layer 310 and covering each light emitting unit 29 .
  • the material, shape and formation method of the twelfth encapsulation layer 312 in this example may be the same as, but not limited to, the eleventh encapsulation layer 311 in the above-mentioned examples, and will not be repeated here.
  • Another exemplary structure in which the tenth encapsulation layer 310 is directly attached to the front surface of the substrate 19 is shown in FIGS. 10-17 . Compared with the display module shown in FIGS.
  • FIGS. 10-18 Another exemplary structure in which the tenth encapsulation layer 310 is directly attached to the front surface of the substrate 19 is shown in FIGS. 10-18 . Compared with the display module shown in FIGS.
  • the main difference lies in the 310 also covers the top light-emitting surface of each light emitting unit 29, and the side surface of each light emitting unit 29 is exposed to the tenth encapsulation layer 310, so most of the light from the side surface of each light emitting unit 29 can be emitted without going through the tenth encapsulation layer 310, which can also improve Its light output efficiency ensures display brightness.
  • FIGS. 10-19 Another exemplary structure in which the tenth encapsulation layer 310 is directly attached to the front surface of the substrate 19 is shown in FIGS. 10-19 . Compared with the display module shown in FIGS.
  • the main difference lies in the 310 also covers the side surfaces and the light emitting surface of each light emitting unit 29; therefore, in this example, the coverage of the tenth encapsulation layer 310 is larger than that of the previous examples, and the black contrast will be relatively higher.
  • FIG. 10-20 A modified example is shown in Fig. 10-20.
  • a tenth encapsulation layer 310 is provided on top of the twelfth encapsulation layer 312, that is, Fig. 10-20
  • the example shown includes a dual tenth encapsulation layer 310 to further enhance contrast.
  • the light transmittance and blackness of each tenth encapsulation layer 310 can be adjusted appropriately, which will not be repeated here.
  • this embodiment will describe the method of manufacturing the semi-transparent layer shown in the above examples as an example, including but not limited to:
  • Step a11 forming a reflective layer on the carrying surface of the carrier by vacuum ion plating or evaporation process.
  • a vacuum ion plating is used as an example below.
  • a magnetic field is used to guide ions to bombard a predetermined reflective material substrate, and molecules of the reflective material substrate are uniformly sputtered onto a corresponding area on the bearing surface to form a reflective layer.
  • the carrier in this embodiment may be a substrate, and the carrier surface may be the front side of the substrate; when the eleventh encapsulation layer is provided on the substrate, the carrier may be the eleventh encapsulation layer, and the carrier surface may be The side of the eleventh encapsulation layer away from the substrate; of course, the carrier can also be a connecting adhesive layer disposed on the second carrier film, and the carrier surface can be the side of the connecting adhesive layer away from the second carrier film. It can be seen that the bearing body and the corresponding bearing surface in this embodiment can be flexibly set according to specific application scenarios, and can be flexibly manufactured to be used in a wide range of scenarios and have good versatility.
  • Step b11 Evenly mix micron-sized glass beads and nano-sized black powder in the transparent glue to obtain a mixed glue.
  • the micron-sized glass beads are charged, for example, by rotating and rubbing the micron-sized glass beads with a specific object, so that the micron-sized glass beads are negatively charged; correspondingly, the nano-sized black powder is also negatively charged, such as The nano-scale black powder is made of carbon black powder; then the negatively charged micron-scale glass beads and nano-scale black powder are evenly mixed in the transparent glue, and the negatively charged micron-scale glass beads and nano-scale black powder are mixed in the transparent glue. Mutual repulsion in the glue, so as to prevent the nano-scale black powder from adhering to the micron-scale glass beads.
  • Step c11 setting a mixed glue layer on the reflective layer, and curing the mixed glue layer to obtain a third black glue layer.
  • the method of setting the mixed glue layer on the reflective layer can be but not limited to coating, molding, printing, etc.; of course, in some examples, the mixed glue layer can also be set on the second Carrier film to make a black film, and then attach the black film to the reflective layer. And it should be understood that, because the colloid in the mixed glue layer has a certain viscosity and tension, it will not flow into the gap between the reflective particles in the reflective layer or only a part of the transparent glue will flow in, but it will not affect The slit forms a first light-transmitting channel.
  • this embodiment will describe the manufacturing method of the display module shown in the above examples as an example, including but not limited to:
  • Step a12 Install several light-emitting units on the front surface of the substrate, and the electrodes of each light-emitting unit are electrically connected to the corresponding pads; as described in the above example, the electrical connection can be made through but not limited to solder paste or conductive silver glue.
  • Step b12 disposing a semi-transparent layer on the front surface of the substrate, and the semi-transparent layer covers at least the area on the front surface of the substrate that is not covered by the orthographic projection of each light-emitting unit.
  • the production process in this example includes but is not limited to:
  • Step a13 setting several light emitting units 29 on the front surface of the substrate 19;
  • Step b13 forming an eleventh encapsulation layer 311 on the front surface of the substrate 19, the eleventh encapsulation layer 311 in this example is a transparent adhesive layer;
  • Step c13 Form a reflective layer 3101 on the side of the eleventh encapsulation layer 311 away from the substrate 19 by means of vacuum ion plating or evaporation, and the thickness of the reflective layer 3101 is 200 nanometers; that is, in this example, the eleventh encapsulation layer 311 is a carrier, and its side away from the substrate 19 is a carrier surface;
  • Step d13 printing, molding or coating the mixed adhesive layer on the reflective layer 3101 and curing it to obtain the third black adhesive layer 3102; the thickness of the third black adhesive layer 3102 in this example is 100 microns.
  • the production process in this example includes but is not limited to:
  • Step a14 setting several light emitting units 29 on the front surface of the substrate 19;
  • Step b14 Form a reflective layer 3101 on the front surface of the substrate 19 by means of vacuum ion plating or evaporation, the thickness of the reflective layer 3101 is 200 nanometers, and cover the sides and front surfaces of each light-emitting unit 29; that is, in this example
  • the middle substrate 19 is a carrier, and the front of the substrate 19 is a carrier surface;
  • Step c14 printing, molding or coating the mixed adhesive layer on the reflective layer 3101 and curing it to obtain the third black adhesive layer 3102;
  • Step d14 Form the twelfth encapsulation layer 312 on the third vinyl layer 3102 by printing, molding or coating.
  • the twelfth encapsulation layer 312 is mixed with light conversion particles and/or light diffusion particles .
  • the manufacturing process in this example also includes removing at least a part of the semi-transparent layer on the light-emitting surface of each light-emitting unit 29, and the removal method can be but not limited to laser removal, grinding or electrolysis. slurry etching etc. Then execute: form the twelfth encapsulation layer 312 on the third vinyl layer 3102 by printing, molding or coating, and the twelfth encapsulation layer 312 also covers each light emitting unit 29, which includes but not limited to :
  • Step a15 Set the connecting adhesive layer on the second carrier film; the connecting adhesive layer in this embodiment can adopt various adhesive layers that are viscous and change from a solidified state to a semi-melted state when heated, for example, but not It is limited to heat-sensitive adhesive layer, modified epoxy adhesive layer or modified silica gel layer, etc., which can be flexibly used according to the application scenario.
  • Step b15 forming a reflective layer on the connecting adhesive layer by vacuum ion plating or evaporation process, that is, in this example, the connecting adhesive layer is the carrier, and the side of the connecting adhesive layer away from the second carrier film is the bearing surface;
  • Step c15 uniformly mixing micron-sized glass beads and nano-sized black powder in the transparent glue to obtain a mixed glue.
  • Step d15 setting a mixed glue layer on the reflective layer, and curing the mixed glue layer to obtain a third black glue layer;
  • Step e15 removing the second carrier film, covering one side of the connecting adhesive layer on the front side of the substrate and performing hot pressing.
  • the production process in this example includes but is not limited to:
  • Step a16 setting several light emitting units 29 on the front surface of the substrate 19;
  • Step b16 forming an eleventh encapsulation layer 311 on the front surface of the substrate 19, the eleventh encapsulation layer in this example is a transparent adhesive layer;
  • Step c16 setting the connecting adhesive layer 307 on the second carrier film 306, the connecting adhesive layer in this example can be but not limited to heat-sensitive adhesive layer, modified epoxy adhesive layer or modified silica gel layer, etc.;
  • Step d16 forming a reflective layer 3101 on the connecting adhesive layer 307 by vacuum ion plating or evaporation process; the thickness of the reflective layer 3101 is 200 nanometers;
  • Step e16 printing, molding or coating the mixed adhesive layer on the reflective layer 3101 and curing it to obtain the third black adhesive layer 3102; the thickness of the third black adhesive layer 3102 in this example is 100 microns.
  • Step f16 removing the second carrier film 306
  • Step g16 covering one side of the connecting adhesive layer 307 on the eleventh encapsulating adhesive layer 311;
  • Step h16 using but not limited to hot pressing to bond the connecting adhesive layer 307 to the eleventh encapsulating adhesive layer 311 .
  • the production process in this example includes but is not limited to:
  • Step a17 setting several light emitting units 29 on the front surface of the substrate 19;
  • Step b17 to step c17 are the same as step a16 to step a16 in the above example, and the connecting adhesive layer 307 in this example may specifically adopt a modified epoxy adhesive layer or a modified silica gel layer;
  • Step d17 The second carrier film 306 is removed, and then one side of the connecting adhesive layer 307 is covered on the eleventh encapsulating adhesive layer 311 for lamination.
  • a seventh encapsulation layer may be further provided on the third vinyl layer 3102 according to requirements.
  • the steps a18 to d18 in the production process in this example are similar to the steps a17 to d17 in the above example, the difference is that the thickness of the connecting adhesive layer 307 is thicker, so that the second step is removed in step e18.
  • the second carrying film 306 cover one side of the connecting adhesive layer 307 on the light-emitting surface of each light-emitting unit 29, and then heat and press it in step f18 so that it is bonded to the front surface of the substrate 19, and the connection after pressing
  • the adhesive layer 307 also serves as the first packaging adhesive layer.
  • the initial thickness of the connecting glue layer 307 in this example before lamination is set to be greater than or equal to 100 ⁇ m, and the thickness after lamination is greater than or equal to 50 ⁇ m.
  • the positions of the reflective layer 3101 and the third black glue layer 3102 on the second carrier film 306 can also be interchanged; for example, the third black glue layer can be directly formed on the second carrier film 306 layer 3102, and then form a reflective layer 3101 on the third vinyl layer 3102, and when bonding, directly bond one side of the reflective layer 3101 to the front surface of the substrate 19 or the eleventh encapsulation layer on the front surface of the substrate 19 , so as to obtain the structures in the above examples.
  • an adhesive layer (the adhesive layer is a light-transmitting layer, such as a transparent glue layer) to improve the bonding strength between the reflective layer 3101 and the front surface of the substrate 19 or the eleventh encapsulation layer on the front surface of the substrate 19 .
  • This modification is also within the protection scope of the present invention.
  • This embodiment also provides a display screen, which includes at least one display module in the above-mentioned embodiments.
  • the present embodiment will be described below by taking the display module shown in Figures 10-27 as an example. are electrically connected to drive each light emitting unit 29 .
  • other electronic components other than the light emitting unit 29 can also be flexibly arranged on the front and/or back of the substrate 19, and the electronic components provided can include but are not limited to resistors, capacitors, etc., Specifically, the settings can be selected according to application requirements.
  • This embodiment provides a display module and its display module which can not only solve the problem that the contrast of the display screen is lowered because the surface of the pad is covered by silver solder paste, but also avoid black glue remaining on the light-emitting surface of the LED chip. Shows how to make mods. And this embodiment can be implemented independently of other embodiments.
  • Step a19 making a substrate and an encapsulation layer.
  • Making the substrate in this embodiment includes but is not limited to providing a substrate, and fixing several light-emitting units on the front of the substrate, and there is a first gap between adjacent light-emitting units; in this embodiment, one light-emitting unit includes a plurality of LED chips, each The electrodes of the LED chips are welded to the corresponding pads on the substrate; and the silver outer surfaces formed after the LED chips of each light-emitting unit are welded to the pads are mainly distributed in the first gap f1. It should be understood that in this embodiment, other electronic components can be arranged on the front and/or back of the substrate first, and then the encapsulation layer can be arranged on the substrate; Electronic component.
  • Making the encapsulation layer in this embodiment includes: providing a thirteenth encapsulation layer and a fourteenth encapsulation layer stacked together.
  • the thirteenth encapsulation layer is the second transparent adhesive layer
  • the fourteenth encapsulation layer is the fourth black adhesive layer. It should be understood that, in this example, when making the encapsulation layer, the thirteenth encapsulation layer may be formed first, and then the fourteenth encapsulation layer may be formed on the thirteenth encapsulation layer; the fourteenth encapsulation layer may also be formed first , and then forming a thirteenth encapsulation layer on the fourteenth encapsulation layer.
  • the thirteenth packaging layer is facing the front of the substrate (that is, the side of the thirteenth packaging layer away from the fourteenth packaging layer is facing the front of the substrate), and the thirteenth packaging layer is facing the front of the substrate.
  • the thirteenth encapsulation layer and the fourteenth encapsulation layer are pressed together on the front surface of the substrate.
  • the process for forming the thirteenth encapsulation layer and the fourteenth encapsulation layer there is no limitation on the process for forming the thirteenth encapsulation layer and the fourteenth encapsulation layer, and the process for forming the thirteenth encapsulation layer and the process for forming the fourteenth encapsulation layer may be the same or different.
  • the specific process used may be but not limited to coating, silk screen printing, printing, embossing and so on.
  • the substrate and the encapsulation layer can be produced simultaneously, or the substrate can be produced first, and then the encapsulation layer can be produced, or the substrate and/or the encapsulation layer can be purchased directly from upstream.
  • the thirteenth encapsulation layer and the fourteenth encapsulation layer formed in this embodiment can be in and remain in a semi-cured state, so as to facilitate subsequent direct lamination with the front surface of the substrate.
  • this embodiment is not limited to the heat-pressing process using colloids, for example, when the formed thirteenth encapsulation layer and fourteenth encapsulation layer have been in and maintained in a specific semi-cured state, they can be directly bonded without Heating it is an equivalent replacement method of the hot-pressing process in this embodiment.
  • Step b19 Pressing the thirteenth encapsulation layer and the fourteenth encapsulation layer together on the front surface of the substrate through a hot-pressing process.
  • the thirteenth encapsulation layer covers the front surface of the substrate and the light emitting surface of each LED chip, and A third recess is formed in the first gap between adjacent light-emitting units, a part of the fourteenth encapsulation layer is filled in the third recess, and at least the third recess is covered (that is, at least the first The three lower recesses are all covered), in this embodiment, the light emitting surface of the LED chip is the side away from the front of the substrate of each LED chip.
  • the thirteenth encapsulation layer faces the front side of the substrate, and is bonded to the light-emitting surface of each LED chip on the front side of the substrate and then hot-pressed.
  • the thirteenth encapsulation layer and the fourteenth encapsulation layer are in the In the semi-cured state, the transparent adhesive layer and the fourteenth encapsulation layer are gradually approaching the front of the substrate under pressure until the thirteenth encapsulation layer is bonded to the front of the substrate, and the LED chips on the front of the substrate are covered by the thirteenth encapsulation layer.
  • the top light emitting surface including the LED chip is also covered by the thirteenth encapsulation layer, and the thirteenth encapsulation layer forms a third concave portion in the first gap between adjacent light-emitting units, and the tenth encapsulation layer above the thirteenth encapsulation layer
  • the thirteenth encapsulation layer forms a third concave portion in the first gap between adjacent light-emitting units, and the tenth encapsulation layer above the thirteenth encapsulation layer
  • the thirteenth encapsulation layer will The light-emitting surface of each LED chip is covered, and the fourteenth packaging layer will not contact the light-emitting surface of the LED chip during the lamination process, so there is no possibility of directly remaining on the light-emitting surface of the LED chip, which can ensure that the LED The light-emitting characteristics of the chip; at the same time, in the above-mentioned pressing process, the thirteenth packaging layer is located between the fourteenth packaging layer and the substrate as a buffer layer, even if
  • the area directly above each LED chip of the thirteenth packaging layer can also form a flat surface as much as possible, thereby improving the consistency of the fourteenth packaging layer on the thirteenth packaging layer after lamination. Further improve the consistency of the light output effect; in addition, the thirteenth encapsulation layer and the fourteenth encapsulation layer are pressed together on the front of the substrate, instead of pressing the thirteenth encapsulation layer and the fourteenth encapsulation layer twice Combination can improve the production efficiency, and the hot pressing process adopted is simple and mature, which can also ensure and improve the yield rate and facilitate the control of production costs.
  • the method of making a display module in this example includes but is not limited to:
  • Step a20 making encapsulation layers, including forming a thirteenth encapsulation layer 313 and a fourteenth encapsulation layer 314 stacked with the thirteenth encapsulation layer 313 .
  • the fourteenth encapsulation layer 314 is located above the thirteenth encapsulation layer 313 in terms of positional relationship. However, it should be understood that during fabrication, the fourteenth encapsulation layer 314 may be formed first, and then the thirteenth encapsulation layer 313 may be formed on the fourteenth encapsulation layer 314, or the thirteenth encapsulation layer 313 may be formed first, and then the thirteenth encapsulation layer 313 may be formed on the fourteenth encapsulation layer 314. A fourteenth encapsulation layer 314 is formed on the third encapsulation layer 313 .
  • Step b20 Fabricate the substrate, for example, refer to the substrate shown in Figure 11-1, wherein the substrate 110 is provided with several light-emitting units, and there is a first gap f1 between adjacent light-emitting units, and the main part of the silver outer surface Y formed during the welding process and within the first gap f1.
  • Step c20 Bond the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 together on the LED chip 2101 provided on the front surface of the substrate 110, and then press them with a hot pressing process, and the thirteenth encapsulation layer 313 is far away from One side of the fourteenth encapsulation layer 314 faces the substrate 110 .
  • Step d20 After pressing the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 onto the front surface of the substrate 110, the thirteenth encapsulation layer 313 covers the front surface of the substrate 110 and each LED chip 2101, and the thirteenth encapsulation layer The layer 313 forms a third depressed portion in the first gap between adjacent light emitting units.
  • a schematic diagram of the third lower concave portion is shown in Figure 11-2 ( Figure 11-2 shows the structure after removing the fourteenth encapsulation layer 314 in the display module obtained after step d20 in Figure 11-1. ), f11 in FIG.
  • FIG. 11-2 shows the third concave portion formed in the first gap f1 between adjacent light-emitting units, and the side wall of the third concave portion f11 includes the thirteenth encapsulation layer 313
  • the arc surface d formed by fluidity can further increase the lamination area between the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 , thereby enhancing the bonding strength of the two.
  • the fourteenth encapsulation layer 314 covers each third lower concave portion f11, and each silver outer surface Y is covered by the fourteenth encapsulation layer 314 coverage, which can improve the contrast of the display module and improve the display effect.
  • each LED chip 2101 is covered by the thirteenth encapsulation layer 313, the fourteenth encapsulation layer 314 is covered on the thirteenth encapsulation layer 313, and the fourteenth encapsulation layer 314 does not contact the LED chip 2101, so there will be no residue on the LED chip 2101
  • the fourteenth encapsulation layer 314 can ensure the light emitting characteristics of each LED chip 2101 .
  • the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 are pressed together on the front surface of the substrate, which can simplify the manufacturing process and improve the manufacturing efficiency, and the hot pressing process adopted is simple and mature, and can also Guarantee and improve the yield rate, and facilitate the control of production costs.
  • step a21 to step d21 in Fig. 11-3 are the same as step a20 to step d20 in Fig. 11-1 above, and will not be repeated here.
  • the area of the thirteenth encapsulation layer directly above the light emitting surface of each LED chip 2101 can also form a flat surface Q as much as possible, That is, the thirteenth encapsulation layer 313 is used to make up for the unevenness caused by the inclination of the LED chips X1 and X2 as much as possible, thereby ensuring the consistency of the fourteenth encapsulation layer 314 on each area of the thirteenth encapsulation layer 313 and improving the module The consistency of the light effect.
  • the width of the second gap f2 is smaller than the width f1 of the first gap.
  • the width of the second gap f2 is generally much smaller than the width of the first gap f1, and the specific difference between the two can be flexibly set according to specific application scenarios, and there is no limit to it here .
  • the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 are pressed together on the front surface of the substrate through a thermal pressing process, the thirteenth encapsulation layer
  • the region above the second gap f12 of the layer 313 is formed with a fourth lower recess f12, the fourteenth encapsulation layer 314 fills the fourth lower recess f12 and completely covers the top surface of the thirteenth encapsulation layer 313, the thirteenth encapsulation layer 314
  • the top surface of layer 313 is its side facing away from substrate 110 . Referring to Fig.
  • the third distance h2 from the bottom of the fourth concave portion f12 to the front surface of the substrate is greater than the second distance h1 from the light emitting surface of the LED chip 2101 to the front surface of the substrate; that is, the fourth concave portion in this example
  • the bottom of f12 is located above the light emitting surface of each LED chip 2101 .
  • the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 are pressed together on the front surface of the substrate 110 through a hot pressing process.
  • the fourth distance h3 from the bottom of the third concave portion f11 to the front surface of the substrate 110 is smaller than the second distance h1 from the light emitting surface of the LED chip 2101 to the front surface of the substrate 110 .
  • h3 can be set to be less than or equal to 2/3*h1.
  • the setting of this structure can reduce the overall thickness of the display module as much as possible, which is more conducive to the thinning of the display screen; and can improve the utilization rate of the adhesive material and reduce the cost.
  • set h3 equal to 1/3*h1, 1/2*h1, or 2/3*h1, etc., preferably h3 is greater than or equal to 1/2*h1, and less than or equal to 2/3 *h1, so as to reduce the requirement for the thickness refinement of the thirteenth encapsulation layer 313 and reduce the requirement for process precision.
  • the fourteenth encapsulation layer 314 can be set to have certain light transmittance on the basis of satisfying the display contrast performance.
  • the fourteenth encapsulation layer 314 may not be treated in any way, so as to simplify the manufacturing process and improve the manufacturing efficiency.
  • the fourteenth encapsulation layer 314 has a certain light transmittance, in order to further improve the light extraction efficiency of the display module, after the display module is manufactured, the light output surface of each LED chip 2101 can be positively A portion of the upper fourteenth encapsulation layer 314 is removed.
  • the display module shown in Figure 11-5 which removes a part of the fourteenth encapsulation layer 314 in the display module obtained in Figure 11-1, thereby obtaining a thinner tenth encapsulation layer.
  • Four encapsulation layers 314 to improve light extraction efficiency.
  • the top surface of the fourteenth encapsulation layer 314 still covers the thirteenth encapsulation layer 313 above the light emitting surface of each LED chip 2101 , and the top surface of the fourteenth encapsulation layer 314 is a plane as a whole.
  • a part of the fourteenth encapsulation layer 314 may be entirely removed by, but not limited to, grinding and other processes.
  • the schematic diagram of the fourteenth encapsulation layer 314 in the display module obtained in FIG. 11-3 after a part is removed is shown in FIG.
  • the surface still covers the thirteenth encapsulation layer 313 on the light-emitting surface of each LED chip 2101 (including covering the third lower concave portion f1 and the fourth lower concave portion f2), and the top surface of the fourteenth packaging layer 314 is integrated into one flat.
  • Figure 11-7 is a comparison of Figure 11-1 Part of the fourteenth encapsulation layer 314 in the obtained display module located directly above the light-emitting surface of each LED chip 2101 is partially removed (that is, a partial removal method is used).
  • Figure 11-8 is a comparison of Figure 11-3 Part of the fourteenth encapsulation layer 314 located directly above the light emitting surface of each LED chip 2101 in the obtained display module is partially removed, so that the fourteenth encapsulating layer 314 directly above the light emitting surface of each LED chip 2101 Compared with FIG. 11-1 and FIG. 11-3 , the thickness of the fourteenth encapsulation layer 314 in the display module is thinner to improve the light extraction efficiency.
  • the fourteenth encapsulation layer 314 may be removed by, but not limited to, an etching process.
  • the fourteenth encapsulation layer 314 has a certain light transmittance, no matter whether the steps of removing the fourteenth encapsulation layer 314 shown in FIGS.
  • the light transmittance of the fourteenth encapsulation layer retained on the light emitting surface of each LED chip 2101 can be set to be greater than or equal to 40%.
  • the manufacturing method of the display module may also include but not limited to:
  • the fourteenth encapsulation layer 314 directly above the light emitting surface of each LED chip 2101 is completely removed.
  • removing all of the fourteenth encapsulation layer 314 immediately above the light-emitting surface of each LED chip 2101 includes: placing the fourteenth encapsulation layer 314 on the bottom of the fourth lower concave portion f2. All are removed, and the removed fourteenth encapsulation layer 314 is flush with the thirteenth encapsulation layer 313 above the light emitting surface of each LED chip.
  • an application scenario refers to the display module shown in FIG. 11-9, which removes a part of the fourteenth encapsulation layer 314 in the display module made in FIG.
  • the thirteenth encapsulation layer 313 above is exposed to the fourteenth encapsulation layer 314, and the removed fourteenth encapsulation layer 314 still fills the fourth lower concave portion f2, and is connected with the light emitting surface of each LED chip 2101.
  • the thirteenth encapsulation layer 313 is flush. In the examples shown in FIGS.
  • the removed fourteenth encapsulation layer 314 still covers the thirteenth encapsulation layer 313 above the edge area of the light-emitting surface of each LED chip 2101, so that The fourteenth encapsulation layer 314 covers the silver outer surface Y between the LED chips 2101 in the light emitting unit as much as possible, so as to further improve the display contrast of the module.
  • FIG. 11-11 another example of removing all the black glue of the fourteenth encapsulation layer 314 on the bottom of the fourth lower concave portion f2 is shown in FIG. 11-11 , which is the same as the removal method shown in FIG. 11-10 In comparison, the difference is that when the fourteenth encapsulation layer 314 is removed, the fourteenth encapsulation layer 314 located at the bottom of the fourth lower concave portion f2 is also completely removed (as can be seen from FIGS.
  • the thirteenth encapsulation layer 313 are also removed), the fourteenth encapsulation layer 3 is flush with the thirteenth encapsulation layer 313 on the light emitting surface of each LED chip 2101 after removal, and the thirteenth encapsulation layer 313 There is no longer the fourth lower recess f2.
  • the overall thickness of the thirteenth encapsulation layer 313 and the fourteenth encapsulation layer 314 is thinner, which is more conducive to the thinning of the module.
  • a partial removal method may also be used.
  • Fig. 11-12 which is to partially remove all the black glue on the fourteenth encapsulation layer 314 in the display module obtained in Fig. 11-1, which is located directly above the light-emitting surface of each LED chip 2101;
  • 11-13 is to partially remove all the black glue on the fourteenth encapsulation layer 314 located directly above the light-emitting surface of each LED chip 2101 in the display module obtained in FIG. 11-3 .
  • the fourteenth encapsulation layer 314 when the fourteenth encapsulation layer 314 is partially removed, the removal efficiency of the fourteenth encapsulation layer 314 can be improved. And in the examples shown in FIGS. 11-9 to 11-13, the fourteenth encapsulation layer 314 may or may not have light transmission properties, and the material selection of the fourteenth encapsulation layer 314 is more flexible, suitable for Broader.
  • a substrate fixture in order to improve the yield rate and production efficiency, may be provided, and the substrate fixture is provided with an accommodating chamber adapted to the substrate.
  • the substrate fixture is provided with an accommodating chamber adapted to the substrate.
  • the substrate fixture After fixing, the substrate is fixed in the accommodation cavity of the substrate fixture, and the back of the substrate faces the accommodation The bottom of the cavity, the front surface of the substrate and the LED chips are open towards the top of the cavity for lamination of the thirteenth packaging layer.
  • accommodating grooves corresponding to the electronic components are also provided at the bottom of the accommodating cavity. After the substrate is fixed on the substrate fixture, each electronic component is located in the corresponding receiving groove. It can be seen that the substrate fixture adopted in this embodiment has a simple structure, is easy to manufacture, and has low cost.
  • the manufacturing method of the display module provided by this embodiment has a simple process, high efficiency, and low cost. Will not remain on the top surface of the LED chip.
  • This embodiment also provides a display screen, which is manufactured by at least one display module manufacturing method in the above examples. It can be seen that the display screen provided by this embodiment has better black contrast, and the manufacturing process is simple, which reduces the influence of the flatness of each LED chip after the LED chip is fixed on the substrate, and has a high yield rate and low cost.
  • the point light source of the backlight module is converted into a surface light source through optical films such as uniform film and diffusion film.
  • optical films such as uniform film and diffusion film.
  • 2 to 3 uniform film and diffusion films are required, which will undoubtedly increase the display capacity.
  • the overall thickness and cost of the module cannot meet consumers' demand for cost-effective products.
  • This embodiment provides a display module and its manufacturing method which can solve this technical problem. And this embodiment can be implemented independently of other embodiments.
  • Step a22 setting several light emitting units on the front surface of the substrate, each light emitting unit including at least one LED chip.
  • each LED chip is fixed on the front surface of the substrate, and each LED chip is evenly distributed on the front surface of the substrate according to a preset array layout.
  • Step b22 making a fifteenth encapsulation layer for sealing a plurality of LED chips, which can seal and protect the LED chips.
  • Step c22 arranging a plurality of light diffusion units at intervals on the light emitting surface of the fifteenth encapsulation layer. Before this step, it also includes mixing the light diffusion particles into the glue solvent according to a predetermined ratio to prepare glue, this step can be performed before or after step b22, and then use the glue to set the light diffusion unit on the light exit surface of the fifteenth encapsulation layer .
  • the light-diffusing particles include silicon dioxide and/or titanium dioxide, resin glue is used as the glue solvent for the glue solvent, and silicon dioxide and/or titanium dioxide are mixed into the glue solvent according to a predetermined ratio.
  • each light diffusion unit on the light-emitting surface of the fifteenth packaging layer should be the same as the array layout of each LED chip on the front surface of the substrate, so that the light diffusion unit is just above the LED chip.
  • the light diffusion unit reflects and refracts the light emitted by the LED chips so that the light emitted by each LED chip is evenly emitted from the light emitting surface of the fifteenth packaging layer, so that the light emitted by the LED chips on the substrate is emitted from the light emitting surface of the fifteenth packaging layer.
  • the light emitting surface of the fifteenth encapsulation layer is a surface light source that emits light uniformly.
  • the light diffusion unit can be formed on the light emitting surface of the fifteenth packaging layer by using 3D printing technology or screen printing technology.
  • Step d22 laminating the fifteenth encapsulation layer provided with the light diffusion unit onto the front surface of the substrate.
  • the fifteenth packaging layer with the light diffusion unit is pressed onto the front surface of the substrate.
  • the fifteenth encapsulation layer is pressed onto the substrate, so that the fifteenth encapsulation layer covers each LED chip, and the light diffusion unit is pressed into the protective adhesive layer above the LED chip, and the upper surface of the light diffusion unit is in contact with the tenth
  • the light emitting surfaces of the five encapsulation layers are located on the same plane. It should be understood that, in this embodiment, the melting point of the light diffusion unit is higher than that of the fifteenth encapsulation layer, and the fifteenth encapsulation layer is bonded to the substrate by a hot pressing process.
  • the light diffusion unit The unit will not be deformed by heat, and when the fifteenth encapsulation layer reaches the melting point due to heat, the fifteenth encapsulation layer will cover each LED chip, and the light diffusion unit will be pressed into the fifteenth encapsulation layer. Therefore, under the condition that the overall thickness of the fifteenth encapsulation layer remains unchanged, the light emitted by the LED chip is refracted and reflected by the light diffusing unit arranged above the LED chip in the fifteenth encapsulation layer and emitted out of the fifteenth encapsulation layer.
  • the light-emitting surface of the encapsulation layer makes the light-emitting surface of the fifteenth encapsulation layer emit light evenly, and it is no longer necessary to install a uniform light film on the fifteenth encapsulation layer, which avoids the use of a light uniform film and reduces the overall backlight module. thickness.
  • Each light diffusion unit optically processes the light of a single LED chip, and the uniformity of light is good. Compared with the use of a uniform light film, the phenomenon of particle aggregation is avoided.
  • the light emitting chip and the light diffusion unit are not in direct contact. The light emitted by the LED chip is reflected between the light diffusion unit and the front surface of the substrate multiple times and then exits the fifteenth encapsulation layer, thereby reducing light loss.
  • This embodiment also includes after step d22: setting an optical film layer on the side of the light-emitting surface of the fifteenth packaging layer, the optical film layer includes a quantum film and a prism sheet, but does not include a uniform film.
  • the optical film layer includes a quantum film and a prism sheet, but does not include a uniform film.
  • the light diffusion unit in the fifteenth encapsulation layer reflects and refracts the light emitted by the LED chip and then exits the light-emitting surface of the fifteenth encapsulation layer, so that the light-emitting surface of the fifteenth encapsulation layer emits light evenly, replacing the light emitted by the fifteenth encapsulation layer.
  • a uniform light film is arranged on the packaging layer to uniform the light of the LED chip, which eliminates the use of a light uniform film and reduces the overall thickness of the backlight.
  • This embodiment also provides another exemplary method for preparing a display module, including steps:
  • Step a23 setting several light emitting units on the front surface of the substrate, each light emitting unit including at least one LED chip.
  • each LED chip is fixed on the front surface of the substrate, and each LED chip is evenly distributed on the front surface of the substrate according to a preset array layout
  • Step b23 making a fifteenth encapsulation layer for sealing several LED chips.
  • Step c23 mixing the light-diffusing particles into the glue solvent according to a predetermined ratio to prepare glue.
  • the light-diffusing particles include silicon dioxide and/or titanium dioxide
  • resin glue is used as the glue solvent for the glue solvent
  • silicon dioxide and/or titanium dioxide are mixed into the glue solvent according to a predetermined ratio.
  • the order of step b23 and step c23 can be reversed, and can also be performed at the same time.
  • Step d23 Print the prepared glue on the light-emitting surface of the fifteenth encapsulation layer using 3D printing technology to form a light-diffusing unit.
  • 3D printing technology is used to print the glue on the light-emitting surface of the fifteenth packaging layer to form a number of uniformly distributed light diffusion units.
  • this embodiment can also use screen printing technology to silkscreen the glue on the A light diffusion unit is formed on the light exit surface of the fifteenth encapsulation layer.
  • the array layout of each light diffusion unit on the light-emitting surface of the fifteenth packaging layer should be the same as the array layout of each LED chip on the front surface of the substrate, so that the optical structure is just above the LED chip.
  • the light diffusion unit reflects and refracts the light emitted by the LED chips so that the light emitted by each LED chip is evenly emitted from the light emitting surface of the fifteenth packaging layer, so that the light emitted by the LED chips on the substrate is emitted from the light emitting surface of the fifteenth packaging layer.
  • the light emitting surface of the fifteenth encapsulation layer is a surface light source that emits light evenly.
  • Step e23 Laminating the fifteenth encapsulation layer provided with the light diffusion unit to the front surface of the substrate.
  • Step f23 Install an optical film layer on one side of the light-emitting surface of the fifteenth encapsulation layer.
  • the optical film layer includes a quantum film and a prism sheet, but does not include a uniform film.
  • the light emitted by the LED chip is reflected and refracted by the light diffusion unit arranged in the fifteenth packaging layer, and then emitted to the first The light emitting surface of the fifteenth encapsulation layer, so that the light emitting surface of the fifteenth encapsulation layer emits light evenly, instead of setting a uniform light film on the fifteenth encapsulation layer to evenly light the light of the LED chip, minus the uniform light
  • the use of the diaphragm reduces the overall thickness of the backlight.
  • the light diffusion unit above the LED chip in the fifteenth encapsulation layer enables the light emitted by the LED chip to be evenly emitted from the light-emitting surface of the fifteenth encapsulation layer, saving the uniform light film, The overall thickness of the backlight module is reduced, and the cost of the backlight module is reduced.
  • This embodiment also provides a display module, which is used to solve the problem of realizing the conversion from the point light source to the surface light source of the backlight module through optical films such as light uniform film and diffusion film in related technologies, which increases the overall thickness of the display module. and cost issues, unable to meet consumers’ needs for cost-effective products, which include: a substrate, a number of light-emitting units arranged on the front of the substrate, the substrate and light-emitting units in this embodiment can refer to but are not limited to those shown in the above-mentioned embodiments , which will not be repeated here.
  • a driver IC for the LED chips may also be provided on the back of the substrate to drive each LED chip to work.
  • the first diffusion area includes at least A light diffusion unit, the light diffusion unit includes a light incident surface opposite to the top surface of the LED chip and a light exit surface flush with the light exit surface of the fifteenth encapsulation layer, the light diffusion unit is used to reflect the light emitted by the LED chip and The refraction makes the light emitted by the LED chip evenly emitted from the light emitting surface of the fifteenth encapsulation layer.
  • An exemplary display module is shown in Figure 12-1, including a substrate 111, a number of LED chips 2110 evenly distributed on the front of the substrate 111, and a fifteenth encapsulation layer 315 arranged on the front of the substrate to cover each LED chip
  • the area of the fifteenth encapsulation layer 315 corresponding to the top surface of each LED chip is formed with several first diffusion areas 3151 distributed at intervals, the first diffusion area 3151 includes at least one light diffusion unit area 3153, and the light diffusion unit is made of glue solvent and according to It consists of light-diffusing particles mixed into the glue solvent in a predetermined proportion.
  • the first diffusion region 3151 is located directly above the LED chip 2110 , and its projected area on the front surface of the substrate is larger than that of the LED chip on the front surface of the substrate.
  • the light diffusion unit area 3153 on the first diffusion area 3151 includes a light incident surface opposite to the top surface of the LED chip and a light exit surface flush with the light exit surface of the fifteenth encapsulation layer 315, see FIG. 12- As shown in 2, the light F emitted by the LED enters the light incident surface of the light diffusion unit and then exits the light exit surface of the light diffusion unit after being reflected and refracted, so that the light emitted by the LED chip is uniform from the light exit surface of the fifteenth encapsulation layer 315
  • Each light diffusion unit optically processes the light of a single LED chip, and the uniformity of light is good. Compared with the use of uniform light film, the phenomenon of particle aggregation is avoided.
  • the LED chip and the light diffusion unit are not separated.
  • the direct contact enables the light emitted from the top surface of the LED chip to be reflected between the light diffusion unit and the front surface of the substrate multiple times before being emitted out of the fifteenth packaging layer, thereby reducing light loss.
  • the array layout of each light diffusion unit on the light-emitting surface of the fifteenth packaging layer should be the same as the array layout of each LED chip on the front surface of the substrate, so that the light diffusion unit is just above the LED chip.
  • the light diffusion unit reflects and refracts the light emitted by the LED chips so that the light emitted by each LED chip is evenly emitted from the light emitting surface of the fifteenth packaging layer, so that the light emitted by the LED chips on the substrate is emitted from the light emitting surface of the fifteenth packaging layer.
  • the light emitting surface of the fifteenth encapsulation layer is a surface light source that emits light evenly.
  • the backlight module also includes an optical film layer disposed on the side of the light-emitting surface of the fifteenth encapsulation layer.
  • the optical film layer includes a quantum film and a prism sheet, but does not include a uniform film.
  • the light emitted by the LED chip is reflected and refracted by the light diffusion unit arranged in the fifteenth encapsulation layer, and then exits the light-emitting surface of the fifteenth encapsulation layer, so that the light-exiting surface of the fifteenth encapsulation layer emits light evenly, replacing A homogenizing film is provided on the fifteenth packaging layer to homogenize the light of the LED chip, which eliminates the use of a homogenizing film and reduces the overall thickness of the backlight.
  • the glue is made from a glue solvent and light-diffusing particles mixed into the glue solvent according to a predetermined ratio.
  • the light-diffusing particles include at least one of silicon dioxide and/or titanium dioxide, and the shapes of the light-diffusing particles include circular, Any one of square, triangle, or other irregular shapes can be flexibly set according to the actual application.
  • the glue is printed on the light-emitting surface of the fifteenth packaging layer by 3D printing technology. Glue is screen-printed on the first diffusion area on the light-emitting surface of the fifteenth encapsulation layer by screen printing technology to form a light diffusion unit.
  • the fifteenth encapsulation layer equipped with the light diffusion unit is pressed onto the front surface of the substrate through a process of hot pressing, so that the LED chips arranged on the front surface of the substrate are wrapped in the fifteenth encapsulation layer, and at the same time, the fifteenth encapsulation layer emits light.
  • the light diffusion unit on the surface is pressed into the fifteenth encapsulation layer and is located directly above the LED chip.
  • the upper surface of the light diffusion unit is on the same plane as the light-emitting surface of the fifteenth encapsulation layer.
  • the projected area of the light diffusion unit on the front surface of the substrate is larger than the projected area of the LED chip on the front surface of the substrate, so that the light diffusion unit can reflect or refract most of the light emitted by the LED chip.
  • the uniform light effect of the light diffusion unit is related to the shape and thickness of the light diffusion unit and the proportion of the light diffusion particles in the light diffusion unit.
  • the proportion of ingredients can be used to achieve different uniform light effects.
  • the proportion of silicon dioxide in the glue is determined by the pitch value Pitch between LED chips (as shown in Figure 12-1) and the thickness of the light-diffusing unit. According to the indicator of the light channeling ratio of the display module, the light in one lamp area should escape to other lamp areas as little as possible. Therefore, the ratio of silicon dioxide and LED
  • the Pitch value is positively correlated and negatively correlated with the thickness of the light diffusion unit.
  • the LED Pitch value and the thickness of the light diffusion unit are set according to actual needs.
  • the proportion of silicon dioxide 30%+[(LED Pitch-3.0)/0.2-(light diffusion unit thickness-20)/10]*10%. See Table 1 for several groups of silicon dioxide ratios, LED Pitch values and thickness data of the light diffusion unit obtained according to the relational formula.
  • the shape of the light diffusion unit is circular.
  • the shape of the light diffusion unit referred to in is the projected shape of the light diffusion unit on the front surface of the substrate. It should be understood that the shape of the light diffusion unit is not limited to the above examples, but can also be any other shape, which can be flexibly set according to actual needs.
  • the projected area of the light diffusion unit on the front surface of the substrate It should be larger than the projected area of the LED chip on the front surface of the substrate.
  • the first diffusion area 3151 can also include a plurality of light diffusion units, and the plurality of light diffusion units form the first diffusion area according to preset arrangement rules.
  • the first diffusion area 3151 includes multiple a plurality of light diffusion unit areas 3153, and a plurality of light diffusion unit areas 3153 are equally spaced and evenly arranged in the first diffusion area. It can also be distributed according to other arrangement rules, and the shape of the light diffusion unit can include any one of circle, rectangle, and triangle, which can be flexibly set according to actual needs.
  • a number of second diffusion areas can also be arranged at intervals around the first diffusion area, the second diffusion area includes at least one light diffusion unit, and each second diffusion area is distributed around the first diffusion area according to preset rules.
  • each second diffusion area is evenly distributed around the first diffusion area at equal intervals. It should be understood that each second diffusion area can also be distributed around the second diffusion area according to other arrangement rules, which can be determined according to Practical applications require flexible settings. It should be understood that in this embodiment, the projection area of the second diffusion region on the substrate is smaller than the projected area of the first diffusion region on the substrate.
  • second diffusion regions 3152 are arranged around the first diffusion region 3151, and a light diffusion unit is arranged in the first diffusion region 3151, and each second Each of the diffusion areas 3152 is provided with a light diffusion unit, and the second diffusion areas 3152 are equally spaced on the circumference of the first diffusion area 3151 .
  • each second diffusion area 3152 is provided with a plurality of light diffusion units, and the plurality of light diffusion units in the first diffusion area and the second diffusion area are evenly arranged at equal intervals.
  • a light diffusion unit is provided in the fifteenth encapsulation layer far away from the top surface of the LED chip to reflect or refract the light emitted by the LED chip so that the light emitted by the LED chip is emitted from the tenth
  • the light emitting surfaces of the five packaging layers are evenly emitted, thereby saving the use of light uniform film and reducing the overall thickness and cost of the backlight module.
  • This embodiment also provides a display screen, which includes at least one display module shown in the above examples.
  • a light-emitting unit is a pixel unit of the display module, which usually includes red LED chips, green LED chips, and blue LED chips arranged in sequence in a row or a column (the difference between the red LED chip and the blue LED chip) positions are interchangeable).
  • the red LED chip, the green LED chip, and the blue LED core can be the quantum wells of the LED chips that emit red light, green light, and blue light respectively, but in some other examples, the red LED chip, the green LED chip, and the blue LED core It can also be obtained by converting light of a certain color emitted by the LED chip through a light conversion layer such as a quantum dot film layer or a fluorescent layer.
  • the green LED chip is adjacent to the red LED chip and the blue LED chip at the same time, but there is a green LED chip between the red LED chip and the blue LED chip. Therefore, the mixing of green light and red light
  • the light effect and the light mixing effect of green light and blue light are relatively good, while the light mixing effect of red light and blue light is poor, which will cause color cast in the light emitted by the light-emitting unit as a whole, and affect the overall display effect of the display module .
  • This embodiment provides a display module that can solve the technical problem, and this embodiment can be implemented independently of other embodiments.
  • FIG. 13-1 An exemplary display module provided in this embodiment is shown in FIG. 13-1 , wherein: the display module 400 includes a substrate 112a and a plurality of light emitting units 212a, and the substrate 112a is provided with a driving circuit.
  • the light-emitting unit 212a includes N LED chips, N is greater than or equal to 3, and the colors of the LED chips are not completely the same, that is, they can be completely different or partially the same. In other words, the light-emitting unit 212a includes multiple LED chips with different colors. , in some examples of this embodiment, the light emitting unit 212a includes a red LED chip 2121a, a green LED chip 2122a, and a blue LED chip 2123a, and these LED chips can be chips that emit light of corresponding colors by quantum wells, or can be It is a chip that converts the light of the corresponding color through the light conversion layer.
  • the colors of the LED chips in the light emitting unit 212a are not limited to red, green, and blue, for example, it may also include at least one of white LED chips or yellow LED chips.
  • the light emitting unit 212a may include four LED chips of red, green, blue and white.
  • a light-emitting unit 212a is composed of three LED chips: a red LED chip 2121a, a green LED chip 2122a, and a blue LED chip 2123a. LED chips of three colors, blue and blue, but there are two or more LED chips of at least some colors.
  • the angle between two adjacent center lines is 120°, that is, the line between the center of one LED chip and the center of rotational symmetry, The included angle between the center of the adjacent LED chip and the center of rotational symmetry is 120°; when a light-emitting unit includes four LED chips, the included angle between the adjacent two center lines is 90° , expand the number of LED chips in the light-emitting unit to N, and N is greater than or equal to 3, then the included angle between the center of the adjacent LED chip and the center of rotational symmetry is 360°/N.
  • the size and type of the LED chip can be referred to but not limited to the above-mentioned embodiments.
  • the LED chips in the light emitting unit 212a are arranged rotationally symmetrically.
  • the so-called rotationally symmetrical arrangement means that the pattern formed by the arrangement of the LED chips in the light emitting unit 212a is a rotationally symmetrical pattern.
  • the definition of a rotationally symmetrical pattern is: a After the plane figure is rotated ⁇ (radian) around a fixed point on the plane, it coincides with the initial figure. This figure is called a rotationally symmetric figure. This fixed point is called the center of rotational symmetry, and the angle of rotation is called the rotation angle.
  • Typical rotationally symmetrical graphics include the graphics of fan blades, the bauhinia pattern in the regional emblem of the Hong Kong Special Administrative Region, etc.
  • any one of the LED chips can be overlapped with another LED chip after being rotated by a certain angle around the center of rotational symmetry.
  • the light-emitting unit 212a for one of the LED chips, except that it is adjacent to the other two LED chips in the direction of rotation, the light-emitting unit 212a on the side close to the center of rotational symmetry O
  • the LED chips are all adjacent to each other, which can solve the problem that when the LED chips are arranged in rows or columns in the prior art, some LED chips are adjacent to each other and the distance is relatively close, and some LED chips are spaced apart and the distance is relatively long, resulting in LED chips The problem of poor light mixing effect caused by unbalanced distance.
  • the light-emitting unit 212a is composed of three LED chips, for example, in FIG.
  • the two adjacent ones are also adjacent to each other on the side close to the center of rotational symmetry, which can significantly improve the light mixing effect of the LED chips in the light emitting unit 212a and improve the display performance of the display module.
  • the vertical projection of the LED chip in the direction parallel to the substrate 112a (hereinafter referred to as "vertical projection") has two mutually perpendicular symmetry axes, and the vertical projection of the LED chip is usually the same as that of the LED chip in the direction parallel to the substrate.
  • the cross-sectional profile of the LED chip is the same, but this embodiment does not rule out the fact that the cross-sectional profile of the LED chip in the direction parallel to the substrate is different from the vertical projection of the LED chip in the direction parallel to the substrate.
  • the vertical projection of the LED chip includes, but is not limited to, a rectangle, a rhombus, an ellipse, a regular polygon, and the like.
  • the connection between the center of the LED chip and the center of rotational symmetry is recorded as the "center connection”.
  • the vertical projection of the LED chip has a certain aspect ratio (that is, when the aspect ratio is greater than 1)
  • the LED chip The symmetry axis corresponding to the direction with larger vertical projection size is called “long symmetry axis”
  • the symmetry axis corresponding to the direction with smaller vertical projection size of LED chip is called “short symmetry axis”.
  • the central connection line may be parallel to a symmetrical axis of the vertical projection of the LED chips.
  • the unit 212b includes four LED chips 2120.
  • the vertical projection of the four LED chips 2120 is a rectangle, and the central line is parallel to the long axis of symmetry of the vertical projection, that is, parallel to the long side of the rectangle and perpendicular to the short axis of symmetry. That is, perpendicular to the short side of the rectangle.
  • the two electrodes in the LED chip are usually arranged along the symmetrical axis of the vertical projection (for example, usually arranged along the long symmetrical axis, of course, the case of being arranged along the short symmetrical axis is not excluded in this embodiment), so,
  • the central connection line is parallel to the symmetry axis of the vertical projection, the central connection line coincides with or is perpendicular to the electrode center connection line of the two electrodes of the LED chip (hereinafter referred to as "electrode center connection line").
  • electrode center connection line the crystal bonding process of the LED chips on the substrate is simpler, and the number of LED chips in the same area on the substrate is less, which can facilitate the heat dissipation of the LED chips and maintain the reliability of the LED chips.
  • the two symmetry axes of the vertical projection of the LED chip are not parallel to the central line, which can make the deployment area of the light emitting unit 212b on the substrate smaller, which is conducive to deploying more in the limited effective display area on the substrate. more light emitting units 212b.
  • the distance between the light emitting units 212b can be made smaller, further reducing the light mixing distance between the LED chips 2120, enhancing the light mixing effect of a single light emitting unit, and improving the sharpness of the image displayed by the display module.
  • each LED chip is in the shape of "I".
  • Fig. 13-1 each LED chip is in the shape of "I".
  • the light emitting unit 212e includes three LED chips 2120, the vertical projection of these three LED chips is elliptical, and the central connection line is different from the long axis and short axis of the ellipse. parallel.
  • the angle between the center line and the electrode center line is between 25° and 65°.
  • the angle between the center line and the electrode center line is guaranteed to be 30° ⁇ 60°, for example, may not be limited to 30°, 45°, 50° or 55°, 60°, etc.
  • the contradiction between heat dissipation and light mixing of the LED chip in the light-emitting unit can be balanced, and the light mixing effect of the LED chip can be maintained while ensuring the heat dissipation requirement of the LED chip.
  • the light-emitting unit 212c includes There are three LED chips A, B, and C, wherein, the long axis of symmetry of A is parallel to the side of the substrate 112b.
  • the long symmetry axis is parallel to the side of the substrate 112b, which means that the side of the LED chip A with a larger size is parallel to the side of the substrate, which will As a result, when the substrates are spliced, the amount of light emitted from the side of the LED chip A in the light-emitting unit 212c near the splicing seam is larger, which in turn causes color cast in the light-emitting unit 212c, affecting the display effect of the display module. Therefore, in some examples of this embodiment, as shown in FIG.
  • the vertical projection of the LED chips in the direction parallel to the substrate has two mutually perpendicular symmetry axes, but the symmetry axes of each LED chip in the light emitting unit 212d It is not parallel to the sides of the substrate 112b, so as to improve the light mixing effect of the light emitting unit 212d near the seam, and enhance the display performance of the display module.
  • the LED chip is micron-scale in size.
  • the vertical projection size of the LED chip can be as small as 10 ⁇ m ⁇ 10 ⁇ m, and in other examples, the vertical projection size of the LED chip can reach 400 ⁇ m ⁇ 10 ⁇ m. 300 ⁇ m.
  • the distance between the center of rotational symmetry O and the two symmetry axes of the LED chip is less than 2 mm, so that the LED chips in the surface light-emitting unit can be arranged on the basis of ensuring that no touch interference occurs between the LED chips.
  • the problem of over-dispersion can not only reduce the deployment area of the light-emitting unit, but also improve the light-emitting effect of the light-emitting unit.
  • the distances between the two electrodes in each LED chip and the center of rotational symmetry O are different.
  • the distance between the LED chips 2120a is closer to the center of rotational symmetry O
  • One of them is denoted as "near-central electrode", that is, the electrode that is closer to the center of rotational symmetry.
  • the polarities of the electrodes near the center of each LED chip can be set to be the same.
  • each LED chip The electrodes near the center of the chip 2120a are all anodes.
  • not only the polarities of the near-center electrodes of the LED chips in the light emitting unit are set to be the same, but also these near-center electrodes are connected together to realize common-polarity driving.
  • a conductive via 501 can be provided at the center of rotational symmetry O, and the conductive via 501 can be used to connect the electrodes near the center of each LED chip with the same polarity.
  • the conductive via 501 is not limited to be located at the center of rotational symmetry O, for example, it may also be located near the center of rotational symmetry O, but relatively speaking, if the conductive via 501 is arranged at At the center of rotational symmetry O, the distance between the conductive via hole 501 and the electrodes near the center of each LED chip in the light emitting unit 212f is the same, which is convenient for circuit design.
  • two or more conductive vias may be provided corresponding to one light emitting unit 212f, and these conductive vias may be electrically connected together in other ways, or may be independent.
  • the near-center electrodes of the LED chips in the light emitting unit 212f may also be electrically connected by means other than conductive vias, and even in some examples, these near-center electrodes are not electrically connected together, but are independently driven .
  • the polarities of the electrodes near the center of each LED chip are not the same, as shown in Figure 13-7, the light emitting unit 212g shown in Figure 13-7 also includes four LED chips 2120b, but The electrodes near the center of some LED chips 2120b are anodes, and the electrodes near the center of some LED chips 2120b are cathodes.
  • the two electrodes of the LED chip 2120c are at the same distance from the center of rotational symmetry O, and there is no concept of electrodes near the center.
  • the LED chip 2120c can be
  • the orientation of the LED chips 2120c can be arranged randomly, and the polarities of the adjacent electrodes of two adjacent LED chips 2120c can also be set to be the same, as shown in Fig. 13-8. For example, in Fig.
  • the polarity of the upper LED chip 2120c The anode is close to the anode of the left LED chip 2120c, the cathode of the upper LED chip 2120c is close to the cathode of the right LED chip 2120c, and the anode of the right LED chip 2120c is close to the anode of the lower LED chip 2120c.
  • the cathode of is close to the cathode of the left LED chip 2120c.
  • the plurality of light emitting units 212a in the display module 400 can be arranged in an array, that is, arranged in rows and columns on the substrate 112a, please continue to refer to FIG. 13-1.
  • the orientations of the LED chips in different light-emitting units are not correlated, so the orientations of the light-emitting units are random.
  • the orientations of the LED chips of the same color in each light-emitting unit are the same, as shown in Figure 13-1, so that the LED chips of the same color are arranged on the transfer substrate in the same orientation, and then the They are transferred and bonded to the substrate 112a together in a mass transfer manner, thereby improving the production efficiency of the display module and reducing the production cost.
  • the display module 500 includes an encapsulation layer 3 , and the encapsulation layer 3 may adopt, but not be limited to, the encapsulation layer structure shown in the above-mentioned other embodiments.
  • the encapsulation layer 3 is covered on the LED chip 2120d.
  • the situation that the LED chip 2120d in the light-emitting unit has different orientations is simply explained, but those skilled in the art can understand that the The orientation of the LED chip 2120d in 13-9 is not limited to the orientation of the LED chip 2120d in the display module 500 .
  • the encapsulation layer 3 can not only fix the LED chip 2120d on the substrate 112c more firmly, prevent the LED chip 2120d from falling off from the substrate 112c, but also block the invasion of the LED chip 2120d by external water vapor, especially when the LED chip 2120d includes quantum
  • the encapsulation layer 3 can protect the quantum dot materials, improve the reliability of the LED chip 2120d, and prolong the life of the display module 500.
  • the encapsulation layer 3 can be transparent glue or black glue. When the encapsulation layer 3 is black glue, the packaging of the display module 500 can be blackened, preventing users from seeing the inside of the display module 500 from the outside. The details of the LED chip 2120d and the substrate 112c can improve the display performance of the display module 500 .
  • This embodiment also provides an electronic device, the electronic device includes a processor and at least one display module communicated with the processor, the display module may be the display module provided in any of the foregoing examples, in In the display module, the LED chips in the light emitting unit are arranged rotationally symmetrically. It can be understood that the communication connection between the display module and the processor can be realized through a wired connection, such as a data bus connection, or can be realized through a wireless connection.
  • the electronic device may also include other devices, such as at least one of an audio input and output unit, an image acquisition unit, a memory, a Bluetooth module, and a WiFi module.
  • the LED chips in the light-emitting unit in the display module are arranged in a rotationally symmetrical manner, the arrangement of the LED chips in the light-emitting unit is changed, so that the original layout of the LED chips becomes
  • the two-dimensional arrangement reduces the difference in the distance between LED chips, improves the balance of light mixing effects between LED chips of different colors, and enhances the display effect of the display module.
  • this embodiment will continue to illustrate the arrangement scheme of the LED chips in the light-emitting unit in the foregoing examples in combination with examples: It is understood that the arrangement scheme of the LED chips in the light-emitting unit is related to the number of LED chips in the light-emitting unit, the shape of the LED chips themselves, the distance between the LED chips and the center of rotational symmetry, and the reference direction of the LED chips relative to the substrate (for example, parallel to the substrate). The direction of the long side or the short side) has a relationship with the inclination angle.
  • the vertical projection of the LED chips is "I" shape.
  • the specific arrangement of the LED chips in the light emitting unit is determined by the distance between the LED chips and the center of rotational symmetry and the inclination angle of the LED chips relative to the reference direction.
  • the size of the vertical projection of the LED chip 2120e in the direction of one of the symmetry axes is larger than the size of the vertical projection in the direction of the other symmetry axis, and the size of the vertical projection in the direction of the first symmetry axis M1 greater than the size in the direction of the second symmetry axis M2, for the convenience of introduction, in this embodiment, the symmetry axis corresponding to the direction in which the vertical projection size of the LED chip is larger is also called the "long symmetry axis", and the vertical projection size of the LED chip is larger The symmetry axis corresponding to the small direction is called “short symmetry axis". Therefore, in Fig.
  • the first symmetry axis M1 is the long symmetry axis
  • the second symmetry axis M2 is the short symmetry axis.
  • the long axis of symmetry is parallel to the long side of the LED chip
  • the short axis of symmetry is parallel to the short side of the LED chip
  • the vertical projection of the LED chip is a rhombus
  • the long symmetry axis is the long diagonal of the rhombus
  • the short symmetry axis is the short diagonal of the rhombus
  • the vertical projection of the LED chip is an ellipse
  • the long symmetry axis is the long axis of the ellipse
  • the short symmetry axis is the short axis of the ellipse.
  • the distance between the center of rotational symmetry O and the short axis of symmetry 802 of the LED chip 2120e is recorded as the adjustable distance d
  • the line between the center of the LED chip 2120e and the center of rotational symmetry O, that is, the center line has the same length as
  • the included angle between the symmetry axes 801 is recorded as the adjustable angle ⁇ 1. It can be understood that, by adjusting the adjustable distance d (micrometer level, but the size of the LED chip 2120e and the size between the LED chips 2120e in the drawings are all scaled Zoom in) and the value of the adjustable angle ⁇ 1, a light-emitting unit in which three LED chips 2120e are arranged differently can be obtained.
  • Figure 13-11 shows the light-emitting unit 212i obtained when the adjustable distance d is 85.75 and the adjustable angle ⁇ 1 is 29.76°;
  • Figure 13-12 shows that the adjustable distance d is 35.74 and the adjustable angle ⁇ 1
  • the light-emitting unit 212j obtained when the angle is 60.66°;
  • Fig. 13-13 shows the light-emitting unit 212k obtained when the adjustable distance d is 126.79, and the adjustable angle ⁇ 1 is 0;
  • Fig. 13-14 shows the adjustable distance When d is 99.96 and the adjustable angle ⁇ 1 is 0, the light emitting unit 212n is obtained;
  • Fig. 13-15 shows the light emitting unit 212p obtained when the adjustable distance d is 0 and the adjustable angle ⁇ 1 is 90°.
  • the adjustable distance d is less than 2 mm.
  • the light-emitting unit includes four LED chips 2120e above: please refer to the light-emitting unit 212q shown in Figures 13-16, the corresponding adjustable distance d is 85.75, and the adjustable angle ⁇ 1 is 30°; Figure 13-17 shows the light-emitting unit 212w obtained when the adjustable distance d is 47.56, and the adjustable angle ⁇ 1 is 60°; Figure 13-18 shows that the adjustable distance d is 166.77, and the adjustable angle ⁇ 1 13-19 show the light emitting unit 212t obtained when the adjustable distance d is 0 and the adjustable angle ⁇ 1 is 0.
  • each LED chip is adjacent to each other, which optimizes the color mixing effect of various colors and improves the display module. Display effect with electronic equipment.
  • this embodiment provides a display module; and this embodiment can be implemented independently of other embodiments.
  • the display module includes a packaging unit P, and the packaging unit P includes a substrate 113, a packaging layer 3, and several display areas 1131 arranged on the front of the substrate.
  • the light emitting unit 213 in this embodiment may refer to, but is not limited to, the light emitting units shown in the above-mentioned embodiments. Covering the light emitting unit 213 by the encapsulation layer 3 may include covering both the front surface of the substrate and the light emitting unit 213 , or may include covering only the light emitting unit 213 on the front surface of the substrate, and the specific embodiment is not limited here.
  • the display module also includes an indicating unit 9.
  • the indicating unit 9 is arranged on the back side of the substrate and is located in an area corresponding to the display area 1131.
  • the indicating unit 9 may include one indicator light 61 or multiple indicator lights. 61, the specific number is not limited here, preferably, in some examples, the number of indicator lights 61 in a display module is greater than or equal to 1, less than or equal to 20, or greater than or equal to 20 in a display module Equal to 1, less than or equal to 200, the indicating unit 9 in this embodiment only includes one indicator light 61, the area corresponding to the indicating unit 9 on the substrate 113 is a light-transmitting area 1132, and the light emitted by the indicating unit 9 is transmitted through the light-transmitting area 1132.
  • the light area 1132 emits from the display area 1131 to indicate the state of the light emitting unit 213 .
  • each light emitting unit 213 includes a plurality of LED chips 2131.
  • the display module includes two light emitting units 213 and two indicating units 9,
  • Each light emitting unit 231 includes 5 LED chips 2131 (the actual product may be much larger than 5 or less than 5) LED chips 2131
  • each indicating unit 9 is located on the back side of the substrate and is located in an area corresponding to the display area 1131 .
  • the indicator light 61 in the indicating unit 9 is also provided with an LED chip in the corresponding area of the display area 1131, which can make the picture displayed on the display screen more complete and continuous, and improve user satisfaction.
  • the indicating unit 9 can immediately give an indication when the light emitting unit 213 is detected to be abnormal, and can also wait until the light emitting unit 213 is abnormal, and then emit light when it is on standby.
  • the requirement setting indicator unit 9 automatically emits light is not limited here.
  • controls such as opening and closing or adjusting brightness of the indicating unit 9 can support manual setting by the user, and can also be automatically set by automatically monitoring the current use environment. For example, when using the display screen to hold an important meeting, if some of the light-emitting units 213 are abnormal, at this time, for the continuity of the meeting, the user can check the indicator unit 9 corresponding to the abnormal light-emitting unit 213 after it emits light. Manually turn off or reduce the brightness to avoid affecting the continuation of the meeting and visually disturbing the user.
  • the indicating unit 9 can also be manually turned on and off or manually adjusted in the debugging process.
  • the indicating unit 9 of the display module can be turned on to mark that the display module is abnormal.
  • the indicating unit 9 can use different light-emitting indication methods (including but not limited to light-emitting colors, lighting methods, etc.) for different abnormal types to perform different indications, so that users can identify abnormal types and Maintenance, improve maintenance efficiency.
  • the display module further includes a collection and control device, which is used to collect the parameters of the light-emitting unit, and when it is determined according to the collected parameters that the light-emitting unit satisfies the preset indication condition, the indicator unit is controlled to emit light.
  • the parameter can be
  • the working parameter that characterizes the working state can also be the environmental parameter that characterizes the environmental state of the environment, or the combination of the working parameter that characterizes the working state and the environmental parameter that characterizes the environmental state of the environment. Choose according to the actual situation and needs. It should be noted that the specific structure of the acquisition control device is not shown in this embodiment, which includes but is not limited to being integrated in the display module and externally connected to the outside of the display module.
  • a A separate collection and control platform is connected to the display module.
  • the user can use the external collection and control platform to collect data from the display module and control the indicating unit in the display module.
  • the specific setting method is in the art The personnel can be set according to the actual situation and needs, which is not limited here.
  • the collection control device includes a collection module and a control module.
  • the preset indication condition is that the light-emitting unit is abnormal; the collection module is used to collect the parameters of the light-emitting unit; and the control module is used to determine that the light-emitting unit is abnormal according to the parameters. , to control the indicator unit to emit light.
  • the preset indication condition includes abnormality or normality of the light-emitting unit. It may be that the control module controls the indicator unit to emit light when the light-emitting unit is abnormal, or that the control module controls the indicator unit to emit light when the light-emitting unit is normal.
  • the indicating unit is controlled to emit light, and the indicating unit may emit light when the display screen is working, or may emit light when the display screen is off and on standby.
  • the acquisition module (such as a voltage sensor) collects The current working voltage value of the light-emitting unit is 1V.
  • the acquisition module sends the collected working voltage value information to the control module (such as the control card), and the control module judges that the working voltage value of the light-emitting unit is not in accordance with the received working voltage value information of 1V.
  • control module determines that the voltage of the light-emitting unit is abnormal, the control module automatically controls the indicator unit to emit light to indicate that the voltage state of the display unit is abnormal.
  • control module can also include but not limited to be installed on a terminal (such as a computer) in the form of software, and the software is provided with buttons corresponding to the indicating units one by one. If it is necessary to control a certain indicating unit to emit light, Just manually click the button corresponding to the indicating unit on the software of the computer.
  • the parameters collected by the acquisition module are the operating voltage of the light-emitting unit and the ambient temperature of the environment, and the normal operating voltage range of the light-emitting unit is greater than or equal to 1.2V and less than or equal to 1.5V.
  • the normal range of the ambient temperature value of the environment is greater than or equal to 0° and less than or equal to 40°.
  • the acquisition module collects the current operating voltage value of the light-emitting unit and the ambient temperature value of the environment (for example, the operating voltage value is 1.3V, the ambient temperature value of 60°), the acquisition module sends the collected operating voltage value and the ambient temperature value of the environment to the control module, and the control module then according to the received operating voltage value of 1.3V and the ambient temperature value of the environment of 60° Judging that the operating voltage value of the light-emitting unit is within the normal value range, and the ambient temperature value of the environment is not within the normal value range, because the ambient temperature value of the environment is abnormal, the control module controls the corresponding The indicator unit emits light to indicate that the temperature of the light-emitting unit is abnormal.
  • the control module controls the corresponding The indicator unit emits light to indicate that the temperature of the light-emitting unit is abnormal.
  • the temperature may also be a working temperature, which can be set by those skilled in the art according to actual conditions and needs, which is not limited in this application.
  • the collection module may include but not limited to voltage sensors, current sensors, temperature sensors, etc., for example, may also include humidity sensors, signal on-off sensors, etc.
  • the collection module may also include sensors that will collect the required parameters
  • the functions are integrated together, and the acquisition module can collect it when the light-emitting unit is working, and can also collect it when the light-emitting unit is off and on standby.
  • the sensor settings can include but are not limited to setting some sensors in the display mode Outside the group, for example, the voltage sensor is set outside the display module. During the debugging process, the collected voltage can be confirmed by connecting an external mobile terminal (computer, mobile phone, etc.) according to the voltage parameters collected by the voltage sensor set outside the display module.
  • the control indicator unit When the parameters are not within the normal voltage value range, the control indicator unit emits light to indicate that its working state is abnormal voltage, so as to realize the debugging of each light-emitting unit.
  • the control module can include but not limited to a control card, a controller, etc., as long as it can realize the judgment of the collected parameter information and control the light emission of the indicator light, those skilled in the art can choose the control module according to the actual situation and needs.
  • the acquisition module can include but not limited to be integrated inside the control module.
  • the acquisition module can also be set separately in the display module together with the control module.
  • the The acquisition module is integrated inside the control module, which makes the structure of the display module smaller and more compact to adapt to more usage environments and needs.
  • the acquisition control device further includes a storage module, the storage module stores a correspondence table of the corresponding relationship between abnormal types and lighting modes, and is used to determine the abnormal type of the lighting unit when determining the abnormality of the lighting unit according to the parameters, and According to the abnormal type and the corresponding relationship table, the corresponding target light emitting mode is matched, and the indicating unit is controlled to emit light according to the target light emitting mode.
  • the storage module can be integrated inside the acquisition control device, or it can be set independently, for example, it can be an external storage device such as a USB flash drive or a mobile terminal that can be stored. It can be set according to the actual situation and requirements, as long as the relationship table can be stored, the invention is not limited.
  • Table 2 the correspondence table of the corresponding relationship between the abnormal type and the lighting mode stored in the storage module is shown in Table 2.
  • This table can be pre-stored in the storage module of the acquisition control device, or can be stored in an external In the device, when in use, it is connected to an external device and uploaded to the storage module.
  • Those skilled in the art can set it according to the actual situation and needs, and there is no limitation here.
  • the abnormal type can correspond to but not limited to different lighting modes.
  • the abnormal type can also correspond to the same lighting mode, as shown in Table 3, which is another correspondence table between abnormal types and lighting modes. What is the type of abnormality? All of them are illuminated in the way of always bright red light.
  • the correspondence table can also include but not limited to different types of abnormalities corresponding to different colors, different frequencies, and different brightness. The relationship between the type and the light-emitting mode is sufficient, and can be set according to actual conditions and requirements, and is not limited here.
  • the correspondence table may also include but not limited to parameter types, parameter abnormal standards, etc.
  • Table 4 shows a correspondence between parameter types, parameter abnormal standards, abnormal types and lighting modes Relation table
  • Table 4 is the case of only collecting a certain parameter type, for example, when collecting voltage parameters, determine whether the collected voltage parameters fall within the abnormal standard range of the parameter, if it falls within the abnormal standard range of the parameter, then It can be judged that it is an abnormal voltage, so that the indicator unit always lights up in red to remind the user that the light-emitting unit is abnormal.
  • multiple parameters can be collected at the same time.
  • the indicating unit including but not limited to a constant red light, for example, it can also directly control the indicator unit to flash red light, always bright blue light, etc.
  • the type of the abnormality it is not necessary to determine the type of the abnormality, and those skilled in the art can set it according to the actual situation and requirements, and it is not limited here.
  • a display module may include but not limited to multiple light-emitting units 213, for example, as shown in Figure 14-3 is a schematic structural diagram of another display module, the display module includes three light-emitting units 21301, light emitting unit 21302, and light emitting unit 21303.
  • the indicator unit 901 of the display module is set corresponding to the light emitting unit 21301 and the light emitting unit 21302, and the indicating unit 902 is set corresponding to the light emitting unit 21303.
  • Each light emitting unit can include But it is not limited to the number of different light emitting chips, and the number of light emitting chips of each light emitting unit may be the same.
  • each indicating unit 9 includes, but is not limited to, corresponding to a plurality of light emitting units 213.
  • the indicating unit 902 is set corresponding to the light emitting unit 21303 and the light emitting unit 21304.
  • the light emitting unit 21301, the light emitting unit 21302, the light emitting unit 21303, and the light emitting unit 21304 can also be set corresponding to the indicating unit 9, for example, as Figure 14-5 is a schematic structural diagram of another display module.
  • one indicator unit can be connected to multiple light-emitting units during debugging. Suppose one indicator unit corresponds to three light-emitting units.
  • the indicating unit When the debugging of the first light-emitting unit is normal, the indicating unit does not emit light; when the debugging of the second light-emitting unit is abnormal, the indicating unit emits light; when the debugging of the third light-emitting unit is normal, the indicating unit does not emit light. It should be noted that those skilled in the art can set the corresponding relationship between the number of light emitting units and indicating units according to actual conditions and needs.
  • the light-transmitting area 1132 has a blind hole 92 extending from the back of the substrate to the front of the substrate.
  • the indicating unit 9 is arranged toward the blind hole 92.
  • the depth of the blind hole 92 is is greater than or equal to 0 and less than or equal to any depth of the thickness of the substrate 113, the light emitted by the indicating unit 9 is emitted from the display area 1131 through the light-transmitting area 1132, and the shape of the light-transmitting area may include but not limited to square, rectangle, circle, etc., for example It can also include trapezoid, rhombus, triangle, straight line, and polygon.
  • the blind hole can be of any shape and size, and those skilled in the art can set it according to the actual situation and needs, which is not limited here, preferably, for example, as shown in Figure 14-8 for this embodiment
  • the blind hole 92 is set in a circular shape with a diameter of 5mm and a depth of 70% of the thickness of the plate, thereby reducing the back side of the substrate and being located at the corresponding display area.
  • the thickness of the light-transmitting region 1132 increases the light transmittance of the light-transmitting region 1132, so that the user can see the light-emitting mode of the indicator light more clearly from the front of the display screen.
  • the substrate 113 is a glass backplane or a PCB board
  • the light-transmitting area is a clear area without lines or pixels.
  • the light-transmitting area can be made of a translucent material or a fully transparent material. At the same time, this area can also be a clear area with less wiring or no lines, so as to achieve better light transmission effect. It may include setting a light-transmitting layer on the front of the backplane corresponding to the indicating unit 9 and the display module. It only needs to be able to emit the light emitted by the indicating unit 9 from the display module.
  • a display area is provided on the front of the substrate, a light-emitting unit is arranged in the display area, and an indicating unit is arranged on the back side of the substrate, and is located in the area corresponding to the display area.
  • the control device collects the parameters of the light emitting unit, the parameters include at least one of the working parameters representing the working state of the light emitting unit and the environmental parameters of the environmental state of the environment in which it is located, and when it is determined according to the parameters that the light emitting unit meets the preset indication conditions, the control
  • the indicating unit emits light, and emits light from the display area through the light-transmitting area on the substrate corresponding to the indicating unit, indicating the state of the emitting unit.
  • This embodiment also provides a display module control method, which includes but not limited to:
  • Step a22 collecting parameters of the light-emitting unit, the parameters including at least one of the working parameters representing the working state of the light-emitting unit and the environmental parameters of the environmental state;
  • the equipment for collecting the parameters of the light-emitting unit may include but not limited to a collection module, for example, it may also be a sensor with the function of collecting parameters, and those skilled in the art may select this collection device according to actual conditions and needs , at the same time, the parameter can include but not limited to at least one of voltage, current, temperature, humidity, signal on-off, networking status, and LED light conduction.
  • the parameter can include but not limited to at least one of voltage, current, temperature, humidity, signal on-off, networking status, and LED light conduction.
  • it can only include voltage, or it can only include current. It can also include only temperature, and of course it can also include voltage, current, and temperature.
  • Step b22 determining whether the display unit satisfies the preset indication condition according to the parameter
  • the preset indication conditions include whether the light-emitting unit is abnormal or normal, and controlling the light-emitting unit to emit light may include but not limited to when the light-emitting unit is abnormal. For example, it is also possible to control the light-emitting unit to emit light when the light-emitting unit is normal.
  • the actual situation and needs are set, and there is no limitation here.
  • the collected parameters include at least two or more
  • when determining whether the light-emitting unit meets the preset indication conditions it is necessary that all the collected parameters meet the preset conditions. Determine that the light-emitting unit meets the preset indication conditions. As long as one parameter does not meet the preset conditions, the light-emitting unit does not meet the preset conditions.
  • This setting method can avoid the abnormality of the light-emitting unit caused by a certain parameter abnormality to a greater extent. At this time, the light emitting unit is not detected, so that the detection accuracy and precision are increased, and the user's experience satisfaction is improved.
  • Step c22 When it is determined according to the parameter that the light emitting unit satisfies the preset indication condition, control the indicating unit to emit light.
  • the preset indication condition is that the light-emitting unit is abnormal
  • the corresponding target light emission is matched according to the corresponding relationship table of the abnormal type and the preset corresponding relationship between the abnormal type and the light-emitting mode. mode, and then control the indicating unit to emit light according to the target lighting mode.
  • the abnormal types in the correspondence table include but are not limited to at least one of voltage abnormality, current abnormality, temperature abnormality, humidity abnormality, signal on-off abnormality, networking status abnormality, and LED lamp conduction abnormality.
  • the corresponding relationship table The light-emitting methods in include but are not limited to at least one of different colors, different frequencies, and different brightnesses. It can be understood that abnormal types and light-emitting methods can be flexibly corresponded to. It is not limited here. It should be noted that the correspondence table can be pre-stored in the storage module of the acquisition control device, or can be uploaded through an external device. For specific implementation, those skilled in the art can and requirements are set.
  • the control method of the display module provided in this embodiment is to collect the parameters of the light emitting unit, and the parameters include at least one of the working parameters representing the working state of the light emitting unit and the environmental parameters of the environmental state; according to the parameters Determine whether the light-emitting unit satisfies the preset indication condition; when it is determined according to the parameter that the light-emitting unit meets the preset indication condition, control the indication unit to emit light.
  • the display module of this embodiment solves the problem of the existing LED display screen by controlling its corresponding indicating unit to emit light from the display area through the light-transmitting area when the parameters of the light-emitting unit meet the preset indicating conditions. Intuitively and accurately know the working status and/or environmental status of one or more light-emitting units, and cannot accurately locate the problem of abnormal light-emitting units for precise positioning and maintenance, which improves the accuracy of maintenance and maintenance. efficiency and user satisfaction.
  • This embodiment provides a display screen, the display screen includes the above-mentioned display module, preferably in this embodiment, the display screen includes 4 display modules arranged in a 2 ⁇ 2 arrangement, as shown in Figure 14- 9 is a schematic structural diagram of a display screen.
  • G in FIG. 14-9 indicates that this is the front of the display screen, and all light-emitting units of each display module 600 correspond to an indicating unit. Therefore, when the display screen is working, if one of the light-emitting units of the display module 600 is abnormal, the corresponding indicator unit will be controlled to emit light, and the user can quickly and intuitively see it from the front of the display screen.
  • the indicator unit corresponding to each display module 600 is emitting light from the front G of the display screen. For example, during the debugging process, if a certain display module 600 is abnormal during debugging At this time, the indicator unit corresponding to the display module 600 emits light, and the debugger will carry out targeted maintenance according to the luminous display module 600, so as to solve the problem of being unable to quickly and intuitively know one or more display modules in the prior art. It improves the accuracy of maintenance and user satisfaction. At the same time, the indicator unit is integrated with the display module in the display screen, making the appearance simple and beautiful.
  • FIG. 14-10 it is a structural schematic diagram of another display screen, which includes a plurality of display modules 600, G in the figure indicates that this is the front of the display screen, and each display module 600 includes multiple light emitting units and multiple an indicator unit.
  • the number of display modules in the display screen, the arrangement of the display modules, the number of light-emitting units and indicating units in each display module, and the arrangement of display units in each display module can be determined by those skilled in the art according to It is set according to the actual situation and requirements, and is not limited here.
  • the solder paste used will turn silver after melting and cover the surface of the pad to form a silver surface.
  • black ink is printed on the silver surface by inkjet printing technology.
  • the phenomenon of ink crawling will occur after printing on the surface of the substrate (ie The ink climbs to the side of the LED chip) and climbs to the upper surface of the LED chip (that is, the light emitting surface of the LED chip), thereby covering the upper surface of the LED chip and affecting the light emission of the LED chip.
  • this embodiment provides a display module with a new structure, which can effectively avoid or minimize the situation that the ink climbs to the upper surface of the LED chip. And this embodiment can be implemented independently of other embodiments.
  • the display module provided in this embodiment includes a substrate 114 and a plurality of light emitting units 214 disposed on the substrate 114 .
  • the light emitting unit 214 includes at least one LED chip. It should be understood that, the light emitting unit 214 and the substrate 114 in this embodiment may refer to but are not limited to those shown in the above-mentioned embodiments, and will not be repeated here.
  • the display module also includes an ink layer 316 disposed between the light emitting units 214, the ink layer 316 is formed by ink, and includes a first portion 3161 (in this example, the first portion 3161 is a relatively flat part, in other examples the second One part can also be concave or convex or rough surface), the second part 3162 connected with the first part 3161, the second part 3162 is located around the light emitting unit 214 from the first part 3161 to the top of the light emitting unit 214 (that is, the light emitting unit 214 away from the side of the substrate 114 ), the second portion 3162 is higher than the first portion 3161 , and the second portion 3162 is closer to the light emitting unit 214 than the first portion 3161 .
  • the first portion 3161 is a relatively flat part, in other examples the second One part can also be concave or convex or rough surface
  • the second part 3162 connected with the first part 3161
  • the second part 3162 is located around the light emitting unit 214 from the first
  • the encapsulation layer includes a light-transmitting coating unit 317, which corresponds to the light-emitting unit 214 one-to-one, and is used to prevent the second part 3162 from going over the light-emitting unit 214, and the light-transmitting coating unit 317 Covering the light-emitting surface of the light-emitting unit 214 (that is, the upper surface of the light-emitting unit 214), specifically, the light-transmitting coating unit 317 can cover the light-emitting surface of the LED chip included in the light-emitting unit 214 (that is, the LED chip is away from the substrate)
  • the side of the LED chip can also be called the upper surface of the LED chip); due to the extremely low viscosity and good fluidity of the ink, it is easy to climb along the side of the LED chip.
  • the height of the ink layer 316 is not higher than the height of the light-transmitting coating unit 317. Since the light-transmitting coating unit 317 covers the upper surface of the LED chip, the top of the ink layer 316 is lower than the upper surface of the LED chip, so that ink can be avoided. When climbing, it climbs to the upper surface of the LED chip, so as to avoid covering or partially covering the upper surface of the LED chip (ink creeping phenomenon) and cause shading. It has good practicability and good anti-ink creeping effect.
  • the transparent optical path of the light-transmitting coating unit 317 is long, which is beneficial to reduce the brightness loss of the LED chip. It is only necessary to cover the light-transmitting coating unit 317 on the upper surface of the light-emitting unit 214 before the ink layer 316 is provided, and the structure is relatively simple. The cost is low, which is beneficial to wide application and market promotion.
  • the light-transmitting coating unit 317 includes a front light-transmitting layer 3171 on the upper surface of the light-emitting unit 214 and a side light-transmitting layer 3172 on the side of the light-emitting unit 214 .
  • the LED chip can be a front-mounted chip, and the light-transmitting coating unit 317 can be printed and formed by inkjet printing process, but not limited to light-transmitting material can be used as the printing material, and the front light-transmitting layer 3171 can be formed by inkjet on the top of the LED chip.
  • the front transparent layer 3171 is adjacent to the ink layer 316 (as shown in Figure 15-1 and Figure 15-2), and the front transparent layer 3171 can be connected to the ink layer 316 (as shown in Figure 15-3 and Figure 15- 4), the printing material has fluidity and can flow to the outer peripheral side of the LED chip to form the side light-transmitting layer 3172, and the side light-transmitting layer 3172 can also be printed and formed by inkjet printing technology; in other examples, the LED chip can also be inverted Install the chip.
  • the light-transmitting covering unit 317 can be dome-shaped; the height of the light-transmitting covering unit 317 is smaller than the width of the light-transmitting covering unit 317, which is beneficial to save material. Of course, the light-transmitting covering unit 317 can not limit the shape.
  • the top of the unit 317 can be flat or other shapes.
  • the second portion 3162 is located under the upper surface of the light emitting unit 214 .
  • the top of the ink layer 316 is lower than the top of the LED chip.
  • the top of the ink layer 316 is lower than the top of the LED chip, which can further prevent the ink of the ink layer 316 from flowing to the light-emitting surface of the LED chip;
  • the upper surface prevents the upper surface of the light emitting unit 214 from being blocked by the second portion 3162 and facilitates the light output from the side of the LED chip.
  • the formed ink layer 316 is black, and the display module can be used for but not limited to direct display products.
  • the ink layer 316 can be formed by printing with but not limited to black ink by inkjet printing equipment to increase contrast.
  • the junction of the second part 3162 and the side of the light emitting unit 214 or the junction J0 of the second part 3162 and the light-transmitting covering unit 317 forms a curve, as shown in FIG. 15-6 , the curve formed here is in some examples: Irregular curves; of course, regular curves can also be formed in other examples.
  • the ink layer 316 is disposed in the gap between two adjacent light emitting units 214 and at the edge of the light emitting unit 214 to the substrate 114, as shown in FIG. 15-1 and FIG. 15-2; the ink layer 316
  • the thickness ranges from 3 ⁇ m to 120 ⁇ m.
  • the thickness of the ink layer 316 can be controlled by, but not limited to, controlling the glue output and/or the printing times of the printing nozzle.
  • the thickness of the ink layer 316 can be set in a range of 5 ⁇ m to 15 ⁇ m, so as to reduce the use of ink materials while ensuring blackness.
  • the encapsulation layer of the display module can also include a light-transmitting protective layer 318 disposed on the light-transmitting coating unit 317 and the ink layer 316.
  • the light-transmitting protective layer 318 can be processed by, but not limited to, dispensing or molding and printing; the thickness of the light-transmitting protective layer 318 is 200 ⁇ m to 400 ⁇ m. In some examples, the thickness of the light-transmitting cladding unit 317 is 30 ⁇ m to 100 ⁇ m.
  • the thickness of the light-transmitting coating unit 317 can range from 30 ⁇ m to 80 ⁇ m, specifically but not limited to 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 50 ⁇ m, 70 ⁇ m, etc.; in specific applications, when the display module is applied to direct display products, as shown in 15-4 and FIG.
  • the light emitting unit 214 may include but not limited to three LED chips that respectively emit red light, blue light and green light
  • the light-transmitting coating unit 317 may include The light-transmitting protective layer 3173 in the gap between adjacent LED chips, the front light-transmitting layer 3171 and the light-transmitting protective layer 3173 join;
  • the thickness of the covering unit 317 is controlled, and the thickness of the light-transmitting covering unit 317 in this embodiment is 35 ⁇ m.
  • the material of the transparent coating unit 317 can be but not limited to epoxy resin or silicone resin material; the material of the ink layer 316 can be but not limited to epoxy resin or silicone resin material; in this embodiment, the transparent The materials of the light coating unit 317 and the ink layer 316 can be the same, which is beneficial to reduce the cost.
  • the hydrophilic properties of the light-transmitting coating unit 317 and the ink layer 316 are different.
  • the light-transmitting coating unit 317 can be hydrophilic by adding a hydrophilic factor
  • the ink layer 316 can be hydrophobic by adding a hydrophobic factor, and the use of the different hydrophilic properties of the two can further effectively prevent the ink from passing through the light-transmitting package.
  • the covering unit 317 thus covers or partially covers the upper surface of the LED chip.
  • the hydrophilic factor can be but not limited to molecules with polar groups (polar molecules), which have a large affinity for water, and the hydrophobic factor can be but not limited to contain alkanes, oils, fats And most hydrophobic molecules (non-polar molecules) containing grease can repel each other with water; by setting the hydrophilicity of the light-transmitting coating unit 317 and the ink layer 316 to be different, when the ink climbs to the LED chip and is located on the LED chip
  • the light-transmitting coating units 317 meet each other, they are incompatible and mutually repelling, which can effectively prevent the ink from continuing to climb to the upper surface of the light-emitting unit 214 (ink creeping phenomenon), and effectively avoid ink covering or partially covering the upper surface of the light-emitting unit 214
  • the light emission of the LED chip is affected, and the structure is simple and the cost is low.
  • This embodiment also provides a method for making a display module, which can be used to make the display modules shown in the above examples, and the method includes but is not limited to:
  • Step a23 providing a substrate 114, and disposing a plurality of light emitting units 214 on the substrate 114.
  • Step b23 Inkjet printing above each light-emitting unit 214 to form a light-transmitting coating unit 317, and the formed light-transmitting coating unit 317 covers the upper surface of the light-emitting unit 214 (that is, the light emitting surface of the light-emitting unit 214).
  • the formed light-transmitting covering unit 317 there is a gap between adjacent light-transmitting covering units 317 , and the gap communicates with the gap between adjacent light-emitting units 214 for subsequent formation of the ink layer 316 .
  • Step c23 Inkjet printing (can be printed by but not limited to inkjet printing equipment) on the substrate 114 along the gap between the light emitting units 214 to form an ink layer 316, the formed ink layer 316 can be but not limited to black, which includes the first One part 3161 and the second part 3162, the second part 3162 is connected to the first part 3161, the second part 3162 is located around the light emitting unit 214 and extends from the first part 3161 to the top of the light emitting unit 214, and formed in the previous step
  • the light-transmitting covering unit 317 can block the second portion 3162 from going over or flowing to the upper surface of the light emitting unit 214 .
  • the manufacturing method of the display module in this embodiment may further include: forming a light-transmitting protective layer 318 above the ink layer 316 and the light-transmitting coating unit 317, and the process of forming the light-transmitting protective layer 318 may adopt But not limited to molding, printing, dispensing, etc., there is no limitation here.
  • this embodiment provides a display module with a new structure and a manufacturing method thereof, which can effectively avoid or minimize black glue remaining on the light emitting surface of the LED chip. And this embodiment can be implemented independently of other embodiments.
  • the manufacturing method of the display module before disposing the packaging layer on the substrate, it also includes a manufacturing process of the packaging layer with a new structure.
  • An exemplary manufacturing method of the encapsulation layer is shown in Figure 16-1 to Figure 16-5, including:
  • Step a24 providing a sixteenth encapsulation layer; the sixteenth encapsulation layer is a transparent adhesive layer.
  • Step b24 setting a seventeenth encapsulation layer on the sixteenth encapsulation layer; the seventeenth encapsulation layer is a vinyl layer.
  • Step c24 setting several windows for accommodating LED chips on the seventeenth encapsulation layer, and each of the set windows penetrates through the seventeenth encapsulation layer to the sixteenth encapsulation layer.
  • the seventeenth encapsulation layer 317 is configured to flow and fill the LED chip 215 in the window after lamination, so that the side light emitting surface 2152 of the LED chip 215 Covering at least a part, the sixteenth encapsulation layer 316 is configured to cover the light emitting surface 2151 of the LED chip 215 .
  • FIGS. 16-1 to 16-5 it can be understood that, after the window 3161 penetrates through the seventeenth encapsulation layer 317 to the sixteenth encapsulation layer 316, the sixteenth encapsulation layer 316 is close to the seventeenth encapsulation layer 317. The area corresponding to the window 3161 on one side is exposed.
  • the encapsulation layer covers the LED chip 215 through the window 3161, the encapsulation layer covers the front surface of the substrate 115, and the seventeenth encapsulation layer 317 is located between the substrate 115 and the sixteenth encapsulation layer 316, The seventeenth encapsulation layer 317 is not in contact with the LED chip 215 , and the sixteenth encapsulation layer 316 is located on the light emitting surface 2151 of the LED chip 215 .
  • the seventeenth encapsulation layer 317 can be made of modified epoxy glue, and the seventeenth encapsulation layer 317 can be solid or semi-solid before lamination.
  • the seventeenth encapsulation layer 317 may be semi-solid at normal temperature.
  • the pressing can be hot pressing, for example, heating the seventeenth encapsulation layer 317 of the semi-solid modified epoxy adhesive to 50°C to 60°C, so that the semi-solid seventeenth encapsulation layer 317 can be hot-pressed Under the influence of fluidity, the window 3161 is deformed, and the black glue on the side wall of the window 3161 will flow around the LED chip 215 in the window 3161 until the side light emitting surface 2152 of the LED chip 215 is enclosed and filled.
  • stop heating return the seventeenth encapsulation layer 317 to normal temperature or other set temperature, stop the flow of the seventeenth encapsulation layer 317, and then reheat to solidify the seventeenth encapsulation layer 317, for example, heating to 100°C
  • the encapsulation can be completed by curing the seventeenth encapsulation layer 317 at 150° C.
  • the sixteenth encapsulation layer 316 can also be solid, and the hardness of the sixteenth encapsulation layer 316 in the solid state will be reduced under the condition of heating, so that the light emitting surface 2151 of the LED chip 215 can be pressed during pressing.
  • the thickness of the seventeenth encapsulation layer 317 is smaller than the height of the LED chip 215 after lamination. The sixteenth encapsulation layer 316 will not damage the LED chip 215.
  • the sixteenth encapsulation layer 316 is also attached to the light-emitting surface 2151 of the LED chip 215, forming a protection for the LED chip 215 and avoiding the seventeenth encapsulation.
  • the layer 317 is press bonded onto the top light exit surface 2151 of the LED chip 215 . Referring to Fig. 16-8 and Fig. 16-20, when the sixteenth encapsulation layer 316 and the seventeenth encapsulation layer 317 are pressed together on the PCB board, the top surface of the LED chip 5 will press the sixteenth encapsulation layer 316, The sixteenth encapsulation layer 316 may be piled up on the side of the LED chip 5 after being squeezed.
  • the LED chip 5 a part of the sixteenth encapsulation layer 316 protrudes below the LED chip 5, which can Better prevent the seventeenth encapsulation layer 317 from extending to the top surface of the LED chip 215 .
  • the pressing speed is very slow and/or the degree to which the LED chip 5 is pressed into the light-transmitting adhesive layer 2 is not deep during the pressing process, the LED The light-transmitting adhesive layer on the side of the chip 5 is less squeezed and has no obvious protrusion, and the flatness of the black adhesive layer on the side of the LED chip 5 is better.
  • the window 3161 processed on the seventeenth encapsulation layer 317 can be processed by exposure and development;
  • the area on the film corresponding to the window 3161 forms a light-shielding part for the opaque part, and the remaining area of the film film is a light-transmitting part.
  • Applying light irradiation makes the area of the seventeenth packaging layer 317 except the window 3161 semi-cured or cured, and
  • the part of the seventeenth encapsulation layer 317 that is not exposed to light, that is, the area of the window 3161 can be wet-removed with a cleaning solution to form the window 3161.
  • the cleaning solution in this embodiment may include H2SO4 and H2O2.
  • the seventeenth encapsulation layer 317 on the sixteenth encapsulation layer 316 may further include:
  • a boss 3162 is provided on the sixteenth encapsulation layer 316;
  • Disposing the seventeenth encapsulation layer 317 on the sixteenth encapsulation layer 316 includes:
  • the seventeenth encapsulation layer 317 is disposed on the side of the sixteenth encapsulation layer 316 on which the boss 3162 is provided, and the boss 3162 is exposed in the window.
  • multiple bosses 3162 can be provided on the bottom surface of the sixteenth packaging layer 316.
  • the bosses 3162 correspond to the light emitting surface 2151 of the LED chip 215 located in the window 3161.
  • the sixteenth packaging layer The bottom surface of 316 is a surface close to the seventeenth encapsulation layer 317 . If the height of the seventeenth encapsulation layer 317 is higher than the height of the LED chip 215 before lamination, by setting the boss 3162, the protrusion 3162 of the sixteenth encapsulation layer 316 and the ejected light of the LED chip 215 can be released during the lamination process.
  • the surface 2151 is in close contact more quickly, thereby avoiding the seventeenth encapsulation layer 317 from covering the top of the LED chip 215 during the lamination process, and the light-emitting surface 2151 of the LED chip 215 is less likely to have the residue of the seventeenth encapsulation layer 317 .
  • the boss 3162 can form a covering on the upper end of the LED chip 215, that is, the top light emitting surface 2151 and the upper end of the side light emitting surface 2152 of the LED chip 215 will be closely connected to the sixteenth encapsulation layer 316. Contact, the protection of the light-emitting surface of the LED chip 215 is better, and it will not be polluted by vinyl. As shown in Figures 16-19, the height H2 of the seventeenth encapsulation layer 317 after lamination can be smaller than the height h of the LED chip 215; or the height of the seventeenth encapsulation layer 317 after lamination can also be equal to that of the LED chip 215.
  • the height of the seventeenth encapsulation layer 317 in this embodiment after the lamination is not limited thereto.
  • a window 3161 can correspond to a boss 3162, and the boss 3162 can cover the light-emitting surfaces 2151 of all LED chips 215 in the corresponding window 3161, and press them together At this time, the top surface of the LED chip 215 will squeeze the boss 3162, and the boss 3162 may be squeezed to the side of the LED chip 215.
  • the side of the LED chip 215 has a sixteenth encapsulation layer 316 that protrudes below the LED chip 215;
  • the top surface of the LED chip 215 will press the boss 3162 when pressing, and the convex
  • the stage 3162 may be piled up toward the side of the LED chip 215 due to extrusion.
  • the sixteenth packaging layer between the LED chips 215 faces toward the LED chip 215. protruding below. Due to being squeezed by the LED chip 215 , the sixteenth encapsulation layer protrudes below the LED chip 215 along the side of the LED chip 215 , which can better block the extension of the seventeenth encapsulation layer 317 to the top surface of the LED chip 215 .
  • setting several windows 3161 for accommodating LED chips 215 on the seventeenth encapsulation layer 317 includes: the windows 3161 are rectangular windows, and the long side walls of the rectangular windows are provided with There is a protrusion toward the LED chip 215 .
  • the protrusion 3163 will fill the gap between the LED chips 215 when the seventeenth encapsulation layer 317 flows, so that the flow of the seventeenth encapsulation layer 317 is more uniform.
  • one protrusion 3163 can be provided on the long side wall of a rectangle; in other examples, as shown in Figure 16-14, multiple protrusions can also be provided on the long side wall of the rectangle
  • Each protruding part 3163 corresponds to the gap between the LED chips 215 respectively. At this time, after the seventeenth encapsulation layer 317 is heated, the protruding part 3163 will directly flow to the gap between the LED chips 215 to fill.
  • providing the sixteenth encapsulation layer 316 includes: disposing the sixteenth encapsulation layer 316 on the carrier 318 .
  • the encapsulation layer may further include a carrier 318 through which the sixteenth encapsulation layer 316 and the seventeenth encapsulation layer 317 are carried, which is more convenient for making, storing and using the encapsulation layer.
  • the sixteenth encapsulation layer 316 can be prepared by coating, molding or pasting on the carrier 318 first, and the sixteenth encapsulation layer 316 can be cured, and then the sixteenth encapsulation layer 316 can be cured.
  • the seventeenth encapsulation layer 317 is arranged on the encapsulation layer 316, and the process adopted for setting the seventeenth encapsulation layer 317 on the sixteenth encapsulation layer 316 can be flexibly selected, such as but not limited to coating, silk screen printing, printing, molding etc. Finally, the window 3161 can be processed on the seventeenth encapsulation layer 317 .
  • the manufactured encapsulation layer can be stored in a low temperature environment, such as -40°C to -10°C, the low temperature environment can reduce the activity of chemical components in the adhesive film and prolong the storage life of the adhesive film.
  • the adhesive film Before encapsulation with the encapsulation layer, the adhesive film needs to be thawed at room temperature, and the seventeenth encapsulation layer 317 after thawing at room temperature can be in a semi-cured state at room temperature.
  • the carrier 318 can be used as a direct stress member of the packaging layer, so that the force acting on each colloid layer during the pressing down process is more uniform, and the shape change of the seventeenth packaging layer 317 is also more controllable.
  • the carrier 318 in this embodiment can be a transparent substrate or film layer, for example, the transparent substrate can be a glass substrate; in some examples, the carrier 318 can also be an opaque substrate, but in order to prevent opaque The substrate will affect the light output of the LED chip 215.
  • a layer of release film or release agent can be placed on the opaque substrate. After the lamination is completed during the packaging process, the opaque substrate can be removed through the set release film or release agent. .
  • an alignment marking point can be set on the sixteenth encapsulation layer 316 or the carrier 318 of the encapsulation layer, for example, on the carrier 318 Marking points are set on the opposite corners to facilitate identification during installation, so that the window of the seventeenth packaging layer 317 and the LED chip 215 are accurately aligned.
  • a window is provided on the seventeenth encapsulation layer 317.
  • the encapsulation layer is laminated on the substrate 115 of the display module, wherein the seventeenth encapsulation layer 317 covers the substrate 115.
  • the LED chip 215 on the substrate 115 is located in the corresponding window 3161 , and there is no contact between the light emitting surface 2151 of the LED chip 215 and the seventeenth encapsulation layer 317 at this time.
  • the seventeenth encapsulation layer 317 flows to the periphery of the LED chip 215 , so that the seventeenth encapsulation layer 317 fills the periphery of the LED chip 215 and surrounds at least part of the side light-emitting surface 2152 of the LED chip 215 .
  • the seventeenth encapsulation layer 317 covers the area on the substrate 115 except for the LED chip 215, covering the silver solder paste on the substrate 115, so that the display screen is black. The blacks are purer and the contrast ratio of the display is improved.
  • the LED chip 215 is directly located in the window 3161 provided on the seventeenth encapsulation layer 317, the seventeenth encapsulation layer 317 will not be in contact with the light emitting surface 2151 of the LED chip 215 during the whole process, and the top of the LED chip 215 There will be no vinyl residue on the light emitting surface 2151, which ensures good light emitting from the LED chip 215, and the display effect of the display module is better.
  • the sixteenth encapsulation layer 316 will cover the light emitting surface 2151 of the LED chip 215 to form protection for the light emitting surface 2151 of the LED chip 215 .
  • the manufacturing method of the display module provided in this embodiment is shown in Figure 16-7 to Figure 16-20, including:
  • Step a25 Fabricate the substrate component and the encapsulation layer.
  • the encapsulation layer is produced by the encapsulation layer production method as illustrated above; the production of the substrate assembly includes disposing the substrate 115 , and disposing several light emitting units on the top surface of the substrate 115 , and each light emitting unit includes at least one LED chip 215 .
  • the substrate 115 and the light emitting unit in this embodiment can be referred to but not limited to those shown in the above-mentioned embodiments, and will not be repeated here.
  • Step b25 covering the top surface of the substrate with the encapsulation layer, and the LED chip is located in the corresponding window.
  • one window 3161 can correspond to one LED chip 215; or in other examples of this embodiment, as shown in Figures 16-6 and 16 -7.
  • One window 3161 can also correspond to multiple LED chips 215.
  • one window 3161 can correspond to one pixel.
  • the LED chip 215 of one pixel can emit red light, green light, and blue light.
  • one pixel can include There is one LED chip 215 for red light, one for green light and one for blue light.
  • Step c25 Pressing the encapsulation layer and the substrate, so that the seventeenth encapsulation layer flows and fills around the LED chip.
  • the thickness of the seventeenth encapsulation layer 317 before lamination is greater than or equal to the height of the LED chip 215 so as to facilitate the flow filling of the seventeenth encapsulation layer 317 around the LED chip 215 after lamination.
  • the thickness H1 of the seventeenth encapsulation layer 317 before lamination is greater than the height h of the LED chip 215; in some application scenarios, the thickness H1 of the seventeenth encapsulation layer 317 before lamination can also be is smaller than the height h of the LED chip 215, which is not specifically limited in this embodiment.
  • Step d25 stop pressing, the seventeenth encapsulation layer encloses at least part of the side light-emitting surfaces of the LED chips, and the sixteenth encapsulation layer covers the top light-emitting surfaces of each LED chip.
  • the seventeenth encapsulation layer 317 encloses at least part of the side light-emitting surface 2152 of the LED chip 215 after lamination, which can avoid the influence of light crossing between the LED chips 215 as much as possible and improve the contrast. It can be understood that enclosing at least part of the side light-emitting surface 2152 of the LED chip 215 may be, as shown in FIGS.
  • the thickness of the seventh encapsulation layer 317 is smaller than the height of the LED chip 215; or, it can also completely cover the side light-emitting surface 2152 of the LED chip 215 to form an enclosure.
  • the sixteenth encapsulation layer 316 and the seventeenth encapsulation layer 317 may also be in contact with a curved surface near the side light emitting surface of the LED chip 215, that is, the LED chip 215 is pressed to the sixteenth encapsulation layer 316 When it is in the middle, the sixteenth encapsulation layer 316 will be squeezed to form a curved surface near the upper end of the LED chip 215.
  • the encapsulation layer 317 extends to the top surface of the LED chip 215 and will not affect the light-emitting display of the display module.
  • the curved surface can also form diffuse reflection of external ambient light, thereby eliminating the interference of external ambient light when the display device is on, and improving the display effect.
  • the seventeenth encapsulation layer 317 if the thickness of the seventeenth encapsulation layer 317 is smaller than the height of the LED chip 215 at the beginning of lamination, when the seventeenth encapsulation layer 317 covers the top surface of the substrate 115, the seventeenth encapsulation layer 317 There is no contact with the top surface of the substrate 115.
  • the sixteenth encapsulation layer 316 is first in contact with the light-emitting surface 2151 of the LED chip 215; Then, when the seventeenth encapsulation layer 317 is covered on the top surface of the substrate 115, the seventeenth encapsulation layer 317 first contacts with the top surface of the substrate 115, and after pressing for a certain period of time, the sixteenth encapsulation layer 316 is then bonded to the LED chip. The light emitting surface 2151 of 215 contacts.
  • the LED chip 215 may have an effective side light-emitting surface of a certain area, which can reduce the influence of the vinyl layer on the light-emitting efficiency of the LED chip 5 .
  • the height H2 of the seventeenth encapsulation layer 317 after lamination can also be greater than 2/3 of the height h of the LED chip 215 , or less than 2/3 of the height h of the LED chip 215 .
  • the shape of the window 3161 can be flexibly set, so that the seventeenth encapsulation layer 317 can be filled between the LED chips 215 during lamination.
  • the window 3161 can be rectangular or elliptical.
  • the flow of the seventeenth encapsulation layer 317 to the periphery of the LED chip 215 and the gap between the LED chips 215 can be made more uniform.
  • the shortest distance between one long side wall of the rectangular window and the side light emitting surface of the LED chip 215 relative to the long side wall is the first distance L101; the other long side wall of the rectangular window, and The shortest distance between the side light emitting surfaces of the LED chip 215 relative to the long side wall is the second distance, preferably equal to the first distance L101;
  • the shortest distance between the side light-emitting surfaces of the walls is the third distance of 102, and the shortest distance between the other short side wall of the rectangular window and the side light-emitting surface of the LED chip 215 relative to the short side wall is the fourth
  • the distance is preferably equal to the third distance L102; then the gap between the LED chip 215 and the sidewall of the rectangular window along the direction of the short side of the rectangle is the sum of the first distance and the second distance, which is twice the L
  • hot pressing can be performed in a vacuum environment, and the sixteenth encapsulation layer 316 The air between the substrate 115 can also be sucked away to avoid adverse conditions caused by air bubbles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)

Abstract

一种显示模组及其制作方法,该显示模组包括基板(1),设于基板(1)正面上的若干发光单元(2),以及设于基板(1)上并将各发光单元(2)覆盖的封装层(3);各发光单元(2)包括至少一颗LED芯片,封装层(3)可供LED芯片发出的光透过。

Description

显示模组及其制作方法 技术领域
本申请涉及LED(Light Emitting Diode,LED芯片)显示领域,尤其涉及一种显示模组及其制作方法。
背景技术
LED在显示等领域有着广泛的应用。在显示领域对LED的密封性以及对采用LED制得的显示模组的厚度都有着严格的要求。为了满足密封性,显示领域一般采用密封性较好的LED灯珠,其包括支架,设置在支架内LED芯片,以及将LED芯片密封在支架内的密封胶层。虽然LED灯珠可满足密封性需求,但由于其采用了LED支架导致其尺寸较大且成本高,进而导致采用LED灯珠制得的显示模组整体较厚,且成本较高。。
技术问题
鉴于上述现有技术的不足,本申请的目的在于提供一种显示模组及其制作方法,旨在解决相关技术中,显示模组整体较厚,且成本较高问题。
技术解决方案
为了解决上述问题,本申请提供了一种显示模组,包括基板,设于所述基板正面上的若干发光单元,以及设于所述基板上,将各所述发光单元覆盖的封装层;各所述发光单元包括至少一颗LED芯片,所述封装层供所述LED芯片发出的光透过,所述封装层的厚度高于发光单元的厚度。
基于同样的发明构思,本申请还提供一种显示模组制作方法,包括:
提供基板;
在所述基板正面上设置若干发光单元,各所述发光单元包括至少一颗LED芯片;
在所述基板上设置将各所述发光单元覆盖的封装层,所述封装层供所述LED芯片发出的光透过,所述封装层的厚度高于发光单元的厚度。
有益效果
本申请提供的显示模组及其制作方法,其中显示模组包括基板,设置在基板正面上的发光单元,且各发光单元至少包括一颗LED芯片,以及还包括设置在基板上将各发光单元覆盖的封装层。该显示模组不再采用LED灯珠作为光源,而是直接采用LED芯片作为光源,因此可省略LED灯珠所包括的支架的使用,既能降低成本,又能减小显示模组的整体厚度,更利于其轻薄化;且所设置的封装层将各发光单元覆盖在内,能同时满足显示模组密封性的要求,同时可对各发光单元形成防护。
有益效果
本申请提供的显示模组及其制作方法,其中显示模组包括基板,设置在基板正面上的发光单元,且各发光单元至少包括一颗LED芯片,以及还包括设置在基板上将各发光单元覆盖的封装层。该显示模组不再采用LED灯珠作为光源,而是直接采用LED芯片作为光源,因此可省略LED灯珠所包括的支架的使用,既能降低成本,又能减小显示模组的整体厚度,更利于其轻薄化;且所设置的封装层将各发光单元覆盖在内,能同时满足显示模组密封性的要求,同时可对各发光单元形成防护。
附图说明
图1为本申请提供的显示模组结构示意图;
图2-1为本申请实施例一提供的显示模组结构示意图一;
图2-2为图2-1所示显示模组的俯视图;
图2-3为图2-2所示显示模组的仰视图;
图2-4为本申请实施例一提供的显示模组结构示意图二;
图2-5为图2-4所示显示模组的俯视图;
图2-6为本申请实施例一提供的基板结构示意图一;
图2-7为本申请实施例一提供的基板结构示意图二;
图2-8为本申请实施例一提供的基板结构示意图三;
图2-9为本申请实施例一提供的基板结构示意图四;
图2-10为本申请实施例一提供的基板结构示意图五;
图2-11为本申请实施例一提供的基板结构示意图六;
图2-12为本申请实施例一提供的基板结构示意图七;
图2-13为本申请实施例一提供的基板结构示意图八;
图2-14为本申请实施例一提供的基板结构示意图九;
图2-15为本申请实施例一提供的基板结构示意图十;
图2-16为本申请实施例一提供的显示模组结构示意图三;
图2-17为本申请实施例一提供的显示模组结构示意图四;
图2-18为本申请实施例一提供的显示模组结构示意图五;
图2-19为本申请实施例一提供的显示模组结构示意图六;
图2-20为本申请实施例一提供的显示模组结构示意图七;
图2-21为本申请实施例一提供的显示屏的结构示意图;
图3-1为本申请实施例一提供的显示模组俯视图;
图3-2为本申请实施例一提供的显示模组仰视图;
图3-3为图3-1所示显示模组的剖视图;
图3-4为本申请实施例一提供的显示模组结构示意图二;
图3-5为本申请实施例一提供的显示模组结构示意图三;
图3-6为本申请实施例一提供的显示模组结构示意图四;
图3-7为本申请实施例一提供的显示模组结构示意图五;
图3-8为本申请实施例一提供的显示模组结构示意图六;
图3-9为本申请实施例一提供的显示模组结构示意图七;
图3-10为本申请实施例一提供的显示模组结构示意图八;
图4-1为本申请实施例三提供的显示模组结构示意图一;
图4-2为本申请实施例三提供的显示模组拼接处的局部放大示意图;
图4-3为本申请实施例三提供的显示模组结构示意图二;
图4-4为本申请实施例三提供的显示模组结构示意图三;
图4-5为本申请实施例三提供的显示模组结构示意图四;
图4-6为本申请实施例三提供的基本布线面积示意图;
图4-7为本申请实施例三提供的显示模组结构示意图五;
图4-8为本申请实施例三提供的显示模组结构示意图六;
图4-9为本申请实施例三提供的显示模组结构示意图七;
图4-10为本申请实施例三提供的显示模组结构示意图八;
图4-11为本申请实施例三提供的显示模组结构示意图九;
图4-12为本申请实施例三提供的显示模组结构示意图十;
图4-13为本申请实施例三提供的显示模组结构示意图十一;
图4-14为本申请实施例三提供的显示模组结构示意图十二;
图4-15为本申请实施例三提供的显示模组结构示意图十三;
图4-16为本申请实施例三提供的显示模组结构示意图十四;
图4-17为本申请实施例三提供的显示模组拼接效果示意图一;
图4-18为本申请实施例三提供的显示模组拼接效果示意图二;
图5-1为本申请实施例四提供的基板的正面结构示意图;
图5-2为本申请实施例四提供的基板的背面结构示意图;
图5-3为本申请实施例四提供的基板正面开设凹槽结构示意图一;
图5-4为图5-3的A4-A4截面的结构示意图;
图5-5为本申请实施例四提供的基板的正面贴装有发光单元的结构示意图;
图5-6为图5-5的A4-A4截面的结构示意图;
图5-7为本申请实施例四中在基板正面模压第一封装层后的A4-A4截面的结构示意图;
图5-8为本申请实施例四中切除基板的部分工艺边后的A4-A4截面的结构示意图;
图5-9为本申请实施例四中另一图5-3的A4-A4截面的结构示意图;
图5-10为本申请实施例四中另一图5-3的A4-A4截面的结构示意图;
图5-11为本申请实施例四中另一图5-3的A4-A4截面的结构示意图;
图5-12a为本申请实施例四中另一图5-3的A4-A4截面的结构示意图;
图5-12b为本申请实施例四中在图5-12a基础上切除部分工艺边后的结构示意图;
图5-13为本申请实施例四中在基板背面贴装驱动电子元件的A4-A4截面的结构示意图;
图5-14为本申请实施例四中两显示模组拼接的截面结构示意图;
图5-15本申请实施例四中在基板上模压第二封装层后的截面结构示意图;
图5-16本申请实施例四在图5-15的基础上切除部分工艺边后的结构示意图;
图5-17本申请实施例四在图5-16的基础上模压第三封装层后的截面结构示意图;
图5-18本申请实施例四中图5-17所示的两显示模组拼接后的截面结构示意图;
图5-19本申请实施例四中显示模组拼接成屏幕的正面结构示意图;
图5-20本申请实施例四中基板背面开设背部凹槽结构示意图一;
图5-21本申请实施例四中基板背面开设背部凹槽结构示意图二;
图5-22本申请实施例四中基板背面开设背部凹槽结构示意图三;
图5-23本申请实施例四中基板背面开设背部凹槽结构示意图四;
图5-24本申请实施例四中另一显示模组拼接结构示意图;
图6-1为本申请实施例五提供的显示模组结构示意图一;
图6-2为本申请实施例五提供的显示模组结构示意图二;
图6-3为本申请实施例五提供的显示模组结构示意图三;
图6-4为本申请实施例五提供的显示模组结构示意图四;
图6-5a为本申请实施例五提供的显示模组结构示意图五;
图6-5b为本申请实施例五提供的显示模组结构示意图六;
图6-6a为本申请实施例五提供的显示模组结构示意图七;
图6-6b为本申请实施例五提供的显示模组结构示意图八;
图6-7为本申请实施例五提供的显示模组结构示意图九;
图6-8a为本申请实施例五提供的显示模组结构示意图十;
图6-8b为本申请实施例五提供的显示模组结构示意图十一;
图6-9为本申请实施例五提供的显示屏示意图;
图7-1为本发明实施例六提供的显示模组结构示意图一;
图7-2为本发明实施例六提供的显示模组的正投影图;
图7-3为本发明实施例六提供的显示模组结构示意图二;
图7-4为本发明实施例六提供的封装层结构示意图;
图7-5为本发明实施例六提供的基板结构示意图;
图7-6为本发明实施例六提供的基板夹具结构示意图;
图7-7为本发明实施例六提供的基板固定于基板夹具上的结构示意图;
图7-8为本发明实施例六提供的封装层贴合于基板上的结构示意图;
图7-9为本发明实施例六提供的封装层向基板压合的结构示意图;
图7-10为本发明实施例六提供的封装层压合到基板上后的结构示意图;
图7-11为本发明实施例六提供的在基板背面上设置电子元件的结构示意图;
图7-12为本发明实施例六提供的另一基板结构示意图;
图7-13为本发明实施例六提供的另一基板夹具结构示意图;
图7-14为本发明实施例六提供的另一基板固定于基板夹具上的结构示意图;
图7-15为本发明实施例六提供的另一封装层贴合于基板上的结构示意图;
图7-16为本发明实施例六提供的另一封装层向基板压合的结构示意图;
图7-17为本发明实施例六提供的另一封装层压合到基板上后的结构示意图;
图8-1为本发明实施例七提供的焊接膏示意图;
图8-2为本发明实施例七提供的基板的结构示意图一;
图8-3为本发明实施例七提供的基板的结构示意图二;
图8-4为本发明实施例七提供的显示模组的结构示意图一;
图8-5为图8-4中单颗LED芯片对应的焊接结构示意图;
图8-6为本发明实施例七提供的显示模组的实物参考图;
图8-7为本发明实施例七提供的显示模组的结构示意图二;
图8-8为本发明实施例七提供的显示模组制作方法示意图;
图9-1为本申请实施例八提供的黑色沉积层结构示意图一;
图9-2为本申请实施例八提供的黑色沉积层结构示意图二;
图9-3为本申请实施例八提供的黑色沉积层结构示意图三;
图9-4为本申请实施例八提供的显示模组制作过程示意图一;
图9-5为本申请实施例八提供的显示模组制作过程示意图二;
图9-6为本申请实施例八提供的显示模组制作过程示意图三;
图9-7为本申请实施例八提供的磁控溅射示意图一;
图9-8为本申请实施例八提供的磁控溅射示意图二;
图9-9为本申请实施例八提供的显示模组结构示意图一;
图9-10为本申请实施例八提供的显示模组结构示意图二;
图9-11为本申请实施例八提供的显示模组结构示意图三;
图9-12为本申请实施例八提供的LED显示屏结构示意图;
图10-1为本发明实施例九提供的设有发光单元的基板结构示意图;
图10-2为本发明实施例九提供的半透光层的原理结构示意图;
图10-3为本发明实施例九提供的反射层的结构示意图;
图10-4为本发明实施例九提供的第三黑胶层的结构示意图;
图10-5为本发明实施例九提供的半透光层的光路示意图一;
图10-6为本发明实施例九提供的半透光层的光路示意图二;
图10-7为本发明实施例九提供的显示模组的结构示意图一;
图10-8为图10-7中的显示模组的光路示意图一;
图10-9为图10-7中的显示模组的光路示意图二;
图10-10为本发明实施例九提供的平面镜面图像示意图;
图10-11为本发明实施例九提供的镜面反射示意图;
图10-12为本发明实施例九提供的漫反射示意图;
[根据细则91更正 02.11.2022] 
图10-13为本发明实施例九提供的显示模组的结构示意图二;
图10-14为本发明实施例九提供的显示模组的结构示意图三;
图10-15为本发明实施例九提供的显示模组的结构示意图四;
图10-16为本发明实施例九提供的显示模组的结构示意图五;
图10-17为本发明实施例九提供的显示模组的结构示意图六;
图10-18为本发明实施例九提供的显示模组的结构示意图七;
图10-19为本发明实施例九提供的显示模组的结构示意图八;
图10-20为本发明实施例九提供的显示模组的结构示意图九;
图10-21为本发明实施例九提供的显示模组的制作过程示意图一;
图10-22为本发明实施例九提供的显示模组的制作过程示意图二;
图10-23为本发明实施例九提供的显示模组的制作过程示意图三;
图10-24为本发明实施例九提供的显示模组的制作过程示意图四;
图10-25为本发明实施例九提供的显示模组的制作过程示意图五;
图10-26为本发明实施例九提供的显示模组的制作过程示意图六;
图10-27为本发明实施例九提供的显示屏的结构示意图;
图11-1为本发明实施例十提供的显示模组制作过程示意图一;
图11-2为本发明实施例十提供的显示模组去除第十四封装层之后的截面示意图一;
图11-3为本发明实施例十提供的显示模组制作过程示意图二;
图11-4为本发明实施例十提供的显示模组去除第十四封装层之后的截面示意图二;
图11-5为本发明实施例十提供的显示模组截面示意图一;
图11-6为本发明实施例十提供的显示模组截面示意图二;
图11-7为本发明实施例十提供的显示模组截面示意图三;
图11-8为本发明实施例十提供的显示模组截面示意图四;
图11-9为本发明实施例十提供的显示模组截面示意图五;
图11-10为本发明实施例十提供的显示模组截面示意图六;
图11-11为本发明实施例十提供的显示模组截面示意图七;
图11-12为本发明实施例十提供的显示模组截面示意图八;
图11-13为本发明实施例十提供的显示模组截面示意图九;
图12-1为本申请实施例十一提供的显示模组结构示意图;
图12-2为本申请实施例十一提供的光扩散单元对光线均光处理示意图;
图12-3为本申请实施例十一提供的光扩散单元在基板上的投影示意图一;
图12-4为本申请实施例十一提供的光扩散单元在基板上的投影示意图二;
图12-5为本申请实施例十一提供的光扩散单元在基板上的投影示意图三;
图12-6为本申请实施例十一提供的光扩散单元在基板上的投影示意图四;
图13-1为本申请实施例十二提供的显示模组结构示意图;
图13-2为本申请实施例十二提供的包括四颗矩形LED芯片的发光单元示意图;
图13-3为本申请实施例十二提供的拼接基板中LED芯片的一种排布示意图;
图13-4为本申请实施例十二提供的拼接基板中LED芯片的另一种排布示意图;
图13-5为本申请实施例十二提供的包括三颗椭圆形LED芯片的发光单元示意图;
图13-6为本申请实施例十二提供的LED芯片近中心电极电连接的示意图;
图13-7为本申请实施例十二提供的另一发光单元中LED芯片电极朝向的示意图;
图13-8为本申请实施例十二提供的又一种发光单元中LED芯片电极朝向的示意图;
图13-9为本申请实施例十二提供的显示模组另一结构示意图;
图13-10为本申请实施例十二提供的LED芯片相对于旋转对称中心的可调距离与可调角度的一种示意图;
图13-11为本申请实施例十二提供的包括三颗LED芯片的第一种发光单元的示意图;
图13-12为本申请实施例十二提供的包括三颗LED芯片的第二种发光单元的示意图;
图13-13为本申请实施例十二提供的包括三颗LED芯片的第三种发光单元的示意图;
图13-14为本申请实施例十二提供的包括三颗LED芯片的第四种发光单元的示意图;
图13-15为本申请实施例十二提供的包括三颗LED芯片的第五种发光单元的示意图;
图13-16为本申请实施例十二提供的包括四颗LED芯片的第一种发光单元的示意图;
图13-17为本申请实施例十二提供的包括四颗LED芯片的第二种发光单元的示意图;
图13-18为本申请实施例十二提供的包括四颗LED芯片的第三种发光单元的示意图;
图13-19为本申请实施例十二提供的包括四颗LED芯片的第四种发光单元的示意图;
图14-1为本申请实施例十三提供的显示模组结构示意图一;
图14-2为本申请实施例十三提供的显示模组结构示意图二;
图14-3为本申请实施例十三提供的显示模组结构示意图三;
图14-4为本申请实施例十三提供的显示模组结构示意图四;
图14-5为本申请实施例十三提供的显示模组结构示意图五;
图14-6为本申请实施例十三提供的显示模组结构示意图六;
图14-7为本申请实施例十三提供的显示模组结构示意图七;
图14-8为本申请实施例十三提供的一种基板的盲孔结构示意图;
图14-9为本申请实施例十三提供的显示屏的结构示意图一;
图14-10为本申请实施例十三提供的显示屏的结构示意图二;
图15-1是申请实施例十四提供的显示模组的结构示意图一;
图15-2是申请实施例十四提供的显示模组的结构示意图二;
图15-3是申请实施例十四提供的显示模组的结构示意图三;
图15-4是申请实施例十四提供的显示模组的结构示意图四;
图15-5是申请实施例十四提供的显示模组的结构示意图五;
图15-6是申请实施例十四提供的显示模组的结构示意图六;
图16-1为本申请实施例十五提供的一种封装层的结构俯视图;
图16-2为本申请实施例十五提供的封装层的A5-A5剖视示意图一;
图16-3为本申请实施例十五提供的封装层的A5-A5剖视示意图二;
图16-4为本申请实施例十五提供的封装层的A5-A5剖视示意图三;
图16-5为本申请实施例十五提供的封装层的A5-A5剖视示意图四;
图16-6为本申请实施例十五提供的封装层覆盖在基板上的结构俯视图;
图16-7为本申请实施例十五提供的封装层覆盖在基板上的A6- A6剖视示意图一;
图16-8为本申请实施例十五提供的封装层覆盖在基板上的A6- A6剖视示意图二;
图16-9为本申请实施例十五提供的封装层覆盖在基板上的A6- A6剖视示意图三;
图16-10为本申请实施例十五提供的封装层覆盖在基板上并压合完成后的A6- A6剖视示意图;
图16-11为本申请实施例十五提供的封装层覆盖在基板上的A6- A6剖视示意图四;
图16-12为本申请实施例十五提供的封装层覆盖在基板上并压合完成后的A6- A6剖视示意图;
图16-13为本申请实施例十五提供的第十七封装层上矩形窗口的一种结构示意图;
图16-14为本申请实施例十五提供的封装层的矩形窗口长边设置突出部的一种结构示意图;
图16-15为本申请实施例十五提供的封装层的的矩形窗口长边设置突出部的另一种结构示意图;
图16-16为本申请实施例十五提供的封装层覆盖在基板上的另一种结构俯视图;
图16-17为本申请实施例十五提供的图16-16的A7-A7剖视图;
图16-18为本申请实施例十五提供的制作完成后的显示模组的结构俯视图;
图16-19为本申请实施例十五提供的图16-18的A8-A8剖视图一;
图16-20为本申请实施例十五提供的图16-18的A8-A8剖视图二。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。此外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种显示模组,可应用于家用显示、医用显示、装饰显示、交通显示、广告显示等各种领域,例如可具体可应用于各种电子设备,包括但不限于显示器、移动终端、电脑、穿戴设备、广告设备、车载设备等。参见图1所示,该显示模组包括基板1,若干发光单元2以及封装层3,其中:
基板1在本申请中可作为显示模组的显示背板,也可为独立于显示背板用于承载发光单元的承载基板。且该基板1可以单层基板,也可为包括至少两层的复合基板,其可为柔性基板,也可为刚性基板,本实施例对其不做限制;图1中Z所示的面为基板正面,B所示的面为基板背面,位于基板正面和基板背面之间的为基板侧面。
发光单元2设置于基板正面,一个发光单元2可仅包括一颗LED芯片,也可包括两颗以上的LED芯片,且各发光单元2所包括的LED芯片的数量,发光颜色中的至少之一可相同;也可设置为部分发光2所包括的LED芯片的数量,发光颜色中的至少之一不同。本申请中的LED芯片可为微米级LED芯片(例如Mini LED芯片或Micro LED芯片),例如可为微米级倒装LED芯片,当然也可将全部或将其中的一部分替换为微米级正装或垂直LED芯片,当然在尺寸上也可根据需求替换为普通尺寸的LED芯片。
封装层3设于基板1上,将各发光单元2覆盖,且可供发光单元2的LED芯片发出的光透过,且封装层3的厚度高于发光单元2的厚度;封装层3可以仅设于基板正面上,且将基板正面全覆盖,也可仅对基板正面进行部分覆盖;封装层3也可从基板正面延伸至基板的至少一个侧面,甚至延伸至基板背面;封装层3可为单层结构,也可为包括至少两层的多层结构。
可见,本申请提供的显示模组结构可灵活多变,适用的场景广;且其在满足密封性要求的基础上,整体厚度更小,成本更低。为了便于理解,下面结合以下各实施例对其一些变化的具体结构以及制作方法进行示例说明。
实施例一
在本实施例中,各发光单元包括的LED芯片可通过但不限于COB(chip-on-board,即板上芯片封装)直接设置在基板上,基板可直接散热,不仅能减少制造工艺步骤及其成本,还具有减少热阻的散热优势,还可显示更高清晰度的图像和视频,并且可以做到任意拼接。COB封装时,将LED芯片焊接在基板上,然后将封装层设置在基板上,最后将基板边缘的工艺边框沿预定的切割边切割掉,便可获得所需要尺寸的单元板显示模组,这种显示模组在工艺边切割去除后,LED芯片距离工艺切割线非常近,水汽很容易通过封装层与基板之间的界面进入到显示模组内部,从而导致LED芯片失效,封装层与基板出现分层。
针对上述问题,本实施例提供了一种显示模组,参见图2-1至图2-3所示,图2-2为显示模组的俯视图(为了便于理解该图作为透视处理),图2-1为沿图2-2中A1-A1的剖视图;图2-3显示模组的仰视图。本实施例中的显示模组包括基板10、发光单元21和封装层,该封装层包括第一封装层31。基板10包括分别位于基板正面和基板背面的第一安装部103和第二安装部102,以及位于第一安装部103周边的路径延长部101。在本实施例中,若干发光单元21呈阵列(当然也可采用其他分布方式,例如相邻行发光单元21之间的交错设置或随机分布等)设置在第一安装部103上。路径延长部101包括凸起部和第一下凹部中的至少之一,其中该凸起部凸出于基板正面,该第一下凹部从基板正面向基板背面下凹;第一封装层31设于基板正面,将路径延长部101及发光单元21覆盖;其中参见图2-1所示,路径延长部101的外侧面与其最接近的(也即第一安装部103外边缘的)发光单元21中心(具体为路径延长部101的外侧面至该发光单元21的中心点的垂直距离)之间的第一距离L1,小于第一安装部上与该外侧面平行的相邻两行发光单元21之间的行间距(具体为相邻两行发光单元21的中心轴之间的距离,其中,每一行发光单元21的中心轴为该行各发光单元21的中心点的之间的连线构成)L2的1/2,从而使得多个显示模组拼接制得显示屏时,可减小显示模组之间的拼接缝隙,同时保证相邻显示模组之间拼接后,在拼接位置的相邻两行的发光单元21中心之间的间距与基板10上其他区域的相邻两行的发光单元21之间的间距L2相同,甚至小于L2,从而提升拼接后的显示模组之间的整体性和显示效果。
另外,路径延长部101的设置可使得第一封装层31与基板10之间的界面呈非单一直线的结构,由此可延长水汽从第一封装层31与基板10之间界面的进入显示模组内部的路径,尽可能避免发光单元21因水汽进入导致失效,提高了显示模组的可靠性,且路径延长部101与第一封装层31之间也更不容易分层,封装效果更好。
应当理解的是,本实施例中的基板10可以为PCB板,玻璃基板、硅基板等。基板10的形状和尺寸可灵活设置。例如,在一些应用示例中,基板10位于第一安装部103与第二安装部102之间的厚度可为但不限于1.5 mm -2.5mm,此种厚度的基板10更有利于路径延长部101的加工,可使路径延长部101在基板厚度方向上延长水汽的路径。且基板10可为矩形基板,圆形基板、菱形基板、三角形基板等规则形状,也可为非规则形状的基板。
应当理解的是,本实施例中的发光单元21可仅包括一颗LED芯片,也可包括多颗LED芯片,例如一些应用示例中,发光单元可包括但不限于红光LED芯片、绿光LED芯片和蓝光LED芯片。
本实施例中,参见图2-4所示,基板背面的第二安装部102可用于设置电子驱动电路,以及与电子驱动电路电连接用于驱动发光单元21的驱动元件41,通过驱动元件41可以根据具体的显示模式或显示要求对发光单元21进行灵活的控制,从而实现显示模组的显示控制。本实施例中的驱动元件41可包括但不限于驱动芯片,且该驱动芯片可为驱动裸芯片,也可为对驱动裸芯片进行封装后的驱动芯片。
本实施例中,路径延长部101环绕在第一安装部103的外周呈环形结构。当然应当理解的是,本实施例中的路径延长部101并不限于设置为环形结构,也可仅在第一安装部103的其中一边或多边设置路径延长部101,但不围合成封闭的环形结构。本实施例中的路径延长部101包括凸出于基板正面的凸起部106和从基板正面向基板背面下凹的第一下凹部中的至少之一。
本实施例中,第一封装层31可通过但不限于模压、印刷、热压等方式成型在基板10上,还可通过灌封的方式成型在基板10上,对其具体设置工艺不做限制。应当理解的是,本实施例中第一封装层31的材质可灵活设置,例如可以采用但不限于胶层,且该胶层可为透明胶层,也可为包含光转换粒子(例如荧光粉)和/或扩散粒子的混合胶层等。且本实施例中的第一封装层31可设置为单层结构,也可根据需求设置为多层结构。在一些示例中,第一封装层31的上表面可根据需求设置为平面或弧面等。
在本实施例的一些应用示例中,各发光单元21在基板10上均匀分布,各发光单元21贴装在基板正面的相应位置上。此时第一安装部103上的相邻发光单元21之间的间距值是相同的;另一应用示例中,为了提升显示模组的散热性能,基板10上靠近驱动元件41附近的发光单元21之间的间距值相对于远离驱动元件41的发光单元21之间的间距值可设置得更大;同时为了保证发光的均匀性,可设置相邻的发光单元21之间的间距值从基板10的中部至边缘呈逐渐减小。
应当理解的是,本实施例中路径延长部101包括的第一下凹部和/或凸起部106可以灵活设置,例如在一些应用示例中,路径延长部101可以仅包括由基板正面向基板背面下凹的第一下凹部,且该第一下凹部可以为凹槽,也可为将凹槽的其中一部分切割后剩余的凹部等;在另一些应用示例中,路径延长部101可为凸出于基板正面的凸起部106。在又一些应用示例中,路径延长部101还可同时包括第一下凹部和凸起部106。
为了便于理解,本实施例下面分别以路径延长部101的几种形状为示例进行说明。
一种示例参见图2-4和图2-5所示,图2-4为沿图2-5中A2-A2的剖视图;本示例中路径延长部101为由基板正面向基板背面下凹的第一下凹部,且该第一下凹部可为一个完整的凹槽。在本示例中,可先在基板10外边缘加工出凹槽形成路径延长部101,然后再在基板10上设置发光单元21和第一封装层31。应当理解的是,本实施例中凹槽的形状可灵活设置,例如参见图2-6所示,凹槽105可设置为方形凹槽,参见图2-7所示,也可设置为V形凹槽;参见图2-8和图2-9所示,其还可设置为U形凹槽或梯形凹槽等。且应当理解的是,本实施例中凹槽105的形状并不限于上述几种示例,可根据具体应用需求灵活的设置为其他规则形状,例如参见图2-10所示,该凹槽105还可设置为阶梯形凹槽。当然,本实施例中的凹槽105也可设置为非规则形状,在此不再一一赘述。
本实施例中,路径延长部101为第一下凹部时,该第一下凹部的具体尺寸可根据相邻两行发光单元21之间的行间距具体设置,当相邻两行发光单元21之间的行间距足够大时,第一下凹部可以包括但不限于上述各示例中的至少一个完整的凹槽;而当相邻两行发光单元21之间的行间距较小时,为了保证相邻显示模组之间拼接后,在拼接位置的相邻两行的发光单元21之间的间距与基板10上其他区域的相邻两行的发光单元21之间的间距L2相同,甚至小于L2,可设置第一下凹部为将一个完整的凹槽的其中一部分切割后所剩余的凹部。例如,一种示例参见图2-1至图2-3所示,路径延长部101为将凹槽切割一部分后剩余的凹部。例如,图2-1所示的第一下凹部可为对图2-6中的凹槽按照图2-16所示的工艺切割线104进行切割后,所得到的第一下凹部。从图2-16所示可知,本实施例中工艺切割线104的具体设置位置(也即切割位置)可根据应用需求灵活设置。例如另一示例参见图2-17所示,图2-17所示的工艺切割线104的位置相对图2-16更靠近外边缘,切割后所得到的显示模组参见图2-18所示。应当理解的是,在本实施例中,可以在基板10上设置好第一封装层31后,再将第一封装层31随基板10一起切割,也可先对基板10切割后,再在基板上1上设置第一封装层31。
又一种示例参见图2-11至图2-12所示,路径延长部101为凸出于基板正面的凸起部106,且凸起部106可为一个完整的凸起,也可为将一个完整的凸起切割掉后所剩余的一部分。例如,图2-11所示的凸起部106为一个完整的矩形凸起,图2-12所示的凸起部106为一个完整的三角形的凸起部。又一示例参见图2-20所示,凸起部106为对图2-11中所示的矩形凸起部106切割掉一部分后剩余的凸起部106分。一种切割示例参见图2-19所示。本实施例中凸起部106的形状也可灵活设置,并不限于上述示例的形状,还可为弧形凸起、梯形凸起等规则形状,也可为其他非规则形状。
应当理解的是,在本实施例中,路径延长部101并不限于上述各示例中所示的第一下凹部和凸起部106;还可同时包括第一下凹部和凸起部106。且在本实施例的一些示例中,路径延长部101所包括的第一下凹部的个数可以根据需求灵活设置。例如,在一些示例中,路径延长部101可为在基板10上设置的一个第一下凹部,从而保证路径延长部101的外侧面与第一安装部103外边缘的发光单元21之间的距离L1,小于第一安装部103上相邻的发光单元21之间最小间距的1/2。在另一些示例中,路径延长部101可为在基板10上设置的一个凸起部106,或在基板10上相邻设有一个凸起部106和一个第一下凹部,且凸起部106和第一下凹部的尺寸可在保证路径延长部101的外侧面与第一安装部103外边缘的发光单元21之间的距离L1,小于第一安装部103上相邻的发光单元21之间最小间距的1/2的前提下,灵活设置。
以上各示例中所示的路径延长部101,使得第一封装层31与基板10边缘之间接触的界面呈非单一直线的结构,由此延长了水汽从第一封装层31与基板10之间接触界面的边缘进入模组内部的侵入路径,水汽难以进入显示模组的内部路径延长部101与第一封装层31之间也更不容易分层,封装效果更好。此外,还可保证显示模组的边沿线与显示区域之间的距离足够小,多个显示模组拼接显示时,可减小显示模组之间的拼接缝隙,缩小拼接后各显示模组之间第一安装部的距离,显示屏的显示效果更好。并且 L1小于L2的1/2,可保证显示模组上位于第一安装部103外周的非显示部分的面积足够小,减小显示模组之间的拼接缝隙。
在本实施例中的又一示例中,当路径延长部101包括第一下凹部时,可设置第一下凹部的深度大于或等于第一安装部103上相邻的发光单元之间间距L2的1/2。该尺寸的第一下凹部既可实现路径的延长,也可保证基板10位于路径延长部101处的强度。一种示例中,还可设置第一下凹部的深度与第一下凹部的宽度的比值可为但不限于2-20,从而进一步提升延长路径。当然,应当理解的是,第一下凹部的以上尺寸并不限于上述示例,还可根据具体应用需求灵活的替换为其他尺寸,在此不再一一赘述。
本实施例的又一些应用示例中,当路径延长部101包括凸起部106时,可设置凸起部106高出基板正面的高度小于发光单元21的高度和/或小于第一封装层31的最大厚度,从而更有利于显示模组呈现好的显示效果。且可选地的,在一些应用中,为了防止凸起部106对光线的影响,可在凸起部106的表面上设置光反射层或折射层,从而进一步提升显示效果。
在本实施例中,为了进一步提升延长路径,且提升第一封装层31与基板10之间结合的紧密度,可设置路径延长部101的表面呈凹凸状,或设置路径延长部101的表面为粗糙面。该凹凸状或粗糙面的设置,可以进一步提升延长路径,同时提升第一封装层31与路径延长部101的结合的强度,进一步避免外部的水汽进入。为了便于理解,下面结合几种示例的路径延长部101的表面呈凹凸状进行说明。
参见图2-13所示,该图所示的路径延长部101为凹槽105,当然,也可为凹槽切掉一部分剩余的凹部,设置凹槽105的底面为凹凸状,当然也可根据需求设置凹槽105的至少一个侧面为凹凸状。例如参见图2-14所示,该图所示相对于图2-13主要区别在于凹槽105为V形凹槽,且凹槽105的侧面都设置为凹凸状。
参见图2-15所示,该图所示的路径延长部101为凸起部106,该凸起部106的顶面和至少一侧面呈凹凸状。应当理解的是,本实施例中其他各图所示的路径延长部101也可参考上述图2-13至图2-15所示,将其表面设置为凹凸状或粗糙面。
本实施例中,路径延长部101可以为环绕在第一安装部103外周完整的环形结构,该环形结构与第一安装部103外沿形成的形状对应,其可以是但不限于矩形、多边形、圆形、椭圆形的结构。在一些应用示例中,上述环形结构也可为由多段组合而成的非完整的环形结构。路径延长部101可以是一个环绕第一安装部103的环形结构,也可以是由多圈构成的环绕第一安装部103的环形结构,为多圈时,工艺切割线104位于最外圈的路径延长部101上。
本实施例还提供了一种显示屏,该显示屏为拼接显示屏,其由至少两个上述各示例所示的显示模组拼接而成,如图2-21所示。应当理解的是,本实施例中采用的显示模组的数量可根据应用需求选择,例如可选择将两个、三个、四个、五个或六个以上的显示模组进行拼接得到显示屏,该显示屏的显示模组不易受到水汽的入侵,显示的发光单元更不容易失效,延长了显示屏的使用寿命。并且,由多个显示模组拼接的显示屏中,显示模组之间的拼接缝隙小,提高了显示屏的显示效果。
实施例二
针对显示模组中,边缘的LED芯片距离基板边沿较近,且封装层仅覆盖基板正面,水汽很容易通过封装层与基板之间的界面进入到显示模组内部,从而导致LED芯片失效,且封装层与基板之间容易出现分层,降低了显示模组的可靠性的问题。本实施例还提供了能解决该问题的其他显示模组结构示例。且应当理解的是,本实施例所提供的显示模组可以独立于其他各实施例单独实施。
本实施例提供的显示模组的一种示例参见图3-1图3-3所示,其中图3-1为显示模组的俯视图(为了便于理解对其作了透视处理),图3-2为显示模组的仰视图;图3-3为沿图3-1中A3-A3的剖视图。如图所示,本示例中的显示模组包括基板12、若干发光单元22,若干发光单元22均安装在基板正面设置的显示区域121内。本实施例中基板正面的显示区域121是在设有供发光单元22电连接以驱动控制发光单元22点亮进行显示的区域,且该区域还用于承载发光单元22。本实施例中的发光单元22所包括的LED芯片数量、发光颜色以及尺寸和类型等,以及基板12的材质、形状和尺寸等可参见但不限于前述实施例,在此不再赘述。基板背面设有线路功能区122,在线路功能区122上安装有驱动控制发光单元22的驱动电子元件42。基板正面的显示区域121上设有覆盖所有发光单元22的封装层,其中该封装层包括覆盖于基板正面的第二封装层321,还包括第三封装层322。第三封装层322覆盖第二封装层321,并向基板背面延伸且将基板12的侧面123的至少一部分覆盖,从而将第二封装层321与基板12的结合处覆盖在内,参见图3-3所示,因此可避免水汽直接从第二封装层321与基板12的结合处进入显示模组内部;另外当使用环境存在水汽时,水汽需经过第三封装层322与基板12的侧面123之间的结合区域才能延伸到第二封装层321与基板12的结合处,因此可延长水汽侵入显示模组内部的路径,可进一步对发光单元22形成更好的保护,可进一步提高显示模组的可靠性。应当理解的是,本实施例中第三封装层322将基板12的侧面123覆盖的具体区域大小,可根据应用需求灵活设置,例如第三封装层322可以将基板12的侧面123仅覆盖一部分,第三封装层322也可将基板12的侧面全部覆盖,以进一步延长水汽侵入显示模组内部的路径,提升显示模组的可靠性。
应当理解的是,在本实施例中,第二封装层321和第三封装层322的具体形成方式可采用但不限于模压、印刷、灌封等方式实现,在此对其不做限制。第二封装层321和第三封装层322都为透光层,二者的材质可相同(例如二者都可为透明胶层),也可不同。且第二封装层321和第三封装层322可都为单层结构,也可设置其中的至少一个为由至少两个子层形成的复合层结构。
在本实施例的一些示例中,第二封装层321和第三封装层322中的至少之一中,可以根据需求设置光转换颗粒和扩散颗粒中的至少一种。例如,在一种应用场景中,第二封装层321中可以设置光转换颗粒,以实现光颜色的转换,而第三封装层322中可以设置扩散颗粒,以进一步提升出光效率。
在本实施例的一些示例中,可以先在基板正面上的显示区域121内设置好发光单元22,然后在基板正面上形成第二封装层321,所形成的第二封装层321可以将基板正面全部覆盖,例如参见图3-3所示,其中第二封装层321将基板正面全部覆盖,且在制作时,参见图3-4所示,可以在基板正面上的显示区域121内设置好发光单元22后,在基板正面上形成第二封装层321,然后沿着工艺切割面124切割基板12和第二封装层321,得到图3-3中的基板12以及基板12上的第二封装层321。
在本实施例的另一些示例中,第二封装层321可以将基板正面部分覆盖,例如参见图3-5所示,其中第二封装层321仅将基板正面的显示区域121及该显示区域121内的发光单元22覆盖,第三封装层322则将基板正面外露于第二封装层321的区域覆盖。在制作时,参见图3-6所示,可以在基板正面上的显示区域121内设置好发光单元22后,在基板正面上形成第二封装层321,第二封装层321将基板12的正面103未全部覆盖,然后沿着工艺切割面124切割基板12和第二封装层321,得到图3-5中的基板12以及基板12上的第二封装层321。
当然,应当理解的是,本实施例中第二封装层321覆盖基板12的区域可以根据应用需求灵活设置,并不限于上述示例的情况,在此不再一一赘述。且在本实施例的上述示例中,先切割第二封装层321和基板12后,再成型第三封装层322,成型的第三封装层322向基板12的侧面123延伸,并完全或部分覆盖住基板12的侧面123,可以通过第一封装胶层保护发光单元22,避免切割时灰尘等影响到发光单元22,进一步提升制作的显示模组的可靠性。第三封装层322则对第二封装层321和发光单元22形成保护,且使得水汽需经过第三封装层322与基板12的侧面123之间的界面及第二封装层321与基板正面之间的界面,才能进入显示模组的显示区域121,延长了水汽侵入显示模组内部的路径,对发光单元22的保护更好,发光单元22更不容易故障,提高了显示模组的可靠性。
根据图3-4或图3-6所示可知,第二封装层321可以覆盖至基板12的工艺切割面124甚至超出工艺切割面124,也可不超出工艺切割面124。切割后第二封装层321的侧面与基板12侧面123可齐平,也可不齐平,如图3-6所示,第二封装层321的侧面也可位于基板12的工艺切割面124内,切割后在未成型第三封装层322之前,基板正面边缘有部分外漏,再成型第三封装层322使第三封装层322覆盖住基板正面边缘外漏的部分,同时完全覆盖或部分覆盖基板12的侧面123即可。
在一种示例中,为了进一步延长水汽侵入显示模组内部的路径,还可在基板12的显示区域121的外周设置第二下凹部125,该第二下凹部125的设置相对于平面结构,可以进一步延长水汽侵入显示模组内部的路径。本实施例中的第二下凹部125可以为一个完整的凹槽,也可以为凹槽被切割一部分后形成的凹部。具体可根据应用需求灵活设置。
例如,一种示例参见图3-7所示,基板正面上位于显示区域121的外周设有第二下凹部125,该第二下凹部125为凹槽被切割一部分后形成的凹部。例如参见图3-8所示,可以在基板12上位于显示区域121的外周设有凹槽,然后沿着工艺切割面124进行切割。在切割后,凹槽的剩余部分位于基板12的边缘形成第二下凹部125,使得基板12的侧面123形成台阶结构。此时,第二封装层321或第三封装层322与基板12之间接触面积增大,也可延长水汽从封装胶层与基板12之间界面进入的路径,显示模组的封装效果更好。图3-7中,水汽入侵的路径为:第三封装层322与基板12的侧面123之间的界面至第三封装层322与第二下凹部125的槽底与槽壁之间的界面,再至第二封装层321与基板正面之间的界面,实现了水汽侵入路径的延长。
本实施例中,第二下凹部125的深度可灵活设置,例如可设置为但不限于基板12厚度的0.1至0.9倍。可以理解的是,第二下凹部125的深度为第二下凹部125的底部到基板正面之间的距离。第二下凹部125的深度设置的越大,水汽从第三封装层322与基板12之间界面进入的路径延长的就越大。
在本实施例中,第二封装层321可以覆盖基板12上的第二下凹部125,也可不覆盖基板12上的第二下凹部125。例如,参见图3-7所示,第二封装层321未将基板12上的第二下凹部125覆盖。制作图3-7所示的显示模组时,参见图3-8所示,可先在基板12的正面上形成第二封装层321,但第二封装层321不覆盖凹槽。然后沿着工艺切割面124进行切割,切割后得到图3-7中所示的基板12和第二封装层321,然后再在基板12上形成第三封装层322,第三封装层322将第二下凹部125全部覆盖。
又例如,参见图3-9所示,第二封装层321将基板12上的第二下凹部125覆盖。制作图3-9所示的显示模组时,参见图3-10所示,可先在基板正面上形成第二封装层321,第二封装层321覆盖凹槽。然后沿着工艺切割面124进行切割,切割后得到图3-9中所示的基板12和第二封装层321,然后再在基板12上形成第三封装层322,第三封装层322则不再将第二下凹部125覆盖。图3-9中水汽入侵的路径为:第三封装层322与基板12侧面123之间的界面至第二封装层321与第二下凹部125的槽底与槽壁之间的界面,再至第二封装层321与基板正面之间的界面,也可实现水汽侵入路径的延长。
当然,在本实施例中,并不限于通过设置第二下凹部125来延长水汽进入的路径,也可将第二下凹部125替换为凸台,或替换为第二下凹部和凸台的组合(也即替换为凹凸结构)。为了进一步延长水汽进入的路径,还可设置第二下凹部125或凸台的表面为粗糙面,例如可设置为台阶面或锯齿面,既能进一步延长水汽进入的路径,还可提升封装胶层与基板12之间的结合强度。在本实施例中,当将第二下凹部125替换为凸台,或替换为第二下凹部和凸台的组合时,可设置凸台不高于发光单元22的顶出光面,从而避免凸台对发光单元22的顶出光面所发出的光形成遮挡或其他干扰,以保证出光效果。当然,在本实施例的另一些示例中,也可设置凸台高于发光单元22的顶出光面,从而对发光单元22的顶出光面发出的至少一部分光形成遮挡,在将多个显示模组进行拼接形成显示屏时,可在一定程度上避免相邻显示模组之间出现光串扰的情况。
本实施例中,第二封装层321的折射率大于或等于第三封装层322的折射率。由此可以提升发光单元22的出光效率,显示模组的显示效果更好。例如,在一些应用场景中,第二封装层321的折射率可以选择为1.50-1.58,第三封装层322的折射率可以选择为1.50-1.52。
在由至少两个显示模组拼接显示时,上述图3-4、图3-6、图3-7和图3-10示例的预定的工艺切割面124与基板12上最边沿的发光单元22之间的距离C1可以小于相邻行的发光单元22之间的行间距的C2的一半。此时可保证拼接缝隙足够小,可保证显示模组的边沿线与显示区域之间的距离足够小,多个显示模组拼接显示后,可减小显示模组之间的拼接缝隙,使得显示屏的一体性和显示效果更好。在由单独的显示模组显示时,工艺切割面124与基板12上最边沿的发光单元22之间的距离能够达到好的显示效果即可,本实施例不作具体限定。
为了达到更好的密封效果,第三封装层322还可沿着基板12的侧面123延伸至基板背面,使第三封装层322覆盖住基板12的侧面123及基板背面。由此基板12的侧面123便不会存在水汽侵入口,显示模组的密封效果更好。
本实施例还提供了一种显示屏,该显示屏包括上述各示例所示的显示模组。在一种应用示例中,可仅采用一个上述显示模组制作得到显示屏,在另一种示例中,可采用至少两个显示模组拼接得到拼接显示屏,一种示例的拼接效果参见图2-21所示。该显示屏的显示模组不易受到水汽的入侵,显示模组不易出现故障,保证了显示屏好的显示效果,延长了显示屏的使用寿命;同时由多个显示模组拼接显示时,拼接的缝隙也小,显示效果更好。
实施例三
显示模组的一种典型应用场景是将多个显示模组拼接在一起组成一个大的显示屏进行显示。由于显示模组具有一定的厚度和刚性,在二维平面内拼接时比较容易实现无缝或小缝隙拼接。但在某些特殊应用场景下,需要将多个显示模组拼接成曲面结构,这时多个显示模组之间必然存在较为明显的拼接缝,特别当拼接曲面的曲率较大时,拼接缝也变得更大,这会大大影响了画面的连续性和感官效果。
针对上述问题,本实施例提供了一种新型的显示模组以及该显示模组的基板。且应当理解的是,本实施例中的显示模组和基板可以独立于其他实施例单独实施。为了便于理解,本实施例下面对基板以及采用该基板制得的显示模组进行示例说明。
本实施例提供的基板可用于承载及设置发光单元,例如该发光单元可设于基板正面;该基板正面还用于承载封装层,本实施例中的封装层包括设于基板正面将发光单元覆盖的第四封装层。基板的至少一个侧面为与其他显示模组的基板拼接的拼接侧面,拼接侧面靠近基板背面的区域内缩形成避让区,拼接侧面靠近基板正面的区域作为拼接区,当两个基板通过拼接区拼接至两个基板的背面呈大于0°,小于180°的预设夹角时,两个基板拼接侧面的避让区相互不干涉。应当说明的是,避让区相互不干涉可以是相互不接触,也可以是相互接触但不干涉,当避让区相互不接触时,避让区部分形成一定的间隙。应当说明的是,当两个基板通过拼接侧面拼接时,两个基板的拼接区相互靠近拼接,两个基板的背面可以以夹角小于180°的方式拼接,在基板正面一侧看的视觉效果是拼接区向外略凸出,由于有避让区的存在且避让区是靠近基板背面的区域内缩形成,使得两个基板背面可以更靠近,从而两个基板的拼接区更靠近,两个基板拼接区之间形成的拼接缝变得更小。示例性的,如图4-1,为本实施例提供的一种采用该基板制得的显示模组的截面示意图。其中,发光单元23设置在基板正面上,第四封装层34将基板13正面的发光单元23覆盖的同时将基板13正面区域全部覆盖,驱动电子元件43设置在基板背面,基板13的左右两个侧面为拼接侧面,当基板13与其他显示模组的基板拼接时,靠近基板正面的拼接区131与其他显示模组的基板对应的拼接区进行拼接,靠近基板背面的区域内缩形成避让区132不接触其他显示模组的基板,应当说明的是,当两个基板拼接时,从基板正面一侧观察视觉可见的两个背板最靠近的区域,避让区132之间形成拼接缝。基板13的拼接侧面可通过包括但不限于切割、裁剪、机加工等方式形成,如图4-1中虚线部分是被切割掉部分。
应当说明的是,如图4-2所示为图4-1所示的两个基板拼接的局部放大示意图,图中β为两个基板的背面的夹角,该夹角是两个基板在拼接时所形成的角度,本领域技术人员可以根据实际情况和需求对该夹角进行设置,例如,本实施例中夹角β可以设置为160°、85°、60°等,其可以为大于0°,小于180°的任意角度,该夹角的具体角度本申请不做限定。
在一些示例中,第四封装层34的覆盖区域还包括如图4-3、图4-4所示,第四封装层34的厚度可控制在150微米至300微米,例如可为150微米。图4-3所示的第四封装层34将全部的发光单元23覆盖形成为一个整体,图4-4所示的第四封装层34单独覆盖每一个发光单元23,当然也可两种设置方式结合,本实施例对其不做限定。可以理解的是,在一些示例中,基板13的拼接侧面可根据需求设置为一个、两个、三个或四个,例如,如图4-5所示的基板13只有一个拼接侧面。本实施例提供的基板13尤其适用于较厚的基板的拼接,效果更加明显,在将多个显示模组进行曲面拼接时,可大大提升拼接后显示画面的连续性和用户的体验度。
应当说明的是,本实施例中该基板正面和基板背面的线路采用以下设计:基板正面的线路布置面积S1大于等于背面的线路功能区134的面积S2,以使得S1:S2=1.1至1.5,如图4-6所示,例如一种示例中, S1:S2=1.5。本实施例中基板的材质可参考但不限于上述各实施例所示,在此不再赘述。
在一些示例中,基板13的避让区132内缩为斜面。应当说明的是,该斜面可以是平面、弧面,以及平面和弧面相结合,当该斜面是平面时,可以是如图4-1所示的结构,在一些应用场景中,斜面是平面还可为如图4-7、图4-8所示,如图4-7所示,斜面是以基板背面与侧面的交线进行倒角切割,并刚好切割到基板正面与该侧面的交线处,如图4-8所示,斜面是以基板背面与侧面的交线进行倒角切割,并将基板正面与该侧面的交线完全切除;当该斜面是弧面时,如图4-9所示为斜面是弧形其中的一种结构,其是将靠近基板背面的避让区切割成一个弧形;当该斜面是平面和弧面相结合时,如图4-10所示为斜面是平面和弧面相结合其中的一种结构,其是将靠近基板背面的避让区切割成一个斜面和弧面相结合的形状,应当说明的是,斜面是弧形或斜面和弧形相结合还包括与斜面为平面时类似的其他两种切割方式,本实施例不再赘述,应当说明的是,当基板13上存在多个拼接侧面时,各拼接侧面上的避让区132的形状、尺寸中的至少之一可相同,也可不同,以适应不同拼接需求。
一些示例中,基板13的避让区132也可内缩为台阶面。如图4-11所示,将靠近基板背面的避让区132切割成一个矩形,该矩形的面积大小,本领域技术人员可以根据实际情况和需求进行设置。应当说明的是,避让区132为台阶面还可以包括至少两个台阶面,如图4-12所示,将靠近基板背面的避让区切割成包括台阶面T1和台阶面T2的阶梯形,本领域技术人员可以根据实际情况和需求设置台阶面的个数。
图4-7至图4-12所示的示例中,各避让区132可对基板13去除掉虚线所围合的区域形成。
一些示例中,当避让区132为斜面时,该斜面的倾斜角度可设置为大于等于5°,小于等于60°,具体倾斜角度可以根据实际情况和需求进行设置,例如如图4-1中所示,该斜面的倾斜角度设置为60°,当然也可根据需求设置为5°,10°,30°,45°,50°等。
一些示例中,可设置基板正面和基板背面均为矩形,该基板的四个侧面中的一个、两个、三个或四个为拼接侧面。
本实施例中,显示模组的封装层还可包括覆盖在第四封装层34之上的第五封装层。例如一种示例参见图4-13所示,该显示模组为在图4-1所示的显示模组基础之上,增设了第五封装层35。又例如另一示例参见图4-14所示,该显示模组为在图4-11所示的显示模组基础之上,增设了第五封装层35。上述各示例中,第五封装层35将第四封装层34和基板13的拼接侧面全部覆盖,从而提升显示模组整体的密封性和可靠性,此时第五封装层35的外侧面则作为新的拼接侧面;相应的,第五封装层35覆盖拼接区131的部分作为新的拼接区,覆盖避让区132的部分则作为新的避让区。应当理解的是,在一些实施方式中,第五封装层35也可设置不覆盖基板13的侧面,或将基板13侧面的一部分(例如可仅覆盖拼接区131)覆盖。
在制作图4-13和图4-14所示的显示模组时,第五封装层35覆盖的区域可包括图4-15和图4-16中T3所示的区域,然后将该部分切除从而分别制得图4-13和图4-14所示的显示模组,通过设置第五封装层35,可延长水汽进入显示模组内部的路径,增加显示模组的气密性,且使得第四封装层34不易从基板上脱离,提升了显示模组的可靠性。
本实施例还提供一种显示装置,该显示装置包括至少拼接在一起的两个上述各示例所示的显示模组。一种拼接效果示意图如图4-17所示,在拼接时,各显示模组12可通过转接件连接,本实施例中转接件包括插接件51与转接板52,应当说明的是,插接件51与转接板52的连接可为可拆卸连接,也可以为不能拆卸的固定连接,例如通过紧固件、胶水、焊接等进行连接,只要能实现将二者进行连接即可。然后可再将转接板52通过包括但不限于铜柱53或螺钉或焊接等固定方式安装固定在需要安装的地方。
又一示例的显示装置参见图4-18所示,在图4-17的基础上,当相邻显示模组的拼接侧面的避让区之间的夹角大于0°时,两个拼接区之间存在容纳空间,此时两个基板之间的连接还包括连接件54,连接件54的嵌入部与夹角配合,填充避让区之间的容纳空间,并与拼接区接触,连接件54可以起到加强显示装置的作用,同时使得在安装显示模组时,便于两个基板快速定位,提高安装效率,连接件54与拼接区配合的部分还可以对拼接区起到支撑的作用,使得显示模组在拼接侧面上也得到支撑,结构紧凑,强度更好。
实施例四
本实施例提供了显示模组的制作方法,该制作方法可用于但不限于制作上述各实施例中所示的显示模组,也可单独实施制作不同于上述各实施例所示的显示模组。制得的显示模组可以单独使用,也可多个拼接在一起组成大的显示屏。
本实施例一种示例的显示模组制作方法包括以下步骤:
步骤a1:提供基板。提供的基板14包括基板正面Z(图5-1所示),与基板正面Z相对的基板背面B(图5-2所示),以及位于基板14周围的工艺边141,在基板正面Z定义出用于安装发光单元的显示区域142(图5-1中虚线所框定的斜线覆盖的区域)。本实施例中,基板14为矩形基板,且基板正面Z和基板背面B均为平面。图5-1中工艺边141包围显示区域142的四个侧面,在别的实施例中,根据实际情况和加工要求,工艺边141也可以围绕显示区域142的其中一条或两相对或相邻的侧边,在此不做限制。在别的实施例中,基板14还可以为其他多边形基板,例如三角形或正六边形,在此不做限制;基板正面Z还可以呈现为有规律的或经过特殊设计的凹凸面,以营造特殊的视觉效果,例如波浪形效果,或浮雕效果,可根据需要展示的效果进行设置,在此不做限制。
步骤b1:参见图5-3和图5-4所示,于工艺边141临近(即位于显示区域142与工艺边141的交界处)显示区域142周围开设凹槽144(图5-3中围绕在虚线框区域外侧的斜线框覆盖的区域所示,凹槽144位于工艺边141一侧),其中,凹槽144未穿透基板14(图5-4所示),且凹槽144的深度大于未穿透部分的基板的厚度;本实施例中,凹槽的形状为矩形槽,且垂直于基板正面,便于加工,在别的实施例中,参考图5-9所示,凹槽144的形状也可以为“V”形槽,在现有加工工艺可以满足的范围内,本实施例对凹槽144的形状不做限定,例如还可以为倒梯形、U形等。凹槽144可以通过机加工或刻蚀等方法将未被掩膜遮挡的位置部分蚀除形成。
步骤c1:参见图5-5和图5-6所示,在显示区域142上贴装发光单元阵列20,本实施例中多个发光单元24呈矩形等距阵列设置。图5-5中虚线所包围的区域内,示意性的示出5行9列的发光单元阵列,在别的实施例中还可以有其他类型的阵列方式;为了保证显示模组的发光均匀,会对发光单元阵列20的发光单元24的行间距值或列间距值进行设计,发光单元24的行间距值或列间距值是指相邻行/列的发光单元24所在行或列的中心线的直线距离,一般固定于均一数值,当然,也可以不固定均一数值,如出于散热的考虑,靠近基板14中驱动电子元件44附近的发光单元24的行间距值相对于远离LED驱动电子元件44的发光单元的行间距值会更大,但基于发光均匀的考量,相邻行或列的发光单元的行间距值是逐渐变化的,但为了保证显示模组的视觉效果,因此在视觉上没有明显的不一致,故本实施例的等距分布是指在视觉上看起来间距是相等的,而不限定于精细测量概念上的等距分布。且本实施例此处的等距分布,应当根据显示效果要求来理解,例如,若显示效果要求在仅在横向上或纵向上等距,则本实施例的发光单元24在也可仅在横向上或纵向上等距分布而不一定要在横向上和纵向上均等距分布。本实施例中发光单元24可以是包括LED芯片,也可以是包括具有封装结构的LED封装体,本实施例的发光单元24以LED芯片为例,LED芯片可以适宜地在可见光的波长范围内选择发光芯片,如红光LED芯片、绿光LED芯片和蓝光LED芯片。一个发光单元24可仅包括一个红光LED芯片或一个绿光LED芯片或一个蓝光LED芯片,也可以为包括红光LED芯片、绿光LED芯片和蓝光LED芯片中的一个或多个组成的封装体。
步骤d1:参见图5-7所示,在基板14上模压第一封装层31,其中,第一封装层31覆盖显示区域142,并填充凹槽144。第一封装层31可为透光树脂如环氧树脂,硅氧烷树脂。第一封装层31最好由硬质材料制成,以保护发光单元24。另外,第一封装层31优选使用具有良好耐热性,耐候性和耐光性的树脂通过例如转印模塑,压缩模塑等工艺形成。
步骤e1:结合图5-8所示所沿工艺边141一侧(即沿着图5-7中虚线所示的位置)切除部分工艺边141,切割时垂直于基板正面切割,以在显示模组外侧形成一切割面P,使得切割后,封装胶层的外侧面与位于工艺边的基板的外侧面共面,且使得显示区域142所在平面上离切割面P(即剩余的部分工艺边141的最外侧面)最近的发光单元24的中心点到切割面P的距离h小于或等于与切割面P平行的两排发光单元之间的行间距值(即两排发光单元中的中心线距离)H的1/2。从而本实施例的显示模组200拼接成一块大屏幕(参考图5-19所示,为四块显示模组200拼接成的一块大屏幕的示例;参考图5-14所示为两相邻显示模组200拼接的截面结构示意图)后,拼接缝两侧的发光单元24之间的距离H’和与切割面P平行的两排发光单元之间的行间距值H相等或大致相等,各发光单元阵列20在视觉上看起来是连续的,各发光单元24发光均匀。
需要说明的是,本实施例中的步骤可依次执行,也可以在不冲突的情况下,有的步骤次序可以变换或增加新的操作步骤,例如步骤b1和步骤c1可以互换。上述方法中,工艺边141是在制作显示模组200时用于被相应的治具夹持,避免在加工过程中损伤基板14或其他安装在基板14上的零部件;工艺边141在显示模组200装配过程中可以部分切除,不影响最终显示模组200的显示效果。在产品使用或运输过程中,为了阻碍水汽从显示模组的外部通过第一封装层31和基板14的结合处进入,本实施例在工艺边141一侧沿着显示区域142周围开设凹槽144,第一封装层31填充到凹槽144内,从而增加了第一封装层31与基板14的接触面积,使得水汽路径可以沿基板14的厚度方向延伸,延长了水汽侵入的路径,使得水汽不容易进入显示区域142内与发光单元24接触,减少水汽对发光单元24造成损害,同时凹槽144还增加了第一封装层31和基板14的接触面积,提升了第一封装层31和基板14之间的结合力。从而延长发光单元24的使用寿命,且本实施例中由于显示区域142所在平面上离切割面P最近的发光单元24的中心点到切割面P的距离h小于或等于与切割面p平行的两排发光单元之间的行间距值H的1/2,使得显示模组200在拼接时,参考图5-19所示,拼接缝的两侧的发光单元的距离H’(即拼接处两排发光单元之间的行中心距)与相邻两排发光单元24之间的行间距值H相等或大致相等,使得拼接后的显示屏,发光均匀,解决了现有技术存在的问题。此外本实施例提供的制作方法,巧妙利用基板14的工艺边141,仅在工艺边141上设置凹槽144,且在模压第一封装层31时填充凹槽144,即可提升显示模组200的防水汽性能,实施难度低,生产效率高。
优选的,本实施例中,参考图5-7所示,在步骤e1中沿着工艺边141一侧切除部分工艺边141时从该凹槽144处切除,使得第一封装层31的外侧面与位于工艺边141的基板14的外侧面共面。参考图5-8所示,切割后的显示模组一侧至少保留部分凹槽144和部分工艺边141。图5-7中切割位置位于凹槽144的中部,此时切割后的凹槽144底面和显示模组200的外侧面(即切割面,也即被切割过的工艺边141的外侧面)相连通;本实施例的显示模组通过切割面P进行拼接。为了缩小拼接缝,切割时应靠近显示区域142,故在凹槽144处切割可缩小拼接缝,便于显示模组拼接。
具体地,本实施例中,如图5-4所示,在步骤b1中开设的凹槽144有一条,但在别的实施例中,在步骤b1中开设的凹槽144有也可以为多条,参考图5-12a所示的基板14上开设了4条凹槽144,相应的,在图5-12a所示的基板14上模压第一封装层31并切割掉部分工艺边后形成的显示模组200的截面结构参考图5-12b所示。为了延长水汽侵入显示区域142的路径,当然是尽可能开设多一些凹槽144,但是,在拼接缝要求很小的时候,受限于工艺精度和基板14的材料强度,凹槽144无法开设太多,但至少应该开始一条凹槽144。可根据实际情况确定,在此不做限定。
具体地,参考图5-4,本实施例中凹槽144的内壁较为光滑,而在别的优选实施例中,在步骤b1中开设的凹槽144靠近显示区域142一侧的侧壁凹凸不平。优点是可以增加第一封装层31与侧壁的结合面积,使得二者结合更加紧密,不容易脱离。例如在别的实施例中,参考图5-10所示,凹槽144靠近显示区域142一侧的侧壁为阶梯状,使得第一封装层31与基板14的结合力更好;参考图5-11所示,凹槽144靠近显示区域142一侧的侧壁为锯齿状,使得第一封装层31与基板14的结合力更好,同时也可以增加水汽侵入显示区域142的路径。此外凹槽144靠近显示区域142一侧的凹凸不平的侧壁还可以通过蚀刻形成,进一步增加水汽的延伸路径。
参考图5-2和图5-13,本实施例中,在步骤c1中还可包括:在基板背面B定义出用于安装电子驱动元件的驱动安装区143(图5-2中虚线所框定的斜线覆盖的区域);在驱动安装区143贴装驱动电子元件44(图5-13所示)。驱动电子元件44与发光单元24通过设置在基板14内的预制电路电连接,用于驱动发光单元24发光,无需再额外设置驱动电路,使得显示模组的集成度更高。其中电子驱动元件可以包括电阻、电容、电感和集成电路等。
本实施例中,在步骤e1中,剩余的部分工艺边141的厚度和凹槽144的深度之比为2至20之间。剩余部分工艺边141的厚度即凹槽144未穿透基板14的部分的厚度;而凹槽144的深度,即凹槽144开口处至凹槽底部的距离,由于凹槽144的作用是为了延长水汽侵入显示区内的发光单元,所以,凹槽144应尽可能深一些,但是也不能太深而导致工艺边141与基板14连接处的强度不足,在实际应用中,剩余的部分工艺边141的厚度和宽度之比为2至20之间比较合适。
本实施例中,基板14的厚度为1至5mm 。本实施例中,基板14可以选用印刷电路板或玻璃基板或其他类型的基板,可根据使用环境需求选择合适的基板。本实施例优选印刷电路板。基板上可以设置有预制电路,显示区域142和驱动安装区中可设置金属焊盘,便于发光单元24和驱动电子元件44采用SMT(表面贴装)工艺贴装。若基板14的厚度太薄则凹槽144的深度太浅使得水汽路径太短,故为了尽可能延长水汽路径,凹槽144应尽可能深且基板14应尽可能厚,但是基板14太厚会增加显示模组的体积,无法实现轻薄化,在实际应用中基板14的厚度为1至5mm比较合适,可以选用多层印刷电路板,由多层绝缘基板和多层电路层交替设置形成。
显示模组在长期使用过程中,可能会出现由于第一封装层与基板的膨胀系数失配(例如基板的膨胀系数与透光封装胶体的膨胀系数差别太大,导致温度升高时,基板和透光封装胶体的膨胀程度不同,本实施例中,第一封装层的膨胀系数远大于基板的膨胀系数)而导致第一封装层与基板之间出现较大的间隙而使得气密性降低,从而导致水汽很容易通过第一封装层与基板的界面进入到模组内部,导致发光单元失效。本实施例中,第一封装层由透光胶体中混合纳米粉体材料(优选纳米粉体材料的粒径为5nm至200nm)形成混合胶体(混合时优选为均匀混合,使得混合物各部分的特性一致)以改善第一封装层的膨胀系数,使其与基板的膨胀系数缩小差距。本实施例中,选用环氧树脂或硅胶或硅树脂;选用纳米二氧化硅粉体或纳米氧化铝粉体或纳米钨酸锆粉体材料或者三种材料中至少两种材料的混合物作为混入透光胶体的纳米粉材料。由于纳米二氧化硅粉体、纳米氧化铝粉体、纳米钨酸锆粉体材料的膨胀系数远小于环氧树脂、硅胶和硅树脂的膨胀系数,特别是纳米钨酸锆材料是负膨胀系数材料,使得混合后的形成的透光封装胶体的膨胀系数降低,缩小与基板的膨胀系数的差距。本实施例的通过将纳米粉体材料添加到透光胶体中进行改性,可以有效调节环氧树脂、硅胶和硅树脂的膨胀系数,使环氧树脂、硅胶和硅树脂与基板的膨胀系数失配得到改善,从而增加第一封装层与基板的气密性,使显示模组在长期使用过程中,防止由于气密性降低而导致水汽通过封装胶与基板的界面进入到模组内部,导致LED芯片失效或胶层与基板分层。
本实施例提供了另一种显示模组的制作方法,包括以下步骤:
步骤a2:提供基板,该基板与上述步骤a1中提供的基板类似,在此不再赘述。
步骤b2:于工艺边临近显示区周围开设凹槽,其中,凹槽未穿透基板,且凹槽的深度大于未穿透部分的基板的厚度;本实施例中的步骤b2与实施例一中的步骤b1相同,可参考上述实施例一中关于步骤b1的描述,在此不再赘述。
步骤c2:在显示区域上贴装发光单元,并在显示区域模压第二封装层32;本实施例中不同于步骤c1,本实施例中,参考图5-15所示,本实施在显示区域142贴装发光单元阵列20后,先模压第二封装层32;且第二封装层32覆盖显示区域内的发光单元24,以便于在步骤d2中切除部分工艺边时,避免因切割导致的振动使得发光单元24发生松动。
步骤d2:参考图5-16所示,沿工艺边141一侧切除部分工艺边,以在显示模组外侧形成一切割面P’,且使得显示区域所在平面上离切割面P’最近的发光单元24的中心点到切割面P’的距离小于与切割面P’平行的两排发光单元之间的行间距值的1/2。
步骤e2:参考图5-17,在基板上模压第三封装层33,其中,第三封装层33覆盖第二封装层32和基板正面Z(即位于基板正面Z上方,直接或间接与基板正面Z接触),并填充凹槽144,延伸覆盖切割面P’至与基板背面B平齐,且使得显示区域142所在平面上离第三封装层33最外侧面最近的发光单元24的中心点到第三封装层33最外侧面的距离h1小于或等于与第三封装层33最外侧面平行的两排发光单元之间的行间距值H1的1/2。
本实施例中第三封装层33填充凹槽144且包覆至驱动安装区(即基板14基板背面B)一侧,使得水汽路径与实施例一相比更长,因此虽然本实施例相比实施例一而言,步骤更加复杂,但是防水汽效果更好。
需要说明的是,本实施例的上述方法中的步骤可依次执行,也可以在不冲突的情况下,有的步骤次序可以变换或增加新的操作步骤。本实施例中在切除工艺边之前,先在显示区域上贴装发光单元24,并在显示区域模压第二封装层32,对发光单元进行保护,使得在切割工艺边时,避免发光单元因为切割引起的基板震动而导致发光单元24脱离基板14,而切割工艺边后模压第三封装层33可填充到凹槽内,并包覆至背面的驱动安装区,从而增加了第一封装层与基板外侧的接触面积,延长了水汽路径,使得水汽不容易进入显示区内与发光单元24接触,从而延长发光单元24的使用寿命。结合图5-17和图5-18,由于显示区域所在平面上离第三封装层33最外侧面最近的发光单元24的中心点到第三封装层33最外侧面的距离小于或等于与第三封装层151最外侧面平行的两排发光单元24之间的行间距值的1/2,使得用于拼接的显示模组在拼接时,拼接缝两侧的发光单元之间的距离H’和与切割面平行的两排发光单元之间的行间距值H相等或大致相等,不会影响拼接后的显示效果,使得拼接后的显示屏,发光均匀。此外巧妙利用基板的工艺边,仅在工艺边上设置凹槽,且先模压第二封装层32,再模压第三封装层33时填充凹槽,即可提升显示模组的防水汽性能,实施难度低,生产效率高。
本实施例中,在模压第二封装层32时,未填充凹槽144,这样在切割时可减小切割阻力。但是在别的实施例中,也可以在模压第二封装层32时就先填充凹槽144。在别的实施例中,参考图5-20,第三封装层33还可以延伸到基板背面B表面上。还可以在基板背面B开设背部凹槽145,使得第三封装层33也填充背部凹槽145,进一步延长水汽路径,且进一步增强基板与第一封装层的结合力。
本实施例中,第三封装层33的折射率大于第二封装层32的折射率,使得发光单元24发出的光线经过第二封装层32和第三封装层33的折射后向外扩散的角度变大,有利于打散光线,使得出光效果更加均匀。
在本实施例的另一示例中,参考图5-21,在上述步骤b2中,凹槽144可围绕着显示区域142周围开设的(参考图5-3所示),即凹槽144在基板的基板正面Z开设。而本示例中,背部凹槽145开设于基板背面B。参考图5-22,在模压第二封装层32后,从背部凹槽145处切除部分工艺边,然后再模压第三透光封装层33。本实施例中,水汽路径延长至与基板14基板背面B平齐,比实施例一提供的显示模组的水汽路径更长,且第三透光封装层33与基板14的结合更加紧密。
由于基板背面B没有安装发光单元24,而基板背面B如果安装驱动电子元件44也不需要均匀分布,故基板背面有足够的空间开设背部凹槽,且背部凹槽的形状可以设计得更大一些。例如,参考图5-23,背部凹槽145为倒“V”槽,被切割后(图5-23中,基板14两端的虚线所示为被切除的部分)最终在基板14侧面形成一向基板基板背面B中间倾斜的斜面1451。而这样的好处是可以实现如参考图5-24所示的立体拼接,即除了可以实现平面拼接以外,还可以实现成角度拼接。图5-24所示为两块显示模组呈90°拼接,当然,也可以在大于90°小于等于180°的范围内拼接,斜面1451可避免呈角度拼接时两显示模组在拼接处产生干涉。从而本实施例的显示模组的实用性更好,适用范围更广。
参考图5-19所示,在本实施例中,还提供了一种利用上述各示例中的显示模组拼接而成的LED显示屏,显示模组200通过接插件(未图示)与转接板(未图示)连接,然后将转接板通过铜柱与结构外框紧密固定,形成拼接缝很小的LED显示屏。
实施例五
采用COB封装技术制作显示模组时,COB集成封装可以做到更小的点间距,能够带来更优秀的显示效果。COB显示封装产品的技术优势主要有两点:其一,COB属于模块化封装,整个产品表面全由胶体封装保护,有效降低封装界面,提升产品可靠性;其二,采用COB集成封装其技术在更小间距领域有着天然的技术优势。然而,针对目前倒装COB显示封装类产品而言,产品的对比度及安装成屏幕后的黑色显示效果不佳,熄屏后的墨色不一致等行业痛点问题突出。目前行业通常做法为在封装胶内添加黑色成分,来达到封装后的高对比度效果,但往往带来模块间的墨色不一致问题。导致了COB显示封装产品整屏对比度和亮度偏低,显示效果不佳。
针对上述问题,本实施例提供了一种可提升整屏对比度和亮度的显示模组,本实施例提供的显示模组可以独立于其他实施例单独实施。本实施例提供的显示模组的一种示例如图6-1所示,其包括基板15,设于基板正面上的若干发光单元25,每个发光单元25包括多颗LED芯片251;覆盖于基板正面上的第一黑胶层51,第一黑胶层51将基板正面上位于各发光单元25之间的第一区域151,以及位于各发光单元25内的各LED芯片251之间的第二区域152覆盖,且各LED芯片251的顶出光面外露于第一黑胶层51;设于基板正面上,将第一黑胶层51和各发光单元25覆盖的第六封装层36。应当说明的是,如图6-1所示在基板背面设置了电子元件45,以用于驱动LED芯片251进行发光。可以理解的是,在实际应用中,LED芯片251可以是通过焊接设置于基板正面,也可以是通过贴装设置于基板正面,具体设置方式本实用新型不做限定。第六封装层36在基板上可以通过包括但不限于注塑、点胶、模压等方式形成,使得其与第一黑胶层51和发光单元25之间紧密结合。一些示例中,第六封装层36可以仅将基板正面的发光单元25全部覆盖,还可同时将整个基板正面全部覆盖,应当说明的是,第六封装层36可以包括但不限于添加一定比例的扩散粒子,以改善其出光效果,例如可以添加一定比例的扩散粉、荧光粉等。
在一些示例中,显示模组还包括防潮层52,防潮层52包括以下至少之一:设于第一黑胶层51与基板正面之间的第一防潮层521;覆盖各LED芯片251的第二防潮层522。例如如图6-2所示为一种显示模组的防潮层截面结构示意图,应当说明的是,图6-2是将第一防潮层521设置于第一黑胶层51与基板正面之间,如图6-3所示另一种显示模组的防潮层截面结构示意图,图6-3的第二防潮层522将各LED芯片251覆盖,上述防潮层52可以包括但不限于通过模压、热压的方式形成,当然防潮层52的设置还可以包括同时设置在第一黑胶层与基板正面之间以及覆盖各LED芯片,例如如图6-4所示为又一种显示模组的防潮层截面结构示意图,图6-4中的防潮层52同时设置在与基板正面之间和覆盖各LED芯片251,LED芯片251的侧面为位于其顶出光面和底面之间的面。
在一些示例中,如图6-4所示的防潮层52,其包括了第一防潮层521和第二防潮层522,第一防潮层521和第二防潮层522可以包括但不限于一体成型,还可以是非一体成型,应当说明的是,当第一防潮层521和第二防潮层522是非一体成型时,在设置第一防潮层521和第二防潮层522时,二者的交界处应紧密连接,防止水汽进入。应当说明的是,防潮层52可以包括但不限于高分子纳米层,可完全防止水分子的侵入,并且还可以很好的与晶片、PCB板以及封装胶水结合,提高其机械强度,同时其还不会影响到显示效果,提升了用户的使用满意度。     在一些示例中,如图6-8a所示,位于第一区域151内的第一黑胶层51的顶面511,与基板正面和位于第二区域152内的第一黑胶层51的顶面512均为平行的。而在图6-8b所示为的显示模组示例中,其位于第一区域151内的第一黑胶层51的顶面511靠近发光单元25的区域还可以为倾斜面或曲面,其第一黑胶层51的顶面511的最大高度小于LED芯片251的顶出光面的高度,以使得LED芯片251的侧面被覆盖的区域更大,从而可以显著地减少发光单元之间的窜光,当然例如如图6-6a和图6-6b所示为另一种显示模组示意图,该显示模组中第一黑胶层51的顶面511的高度大于LED芯片251的顶出光面的,防止发光单元之间相互窜光,影响显示效果,通过将发光单元之间的第一黑胶层的高度设置为比LED芯片的顶出光面的高度高,使得各个发光单元之间在混光时不会影响到其他的发光单元,使得显示效果更佳。应当说明的是,如图6-7所示为又一种显示模组的意图,第一黑胶层51的顶面511还可以是向基板正面下凹的曲面,且第一黑胶层的顶面511的最大高度与LED芯片的顶出光面的高度相同,也即第一黑胶层可沿着LED芯片的侧面向其顶出光面延伸,并最终与该顶出光面齐平。
在一些实施例中,例如如图6-8a和图6-8b所示为另一种显示模组的示意图,其位于第二区域152内的第一黑胶层51的顶面512还可以为向基板正面下凹的曲面。应当说明的是,位于第二区域内的第一黑胶层的顶面512不高出LED芯片的顶出光面,由于第二区域位于发光单元25内的各LED芯片之间,若第二区域内的第一黑胶层顶面的高度高出了LED芯片的顶出光面的高度,此时LED芯片的混光效果就会受到大大的影响,甚至无法混光的情况,为了提升其混光的效果和显示效果,第二区域内的第一黑胶层顶面应该不高出LED芯片的顶出光面。
应当说明的是,本实施例中的第一区域内和第二区域内的第一黑胶层的顶面可以同时都是平行于基板正面,也可以同时都是向基板正面下凹的曲面或斜面,还可以是第一区域内的第一黑胶层顶面是平行的,第二区域内的第一黑胶层顶面是向基板正面下凹的曲面或斜面,还可以是第一区域内的第一黑胶层顶面是向基板正面下凹的曲面或斜面,第二区域内的第一黑胶层顶面是平行的,当然还可以是第一区域内和第二区域内的部分第一黑胶层顶面是平行的,其他部分区域是向基板正面下凹的曲面或斜面,本领域技术人员可以根据实际情况和需求进行设置,在此不做限制。
应当说明的是,本实施例中的一个显示模组中可以包括但不限于第一区域内的第一黑胶层顶面的高度高出LED芯片的顶出光面的高度,且第二区域内的第一黑胶层顶面的高度低于LED芯片的顶出光面的高度,还可以包括第一区域内的第一黑胶层顶面的高度低于LED芯片的顶出光面的高度,且第二区域内的第一黑胶层顶面的高度低于LED芯片的顶出光面的高度,当然还可以是第一区域内的第一黑胶层顶面的高度等于LED芯片的顶出光面的高度,且第二区域内的第一黑胶层顶面的高度等于LED芯片的顶出光面的高度等,本领域技术人员可以根据实际情况和需求对第一区域内和第二区域内的第一黑胶层顶面的高度进行设置,只要第二区域内的第一黑胶层顶面高度不高于LED芯片的顶出光面的高度即可,本实施例不做限定。较优的,本实施例中第一区域内的第一黑胶层顶面高度高于LED芯片的顶出光面的高度,以防止发光单元之间相互窜光。应当说明的是,第一黑胶层的顶面高出LED芯片的顶出光面是指第一黑胶层的顶面的至少一部分高出LED芯片的顶出光面,同时第一黑胶层的顶面不高出LED芯片的顶出光面是指第一黑胶层的顶面的任何一部分都不高出LED芯片的顶出光面,但可以包括其至少一部分与LED芯片的顶出光面齐平。应当说明的是,第一区域内和第二区域内的第一黑胶层平行于基板正面或向基板正面下凹,与第一区域内和第二区域内的第一黑胶层的高度是可以有多种组合方式的,本领域技术人员可以根据实际情况和需求进行设置。
本实施例中发光单元25所包括的LED芯片的数量、发光原色、尺寸等可参考但不限于其他实施例中发光单元的设置,在此不再赘述。
一些实施方式中,第一黑胶层51为模压在基板正面上的模压黑胶层或热压在基板正面上的热压黑胶层。在一些示例中,若第一黑胶层51为模压在基板正面上的模压黑胶层时,可选取PCB材质的基板,清洗并除潮后将LED芯片固定在PCB基板正面,并在PCB背面贴上电子元件,经过一段时间的老化验证,确保所有LED芯片都能正常点亮,然后将黑胶层模压至覆盖LED芯片表面并烘烤固化,再通过包括但不限于化学蚀刻、物理蚀刻将表面黑胶蚀刻,直至芯片表面完全裸露,最后在模压黑胶层及LED芯片表面再模压一层封装层,以提升产品的可靠性并达到混光的效果。在一些示例中,若第一黑胶层51为热压在基板正面上的热压黑胶层,可将事先制作好的热压黑胶膜片热压至基板和LED芯片表面并烘烤固化,热压黑胶膜片热压后与LED芯片的四周形成向基板正面下凹的形状,再将LED芯片表面的热压黑胶膜片通过包括但不限于化学蚀刻、物理蚀刻的方式进行蚀刻,直至LED芯片的表面完全裸露,保证LED芯片的顶出光面的出光正常,最后在热压黑胶膜片及LED芯片的表面再模压一层封装层,以提升产品的可靠性并达到混光的效果
本实施例中通过在基板正面上的发光单元之间和发光单元内的LED芯片之间设置不同高度以及不同形状的第一黑胶层,以增加其对比度和亮度,提升其显示效果,同时在第一黑胶层与基板正面上和LED芯片的表面上设置防潮层,以防止水汽的侵入,解决了显示模组的墨色一致性差、对比度差、受潮造成的失效的问题,提升了对比度和显示效果,大大提高了用户的使用满意度。
本实施例还提供一种显示屏,如图6-9所示,其中为了更加清楚的表达显示屏的结构,图中将封装层进行了透明处理。显示屏包括至少一个上述各示例所示的显示模组,例如图6-9所示为3个显示模组300拼合而成,相邻的两个显示模组通过包括但不限于固定支架、螺钉、胶水进行固定,应当说明的是,该显示屏的设置可以是设置为平面,也可以设置为曲面,具体设置方式本领域技术人员可以根据实际情况和需求进行设置,本申请不做限定。
实施例六
本实施例中的显示模组与实施例五中的显示模组相比,可以省略防潮层的设置。且本实施例中的显示模组可独立于上述各实施例单独实施。为了便于理解,本实施例中显示模组的封装层包括第七封装层以及设于第七封装层之上的第八封装层,其中,第七封装层为第二黑胶层(可采用但不限于上一实施例中所示的第一黑胶层),第八封装层为第一透光胶层(可采用但不限于上一实施例中所示的第六封装层)。但本实施例中的封装层是在各发光单元的LED芯片设于基板正面上后,压合在基板正面上所形成的。
本实施例提供的一种示例性的显示模组参见图7-1至图7-2所示,其包括基板16、设于基板上的发光单元,各发光单元包括至少一颗LED芯片26;显示模组的封装层包括第七封装层37和第八封装层38。可选地,本实施例中,显示模组还可包括覆盖于第八封装层38上的透明保护膜30。透明保护膜30的设置可进一步提升显示模组的防护性能。且本实施例中的透明保护膜的厚度也可根据需求灵活设置,例如可设置为但不限于10μm至300μm。应当理解的是,本示例中透明保护膜30可为由至少两层子胶层构成的复核层结构,也可为单层层结构;且透明保护膜30可采用但不限于透明胶层或塑料片等。
为了便于理解,本实施例下面对显示模组的制作方法进行示例,其包括但不限于:
步骤a3:制作基板和封装层。
在本实施例中,制作基板包括设置基板,在基板正面上设置各LED芯片;而在一些示例中,还可在基板背面上设置电子元件,也即在将封装层设有第七封装层的一面与基板正面压合之前,先在基板背面上设置电子元件。当然,在另一些示例中,也可在基板正面上形成好封装层之后,再在基板背面上设置电子元件。
在本实施例中,制作封装层包括设置第一承载膜,在第一承载膜上设置第八封装层,然后在第八封装层上设置第七封装层。应当理解的是,本实施例中在第一承载膜上设置第八封装层,以及在第八封装层上设置第七封装层所采用的工艺可灵活选用,例如可采用但不限于涂覆、丝印、印刷、模压等。
应当理解的是,本实施例中基板和封装层的可以同步制作,也可先制作基板,再制作封装层。或从上游直接采购基板和/或封装层。
应当理解的是,本步骤中在第一承载膜上依次设置的第八封装层和第七封装层可以处于固化状态,后续在将其与基板主体正面压合过程中对其进行加热使其由固化状态转变为半固化状态。当然,本步骤中在第一承载膜上依次设置的第八封装层和第七封装层也可以处于半固化状态,从而便于后续直接将其与基板主体正面压合,此时的压合可以采用热压合方式,也可采用其他压合方式,在此不再一一赘述。
步骤b3:将封装层设有第七封装层的一面与基板正面压合,在压合过程中,第一承载膜上依次设置的第八封装层和第七封装层处于半固化状态,各LED芯片的顶出光面逐渐露出第七封装层,而第八封装层覆盖在第七封装层和各LED芯片的顶出光面上。
在本实施例的一种示例中,可采用但不限于热压的方式,将封装层设有第七封装层的一面与基板正面压合。此时,可将封装层设有第七封装层的一面与基板正面贴合,并对封装层加热以及施加朝向基板主体的压力,将封装层向基板主体压合,在压合过程中,由于第八封装层和第七封装层处于半融化状态,同时其受到朝向基板主体的压力,使得各LED芯片的顶出光面逐渐露出第七封装层。
在本实施例中的一些示例中,为了提升良品率和制作效率,可提供一基板夹具,基板夹具设有与基板相适配的容纳腔。在将封装层设有第七封装层的一面与基板正面压合时,可将基板固定于基板夹具上,固定后,基板主体被固设于基板夹具的容纳腔中,且基板背面朝向容纳腔的底部,基板正面及各LED芯片朝向容纳腔的顶部开口,以供封装层设有第七封装层的一面贴合。在本示例中,当在将封装层设有第七封装层的一面与基板正面压合之前,先在基板背面上设置了电子元件时,在容纳腔的底部还设置有与各电子元件对应的容纳槽,将基板固定于基板夹具上后,各电子元件位于对应的容纳槽中。可见,本实施例采用的基板夹具结构简单、便于制作且成本低。
参见以上制作方法可知,由于本实施例采用的第七封装层具有一定的粘性,更容易与基板主体、LED芯片结合,可提升气密性,能对LED芯片形成更好的保护;同时在压合过程中可利用第七封装层的流动性将基板主体与LED芯片等之间的缝隙进行充分填充,可进一步提升对比度。
本实施例通过将第八封装层和第七封装层依次设置在第一承载膜上,并一次压合到基板主体上,相比于在基板主体上先设置第七封装层,再在第七封装层上设置第八封装层的方式,可简化工艺,提升制作效率并减低制作成本;且将第八封装层和第七封装层一次压合到基板主体上,第七封装层和第八封装层的整体性更好,更利于提升压合致密度。且本实施例不需要通过在基板正面上额外通过喷涂黑色油墨层等方式而将其设置为黑色,可进一步简化制作工艺,降低制作成本,同时由于省略黑色油墨层可降低显示面板的厚度。
在本实施例的一些示例中,封装层中的第一承载膜可直接设置为透明保护膜,在本示例中,将封装层设有第七封装层的一面与基板正面压合后,可保留第一承载膜,所保留的第一承载膜则为在第八封装层上所形成的透明保护膜,此时不需要对第一承载膜去除,也不需要采用额外的在第八封装层上制作透明保护膜,可进一步简化制作工艺,提升制作效率以及降低成本。
当然,在本实施例的另一些示例中,将封装层设有第七封装层的一面与基板正面压合后,也可去除第一承载膜,然后在第八封装层上依次贴合一个或多个预制胶片形成透明保护膜。当然,也可通过但不限于涂覆、模压、丝印或印刷等方式在第八封装层上形成透明保护膜。且在本示例中,第一承载膜也可替换为承载基板。
为了便于理解,本实施例下面以图7-3所示的显示模组的两种制作方法为示例进行说明。一种示例的制作方法参见图7-4至图7-11所示,其包括但不限于:
步骤a4:制作图7-4所示的封装层。
例如,一种示例中,先把第一承载膜62的膜片(该模块可为透明名片)放平。第一承载膜62的厚度范围为10μm 至300μm,厚度均匀度范围1%至10%。透光率范围为30%至100%。然后在第一承载膜62上依次设置两层胶水。先设置透光胶水形成第八封装层38,第八封装层38的厚度范围为5μm至300μm。厚度均匀度范围为1%至10%,透光率范围为30%至100%。再在第八封装层38上设置黑色胶水形成第七封装层37,第七封装层37的厚度范围为5μm至200μm,厚度均匀度范围为1%至10%,透光率范围为0%至30%。形成的封装层结构如图7-4所示。本示例中步骤a4所形成的第七封装层37和第八封装层38可处于半固化状态,也可处于固化状态。
在本示例中,第七封装层37的厚度的具体取值,可在尽可能保证第七封装层37不会将LED芯片26的顶出光面覆盖导致其出光效率低的情况下,又能使得第七封装层37尽可能多的将LED芯片26的侧面覆盖的基础上,进行灵活设定。从而使得第七封装层37在与基板正面压合过程中,处于半固化状态的第七封装层37受挤压穿过对应的LED芯片26时挂留在LED芯片26的侧面上的部分所形成的外面表371为倾斜面或曲面,以更好的避免各LED芯片之间的窜光影响,且可进一步提升对比度以及提升良品率。
步骤b4:制作图7-5所示的基板。
一种示例中,包括在基板正面上完成LED芯片26的固晶。本示例中可采用各种芯片转移方式(例如巨量转移方式)将LED芯片26转移至基板正面上,该LED芯片26可为但不限于正装、倒装或垂直LED芯片,LED芯片26的出光颜色可包含红、绿、蓝、白等中的至少一种。LED芯片26的间距为200μm 至1000μm。
步骤c4:制作图7-6所示的基板夹具6。
参见图7-6所示,本示例中的基板夹具6包括与基板相适配的容纳腔61,本示例中容纳腔61的底部未设置容纳电子元件46的容纳槽。本实施例中基板夹具的材质可采用但不限于金属、陶瓷或其他材质,在此不再赘述。
步骤d4:将制作的基板固定于基板夹具6上,固定后的一种状态参见图7-7所示。基板夹具6对基板进行固定,可保持基板处于平稳状态。
步骤e4:将封装层设有第七封装层37的一面与基板正面贴合,贴合后的一种状态参见图7-8所示。
步骤f4:对封装层加热以及施加朝向基板16的压力,将封装层向基板16压合,在压合过程中,由于第七封装层37受热处于半融化状态,同时其受到朝向基板16的压力,使得各LED芯片26的顶出光面逐渐露出(即穿出)第七封装层37,且挂留在LED芯片26的侧面上的部分所形成的外面表371为倾斜面或曲面。参见图7-9和图7-10所示。
步骤g4:参见图7-11所示,在第七封装层37和第八封装层38等固化后,去除基板夹具6,并在基板背面设置电子元件46。
另一种示例的制作方法参见图7-12至图10-8所示,其包括但不限于:
步骤a5:制作图7-12所示的基板。
在本示例中,包括在基板正面上完成LED芯片26的固晶,并在基板背面上设置好电子元件46。
步骤b5:制作图7-13所示的基板夹具6。
参见图7-13所示,本示例中的基板夹具6包括与基板相适配的容纳腔61,本示例中容纳腔61的底部设有容纳电子元件46的容纳槽63。
步骤c5:将制作的图7-12中的基板固定于图7-13所示的基板夹具6上,固定后的一种状态参见图7-14所示,基板16背面上的电子元件46容纳于容纳槽63中,基板夹具6对基板进行固定,可保持基板处于平稳状态。
步骤d5:将封装层(本示例中仍采用图7-4所示的封装层)设有第七封装层37的一面与基板正面贴合,贴合后的一种状态参见图7-15所示。
步骤e5:对封装层加热以及施加朝向基板16的压力,将封装层向基板16压合,在压合过程中,由于第七封装层37受热处于半融化状态,同时其受到朝向基板16的压力,使得各LED芯片26的顶出光面逐渐露出(即穿出)第七封装层37,参见图7-16和图7-17所示。
步骤f5:在第七封装层37和第八封装层38等固化后,去除基板夹具6,得到图7-6所示的显示模组。
在本实施例中的应用场景中,上述两种示例的制作方法中,当第一承载膜62直接设置为透明保护膜30时,可保留该透明保护膜30。而当第一承载膜62不是设置为透明保护膜30时,则可在第七封装层37压合到基板16上后,去除第一承载膜62后,再在第八封装层38上设置透明保护膜30。当然,在制作图7-1至图4所示的显示模组时,本示例中也可将第一承载膜62去除。
可见,本实施例提供的显示模组的制作方法,可采用胶片生产工艺,通过压合的方式,使COB LED技术中的LED芯片的顶出光面露出第七封装层,采用的第七封装层具有一定的粘性,更容易与基板主体、LED芯片结合,可提升气密性,能对LED芯片形成更好的保护;同时在压合过程中可利用第七封装层的流动性将基板主体与LED芯片等之间的缝隙进行充分填充,这样在基板正面上, LED芯片之外的其它区域全部填充为黑色,因此可进一步提升对比度。且LED芯片的顶出光面上覆盖的为第八封装层,降低了透光损失率。
另外,由于不需要通过在基板正面上额外通过喷涂黑色油墨层等方式而将其设置为黑色,可简化制作工艺,降低制作成本,以及由于省略黑色油墨层可降低显示面板的厚度。同时第八封装层上还设有透明保护膜,可以优化显示性能,提高防护效果。因此本实施例提供的显示模组及其制作方法,兼顾了高对比度,低透光率损失,高防护性。
实施例七
相关技术中, LED芯片通过焊盘焊接于基板上后,焊盘的一部分未被LED芯片覆盖,而在焊接过程中,所采用的焊接锡膏在熔化后会变成银色并覆盖在焊盘的表面,而银色存在反光特性,导致显示屏在黑屏的时候不够黑,降低了显示屏的对比度,影响显示效果。针对该问题,一种做法是在LED芯片的表面封装一层覆盖LED芯片及焊盘表面的黑色胶层,通过该黑色胶层将银色外表面遮盖以期望提升对比度。但是,该黑色胶层会导致LED芯片的出光率下降,且会增加LED芯片的功耗和发热量。本实施例提供了一种可解决该技术问题的焊接膏,且该焊接膏可适用于上述各实施例中LED芯片与基板上对应焊盘的焊接。当然,应当理解的是,本实施例中的焊接膏并不限于应用于显示模组,也可应用于其他应用场景。
本实施例提供的焊接膏包括混合在一起的金属焊料、助焊剂以及黑色素;且本实施例中,黑色素的密度小于金属焊料的密度,从而保证在焊接膏被加热融化以用于焊接的过程中,在金属焊料的团聚效应下,该黑色素可被挤出至焊接膏的表面,从而使得焊接膏的表面呈现为黑色。因此在将该焊接膏应用于LED芯片的焊接时,可保证LED芯片与基板上对应的焊盘焊接后,覆盖在该焊盘表面上的焊接膏的表面呈现为黑色,相对于现有覆盖在该焊盘表面上的焊接锡膏的表面呈现为银色,本实施例可利用黑色的光学特性吸收射入的光线,从而避免焊盘因其表面呈现为银色反光,可提升对比度的同时,且不需要采用额外的工艺,或额外的在LED芯片的表面上设置黑胶层结构,因此还可简化结构并降低成本。
在本实施例的一些示例中,黑色素可以颗粒的物理形态混合于焊接膏中,且在一些应用场景中,这些颗粒可均匀的混合于焊接膏中。当然,在另一些应用场景中,这些颗粒也可呈非均匀状态的混合于焊接膏中。在本实施例中,黑色素以颗粒的物理形态混合于焊接膏中时,这些颗粒尺寸可以设置为微米级或纳米级,也即,此时的黑色素可包括但不限于微米级非金属黑色颗粒和纳米级非金属黑色颗粒中的至少之一。也即在本示例中,黑色素可包括都是微米级的非金属黑色颗粒,或包括都是纳米级的非金属黑色颗粒,也可根据需求设置为既包括微米级的非金属黑色颗粒,又包括纳米级的非金属黑色颗粒。且具体的尺寸可根据具体应用场景需求设置。
在本实施例的另一些示例中,黑色素也可不以颗粒的物理形态存在于焊接膏中。例如黑色素可以溶解于焊接膏中。
本实施例中,金属焊料的团聚效应,是指焊接膏在焊接过程中,受热熔化时,焊接膏中的金属焊料下沉附着在待焊接的对象(例如焊盘和芯片的电极)上,而焊接膏中的黑色素则在的金属焊料下沉过程中受到相对的挤压而上浮,最终被挤出至焊接膏的表面,从而附着于焊接膏的表面使其呈现为黑色。在本实施例中,为了保证焊接膏的表面为黑色的深度满足要求以及为了保证焊接膏的表面上黑色分布的均匀性,可设置黑色素在焊接膏中的重量比为1%至1.4%。例如可设置黑色素在焊接膏中的重量比为1%、1.1%、1.12%、1.15%、1.2%、1.25%、1.3%、1.35%或1.4%等。
本实施例中,黑色素可以采用各种能达到上述目的的黑色材料,例如可以采用但不限于碳。当黑色素以颗粒的物理形态混合于焊接膏中时,本实施例中的黑色素则包括混合于焊接膏中的碳颗粒,且该碳颗粒的粒径可以为微米级,例如小于等于2微米的碳颗粒,也可为纳米级,例如可为小于等于500纳米的碳颗粒等。
在本实施例中,焊接膏包括的金属焊料可为但不限于锡合金焊料,此时本实施例中的焊接膏也可称之为锡膏。且应当理解的是,本实施例中锡合金焊料的材质可灵活设置,例如锡合金焊料可采用含铅焊料合金,如锡-铅系合金、锡-铅-铋系合金或锡-铅-银系合金等;锡合金焊料也可采用无铅焊料合金,例如锡-银系合金、锡-铋系合金、锡-锌系合金、锡-锑、锡-银-铜系合金或锡-铋-银系合金等。
在本实施例中,焊接膏的助焊剂可包括但不限于以下至少之一:
树脂:通过设置树脂可加大焊接膏粘附性,可对待焊接的对象起到很好的固定作用,而且有保护和防止焊后的焊盘再度氧化的作用;
触变剂:可通过设置触变剂调节焊接膏的粘度以及印刷性能,且可起到在印刷中防止出现拖尾、粘连等现象的作用;
活化剂:可通过设置活化剂去除焊盘表层及待焊接对象(例如LED芯片的电极)焊接部位的氧化物质的作用,同时具有降低锡、铅表面张力的功效;
溶剂:该成份是焊剂组份的溶剂,在焊接膏的搅拌过程中可起调节均匀的作用。
为了便于理解,下面以图8-1所示的焊接膏为示例进行说明。在图8-1所示的示例中,焊接膏为包括锡合金焊料的锡膏64,锡膏64内包含作为黑色素的碳颗粒65,锡膏64在焊接过程中,受热熔化时,锡膏64中的金属焊料下沉附着在待焊接的对象上,而焊接膏中的碳颗粒65则在的金属焊料下沉过程中受到相对的挤压而上浮,最终被挤出至锡膏64的表面,从而使得表面呈现为黑色,也即使得覆盖在焊盘的表面上的锡膏64的表面呈现为黑色,因此可提高对比度,提升照明或显示效果。
本实施例还提供了一种基板,参见图8-2所示,基板17的基板正面上设有用于焊接LED芯片的电极的焊盘171。应当理解的是,本是实施例中焊盘171的数量以及在基板17正面上的排列方式,可根据应用需求灵活设置。例如可设置多个焊盘171,且多个焊盘171在基板17上呈阵列设置,或相邻行的焊盘171之间交错设置等。在本实施例的一些示例中,焊盘171的材质可采用但不限于铜、银、金等。本实施例中,焊盘171可用于但不限于与LED芯片的电极电连接。且本实施例中的LED芯片可参考但不限于上述各实施例所示的LED芯片,在此不再赘述。且本实施例中的基板17可为但不限于上述各实施例中的基板。
参见图8-2所示,本实施例中基板17上的各焊盘171上还设有焊接膏172。本实施例中焊接膏172设于各焊盘171上的方式可灵活选用,例如可通过但不印刷、模压等方式。由于焊接膏172中包括黑色素,因此在将LED芯片的电极与对应的焊盘171焊接后,焊接膏172中的黑色素在金属焊料的团聚效应下挤出至焊接膏172的表面,使得该表面呈现为黑色,因此可提高利用该基板制得的显示模组的对比度。
参见图8-3所示,在本实施例的一些示例中,为了进一步提升利用图8-2所示的基板制得的显示模组的对比度,还可在基板正面上,位于焊盘171之外的区域设置黑色遮蔽层173。本实施例中的黑色遮蔽层173可为但不限于黑色胶层、黑色油墨层,且为黑色胶层时,可通过但不限于模压等工艺形成;为黑色油墨层时,可通过但不限于喷涂等工艺形成。通过黑色遮蔽层173的设置,避免基板17正面焊盘171之外的区域因反光而降低显示模组的对比度,可进一步提升显示或照明效果。
通过图8-2或图8-3所示的基板制作显示模组时,由于预先在各焊盘171上设置了焊接膏172,因此只需件LED芯片与对应的焊盘171对位设置焊接即可。但应当理解的是,在一些示例中,也可不在各焊盘171上预先设置焊接膏172,而是在LED芯片的电极上预设包覆焊接膏172。当然,在有一些示例中,还可在基板上的焊盘171以及LED芯片的电极上都预设焊接膏172,具体可根据应用需求灵活选用,在此不再一一赘述。
另外,应当理解的是,在本实施例的一些应用场景中,基板背面根据需求也可参照其正面的焊盘171对应设置焊盘,且基板背面上的焊盘上也可预置焊接膏172,或不预置焊接膏172。此时的基板17可用于制作双面发光的显示模组。
本实施例还提供了一种显示模组,该显示模组可作为显示面板应用于显示领域,也可作为照明光源应用于照明领域。其包括上述各示例所示的基板,还包括LED芯片, LED芯片的电极通过焊接膏焊接于焊盘上,焊接膏将焊盘覆盖,且黑色素位于焊接膏的表面,可避免焊盘上覆盖的锡膏为银色而反光,导致对比差的情况发生。
例如,一种示例的显示模组参见图8-4和图8-5所示,其中图8-5所示为图8-4中单颗LED芯片在基板上的焊接结构的示意图。显示模组包括图8-3所示的基板,还包括设于基板正面上的若干发光单元,且各发光单元至少包括一颗LED芯片27,各LED芯片27的电极271通过焊接膏焊接与各自对应的焊盘171上。其中,焊接膏在加热融化的过程中,焊接膏中的金属焊料下沉并分别附着在焊盘171和LED芯片27的电极271上形成金属焊料层174,而焊接膏中的黑色素则在的金属焊料下沉过程中受到相对的挤压而上浮,最终被挤出至焊接膏的表面,从而附着于焊接膏的表面形成黑色素层175,进而使得焊盘171之上的区域呈现为黑色。参见图8-6所示的实物参考图,焊盘之上的表面为黑色的黑色素层175,而不再为银色外表面。图8-4和图8-5中所示的LED芯片27为倒装芯片,应当理解的是其也可替换为其他类型的LED芯片。
在本实施例中,当图8-6所示的显示模组作为显示面板时,为了实现彩色显示,可设置显示模组中一个发光单元作为一个像素点,且支持发出红光、绿光与蓝光。本实施例中可将设置于同一像素点处的LED芯片的集合称为一个发光单元,参见图8-6中的标记K所示。所以,在本实施例的一些示例中,一个发光单元中包括三颗LED芯片27,在另一些示例中,一个发光单元中可以包括数目更多的LED芯片。
参见图8-7所示,在本实施例的一些示例中,显示模组还可包括设于基板主体正面上,将各LED芯片覆盖在内的封装层37;本实施例中的封装层37可采用但不限于上述各实施例所示的封装层。且该封装胶层的透光率可为但不限于30%至100%,其厚度可为20微米至1000微米。为了便于理解,本实施例还提供了一种显示模组的制作方法,请参见图8-8所示,其包括但不限于:
步骤a6:提供基板、LED芯片和焊接膏。
参见图8-8中的步骤a6所示,一种示例的基板包括基板17,基板17上设有焊盘171,以及黑色遮蔽层173。可以理解的是,黑色遮蔽层173可低于焊盘171,也可与焊盘171齐平或高于焊盘171。本示例中以LED芯片为倒装芯片进行示例说明。
步骤b6:在LED芯片的电极和焊盘之间设置焊接膏。
在本示例中,在LED芯片的电极和焊盘之间设置焊接膏可包括以下至少之一:
在LED芯片的电极上设置焊接膏;
在基板的焊盘上设置焊接膏。
例如,参见图8-8中的步骤b6所示,在基板17正面上的各焊盘171上设置焊接膏172。在本示例中,可选择在LED芯片的电极上不再设置焊接膏,也可根据需求选择在LED芯片的电极上也设置焊接膏。
步骤c6:将LED芯片的电极与焊盘对位设置。
应当理解的是,本步骤中,可通过但不限于各种芯片转移方式,例如巨量转移,将LED芯片转移至基板上并与对应的焊盘对位设置。一种对位设置的示例参见图8-8中的步骤c6所示,各LED芯片27的电极271与基板17上各自对应的焊盘171对位设置,焊接膏172则位于对应的焊盘171和电极271之间。
步骤d6:对焊接膏加热以将LED芯片的电极焊接于焊盘上,且焊接膏将焊盘覆盖,黑色素被挤出至焊接膏的表面。
例如参见图8-8中步骤d6所示,各LED芯片27的电极271通过焊接膏焊接与各自对应的焊盘171上。其中,焊接膏在加热融化的过程中,焊接膏中的金属焊料下沉并分别附着在焊盘171和LED芯片27的电极271上形成金属焊料层174,而焊接膏中的黑色素则在的金属焊料下沉过程中受到相对的挤压而上浮,最终被挤出至焊接膏的表面,从而附着于焊接膏的表面形成黑色素层175,进而使得焊盘171之上的区域呈现为黑色。
步骤e6:在基板上形成封装层。
例如参见图8-8中步骤e6所示,可采用但不限于模压、涂覆等方式,在基板正面上形成封装层5。
可见,本实施例提供的显示模组的制作方法,在制作工艺上不需要额外采用其他的特殊工艺,可不改变原有的生产工艺路线,制作过程简单、便捷;且制作得到的显示模组中,基板上的各焊盘的表面被黑色素层175覆盖而呈现为黑色,可提升显示模组的对比度,进而提升其显示或照明效果。且由于不再需要在LED芯片的表面设置黑胶层,降低了LED芯片透光损失率,以及降低了LED芯片的功耗和发热量。
实施例八
针对 LED芯片通过焊盘焊接于基板上后,焊盘的一部分未被LED芯片覆盖,而在焊接过程中,所采用的焊接锡膏在熔化后会变成银色并覆盖在焊盘的表面,而银色存在反光特性,导致显示屏在黑屏的时候不够黑,降低了显示屏的对比度,影响显示效果的问题。本实施例还提供另外一种可解决该技术问题的显示模组及其制作方法。且本实施例中的显示模组及其制作方法可独立于其他各实施例实施。
本实施例提供的显示模组的制作方法包括但不限于:
步骤a7:在基板正面设置若干发光单元。本实施例中基板正面上设有若干用于与发光单元的电极电连接的焊盘,且各焊盘的分布可以采用矩阵分布,当然也可根据需求设置为其他的分布方式,本实施例对其不做限制。在本实施例的一些示例中,焊盘的材质可采用但不限于铜、银、金等。本实施例中,基板正面上的焊盘可用于但不限于与发光单元的电极电连接,且发光单元的电极可通过但不限于焊料、导电胶与对应的焊盘电连接。应当理的是,本实施例中的发光单元和基板可参考但不限于上述各示例中的发光单元和基板,在此不再赘述。应当理解的是,本实施例中发光单元包括多颗LED芯片,LED芯片的具体排列方式可呈品字形排布、线性排布、中心对称排布等,本实施例对其不做限制。
步骤b7:将黑色基材的分子(本实施例也可称之为粒子)溅射到基板正面和各发光单元的表面(也即将发光单元的顶出光面以及其各侧面都覆盖,发光单元的顶出光面为其远离基板正面的一面,发光单元的背面为其靠近基板正面的一面,发光单元的侧面为其顶出光面和背面之间的各面),以形成将基板正面和各发光单元的表面覆盖的黑色沉积层(本实施例中也可称之为黑色分子层)。
本实施例中,将黑色基材的分子溅射到基板正面和各发光单元的表面,因此不再受基板正面以及在其正面设置发光单元之后的整体的平整度影响,溅射的分子可在需要形成黑色沉积层的区域沉积形成厚度均匀的黑色层,且分子可溅射至任意需要形成黑色沉积层的区域,因此不存在覆盖死角,从而保证形成的黑色沉积层的一致性,降低黑色沉积层各个位置的黑色色度差异,可提升采用该显示模组制得的显示屏的对比度,并可避免显示屏的侧视角发光出现花斑;同时该溅射工艺生产控制难度低,成品率高,可降低生产成本。为了便于理解,本实施例下面以几种示例的溅射工艺进行说明。
示例一:在真空通磁环境下,利用磁场引导离子轰击一种黑色基材,将该黑色基材的分子均匀溅射到基板正面和各发光单元的表面,从而沉积形成黑色沉积层;本示例中形成的黑色沉积层的一种示例结构参见图9-1所示。本示例中的黑色沉积层66由第一分子661沉积而成。
示例二:在真空通磁环境下,利用磁场引导离子同时轰击至少两种黑色基材,将至少两种的黑色基材的分子均匀溅射到基板正面和各发光单元的表面,从而沉积形成黑色沉积层。本示例中同时轰击至少两种黑色基材,因此这至少两种黑色基材的分子可同时溅射至需要形成黑色沉积层的区域,并沉积形成包括多种分子混合在一起的黑色层。本示例中形成的黑色沉积层的一种示例结构参见图9-2所示。本示例中的黑色沉积层66由同时溅射至预设区域内的第一分子661(来自第一黑色基材)和第二分子662(来自第二黑色基材)沉积而成。当然应当理解的是,本示例中并不限于对两种黑色基材的分子进行溅射而沉积形成黑色层,还可根据需求对三种或三种以上的黑色基材的分子进行溅射而沉积形成黑色层,本示例对此不再一一赘述。
示例三:在真空通磁环境下,利用磁场引导离子依次轰击至少两种黑色基材,将至少两种的黑色基材的分子依次均匀溅射在基板正面和各发光单元的表面,从而沉积形成黑色沉积层。本示例中依次轰击至少两种黑色基材,因此这至少两种黑色基材的分子可依次溅射至需要形成黑色沉积层的区域,并沉积形成包括多种分子的黑色层。本示例中形成的黑色沉积层的一种示例结构参见图9-3所示。本示例中,可先在t1时间段内利用磁场引导离子轰击第一黑色基材,将第一黑色基材的第一分子661均匀溅射在基板正面和各发光单元的表面以形成第一分子子层;然后在t2时间段内利用磁场引导离子轰击第三黑色基材,将第三黑色基材的第三分子663均匀溅射在基板正面和各发光单元的表面以形成第二分子子层;最后t3时间段内利用磁场引导离子轰击第二黑色基材,将第二黑色基材的第二分子662均匀溅射在基板正面和各发光单元的表面以形成第三分子子层。当然应当理解的是,本示例中并不限于对三种黑色基材的分子依次进行溅射而沉积形成黑色层,还可根据需求对两种或三种以上的黑色基材的分子依次进行溅射而沉积形成黑色层,且本示例中的以上各分子子层也可采用交替的方式设置,例如第一分子661和第二分子662交替形成相应的分子子层。本示例对此不再一一赘述。另外,本示例中不同靶材的更换可以采用但不限于人工更换,或设备自动更换的方式。
根据以上各示例可知,本实施例中的溅射工艺可以采用但不限于磁控溅射工艺,对形成的黑色沉积层的一致性和覆盖率的控制简单,制得的黑色沉积层的成品率高,且效率高,成本低。且本实施例中的黑色沉积层可由一种分子沉积而成,也可有两种以上的分子混合沉积(例如参见图9-2所示)或分层沉积(例如参见图9-3所示)而成,因此可以根据具体应用场景对黑色沉积层的透光率和黑色度等要求而灵活的对应设置黑色沉积层。尤其是上述示例二和示例三中的黑色沉积层包括至少两种分子,因此可以灵活的对黑色沉积层的黑色度和透光率等特性进行调和以满足应用需求,以保证对比度的同时提升显示效果。同时,应当理解的是,本实施例中并不限于采用磁控溅射工艺,也可采用其他能实现黑色沉积层的溅射工艺进行等同替换,本实施例对其不做限制。
本实施例中的上述黑色基材可灵活选用。例如,在一些示例中,本实施例中的黑色基材可包括但不限于氧化物、硅化物、氮化物和合成物中的至少一种,本实施例中的合成物可为但不限于氧化物、硅化物、氮化物中的至少两种的合成物。例如在一些应用场景中,可采用但不限于AZO基材、SiO2基材、SiO基材、SiC基材、Si₃N₄基材,或以上各基材中的至少两种的合成物基材中的至少一种。例如在图9-2所示的黑色沉积层66中的第一分子661可为但不限于以上各基材中的其中一种基材的分子,第二分子则可为以上各基材中的另一中基材的分子;图9-3中的所示的黑色沉积层66中的第一分子661、第二分子662和第三分子663则可分别为但不限于以上各基材中的其中三种基材的分子。且本实施例中以上示例的氧化物基材、硅化物基材、氮化物基材和合成物基材都是现有常规的材质,成本低且通用性好。
本实施例中制作的黑色沉积层的厚度也可根据对黑色沉积层的透光率以及黑色度要求等进行灵活设置。例如在一些应用示例中,形成的黑色沉积层的厚度为大于等于2纳米,小于等于300纳米,可见本示例中的黑色沉积层为超薄层,因此不会额外大量增加显示模组的整体厚度,利于显示模组的超薄化。
步骤c7:将各发光单元的顶出光面上的黑色沉积层的至少一部分去除。
本实施例中,在形成上述黑色沉积层后,还将各发光单元的顶出光面上的黑色沉积层的至少一部分去除,从而保证各发光单元通过其顶出光面的出光效率,当显示模组制作成显示屏时则可保证显示屏的显示亮度。应当理解的是,本实施例中对发光单元的顶出光面上的黑色沉积层是全部去除,还是仅去除一部分,以及去除一部分是时具体去除多少,可根据具体应用场景需求以及黑色沉积层的透光度灵活设置。例如当黑色沉积层不透光时(本实施例中的不透光是相对而言的,例如当黑色沉积层的透光率小于等于20%或10%等,则可认为其不透光),则可将各发光单元的顶出光面上的黑色沉积层全部去除;当然,即使黑色沉积层透光,也可根据具体需求将各发光单元的顶出光面上的黑色沉积层全部去除。当黑色沉积层透光时,如果将各发光单元的顶出光面上的黑色沉积层仅去除一部分,例如去除之前该部分黑色沉积层的厚度为d,去除之后该黑色沉积层的厚度为X*d,其中X的取值大于等于0,小于1,该X的具体取值则可根据当前对亮度的需求以及黑色沉积层自身的透光率、黑色度以及厚度灵活确定,本实施例对其不做具体的限制。
在本实施例中,黑色沉积层厚度最大的区域透光率最低,相应的黑色沉积层厚度最小的区域透光率最高,可设置黑色沉积层厚度最大的区域的透光率可设置为大于30%,具体取值可根据应用需求设置,例如一些应用场景中,可设置其透光率大于等于30%,小于等于50%。从而使得在提升对比度的同时,满足透光效率的需求,保证显示效果。
当然,在有一些应用场景中,还可根据需求将其中一部分发光单元的顶出光面上的黑色沉积层仅去除一部分,另一部分发光单元的顶出光面上的黑色沉积层全部去除;甚至将其中一部分发光单元的顶出光面上的黑色沉积层仅去除一部分,一部分发光单元的顶出光面上的黑色沉积层全部去除,剩余的一部分发光单元的顶出光面上的黑色沉积层则不做去除处理。具体可根据应用需求灵活设置。
应当理解的是,本实施例中黑色沉积层的去除方式也不做具体的限制。例如在一些应用示例中,在形成上述黑色沉积层之后,在进行下一工序之前,可直接对各发光单元的顶出光面上的黑色沉积层进行去除操作,且可采用但不限于激光去除的方式进行去除,激光去除具有效率和精准率高,工艺成熟以及成本低等优点。在本应用示例中,可采用激光直接将各发光单元的顶出光面上的黑色沉积层的至少一部分去除。例如可采用激光照射各发光单元的顶出光面上的黑色沉积层,以将各发光单元的顶出光面上的黑色沉积层的至少一部分去除。
又例如在另一示例中,将各发光单元的顶出光面上的黑色沉积层的至少一部分去除之前,还可包括:在黑色沉积层之上形成牺牲封装层,牺牲封装层为胶层;在本应用示例中,将各发光单元的顶出光面上的黑色沉积层的至少一部分去除可包括:将各发光单元的顶出光面上的牺牲封装层随各发光单元的顶出光面上的至少一部分黑色沉积层一起去除。本应用示例中可采用但不限于研磨或电浆蚀刻等工艺,将各发光单元的顶出光面上的牺牲封装层随各发光单元的顶出光面上的至少一部分黑色沉积层一起去除。研磨工艺和电浆蚀刻等工艺也具有效率和精准率高,工艺成熟以及成本低等优点。当然,在本实施例中并不限于仅对各发光单元的顶出光面上的黑色沉积层的至少一部分去除,也可根据需求对其他区域的黑色沉积层的至少一部分去除,例如发光单元的至少一个侧面上的黑色沉积层去除。
在本实施例中,当需要将各发光单元的顶出光面上的黑色沉积层全部去除时,作为一种替换工艺,也可在上述步骤b7之前,采用相应形状的掩膜将各发光单元的顶出光面进行遮盖,将其他需要形成黑色沉积层的区域外露于掩膜,从而在步骤c7中直接形成未将各发光单元的顶出光面覆盖黑色沉积层,在该替换工艺中则不再需要执行黑色沉积层的去除步骤。但这种采用掩膜的方式需要额外制作掩膜,成本高效率低,且掩膜的制作精度会直接影像黑色沉积层的覆盖精度,相对于直接在各发光单元的顶出光面上先形成黑色沉积层,再全部去除或根据需求去除一部分的方式,精度控制难度更高;当然这种替换工艺也不能满足在各发光单元的顶出光面形成黑色沉积层的需求,应用场景也更为受限。
步骤d7:在基板正面之上形成将黑色沉积层和各发光单元覆盖的第九封装层,第九封装层为透光层。
应当理解的是,本实施例中的第九封装层的形成工艺和材质可灵活设置,本实施例对其不做限制。例如,在一些示例中,第九封装层可以为但不限于胶层,其形成方式可通过但不限于涂覆、模压、印刷、预先制成膜之后贴装等。本实施例中的第九封装层可对发光单元以及黑色沉积层形成保护。例如在一些应用示例中,第九封装层可为采用透明环氧胶水的透明封装胶层,从而对基板之上的发光单元以及黑色沉积层形成密封保护。而在一些应用场景中,可根据需求在透明环氧胶水中添加白色粉末(例如包括但不限于SiO2粉末),黑色素,光转换粒子(例如荧光粉、量子点等),光扩散粒子等中的至少一种,从而进一步调整显示模组的出光效果。且本实施例中第九封装层的上表面(也即第九封装层远离基板正面的一面)可根据需求设置为哑光面、亮光面、磨砂面、雾面等,从而达到不同的外观效果和出光效果,从而进一步丰富显示效果,提升用户体验满意度。
为了便于理解,本实施例下面结合附图对本实施例提供的显示模组的制作过程进行示例说明。一种示例的显示模组的制作过程参见图9-4所示,其包括但不限于:
步骤a8:在基板18的正面设置若干发光单元28。本示例中的基板18为显示基板,设至少两颗LED芯片281构成一个发光单元28,例如发光单元28包括三颗分别发出红光、蓝光和绿光的LED芯片281。
步骤b8:将黑色基材的分子溅射到基板18的正面和各发光单元28的表面,以形成将基板18的正面和各发光单元28的表面覆盖的黑色沉积层66。例如参见图9-7所示,本示例中的采用第一黑色基材J1(例如SiC基材)和第二黑色基材J2(Si₃N₄基材),在真空环境下,将第一黑色基材J1和第二黑色基材J2作为靶材设置于平台上,将基板18的正面及其正面上设置的发光单元28与第一黑色基材J1和第二黑色基材J2相对设置,并引导离子Q同时轰击第一黑色基材J1和第二黑色基材J2,分别使得第一黑色基材J1和第二黑色基材J2的第一分子661和第二分子662溅射到基板18的正面和各发光单元28的表面,从而形成类似图9-2中所示的黑色沉积层66。
步骤c8:将各发光单元28的顶出光面上的黑色沉积层66全部去除。例如可采用但不限于激光去除的方式将各发光单元28的顶出光面上的黑色沉积层66全部去除,其他区域的黑色沉积层66则保留。当然,在本示例中,当黑色沉积层66具有透光特性时,也可根据具体应用需求仅将各发光单元28的顶出光面上的黑色沉积层66的一部分进行去除。
步骤d8:在基板18的正面之上形成将黑色沉积层66和各发光单元28覆盖的第九封装层39。
另一种示例的显示模组的制作过程参见图9-5所示,其包括但不限于:
步骤a9:在基板18的正面设置若干发光单元28。
步骤b9:将黑色基材的分子溅射到基板18的正面和各发光单元28的表面,以形成将基板18的正面和各发光单元28的表面覆盖的黑色沉积层66。例如参见图9-8所示,本示例中的采用第三黑色基材J3(例如Si0基材),在真空环境下,将第三黑色基材J3作为靶材设置于平台上,将基板18的正面及其正面上设置的发光单元28与第三黑色基材J3相对设置,并引导离子Q轰击第三黑色基材J3,使得第三黑色基材J3的第三分子663溅射到基板18的正面和各发光单元28的表面,从而形成类似图9-1中所示的黑色沉积层66。
步骤c9:在黑色沉积层66之上形成牺牲封装层664,本示例中的牺牲封装层664可以与上述第九封装层39的材质以及形成工艺相同,也可采用其他形成方式,在此不再一一赘述。
步骤d9:将各发光单元28的顶出光面上的牺牲封装层664随各发光单元28顶出光面之上的黑色沉积层66全部去除。例如可采用但不限于电浆蚀刻工艺的方式将各发光单元28的顶出光面上的牺牲封装层664随各发光单元28顶出光面之上的黑色沉积层66全部去除。当然,在本示例中,当黑色沉积层66具有透光特性时,也可根据具体应用需求仅将各发光单元28的顶出光面上的黑色沉积层66的一部分进行去除。且上述电浆蚀刻工艺也可根据需求替换为研磨或激光去除工艺。
步骤d9:在牺牲封装层664之上形成第九封装层39,第九封装层39的材质和形成工艺参见上述各示例所述,在此不再赘述。
又一种示例的显示模组的制作过程参见图9-6所示,其包括但不限于:
步骤a10:在基板18的正面设置若干发光单元28。
步骤b10:将黑色基材的分子溅射到基板18的正面和各发光单元28的表面,以形成将基板18的正面和各发光单元28的表面覆盖的黑色沉积层66。
本示例中的采用第一黑色基材J1、第二黑色基材J2和第三黑色基材J3,在真空环境下,先将第一黑色基材J1作为靶材设置于平台上,将基板18的正面及其正面上设置的发光单元28与第一黑色基材J1相对设置,并引导离子Q轰击第一黑色基材J1,使得第一黑色基材J1的第一分子661溅射到基板18的正面和各发光单元28的表面;然后将第一黑色基材J1替换为第二黑色基材J2执行上述步骤,最后将第二黑色基材J2替换为第三黑色基材J3执行上述步骤,得到上述类似上述图9-3中所示的黑色沉积层结构。
步骤c10:在黑色沉积层66之上形成牺牲封装层664,本示例中的牺牲封装层664可以与上述第九封装层39的材质以及形成工艺相同,也可采用其他形成方式,在此不再一一赘述。
步骤d10:将各发光单元28的顶出光面上的牺牲封装层664随各发光单元28顶出光面之上的一部分黑色沉积层66去除。例如可采用但不限于研磨工艺的方式将各发光单元28的顶出光面上的牺牲封装层664随各发光单元28顶出光面之上的一部分黑色沉积层66去除。当然在本示例中的黑色沉积层66具有透光特性,参见图9-6,各发光单元28顶出光面之上的黑色沉积层66仅去除了一部分,从而得到的黑色沉积层66中,各发光单元28的顶出光面上的黑色沉积层的厚度,小于其他处的黑色沉积层的厚度。当然,在将各发光单元28顶出光面之上的黑色沉积层66全部去除了时,则可认为各发光单元28顶出光面之上的黑色沉积层66的厚度为0,也满足各发光单元28的顶出光面上的黑色沉积层的厚度,小于其他处的黑色沉积层的厚度这一规则。另外,应当理解的是,上述研磨工艺也可根据需求替换为电浆蚀刻或激光去除工艺。本示例中,设黑色沉积层在厚度区域的透光率为大于30%,相应的,由于黑色沉积层厚度区域的厚度小于厚度区域的厚度,因此厚度区域的透光率大于厚度区域的透光率,从而使得在提升对比度的同时,满足出光效率的需求,保证显示效果。
步骤e10:在牺牲封装层664之上形成第九封装层39,第九封装层39的材质和形成工艺参见上述各示例所述,在此不再赘述。
上述图9-5和图9-6所示的制作过程中,在各发光单元28的顶出光面上形成黑色沉积层66之后,再在黑色沉积层66之上形成牺牲封装层664,从而对各发光单元28的周围提供稳固的支持,得到整体性更好的封装结构,然后在将各发光单元28的顶出光面上的牺牲封装层664随各发光单元28的顶出光面上的至少一部分黑色沉积层66一起去除时,由于此时牺牲封装层对发光单元28四周的支持作用,因此在使用研磨、电浆蚀刻等工艺时更加容易操作,使得发光单元28不容易脱落,且各发光单元28表面的黑色沉积层66去除的更为均匀。
本实施例还提供了一种显示模组,其通过但不限于上述各示例中的显示模组的制作方法制得,该显示模组包括:基板,设于基板正面上的若干发光单元;沉积在基板正面和各发光单元的表面上的黑色沉积层,且各发光单元的顶出光面上的黑色沉积层的厚度,小于其他处的黑色沉积层的厚度;设置在基板正面之上,将黑色沉积层和各发光单元覆盖的且透光的第九封装层。本实施例中黑色沉积层的厚度可大于等于2纳米,小于等于300纳米,黑色沉积层的厚度大于等于0,小于厚度。在黑色沉积层的厚度等于0时,黑色沉积层可不透光,也可透光;在黑色沉积层的厚度大于0时,黑色沉积层透光,且其透光率可灵活设置,例如可设置为但不限于大于等于30%,小于等于50%,以实现提升对比度的同时,保证显示的亮度。为了便于理解,本实施例下面结合几种示例的显示模组的结构示意图进行示例说明。
参见图9-9所示的显示模组,其可通过但不限于图9-4所示的制作过程制得,其包括基板18,基板18的正面上设有若干焊盘,各发光单元28包括的LED芯片281电极与对应的焊盘通过锡膏焊接或通过导电胶电连接。显示模组还包括沉积在基板18正面和各发光单元28的表面上的黑色沉积层66,且本示例中各发光单元28的顶出光面上的黑色沉积层66的厚度为0,其他处的黑色沉积层66的厚度为2纳米至300纳米,例如可以为但不限于10纳米,50纳米,100纳米,200纳米,300纳米等;显示模组还包设置在基板18的正面之上,将黑色沉积层66和各发光单元28覆盖在内的第九封装层39,本示例中该第九封装层39为透明胶层,或混合有黑色素、光扩散粒子、光转换粒子(量子点和/或荧光粉)中的至少一种的胶层。
参见图9-10所示的显示模组,其与图9-9所示的显示模组相比,主要区别在于各发光单元28的顶出光面上的黑色沉积层66的厚度大于0。且本示例中的显示模组也可通过但不限于上述图9-4中所示的制作过程制得,但在图9-4中去除各发光单元28的顶出光面上的黑色沉积层66时仅需去除一部分而不全部去除即可。
参见图9-11所示的另一示例的显示模组,其与图9-9所示的显示模组相比,主要区别在于在黑色沉积层66与第九封装层39之间还设有牺牲封装层664。本示例中的显示模组可通过但不限于上述图9-5所示的制作过程制得。且本示例中的牺牲封装层664可以为透明胶层,也可为具有黑色素、光扩散粒子、光转换粒子等中的至少之一的封装层,本实施例对其不做限制。
可见,本实施例提供的显示模组中的黑色沉积层通过将黑色基材的分子溅射到基板正面和各发光单元的表面并沉积形成,可使得黑色基材的分子溅射到各个需要形成黑色沉积层的位置,不再受待形成黑色沉积层的区域的平整度的限制,且黑色沉积层可实现无死角的覆盖;且所形成的黑色沉积层均匀,能降低黑色沉积层各个位置的黑色色度差异,因此可提升采用该显示模组制得的显示屏的对比度,并可避免显示屏的侧视角发光出现花斑;且各发光单元的顶出光面上的黑色沉积层的至少一部分被去除,从而可保证各发光单元的出光效率,并提升采用该显示模组制得的显示屏的显示亮度,进而保证采用该显示模组制得的显示屏的显示效果;同时该溅射工艺生产控制难度低,成品率高,可降低生产成本。
本实施例还提供了一种显示屏,该显示屏包括至少一个上述各实施例中显示模组,其还包括驱动元件,其中驱动元件设置于显示模组的基板的背面或正面,并与各发光单元电连接。应当理解的是,本实施例中的驱动元件可采用AM主动驱动方式或PM被动驱动方式对显示模组进行驱动。为了便于理解,本实施例下面以LED显示屏采用图9-9所示的显示模组为示例进行说明,参见图9-12所示,该显示屏的驱动元件48设于基板18的背面上,并与基板18正面上的各发光单元28电连接,以驱动各发光单元28内的LED芯片。且在本示例的一些应用场景中,还可在基板18的正面和/或背面上灵活设置除发光单元288之外的其他电子元件,所设置的电子元件可包括但不限于电阻、电容等,具体可根据应用需求选择设置。
实施例九
针对 LED芯片通过焊盘焊接于基板上后,所采用的焊接锡膏在熔化后会变成银色并覆盖在焊盘的表面,而银色存在反光特性,导致显示屏在黑屏的时候不够黑,降低了显示屏的对比度,影响显示效果的问题。本实施例还提供另外一种可解决该技术问题的封装层、显示模组及其制作方法,且本实施例可独立于其他各实施例实施。
本实施例提供的封装层包括第十封装层,该第十封装层为半透光层(也可称之为单向透视层),其可用于显示模组以提升显示模组的显示对比度和显示效果。请参见图10-2所示(该图所示为第十封装层310在光路原理上的结构示意图,并非第十封装层310的实际层结构示意图),第十封装层310包括反射层3101以及附着在反射层3101上的第三黑胶层3102,其中:
反射层3101包括反射粒子301以及位于各反射粒子301之间的间隙,该间隙构成供光通过反射层3101的第一透光通道302。其中,反射层3101的一种示例的结构示意图参见图10-3所示,其包括平铺在承载体的承载面(也即反射层3101的附着面)的反射粒子301,以及位于各反射粒子301之间的间隙,一个间隙构成一个第一透光通道302。本实施例中的反射粒子301可以为分子形态,也可以为其他颗粒形态。本实施例中的反射粒子301可以通过但不限于成熟的真空离子镀或蒸镀工艺设置在承载面上,制作简单成本低且可控性好。本实施例中的反射粒子301可以包括各种能具有特定光反射性能的金属光学粒子(例如可为包括但不限于纳米级的铝合金粒子、硝酸银粒子,Ag粒子,Al粒子,Rh粒子,Cr粒子,Pt粒子,Cu粒子,Au粒子,Ti粒子中的至少一种,优选包括成本低,反射效果高且通用性好的铝合金粒子、硝酸银粒子中的至少一种)和非金属光学粒子(例如可包括但不限于纳米级TiOz粒子,ZnO粒子,BaS04粒子,A1z03粒子中的至少一种)中的至少一种。本实施例中的反射粒子301可为粒径为纳米级的粒子,且反射粒子301的粒径决定反射层3101的厚度。例如在一些应用示例中,反射粒子301可采用但不限于粒径为2纳米至300纳米的粒子,相应的形成的反射层3101的厚度为2纳米至300纳米。将反射层3101的厚度设置为纳米级,可实现提升对比度的同时,更利于降低显示模组的厚度,从而更利于显示模组的超薄化设计。在一些应用场景中,反射粒子301可具体采用粒径为100纳米至300纳米的粒子,相应的形成的反射层3101的厚度为100纳米至300纳米,例如具体采用反射粒子301的粒径为100纳米、150纳米、200纳米、250纳米,300纳米等。应当理解的是,相应的,本实施例中各第一透光通道302(也即间隙)的宽度和高度也是为纳米级。
在本实施例中,参见图10-2和图10-3所示,反射层3101的各第一透光通道302形成类似矩阵分布。且为了在提升对比度的同时,保证良好的出光效率以满足显示需求,本实施例中设置反射层3101的间隙(即第一透光通道302)在反射层3101的正投影中所占的面积,为反射层3101的正投影面积的60%至70%,例如在一些示例中,该面积占比具体可设置为60%,65%或70%等,相应的,反射层3101中的反射粒子301在反射层3101的正投影中所占的面积,为反射层3101的正投影面积的30%至40%,这种设置方式可大大降低反射粒子301的占比,减少反射粒子301的使用,从而利于降低成本。
第三黑胶层3102包括透明胶基材层(该透明胶基材层用于承载微米级玻璃微珠和纳米级黑色粉末的承载基层,图10-2中未示出),分布于透明胶基材层内的微米级玻璃微珠303,以及填充于各微米级玻璃微珠303之间的纳米级黑色粉末,纳米级黑色粉末在各微米级玻璃微珠303沉积形成黑色挡光单元304,各微米级玻璃微珠303分别构成供光通过第三黑胶层3102的第二透光通道,本示例中可设置至少一部分第二透光通道的位置和至少一部分第一透光通道302的位置相对应,从而使得光线可通过位置相对应的第一透光通道302和第二透光通道通过第十封装层310。第三黑胶层3102的一种示例的结构示意图参见图10-4所示,其包括透明胶基材层305,分布于透明胶基材层305内的微米级玻璃微珠303,以及分布于透明胶基材层305内并填充于各微米级玻璃微珠303之间的纳米级黑色粉末,纳米级黑色粉末在透明胶基材层内沉积在一起形成黑色挡光单元304。在本实施例中,为了避免各纳米级黑色粉末粘附在微米级玻璃微珠303而影响微米级玻璃微珠303的透光性,在制作第三黑胶层3102时,可以对微米级玻璃微珠303进行带电操作使其带负电荷,并设置纳米级黑色粉末也具有负电荷(参见图10-4中的R所示),因此可使得混合在透明胶基材层305内的微米级玻璃微珠303和纳米级黑色粉末相斥,也即使得微米级玻璃微珠303可以排挤拥有负电荷的纳米级黑色粉末,从而避免纳米级黑色粉末粘附在微米级玻璃微珠303上,让微米级玻璃微珠303形成的第二透光通道在第三黑胶层3102的顶面和/或底面拓宽。
在本实施例中,为了保证第三黑胶层3102达到既能提升对比度又能保证特定的出光效率,可设置微米级玻璃微珠303在第三黑胶层3102中所占的体积,为第三黑胶层的体积的50%至70%,该体积占比具体可设置为50%,55%,60%,65%或70%等。换而言之,也可理解为可设置微米级玻璃微珠303在第三黑胶层3102的正投影中所占的面积,为第三黑胶层的正投影面积的50%至70%。
在本实施例中,可设置第三黑胶层3102的厚度为50微米至100微米,将第三黑胶层3102的厚度设置为微米级,可实现提升对比度的同时,更利于降低半透光层的厚度,利于显示模组的超薄设计。另外为了保证微米级玻璃微珠303能可靠的形成供光通过第三黑胶层3102的第二透光通道,可设置微米级玻璃微珠303的粒径与第三黑胶层3102的厚度的比值为0.8至1.0,也即微米级玻璃微珠303的粒径可为但不限于40微米至100微米;例如在一些应用场景中,当设置微米级玻璃微珠303的粒径与第三黑胶层3102的厚度的比值为0.8时,第三黑胶层3102的厚度为50微米时,则采用粒径为40微米左右的微米级玻璃微珠303;当设置微米级玻璃微珠303的粒径与第三黑胶层3102的厚度的比值为0.9时,第三黑胶层3102的厚度为100微米时,则采用粒径为90微米左右的微米级玻璃微珠303;当设置微米级玻璃微珠303的粒径与第三黑胶层3102的厚度的比值为1.0时,第三黑胶层3102的厚度为100微米时,则采用粒径为100微米左右的微米级玻璃微珠303。玻璃微珠可由硼硅酸盐原料经高科技加工而成。其具有质轻、低导热、隔音、高分散、电绝缘性好、热稳定性好强度高、化学稳定性好以及成本低等优点。且由于微米级玻璃微珠303具有低导热性能和良好的热稳定性,因此还可减少基板正面上的电子元件工作时产生的热量从第三黑胶层3102导出,且可保证第三黑胶层3102的稳定性。
应当理解的是,本实施例中的微米级玻璃微珠303可以采用实心的玻璃微珠。但在一些应用场景中,微米级玻璃微珠303可优选采用中空结构的微米级玻璃微珠303,采用中空结构的微米级玻璃微珠303可进一步提升第三黑胶层3102的隔热性能,并能使得第三黑胶层3102轻量化。采用中空结构的微米级玻璃微珠303时,微米级玻璃微珠303的壁厚可为但不限于1微米至2微米。本实施例中的纳米级黑色粉末可包括但不限于纳米级碳黑粉末,且可采用但不限于粒径为1纳米至100纳米的纳米级碳黑粉末,从而可保证第三黑胶层3102的黑度。本实施例中的透明胶基材层305可采用但不限于透明胶,该透明胶可采用但不限于聚脂、聚氯乙烯、改性环氧、改性硅胶等,具有成本低、通用性好等优点。
在本实施例中,还可根据视觉效果需求对第三黑胶层3102远离反射层3101的一面(也即第三黑胶层3102的顶面)进行处理。例如在一些应用场景中,当需要使得第三黑胶层3102呈现为黑色镜面效果时,可设置第三黑胶层3102的顶面为平滑面;当需要避免第三黑胶层3102呈现为黑色镜面效果时,则可设置第三黑胶层3102的顶面为非平滑面,该非平滑面可以包括但不限于雾面、磨砂面、亚光面或设有不同程度的纹理的粗糙面等,将第三黑胶层3102的顶面设置为非平滑面,可使得使外环境中的光线在第三黑胶层3102的顶面经过漫反射,可减少LED的锐度、降低环境光干扰,可以降低显示模组表面镜面效应,从而消除显示模组点亮时外环境光的干扰,在保证高度的黑色对比度同时,达到更好的观看效果,能更好的应用于各种应用场景。
基于本实施例中的以上特定结构的半透光层,当不存在自反射层向第三黑胶层射出的光线,而仅存在自第三黑胶层向反射层射入的光线时,射入的光线中,一部分光线I1被反射层中的反射粒子反射并经第二透光通道射出,一部分光线I3被反射粒子反射至第三黑胶层中的纳米级黑色粉末而被吸收,一部分光线I2经反射层的第一透光通道射入反射层之下并经反射层之下的物体(例如基板、发光单元等)多次反射和/或被吸收后返回至第二透光通道射出或返回至第三黑胶层中的纳米级黑色粉末而被吸收,上述I2光线强度远小于I1光线强度时,此时被半透光层覆盖的区域在人的视觉中呈现为一片黑色,因此可提升对比度;反之,当存在足够强度的自反射层向第三黑胶层射出的光线时则能实现正常的显示;也即利用了半透光层的单向透视视觉效果保证显示效果的同时,提升了对比度。
为了便于理解,下面以将半透光层应用于显示模组的具体应用示例进行说明,该显示模组包括:基板,基板的正面上设有若干用于与发光单元的电极电连接的焊盘;设于基板正面上的若干发光单元,各发光单元的电极与对应的焊盘电连接。
应当理解的是,本实施例中各焊盘在基板的正面上的分布方式可灵活设置,例如可以为矩阵分布,也可根据需求设置为其他分布方式,本实施例对其不做限制。在本实施例中,基板、焊盘、发光单元中的至少之一可参考但不限于上述各实施例。在本实施例的一些应用场景中,基板上设置的若干发光单元可构成为多个像素单元。
本实施例中的显示模组还包括设于基板正面之上的第十封装层,且该第十封装层为上述各示例中的半透光层,其至少将基板正面上未被各发光单元的正投影覆盖的区域覆盖;应当说明的是:本实施例中第十封装层设于基板正面之上,可以为第十封装层直接附着于基板正面上;也可以为第十封装层间接的设于基板正面的上方(即第十封装层与基板正面之间则还具有其他层结构);本实施例中,第十封装层至少将基板正面上未被各发光单元的正投影覆盖的区域覆盖,是指在基板的正面上,除了各发光单元在该正面上的正投影所覆盖的区域,该正面上的其他区域都被第十封装层覆盖。例如一种示例参见图10-1所示,图10-1所示为显示模组的基板19,以及设于基板正面上的若干发光单元29,基板19的正面上未被各发光单元29的正投影覆盖的区域则包括图10-1中S0所示的各区域,因此可提升显示模组的对比度,提升其显示效果。
本实施例中的采用的上述第十封装层在视觉上具有单向透视效果,也即在显示模组的外部环境光线强度大于等于显示模组内部环境光线强度的1.5倍的场景下,显示模组内被第十封装层覆盖的区域在人的视觉中呈现为一片黑色,从而可提升对比度;反之,显示模组的内部光线亮度大于显示模组的外部光线亮度的1.5倍时,显示模组能实现正常的显示。例如参见图10-5所示,当发光单元不点亮,也即显示模组息屏时,内环境无光线产生,人眼可看到的光线理论上存在主要有以下三部分:外环境光被反射层3101中反射粒子所反射出来的光线I1;小部分外环境光通过对应的第一透光通道和第二透光通道进入内环境,在内环境中被多次反射与吸收之后返回外环境的光线I2;被第三黑胶层中黑色挡光单元304吸收的外环境光线,因光线被吸收,视觉上为黑色I3;根据单向透视原理,当外环境光线亮度大于内环境亮度1.5倍以上时,人的视觉中会忽略掉接收到的内环境光线,而图10-5中I2光线强度远小于I1光线强度;此时被第十封装层310覆盖的区域在人的视觉中呈现为一片黑色。
参见图10-6所示,当发光单元点亮,也即显示模组显示时,内环境内的发光单元产生光线,人眼可看到的光线理论上存在主要有以下五部分:外环境光被反射层3101中反射粒子所反射出来的光线I1;小部分外环境光通过对应的第一透光通道和第二透光通道进入内环境,在内环境中被多次反射与吸收之后返回外环境的光线I2;被第三黑胶层中黑色挡光单元304吸收的外环境光线,因光线被吸收,视觉上为黑色I3;由发光单元产生,直接从对应的第一透光通道和第二透光通道射入外环境的光线I4;由LED产生,在内环境被多次反射与吸收之后从对应的第一透光通道和第二透光通道射入外环境的光线I5;一般显示屏亮度达到300 nit -500nit,已经可以达到很好的显示效果,而LED发出的光,即I4+I5的亮度可以达到800 nit -2000nit,大于300-500nit;此时人的视觉中能完整地看到LED显示屏显示的内容。
如上所述,在本实施例中,第十封装层310可以间接的设于基板19的正面之上,也可直接附着于基板19的正面。为了便于理解,本实施例下面结合附图所示的几种示例结构进行说明。
第十封装层间接的设于基板的正面之上的一种示例中,显示模组还可包括设于基板正面与半透光层之间的第十一封装层。本实施例中的第十一封装层为透光层。应当理解的是,本实施例中的第十一封装层的形成工艺和材质可灵活设置,对其不做限制。例如,在一些示例中,第十一封装层可以为但不限于胶层,其形成方式可通过但不限于涂覆、模压、印刷、预先制成膜之后贴装等。本实施例中的第十一封装层能起到防水、防湿、防碰撞作用,可对发光单元形成保护,同时可作为半透光层设置的基底。例如在一些应用示例中,第十一封装层可为采用透明环氧胶水的透明封装胶层,从而对基板之上的发光单元形成密封保护。而在一些应用场景中,可根据需求在透明环氧胶水中添加白色粉末(例如包括但不限于SiO2粉末),黑色素,光扩散粒子等中的至少一种,从而进一步调整显示模组的出光效果。且本实施例中第十一封装层的上表面(也即第十一封装层远离基板的正面的一面)可根据需求设置为哑光面、亮光面、磨砂面、雾面等,从而达到不同的外观效果和出光效果,从而进一步丰富显示效果,提升用户体验满意度。
第十封装层间接的设于基板的正面之上的一种示例结构参见图10-7所示,其包括基板19,设于基板19的正面之上的若干发光单元29,以及设于基板19的正面上并将各发光单元29也都覆盖在内的第十一封装层311。本实施例中发光单元29远离基板正面的一面为顶出光面,靠近所述基板正面的一面为底面,位于顶出光面和底面之间的面为侧面。显示模组还包括形成于第十一封装层311之上的第十封装层310。本示例中,第十封装层310将基板19的正面未被各发光单元29的正投影覆盖的各区域覆盖,还将各发光单元29的顶出光面也覆盖,也即本示例中第十封装层310将第十一封装层全覆盖。本示例中的显示模组在其发光单元29不点亮时,也即熄屏时光线路径理示意模型参见图10-8所示,点亮时光线路径示意模型参见图10-9所示。为了便于理解,本实施例下面以显示模组应用于显示屏的这一场景,结合现有显示领域的一些概念进行示例说明。
现有液晶显示屏:指的是现有所普遍使用的液晶显示屏,典型亮度为350nit,一般最高为500nit。现有的液晶显示屏虽然亮度比较低,但因结构中设置有滤光片,滤光片中有超黑矩阵,所以液晶显示屏它们在熄屏时能显示高度的黑色,现在的液晶显示屏的对比度其实是目前所有种类显示屏中最好的。即,虽然亮度低,但只要熄屏黑色亮度与亮屏时最高亮度比值足够大,依然能达到超高的黑对比度。普通的COB显示屏因为焊盘外漏,熄屏时人眼所看到均是被焊盘表面的银色锡膏所反射的自然光,只是锡膏表面凹凸不平,无法形成镜面,所以人眼所看到的是一片银色。而根据上述分析可知,本实施例中所设置的第十封装层310将所有银色遮挡,且在熄屏时,因为单向透视原理,人眼只能看到第十封装层310以实现遮挡银色焊盘的目的,且第十封装层310为高度的黑色从而提升黑对比度。
对于图10-5和图10-8中人眼所接收到的光线的说明:当发光单元不点亮(也即熄屏)时,人眼接收的到光线为I1+I2,I3为被黑色所吸收的光线,在人的视觉中表现为黑色,所以用虚线表示。若将外部自然光表示为I外,I1、I2、I3为外部自然光各分出三个部分,一部分直接被反射层反射而被人眼接收,即I1,一部分进入内环境被多次反射与吸收后才回到外部环境,再被人眼接收,即I2,一部分被黑色直接吸收,即I3,所以I外>1.5*(I1+I2+I3),因此被第十封装层310覆盖的区域在人的视觉中呈现为一片黑色。而第三黑胶层3102的顶面为平滑面时,在视觉上可将第十封装层310以当成一面黑色的镜子。
对于图10-6和图10-9中人眼所接收到的光线的说明:当发光单元点亮时,LED发光分为两个部分被人眼所接收,即I4+I5;参见上述对第一透光通道和第二透光通道的占比可知, I4+I5最小值可以达到LED发光亮度的50%以上。若将LED发光亮度表示为I内,则I内>I4+I5>50%L内,而50%I内的可达到400 nit 至1000nit,因此I4+I5>300nit,此时用户已经可以获得完整的显示效果。
关于第三黑胶层3102的顶面为平滑面时,在视觉上可将第十封装层310以当成一面黑色的镜子的说明:首先,镜子的原理参见图10-10所示:蜡烛B1发出的光线被镜子C中平滑的反射层所反射,人眼接收到被反射的光线,在人脑中呈现的景象为蜡烛B2,造成蜡烛吧在镜子中的错觉,即为镜面反射原理。
而参见图10-5和图10-9,第三黑胶层3102中的微米级玻璃微球为玻璃晶体,反射层3101中包括反射粒子,当发光单元不发光时,微米级玻璃微球和反射粒子形成一面镜子,但同时因为第三黑胶层3102中黑色挡光单元304的存在,可以想象为一面镜子中被加了一个由黑色挡光单元304组成的超黑矩阵,因为微米级玻璃微球是微米级晶体,所以在人的视觉中,即表现为一面黑色的镜子。
对于本实施例中将第三黑胶层3102的顶面设置为非平滑面以再该顶面形成漫反射的说明。如图10-11所示,第三黑胶层3102的顶面为平滑面时,在该顶面会形成图10-11中所示的镜面反射。第三黑胶层3102的顶面为非平滑面,如图10-12中所示的粗糙面时,在该顶面会形成图10-12中所示的漫反射,此时人眼看到的则不是完整的镜像(可以理解为雾面屏),因为漫反射可以让镜像不成型,所以可以降低环境光干扰,提升显示效果。
第十封装层310间接的设于基板19的正面之上的另一种示例结构参见图10-13所示,其与图10-7所示的显示模组相比,主要区别在于第十一封装层311的厚度与各发光单元29的高度基本相等,各发光单元29的顶出光面(也即发光单元29远离基板19的一面)外露于第十一封装层311,位于各发光单元29的顶出光面之上的第十封装层310则直接附着在各发光单元29的顶出光面上;且第十封装层310将第十一封装层311的顶面全部覆盖。第十封装层310间接的设于基板19的正面之上的又一种示例结构参见图10-14所示,其与图10-7所示的显示模组相比,主要区别在于第十一封装层311的厚度更薄,且其顶面随着发光单元29的布局分布呈凹凸分布。
第十封装层310间接的设于基板19的正面之上的又一种示例结构参见图10-15所示,其与图10-7所示的显示模组相比,主要区别在于:第十封装层310将基板19的正面未被各发光单元29的正投影覆盖的各区域覆盖,而各发光单元29的顶出光面都外露于第十封装层310,也即第十封装层310未将各发光单元29的顶出光面覆盖。本示例中第十封装层310未将各发光单元29的顶出光面覆盖,因此自各发光单元29的顶出光面射出的大部分光可直接经由第十一封装层311射出,而不需要经过第十封装层310,因此可提升显示亮度。第十封装层310直接附着于基板19的正面之上的一种示例结构参见图10-16所示,其包括基板19,设于基板19的正面之上的若干发光单元29,以及附着于基板19的正面的第十封装层310,第十封装层310将基板19的正面未被各发光单元29的正投影覆盖的各区域覆盖,各发光单元29的顶出光面和侧面则外露于第十封装层310,因此自各发光单元29的顶出光面和侧面射出的大部分光可不经第十封装层310射出,提升其出光效率,保证显示亮度。本示例中的显示模组还包括设于第十封装层310上并将各发光单元29覆盖的第十二封装层312。本示例中的第十二封装层312的材质、形状和形成方式可同但不限于上述各示例中的第十一封装层311,在此不再赘述。第十封装层310直接附着于基板19的正面之上的另一种示例结构参见图10-17所示,其与图10-16所示的显示模组相比,主要区别在于第十封装层310还将各发光单元29的侧面覆盖,各发光单元29的顶出光面外露于第十封装层310,因此自各发光单元29的顶出光面的大部分光可不经第十封装层310射出,提升其出光效率,保证显示亮度。第十封装层310直接附着于基板19的正面之上的又一种示例结构参见图10-18所示,其与图10-16所示的显示模组相比,主要区别在于第十封装层310还将各发光单元29的顶出光面覆盖,各发光单元29的侧面外露于第十封装层310,因此自各发光单元29的侧面的大部分光可不经第十封装层310射出,也能提升其出光效率,保证显示亮度。第十封装层310直接附着于基板19的正面之上的又一种示例结构参见图10-19所示,其与图10-16所示的显示模组相比,主要区别在于第十封装层310还将各发光单元29的侧面和顶出光面都覆盖;因此在本示例中第十封装层310的覆盖率相对于前面几种示例更大,黑对比会相对更高。
当然,应当理解的是,上述图10-7、图10-13至图10-19所示的结构仅仅是为了便于理解的几种示例结构,在此基础上还可进行其他的等同变形,例如一种变形示例参见图10-20所示,其在图10-17所示的基础上,还在第十二封装层312之上再设置一层第十封装层310,也即图10-20所示的示例中包括双层第十封装层310,以进一步提升对比度。当然,为了保证出光效率,设置双层第十封装层310时,针对每一层第十封装层310的透光率和黑色度可进行适应的调整,在此不再赘述。
为了便于理解,本实施例下面对上述各示例中所示的半透光层的制作方法为示例进行说明,其包括但不限于:
步骤a11:通过真空离子镀或蒸镀工艺在承载体的承载面上形成反射层。为了便于理解,下面以一种真空离子镀进行示例说明。在一种示例中,在真空通磁环境下,利用磁场引导离子轰击一种预设反射材料基材,将该反射材料基材的分子均匀溅射到承载面上对应的区域形成反射层。应当理解的是,本实施例中的承载体可以为基板,承载面可以为基板的正面;当基板上设有第十一封装层时,承载体可以为第十一封装层,承载面可以为第十一封装层远离基板的一面;当然,承载体还可为设于第二承载膜上的连接胶层,承载面可为连接胶层远离第二承载膜的一面。可见,本实施例中的承载体及相应的承载面可根据具体应用场景灵活设置,制作灵活可使用场景广,通用性好。
步骤b11:将微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶中得到混合胶,在本步骤中,将微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶之前,先对微米级玻璃微珠进行带电操作,例如可通过将微米级玻璃微珠与特定物旋离摩擦,使得微米级玻璃微珠带负电荷;相应的,纳米级黑色粉末也带有负电荷,例如纳米级黑色粉末采用炭黑粉末;然后再将带负电荷的微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶中,带负电荷的微米级玻璃微珠和纳米级黑色粉末在透明胶中相互排斥,从而避免纳米级黑色粉末附着在微米级玻璃微珠上。
步骤c11:在反射层上设置混合胶层,并将混合胶层固化处理得到第三黑胶层。
应当理解的是,本实施例中在反射层上设置混合胶层的方式可以采用但不限于涂覆、模压、印刷等方式;当然,在一些示例中,也可将混合胶层设置在第二承载膜上以制成黑色膜,然后将黑色膜贴装到反射层上。且应当理解的是,由于混合胶层中的胶体具有一定的黏性和张力,其并不会流入反射层中各反射粒子之间的缝隙内或仅有一部分透明胶流入,但都不会影响缝隙形成第一透光通道。
为了便于理解,本实施例下面对上述各示例中所示的显示模组的制作方法为示例进行说明,其包括但不限于:
步骤a12:在基板的正面设置若干发光单元,各发光单元的电极与对应的焊盘电连接;如上述示例所述,可通过但不限于锡膏或导电银胶等方式进行电连接。
步骤b12:在基板正面之上设置半透光层,设置的半透光层至少将基板正面上未被各发光单元的正投影覆盖的区域覆盖。
为了便于理解,本实施例下面以几种具体的显示模组的制作过程进行示例说明。
参见图10-21所示,本示例中的制作过程包括但不限于:
步骤a13:在基板19的正面设置若干发光单元29;
步骤b13:在基板19的正面上形成第十一封装层311,本示例中的第十一封装层311为透明胶层;
步骤c13:在第十一封装层311远离基板19的一面上通过真空离子镀或蒸镀的方式形成反射层3101,反射层3101的厚度为200纳米;也即在本示例中第十一封装层311为承载体,其远离基板19的一面为承载面;
步骤d13:在反射层3101上印刷、模压或涂覆混合胶层并将其固化处理得到第三黑胶层3102;本示例中的第三黑胶层3102的厚度为100微米。
参见图10-22所示,本示例中的制作过程包括但不限于:
步骤a14:在基板19的正面设置若干发光单元29;
步骤b14:在基板19的正面上通过真空离子镀或蒸镀的方式形成反射层3101,反射层3101的厚度为200纳米,且将各发光单元29的侧面和正面都覆盖;也即在本示例中基板19为承载体,基板19的正面为承载面;
步骤c14:在反射层3101上印刷、模压或涂覆混合胶层并将其固化处理得到第三黑胶层3102;
步骤d14:在第三黑胶层3102上通过印刷、模压或涂覆的方式形成第十二封装层312,本示例中的第十二封装层312中混合有光转换粒子和/或光扩散粒子。
参见图10-23所示,本示例中的制作过程中还包括将各发光单元29的顶出光面上的半透光层的至少一部分去除,去除方式可采用但不限于激光去除、研磨或电浆蚀刻等。然后执行:在第三黑胶层3102上通过印刷、模压或涂覆的方式形成第十二封装层312,且第十二封装层312将各发光单元29也覆盖在内,其包括但不限于:
步骤a15:在第二承载膜上设置连接胶层;本实施例中的连接胶层可采用各种具有粘性,且在加热时由固化状态转变为半融化状态的胶层,例如可采用但不限于热敏胶层、改性环氧胶层或者改性硅胶层等,具体可根据应用场景灵活采用。
步骤b15:在连接胶层上通过真空离子镀或蒸镀工艺形成反射层,也即在本示例中连接胶层为承载体,连接胶层远离第二承载膜的一面为承载面;
步骤c15:将微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶中得到混合胶。
步骤d15:在反射层上设置混合胶层,并将混合胶层固化处理得到第三黑胶层;
步骤e15:去除第二承载膜,将连接胶层的一面覆盖在基板的正面之上并进行热压。
为了便于理解,本实施例下面以几种具体的显示模组的制作过程进行示例说明。
参见图10-24所示,本示例中的制作过程包括但不限于:
步骤a16:在基板19的正面设置若干发光单元29;
步骤b16:在基板19的正面上形成第十一封装层311,本示例中的第十一封装层为透明胶层;
步骤c16:在第二承载膜306上设置连接胶层307,本示例中的连接胶层可采用但不限于热敏胶层、改性环氧胶层或者改性硅胶层等;
步骤d16:在连接胶层307上通过真空离子镀或蒸镀工艺形成反射层3101;反射层3101的厚度为200纳米;
步骤e16:在反射层3101上印刷、模压或涂覆混合胶层并将其固化处理得到第三黑胶层3102;本示例中的第三黑胶层3102的厚度为100微米。
步骤f16:去除第二承载膜306;
步骤g16:将连接胶层307的一面覆盖在第十一封装胶层311之上;
步骤h16:采用但不限于热压方式使得连接胶层307与第十一封装胶层311贴合。
参见图10-25所示,本示例中的制作过程包括但不限于:
步骤a17:在基板19的正面设置若干发光单元29;
步骤b17至步骤c17与上述示例中的步骤a16至步骤a16相同,在本示例中的连接胶层307具体可采用改性环氧胶层或改性硅胶层;
步骤d17:第二承载膜306去除,然后将连接胶层307的一面覆盖在第十一封装胶层311之上进行压合。当然,还可根据需求在第三黑胶层3102之上进一步设置第七封装层。
参见图10-26所示,本示例中的制作过程中的步骤a18至步骤d18与上述示例中的步骤a17至步骤d17类似,区别在于连接胶层307的厚度更厚,这样在步骤e18去除第二承载膜306后将连接胶层307的一面覆盖在各发光单元29的顶出光面上,然后在步骤f18中对其进行加热压合使其与基板19的正面贴合,压合后的连接胶层307也作为第一封装胶层。在一些应用场景中,本示例中的连接胶层307压合之前的初始厚度设置为大于等于100μm,压合后的厚度大于等于50μm。
在本实施例的另一些示例中,第二承载膜306上的反射层3101与第三黑胶层3102的位置也可互换;例如可直接在第二承载膜306上先形成第三黑胶层3102,然后在第三黑胶层3102上形成反射层3101,在贴合时,直接将反射层3101的一面与基板19的正面或基板19的正面之上的第十一封装层进行贴合,从而得到上述各示例中的结构。当然,在一些应用场景中,还可在反射层3101与基板19的正面或基板19的正面之上的第十一封装层之间设置粘接层(粘接层为透光层,例如透明胶层),以提升反射层3101与基板19的正面或基板19的正面之上的第十一封装层之间的结合强度。这一变形方式也在本发明的保护范围内。
可见,本实施例提供的显示模组的制作方法简单、高效,效率高。本实施例还提供了一种显示屏,该显示屏包括至少一个上述各实施例中显示模组。为了便于理解,本实施例下面以显示屏采用图10-27的显示模组为示例进行说明,该显示屏的驱动元件49设于基板19的背面上,并与基板正面上的各发光单元29电连接,以驱动各发光单元29。且在本示例的一些应用场景中,还可在基板19的正面和/或背面上灵活设置除发光单元29之外的其他电子元件,所设置的电子元件可包括但不限于电阻、电容等,具体可根据应用需求选择设置。
实施例十
本实施例提供了一种既能解决因焊盘表面被银色锡膏覆盖,而导致显示屏的对比度降低的问题,又能避免在LED芯片的顶出光面上残留黑胶的显示模组及其显示模组制作方法。且本实施例可独立于其他各实施例单独实施。
本实施例提供的显示模组制作方法包括但不限于:
步骤a19:制作基板和封装层。
本实施例中制作基板包括但不限于提供一基板,以及在基板正面上固定若干发光单元,相邻的发光单元之间具有第一间隙;本实施例中一个发光单元包括多颗LED芯片,各LED芯片的电极与基板上对应的焊盘焊接;而各发光单元的LED芯片与焊盘焊接后所形成的银色外表面主要分布于第一间隙f1内。应当理解的是,本实施例中可先在基板正面和/或背面上设置其他电子元件,然后再基板上设置封装层;也可在基板正面设置发光单元和封装层后,再在基板背面设置电子元件。
本实施例中制作封装层包括:提供叠加在一起的第十三封装层和第十四封装层。第十三封装层为第二透光胶层,第十四封装层为第四黑胶层。应当理解的是,在本示例中,制作封装层时,可以先形成好第十三封装层,然后在第十三封装层上形成第十四封装层;也可先形成好第十四封装层,然后在第十四封装层上形成第十三封装层。不管采用哪种方式,在采用热压工艺进行压合时,都是将第十三封装层朝向基板正面(也即将第十三封装层远离第十四封装层的一面朝向基板正面),将第十三封装层和第十四封装层一并压合到基板正面上。本实施例中,对于形成第十三封装层和第十四封装层的工艺不做限制,且形成第十三封装层采用的工艺和形成第十四封装层采用的工艺可以相同,也可不同,具体采用的工艺可以采用但不限于涂覆、丝印、印刷、模压等。本实施例中基板和封装层可以同步制作,也可先制作基板,再制作封装层,或从上游直接采购基板和/或封装层。
本实施例中形成的第十三封装层和第十四封装层可以处于并保持为半固化状态,从而便于后续直接将其与基板正面压合。且本实施例中并不限于采用胶体的热压工艺,例如当形成的第十三封装层和第十四封装层已处于并保持为特定的半固化状态时则可直接进行压合而不需要对其进行加热,这种方式也即为本实施例中热压工艺的一种等同替换方式。
步骤b19:将第十三封装层和第十四封装层通过热压工艺一并压合在基板正面上。
本实施例中,将第十三封装层和第十四封装层通过热压工艺一并压合在基板正面上后,第十三封装层将基板正面以及各LED芯片的顶出光面覆盖,并在相邻发光单元之间的第一间隙内形成第三下凹部,第十四封装层的一部分填充于该第三下凹部内,并至少将该第三下凹部覆盖(也即至少将该第三下凹部全部覆盖),本实施例中LED芯片的顶出光面为各LED芯片远离基板正面的一面。
例如,将第十三封装层朝向基板正面,与基板正面上的各LED芯片的顶出光面进行贴合后进行热压,在压合过程中,第十三封装层和第十四封装层处于半固化状态,透明胶层和第十四封装层受压力逐渐向基板正面靠近,直至第十三封装层与基板正面贴合,位于基板正面上的各LED芯片则被第十三封装层覆盖,包括LED芯片的顶出光面也被第十三封装层覆盖,且第十三封装层在相邻发光单元之间的第一间隙内形成第三下凹部,第十三封装层之上的第十四封装层压合后则至少将各第三下凹部填充满,从而将焊盘之上的银色外表面覆盖,因此可提高显示模组的对比度,提升显示效果;且由于第十三封装层将各LED芯片的顶出光面覆盖,第十四封装层在压合过程中不会与LED芯片的顶出光面接触,也就不存在直接残留在LED芯片的顶出光面上的可能,可保证LED芯片的发光特性;同时在上述压合过程中,第十三封装层位于第十四封装层和基板之间作为缓冲层,即使存在一颗或多颗LED芯片在上述固定过程中在基板正面上发生倾斜时,第十三封装层在各LED芯片正上方的区域也能尽可能形成一个平整面,从而提升压合后的第十四封装层在第十三封装层上各区域的一致性,进一步提升出光效果的一致性;另外将第十三封装层和第十四封装层一并压合到基板正面上,而不需要分两次对第十三封装层和第十四封装层分别压合,可提升制作效率,且采用的热压工艺简单、成熟,还可保证和提升良品率,以及利于制作成本的控制。
为了便于理解,下面以一种显示模组的制作方法的具体示例进行说明,参见图11-1所示,本示例中显示模组的制作方法包括但不限于:
步骤a20:制作封装层,包括形成第十三封装层313以及与第十三封装层313叠加的第十四封装层314。在图11-1中,从位置关系上看,第十四封装层314位于第十三封装层313之上。但应当理解是,在制作时,可以先形成第十四封装层314,然后在第十四封装层314上形成第十三封装层313,也可先形成第十三封装层313,在第十三封装层313之上再形成第十四封装层314。
步骤b20:制作基板,例如参见图11-1所示的基板,其中基板110上设有若干发光单元,相邻发光单元之间具有第一间隙f1,焊接过程中形成的银色外表面Y主要部分与该第一间隙f1内。
步骤c20:将第十三封装层313和第十四封装层314一起贴合到基板110的正面上设置的LED芯片2101之上后采用热压工艺进行压合,且第十三封装层313远离第十四封装层314的一面朝向基板110。
步骤d20:将第十三封装层313和第十四封装层314压合到基板110的正面上后,第十三封装层313将基板110的正面以及各LED芯片2101覆盖,且第十三封装层313在相邻发光单元之间的第一间隙内形成第三下凹部。该第三下凹部的一种示意图参见图11-2所示(图11-2所示为图11-1中步骤d20压合后得到的显示模组中去除第十四封装层314之后的结构),图11-2中的f11所示为在相邻发光单元之间的第一间隙f1内形成的第三下凹部,该第三下凹部f11的侧壁包括由第十三封装层313的流动性而形成的弧面d,弧面d的形成则可进一步提升第十三封装层313和第十四封装层314之间的贴合面积,从而提升二者的结合强度。
在参见图11-1和图11-2所示,在本示例中,压合后,第十四封装层314将各第三下凹部f11覆盖,各银色外表面Y都被第十四封装层314覆盖,可提高显示模组的对比度,提升显示效果。且各LED芯片2101被第十三封装层313覆盖,第十四封装层314覆盖在第十三封装层313上,第十四封装层314不接触LED芯片2101,因此LED芯片2101上不会残留第十四封装层314,可保证各LED芯片2101的发光特性。
同时上述步骤c20中,将第十三封装层313和第十四封装层314一并压合到基板正面上,可简化制作工艺,提升制作效率,且采用的热压工艺简单、成熟,还可保证和提升良品率,以及利于制作成本的控制。
为了便于理解,本实施例下面以另一方向的基板剖视图,采用上述图11-1相同的制作过程为示例进行说明。具体参见图11-3所示,图11-3中的步骤a21至步骤d21分别与上述图11-1中的步骤a20至步骤d20相同,在此不再对其进行赘述。参见图11-3中步骤b21 所示,假设其中的LED芯片X1和X2在焊接过程中发生了倾斜,参见图11-3和图11-4所示(图11-4所示为图11-3压合后得到的显示模组中去除第十四封装层314之后的结构),第十三封装层在各LED芯片2101的顶出光面正上方的区域也能尽可能形成一个平整面Q,也即利用第十三封装层313尽可能补足LED芯片X1和X2倾斜而造成的不平,从而可以保证第十三封装层313各区域之上的第十四封装层314的一致性,提升模组出光效果的一致性。
参见图1和图11-3所示,在本示例中,各发光单元210内的相邻LED芯片2101之间具有第二间隙f2,且该第二间隙f2的宽度小于第一间隙的宽度f1。且应当理解的是,在显示领域,第二间隙f2的宽度一般远小于第一间隙f1的宽度,二者之间的具体差值则可根据具体应用场景灵活设置,在此对其不做限制。
在本示例中,参见图11-3和图11-4所示,将第十三封装层313和第十四封装层314通过热压工艺一并压合在基板正面上后,第十三封装层313在第二间隙f12之上的区域形成有第四下凹部f12,第十四封装层314将第四下凹部f12填充并将第十三封装层313的顶面全部覆盖,第十三封装层313的顶面为其远离基板110的一面。参见图11-4所示,第四下凹部f12的底部至基板正面的第三距离h2,大于LED芯片2101的顶出光面至基板正面的第二距离h1;也即本示例中第四下凹部f12的底部位于各LED芯片2101的顶出光面之上。
在本示例的一种应用场景中,参见图11-3和图11-4所示,将第十三封装层313和第十四封装层314通过热压工艺一并压合在基板110的正面上后,形成的第三下凹部f11的底部至基板110的正面的第四距离h3,小于LED芯片2101的顶出光面至基板110的正面的第二距离h1。例如,一些场景中,可设置h3小于等于2/3* h1。这种结构的设置,可尽可能降低显示模组的整体厚度,更利于显示屏的轻薄化;且可提升胶材的利用率,降低成本。例如,在一些具体的显示模组结构中,设置h3等于1/3*h1,1/2*h1,或2/3*h1等,优选h3大于等于1/2*h1,小于等于2/3*h1,从而降低对第十三封装层313的厚度精细化要求以及降低工艺精度要求。
在本示例的一些应用场景中,可以设置第十四封装层314在满足显示对比度性能的基础上,还可设置第十四封装层314具有一定的透光性,在该应用场景中,通过图11-1或图11-3所示的制作方法制得显示模组之后,可不对第十四封装层314做任何处理,从而简化制作工艺,提升制作效率。
当然,在一些示例中,即使第十四封装层314具有一定的透光性,为了进一步提升显示模组的出光效率,制得显示模组之后,也可将各LED芯片2101的顶出光面正上方的第十四封装层314去除一部分。例如一种应用场景参见图11-5所示的显示模组,其是对图11-1所得到的显示模组中的第十四封装层314的整体去除一部分,从而得到更薄的第十四封装层314,以提升出光效率。去除后第十四封装层314的顶面仍将各LED芯片2101的顶出光面之上的第十三封装层313覆盖,且第十四封装层314的顶面整体为一个平面。图11-5所示的显示模组可采用但不限于研磨等工艺对第十四封装层314的整体去除一部分。在本应用场景中,对图11-3所得到的显示模组中的第十四封装层314的整体去除一部分后的示意图参见图11-6所示,去除后第十四封装层314的顶面仍将各LED芯片2101的顶出光面之上的第十三封装层313覆盖(包括将第三下凹部f1和第四下凹部f2覆盖)且第十四封装层314的顶面整体为一个平面。
另一种应用场景参见图11-7和图11-8所示的显示模组,相对于图11-5和图11-3所示的显示模组,图11-7是对图11-1所得到的显示模组中的第十四封装层314位于各LED芯片2101的顶出光面正上方的一部分进行局部去除(也即采用局部去除的方式),图11-8是对图11-3所得到的显示模组中的第十四封装层314位于各LED芯片2101的顶出光面正上方的一部分进行局部去除,从而使得各LED芯片2101的顶出光面正上方的第十四封装层314相对于图11-1和图11-3所得到的显示模组中的第十四封装层314的厚度更薄,以提升出光效率。本场景中可采用但不限于采用蚀刻工艺对第十四封装层314进行去除。
在本实施例中,第十四封装层314具有一定的透光性时,不管是否采用上述图11-5至图11-8所示的对第十四封装层314进行去除的步骤,为了保证模组的亮度和显示效果,可设置各LED芯片2101的顶出光面上所保留的第十四封装层的透光率大于等于40%。
在本实施例的另一示例中,显示模组的制作方法还可包括但不限于:
在将第十三封装层313和第十四封装层314通过热压工艺一并压合在基板正面上之后,还将各LED芯片2101的顶出光面正上方的第十四封装层314全部去除。
例如,在一些应用场景中,将各LED芯片2101的顶出光面正上方的第十四封装层314全部去除包括:将第十四封装层314位于第四下凹部f2的底部之上的黑胶全部去除,去除后的第十四封装层314与各LED芯片的顶出光面之上的第十三封装层313齐平。例如一种应用场景参见图11-9所示的显示模组,其是对图11-1制得的显示模组中的第十四封装层314的整体去除一部分,直到各LED芯片2101的顶出光面正上方之上的第十三封装层313外露于第十四封装层314,且去除后的第十四封装层314与各LED芯片2101的顶出光面之上的第十三封装层313齐平。在本应用场景中,对图11-3所得到的显示模组中的第十四封装层314的整体去除一部分后的示意图参见图11-10所示,各LED芯片2101的顶出光面正上方之上的第十三封装层313外露于第十四封装层314,且去除后的第十四封装层314仍将第四下凹部f2填充,并与各LED芯片2101的顶出光面之上的第十三封装层313齐平。在图11-9和图11-10所示的示例中,去除后的第十四封装层314仍将各LED芯片2101的顶出光面边缘区域之上的第十三封装层313覆盖,从而可使得第十四封装层314尽可能将发光单元内各LED芯片2101之间的所存在的银色外表面Y覆盖,从而进一步提升模组的显示对比度。
在本示例中,将第十四封装层314位于第四下凹部f2的底部之上的黑胶全部去除的另一示例参见图11-11所示,其与图11-10所示的去除方式相比,区别在于在在将第十四封装层314去除时,直至将位于第四下凹部f2的底部的第十四封装层314也全部去除(由图11-11可知,第十三封装层313上的第四下凹部f2也都被去除),去除后第十四封装层3与各LED芯片2101的顶出光面之上的第十三封装层313齐平,且第十三封装层313上不再存在第四下凹部f2。其相对图11-10所示的示例,第十三封装层313和第十四封装层314的整体厚度更薄,更利于模组的轻薄化。
将第十四封装层314位于第四下凹部f2的底部之上的黑胶全部去除时,也可采用局部去除方式。例如参见图11-12所示,其是对图11-1所得到的显示模组中的第十四封装层314位于各LED芯片2101的顶出光面正上方的黑胶进行局部全部去除;图11-13是对图11-3所得到的显示模组中的第十四封装层314位于各LED芯片2101的顶出光面正上方的黑胶进行局部全部去除。
本实施例中上述各示例中对第十四封装层314进行局部去除时,可提升第十四封装层314的去除效率。且在图11-9至图11-13所示的示例中,第十四封装层314可具有透光特性,也可不具有透光特性,第十四封装层314的材质选择更为灵活,适用性更广。
在本实施例中的又一些示例中,为了提升良品率和制作效率,可提供一基板夹具,基板夹具设有与基板相适配的容纳腔。在将第十三封装层和第十四封装层与基板正面压合时,可将基板固定于基板夹具上,固定后,基板被固设于基板夹具的容纳腔中,且基板的背面朝向容纳腔的底部,基板正面及各LED芯片朝向容纳腔的顶部开口,以供第十三封装层贴合。在本示例中,当在将第十三封装层与基板正面压合之前,先在基板的背面上设置了其他电子元件时,在容纳腔的底部还设置有与各电子元件对应的容纳槽,将基板固定于基板夹具上后,各电子元件位于对应的容纳槽中。可见,本实施例采用的基板夹具结构简单、便于制作且成本低。
可见,本实施例提供的显示模组的制作方法,工艺简单且效率高,成本低,制得的显示模组显示对比度好,显示模组所包括的第十四封装层的一致性好,且不会残留在LED芯片的顶出光面。本实施例还提供了一种显示屏,该显示屏通过如上各示例中的至少一个显示模组的制作方法制得。可见,本实施例提供的显示屏具有较好的黑色对比度,且制作工艺简单,降低受LED芯片固定到基板上之后的各LED芯片平整度的影响,良品率高,成本低。
实施例十一
由于相关技术中,将背光模组的点光源转换为面光源是通过均光膜、扩散膜等光学膜片实现的,一般需要2至3片均光膜和扩散膜片,这无疑会增加显示模组的整体厚度和成本,无法满足消费者对于产品性价比的需求。本实施例提供了一种可解决该技术问题的显示模组及其制作方法。且本实施例可独立于其他各实施例单独实施。
本发明实施例提供的显示模组制备方法的一种示例包括以下步骤:
步骤a22:在基板正面上设置若干发光单元,各发光单元包括至少一颗LED芯片。该步骤中,各LED芯片固定在基板正面上,且各LED芯片按照预设的阵列布局均匀地分布在基板正面。
步骤b22:制作用于对若干LED芯片进行密封的第十五封装层,其可对LED芯片进行密封保护。
步骤c22:在第十五封装层的出光面上间隔设置若干光扩散单元。在该步骤之前,还包括将光扩散粒子按照预定比例混入胶水溶剂制得胶水,该步骤可以在步骤b22之前或之后进行,然后使用该胶水在第十五封装层的出光面上设置光扩散单元。本实施例中,光扩散粒子包括二氧化硅和/或二氧化钛,胶水溶剂采用树脂胶作为胶水溶剂,二氧化硅和/或二氧化钛按照预定的比例关系混入到胶水溶剂中。
各光扩散单元在第十五封装层出光面上的阵列布局应与各LED芯片在基板正面上的阵列布局相同,使得光扩散单元刚好位于LED芯片的正上方位置。光扩散单元对LED芯片发出的光线进行反射及折射使得各LED芯片发出的光线从第十五封装层的出光面均匀射出,从而使得基板上的LED芯片发出的光线从第十五封装层的出光面射出时,第十五封装层的出光面为均匀发光的面光源。本实施例该步骤中,可采用3D打印技术或网版丝印技术在第十五封装层的出光面上制作成型该光扩散单元。
步骤d22:将设置有光扩散单元的第十五封装层压合到基板正面上。
在第十五封装层上设置光扩散单元后,将具备光扩散单元的第十五封装层压合到基板的正面,本实施例中,可采用热压工艺将所述具备光扩散单元的第十五封装层压合到基板上,使得第十五封装层包覆各LED芯片,而光扩散单元则被压入到保护胶层内位于LED芯片的上方,光扩散单元的上表面与第十五封装层的出光面位于同一平面。应当理解的是,本实施例中,光扩散单元的熔点要高于第十五封装层的熔点,采用热压工艺将第十五封装层压合到基板上,在热压过程中,光扩散单元不会因为受热变形,而第十五封装层因受热达到熔点时,使得第十五封装层便包覆各LED芯片,光扩散单元则被压入到第十五封装层内。因此,在保持第十五封装层整体厚度不变的情况下,由于第十五封装层内位于LED芯片上方设置的光扩散单元对LED芯片发出的光线进行折射以及多次反射后射出第十五封装层的出光面,使得第十五封装层的出光面均匀地发光,不再需要在第十五封装层上设置均光膜片,避免了均光膜片的使用,降低背光模组的整体厚度。各光扩散单元对单个LED芯片的光线进行光学处理,均光性良好,相比于使用均光膜片,避免了粒子聚团现象的情况,同时,发光芯片与光扩散单元未进行直接接触,使得LED芯片发出的光线在光扩散单元和基板正面之间进行多次反射后射出第十五封装层,减少了光损失。
本实施例在步骤d22之后还包括:在第十五封装层出光面的一侧设置光学膜层,光学膜层包括量子膜、棱镜片、但不包括均光膜,本实施中通过设置在第十五封装层内的光扩散单元对LED芯片发出的光线进行反射和折射后射出第十五封装层的出光面,从而使得第十五封装层的出光面均匀地发光,替代了在第十五封装层上设置均光膜来对LED芯片的光线进行均光,减去了均光膜片的使用,降低背光整体厚度。
本实施例还提供了另一种示例的显示模组制备方法,包括步骤:
步骤a23:在基板正面上设置若干发光单元,各发光单元包括至少一颗LED芯片。该步骤中,各LED芯片固定在基板的正面上,且各LED芯片按照预设的阵列布局均匀地分布在基板正面
步骤b23:制作用于对若干LED芯片进行密封的第十五封装层。
步骤c23:将光扩散粒子按照预定比例混入胶水溶剂制得胶水。
本实施例中,光扩散粒子包括二氧化硅和/或二氧化钛,胶水溶剂采用树脂胶作为胶水溶剂,二氧化硅和/或二氧化钛按照预定的比例关系混入到胶水溶剂中。本实施例中,步骤b23与步骤c23的顺序可对换,也可同时进行。
步骤d23:将制得的胶水使用3D打印技术打印在第十五封装层的出光面上,形成光扩散单元。本示例中,采用3D打印技术将胶水打印在第十五封装层的出光面上,形成均匀分布的若干光扩散单元,应当理解的是,本实施例还可以采用网版丝印技术将胶水丝印在第十五封装层的出光面上形成光扩散单元。各光扩散单元在第十五封装层出光面上的阵列布局应与各LED芯片在基板正面上的阵列布局相同,使得光学结构刚好位于LED芯片的正上方位置。光扩散单元对LED芯片发出的光线进行反射及折射使得各LED芯片发出的光线从第十五封装层的出光面均匀射出,从而使得基板上的LED芯片发出的光线从第十五封装层的出光面射出时,第十五封装层的出光面为均匀发光的面光源。
步骤e23:将设置有光扩散单元的第十五封装层压合到基板正面上。
步骤f23:在第十五封装层出光面的一侧设置光学膜层。本实施例中光学膜层包括量子膜、棱镜片、但不包括均光膜,本实施中通过设置在第十五封装层内的光扩散单元对LED芯片发出的光线进行反射和折射后射出第十五封装层的出光面,从而使得第十五封装层的出光面均匀地发光,替代了在第十五封装层上设置均光膜来对LED芯片的光线进行均光,减去了均光膜片的使用,降低背光整体厚度。
通过上述示例方法制得的背光模组,第十五封装层内LED芯片上方的光扩散单元,使得LED芯片发出的光线从第十五封装层的出光面均匀射出,节省了均光膜片,减小了背光模组的整体厚度,降低了背光模组的成本。
本实施还例提供了一种显示模组,用于解决相关技术中,通过均光膜、扩散膜等光学膜片实现背光模组点光源到面光源的转换,增加了显示模组的整体厚度和成本的问题,无法满足消费者对于产品性价比的需求,其包括:基板, 设置于基板正面上的若干发光单元,本实施例中的基板和发光单元可参考但不限于上述各实施例所示,在此不再赘述。本实施例中,在基板背面还可设有LED芯片的驱动IC,以驱动各LED芯片工作。还包括设于基板正面上将各LED芯片覆盖的第十五封装层,第十五封装层内远离各LED芯片顶面的区域形成有若干间隔分布的第一扩散区,第一扩散区包括至少一个光扩散单元,光扩散单元包括与LED芯片顶面相对的光入射面和与第十五封装层的出光面齐平的光出射面,光扩散单元用于对LED芯片发出的光线进行反射及折射使得LED芯片发出的光线从第十五封装层的出光面均匀射出。
为了便于理解,下面结合附图作为示例,对本实施例提供的显示模组进行示例说明。
一种示例的显示模组参见图12-1所示,包括基板111,均匀分布于基板111正面上的若干LED芯片2110,以及设于基板正面上将各LED芯片覆盖的第十五封装层315,第十五封装层315对应于各LED芯片顶面的区域形成有若干间隔分布的第一扩散区3151,第一扩散区3151包括至少一个光扩散单元区3153,光扩散单元由胶水溶剂以及按照预定比例混入胶水溶剂中的光扩散粒子构成。本实施例中,第一扩散区3151位于LED芯片2110的正上方位置,其在基板正面上的投影面积大于LED芯片在基板正面上的投影面积。
本实施例中,第一扩散区3151上的光扩散单元区3153包括与LED芯片顶面相对的光入射面和与第十五封装层315的出光面齐平的光出射面,参见图12-2所示,LED发出的光线F射入光扩散单元的光入射面后经反射及折射后射出光扩散单元的光出射面,使得LED芯片发出的光线从第十五封装层315的出光面均匀射出,各光扩散单元分别对单个LED芯片的光线进行光学处理,均光性良好,相比于使用均光膜片,避免了粒子聚团现象的情况,同时,LED芯片与光扩散单元未进行直接接触,使得LED芯片顶面发出的光线在光扩散单元和基板正面之间进行多次反射后射出第十五封装层,减少了光损失。各光扩散单元在第十五封装层出光面上的阵列布局应与各LED芯片在基板正面上的阵列布局相同,使得光扩散单元刚好位于LED芯片的正上方位置。光扩散单元对LED芯片发出的光线进行反射及折射使得各LED芯片发出的光线从第十五封装层的出光面均匀射出,从而使得基板上的LED芯片发出的光线从第十五封装层的出光面射出时,第十五封装层的出光面为均匀发光的面光源。
应当理解的是,本实施例中背光模组还包括设于第十五封装层出光面一侧的光学膜层,光学膜层包括量子膜、棱镜片、但不包括均光膜,本实施中通过设置在第十五封装层内的光扩散单元对LED芯片发出的光线进行反射和折射后射出第十五封装层的出光面,从而使得第十五封装层的出光面均匀地发光,替代了在第十五封装层上设置均光膜来对LED芯片的光线进行均光,减去了均光膜片的使用,降低背光整体厚度。
本实施例中,由胶水溶剂以及按照预定比例混入胶水溶剂中的光扩散粒子制成胶水,光扩散粒子包括二氧化硅和/或二氧化钛中的至少一种,光扩散粒子的形状包括圆形、方形、三角形中的任意一种,还可以是其他不规则的形状,可根据实际应用灵活地进行设定,制成该胶水后,通过3D打印技术将胶水打印在第十五封装层的出光面上或通过网版丝印技术将胶水丝印在第十五封装层的出光面上的第一扩散区形成光扩散单元。然后将具备光扩散单元的第十五封装层通过热压的工艺压合到基板正面上,使得基板正面上设置的LED芯片包覆于第十五封装层中,同时,第十五封装层出光面上的光扩散单元被压入到第十五封装层内,并位于LED芯片的正上方位置,光扩散单元的上表面与第十五封装层的出光面处于同一平面,应当理解的是,本实施例中,光扩散单元在基板正面上的投影面积大于LED芯片在基板正面上的投影面积,使得光扩散单元能够将LED芯片发出的大部分部光线进行反射或折射。
本实施例中,光扩散单元的均光效果与光扩散单元的形状,厚度以及光扩散单元中光扩散粒子的成分占比有关,可通过设置光扩散单元不同的形状、厚度及光扩散粒子的成分占比以达到不同的均光效果。本实施例中,以二氧化硅为光扩散粒子为例,二氧化硅的所占胶水的比例由LED芯片之间的间距值Pitch(如图12-1所示)和光扩散单元的厚度确定,根据显示模组的窜光比的指标,一个灯区的光线,应尽量少的逸散到其他灯区,因此,二氧化硅的比例与LED Pitch值正相关,与光扩散单元的厚度负相关,LED Pitch值和光扩散单元的厚度根据实际需求进行设定。本实施例中,二氧化硅的比例=30%+[(LED Pitch-3.0)/0.2-(光扩散单元厚度-20)/10]*10%。参见表1为根据该关系式得到的几组二氧化硅比例与LED Pitch值和光扩散单元的厚度数据。
Figure 957723dest_path_image001
在一种示例中,参见图12-3所示,在第一扩散区3151内仅设置了一个光扩散单元,布满整个第一扩散区3151,光扩散单元的形状为圆形,本实施例中所指的光扩散单元的形状是光扩散单元在基板正面上投影的形状。应当理解的是,光扩散单元的形状并不限于上述几种举例,还可以是其它任何形状,可以根据实际需要进行灵活地设定,本实施例中,光扩散单元在基板正面上的投影面积应当大于LED芯片在基板正面上的投影面积。
本实施例中,第一扩散区域3151还可包括多个光扩散单元,多个光扩散单元按照预设排列规则组成第一扩散区,参见图12-4所示,第一扩散区3151包括多个光扩散单元区3153,多个光扩散单元区3153等间距均匀排布于第一扩散区内,本实施例中,多个光扩散单元呈等间距均匀地分布,当然,多个光扩散单元还可以按照其他排列规则进行分布,光扩散单元的形状可包括圆形、矩形、三角形中的任意一种,根据实际需要进行灵活地设定。
本实施例中,还可围绕第一扩散区间隔设置若干第二扩散区,第二扩散区包括至少一个光扩散单元,各第二扩散区按预设规则分布于第一扩散区的周围,本实施中,各第二扩散区等间距均匀地分布于第一扩散区的周围,应当理解的是,各第二扩散区还可以是按照其他排布规则分布于第二扩散区的周围,可以根据实际应用需求灵活的设定,应当理解的是,本实施例中,第二扩散区在基板上的投影小于第一扩散区在基板上的投影面积。
在一种示例中,参见图12-5所示,在第一扩散区3151的周围还设有8个第二扩散区3152,第一扩散区3151内设有一个光扩散单元,每个第二扩散区3152内各设有一个光扩散单元,各第二扩散区3152等间距设置在第一扩散区3151的圆周范围上。
在另一种示例中,参见图12-6所示,在第一扩散区3151的周围设有8个第二扩散区3152,第一扩散区3151内设有若干个光扩散单元区3153,每个第二扩散区3152内各设有若干个光扩散单元,第一扩散区和第二扩散区内的若干光扩散单元呈等间距均匀排布。
本实施例提供的显示模组,在第十五封装层内远离LED芯片顶面的区域设有光扩散单元,用于对LED芯片发出的光线进行反射或折射使得LED芯片发出的光线从第十五封装层的出光面均匀射出,从而节省了均光膜的使用,降低了背光模组的整体厚度及成本。本实施例还提供一种显示屏,其包括以上各示例所示的至少一个显示模组。
实施例十二
本实施例中,一个发光单元为显示模组的一个像素单元,其通常包括依次排列成一行或一列的红光LED芯片、绿光LED芯片以及蓝光LED芯片(红光LED芯片与蓝光LED芯片的位置可互换)。红光LED芯片、绿光LED芯片、蓝光LED芯可以是LED芯片的量子阱分别发出红光、绿光与蓝光,但在其他一些示例中,红光LED芯片、绿光LED芯片、蓝光LED芯也可以是通过量子点膜层或者荧光分层等光转换层将LED芯片发出的某种颜色的光转换进行转换后得到的。这种排列方式中,绿光LED芯片同时与红光LED芯片、蓝光LED芯片相邻,但红光LED芯片与蓝光LED芯片之间间隔有绿光LED芯片,因此,绿光与红光的混光效果,以及绿光与蓝光的混光效果都比较好,而红光与蓝光的混光效果差,这就会导致发光单元中整体发出的光存在偏色,影响显示模组的整体显示效果。本实施例提供一种可解决该技术问题的显示模组,且本实施例可独立于其他各实施例单独实施。
本实施例提供的一种示例的显示模组参见图13-1所示,其中:显示模组400包括基板112a以及多个发光单元212a,基板112a设置有驱动电路。
发光单元212a中包括N颗LED芯片,N大于等于3,各LED芯片的颜色不完全相同,即可以完全不同也可以有部分相同,换言之,发光单元212a中包括多颗颜色不完全相同的LED芯片,在本实施例的一些示例中,发光单元212a中包括红光LED芯片2121a、绿光LED芯片2122a以及蓝光LED芯片2123a,并且这些LED芯片可以是量子阱发出对应颜色的光的芯片,也可以是经由光转换层转换得到对应颜色的光的芯片。在本实施例的其他一些示例中,发光单元212a中LED芯片的颜色也可以不限于红、绿、蓝三种,例如还可以包括白光LED芯片或者黄光LED芯片等几种中的至少一种,在一些示例中,发光单元212a中可以包括红、绿、蓝、白四颗LED芯片。在一些示例中,一个发光单元212a就由红光LED芯片2121a、绿光LED芯片2122a以及蓝光LED芯片2123a三颗LED芯片构成,还有一些示例中,一个发光单元212a中虽然仅包括红、绿、蓝三种颜色的LED芯片,但其中至少部分颜色的LED芯片具有两颗或两颗以上。
可以理解的是,当一个发光单元中包括三颗LED芯片时,相邻两个中心连线之间的夹角为120°,即一颗LED芯片的中心与旋转对称中心之间的连线,同相邻LED芯片的中心与旋转对称中心之间的连线的夹角为120°;当一个发光单元中包括四颗LED芯片时,相邻两个中心连线之间的夹角为90°,将发光单元中LED芯片的数目扩展为N,N大于等于3,则同相邻LED芯片的中心与旋转对称中心之间的连线的夹角为360°/N。
在本实施例中,LED芯片的尺寸、类型等可参考但不限于上述各实施例,在本实施例的一些示例中,基板112a上的LED芯片均为倒装结构的芯片,显示模组400为COB显示模组,或者也可以为COG(Chip On Glass)显示模组。
在本实施例中,发光单元212a中的各LED芯片旋转对称排列,所谓旋转对称排列是指发光单元212a中的各LED芯片排列形成的图形是旋转对称图形,旋转对称图形的定义为:把一个平面图形绕着平面上一个定点旋转α(弧度)后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。典型的旋转对称图形包括风扇扇叶的图形,香港特别行政区区徽中的紫荆花图案等。在本实施例发光单元212a对应的图形中,其中任意一颗LED芯片绕旋转对称中心旋转一定角度后可以与另一颗LED芯片重合。
从图13-1中可以看出,在发光单元212a中,对于其中一颗LED芯片,除了在旋转方向上与另外两颗LED芯片相邻以外,在靠近旋转对称中心O的一侧发光单元212a中各LED芯片都是彼此相邻的,这样可以解决现有技术中LED芯片成行或成列排布时部分LED芯片相邻,距离较近,部分LED芯片间隔,距离较远,从而导致LED芯片间因距离不均衡而导致的混光效果不佳的问题。尤其是在发光单元212a由三颗LED芯片构成的情况下,例如在图13-1中,红光LED芯片2121a、绿光LED芯片2122a与蓝光LED芯片2123a中各LED芯片在旋转方向上是两两相邻的,在靠近旋转对称中心的一侧也是彼此相邻的,可以显著改善发光单元212a中LED芯片的混光效果,提升显示模组的显示性能。
在本实施例中,LED芯片在平行于基板112a方向上的垂直投影(以下记为“垂直投影”)具有两条相互垂直的对称轴,LED芯片的垂直投影通常与LED芯片在平行于基板方向上的横截面轮廓相同,不过本实施例中也不排除LED芯片在平行于基板方向上的横截面轮廓与LED芯片在平行于基板方向上的垂直投影不同的情况。LED芯片的垂直投影包括但不限于矩形、菱形、椭圆形、正多边形等。
为了便于介绍,这里将LED芯片的中心与旋转对称中心间的连线记为“中心连线”,在LED芯片的垂直投影具有一定长宽比(即长宽比大于1时),将LED芯片垂直投影尺寸较大的方向对应的对称轴称为“长对称轴”,将LED芯片垂直投影尺寸较小的方向对应的对称轴称为“短对称轴”。在本实施例的一些示例中,中心连线可以平行于LED芯片垂直投影的一条对称轴,例如,请参见图13-2示出的一种发光单元212b中LED芯片的排布示意图,在发光单元212b中包括四颗LED芯片2120,这四颗LED芯片2120的垂直投影为长方形,中心连线与垂直投影的长对称轴平行,也即与长方形的长边平行,并与短对称轴垂直,即与长方形的短边垂直。可以理解的是,LED芯片中两个电极通常沿着垂直投影的对称轴设置(例如通常沿着长对称轴设置,当然本实施例中也不排除沿着短对称轴设置的情况),所以,当中心连线同垂直投影的对称轴平行时,中心连线就同LED芯片两电极的电极中心连线(以下简称“电极中心连线”)重合或者垂直。这样LED芯片在基板上的固晶键合工艺更简单,并且基板上相同面积的区域中LED芯片数量较少,可以便于LED芯片的散热,维护LED芯片的可靠性。
另一些示例中,LED芯片垂直投影的两条对称轴均与中心连线不平行,这样可以使得发光单元212b在基板上的部署面积更小,有利于在基板上有限的有效显示区中部署更多的发光单元212b。同时发光单元212b的间距可以做到更小,进一步减小LED芯片2120间的混光距离,增强单个发光单元的混光效果,提高显示模组所显示图像的锐度。请继续参见图13-1,在图13-1中各LED芯片呈“工”字型。又例如,请参见图13-5所示,发光单元212e中包括三颗LED芯片2120,这三颗LED芯片的垂直投影呈椭圆形,中心连线与该椭圆形的长轴、短轴均不平行。在本实施例的一些示例中,中心连线同电极中心连线间的夹角在25°~65°之间,例如部分示例中保证中心连线同电极中心连线间的夹角在30°~60°之间,例如可以不限于为30°、45°、50°或55°、60°等。通过夹角范围的限定,可以平衡发光单元中LED芯片散热与混光的矛盾,在保证LED芯片散热需求的同时,维护LED芯片的混光效果。
在本实施例的一些示例中,一发光单元中存在至少一颗LED芯片的对称轴与基板的侧边平行,例如请参见图13-3所示,在图13-3中,发光单元212c包括A、B、C三颗LED芯片,其中,A的长对称轴与基板112b的侧边平行。可以理解的是,因为A的垂直投影具有一定的长宽比,长对称轴平行于基板112b侧边,则意味着LED芯片A具有较大尺寸的一侧平行于基板的侧边,这就会导致在基板拼接时,拼缝附近的发光单元212c中LED芯片A侧面出光量更大,进而使得该发光单元212c中出现偏色,影响显示模组的显示效果。所以,在本实施例的一些示例中,如图13-4所示,LED芯片在平行于基板方向上的垂直投影具有两条相互垂直的对称轴,但发光单元212d中各LED芯片的对称轴与基板112b的侧边均不平行,以此提升拼缝附近发光单元212d的混光效果,增强显示模组的显示性能。
可以理解的是,在发光单元中LED芯片旋转对称排列时,各LED芯片间应当不干涉触碰,也即相邻LED芯片间留有一定的间隙。在本实施例的一些示例中,LED芯片为微米级尺寸的,例如一些示例中,LED芯片垂直投影的尺寸可以小至10μm×10μm,另一些示例中,LED芯片垂直投影的尺寸可以达到400μm×300μm。在本实施例的一些示例中,旋转对称中心O距离LED芯片两条对称轴的距离均小于2mm,这样可以在保证LED芯片之间不发生触碰干涉的基础上表面发光单元中LED芯片排布过于分散的问题,不仅可以减小发光单元的部署面积,也可以提升发光单元的出光效果。
在一些情况下,当发光单元212a中各LED芯片旋转对称排列的情况下,各LED芯片中两个电极与旋转对称中心O之间的距离不同,例如,请参见图13-6所示,在发光单元212f中,四颗LED芯片2120a各有一个电极相对靠近旋转对称中心O,另一个电极则相对远离旋转对称中心O,在本实施例中,将LED芯片2120a中距离旋转对称中心O较近的一个记为“近中心电极”,即距离旋转对称中心较近的电极。在本实施例的一些示例中,按照旋转对称排列的方式发光单元中的LED芯片时,可以将各LED芯片的近中心电极的极性设置得相同,例如,在图13-6当中,各LED芯片2120a的近中心电极均为阳极。可选地,一些示例中,不仅将发光单元中各LED芯片的近中心电极的极性设置得相同,还会将这些近中心电极连接到一起,实现共极驱动。例如,在图13-6中,可以在旋转对称中心O处设置导电过孔501,利用导电过孔501连接各LED芯片极性相同的近中心电极。
当然应当明白的是,本实施例中并不限定导电过孔501必须位于旋转对称中心O处,例如,其也可以位于旋转对称中心O附近,不过相对而言,如果将导电过孔501设置在旋转对称中心O处,则导电过孔501与发光单元212f中各LED芯片的近中心电极的距离都相同,这样便于线路设计。另外,在本实施例的其他一些示例中,对应一个发光单元212f也可以设置两个或者两个以上的导电过孔,这些导电过孔可以通过其他方式电连接在一起,或者是分别独立。另一些示例中,发光单元212f中各LED芯片的近中心电极也可以采用导电过孔以外的方式电连接,甚至在一些示例中这些近中心电极并不会电连接在一起,而是被独立驱动。还有一些示例中,各LED芯片的近中心电极极性并不相同,如图13-7所示,在图13-7示出的发光单元212g中,也同样包括四颗LED芯片2120b,不过其中部分LED芯片2120b的近中心电极为阳极,部分LED芯片2120b的近中心电极为阴极。而在图13-8所示的发光单元212h中,LED芯片2120c的两个电极与旋转对称中心O的距离相同,并不存在近中心电极的概念,在这种情况下,可以对LED芯片2120c的朝向随意布置,也可以将相邻两颗LED芯片2120c相邻的电极的极性设置为相同,请参见图13-8所示,例如,在图13-8中,上方的LED芯片2120c的阳极与左侧LED芯片2120c的阳极靠近,上方的LED芯片2120c的阴极与右侧LED芯片2120c的阴极靠近,而右侧LED芯片2120c的阳极则与下方LED芯片2120c的阳极靠近,下方LED芯片2120c的阴极与左侧LED芯片2120c的阴极靠近。
在本实施例中,显示模组400中的多个发光单元212a可以阵列式排布,即成行成列的排布在基板112a上,请继续参见图13-1。一些示例中,不同发光单元中LED芯片的朝向没有关联关系,因此发光单元的朝向随机。但还有一些示例中,各发光单元中相同颜色的LED芯片的朝向相同,如图13-1所示,这样便于相同颜色LED芯片按照相同的朝向排布在转移基板上,然后从转移基板上以巨量转移的方式一起被转移键合到基板112a上,进而提升显示模组的生产效率,降低生产成本。
在本实施例的一些示例中,显示模组500中包括封装层3,该封装层3可采用但不限于上述其他各实施例所示的封装层结构。如图13-9所示,封装层3覆盖在LED芯片2120d上,在图13-9中简单的释义了发光单元中LED芯片2120d朝向不同的情况,但本领域技术人员可以理解的是,图13-9中LED芯片2120d的朝向并不是显示模组500中LED芯片2120d的朝向的限制。封装层3不仅可以将LED芯片2120d更稳固地固定在基板112c上,避免LED芯片2120d从基板112c上脱落,同时也可以阻隔外界水汽对LED芯片2120d的侵袭,尤其是当LED芯片2120d中包括量子点材料的情况下,封装层3可以保护量子点材料,提升LED芯片2120d的可靠性,延长显示模组500的寿命。一些示例中封装层3可以为透明胶,也可以为黑胶,当封装层3为黑胶的情况下,可以实现显示模组500的封装黑化,避免用户从外部看到显示模组500内部的LED芯片2120d、基板112c的细节等,提升显示模组500的显示性能。
本实施例还提供一种电子设备,该电子设备中包括处理器以及与该处理器通信连接的至少一个显示模组,该显示模组可以为前述任意一种示例中提供的显示模组,在显示模组内,发光单元中的LED芯片旋转对称排列。可以理解的是,显示模组与处理器的通信连接可以通过有线连接实现,例如数据总线连接,也可以通过无线连接的方式实现。另外,电子设备中除了包括处理器与显示模组以外,还可以包括其他器件,例如音频输入输出单元、图像采集单元、存储器、蓝牙模块、WiFi模块等几种中的至少一种。
本实施例提供的显示模组与电子设备,因为显示模组内发光单元中LED芯片呈旋转对称排列,改变了发光单元中LED芯片的排布方式,让LED芯片间原本的以为排布变成了二维排布,缩小了LED芯片间距离的差异,提升了不同颜色的LED芯片间混光效果的均衡度,增强了显示模组的显示效果。
为了让本领域技术人员对前述实施例中提供的显示模组与电子设备的结构与优点更明确,本实施例将结合示例继续对前述示例中发光单元内LED芯片的排布方案进行阐述:可以理解的是,发光单元中LED芯片的排布方案与该发光单元中LED芯片的数目、LED芯片本身的形状、LED芯片相对旋转对称中心的距离、LED芯片相对基板上参考方向(例如平行于基板长边或短边的方向)的倾斜角度都有关系。在本实施例中假定发光单元中具有三颗LED芯片,且LED芯片的垂直投影为“工”字型。在这种情况下,决定发光单元中LED芯片具体排布方式的就是LED芯片与旋转对称中心间的距离以及LED芯片相对参考方向的倾斜角度。
首先请参考图13-10:LED芯片2120e的垂直投影在其中一条对称轴方向上的尺寸大于该垂直投影在另外一条对称轴方向上的尺寸,其垂直投影在第一对称轴M1方向上的尺寸大于在第二对称轴M2方向上的尺寸,为了便于介绍,本实施例中同样将LED芯片垂直投影尺寸较大的方向对应的对称轴称为“长对称轴”,将LED芯片垂直投影尺寸较小的方向对应的对称轴称为“短对称轴”,所以,在图13-10当中,第一对称轴M1就是长对称轴,而第二对称轴M2就是短对称轴。当然,在其他一些示例中,如果LED芯片的垂直投影为矩形,则长对称轴与LED芯片的长边平行,短对称轴则与LED芯片的短边平行;如果LED芯片的垂直投影为菱形,则长对称轴即为菱形的长对角线,短对称轴则为菱形的短对角线;如果LED芯片的垂直投影为椭圆形,则长对称轴即为椭圆形的长轴,短对称轴则为椭圆形的短轴。
本实施例中将旋转对称中心O距离LED芯片2120e的短对称轴802的距离记为可调距离d,将LED芯片2120e中心与旋转对称中心O之间的连线,即中心连线,同长对称轴801之间的夹角记为可调角度α1,可以理解的是,通过调整可调距离d(微米级,不过附图中LED芯片2120e的尺寸以及LED芯片2120e间的尺寸都被按比例放大)与可调角度α1的数值,就可以得到三颗LED芯片2120e排布不同的发光单元。图13-11示出的是可调距离d为85.75,而可调角度α1为29.76°时得到的发光单元212i;图13-12示出的是可调距离d为35.74,而可调角度α1为60.66°时得到的发光单元212j;图13-13示出的是可调距离d为126.79,而可调角度α1为0时得到的发光单元212k;图13-14示出的是可调距离d为99.96,而可调角度α1为0时得到的发光单元212n;图13-15的则是可调距离d为0,而可调角度α1为90°时得到的发光单元212p。在本实施例中示出的包括三颗LED芯片2120e的各发光单元中,可调距离d均小于2mm。
下面对发光单元中包括四颗上述LED芯片2120e的情况进行说明:请参见图13-16示出的发光单元212q,其对应的可调距离d为85.75,而可调角度α1为30°;图13-17示出的是可调距离d为47.56,而可调角度α1为60°时得到的发光单元212w;图13-18示出的是可调距离d为166.77,而可调角度α1为0时得到的发光单元212r;图13-19示出的是可调距离d为0,而可调角度α1为0时得到的发光单元212t。
毫无疑义的是,如果将旋转对称中心O距离LED芯片2120e的第一对称轴M1的距离作为可调距离加以变换,同样可以得到不同排布情况的发光单元。或者,将中心连线同第二对称轴M2之间的夹角作为可调角度也是可行的。
基于本实施例中LED芯片排布方案所得到的显示模组或电子设备中,在单个发光单元的范围内,各个LED芯片都相邻,优化了各种颜色的混色效果,提升了显示模组与电子设备的显示效果。
实施例十三
现有的LED显示屏是在屏体的四周做包边,然后在包边上设置一个工作状态指示灯,用以指示LED显示屏的工作状态。但是这样设置的LED显示屏,指示灯所指示的工作状态代表的是整个屏体的工作状态,在显示屏的调试阶段或使用时,无法快速直观和准确的了解显示屏中各发光单元的工作状态。因此当显示屏异常时,不能精确的定位到异常的发光单元,进而不能对其进行精确的定位检修。为了解决该技术问题,本实施例提供一种显示模组;且本实施例可独立于其他各实施例单独实施。
本实施例提供的一种示例的显示模组参见图14-1所示,显示模组包括封装单元P, 封装单元P包括 基板113,封装层3,以及若干设置在基板正面的显示区域1131内的发光单元213。本实施例中的发光单元213可参考但不限于上述各实施例所示的发光单元。封装层3将发光单元213覆盖可以包括将基板正面和发光单元213全部都覆盖,还可以包括仅将基板正面上的发光单元213覆盖,具体实施方式在此不做限定。显示模组还包括指示单元9,指示单元9设于设置在基板背面一侧,且位于与显示区域1131对应的区域内,指示单元9可以包括一颗指示灯61,也可以包括多颗指示灯61,具体数量在此不做限定,较优的,在一些示例中,在一个显示模组中指示灯61的个数为大于等于1个,小于等于20个,或者在一个显示屏中为大于等于1个,小于等于200个,本实施例中的指示单元9仅包括一颗指示灯61,基板113上对应于指示单元9的区域为透光区域1132,指示单元9发出的光透过透光区域1132,从显示区域1131射出,以对发光单元213的状态进行指示。
应当说明的是,本实施例中每个发光单元213均包括多颗颗LED芯片2131,例如如图14-2所示,该显示模组中包括两个发光单元213以及两个指示单元9,每个发光单元231包括5颗(实际产品中可以远大于5,也可小于5)LED芯片2131,每个指示单元9位于基板背面一侧,且位于与显示区域1131对应的区域内。应当说明的是,指示单元9中的指示灯61在显示区域1131上对应的区域内也设有LED芯片,可使得显示屏所显示的画面更加完整和连续,提升了用户使用的满意度。
应当说明的是,本实施例中指示单元9可以在检测到发光单元213异常时就立即发光指示,还可以在发光单元213发生异常后,等到熄灭待机的时候再进行发光,可以根据实际情况和需求设置指示单元9自动在何时发光,在此不做限定。通过设置指示单元9在何时进行发光指示可以避免在使用过程中由于因特殊因素不方便维修的时候,指示单元9发出的光对用户的使用造成干扰,例如在使用该显示屏开重要会议的时候,如果其中某一个发光单元213异常,此时为了会议的连贯性,用户会在会议完成后再对其进行维修。
在一些示例中,指示单元9开闭或调节亮度等控制可支持用户手动设置,也可自动监测当前使用环境自动设置。例如,在使用该显示屏开重要会议的时候,如果其中某一些发光单元213异常了,此时为了会议的连贯性,用户可以在异常的发光单元213对应的指示单元9发光后,对其进行手动的关闭或降低亮度,以避免其影响会议的继续进行和对用户视觉上造成干扰,当然指示单元9还可以在调试过程中手动开闭或手动调节亮度,例如在调试过程中,在针对显示模组进行调试时,当认为某一个显示模组出现异常时,可以将该显示模组的指示单元9打开,以标记该显示模组出现异常。本实施例中指示单元9可针对不同的异常类型采用不同的发光指示方式(包括但不限于发光颜色、点亮方式等)进行不同的指示,使得用户在维修时能更快的识别异常类型和维修,提高维修效率。
在实施例的一些示例中,显示模组还包括采集控制设备,用于采集发光单元的参数,在根据采集到的参数确定发光单元满足预设指示条件时,控制指示单元发光,该参数可以是表征工作状态的工作参数,也可以是表征所处环境的环境状态的环境参数,还可以是表征工作状态的工作参数和表征所处环境的环境状态的环境参数的结合,本领域技术人员可以根据实际情况和需求进行选择。应当说明的是,采集控制设备的具体结构在本实施例中未示出,其包括但不限于集成设置在显示模组内、外接在显示模组的外部,例如可以在显示模组外设置一个单独的采集控制平台并与显示模组连接,用户使用该外接的采集控制平台可以远距离的对显示模组进行数据采集和对该显示模组中的指示单元进行控制,具体设置方式本领域技术人员可以根据实际情况和需求进行设置,在此不做限定。
在一些示例中,采集控制设备包括采集模块和控制模块,在预设指示条件为发光单元异常时;采集模块用于采集发光单元的参数;控制模块用于在根据该参数确定该发光单元异常时,控制指示单元发光,应当说明的是,该预设指示条件包括发光单元异常或正常,其可以是在发光单元异常时,控制模块控制指示单元发光,也可以时在发光单元正常时,控制模块控制指示单元发光,该指示单元可以是在显示屏工作的时候发光,也可以是在显示屏熄灭待机的时候发光。
例如在使用过程或调试过程中,假设采集模块采集的参数仅为发光单元的工作电压,且发光单元的正常电压值范围为大于等于1.2V,小于等于1.5V,采集模块(例如电压传感器)采集发光单元当前工作电压值为1V,采集模块将采集到的工作电压值信息发送给控制模块(例如控制卡),控制模块再根据接收到的工作电压值信息1V判断该发光单元的工作电压值不在正常值范围内,此时控制模块确定发光单元发生了电压异常,控制模块便自动控制该指示单元发光,以指示该显示单元的电压状态为电压异常。应当说明的是,控制模块还可以是包括但不限于以软件的形式安装于终端(例如电脑)上,该软件上设有与指示单元一一对应的按钮,如需控制某个指示单元发光,便手动点击电脑的软件上该指示单元对应的按钮就即可。又例如在使用过程或调试过程中,假设采集模块采集的参数为发光单元的工作电压和所处环境的环境温度,且发光单元的正常工作电压值范围为大于等于1.2V,小于等于1.5V,所处环境的环境温度值正常范围为大于等于0°,小于等于40°,采集模块采集发光单元当前的工作电压值和所处环境的环境温度值(例如工作电压值为1.3V,环境的温度值为60°),采集模块将采集到的工作电压值和所处环境的环境温度值发送给控制模块,控制模块再根据接收到的工作电压值1.3V和所处环境的环境温度值60°判断该发光单元的工作电压值在正常值范围内,且所处环境的环境温度值不在正常值范围内,由于所处环境的环境温度值异常,因此控制模块控制该发光单元的显示区域内对应的指示单元发光,以指示该发光单元温度异常。应当说明的是,该温度还可以是工作温度,本领域技术人员可以根据实际情况和需求进行设置,本申请不做限定。通过上述方案指示单元发光时用户可以直接在发光单元的正面快速直观的看到,提升了维修效率,且在指示单元不发光时,其是隐藏在发光单元之下的,不会影响其美观和发光单元的显示效果。
应当说明的是,采集模块可以包括但不限于电压传感器、电流传感器、温度传感器等,例如还可以包括湿度传感器、信号通断传感器等,当然采集模块还可以包括将采集所需要的参数的传感器的功能集成在一起,同时采集模块可以在发光单元工作的时候对其进行采集,也可以在发光单元熄灭待机的时候对其进行采集,当然传感器的设置可以包括但不限于将部分传感器设置在显示模组外,例如将电压传感器设置在显示模组外,在调试过程中可以通过外接移动终端(电脑、手机等)根据设置在显示模组外的电压传感器采集的电压参数,在确认采集到的电压参数不在正常电压值范围内时,控制指示单元发光,以指示其工作状态为电压异常,以实现对各发光单元的调试,本领域技术人员可以根据实际情况和需求对采集模块进行设置,在此不做限定,同时控制模块可以包括但不限于控制卡、控制器等,只要能实现对采集到的参数信息进行判断和控制指示灯发光即可,本领域技术人员可以根据实际情况和需求选择控制模块的具体应用设备,应当说明的是,采集模块可以包括但不限于集成在控制模块内部,例如,采集模块还可以和控制模块一起单独设置在显示模组内,较优的,本实施例的采集模块是集成在控制模块内部,使得显示模组的结构更加的小巧、紧凑,以适应更多的使用环境和需求。
在一些示例中,采集控制设备还包括存储模块,该存储模块中存储有异常类型与发光方式对应关系的对应关系表,用于在根据参数确定发光单元异常时,确定发光单元的异常类型,并根据异常类型和对应关系表匹配出对应的目标发光方式,根据目标发光方式控制指示单元发光。应当说明的是,该存储模块可以是集成在该采集控制设备内部的,也可以是独立设置的,例如可以是外接的U盘、可存储移动终端等存储设备,其具体存在形式本领域技术人员可以根据实际情况和需求进行设置,只要能实现存储该关系表即可本,发明不做限定。
应当说明的是,存储在存储模块中的该异常类型与发光方式对应关系的对应关系表如表2所示,该表可以是预先存储在采集控制设备的存储模块中,也可以是存储在外接设备中,在使用时通过接入外接设备,并上传到存储模块中,本领域技术人员可以根据实际情况和需求进行设置,在此不做限定。
Figure 884091dest_path_image002
应当说明的是,异常类型可以对应包括但不限于不同的发光方式,例如异常类型还可以对应相同的发光方式,如表3所示为异常类型与发光方式的另一种对应关系表,其不管异常类型是什么,均已常亮红光的发光方式进行发光,当然该对应关系表还可以包括但不限于不同异常类型对应不同颜色、不同频率、不同亮度的发光方式,只要能正确的对应异常类型与发光方式之间的关系即可,可以根据实际情况和需求进行设置,在此不做限定。
Figure 964042dest_path_image003
应当说明的是,在一些实施例中该对应关系表还可以包括但不限于参数类型、参数异常标准等,例如表4所示为参数类型、参数异常标准、异常类型与发光方式的一种对应关系表,表4中为仅采集某一个参数类型的情况,例如当采集电压参数时,确定采集到的电压参数是否落入到参数异常标准范围,若是落入到该参数异常标准范围内,则可以判定其为电压异常,从而指示单元常亮红光,以提示用户该发光单元异常,当然采集参数时还可以同时采集多个参数,在确定采集到的多个参数至少有一个落入到参数异常标准范围后,可以包括但不限于需要再去判定异常类型是什么,然后再控制指示单元包括但不限于常亮红光,例如还可以是直接控制指示单元闪烁红光、常亮蓝光等,同时不需要去判定其异常类型是什么,具体实施方式本领域技术人员可以根据实际情况和需求进行设置,在此不做限定。
Figure 52084dest_path_image004
在一些示例中,一个显示模组可以包括但不限于多个发光单元213,例如如图14-3所示为又另一种显示模组的结构示意图,该显示模组包括了3个发光单元21301、发光单元21302、发光单元21303,应当说明的是,该显示模组指示单元901与发光单元21301和发光单元21302对应设置,同时指示单元902与发光单元21303对应设置,每个发光单元可以包括但不限于不同的发光芯片的数量,还可以是每个发光单元的发光芯片数量是相同的。可以理解的是,每个指示单元9包括但不限于与多个发光单元213对应设置,例如如图14-4所示为再另一种显示模组的结构示意图,指示单元901与发光单元21301和发光单元21302对应设置,指示单元902与发光单元21303和发光单元21304对应设置,当然还可以将发光单元21301、发光单元21302、发光单元21303、发光单元21304对应于指示单元9进行设置,例如如图14-5所示为再另一种显示模组的结构示意图,在一些示例中,例如调试过程中一个指示单元可以与多个发光单元进行连接,假设一个指示单元对应3个发光单元,当调试第一个发光单元为正常时,指示单元不发光,当调试第二个发光单元为异常时,指示单元发光,当调试第三个发光单元为正常时,指示单元不发光。应当说明的是,本领域技术人员可以根据实际情况和需求设置发光单元与指示单元数量的对应关系。
在一些示例中,如图14-6所示为一种显示模组,透光区域1132具有自基板背面向基板正面延伸的盲孔92,指示单元9朝向盲孔92设置,盲孔92的深度为大于等于0,小于等于基板113厚度的任意深度,指示单元9发出的光通过透光区域1132从显示区域1131射出,透光区域的形状可以包括但不限于正方形、长方形、圆形等,例如还可以包括梯形、菱形、三角形、直线形、多边形,如图14-7所示为另一种显示模组的剖视图,应当说明的是,只要能实现减薄基板113的该区域厚度,增加透光性的效果,该盲孔可以为任意形状和大小,本领域技术人员可以根据实际情况和需求进行设置,在此不做限定,较优的,例如如图14-8所示为本实施例的一种基板的盲孔结构示意图,本实施例中盲孔92的设置为圆形,其孔径为5mm,深度为板材厚度的70%,从而降低了基板背面一侧,且位于与显示区对应的透光区域1132的厚度,从而提升该透光区域1132的透光率,使得用户能够从显示屏正面更加清晰的看到指示灯的发光方式。
在一些示例中,基板113为玻璃背板或PCB板,且透光区域为未设置线路或像素的净空区域,应当说明的是该透光区域可以是半透明材质,也可以是全透明材质,同时该区域还可以是布线较少或者未设置线路的净空区域,以达到更好的透光效果,当然该区域还可以是在基板113的表面上不设置铜皮或者油漆层,透光区域还可以包括在对应于指示单元9的背板正面及显示模组上设置透光层,具体设置方式在此不做限定,本领域技术人员可以根据实际情况和需求对该透光区域进行设置,只要能将指示单元9发出的光从显示模组中射出即可。
本实施例的显示模组,是通过在基板正面上设置显示区,在显示区域内设置有发光单元,同时指示单元设置在基板背面一侧,且位于与所述显示区对应的区域内,采集控制设备采集发光单元的参数,该参数包括表征发光单元的工作状态的工作参数和所处环境的环境状态的环境参数中的至少一种,在根据参数确定发光单元满足预设指示条件时,控制指示单元发光,并通过基板上对应于指示单元的透光区域,从显示区射出,对发光单元的状态进行指示。使得用户可以从显示屏正面快速直观的了解每各发光单元的工作状态,解决了现有LED显示屏的不能快速直观和准确的知道发光单元的工作状态和/或所处环境的环境状态,不能精确的定位到异常的发光单元对其进行精确的定位检修的问题,提高了检修精确性和用户使用满意度;因为可以从显示屏正面快速直观的了解每个发光单元的工作状态和/或所处环境的环境状态,从而无需再用软件对其进行监控,提升了便捷性、直观性和用户使用满意度。
本实施例还提供了一种显示模组的控制方法,其包括但不限于:
步骤a22:采集所述发光单元的参数,所述参数包括表征所述发光单元的工作状态的工作参数和所处环境状态的环境参数中的至少一种;
应当说明的是,在实际应用中,采集发光单元的参数的设备可以包括但不限于采集模块,例如还可以是具有采集参数功能的传感器,本领域技术人员可以根据实际情况和需求选用该采集设备,同时该参数可以是包括但不限于电压、电流、温度、湿度、信号通断、联网状态、LED灯导通情况中的至少一种,例如可以是只包括电压,也可以是只包括电流,还可以是只包括温度,当然还可以是电压、电流、温度都包括。
步骤b22:根据所述参数确定所述显示单元是否满足所述预设指示条件;
应当说明的是,预设指示条件包括发光单元异常或正常,控制指示单元发光可以包括但不限于发光单元异常时,例如还可以时在发光单元正常时控制指示单元发光,本领域技术人员可以根据实际情况和需求进行设置,在此不做限定,较优的当采集的参数包括至少两个以上时,确定发光单元是否满足预设指示条件时,是需要采集的全部参数都满足预设条件才判定发光单元满足预设指示条件,只要有一个参数不满足预设条件,则发光单元就不满足预设条件,这样的设置方式可以更大程度上的避免因某一个参数异常导致的发光单元异常时该发光单元未被检测出,使得检测的准确性和精确度增加,提升了用户的体验满意度。
步骤c22:在根据所述参数确定所述发光单元满足所述预设指示条件时,控制所述指示单元发光。
在一些示例中,预设指示条件为发光单元异常时,根据采集到的参数确定发光单元异常时,根据异常类型和预设的异常类型与发光方式对应关系的对应关系表匹配出对应的目标发光方式,然后根据目标发光方式控制指示单元发光。
一些示例中,对应关系表中的异常类型包括但不限于电压异常、电流异常、温度异常、湿度异常、信号通断异常、联网状态异常、LED灯导通异常中的至少之一,对应关系表中的发光方式包括但不限于不同颜色、不同频率、不同亮度中的至少之一,可以理解的是,异常类型与发光方式可以灵活对应,具体实施方式本领域技术人员可以根据实际情况和需求进行设置,在此不做限定,应当说明的是,该对应关系表可以是预先存储在采集控制设备的存储模块中,也可以是通过外接设备上传的,具体实施方式本领域技术人员可以根据实际情况和需求进行设置。
本实施例所提供的显示模组的控制方法,是通过采集发光单元的参数,该参数包括表征发光单元的工作状态的工作参数和所处环境状态的环境参数中的至少一种;根据该参数确定发光单元是否满足预设指示条件;在根据该参数确定该发光单元满足预设指示条件时,控制指示单元发光。本实施例的显示模组通过在发光单元的参数满足预设指示条件时,控制其对应的指示单元通过透光区域将其发出的光从显示区射出,解决了现有LED显示屏的不能快速直观和准确的知道某一个或多个发光单元的工作状态和/或所处的环境状态,不能精确的定位到异常的发光单元对其进行精确的定位检修的问题,提高了检修精确性、检修效率和用户使用满意度。
本实施例提供一种显示屏, 该显示屏包括上述的显示模组,较优的本实施例中该显示屏包括4个显示模组,并以2×2的排列方式排列,如图14-9所示为一种显示屏的结构示意图,图14-9中G表示此为显示屏的正面,每个显示模组600的所有发光单元对应一个指示单元。因此当显示屏在工作的时候,若其中的某一个显示模组600的发光单元发生异常时,便会控制对应的指示单元发光,用户便可以从该显示屏的正面快速直观的看到,当然在调试该显示屏的时候也是可以快速直观的从显示屏的正面G看到每一个显示模组600对应的指示单元发光的,例如在调试过程中,若调试到某一个显示模组600为异常时,此时该显示模组600对应的指示单元发光,调试人员便根据该发光的显示模组600,针对性进行维修,解决现有技术中无法快速直观的知道某一个或多个显示模组的工作状态的问题,提高了检修的精确性和用户的使用满意度,同时指示单元还和显示屏中的显示模组集成在一起,使得外观简洁美观。
如图14-10所示为另一种显示屏的结构示意图,其包括多个显示模组600,图中G表示此为显示屏的正面,每个显示模组600包括多个发光单元和多个指示单元。可见,显示屏中显示模组的个数、显示模组的排列方式以及各显示模组中包括发光单元和指示单元的个数和各显示模组中显示单元的排列方式本领域技术人员可以根据实际情况和需求进行设置,在此不做限定。
实施例十四
针对LED芯片焊接于基板上时,所采用的焊接锡膏在熔化后会变成银色并覆盖在焊盘的表面形成银色表面的问题。相关技术中会在LED芯片焊接后,采用喷墨打印工艺在该银色表面上打印黑色油墨,然而由于所用墨水材料粘度极低(流动性好),打印到基板表面后会出现爬墨现象(即油墨向LED芯片侧面爬升)而爬升到LED芯片上表面(也即LED芯片的顶出光面),从而将LED芯片的上表面覆盖,影响LED芯片的发光。针对该问题,本实施例提供了一种新型结构的显示模组,可有效避免或尽可能减少油墨爬升到LED芯片上表面的情况。且本实施例可独立于其他各实施例单独实施。
如图15-1至图15-5所示,本实施例提供的显示模组包括基板114,多个设置于基板114的发光单元214。发光单元214包括至少一个LED芯片。应当理解的是,本实施例中的发光单元214和基板114可参考但不限于上述各实施例所示,在此不再赘述。显示模组还包括设置在发光单元214之间的油墨层316,油墨层316由油墨形成,其包括第一部3161(本示例中第一部3161为相对平整的部分,在别的示例中第一部也可以为凹面或凸面或粗糙表面),与第一部3161连接的第二部3162,第二部3162位于发光单元214的周围由第一部3161向发光单元214上方(也即发光单元214远离基板114的一侧)延伸,第二部3162高于第一部3161,第二部3162相对于第一部3161更加靠近发光单元214。本实施中,封装层包括透光包覆单元317,透光包覆单元317与发光单元214一一对应,并用于防止第二部3162越至发光单元214的正上方,透光包覆单元317覆盖于发光单元214的顶出光面(也即发光单元214的上表面),具体地,透光包覆单元317可以覆盖于发光单元214包括的LED芯片的顶出光面(也即LED芯片远离基板的一面,也可称之为LED芯片内的上表面);由于油墨粘度极低、流动性好,容易沿LED芯片侧面爬升。本实施例中,透光包覆单元317与油墨层316之间具有防爬墨高度差。例如,油墨层316的高度不高于透光包覆单元317的高度,由于透光包覆单元317覆盖于LED芯片的上表面,油墨层316的顶部低于LED芯片的上表面,可以避免油墨爬升时爬升到LED芯片的上表面,从而避免遮蔽或部分遮蔽LED芯片的上表面(爬墨现象)引起遮光,实用性佳,防爬墨效果好。而透光包覆单元317的透明光程长,利于减少LED芯片的亮度损失,只需预先在设置油墨层316之前在发光单元214的上表面覆盖透光包覆单元317,结构较为简单,制备成本低,利于广泛应用和市场推广。
在一些实施例中,透光包覆单元317包括位于发光单元214上表面的正面透光层3171和位于发光单元214侧面的侧面透光层3172。一些示例中,LED芯片可以为正装芯片,透光包覆单元317可通过喷墨打印工艺打印形成,可采用但不限于透光材质作为打印材料,喷墨于LED芯片顶部形成正面透光层3171,正面透光层3171与油墨层316相邻设置(如图15-1和图15-2所示),正面透光层3171可以与油墨层316相接(如图15-3和图15-4所示),打印材料具有流动性可以流至LED芯片外周侧形成侧面透光层3172,侧面透光层3172也可以通过喷墨打印技术打印形成;在其他示例中,LED芯片也可以为倒装芯片。透光包覆单元317可以呈圆顶状;透光包覆单元317的高度小于透光包覆单元317的宽度,利于节省材料,当然透光包覆单元317可以不限定形状,透光包覆单元317的顶部可以是平面,也可以是其他形状。
在一些实施例中,第二部3162位于发光单元214上表面的之下。例如如图15-1至图15-5所示,油墨层316的顶部低于LED芯片的顶部。例如LED芯片为正装芯片时,油墨层316的顶部低于LED芯片的顶部,可以进一步防止油墨层316的油墨流至LED芯片的顶出光面;第二部3162的顶部不高于发光单元214的上表面,避免发光单元214的上表面被第二部3162遮挡,且利于LED芯片侧面的出光。在实际工艺实施过程中,根据工艺实施情况可不要求所有第二部3162都在发光单元214上表面之下,只要大部分(例如80%以上)位于发光单元214上表面之下即可满足要求。在一些实施例中,形成的油墨层316为黑色,显示模组可用于但不限于直显产品,例如油墨层316可以采用但不限于黑色油墨通过喷墨打印设备打印形成,增加对比度。第二部3162与发光单元214的侧面的交界处或第二部3162与透光包覆单元317的交界处J0形成曲线,如图15-6所示,此处所形成的曲线在一些示例中为不规则曲线;当然在另一些示例中也可形成为规则的曲线。
在一些应用场景中,油墨层316设置于相邻的两个发光单元214之间的缝隙以及发光单元214至基板114边缘处,如图15-1和图15-2所示;油墨层316的厚度范围为3μm至120μm,本实施例中,可通过但不限于控制打印喷头的出胶量和/或喷印次数对油墨层316的厚度进行控制。例如一些具体应用示例中,可设置油墨层316的厚度范围为5μm至15μm,从而在保证黑色度的基础上,减少油墨材料的使用。
在一些实施例中,显示模组的封装层还可包括设置于透光包覆单元317以及油墨层316之上的透光保护层318,透光保护层318可以通过但不限于点胶、模压、印刷的方式制备形成;透光保护层318的厚度为200μm至400μm。在一些示例中,透光包覆单元317的厚度为30μm至100μm。例如,透光包覆单元317的厚度范围可以为30μm至80μm,具体可为但不限于30μm、35μm 、40μm、 50μm、70μm等;具体应用中,显示模组应用于直显产品时,如图15-4和图15-5所示,发光单元214的可包括但不限于分别发出红光、蓝光和绿光的三颗LED芯片,透光包覆单元317可以包括设置于发光单元214内相邻的LED芯片之间的缝隙内的透光保护层3173,正面透光层3171与透光保护层3173相接;通过控制喷墨打印喷头的出胶量或喷印次数,可以对透光包覆单元317的厚度进行控制,本实施例中透光包覆单元317的厚度为35μm。
在一些示例中,透光包覆单元317的材质可为但不限于环氧树脂或硅树脂材料;油墨层316的材质可为但不限于环氧树脂或硅树脂材料;本实施例中,透光包覆单元317和油墨层316的材质可以一致,利于降低成本。
在另一些示例中,透光包覆单元317和油墨层316的亲水性相异。例如,透光包覆单元317可以添加亲水因子从而具有亲水性,油墨层316可以添加疏水因子从而具有疏水性,利用二者亲水性相异的特性可进一步有效避免油墨越过透光包覆单元317从而遮蔽或部分遮蔽LED芯片上表面。一些应用场景中,亲水因子可为但不限于带有极性基团的分子(极性分子),对水有大的亲和能力,疏水因子可为但不限于包含有烷烃、油、脂肪和多数含有油脂的疏水性分子(非极性分子),可以与水互相排斥;通过设置透光包覆单元317与油墨层316的亲水性相异,当油墨爬升到LED芯片与位于LED芯片的透光包覆单元317相遇时互不相溶、互相排斥,可以有效防止出现油墨继续爬升到发光单元214的上表面上(爬墨现象),有效避免油墨遮蔽或部分遮蔽发光单元214上表面进而影响LED芯片发光,结构简单且成本低。
本实施例还提供了一种显示模组的制作方法,其可用于制作上述各示例所示的显示模组,该方法包括但不限于:
步骤a23:提供一基板114,在基板114上设置多个发光单元214。
步骤b23:分别在各发光单元214的上方喷墨打印形成透光包覆单元317,形成的透光包覆单元317覆盖于发光单元214的上表面(也即发光单元214的顶出光面)。在一些示例中,形成的透光包覆单元317中,相邻透光包覆单元317之间具有缝隙,该缝隙与相邻发光单元214之间的缝隙相通,以供后续形成油墨层316。
步骤c23:在基板114上沿发光单元214之间的缝隙喷墨打印(可通过但不限于喷墨打印设备打印)形成油墨层316,形成的油墨层316可为但不限于黑色,其包括第一部3161和第二部3162,第二部3162与第一部3161相连接,第二部3162位于发光单元214的周围且由第一部3161向发光单元214上方延伸,且上一步骤形成的透光包覆单元317可阻挡第二部3162越至或流至发光单元214的上表面。
可选地,本实施例中的显示模组的制作方法还可包括:在油墨层316和透光包覆单元317的上方形成透光保护层318,且形成透光保护层318的工艺可采用但不限于模压、印刷、点胶等,在此不做限制。
实施例十五
针对LED芯片焊接于基板上时,所采用的焊接锡膏在熔化后会变成银色并覆盖在焊盘的表面形成银色表面的问题。相关技术中会通过压合工艺将在基板上压合一层将焊盘覆盖的黑胶层,但在压合的过程中,但压合的黑胶极容易残留在LED芯片顶出光面上,对其出光形成遮挡。针对该问题,本实施例提供了一种新型结构的显示模组及其制作方法,可有效避免或尽可能减少黑胶残留在LED芯片顶出光面上。且本实施例可独立于其他各实施例单独实施。
本实施例提供的显示模组制作方法中,在将封装层设置在基板之前,还包括新型结构的封装层的制作过程。一种示例的封装层的制作方法如图16-1至图16-5所示,包括:
步骤a24:提供第十六封装层;该第十六封装层为透光胶层。
步骤b24:在第十六封装层上设置第十七封装层;该第十七封装层为黑胶层。
步骤c24:在第十七封装层上设置用于容纳LED芯片的若干窗口,且设置的各窗口贯穿第十七封装层至第十六封装层。
在本实施例中,如图16-7、图16-19,第十七封装层317被配置为在压合后向窗口内的LED芯片215流动填充,将LED芯片215的侧出光面2152的至少一部分覆盖,第十六封装层316被配置为覆盖在LED芯片215的顶出光面2151上。如图16-1至图16-5所示,可以理解的是,窗口3161贯穿第十七封装层317至第十六封装层316后,第十六封装层316靠近第十七封装层317的一面上对应窗口3161的区域外露。如图16-6至图16-12,封装层通过窗口3161覆盖LED芯片215后,封装层覆盖在基板115正面上,第十七封装层317位于基板115与第十六封装层316之间,第十七封装层317不与LED芯片215接触,且第十六封装层316位于LED芯片215的顶出光面2151之上。
应当理解的是,在本实施例的一些示例中,第十七封装层317可由改性环氧胶制作而成,在压合前第十七封装层317可为固态或者半固态,优选地,第十七封装层317在常温时可以是半固态。本实施例中,压合可以是热压,例如将半固态的改性环氧胶的第十七封装层317加热至50℃至60℃,使半固态的第十七封装层317在热压的作用下具备流动性,窗口3161发生变形,窗口3161侧壁的黑胶会向位于窗口3161中的LED芯片215四周流动,直到将LED芯片215的侧出光面2152围合完成填充为止。完成填充后便停止加热,使第十七封装层317恢复至常温或其他设定温度,第十七封装层317停止流动,之后再加热使第十七封装层317固化成型,例如加热至100℃至150℃使第十七封装层317固化便可完成封装。
可以理解的是,第十六封装层316也可为固态,固态的第十六封装层316在加热的条件下,其硬度会降低,使得压合时LED芯片215的顶出光面2151可被压入第十六封装层316中,如图16-19、图16-20,压合完成后第十七封装层317的厚度小于LED芯片215的高度。第十六封装层316不会损坏LED芯片215,同时第十六封装层316还贴合在LED芯片215的顶出光面2151上,形成了对LED芯片215的保护,同时可避免第十七封装层317被压合至LED芯片215的顶出光面2151上。参考图16-8和图16-20所示,第十六封装层316和第十七封装层317压合在PCB板上时LED芯片5的顶面会对第十六封装层316进行挤压,第十六封装层316受到挤压可能会向LED芯片5的侧面堆积,此时压合完成后,在LED芯片5的侧面,第十六封装层316有一部分向LED芯片5下方凸出,可更好地阻挡第十七封装层317向LED芯片215的顶面延伸。在一些实例中,参考图16-8和图16-19所示,若在压合过程中,压合速度很慢和/或LED芯片5压入透光胶层2的程度不深,则LED芯片5侧面透光胶层受挤压的程度较小,无明显的凸出,LED芯片5侧面的黑胶层的平整度较好。
在一些示例中,第十七封装层317上加工出窗口3161可以通过曝光显影加工出来;在本实施例的一些示例中,可先在第十七封装层317上设置一层菲林膜,该菲林膜上与窗口3161对应的区域为不透光部分形成了光遮盖,菲林膜的其余区域为透光部分,施加光照射使第十七封装层317除窗口3161以外的区域半固化或者固化,而第十七封装层317未被光照的部分即窗口3161的区域,用洗净溶液进行湿法去除便可形成窗口3161,本实施例中的洗净溶液可包括H2SO4、H2O2。
在本实施例的一些示例中,如图16-4、图16-5,在第十六封装层316上设置第十七封装层317之前还可包括:
在第十六封装层316上设置凸台3162;
在第十六封装层316上设置第十七封装层317包括:
第十七封装层317设于第十六封装层316上设有凸台3162的一面上,凸台3162暴露于窗口内。
在本示例中,第十六封装层316的底面上的凸台3162可设置多个,制作过程中凸台3162与位于窗口3161中与LED芯片215的顶出光面2151对应,第十六封装层316的底面为靠近第十七封装层317的一面。在压合前若第十七封装层317的高度高于LED芯片215高度,通过设置凸台3162可使得在压合过程中,第十六封装层316的凸台3162和LED芯片215的顶出光面2151更快速地紧密接触,由此可避免在压合过程中第十七封装层317覆盖LED芯片215的顶部,LED芯片215的顶出光面2151更不容易有第十七封装层317的残留。
在一些实施方式中,压合完成后凸台3162可形成对LED芯片215上端的包覆,即LED芯片215的顶出光面2151以及侧出光面2152的上端部分会和第十六封装层316紧密接触, LED芯片215出光面的保护更好,不会受黑胶的污染。如图16-19,第十七封装层317在压合完成后的高度H2可小于LED芯片215的高度h;或者第十七封装层317在压合完成后的高度也可等于LED芯片215的高度,因为LED芯片215的顶出光面2151被凸台3162贴合,所以即使第十七封装层317在压合完成后的高度H2等于LED芯片215的高度h,也不会存在黑胶溢至LED芯片215顶出光面2151的情况,仍可保证LED芯片215的正常出光。当然,可以理解的是,本实施例中第十七封装层317在压合完成后的高度不限于此。
一些示例中,如图16-4、图16-9,一个窗口3161中可对应一个凸台3162,该凸台3162可将对应窗口3161中所有的LED芯片215的顶出光面2151覆盖,压合时LED芯片215的顶面会对凸台3162进行挤压,凸台3162受到挤压可能会向LED芯片215的侧面堆积,压合完成后,第十六封装层316在LED芯片215上的覆盖情况可参考图16-10所示,LED芯片215的侧面有第十六封装层316向LED芯片215下方凸出;另一些示例中,如图16-5、图16-11,一个窗口3161中可对应多个凸台3162,其中的各凸台3162与该窗口3161中的各LED芯片215的顶出光面2151一一对应,压合时LED芯片215的顶面会对凸台3162进行挤压,凸台3162受到挤压可能会向LED芯片215的侧面堆积。压合完成后,第十六封装层在LED芯片215上的覆盖情况如图16-12所示,由于凸台之间存在空间,故LED芯片215之间的第十六封装层向LED芯片215下方凸出。由于受到LED芯片215的挤压,第十六封装层沿着LED芯片215的侧面向LED芯片215下方凸出,可更好地阻挡第十七封装层317向LED芯片215的顶面延伸。
另一些示例中,如图16-14、图16-15,在第十七封装层317上设置容纳LED芯片215的若干窗口3161包括:窗口3161为矩形窗口,矩形窗口的长边侧壁上设有朝向LED芯片215的突出部。该突出部3163在第十七封装层317流动时会向LED芯片215之间的间隙中填充,使得第十七封装层317的流动更均匀化。一些示例中,如图16-15,一个矩形的长边侧壁上可设置一个突出部3163;另一些示例中,如图16-14,也可以在矩形的长边侧壁上设置多个突出部3163,各突出部3163分别与LED芯片215之间的间隙对应,此时第十七封装层317被加热后突出部3163会直接流向LED芯片215之间的间隙进行填充。
一些示例中,如图16-3,提供第十六封装层316包括:在承载件318上设置第十六封装层316。也即在本示例中封装层还可包括承载件318,通过承载件318承载第十六封装层316及第十七封装层317,更便于封装层的制作、保存及使用。在制作的过程中可以是先在承载件318上涂覆、模压或粘贴等方式制作第十六封装层316,并对第十六封装层316进行固化,之后可再在固化后的第十六封装层316上设置第十七封装层317,第十七封装层317在第十六封装层316上的设置所采用的工艺可灵活选用,例如可采用但不限于涂覆、丝印、印刷、模压等,最后在第十七封装层317上加工出窗口3161即可。制作好后的封装层可以存储于低温环境下,例如-40℃至-10℃的环境中,低温环境可降低胶膜中化学成分的活性,延长胶膜储存寿命。在使用封装层进行封装前需对胶膜进行常温解冻,常温解冻后的第十七封装层317可为常温时的半固化状态。在封装的压合过程中,承载件318可作为封装层的直接受力件,使下压过程中作用于各胶体层的力更加均匀,第十七封装层317形态的变化也更可控。
可以理解的是,本实施例中的承载件318可以为透明的基板或者膜层,例如透明基板可以是玻璃基板;在一些示例中,承载件318也可以是不透明的基板,但为了防止不透明的基板会影响LED芯片215的出光,可在不透明基板上设置一层离型膜或者离型剂,在封装的过程中完成压合之后,可通过设置的离型膜或者离型剂将不透明基板去除。
在本实施例中,为了防止封装层在对位的时候出现错误或装反,可在封装层的第十六封装层316或承载件318上设置对位的标记点,例如在承载件318的对角上设置标记点,便于安装时的识别,使第十七封装层317的窗口与LED芯片215准确对位。
上述制作方法中,在第十七封装层317上设有窗口,通过封装层进行封装时,将封装层压合在显示模组的基板115上,其中第十七封装层317覆盖在基板115的顶面之上,基板115上的LED芯片215位于对应的窗口3161中,此时LED芯片215的顶出光面2151与第十七封装层317之间没有任何接触。压合时第十七封装层317向LED芯片215的四周流动,使第十七封装层317填充在LED芯片215的四周,将LED芯片215的至少部分侧出光面2152围合。如图16-18所示,此时第十七封装层317覆盖在基板115上除LED芯片215以外的区域,对基板115上银色的焊接锡膏进行了遮盖,使得显示屏在黑屏的时候显示的黑色更纯,提高了显示屏的对比度。并且在制作的过程中,LED芯片215直接位于第十七封装层317上设置的窗口3161中,第十七封装层317全程不会与LED芯片215的顶出光面2151接触,LED芯片215的顶出光面2151不会有黑胶的残留,保证了LED芯片215的良好出光,显示模组的显示效果更好。另外,在制作的过程中,第十六封装层316会覆盖在LED芯片215的顶出光面2151上,可形成对LED芯片215的顶出光面2151的保护。
本实施例提供的显示模组的制作方法如图16-7至图16-20,包括:
步骤a25: 制作基板组件及封装层。
本实施例中,采用如上示例的封装层制作方法制作封装层;制作基板组件包括设置基板115,在基板115的顶面上设置若干发光单元,各发光单元包括至少一颗LED芯片215。
可以理解的是,本实施例中的基板115和发光单元可参考但不限于上述各实施例所示,在此不再赘述。
步骤b25:将封装层覆盖在基板的顶面上,LED芯片位于对应的窗口中。
封装层覆盖在基板115的顶面上后,第十七封装层317位于基板115与第十六封装层316之间。在本实施例的一些示例中,如图16-16、图16-17,一个窗口3161可对应一颗LED芯片215;或者在本实施例的另一些示例中,如图16-6、图16-7,一个窗口3161也可对应多颗LED芯片215,具体地可以是一个窗口3161对应一个像素点,一个像素点的LED芯片215支持发出红光、绿光、蓝光,例如一个像素点可包括红光、绿光、蓝光的LED芯片215各一颗。
步骤c25:将封装层与基板压合,使第十七封装层向LED芯片的四周流动填充。
本实施例中,压合前的第十七封装层317的厚度大于等于LED芯片215的高度,以便于第十七封装层317被压合后向LED芯片215四周的流动填充。如图16-7所示为压合前的第十七封装层317的厚度H1大于LED芯片215的高度h;在一些应用场景中,压合前的第十七封装层317的厚度H1也可小于LED芯片215的高度h,本实施例对此不作具体限定。
步骤d25:停止压合,第十七封装层将LED芯片的至少部分侧出光面围合,第十六封装层覆盖在各LED芯片的顶出光面上。
在本实施例中,第十七封装层317在压合后将LED芯片215的至少部分侧出光面2152围合,可以尽量避免各LED芯片215之间的窜光影响,以及提升对比度。可以理解的是,将LED芯片215的至少部分侧出光面2152围合可以是,如图16-19所示的将LED芯片215的部分侧出光面2152围合,此时最终固化后的第十七封装层317的厚度小于LED芯片215的高度;或者,也可以是将LED芯片215的侧出光面2152完全覆盖形成围合。如图16-20,第十六封装层316与第十七封装层317之间在靠近LED芯片215的侧出光面处也可为曲面接触,即LED芯片215挤压至第十六封装层316中时会使第十六封装层316在LED芯片215上端的附近区域受挤压而形成曲面,该曲面沿着LED芯片215的侧面向LED芯片215下方凸出,可更好地阻挡第十七封装层317向LED芯片215的顶面延伸,且也不会影响显示模组的发光显示。另外,该曲面还可对外环境光形成漫反射,消除显示装置亮屏时外环境光的干扰,提升显示效果。
本实施例中,压合开始时,若第十七封装层317的厚度小于LED芯片215的高度,则第十七封装层317覆盖在基板115的顶面之上时,第十七封装层317与基板115的顶面没有接触,此时为第十六封装层316先与LED芯片215的顶出光面2151接触;若压合开始时第十七封装层317的厚度大于LED芯片215的高度,则第十七封装层317覆盖在基板115的顶面之上时,第十七封装层317先与基板115的顶面接触,在压合一定时间后,第十六封装层316再与LED芯片215的顶出光面2151接触。
本实施例中,为了实现第十七封装层317在压合过工程中向LED芯片215四周及LED芯片215之间间隙处的良好填充,且在流动的过程中不会溢至LED芯片215的顶出光面2151。在一些示例中,第十七封装层317停止压合并固化之后的厚度,如图16-19,和图16-20,即第十七封装层317在压合完成后围合在LED芯片215的侧出光面上的高度H2,可为LED芯片215高度h的2/3,即H2=2/3h。此时,LED芯片215可具备一定面积的有效侧出光面,可减少黑胶层对LED芯片5的出光效率的影响。在一些应用场景中,第十七封装层317在压合完成后的高度H2也可以大于LED芯片215高度h的2/3,或者小于LED芯片215高度h的2/3。
本实施例中窗口3161的形状可灵活设置,能够使第十七封装层317在压合时填充至LED芯片215之间即可,例如窗口3161可为矩形或者椭圆形,为矩形时,为了有利于长边部分的第十七封装层317向相邻LED芯片215之间间隙的流动填充,如图16-13,在第十七封装层317熔化之前,且矩形窗口中对应容纳多颗LED芯片215时,矩形窗口的侧壁与LED芯片215沿矩形长边方向上的间隙,大于矩形窗口的侧壁与LED芯片215沿矩形短边方向上的间隙。由此可使第十七封装层317向LED芯片215的四周及LED芯片215之间的间隙的流动更加均匀。具体地,若矩形窗口的一长边侧壁,与LED芯片215相对于该长边侧壁的侧出光面之间的最短距离为第一距离L101;矩形窗口的另一长边侧壁,与LED芯片215相对于该长边侧壁的侧出光面之间的最短距离为第二距离,优选等于第一距离L101;矩形窗口的一短边侧壁,与LED芯片215相对于该短边侧壁的侧出光面之间的最短距离为第三距离为102,矩形窗口的另一短边侧壁,与LED芯片215相对于该短边侧壁的侧出光面之间的最短距离为第四距离,优选等于第三距离L102;则LED芯片215和矩形窗口的侧壁之间沿矩形短边方向上的间隙为第一距离与第二距离之和,即L101的两倍;LED芯片215和矩形窗口的侧壁沿矩形长边方向上的间隙为第三距离与第四距离之和,即L102的两倍。
可以理解的是,为了使第十七封装层317能够更好地快速地填满LED芯片215之间的间隙,可在真空的环境中进行热压,且在真空环境下第十六封装层316与基板115之间的空气也可以被抽走,避免因存在气泡而导致的不良情况。
应当理解的是,本申请上述各实施例均可独立实施,也可根据将其中的部分实施例或各实施例中的部分技术特征进行结合实施。且本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (22)

  1. 一种显示模组,其特征在于,包括基板,设于所述基板正面上的若干发光单元,以及设于所述基板上,将各所述发光单元覆盖的封装层;各所述发光单元包括至少一颗LED芯片,所述封装层供所述LED芯片发出的光透过,所述封装层的厚度高于发光单元的厚度。
  2. 如权利要求1所述的显示模组,其特征在于,所述封装层包括第一封装层,所述基板包括位于所述基板正面的第一安装部,位于所述基板背面的第二安装部,以及位于所述第一安装部周边的路径延长部;所述发光单元呈阵列设置在所述第一安装部上,所述路径延长部包括凸起部和第一下凹部中的至少之一,所述凸起部凸出于所述基板正面,所述第一下凹部从所述基板正面向所述基板背面下凹;所述第一封装层设于所述基板正面,将所述路径延长部及所述发光单元覆盖;所述路径延长部的外侧面与其最接近的所述发光单元中心之间的第一距离L1,小于所述第一安装部上与该外侧面平行的相邻两行所述发光单元中心之间的行间距L2的1/2。
  3. 如权利要求1所述的显示模组,其特征在于,所述封装层包括第二封装层和第三封装层,所述基板包括位于所述基板正面的显示区域,所述发光单元设置在所述显示区域,所述第二封装层设于所述基板正面并覆盖所述发光单元;所述第三封装层覆盖所述第二封装层,并向所述基板背面延伸,且至少部分覆盖于所述基板的侧面。
  4. 如权利要求1所述的显示模组,其特征在于,所述封装层包括将各所述发光单元覆盖的第四封装层,所述基板的至少一个侧面为与其他显示模组的基板拼接的拼接侧面,所述拼接侧面靠近所述基板背面的区域内缩形成避让区,所述拼接侧面靠近所述基板正面的区域作为拼接区。
  5. 如权利要求1所述的显示模组,其特征在于,各所述发光单元包括多颗LED芯片;
    所述显示模组还包括设于所述基板正面上的第一黑胶层,所述第一黑胶层将所述基板正面上位于各所述发光单元之间的第一区域,以及各所述发光单元内的各所述LED芯片之间的第二区域覆盖,且各所述LED芯片的顶出光面外露于所述第一黑胶层;
    所述封装层包括将所述第一黑胶层和各所述发光单元覆盖的六封装层。
  6. 如权利要求1所述的显示模组,其特征在于,所述基板正面设有若干焊盘,各所述LED芯片的电极通过焊接膏与对应的所述焊盘焊接,所述焊接膏将所述焊盘覆盖;
    所述焊接膏包括混合在一起的金属焊料、助焊剂以及黑色素;所述黑色素的密度小于所述金属焊料的密度,且在所述焊接膏被加热融化以用于焊接的过程中,在所述金属焊料的团聚效应下,所述黑色素被挤出至所述焊接膏的表面,使得所述表面呈现为黑色。
  7. 如权利要求1所述的显示模组,其特征在于,所述显示模组还包括将黑色基材的分子溅射到所述基板正面和各所述发光单元的表面,以形成将所述基板正面和各所述发光单元的表面覆盖的黑色沉积层;且各所述发光单元的顶出光面上的所述黑色沉积层的厚度,小于其他处的所述黑色沉积层的厚度;
    所述封装层包括设置在所述基板正面之上,将所述黑色沉积层和各所述发光单元覆盖的第九封装层。
  8. 如权利要求1所述的显示模组,其特征在于,所述封装层包括第十封装层,所述第十封装层为半透光层,所述第十封装层设于所述基板正面之上,至少将所述基板正面上未被各所述发光单元的正投影覆盖的区域覆盖;
    所述第十封装层包括反射层以及附着在所述反射层上的第三黑胶层,所述反射层包括反射粒子以及位于各所述反射粒子之间的间隙,所述间隙构成供光通过所述反射层的第一透光通道;
    所述第三黑胶层包括透明胶基材层,分布于所述透明胶基材层内的微米级玻璃微珠,以及填充于各所述微米级玻璃微珠之间的纳米级黑色粉末,各所述微米级玻璃微珠分别构成供光通过所述第三黑胶层的第二透光通道。
  9. 如权利要求1所述的显示模组,其特征在于,相邻所述发光单元之间具有第一间隙,且各所述发光单元包括多颗LED芯片;
    所述封装层包括设于所述基板正面上的第十三封装层,所述第十三封装层为第二透光胶层,所述第十三封装层将所述基板正面以及各所述LED芯片的顶出光面覆盖,并在所述第一间隙处形成有第三下凹部;
    所述封装层还包括设于所述第十三封装层之上的第十四封装层,所述第十四封装层为第四黑胶层,所述第十四封装层的一部分填充于所述第三下凹部内至少将所述第三下凹部覆盖。
  10. 如权利要求1所述的显示模组,其特征在于,所述封装层包括设于所述基板正面上的第十五封装层,所述第十五封装层对应于各所述LED芯片的顶出光面的区域内形成有若干间隔分布的第一光扩散区,所述第一光扩散区包括至少一个第一光扩散单元,所述第一光扩散单元包括与所述LED芯片的顶出光面相对的光入射面和与所述第十五封装层的出光面齐平的光出射面,所述第十五封装层的出光面为其远离所述基板的一面。
  11. 如权利要求1所述的显示模组,其特征在于,各所述发光单元均包括多颗颜色不完全相同的LED芯片,且各所述发光单元中的各所述LED芯片围绕旋转对称中心旋转对称排列。
  12. 如权利要求1所述的显示模组,其特征在于,所述基板包括位于所述基板正面的显示区域,所述发光单元设置在所述显示区域;
    所述显示模组还包括指示单元,所述指示单元设置于所述基板背面一侧,且位于与所述显示区对应的区域内,所述基板与所述指示单元对应的区域为透光区域;所述指示单元包括至少一颗指示灯,所述指示灯所发出的光透过所述透光区域,并从所述显示区射出,以对所述发光单元的状态进行指示。
  13. 如权利要求1所述的显示模组,其特征在于,所述显示模组还包括设于所述基板正面,位于所述发光单元之间的油墨层,所述油墨层包括第一部以及与所述第一部连接的第二部,所述第二部位于所述发光单元的周围且由所述第一部向所述发光单元上方延伸,所述封装层包括与所述发光单元一一对应,用于防止所述第二部越至所述发光单元上方的透光包覆单元,所述透光包覆单元覆盖于所述发光单元的顶出光面。
  14. 一种显示模组制作方法,其特征在于,包括:
    提供基板;
    在所述基板正面上设置若干发光单元,各所述发光单元包括至少一颗LED芯片;
    在所述基板上设置将各所述发光单元覆盖的封装层,所述封装层供所述LED芯片发出的光透过,所述封装层的厚度高于发光单元的厚度。
  15. 如权利要求14所述的显示模组制作方法,其特征在于,所述基板包括基板正面、基板背面以及位于所述基板周围的工艺边,所述基板正面配置有用于设置所述发光单元的显示区域;
    所述在所述基板正面上设置若干发光单元之前,还包括:于所述工艺边临近所述显示区域的周围开设凹槽,其中,所述凹槽未穿透所述基板,且所述凹槽的深度大于所述基板未被穿透部分的厚度;
    所述在所述基板正面上设置若干发光单元包括:在所述显示区域贴装所述发光单元;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:在所述基板上模压第一封装层,所述第一封装层覆盖所述显示区域将所述凹槽填充;沿所述工艺边一侧切除部分所述工艺边和部分所述第一封装层,以在所述基板外侧形成一切割面,且使得离所述切割面最近的所述LED芯片的中心点到所述切割面的第一距离L1,小于或等于与该切割面平行的相邻两行所述LED芯片之间的行间距L2的1/2。
  16. 如权利要求14所述的显示模组制作方法,其特征在于,所述在所述基板上设置将各所述发光单元覆盖的封装层之前还包括制作所述封装层,包括:设置第一承载膜,在所述第一承载膜上设置第八封装层,在第八封装层上设置第七封装层,所述第七封装层和所述第八封装层分别为第二黑胶层和第一透光胶层;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:将所述封装层设有所述第七封装层的一面与所述基板正面压合,在压合过程中,所述第八封装层和所述第七封装层处于半固化状态,各所述LED芯片的顶出光面逐渐露出所述第七封装层,所述第八封装层覆盖在各所述LED芯片的顶出光面上。
  17. 如权利要求14所述的显示模组制作方法,其特征在于,所述在所述基板上设置将各所述发光单元覆盖的封装层之前还包括:将黑色基材的分子溅射到所述基板正面和各所述发光单元的表面,以形成将所述基板正面和各所述发光单元的表面覆盖的黑色沉积层;将各所述发光单元的顶出光面上的所述黑色沉积层的至少一部分去除,所述发光单元的顶出光面为所述发光单元远离所述基板的一面;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:在所述基板正面之上形成将所述黑色沉积层和各所述发光单元覆盖的第九封装层。
  18. 如权利要求14所述的显示模组制作方法,其特征在于,所述封装层包括第十封装层,所述第十封装层包括反射层以及附着在所述反射层上的第三黑胶层,所述反射层包括反射粒子以及位于各所述反射粒子之间的间隙,所述间隙构成供光通过所述反射层的第一透光通道;所述第三黑胶层包括透明胶基材层,分布于所述透明胶基材层内的微米级玻璃微珠,以及填充于各所述微米级玻璃微珠之间的纳米级黑色粉末,各所述微米级玻璃微珠分别构成供光通过所述第三黑胶层的第二透光通道;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:
    通过真空离子镀或蒸镀工艺在所述基板正面之上形成所述反射层;将所述微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶中得到混合胶,所述微米级玻璃微珠和所述纳米级黑色粉末带有相同极性的电荷以在所述透明胶中相互排斥;在所述反射层上设置所述混合胶层,并将所述混合胶层固化处理得到所述第三黑胶层;
    或,在第二承载膜上设置连接胶层;在所述连接胶层上通过真空离子镀或蒸镀工艺形成所述反射层;将所述微米级玻璃微珠和纳米级黑色粉末均匀的混合于透明胶中得到混合胶,所述微米级玻璃微珠和所述纳米级黑色粉末带有相同极性的电荷以在所述透明胶中相互排斥;在所述反射层上设置混合胶层,并将所述混合胶层固化处理得到所述第三黑胶层;去除所述第二承载膜,将所述连接胶层的一面覆盖在所述基板的正面之上并进行热压。
  19. 如权利要求14所述的显示模组制作方法,其特征在于,在所述基板正面上设置若干发光单元包括:在所述基板正面上固定若干发光单元,相邻所述发光单元之间具有第一间隙,所述发光单元包括多颗与所述基板上的焊盘焊接的LED芯片;
    所述在所述基板上设置将各所述发光单元覆盖的封装层之前还包括制作所述封装层,包括:提供叠加在一起的第十三封装层和第十四封装层,所述第十三封装层和第十四封装层分别为第二透光胶层和第四黑胶层;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:将所述第十三封装层和所述第十四封装层通过热压工艺一并压合在所述基板正面上;压合后,所述第十三封装层将所述基板正面以及各所述LED芯片的顶出光面覆盖,并在所述第一间隙处形成第三下凹部,所述第十四封装层的一部分填充于所述第三下凹部内至少将所述第三下凹部覆盖。
  20. 如权利要求14所述的显示模组制作方法,其特征在于,所述在所述基板上设置将各所述发光单元覆盖的封装层之前还包括制作所述封装层,包括:提供第十五封装层,在所述第十五封装层的出光面上均匀设置若干光扩散单元,所述光扩散单元用于对LED芯片发出的光线进行反射及折射;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:将设置有所述光扩散单元的所述第十五封装层压合到所述基板正面上,使所述第十五封装层包覆各所述LED芯片,所述若干光扩散单元被压入所述第十五封装层内并位于所述LED芯片的上方。
  21. 如权利要求14所述的显示模组制作方法,其特征在于,所述在所述基板上设置将各所述发光单元覆盖的封装层包括:
    分别在各所述发光单元的上方喷墨打印形成透光包覆单元,形成的所述透光包覆单元覆盖于所述发光单元的顶出光面;
    所述显示模组制作方法还包括:在所述基板上沿所述发光单元之间的缝隙喷墨打印形成油墨层;形成的所述油墨层包括第一部以及与所述第一部连接的第二部,所述第二部位于所述发光单元的周围且由所述第一部向发光单元上方延伸1。
  22. 如权利要求14所述的显示模组制作方法,其特征在于,所述在所述基板上设置将各所述发光单元覆盖的封装层之前还包括制作所述封装层,包括:提供第十六封装层,所述第十六封装层为透光胶层;在所述第十六封装层上设置第十七封装层,所述第十七封装层为黑胶层;在所述第十七封装层上开设用于容纳所述LED芯片的若干窗口,各所述窗口贯穿所述第十七封装层至所述第十六封装层;
    所述在所述基板上设置将各所述发光单元覆盖的封装层包括:将所述封装层覆盖在所述基板正面上,使得各所述LED芯片位于对应的所述窗口内;将所述封装层与所述基板进行压合,使所述第十七封装层向所述LED芯片的四周流动,将所述LED芯片侧出光面的至少一部分覆盖,所述第十六封装层覆盖在各所述LED芯片的顶出光面上。
PCT/CN2022/123579 2021-09-30 2022-09-30 显示模组及其制作方法 WO2023051823A1 (zh)

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
CN202122395097.9U CN215527137U (zh) 2021-09-30 2021-09-30 一种led显示模组及led显示屏
CN202122398449.6 2021-09-30
CN202111166118.8 2021-09-30
CN202122395097.9 2021-09-30
CN202122409206.8 2021-09-30
CN202122409206.8U CN215527753U (zh) 2021-09-30 2021-09-30 一种led显示模组及led显示屏
CN202111166118 2021-09-30
CN202122398449.6U CN215527138U (zh) 2021-09-30 2021-09-30 一种显示背板、显示模组及显示装置
CN202111265275.4 2021-10-28
CN202111265275.4A CN114038344B (zh) 2021-10-28 2021-10-28 一种显示模组、显示屏及显示模组的控制方法
CN202122699980.7U CN216698361U (zh) 2021-11-05 2021-11-05 一种显示模组及显示屏
CN202111308127.6 2021-11-05
CN202122699980.7 2021-11-05
CN202111308127 2021-11-05
CN202111414585.8A CN114093907A (zh) 2021-11-25 2021-11-25 显示面板及电子设备
CN202111414585.8 2021-11-25
CN202111441754.7A CN116207210A (zh) 2021-11-30 2021-11-30 焊接膏、基板、发光组件及其制作方法
CN202111441754.7 2021-11-30
CN202210141646.6 2022-02-16
CN202210141646.6A CN114566494A (zh) 2022-02-16 2022-02-16 一种led背光模组制备方法、led背光模组
CN202210612159.3A CN114975394A (zh) 2022-05-31 2022-05-31 Led光源组件及其制作方法、led显示屏
CN202210612146.6 2022-05-31
CN202210612146.6A CN114944448A (zh) 2022-05-31 2022-05-31 半透光层、led发光装置及其制作方法、显示屏
CN202210612159.3 2022-05-31
CN202210909811.8 2022-07-29
CN202210909811.8A CN115394763A (zh) 2022-07-29 2022-07-29 显示模组及其制作方法

Publications (1)

Publication Number Publication Date
WO2023051823A1 true WO2023051823A1 (zh) 2023-04-06

Family

ID=85781382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123579 WO2023051823A1 (zh) 2021-09-30 2022-09-30 显示模组及其制作方法

Country Status (1)

Country Link
WO (1) WO2023051823A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276546A1 (en) * 2015-03-18 2016-09-22 Genesis Photonics Inc. Chip package structure and method of manufacturing the same
CN107067988A (zh) * 2016-12-15 2017-08-18 广东威创视讯科技股份有限公司 Led显示模组及其设计方法、led显示屏
CN108230923A (zh) * 2017-12-11 2018-06-29 长春希达电子技术有限公司 一种曲面led显示屏的拼接方法
CN207765078U (zh) * 2017-12-15 2018-08-24 深圳雷曼光电科技股份有限公司 Cob单元板、led显示模组及led显示屏
CN212434137U (zh) * 2020-04-30 2021-01-29 杭州美卡乐光电有限公司 Led灯珠、led模组及led显示屏
CN212725360U (zh) * 2020-04-22 2021-03-16 深圳市聚飞光电股份有限公司 一种led发光件
CN113130466A (zh) * 2021-03-26 2021-07-16 杭州美卡乐光电有限公司 Led显示模组及其制作方法
CN214253720U (zh) * 2021-02-04 2021-09-21 深圳市洲明科技股份有限公司 一种显示模组及显示屏
CN114360390A (zh) * 2021-09-30 2022-04-15 深圳市聚飞光电股份有限公司 一种用于拼接的led显示模组的制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160276546A1 (en) * 2015-03-18 2016-09-22 Genesis Photonics Inc. Chip package structure and method of manufacturing the same
CN107067988A (zh) * 2016-12-15 2017-08-18 广东威创视讯科技股份有限公司 Led显示模组及其设计方法、led显示屏
CN108230923A (zh) * 2017-12-11 2018-06-29 长春希达电子技术有限公司 一种曲面led显示屏的拼接方法
CN207765078U (zh) * 2017-12-15 2018-08-24 深圳雷曼光电科技股份有限公司 Cob单元板、led显示模组及led显示屏
CN212725360U (zh) * 2020-04-22 2021-03-16 深圳市聚飞光电股份有限公司 一种led发光件
CN212434137U (zh) * 2020-04-30 2021-01-29 杭州美卡乐光电有限公司 Led灯珠、led模组及led显示屏
CN214253720U (zh) * 2021-02-04 2021-09-21 深圳市洲明科技股份有限公司 一种显示模组及显示屏
CN113130466A (zh) * 2021-03-26 2021-07-16 杭州美卡乐光电有限公司 Led显示模组及其制作方法
CN114360390A (zh) * 2021-09-30 2022-04-15 深圳市聚飞光电股份有限公司 一种用于拼接的led显示模组的制作方法

Similar Documents

Publication Publication Date Title
JP6970750B2 (ja) 光源モジュール、表示装置および光源モジュールの製造方法
US20080002100A1 (en) Illumination Device and Display Device Using Illumination Device
JP5028562B2 (ja) 照明装置及びこの照明装置を用いた表示装置
CN101192601B (zh) 具有半导体发光元件的照明装置
WO2020019421A1 (zh) Led背光装置及led显示装置
CN101350160B (zh) 发光二极管显示屏及其封装方法
KR20050066030A (ko) 고출력 발광다이오드 패키지 및 제조방법
CN208045002U (zh) 高对比度集成封装显示模组结构
CN101490465A (zh) 光源模块、面发光组件以及面发光装置
TW202013768A (zh) Led系統、設備及方法
TW201037813A (en) Light emitting apparatus
JP2017527948A (ja) 小型led照明ユニット
CN101071232A (zh) 面光源装置及其制作方法与具此面光源装置的液晶显示器
CN114220902B (zh) Led光源组件及其制作方法
CN111682094A (zh) 一种led发光背板及其生产方法
WO2023051823A1 (zh) 显示模组及其制作方法
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
CN111261620A (zh) 发光器件及其制造方法
KR101796584B1 (ko) 발광 소자모듈
CN208922020U (zh) Led背光模组、显示屏
TW202245245A (zh) 顯示面板、顯示背板及其製作方法
CN101866912A (zh) 发光装置
KR20130032095A (ko) 발광소자 패키지
CN111261621A (zh) 发光器件及其制造方法
CN100565950C (zh) 发光装置安装基片、发光装置安装组件和平面光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875203

Country of ref document: EP

Kind code of ref document: A1