WO2023048242A1 - 封止フィルム、電極リード線部材および電池 - Google Patents

封止フィルム、電極リード線部材および電池 Download PDF

Info

Publication number
WO2023048242A1
WO2023048242A1 PCT/JP2022/035403 JP2022035403W WO2023048242A1 WO 2023048242 A1 WO2023048242 A1 WO 2023048242A1 JP 2022035403 W JP2022035403 W JP 2022035403W WO 2023048242 A1 WO2023048242 A1 WO 2023048242A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing film
adhesive layer
layer
hydrogen
lead wire
Prior art date
Application number
PCT/JP2022/035403
Other languages
English (en)
French (fr)
Inventor
俊輔 竹山
喬規 櫻木
敦史 目黒
崇 清水
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to KR1020247009218A priority Critical patent/KR20240065089A/ko
Priority to CA3232500A priority patent/CA3232500A1/en
Priority to CN202280063290.7A priority patent/CN117981147A/zh
Publication of WO2023048242A1 publication Critical patent/WO2023048242A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealing film, an electrode lead wire member and a battery.
  • This application claims priority based on Japanese Patent Application No. 2021-155742 filed in Japan on September 24, 2021, the contents of which are incorporated herein.
  • the battery includes, for example, a battery main body, a container for housing the battery main body, and electrode lead wires connected to the battery main body.
  • the storage container is produced using a battery exterior laminate having excellent waterproof and light shielding properties.
  • the battery exterior laminate is, for example, a laminate obtained by laminating a substrate layer made of polyamide or the like and an aluminum foil.
  • the electrode lead wire is sealed in the housing container with a portion including one end drawn out from the housing container.
  • the film for sealing described in Patent Document 1 suppresses a decrease in adhesive strength of the film by adding an inorganic filler such as heavy calcium carbonate.
  • hydrogen fluoride generated in the electrolyte may react with calcium carbonate or the like in the film to generate water. Therefore, it is feared that the generated water reacts with the components in the electrolytic solution to generate hydrogen fluoride, and the hydrogen fluoride reduces the bonding strength between the sealing film and the electrode lead wire.
  • An object of the present invention is to provide a sealing film, an electrode lead wire member, and a battery that can suppress a decrease in adhesive strength due to hydrogen fluoride.
  • the present invention includes the following aspects.
  • thermoplastic resin layers are provided, and the plurality of thermoplastic resin layers are a first thermoplastic resin layer that is a first adhesive layer that adheres to the electrode lead wire, and a first thermoplastic resin layer that adheres to the container. a second thermoplastic resin layer that is a second adhesive layer, and a third thermoplastic resin layer that is a base layer provided between the first adhesive layer and the second adhesive layer. , the sealing film according to [1], wherein the hydrogen-bonding resin is contained in at least one of the first to third thermoplastic resin layers.
  • An electrode lead wire member comprising the sealing film according to any one of [1] to [9] and the electrode lead wire extending in one direction. A portion of the sealing film may be adhered to the electrode lead wire.
  • a battery comprising the electrode lead wire member according to [10]. The battery includes a battery body, a container that houses the battery body, and the electrode lead wire member. A part of the sealing film is adhered to the electrode lead wire, and the sealing film is Other parts may be adhered to the container.
  • the present invention it is possible to provide a sealing film, an electrode lead wire member, and a battery that can suppress a decrease in adhesive strength due to hydrogen fluoride.
  • FIG. 4 is an enlarged cross-sectional view taken along line II in FIG. 3;
  • FIG. It is a cross-sectional enlarged view which shows the sealing film of other embodiment.
  • FIG. 1 A sealing film, an electrode lead wire member, and a battery according to an embodiment will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 the dimensions and ratios of constituent elements may differ from the actual ones.
  • FIG. 1 is an enlarged cross-sectional view showing a sealing film 1 of an embodiment.
  • FIG. 2 is a perspective view showing the electrode lead wire member 10 of the embodiment.
  • the electrode lead wire member 10 includes an electrode lead wire 11 made of a conductor such as a metal, and a pair of sealing films 1 intersecting the electrode lead wire 11 and adhered at the center thereof.
  • the sealing film 1 includes a first adhesive layer 2 , a second adhesive layer 3 and a base layer 4 .
  • the first adhesive layer 2 is a layer that is fused (adhered) to the electrode lead wire 11 (see FIG. 2) by heating and pressing.
  • the surface of the first adhesive layer 2 is one surface 1 a of the sealing film 1 .
  • the first adhesive layer 2 is a thermoplastic resin layer containing a thermoplastic resin.
  • the first adhesive layer 2 is an example of the "first thermoplastic resin layer”.
  • the first adhesive layer 2 mainly contains, for example, acid-modified polyolefin.
  • the fact that the first adhesive layer 2 “mainly contains acid-modified polyolefin” means that the content of the acid-modified polyolefin is the highest among the resins constituting the first adhesive layer 2 .
  • the first adhesive layer 2 preferably contains 50% by mass or more of the acid-modified polyolefin with respect to the total amount of the first adhesive layer 2 .
  • the first adhesive layer 2 preferably contains more than 50% by mass, more preferably 80% by mass or more, of the acid-modified polyolefin with respect to the total amount of the first adhesive layer 2 .
  • polyolefins constituting the first adhesive layer 2 examples include polypropylene, polyethylene, poly-1-butene, and polyisobutylene. Among them, polypropylene is preferable as the polyolefin constituting the first adhesive layer 2 because of its excellent flexibility.
  • polypropylene may be abbreviated as "PP”.
  • the polyolefin may be a copolymer of propylene and ethylene (propylene-ethylene copolymer).
  • a copolymer of propylene and ethylene may be a block copolymer or a random copolymer, but a random copolymer is preferred.
  • Polyolefins may be copolymers of propylene and olefinic monomers. Olefinic monomers include 1-butene, isobutylene, 1-hexene and the like.
  • An acid-modified polyolefin is a polyolefin resin modified with an unsaturated carboxylic acid or a derivative of an unsaturated carboxylic acid.
  • Acid-modified polyolefins have acid functional groups such as carboxy groups and carboxylic acid anhydride groups in their molecular structures.
  • Acid-modified polyolefins are obtained by graft polymerizing unsaturated carboxylic acids or unsaturated carboxylic acid derivatives onto polyolefins, or by copolymerizing acid functional group-containing monomers with olefins. That is, in the acid-modified polyolefin, the repeating unit having an acid group may be contained in the side chain or may be contained in the main chain.
  • unsaturated carboxylic acids include acrylic acid and methacrylic acid.
  • Derivatives of unsaturated carboxylic acids include unsaturated carboxylic acid esters such as ethyl acrylate and acid anhydrides of unsaturated carboxylic acids such as maleic anhydride.
  • acid-modified polyolefin can enhance the adhesion of the first adhesive layer 2 to the electrode lead wire 11 (see FIG. 2).
  • Polyolefins and acid-modified polyolefins are thermoplastic resins.
  • acid-modified polypropylene As the acid-modified polyolefin, acid-modified polypropylene (acid-modified PP) is preferable because it has excellent heat resistance.
  • Acid-modified PP is, for example, a polymer obtained by graft-copolymerizing polypropylene or a propylene-ethylene copolymer with an unsaturated carboxylic acid or an unsaturated carboxylic acid derivative.
  • the acid-modified PP contains an ionomer obtained by neutralizing the carboxy acid groups of an acid-modified polypropylene polymer or an acid-modified propylene-ethylene copolymer with a metal hydroxide, alkoxide, lower fatty acid salt, or the like.
  • the acid group of acid-modified PP is preferably a maleic anhydride group. That is, maleic anhydride-modified PP is preferable as the acid-modified PP.
  • the first adhesive layer 2 may not contain a hydrogen-bonding resin (described later). In this case, in the first adhesive layer 2, it is possible to increase the ratio of materials having excellent adhesive strength. Thereby, the adhesive strength between the first adhesive layer 2 and the electrode lead wire 11 is improved.
  • the melting point of the resin (or resin composition) forming the first adhesive layer 2 is preferably 110° C. or higher and 150° C. or lower.
  • the melting point of the resin constituting the first adhesive layer 2 is 110° C. or higher, the first adhesive layer 2 is less likely to become excessively thin during thermocompression bonding, and it is easy to secure adhesive strength.
  • the melting point of the resin constituting the first adhesive layer 2 is 150° C. or less, the resin easily flows during thermocompression bonding. easy to seal.
  • the "melting point of the resin constituting the first adhesive layer 2" is the melting point of the polymer alloy constituting the first adhesive layer 2. means melting point.
  • optional components other than polyolefin include known additives such as stabilizers, antistatic agents, and colorants.
  • the thickness of the first adhesive layer 2 can be, for example, 5 or more and 90 or less, where the total thickness of the sealing film 1 is 100. That is, the thickness of the first adhesive layer 2 can be 5% or more and 90% or less of the total thickness of the sealing film 1 .
  • the thickness of the first adhesive layer 2 is preferably 25 or more and 70 or less when the entire thickness of the sealing film 1 is 100.
  • the thickness ratio of the layers when the total thickness of the encapsulating film 1 is 100 is referred to as the "thickness ratio".
  • the thickness ratio of the first adhesive layer 2 is 5 or more (preferably 25 or more), sufficient adhesive strength between the first adhesive layer 2 and the electrode lead wire 11 can be ensured.
  • the thickness ratio of the first adhesive layer 2 is 90 or less (preferably 70 or less), sufficient thickness can be imparted to the second adhesive layer 3 and the base material layer 4 . Therefore, it is possible to increase the adhesive strength between the second adhesive layer 3 and the container without lowering the electrolytic solution resistance of the sealing film 1 .
  • electrolytic solution resistance is resistance to the electrolyte solution.
  • the second adhesive layer 3 is, for example, a layer that is fused (bonded) to the container by heating and pressurization. The storage container will be described later.
  • the surface of the second adhesive layer 3 is the other surface 1 b of the sealing film 1 .
  • the second adhesive layer 3 is a thermoplastic resin layer containing a thermoplastic resin.
  • the second adhesive layer 3 is an example of a "second thermoplastic resin layer”.
  • the second adhesive layer 3 mainly contains polyolefin, for example.
  • the fact that the second adhesive layer 3 “mainly contains polyolefin” means that the content of polyolefin is the highest among the resins constituting the second adhesive layer 3 .
  • the second adhesive layer 3 contains 50% by mass or more, preferably more than 50% by mass, more preferably 80% by mass or more of polyolefin with respect to the total amount of the second adhesive layer 3 .
  • Polyolefins constituting the second adhesive layer 3 include polypropylene (PP), polyethylene, poly-1-butene, and polyisobutylene. Among them, PP is preferable as the polyolefin constituting the second adhesive layer 3 because of its excellent flexibility.
  • the polyolefin may be a copolymer of propylene and ethylene (propylene-ethylene copolymer).
  • a copolymer of propylene and ethylene may be a block copolymer or a random copolymer, but a random copolymer is preferred.
  • Polyolefins may be copolymers (eg, random copolymers) of propylene and olefinic monomers. Olefinic monomers include 1-butene, isobutylene, 1-hexene and the like.
  • the polyolefin that constitutes the second adhesive layer 3 may be an acid-modified polyolefin.
  • acid-modified polyolefin acid-modified PP is preferable because of its excellent heat resistance.
  • the acid-modified PP the acid-modified PP exemplified as the material of the first adhesive layer 2 is preferably used.
  • the acid-modified PP a polymer obtained by acid-modifying a random copolymer of propylene and ethylene is preferable because of its excellent flexibility. The use of acid-modified polyolefin can enhance the adhesion of the second adhesive layer 3 to the container.
  • the second adhesive layer 3 may contain both acid-modified PP and acid-modified polyethylene.
  • the melting point of the second adhesive layer 3 can be lowered, and the heating temperature when fusing the second adhesive layer 3 can be lowered. Therefore, deterioration of the first adhesive layer 2 can be suppressed.
  • the second adhesive layer 3 may not contain a hydrogen-bonding resin (described later). In this case, in the second adhesive layer 3, it is possible to increase the ratio of materials having excellent adhesive strength. Thereby, the adhesive strength between the second adhesive layer 3 and the container is improved.
  • the melting point of the resin (or resin composition) forming the second adhesive layer 3 is preferably 110°C or higher and 150°C or lower.
  • the melting point of the resin constituting the second adhesive layer 3 is 110° C. or higher, the second adhesive layer 3 is less likely to become excessively thin during thermocompression bonding, and it is easy to ensure adhesive strength. If the melting point of the resin forming the second adhesive layer 3 is 150° C. or lower, the resin will easily flow during the thermocompression bonding, so that the container and the electrode lead wire 11 can be easily sealed.
  • the "melting point of the resin constituting the second adhesive layer 3" is the melting point of the polymer alloy constituting the second adhesive layer 3. means melting point.
  • optional components other than the acid-modified polyolefin include known additives such as stabilizers, antistatic agents, and colorants.
  • the thickness (thickness ratio) of the second adhesive layer 3 can be, for example, 5 or more and 90 or less, with the total thickness of the sealing film 1 being 100. That is, the thickness of the second adhesive layer 3 can be 5% or more and 90% or less of the total thickness of the sealing film 1 .
  • the thickness ratio of the second adhesive layer 3 is preferably 5 or more and 50 or less.
  • the thickness ratio of the second adhesive layer 3 is 5 or more, sufficient adhesive strength can be secured between the second adhesive layer 3 and the container.
  • the thickness ratio of the second adhesive layer 3 is 90 or less (preferably 50 or less), sufficient thickness can be imparted to the first adhesive layer 2 and the base material layer 4 . Therefore, it is possible to increase the adhesive strength between the first adhesive layer 2 and the electrode lead wire 11 without lowering the electrolytic solution resistance of the sealing film 1 .
  • the base material layer 4 is interposed between the first adhesive layer 2 and the second adhesive layer 3 .
  • the base material layer 4 is a thermoplastic resin layer containing a thermoplastic resin.
  • the base material layer 4 is an example of the "third thermoplastic resin layer”.
  • the base material layer 4 mainly contains polyolefin, for example.
  • the fact that the base material layer 4 “mainly contains polyolefin” means that the content of polyolefin is the highest among the resins constituting the base material layer 4 .
  • the base material layer 4 contains 50% by mass or more of polyolefin with respect to the total amount of the base material layer 4, preferably more than 50% by mass, and more preferably 80% by mass or more.
  • Polyolefins that constitute the base material layer 4 include polypropylene (PP), polyethylene, poly-1-butene, and polyisobutylene. Among them, PP is preferable because of its excellent flexibility.
  • the polyolefin constituting the base material layer 4 may be a homopolymer of one olefin or a copolymer of two or more olefins. Homopolymers include homopolymers of propylene only (homo PP). Copolymers include copolymers of propylene and olefinic monomers (ethylene, 1-butene, isobutylene, 1-hexene, etc.), such as propylene-ethylene copolymers. As the polyolefin constituting the base material layer 4, each polymer exemplified as the polyolefin constituting the first adhesive layer 2 can be exemplified.
  • ICP impact copolymer
  • ICP has a phase-separated structure having a first phase and a second phase, for example, a sea-island structure.
  • the sea-island structure is a structure in which a plurality of second phases corresponding to "islands" are dispersed in a first phase corresponding to "sea”.
  • the first phase is composed of, for example, homopolymers of olefinic monomers such as propylene and ethylene.
  • the second phase is composed of a polymer different from the homopolymer that constitutes the first phase.
  • the second phase comprises, for example, a polymer of olefinic monomers such as propylene, ethylene, such as ethylene propylene rubber (EPR).
  • the second phase is composed of, for example, a main phase and a surface layer covering the surface of the main phase.
  • the main phase is composed of polyethylene, for example.
  • the surface layer is made of EPR, for example.
  • An ICP in which the homopolymer constituting the first phase is homoPP is called a polypropylene ICP or a polypropylene dispersion.
  • An ICP in which the homopolymer constituting the first phase is homoPP is a so-called block PP.
  • ICPs are also called heterophasic copolymers or block copolymers.
  • the base material layer 4 contains a hydrogen-bonding resin.
  • the base material layer 4 may contain, for example, a mixture of hydrogen-bonding resin and polyolefin.
  • the hydrogen-bonding resin is preferably a thermoplastic resin.
  • a hydrogen-bonding resin is a resin that contains a hydrogen-bondable structure in its molecule.
  • a hydrogen bond is, for example, a non-covalent bond in which a hydrogen atom covalently bonded to an atom with high electronegativity (negative atom) forms a nearby lone pair of electrons such as nitrogen, oxygen, sulfur, and fluorine. It is an attractive interaction. Since the electronegativity of the negative atoms is greater than that of the hydrogen atoms, a partial positive charge is produced on the hydrogen atoms and a partial negative charge is produced on the negative atoms.
  • the electronegativity of negative atoms (Pauling's electronegativity) is preferably 3.0 or more.
  • the electronegativity (Pauling's electronegativity) of the atom to which the hydrogen atom bonded to the negative atom forms a hydrogen bond is preferably 3.0 or more.
  • the structure capable of hydrogen bonding may be an atom group such as an amide bond, a urethane bond, or a diketone, or a functional group such as an amino group, a carbonyl group, a hydroxyl group, a thiol group, a carboxy group, a sulfonic acid group, or a phosphoric acid group.
  • an amide bond atom group and a urethane bond atom group are preferable.
  • the amide bond atom group (CO—NH) includes carbon and oxygen constituting “CO” and nitrogen and hydrogen constituting “NH” as constituents.
  • Hydrogen fluoride is formed by a covalent bond between fluorine, which is an electronegative atom, and hydrogen.
  • amide bond atomic group CO-NH
  • hydrogen Pauling electronegativity 2.1
  • nitrogen Pauling electronegativity 3.0
  • a hydrogen bond may be formed between the hydrogen atom of the amide bond atom group (CO—NH) and the fluorine lone electron pair of hydrogen fluoride. That is, as shown in formula (2), a hydrogen bond indicated by " may be formed between H and F indicated by "NH...FH".
  • hydrogen atoms contained in hydrogen-bondable structures may be covalently bonded to atoms with high electronegativity (for example, atoms with Pauling electronegativity of 3.0 or higher).
  • Hydrogen-bonding resins having amide bond atoms include polyamide-based resins.
  • a polyamide-based resin has an amide bond atomic group (CO—NH) as a repeating unit in its molecule.
  • Polyamide resins include aliphatic polyamide resins such as nylon resins. Examples of nylon resins include nylon 6, nylon 11, nylon 12, nylon 610, and nylon 612 represented by the following formula (3), and nylon 66, nylon 6/66, and nylon 66/12 represented by the following formula (4). , and blends of at least two of these, and the like.
  • An aromatic polyamide resin can also be used as the polyamide-based resin.
  • Aromatic polyamide resins include poly-p-phenylene terephthalamide, poly-p-phenylene isophthalamide, poly-m-phenylene isophthalamide, and nylon MXD6 represented by the following formula (5). Blends of at least two of these may be used.
  • the urethane bond atom group (NH-COO) contains nitrogen and hydrogen that constitute "NH” and carbon and oxygen that constitute “COO” as constituent elements.
  • urethane bond atom group (NH-COO)
  • hydrogen (Pauling electronegativity 2.1) is covalently bonded to nitrogen (Pauling electronegativity 3.0). Therefore, a hydrogen bond may be formed between the hydrogen atom of the urethane bond atom group (NH—COO) and the lone electron pair of fluorine in hydrogen fluoride. That is, a hydrogen bond indicated by "" may be formed between H and F indicated by "NH...FH".
  • Polyurethane-based resins are examples of hydrogen-bonding resins having urethane-bonded atomic groups.
  • a polyurethane resin has a urethane bond atom group (NH—COO) as a repeating unit in its molecule.
  • Examples of polyurethane-based resins include polyether-based polyurethane resins, polyester-based polyurethane resins, and polycarbonate-based polyurethane resins.
  • the polyurethane-based resin may be a urethane-based elastomer.
  • a urethane-based elastomer has, for example, a hard segment and a soft segment.
  • the hard segment is composed of polyurethane.
  • the soft segment is composed of polycarbonate-based polyols, ether-based polyols, caprolactone-based polyesters, adipate-based polyesters, and the like.
  • the addition amount (content rate) of the hydrogen bonding resin in the entire sealing film 1 is preferably 0.2% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 20% by mass or less, and 1.0% by mass or more. % by mass or more and 10 mass % or less is more preferable.
  • the amount of the hydrogen-bonding resin added to the entire sealing film 1 is 0.2% by mass or more, the effect of reducing the influence of hydrogen fluoride on the electrode lead wires 11 can be enhanced. If the amount of hydrogen-bonding resin added to the entire encapsulating film 1 is 30% by mass or less, functional deterioration of the layer containing the hydrogen-bonding resin (base material layer 4 in this embodiment) can be suppressed. For example, deterioration of heat resistance, mechanical strength, etc. of the base material layer 4 can be suppressed.
  • the layer containing the hydrogen-bonding resin is at least one of the first adhesive layer 2 and the second adhesive layer 3, the amount of the hydrogen-bonding resin added to the entire sealing film 1 is 30% by mass or less. Then, deterioration of adhesiveness, mechanical strength, etc. of the adhesive layer can be suppressed.
  • the addition amount of the hydrogen bonding resin in the base material layer 4 is, for example, 0.5% by mass or more and 60% by mass or less (preferably 1.0% by mass or more and 40% by mass or less, more preferably 2.0% by mass or more and 20% by mass or more. mass% or less).
  • the layer containing the hydrogen-bonding resin may contain not only the hydrogen-bonding resin and polyolefin, but also other resin materials.
  • the layer containing the hydrogen-bonding resin (the substrate layer 4 in this embodiment) may be composed only of the hydrogen-bonding resin.
  • the thickness (thickness ratio) of the base material layer 4 is preferably 5 or more and 70 or less, with the total thickness of the sealing film 1 being 100. That is, the thickness of the base material layer 4 is preferably 5% or more and 70% or less of the total thickness of the sealing film 1 .
  • the thickness ratio of the base material layer 4 is 5 or more, the resin does not flow excessively, and the necessary fluidity is easily exhibited during pressure bonding.
  • the thickness ratio of the base material layer 4 is 5 or more (preferably 25 or more), there is an advantage that the electrolytic solution resistance and heat resistance of the sealing film 1 can be improved.
  • the thickness ratio of the base material layer 4 is 70 or less, the fluidity of the resin during thermocompression bonding can be suppressed within an appropriate range.
  • the thickness ratio of the base material layer 4 is 70 or less, the first adhesive layer 2 and the second adhesive layer 3 can be given a sufficient thickness, so the adhesive strength between the first adhesive layer 2 and the electrode lead wire 11 can be increased. , and the adhesive strength between the second adhesive layer 3 and the container can be increased.
  • the melting point of the resin (or resin composition) forming the base material layer 4 is preferably 150°C or higher and 170°C or lower.
  • the melting point of the resin constituting the base material layer 4 is 150° C. or higher, it is easy to ensure the electrolytic solution resistance of the sealing film 1 . Moreover, heat resistance can be imparted to the sealing film 1 .
  • the sealing film 1 can be given flexibility. Therefore, gaps are less likely to occur between the electrode lead wires 11 and the container, and the sealing film 1 .
  • the melting point M4 of the resin forming the base material layer 4 is higher than the melting point M2 of the resin forming the first adhesive layer 2 or the melting point M3 of the resin forming the second adhesive layer 3. That is, melting point M4 is higher than melting point M2 or melting point M3.
  • the melting point M4 is preferably higher than both the melting point M2 and the melting point M3. In other words, the melting point M4 is preferably higher than at least one of the melting points M2 and M3.
  • the melting point M4 When the melting point M4 is higher than the melting point M2, the fluidity of the resin does not become too low, and the fluidity of the resin during thermocompression bonding can be kept within an appropriate range. In addition, it becomes easier to ensure the electrolytic solution resistance of the sealing film 1 without lowering the adhesive strength between the first adhesive layer 2 and the electrode lead wire 11 .
  • the melting point M4 is higher than the melting point M3, the fluidity of the resin does not become too low, and the fluidity of the resin during thermocompression bonding can be kept within an appropriate range. Moreover, it becomes easy to ensure the electrolyte solution resistance of the sealing film 1, without reducing the adhesive strength of the 2nd contact bonding layer 3 and a container.
  • the melting point M4 When the melting point M4 is higher than the melting point M2 or the melting point M3, there is an advantage that the sealing film 1 can be easily imparted with heat resistance.
  • the hydrogen-bonding resin of the substrate layer 4 has low compatibility with other resins that constitute the substrate layer 4, uneven mixing (uneven mixing) and poor appearance due to undissolved residue may occur. .
  • all of the materials other than the hydrogen-bonding resin may be acid-modified polyolefin. 10 mass % or more is preferable.
  • adding a hydrogen-bonding resin to the first adhesive layer 2 it is desirable to add acid-modified polyolefin to the first adhesive layer 2 .
  • it is desirable to add acid-modified polyolefin to the second adhesive layer 3 it is desirable to add acid-modified polyolefin to the second adhesive layer 3 .
  • the electrode lead wire member 10 has electrode lead wires 11 and a pair of sealing films 1 .
  • the electrode lead wire 11 in this example has a strip shape with a constant thickness having both flat sides and extends linearly.
  • the sealing films 1 of this example have rectangular shapes with the same dimensions, and are arranged so that the central portions thereof are orthogonal to the electrode lead wires 11 .
  • the electrode lead wire member of the present invention is not limited to this shape, and can be appropriately modified as necessary.
  • a pair of sealing films 1 are arranged with the first adhesive layers 2 facing each other.
  • a pair of sealing films 1 sandwich an electrode lead wire 11 .
  • the pair of sealing films 1 are in contact with regions corresponding to one surface and the other surface of the electrode lead wire 11, respectively. Therefore, the pair of sealing films 1 are in contact with the entire circumference of the electrode lead wire 11 as a whole.
  • the electrode lead wire 11 has a lead wire body 111 and a surface treatment layer 112 .
  • the electrode lead wire 11 extends linearly in one direction.
  • the electrode lead wire 11 is made of metal.
  • the electrode lead wire 11 has conductivity.
  • the electrode lead wire 11 is electrically connected to a lithium ion battery 30 (see FIG. 3).
  • the electrode lead wire 11 conducts electricity between the lithium ion battery 30 and an external device.
  • Known metals such as aluminum, copper, nickel, iron, gold, platinum, and various alloys can be used as the material of the lead wire main body 111 .
  • aluminum and copper are preferable because they have excellent conductivity and are advantageous in terms of cost.
  • the surface of the lead wire body 111 may be nickel-plated.
  • the nickel plating of the lead wire body 111 may be formed by electroplating using a Watts bath containing nickel sulfate, nickel chloride, boric acid, or the like as a main component.
  • Nickel plating of the lead wire body 111 is preferably performed using a nickel sulfamate plating bath containing nickel sulfamate and boric acid as main components.
  • the plating film formed by this method has excellent flexibility and is less likely to crack.
  • the lead wire body 111 is preferably an aluminum plate or a nickel-plated copper plate.
  • the surface treatment layer 112 is formed on the surface of the lead wire main body 111 .
  • the surface treatment layer 112 has corrosion resistance. "Corrosion resistance” refers to the property of being resistant to corrosion by the electrolyte inside the battery.
  • an acid-resistant coating made of phosphate, chromate, fluoride, triazinethiol compound, or the like can be used.
  • the acid-resistant coating can be formed by subjecting the lead wire body 111 to a chemical conversion treatment.
  • the electrode lead wire may not have the surface treatment layer formed thereon.
  • the sealing film 1 contains a hydrogen-bonding resin. Therefore, when hydrogen fluoride is contained in the electrolytic solution, at least part of this hydrogen fluoride is captured by the sealing film 1 through hydrogen bonding with the hydrogen-bonding resin. Therefore, the influence of hydrogen fluoride on the electrode lead wire 11 can be reduced, and deterioration of the electrode lead wire 11 can be suppressed. Therefore, a decrease in adhesive strength of the sealing film 1 to the electrode lead wire 11 can be suppressed.
  • the sealing film 1 includes a first adhesive layer 2, a base material layer 4, and a second adhesive layer 3, which are laminated in order. Therefore, different properties can be imparted to each layer by selecting the constituent materials. Therefore, the base material layer 4 can enhance the resistance to the electrolytic solution and the heat resistance, and the adhesive layers 2 and 3 can enhance the adhesion to the electrode lead wire 11 and the container.
  • the hydrogen-bonding resin is contained only in the base material layer 4, it is possible to increase the ratio of materials excellent in adhesive strength in the adhesive layers 2 and 3. can enhance sexuality.
  • the electrode lead wire member 10 is provided with the sealing film 1, it is possible to suppress a decrease in the adhesive strength between the sealing film 1 and the electrode lead wire 11.
  • FIG. 3 is a schematic perspective view showing the battery 100 of the embodiment.
  • the battery 100 has the above-described electrode lead wire member 10, container 20, and lithium ion battery 30 (battery main body).
  • a battery main body 30 of this example has a flat rectangular parallelepiped shape, and a pair of electrode lead wire members 10 are connected to one end in the longitudinal direction so as to be parallel to each other.
  • the storage container 20 of this example has a flat rectangular parallelepiped shape corresponding to the battery main body 30 .
  • the battery of the present invention is not limited to this shape, and can be appropriately modified as necessary.
  • the container 20 has a container body 21 and a lid 22 .
  • the container main body 21 is obtained by drawing a laminate for battery exterior.
  • the container main body 21 has a molded portion 21a that forms a concave portion that accommodates the lithium ion battery 30 .
  • the battery exterior laminate will be described later.
  • the lid 22 is composed of a laminate for battery exterior, and has a plane view area equivalent to that of the container body 21 .
  • the storage container 20 is formed by stacking a container body 21 and a lid 22 and heat-sealing a peripheral edge portion 25 .
  • FIG. 4 is a cross-sectional view taken along line II in FIG.
  • the battery exterior laminate which is the constituent material of the container body 21 and the lid 22, includes a first film substrate 201, a second film substrate 202, a metal foil 203, and a sealant layer 204 in this order. It is a laminate laminated with
  • the resin that constitutes the first film substrate 201 and the second film substrate 202 polyamide, polyethylene terephthalate (PET), phenolic resin, polypropylene, and the like are suitable.
  • PET polyethylene terephthalate
  • metal foil 203 aluminum foil, stainless steel foil, copper foil, iron foil, or the like can be used.
  • the sealant layer 204 is heat-sealed in contact with the second adhesive layer 3 of the sealing film 1 .
  • a resin that can be fused with the sealing film 1 is selected as the resin that forms the sealant layer 204 .
  • the resin forming the sealant layer 204 include polypropylene-based resins and polyethylene-based resins.
  • the polypropylene-based resin a homopolymer of polypropylene, a copolymer of propylene and ethylene, or the like can be used.
  • Low-density polyethylene, linear low-density polyethylene, or the like can be used as the polyethylene-based resin.
  • the electrode lead wire member 10 is pulled out of the container 20 from the lithium ion battery 30 inside the container 20 (inside the molded portion 21a).
  • the electrode lead wire 11 is fused to the sealant layer 204 of the container 20 via the sealing film 1 .
  • the electrode lead wire member 10 since the electrode lead wire member 10 has the above-described sealing film 1, the deterioration of the electrode lead wire 11 due to hydrogen fluoride is suppressed, and the adhesion strength between the sealing film 1 and the electrode lead wire 11 is reduced. can be suppressed. Therefore, a highly reliable battery 100 can be realized.
  • the sealing film 1 shown in FIG. 1 includes a first adhesive layer 2 (first thermoplastic resin layer), a second adhesive layer 3 (second thermoplastic resin layer), and a substrate layer 4 (third Of the plastic resin layers), only the substrate layer 4 contains a hydrogen-bonding resin, but the sealing film is not limited to the structure shown in FIG.
  • the hydrogen-bonding resin should be contained in at least one of the first to third thermoplastic resin layers.
  • the hydrogen-bonding resin may be contained in any thermoplastic resin layer.
  • only the first adhesive layer 2 may contain the hydrogen bonding resin, or only the second adhesive layer 3 may contain the hydrogen bonding resin. It may contain a flexible resin.
  • the hydrogen-bonding resin may be contained in only two of the first adhesive layer 2, the second adhesive layer 3, and the base material layer 4.
  • the first adhesive layer 2 and the second adhesive layer 3 may contain a hydrogen-bonding resin
  • the first adhesive layer 2 and the substrate layer 4 may contain a hydrogen-bonding resin
  • the second adhesive layer 3 and the substrate layer 4 may contain a hydrogen-bonding resin.
  • the hydrogen-bonding resin may be contained in all of the first adhesive layer 2, the second adhesive layer 3, and the base material layer 4.
  • the amount of the hydrogen-bonding resin added the amount exemplified in the sealing film 1 shown in FIG. 1 can be adopted.
  • At least one of the first to third thermoplastic resin layers of the sealing film contains a hydrogen-bonding resin. At least part of the hydrogen is trapped in the sealing film by hydrogen bonding with the hydrogen-bonding resin. Therefore, a decrease in adhesive strength of the sealing film to the electrode lead wire can be suppressed.
  • thermoplastic resin layer contains a hydrogen-bonding resin includes the case where the thermoplastic resin layer is composed only of a hydrogen-bonding resin.
  • Hydrogen-bonding resins are not limited to homopolymers of monomers containing structures capable of hydrogen bonding, and may be copolymers of monomers containing structures capable of hydrogen bonding and monomers not containing structures capable of hydrogen bonding. good.
  • the sealing film 1 shown in FIG. 1 includes a first adhesive layer 2, a second adhesive layer 3, and a base material layer 4, but the sealing film of the embodiment is not limited to this structure.
  • FIG. 5 is a schematic cross-sectional view showing a sealing film of another embodiment.
  • the sealing film 401 shown in FIG. 5 has a two-layer structure including a first adhesive layer 102 (first thermoplastic resin layer) and a second adhesive layer 103 (second thermoplastic resin layer). there is The same reference numerals are given to the same components as those of the sealing film 1 shown in FIG. 1, and the description thereof is omitted.
  • the constituent material of the first adhesive layer 102 may be the material exemplified as the constituent material of the first adhesive layer 2 in the sealing film 1 shown in FIG.
  • the constituent material of the second adhesive layer 103 may be the material exemplified as the constituent material of the second adhesive layer 3 in the sealing film 1 shown in FIG.
  • a hydrogen-bonding resin is added to one or both of the first adhesive layer 102 and the second adhesive layer 103 .
  • the amount of the hydrogen-bonding resin added the amount exemplified for the sealing film 1 shown in FIG. 1 can be adopted.
  • the sealing film 401 contains a hydrogen-bonding resin, it is possible to suppress a decrease in adhesive strength to the electrode lead wire 11 .
  • FIG. 6 is a schematic cross-sectional view showing a sealing film of still another embodiment.
  • a sealing film 501 shown in FIG. 6 has a single-layer structure. The same reference numerals are given to the same components as those of the sealing film 1 shown in FIG. 1, and the description thereof is omitted.
  • the sealing film 501 is composed of one thermoplastic resin layer.
  • the constituent material of the sealing film 501 may be the material exemplified as the constituent material of the first adhesive layer 2 or the second adhesive layer 3 in the sealing film 1 shown in FIG.
  • a hydrogen-bonding resin is added to the sealing film 501 . As for the amount of the hydrogen-bonding resin added, the amount exemplified for the sealing film 1 shown in FIG. 1 can be adopted.
  • the sealing film 501 contains a hydrogen-bonding resin, it is possible to suppress a decrease in adhesive strength to the electrode lead wire 11 .
  • the first adhesive layer and the second adhesive layer may contain a resin other than polyolefin.
  • the sealing film may contain layers other than the first adhesive layer, the base material layer and the second adhesive layer.
  • a sealing film formed of only the substrate layer was produced as follows.
  • a sealing film was obtained by heating and melting a resin that is a raw material of the base material layer to form a film.
  • This sealing film was formed in a belt shape (width 15 mm, thickness 100 ⁇ m).
  • the sealing film (base material layer) is composed of a mixture of maleic anhydride-modified polypropylene (melting point 140°C) and nylon 6 (melting point 225°C).
  • Maleic anhydride-modified polypropylene is a polymer obtained by graft polymerizing maleic anhydride to a random copolymer of propylene and ethylene.
  • Nylon 6 is a hydrogen bonding resin because it contains amide bonding atoms. The amount of nylon 6 added to the entire sealing film is 0.2% by mass.
  • a sealing film in which a first adhesive layer, a substrate layer, and a second adhesive layer were laminated in this order was produced as follows.
  • a laminate was obtained by separately heating and melting the resins used as raw materials for each layer and performing simultaneous multilayer film formation using an extruder capable of simultaneous multilayer extrusion molding. This laminate was formed into a belt shape (width 15 mm, thickness 100 ⁇ m).
  • first adhesive layer maleic anhydride-modified polypropylene (melting point 140°C)
  • Base layer mixture of polypropylene ICP (melting point 161°C) and nylon 6 (melting point 225°C)
  • Second adhesive layer random copolymer of propylene and ethylene (melting point 140°C)
  • the maleic anhydride-modified polypropylene is the same as the maleic anhydride-modified polypropylene used in Example 1.
  • Polypropylene ICP has a structure (sea-island structure) in which the second phase is dispersed in the first phase.
  • the first phase consists of homo PP.
  • the second phase contains ethylene propylene rubber and polyethylene.
  • the thickness of the first adhesive layer is 10 ⁇ m.
  • the thickness of the base layer is 50 ⁇ m.
  • the thickness of the second adhesive layer is 40 ⁇ m.
  • the amount of nylon 6 added to the entire sealing film was 0.2% by mass.
  • the amount of nylon 6 added to the base material layer is 0.4% by mass.
  • the amount of nylon 6 added to the entire sealing film was 1% by mass.
  • the amount of nylon 6 added to the base material layer was 2% by mass.
  • Example 5 the amount of nylon 6 added to the entire sealing film was 5% by mass.
  • the amount of nylon 6 added to the base material layer was 10% by mass.
  • the amount of nylon 6 added to the entire sealing film was 10% by mass.
  • the amount of nylon 6 added to the base material layer was 20% by mass.
  • Example 7 the amount of nylon 6 added to the entire sealing film was 20% by mass. The amount of nylon 6 added to the base material layer was 40% by mass. In Example 8, the amount of nylon 6 added to the entire sealing film was 30% by mass. The amount of nylon 6 added to the base material layer was 60% by mass.
  • Example 3 A sealing film in which a first adhesive layer, a substrate layer, and a second adhesive layer were laminated in this order was produced as follows.
  • the constituent materials of the first adhesive layer, the base material layer, and the second adhesive layer are as follows.
  • First adhesive layer mixture of maleic anhydride-modified polypropylene (melting point 140 ° C.) and nylon 6
  • Base layer mixture of polypropylene ICP (melting point 161 ° C.) and nylon 6
  • Second adhesive layer random co-polymer of propylene and ethylene Mixture of Polymer (Melting Point 140° C.) and Nylon 6
  • the amount of nylon 6 added to the entire sealing film was 1% by mass.
  • the amount of nylon 6 added to each of the first adhesive layer, base layer, and second adhesive layer was 1% by mass. Other conditions are the same as in Example 2.
  • the amount of nylon 6 added to the entire sealing film was 30% by mass.
  • the amount of nylon 6 added to each of the first adhesive layer, the substrate layer, and the second adhesive layer was 30% by mass. Other conditions are the same as in Example 2.
  • Example 10 A sealing film in which the first adhesive layer and the second adhesive layer are laminated was produced as follows.
  • the constituent materials of the first adhesive layer and the second adhesive layer are as follows.
  • First adhesive layer mixture of maleic anhydride-modified polypropylene (melting point 140°C) and nylon 6
  • Second adhesive layer mixture of random copolymer of propylene and ethylene (melting point 140°C) and nylon 6
  • First adhesive layer is 20 ⁇ m thick.
  • the thickness of the second adhesive layer is 80 ⁇ m.
  • the amount of nylon 6 added to the entire sealing film is 30% by mass.
  • the amount of nylon 6 added to the first adhesive layer and the second adhesive layer was 30% by mass, respectively.
  • Other conditions are the same as in Example 3.
  • Examples 11 to 15 As in Examples 2 and 4 to 8, a sealing film in which a first adhesive layer, a base layer, and a second adhesive layer were laminated in this order was produced as follows.
  • a laminate was obtained by separately heating and melting the resins used as raw materials for each layer and performing simultaneous multilayer film formation using an extruder capable of simultaneous multilayer extrusion molding. This laminate was formed into a belt shape (width 15 mm, thickness 100 ⁇ m).
  • first adhesive layer maleic anhydride-modified polypropylene (melting point 140°C)
  • Base layer mixture of polypropylene ICP (melting point 161°C) and nylon MXD6 (melting point 240°C)
  • Second adhesive layer random copolymer of propylene and ethylene (melting point 140°C)
  • the maleic anhydride-modified polypropylene is the same as the maleic anhydride-modified polypropylene used in Example 1.
  • Polypropylene ICP has a structure (sea-island structure) in which the second phase is dispersed in the first phase.
  • the first phase consists of homo PP.
  • the second phase contains ethylene propylene rubber and polyethylene.
  • Nylon MXD6 is a hydrogen bonding resin because it contains amide bonding atoms.
  • the thickness of the first adhesive layer is 25 ⁇ m.
  • the thickness of the base layer is 50 ⁇ m.
  • the thickness of the second adhesive layer is 25 ⁇ m.
  • the amount of nylon MXD6 added to the entire sealing film is 0.5% by mass.
  • the amount of nylon MXD6 added to the base material layer was 1.0% by mass.
  • the amount of nylon MXD6 added to the entire sealing film is 0.8% by mass.
  • the amount of nylon MXD6 added to the base material layer was 1.5% by mass.
  • Example 13 the amount of nylon MXD6 added to the entire sealing film is 1.0% by weight.
  • the amount of nylon MXD6 added to the base material layer was 2.0% by mass.
  • the amount of nylon MXD6 added to the entire sealing film is 1.3% by weight.
  • the amount of nylon MXD6 added to the base material layer was 2.5% by mass.
  • the amount of nylon MXD6 added to the entire sealing film is 2.0% by weight.
  • Example 1 A sealing film was produced in the same manner as in Example 2, except that nylon 6 was not added to the base layer. The amount of nylon 6 added to the entire sealing film is 0% by mass.
  • a sealing film was produced in the same manner as in Example 2, except that the amount of nylon 6 added to the substrate layer was 80% by mass. The amount of nylon 6 added to the entire sealing film is 40% by mass.
  • Electrode lead wire having a lead wire body and a surface treatment layer formed on the surface of the lead wire body was produced.
  • ⁇ Test 1 Measurement of adhesive strength to electrode lead wire (non-immersion)>
  • the adhesive strength of the sealing films to the electrode lead wires was measured as follows. This test is a test under "non-immersion" conditions because the sample for measurement is not immersed in the electrolytic solution (described later). A sealing film and an electrode lead wire were overlapped and adhered by heat sealing to obtain a sample for measurement. The heat sealing conditions were 180° C., 0.5 MPa, and 10 seconds. The 180-degree peel strength (adhesive strength) of this measurement sample was measured using a tester (a desktop precision universal tester manufactured by Shimadzu Corporation: Autograph AGS-500NX) as follows.
  • Table 1 shows the measurement results of the sealing films of Examples 1 to 10, Comparative Example 1, and Reference Examples 1 to 3.
  • Table 2 shows the measurement results for the sealing films of Examples 11 to 15.
  • ⁇ Test 2 Measurement of adhesive strength to electrode lead wire (after immersion)>
  • the adhesive strength of the sealing films to the electrode lead wires was measured as follows. This test is a test under the condition of "after immersion” because the measurement is performed after the sample for measurement is immersed in the electrolytic solution.
  • a sample for measurement prepared in the same manner as in Test 1 was placed in this packaging bag and immersed in the electrolytic solution. After storing the packaging bag containing the sample for measurement in an oven at 85° C. for 7 days, the 180° peel strength (adhesive strength) was measured in the same manner as in Test 1.
  • Table 1 shows the measurement results of the sealing films of Examples 1 to 10, Comparative Example 1, and Reference Examples 1 to 3.
  • Table 2 shows the measurement results for the sealing films of Examples 11 to 15.
  • the mechanical strength of the sealing films of Examples 1 to 15, Comparative Example 1, and Reference Examples 1 to 3 was measured as follows. Using each sealing film, a type 5 dumbbell-shaped test piece specified in JIS K7127 was produced. This test piece was subjected to a tensile test according to JIS K7127 using a desktop precision universal testing machine Autograph AGS-X manufactured by Shimadzu Corporation. The chuck-to-chuck distance was 80 mm. The test speed (tensile speed) was 500 mm/min. The test environment was a temperature of 23° C. and a humidity of 50% RH. When the tensile strength (breaking strength) at the time of cutting was 25 MPa or more, it was judged as "good”. When the breaking strength was less than 25 MPa, it was determined as "low”. Table 1 shows the measurement results of the sealing films of Examples 1 to 10, Comparative Example 1, and Reference Examples 1 to 3. Table 2 shows the measurement results for the sealing films of Examples 11 to 15.
  • Tables 1 and 2 show the product of the added amount [mass%] of the hydrogen-bonding resin (nylon 6 or nylon MXD6) in each layer and the thickness [ ⁇ m] of the layer (added amount of hydrogen-bonding resin ⁇ Thickness) [mass % ⁇ m] and hydrogen-bonding resin added amount [mass %] of the entire sealing film are also shown.
  • the sealing film, the electrode lead wire member and the battery of the present invention it is possible to suppress the reduction in adhesive strength due to hydrogen fluoride, so the present invention can be applied industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

この封止フィルム(1)は、電極リード線(11)と、収容容器(20)との間を封止する。電極リード線(11)は、電池本体(30)と電気的に接続される。収容容器(20)は、電池本体(30)を収容する。封止フィルム(1)は、1または複数の熱可塑性樹脂層(2,3,4)を備える。少なくとも1つの熱可塑性樹脂層(2,3,4)は、分子中に水素結合可能な構造を有する水素結合性樹脂を含む。

Description

封止フィルム、電極リード線部材および電池
 本発明は、封止フィルム、電極リード線部材および電池に関する。
 本願は、2021年9月24日に、日本に出願された特願2021-155742号に基づき優先権を主張し、その内容をここに援用する。
 近年、電気エネルギーを貯蔵するための蓄電池として、リチウムイオン電池などの2次電池、キャパシタ等が注目されている。前記電池は、例えば、電池本体と、電池本体を収容する収容容器と、電池本体に接続された電極リード線とを備える。収容容器は、防水性、遮光性に優れた電池外装用積層体を用いて作製される。電池外装用積層体は、例えば、ポリアミド等からなる基材層と、アルミニウム箔とが積層された積層体である。電極リード線は、一端を含む部分が収容容器から外部に引き出された状態で収容容器に封止される。
 前記電池は、収容容器に水が入ると、水が電解液中の成分と反応してフッ化水素が生成する可能性がある。フッ化水素は、電極リード線を劣化させ、電池寿命に影響を及ぼす場合がある。そのため、収容容器と電極リード線との間に、封止用のフィルムを介在させることが提案されている(例えば、特許文献1を参照)。
 封止用のフィルムは、電極リード線と収容容器とを接着することにより、外部から収容容器内部へ水が浸入するのを抑制する。
 特許文献1に記載の封止用のフィルムは、重質炭酸カルシウム等の無機充填材の添加により、フィルムの接着力低下を抑える。
特許第6055300号公報
 特許文献1に記載のフィルム(以下、封止フィルムという)は、電解液で発生したフッ化水素がフィルム中の炭酸カルシウム等と反応して水が生成する可能性がある。そのため、生成した水が電解液中の成分と反応してフッ化水素が生じ、フッ化水素によって封止フィルムと電極リード線との接着強度が低下することが懸念される。
 本発明は、フッ化水素による接着強度低下を抑制できる封止フィルム、電極リード線部材および電池を提供することを目的とする。
 上記の課題を解決するため、本発明は、以下の態様を包含する。
[1] 電池本体と電気的に接続される電極リード線と、前記電池本体を収容する収容容器との間を封止する封止フィルムであって、1または複数の熱可塑性樹脂層を備え、少なくとも1つの前記熱可塑性樹脂層は、分子中に水素結合可能な構造を有する水素結合性樹脂を含む、封止フィルム。
[2] 前記熱可塑性樹脂層は、複数設けられ、複数の前記熱可塑性樹脂層は、前記電極リード線に接着する第1接着層である第1の熱可塑性樹脂層と、前記収容容器に接着する第2接着層である第2の熱可塑性樹脂層と、前記第1接着層と前記第2接着層との間に設けられた基材層である第3の熱可塑性樹脂層と、を含み、前記水素結合性樹脂は、前記第1~第3の熱可塑性樹脂層のうち少なくとも1つに含まれる、[1]記載の封止フィルム。
[3] 前記第1の熱可塑性樹脂層は、酸変性ポリオレフィンを含む、[2]記載の封止フィルム。 
[4] 前記水素結合性樹脂は、前記第1の熱可塑性樹脂層に含まれる、[2]または[3]に記載の封止フィルム。
[5] 前記水素結合性樹脂は、前記第3の熱可塑性樹脂層に含まれる、[2]~[4]のうちいずれか1つに記載の封止フィルム。
[6] 前記第1の熱可塑性樹脂層は、前記酸変性ポリオレフィンを50質量%以上含む、[3]記載の封止フィルム。
[7] 前記第3の熱可塑性樹脂層は、酸変性ポリオレフィンを10質量%以上含む、[2]~[6]のうちいずれか1つに記載の封止フィルム。
[8] 前記封止フィルム全体における前記水素結合性樹脂の添加量は、0.2質量%以上30質量%以下である、[1]~[7]のうちいずれか1つに記載の封止フィルム。
[9] 前記水素結合性樹脂は、ポリアミド系樹脂である、[1]~[8]のうちいずれか1つに記載の封止フィルム。
[10] [1]~[9]のうちいずれか1つに記載の封止フィルムと、一方向に延在する前記電極リード線と、を備える電極リード線部材。前記封止フィルムの一部が前記電極リード線に接着されていてもよい。
[11] [10]に記載の電極リード線部材を備える電池。前記電池は、電池本体と、前記電池本体を収容する収容容器と、前記電極リード線部材とを備え、前記封止フィルムの一部が前記電極リード線に接着されるとともに、前記封止フィルムの他の部分が前記収容容器に接着されていてもよい。
 本発明によれば、フッ化水素による接着強度低下を抑制できる封止フィルム、電極リード線部材および電池を提供できる。
実施形態の封止フィルムを示す断面拡大図である。 実施形態の電極リード線部材を示す斜視図である。 実施形態の電池を示す斜視図である。 図3の線分I-Iにおける矢視断面拡大図である。 他の実施形態の封止フィルムを示す断面拡大図である。 他の実施形態の封止フィルムを示す断面拡大図である。
 以下、図1~図4を参照しながら、実施形態に係る封止フィルム、電極リード線部材、および電池について説明する。なお、図面においては、構成要素の寸法、比率などは実際とは異なる場合がある。
<封止フィルム>
 図1は、実施形態の封止フィルム1を示す断面拡大図である。図2は、実施形態の電極リード線部材10を示す斜視図である。
 図2に示すように、電極リード線部材10は、金属等の導電体からなる電極リード線11と、電極リード線11に交差して中央部が接着された一対の封止フィルム1とを備える。
 図1に示すように、封止フィルム1は、第1接着層2と、第2接着層3と、基材層4とを備える。
[第1接着層]
 第1接着層2は、加熱・加圧によって電極リード線11(図2参照)に融着(接着)する層である。第1接着層2の表面は、封止フィルム1の一方の表面1aである。第1接着層2は、熱可塑性樹脂を含む熱可塑性樹脂層である。第1接着層2は「第1の熱可塑性樹脂層」の一例である。
 第1接着層2は、例えば、酸変性ポリオレフィンを主として含む。第1接着層2が「酸変性ポリオレフィンを主として含む」とは、第1接着層2を構成する樹脂のなかで、酸変性ポリオレフィンの含有率が最も高いことを意味する。第1接着層2は、第1接着層2の全量に対して酸変性ポリオレフィンを50質量%以上含むことが好ましい。第1接着層2は、第1接着層2の全量に対して酸変性ポリオレフィンを50質量%を越えて含むことが好ましく、80質量%以上含むことがより好ましい。
 第1接着層2を構成するポリオレフィンとしては、ポリプロピレン、ポリエチレン、ポリ-1-ブテン、ポリイソブチレンなどが挙げられる。なかでも、ポリプロピレンは、柔軟性に優れることから、第1接着層2を構成するポリオレフィンとして好ましい。以下、ポリプロピレンを「PP」と略称することがある。
 ポリオレフィンは、プロピレンとエチレンとの共重合体(プロピレン-エチレン共重合体)でもよい。プロピレンとエチレンとの共重合体は、ブロック共重合体でもよくランダム共重合体でもよいが、ランダム共重合体が好ましい。ポリオレフィンは、プロピレンとオレフィン系モノマーとの共重合体であってもよい。オレフィン系モノマーとしては、1-ブテン、イソブチレン、1-ヘキセン等が挙げられる。
 酸変性ポリオレフィンとは、不飽和カルボン酸または不飽和カルボン酸の誘導体で変性されたポリオレフィン系樹脂である。酸変性ポリオレフィンは、分子構造中に、カルボキシ基や無水カルボン酸基等の酸官能基を有する。酸変性ポリオレフィンは、ポリオレフィンに不飽和カルボン酸または不飽和カルボン酸の誘導体をグラフト重合させる、または酸官能基含有モノマーとオレフィン類とを共重合させることにより得られる。すなわち、酸変性ポリオレフィンにおいて、酸基を有する繰り返し単位は、側鎖に含まれていてもよく、主鎖に含まれていてもよい。
 不飽和カルボン酸としては、アクリル酸、メタクリル酸などが挙げられる。
 不飽和カルボン酸の誘導体としては、アクリル酸エチルなどの不飽和カルボン酸エステル、無水マレイン酸などの不飽和カルボン酸の酸無水物が挙げられる。
 酸変性ポリオレフィンの使用により、電極リード線11(図2参照)に対する第1接着層2の接着性を高めることができる。
 ポリオレフィンおよび酸変性ポリオレフィンは、熱可塑性樹脂である。
 酸変性ポリオレフィンとしては、耐熱性に優れることから、酸変性ポリプロピレン(酸変性PP)が好ましい。酸変性PPは、例えば、ポリプロピレンまたはプロピレン-エチレン共重合体に、不飽和カルボン酸または不飽和カルボン酸の誘導体をグラフト共重合させた重合体である。
 酸変性PPは、ポリプロピレンの酸変性重合体またはプロピレン-エチレン共重合体の酸変性重合体が有するカルボキシ酸基を、金属水酸化物、アルコキシド、低級脂肪酸塩などで中和したアイオノマーを含む。酸変性PPの酸基は、無水マレイン酸基が好ましい。すなわち、酸変性PPとしては、無水マレイン酸変性PPが好ましい。
 第1接着層2には水素結合性樹脂(後述)は含まれていなくてもよい。この場合、第1接着層2において、接着強度の点で優れた材料の比率を高めることができる。これにより、第1接着層2と電極リード線11との接着強度は良好となる。
 第1接着層2を構成する樹脂(または樹脂組成物)の融点は、110℃以上150℃以下が好ましい。
 第1接着層2を構成する樹脂の融点が110℃以上であると、熱圧着時に第1接着層2が過度に薄くなりにくく、接着強度を確保しやすい。第1接着層2を構成する樹脂の融点が150℃以下であると、熱圧着時に樹脂が流動しやすくなるため、電極リード線11の周囲に樹脂が十分に回り込み、電極リード線11の全周を封止しやすい。
 「第1接着層2を構成する樹脂」が2種以上の樹脂のポリマーアロイである場合、「第1接着層2を構成する樹脂の融点」は、第1接着層2を構成するポリマーアロイの融点を意味する。
 第1接着層2において、ポリオレフィン以外の任意成分としては、公知の安定剤、帯電防止剤、着色料などの添加物を挙げることができる。
 第1接着層2の厚さは、例えば、封止フィルム1の全体の厚さを100として、5以上90以下とすることができる。すなわち、第1接着層2の厚さは、封止フィルム1の全体の厚さの5%以上90%以下とすることができる。第1接着層2の厚さは、封止フィルム1の全体の厚さを100として、25以上70以下が好ましい。封止フィルム1の全体の厚さを100としたときの層の厚さの比率を「厚さ比率」という。
 第1接着層2の厚さ比率が5以上(好ましくは25以上)であると、第1接着層2と電極リード線11との接着強度を十分に確保できる。第1接着層2の厚さ比率が90以下(好ましくは70以下)であると、第2接着層3および基材層4に十分な厚さを付与できる。そのため、封止フィルム1の電解液耐性を低下させず、かつ第2接着層3と収容容器との接着強度を高めることができる。なお、「電解液耐性」は、電解液に対する耐性である。
[第2接着層]
 第2接着層3は、例えば、加熱・加圧によって収容容器と融着(接着)する層である。収容容器については後述する。第2接着層3の表面は、封止フィルム1の他方の表面1bである。第2接着層3は、熱可塑性樹脂を含む熱可塑性樹脂層である。第2接着層3は「第2の熱可塑性樹脂層」の一例である。
 第2接着層3は、例えば、ポリオレフィンを主として含む。第2接着層3が「ポリオレフィンを主として含む」とは、第2接着層3を構成する樹脂のなかで、ポリオレフィンの含有率が最も高いことを意味する。第2接着層3は、第2接着層3の全量に対してポリオレフィンを50質量%以上含み、50質量%を越えて含むことが好ましく、80質量%以上含むことがより好ましい。
 第2接着層3を構成するポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン、ポリ-1-ブテン、ポリイソブチレンなどが挙げられる。なかでも、PPは、柔軟性に優れることから、第2接着層3を構成するポリオレフィンとして好ましい。
 ポリオレフィンは、プロピレンとエチレンとの共重合体(プロピレン-エチレン共重合体)でもよい。プロピレンとエチレンとの共重合体は、ブロック共重合体でもよくランダム共重合体でもよいが、ランダム共重合体が好ましい。ポリオレフィンは、プロピレンとオレフィン系モノマーとの共重合体(例えば、ランダム共重合体)であってもよい。オレフィン系モノマーとしては、1-ブテン、イソブチレン、1-ヘキセン等が挙げられる。
 第2接着層3を構成するポリオレフィンは、酸変性ポリオレフィンであってもよい。酸変性ポリオレフィンとしては、耐熱性に優れることから、酸変性PPが好ましい。酸変性PPとしては、上述の第1接着層2の材料として例示した酸変性PPが好適に用いられる。酸変性PPとしては、柔軟性に優れることから、プロピレンとエチレンとのランダム共重合体を酸変性した重合体が好ましい。酸変性ポリオレフィンの使用により、収容容器に対する第2接着層3の接着性を高めることができる。
 第2接着層3は、酸変性PPと酸変性ポリエチレンとの両方を含んでいてもよい。第2接着層3は、酸変性PPと酸変性ポリエチレンとの両方を含む場合、第2接着層3の融点を低くし、第2接着層3を融着する際の加熱温度を下げることができるため、第1接着層2の劣化を抑制できる。
 第2接着層3には水素結合性樹脂(後述)は含まれていなくてもよい。この場合、第2接着層3において、接着強度の点で優れた材料の比率を高めることができる。これにより、第2接着層3と収容容器との接着強度は良好となる。
 第2接着層3を構成する樹脂(または樹脂組成物)の融点は、110℃以上150℃以下が好ましい。第2接着層3を構成する樹脂の融点が110℃以上であると、熱圧着時に第2接着層3が過度に薄くなりにくく、接着強度を確保しやすい。第2接着層3を構成する樹脂の融点が150℃以下であると、熱圧着時に樹脂が流動しやすくなるため、収容容器と電極リード線11との間を封止しやすい。
 「第2接着層3を構成する樹脂」が2種以上の樹脂のポリマーアロイである場合、「第2接着層3を構成する樹脂の融点」は、第2接着層3を構成するポリマーアロイの融点を意味する。
 第2接着層3において、酸変性ポリオレフィン以外の任意成分としては、公知の安定剤、帯電防止剤、着色料などの添加物を挙げることができる。
 第2接着層3の厚さ(厚さ比率)は、例えば、封止フィルム1の全体の厚さを100として、5以上90以下とすることができる。すなわち、第2接着層3の厚さは、封止フィルム1の全体の厚さの5%以上90%以下とすることができる。第2接着層3の厚さ比率は、5以上50以下が好ましい。
 第2接着層3の厚さ比率が5以上であると、第2接着層3と収容容器との接着強度を十分に確保できる。第2接着層3の厚さ比率が90以下(好ましくは50以下)であると、第1接着層2および基材層4に十分な厚さを付与できる。そのため、封止フィルム1の電解液耐性を低下させず、かつ第1接着層2と電極リード線11との接着強度を高めることができる。
[基材層]
 基材層4は、第1接着層2と第2接着層3との間に介在して設けられている。基材層4は、熱可塑性樹脂を含む熱可塑性樹脂層である。基材層4は「第3の熱可塑性樹脂層」の一例である。
 基材層4は、例えば、ポリオレフィンを主として含む。基材層4が「ポリオレフィンを主として含む」とは、基材層4を構成する樹脂のなかで、ポリオレフィンの含有率が最も高いことを意味する。基材層4は、基材層4の全量に対してポリオレフィンを50質量%以上含み、50質量%を越えて含むことが好ましく、80質量%以上含むことがより好ましい。
 基材層4を構成するポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン、ポリ-1-ブテン、ポリイソブチレンなどが挙げられる。なかでも、PPは、柔軟性に優れるため好ましい。
 基材層4を構成するポリオレフィンは、1種のオレフィンの単独重合体でもよいし、2種以上のオレフィンの共重合体でもよい。単独重合体としては、プロピレンだけの単独重合体(ホモPP)が挙げられる。共重合体としては、プロピレンとオレフィン系モノマー(エチレン、1-ブテン、イソブチレン、1-ヘキセン等)との共重合体、例えば、プロピレン-エチレン共重合体が挙げられる。
 基材層4を構成するポリオレフィンとしては、第1接着層2を構成するポリオレフィンとして例示した各重合体を例示することができる。
 基材層4を構成するポリオレフィンとしては、ICP(インパクトコポリマー)が好ましい。ICPは、第1相と第2相とを有する相分離構造、例えば、海島構造を有する。海島構造は、「海」に相当する第1相のなかに、「島」に相当する複数の第2相が分散された構造である。
 第1相は、例えば、プロピレン、エチレンなどのオレフィン系モノマーの単独重合体(ホモポリマー)で構成される。第2相は、第1相を構成するホモポリマーとは異なるポリマーで構成される。第2相は、例えば、プロピレン、エチレンなどのオレフィン系モノマーの重合体、例えばエチレンプロピレンラバー(EPR)を含む。第2相は、例えば、主相と、主相の表面を覆う表層とで構成される。主相は、例えば、ポリエチレンで構成される。表層は、例えば、EPRで構成される。
 第1相を構成するホモポリマーがホモPPであるICPを、ポリプロピレンICPまたはポリプロピレン分散体と呼ぶ。第1相を構成するホモポリマーがホモPPであるICPは、いわゆるブロックPPである。ICPは、異相共重合体(heterophasic copolymer)、またはブロックコポリマーとも呼ばれる。
 基材層4は、水素結合性樹脂を含む。基材層4は、例えば、水素結合性樹脂とポリオレフィンとの混合物を含んで構成されていてもよい。水素結合性樹脂は、熱可塑性樹脂であることが好ましい。
 水素結合性樹脂は、分子中に水素結合可能な構造を含む樹脂である。水素結合とは、例えば、電気陰性度が大きな原子(陰性原子)に共有結合で結合した水素原子が、近傍にある窒素、酸素、硫黄、フッ素などの孤立電子対とつくる、非共有結合性の引力的相互作用である。陰性原子の電気陰性度は水素原子の電気陰性度よりも大きいため、水素原子には部分的に正電荷が生成され、陰性原子には部分的に負電荷が生成される。陰性原子の電気陰性度(ポーリングの電気陰性度)は、3.0以上が好ましい。陰性原子に結合した水素原子が水素結合する、結合先の原子の電気陰性度(ポーリングの電気陰性度)は、3.0以上が好ましい。
 水素結合可能な構造は、アミド結合、ウレタン結合、ジケトンなどの原子群であってもよいし、アミノ基、カルボニル基、水酸基、チオール基、カルボキシ基、スルホン酸基、燐酸基などの官能基であってもよい。なかでも、アミド結合原子群およびウレタン結合原子群が好ましい。
 アミド結合原子群(CO-NH)は、「CO」を構成する炭素および酸素と、「NH」を構成する窒素および水素と、を構成要素として含む。
 フッ化水素は、陰性原子であるフッ素と、水素とが共有結合して形成されている。フッ素の電気陰性度(ポーリングの電気陰性度)は4.0であり、水素の電気陰性度(ポーリングの電気陰性度)は2.1である。そのため、アミド結合原子群の酸素(ポーリングの電気陰性度3.5)の孤立電子対と、フッ化水素の水素原子との間には、水素結合が形成される可能性がある。すなわち、式(1)に示すように、「C=O・・・H-F」に示すOとHとの間に「・・・」で示す水素結合が形成される可能性がある。
Figure JPOXMLDOC01-appb-C000001
 アミド結合原子群(CO-NH)では、水素(ポーリングの電気陰性度2.1)は、窒素(ポーリングの電気陰性度3.0)と共有結合で結合している。そのため、アミド結合原子群(CO-NH)の水素原子と、フッ化水素のフッ素の孤立電子対との間に、水素結合が形成される可能性がある。すなわち、式(2)に示すように、「N-H・・・F-H」に示すHとFとの間に「・・・」で示す水素結合が形成される可能性がある。
Figure JPOXMLDOC01-appb-C000002
 このように、水素結合可能な構造に含まれる水素原子は、電気陰性度が高い原子(例えば、ポーリングの電気陰性度3.0以上の原子)と共有結合していることがある。
 アミド結合原子群を有する水素結合性樹脂としては、ポリアミド系樹脂がある。ポリアミド系樹脂は、分子内に繰り返し単位としてアミド結合原子群(CO-NH)を有する。ポリアミド系樹脂としては、脂肪族ポリアミド樹脂、例えば、ナイロン樹脂が挙げられる。ナイロン樹脂としては、例えば、下記の式(3)に示すナイロン6、ナイロン11、ナイロン12、ナイロン610、ナイロン612、下記の式(4)に示すナイロン66、ナイロン6/66、ナイロン66/12、および、これらのうち少なくとも2つのブレンド物等がある。
 ポリアミド系樹脂としては、芳香族ポリアミド樹脂も使用できる。芳香族ポリアミド樹脂としては、ポリ-p-フェニレンテレフタルアミド、ポリ-p-フェニレンイソフタルアミド、ポリ-m-フェニレンイソフタルアミド、下記の式(5)に示すナイロンMXD6などがある。これらのうち少なくとも2つのブレンド物を使用してもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 ウレタン結合原子群(NH-COO)は、「NH」を構成する窒素および水素と、「COO」を構成する炭素および酸素を構成要素として含む。ウレタン結合原子群の酸素(ポーリングの電気陰性度3.5)の孤立電子対と、フッ化水素の水素原子との間には、水素結合が形成される可能性がある。すなわち、「C=O・・・H-F」に示すOとHとの間に「・・・」で示す水素結合が形成される可能性がある。
 ウレタン結合原子群(NH-COO)では、水素(ポーリングの電気陰性度2.1)は、窒素(ポーリングの電気陰性度3.0)と共有結合で結合している。そのため、ウレタン結合原子群(NH-COO)の水素原子と、フッ化水素のフッ素の孤立電子対との間には、水素結合が形成される可能性がある。すなわち、「N-H・・・F-H」に示すHとFとの間に「・・・」で示す水素結合が形成される可能性がある。
 ウレタン結合原子群を有する水素結合性樹脂としては、ポリウレタン系樹脂がある。ポリウレタン系樹脂は、分子内に繰り返し単位としてウレタン結合原子群(NH-COO)を有する。ポリウレタン系樹脂としては、例えば、ポリエーテル系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリカーボネート系ポリウレタン樹脂が挙げられる。
 ポリウレタン系樹脂は、ウレタン系エラストマーであってもよい。ウレタン系エラストマーは、例えば、ハードセグメントとポソフトセグメントとを有する。ハードセグメントは、ポリウレタンから構成される。ソフトセグメントは、ポリカーボネート系ポリオール、エーテル系ポリオール、カプロラクトン系ポリエステル、アジペート系ポリエステル等から構成される。
 封止フィルム1の全体における水素結合性樹脂の添加量(含有率)は、0.2質量%以上30質量%以下が好ましく、0.5質量%以上20質量%以下がより好ましく、1.0質量%以上10質量%以下がさらに好ましい。
 封止フィルム1の全体における水素結合性樹脂の添加量が0.2質量%以上であると、電極リード線11に対するフッ化水素の影響を低減する効果を高めることができる。封止フィルム1の全体における水素結合性樹脂の添加量が30質量%以下であると、水素結合性樹脂を含む層(本実施形態では基材層4)の機能低下を抑えることができる。例えば、基材層4の耐熱性、機械的強度などの低下を抑制できる。
 なお、水素結合性樹脂を含む層が第1接着層2と第2接着層3のうち少なくとも一方である場合には、封止フィルム1の全体における水素結合性樹脂の添加量が30質量%以下であると、当該接着層の接着性、機械的強度などの低下を抑制できる。
 基材層4における水素結合性樹脂の添加量は、例えば、0.5質量%以上60質量%以下(好ましくは1.0質量%以上40質量%以下、さらに好ましくは2.0質量%以上20質量%以下)であってよい。
 水素結合性樹脂を含む層(本実施形態では基材層4)は、水素結合性樹脂とポリオレフィンだけでなく、それ以外の樹脂材料を含んでいてもよい。なお、水素結合性樹脂を含む層(本実施形態では基材層4)は、水素結合性樹脂のみで構成されていてもよい。
 基材層4の厚さ(厚さ比率)は、封止フィルム1の全体の厚さを100として、5以上70以下が好ましい。すなわち、基材層4の厚さは、封止フィルム1の全体の厚さの5%以上70%以下であることが好ましい。
 基材層4の厚さ比率が5以上であると、樹脂が過度に流れやすくならず、圧着時に必要な流動性を発現しやすくなる。基材層4の厚さ比率が5以上(好ましくは25以上)であると、封止フィルム1の電解液耐性および耐熱性を高めることができる利点もある。
 基材層4の厚さ比率が70以下であると、熱圧着時における樹脂の流動性を適度な範囲に抑えることができる。基材層4の厚さ比率が70以下であると、第1接着層2および第2接着層3に十分な厚さを付与できるため、第1接着層2と電極リード線11との接着強度、および、第2接着層3と収容容器との接着強度をいずれも高めることができる。
 基材層4を構成する樹脂(または樹脂組成物)の融点は、150℃以上170℃以下が好ましい。基材層4を構成する樹脂の融点が150℃以上であると、封止フィルム1の電解液耐性を確保しやすい。また、封止フィルム1に耐熱性を付与することができる。基材層4を構成する樹脂の融点が170℃以下であると、封止フィルム1に柔軟性を与えることができる。そのため、電極リード線11および収容容器と、封止フィルム1との間に隙間が生じにくくなる。
 基材層4を構成する樹脂の融点M4は、第1接着層2を構成する樹脂の融点M2、または、第2接着層3を構成する樹脂の融点M3より高い。すなわち、融点M4は、融点M2または融点M3より高い。融点M4は、融点M2と融点M3のいずれよりも高いことが望ましい。換言すれば、融点M4は、融点M2と融点M3の少なくとも一方よりも高いことが望ましい。
 融点M4が融点M2より高いと、樹脂の流動性が低くなりすぎず、熱圧着時における樹脂の流動性を適度な範囲とすることができる。また、第1接着層2と電極リード線11との接着強度を低下させることなく、封止フィルム1の電解液耐性を確保しやすくなる。 融点M4が融点M3より高いと、樹脂の流動性が低くなりすぎず、熱圧着時における樹脂の流動性を適度な範囲とすることができる。また、第2接着層3と収容容器との接着強度を低下させることなく、封止フィルム1の電解液耐性を確保しやすくなる。融点M4が融点M2または融点M3より高いと、封止フィルム1に耐熱性を付与しやすいという利点もある。
 基材層4の水素結合性樹脂は、基材層4を構成する他の樹脂との相溶性が低い場合、混ざりムラ(不均一な混合)、溶け残り発生による外観不良が発生することがある。この外観不良を防ぐため、基材層4に酸変性ポリオレフィンを添加することが望ましい。基材層4を構成する材料のうち、水素結合性樹脂以外をすべて酸変性ポリオレフィンにしても良いが、経済性と相溶性効果とを考慮すると、基材層4における酸変性ポリオレフィンの含有率は10質量%以上が好ましい。また、第1接着層2に水素結合性樹脂を添加する場合も、第1接着層2に酸変性ポリオレフィンを添加することが望ましい。第2接着層3に水素結合性樹脂を添加する場合も、第2接着層3に酸変性ポリオレフィンを添加することが望ましい。
<電極リード線部材>
 図2に示すように、電極リード線部材10は、電極リード線11と、一対の封止フィルム1とを有する。この例の電極リード線11は平坦な両面を有する一定厚さの帯状をなし、直線的に延びている。この例の封止フィルム1は互いに同寸法の矩形状をなし、電極リード線11に対して中央部を直交させて配置されている。ただし、本発明の電極リード線部材はこの形状に限定はされず、必要に応じて適宜変形が可能である。
 一対の封止フィルム1は、第1接着層2が向かい合って配置される。一対の封止フィルム1は、電極リード線11を挟持する。一対の封止フィルム1は、それぞれ電極リード線11の一方の面および他方の面に相当する領域に接する。そのため、一対の封止フィルム1は、全体として電極リード線11の全周に接している。
 電極リード線11は、リード線本体111と、表面処理層112とを有する。電極リード線11は、一方向に直線的に延在する。電極リード線11は、金属製である。
 電極リード線11は、導電性を有する。電極リード線11は、リチウムイオン電池30(図3参照)と電気的に接続される。電極リード線11は、リチウムイオン電池30と外部機器とを通電させる。リード線本体111の材料としては、例えば、アルミニウム、銅、ニッケル、鉄、金、白金、各種合金など、公知の金属を用いることができる。なかでも、導電性に優れ、コスト的にも有利なことから、アルミニウムおよび銅が好ましい。
 リード線本体111は、表面がニッケルめっきされていてもよい。リード線本体111のニッケルめっきは、硫酸ニッケル、塩化ニッケル、硼酸等を主成分とするワット浴を用いて電気メッキによって形成してもよい。リード線本体111のニッケルめっきは、スルファミン酸ニッケルと硼酸を主成分とするスルファミン酸ニッケルめっき浴を用いて行うと好ましい。この方法で形成されるめっき被膜は、柔軟性に優れ、めっき被膜の割れが生じにくくなる。リード線本体111は、アルミニウム板またはニッケルめっき銅板が好ましい。
 表面処理層112は、リード線本体111の表面に形成されている。表面処理層112は、耐食性を有する。「耐食性」とは、電池内部の電解液による腐食を受けにくい性質を指す。表面処理層112としては、例えばリン酸塩、クロム酸塩、フッ化物またはトリアジンチオール化合物等を形成材料とする耐酸性被膜を挙げることができる。耐酸性被膜は、リード線本体111に化成処理を施すことで形成可能である。
 図2では、表面処理層112は、リード線本体111の表面の一部に形成されているが、表面処理層112は、リード線本体111の表面の全領域に形成されていてもよい。電極リード線は、表面処理層が形成されていなくてもよい。
 封止フィルム1は水素結合性樹脂を含む。そのため、電解液中にフッ化水素が含まれている場合、このフッ化水素の少なくとも一部は、水素結合性樹脂との水素結合によって封止フィルム1に捕捉される。したがって、電極リード線11に対するフッ化水素の影響を低減し、電極リード線11の劣化を抑えることができる。よって、電極リード線11に対する封止フィルム1の接着強度低下を抑制できる。
 封止フィルム1は、第1接着層2と、基材層4と、第2接着層3とを備え、これらが順に積層されている。そのため、構成材料の選択によって、各層に異なる特性を与えることができる。よって、基材層4によって電解液耐性および耐熱性を高め、かつ接着層2,3によって電極リード線11および収容容器に対する接着性を高めることができる。
 水素結合性樹脂が基材層4にのみ含まれる場合には、接着層2,3において、接着強度の点で優れた材料の比率を高めることができるため、電極リード線11および収容容器に対する接着性を高めることができる。
 電極リード線部材10は、封止フィルム1を備えるため、封止フィルム1と電極リード線11との接着強度低下を抑制できる。
<電池>
 図3は、実施形態の電池100を示す概略斜視図である。図3に示すように、電池100は、上述した電極リード線部材10と、収容容器20と、リチウムイオン電池30(電池本体)とを有する。この例の電池本体30は偏平な直方体状をなし、その長手方向の一端に互いに平行になるように一対の電極リード線部材10が接続されている。この例の収容容器20は電池本体30に対応して偏平な直方体状をなしている。ただし、本発明の電池はこの形状に限定されることはなく、必要に応じて適宜変形が可能である。
 収容容器20は、容器本体21と蓋22とを有する。容器本体21は、電池外装用積層体を絞り成形して得られる。容器本体21は、リチウムイオン電池30を収容する凹部を形成する成形部21aを有する。電池外装用積層体については後述する。蓋22は、電池外装用積層体で構成され、容器本体21と同等の平面視面積を有する。収容容器20は、容器本体21と蓋22とを重ね合わせ、周縁部25をヒートシールして形成される。
 図4は、図3の線分I-Iにおける矢視断面図である。図4に示すように、容器本体21と蓋22との構成材料である電池外装用積層体は、第1フィルム基材201、第2フィルム基材202、金属箔203、シーラント層204がこの順で積層された積層体である。
 第1フィルム基材201および第2フィルム基材202を構成する樹脂は、特に制限はないが、ポリアミド、ポリエチレンテレフタレート(PET)、フェノール樹脂、ポリプロピレン等が好適である。金属箔203としては、アルミニウム箔、ステンレス箔、銅箔、鉄箔などが使用可能である。
 シーラント層204は、封止フィルム1の第2接着層3と接して熱融着している。シーラント層204を形成する樹脂は、封止フィルム1と融着可能な樹脂が選ばれる。シーラント層204を形成する樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂が挙げられる。ポリプロピレン系樹脂としては、ポリプロピレンの単独重合体、プロピレンとエチレンの共重合体等を用いることができる。ポリエチレン系樹脂としては、低密度ポリエチレン、直鎖状低密度ポリエチレン等を用いることができる。
 図3および図4に示すように、電池100において、電極リード線部材10は、収容容器20の内部(成形部21aの内部)のリチウムイオン電池30から収容容器20の外部に引き出されている。電極リード線11は、封止フィルム1を介して収容容器20のシーラント層204と融着している。
 電池100によれば、電極リード線部材10が上述の封止フィルム1を有するため、フッ化水素による電極リード線11の劣化を抑制し、封止フィルム1と電極リード線11との接着強度低下を抑制できる。よって、信頼性が高い電池100を実現できる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 図1に示す封止フィルム1は、第1接着層2(第1の熱可塑性樹脂層)、第2接着層3(第2の熱可塑性樹脂層)、および基材層4(第3の熱可塑性樹脂層)のうち、基材層4のみが水素結合性樹脂を含むが、封止フィルムは、図1の構成に限定されない。
 水素結合性樹脂は、第1~第3熱可塑性樹脂層のうち少なくとも1つに含まれていればよい。水素結合性樹脂は、いずれの熱可塑性樹脂層に含まれていてもよい。例えば、第1接着層2、第2接着層3、基材層4のうち、第1接着層2のみに水素結合性樹脂が含まれていてもよいし、第2接着層3のみに水素結合性樹脂が含まれていてもよい。
 水素結合性樹脂は、第1接着層2、第2接着層3、基材層4のうち2つのみに含まれていてもよい。例えば、第1接着層2と第2接着層3に水素結合性樹脂が含まれていてもよいし、第1接着層2と基材層4に水素結合性樹脂が含まれていてもよいし、第2接着層3と基材層4に水素結合性樹脂が含まれていてもよい。水素結合性樹脂は、第1接着層2、第2接着層3、基材層4のすべてに含まれていてもよい。水素結合性樹脂の添加量は、図1に示す封止フィルム1において例示した添加量を採用できる。
 封止フィルムは、水素結合性樹脂が第1~第3熱可塑性樹脂層のうち少なくとも1つに含まれているため、電解液中にフッ化水素が含まれている場合、電解液中のフッ化水素の少なくとも一部は、水素結合性樹脂との水素結合によって封止フィルムに捕捉される。よって、電極リード線に対する封止フィルムの接着強度低下を抑制できる。
 「熱可塑性樹脂層は水素結合性樹脂を含む」は、熱可塑性樹脂層が水素結合性樹脂のみで構成される場合を含む。水素結合性樹脂は、水素結合可能な構造を含むモノマーの単独重合体に限らず、水素結合可能な構造を含むモノマーと、水素結合可能な構造を含まないモノマーとの共重合体であってもよい。
 図1に示す封止フィルム1は、第1接着層2と、第2接着層3と、基材層4とを備えるが、実施形態の封止フィルムは、この構造に限定されない。
 図5は、他の実施形態の封止フィルムを示す概略断面図である。図5に示す封止フィルム401は、第1接着層102(第1の熱可塑性樹脂層)と、第2接着層103(第2の熱可塑性樹脂層)とを備えた2層構造とされている。図1に示す封止フィルム1と共通の構成については同じ符号を付して説明を省略する。
 第1接着層102の構成材料は、図1に示す封止フィルム1において、第1接着層2の構成材料として例示された材料であってよい。第2接着層103の構成材料は、図1に示す封止フィルム1において、第2接着層3の構成材料として例示された材料であってよい。
 第1接着層102と第2接着層103のいずれか一方または両方には、水素結合性樹脂が添加される。水素結合性樹脂の添加量は、図1に示す封止フィルム1において例示された添加量を採用できる。
 封止フィルム401は、水素結合性樹脂を含むため、電極リード線11に対する接着強度低下を抑制できる。
 図6は、さらに他の実施形態の封止フィルムを示す概略断面図である。図6に示す封止フィルム501は、単層構造とされている。図1に示す封止フィルム1と共通の構成については同じ符号を付して説明を省略する。封止フィルム501は、1つの熱可塑性樹脂層で構成される。封止フィルム501の構成材料は、図1に示す封止フィルム1において、第1接着層2または第2接着層3の構成材料として例示された材料であってよい。
 封止フィルム501には、水素結合性樹脂が添加される。水素結合性樹脂の添加量は、図1に示す封止フィルム1において例示された添加量を採用できる。
 封止フィルム501は、水素結合性樹脂を含むため、電極リード線11に対する接着強度低下を抑制できる。
 封止フィルムが二層または三層からなる場合には、第1接着層および第2接着層は、ポリオレフィン以外の樹脂を含んでいてもよい。また、封止フィルムは、第1接着層、基材層および第2接着層以外の層を含んでいてもよい。
 以下に本発明の実施例を説明するが、本発明はこれらの実施例に限定されない。
<封止フィルムの作製>
(実施例1)
 基材層のみで形成された封止フィルムを、次のようにして作製した。基材層の原料となる樹脂を加熱溶融し、製膜を行うことで封止フィルムを得た。この封止フィルムを帯状(幅15mm、厚さ100μm)に形成した。
 封止フィルム(基材層)は、無水マレイン酸変性ポリプロピレン(融点140℃)とナイロン6(融点225℃)との混合物で構成される。無水マレイン酸変性ポリプロピレンは、プロピレンとエチレンとのランダム共重合体に無水マレイン酸をグラフト重合した重合体である。ナイロン6は、アミド結合原子群を含むため、水素結合性樹脂である。封止フィルム全体におけるナイロン6の添加量は0.2質量%である。
(実施例2,4~8)
 第1接着層、基材層、および第2接着層がこの順に積層された封止フィルムを、次のようにして作製した。各層の原料となる樹脂をそれぞれ別々に加熱溶融し、同時多層押出成形が可能な押出機を用いて同時多層製膜を行うことで積層体(封止フィルム)を得た。この積層体を帯状(幅15mm、厚さ100μm)に形成した。
 第1接着層、基材層、および第2接着層の構成材料は以下のとおりである。
 第1接着層:無水マレイン酸変性ポリプロピレン(融点140℃)
 基材層:ポリプロピレンICP(融点161℃)とナイロン6(融点225℃)との混合物
 第2接着層:プロピレンとエチレンとのランダム共重合体(融点140℃)
 無水マレイン酸変性ポリプロピレンは、実施例1で用いた無水マレイン酸変性ポリプロピレンと同様である。
 ポリプロピレンICPは、第1相のなかに第2相が分散する構造(海島構造)を有する。第1相は、ホモPPで構成される。第2相は、エチレンプロピレンラバーとポリエチレンとを含む。
 第1接着層の厚さは10μmである。基材層の厚さは50μmである。第2接着層の厚さは40μmである。
 実施例2では、封止フィルム全体におけるナイロン6の添加量は0.2質量%である。基材層におけるナイロン6の添加量は0.4質量%である。
 実施例4では、封止フィルム全体におけるナイロン6の添加量は1質量%である。基材層におけるナイロン6の添加量は2質量%である。
 実施例5では、封止フィルム全体におけるナイロン6の添加量は5質量%である。基材層におけるナイロン6の添加量は10質量%である。
 実施例6では、封止フィルム全体におけるナイロン6の添加量は10質量%である。基材層におけるナイロン6の添加量は20質量%である。
 実施例7では、封止フィルム全体におけるナイロン6の添加量は20質量%である。基材層におけるナイロン6の添加量は40質量%である。
 実施例8では、封止フィルム全体におけるナイロン6の添加量は30質量%である。基材層におけるナイロン6の添加量は60質量%である。
(実施例3,9)
 第1接着層、基材層、および第2接着層がこの順に積層された封止フィルムを、次のようにして作製した。第1接着層、基材層、および第2接着層の構成材料は以下のとおりである。
 第1接着層:無水マレイン酸変性ポリプロピレン(融点140℃)とナイロン6との混合物
 基材層:ポリプロピレンICP(融点161℃)とナイロン6との混合物
 第2接着層:プロピレンとエチレンとのランダム共重合体(融点140℃)とナイロン6との混合物
 実施例3では、封止フィルム全体におけるナイロン6の添加量は1質量%である。第1接着層、基材層、および第2接着層におけるナイロン6の添加量はそれぞれ1質量%である。その他の条件は実施例2と同様である。
 実施例9では、封止フィルム全体におけるナイロン6の添加量は30質量%である。第1接着層、基材層、および第2接着層におけるナイロン6の添加量はそれぞれ30質量%である。その他の条件は実施例2と同様である。
(実施例10)
 第1接着層と第2接着層とが積層された封止フィルムを、次のようにして作製した。第1接着層および第2接着層の構成材料は以下のとおりである。
 第1接着層:無水マレイン酸変性ポリプロピレン(融点140℃)とナイロン6との混合物
 第2接着層:プロピレンとエチレンとのランダム共重合体(融点140℃)とナイロン6との混合物
 第1接着層の厚さは20μmである。第2接着層の厚さは80μmである。封止フィルム全体におけるナイロン6の添加量は30質量%である。第1接着層および第2接着層におけるナイロン6の添加量はそれぞれ30質量%である。その他の条件は実施例3と同様である。
(実施例11~15)
 実施例2,4~8と同様に、第1接着層、基材層、および第2接着層がこの順に積層された封止フィルムを、次のようにして作製した。各層の原料となる樹脂をそれぞれ別々に加熱溶融し、同時多層押出成形が可能な押出機を用いて同時多層製膜を行うことで積層体(封止フィルム)を得た。この積層体を帯状(幅15mm、厚さ100μm)に形成した。
 第1接着層、基材層、および第2接着層の構成材料は以下のとおりである。
 第1接着層:無水マレイン酸変性ポリプロピレン(融点140℃)
 基材層:ポリプロピレンICP(融点161℃)とナイロンMXD6(融点240℃)との混合物
 第2接着層:プロピレンとエチレンとのランダム共重合体(融点140℃)
 無水マレイン酸変性ポリプロピレンは、実施例1で用いた無水マレイン酸変性ポリプロピレンと同様である。
 ポリプロピレンICPは、第1相のなかに第2相が分散する構造(海島構造)を有する。第1相は、ホモPPで構成される。第2相は、エチレンプロピレンラバーとポリエチレンとを含む。
 ナイロンMXD6は、アミド結合原子群を含むため、水素結合性樹脂である。
 第1接着層の厚さは25μmである。基材層の厚さは50μmである。第2接着層の厚さは25μmである。
 実施例11では、封止フィルム全体におけるナイロンMXD6の添加量は0.5質量%である。基材層におけるナイロンMXD6の添加量は1.0質量%である。
 実施例12では、封止フィルム全体におけるナイロンMXD6の添加量は0.8質量%である。基材層におけるナイロンMXD6の添加量は1.5質量%である。
 実施例13では、封止フィルム全体におけるナイロンMXD6の添加量は1.0質量%である。基材層におけるナイロンMXD6の添加量は2.0質量%である。
 実施例14では、封止フィルム全体におけるナイロンMXD6の添加量は1.3質量%である。基材層におけるナイロンMXD6の添加量は2.5質量%である。
 実施例15では、封止フィルム全体におけるナイロンMXD6の添加量は2.0質量%である。基材層におけるナイロンMXD6の添加量は4.0質量%である。
(比較例1)
 基材層にナイロン6を添加しないこと以外は実施例2と同様にして封止フィルムを作製した。封止フィルム全体におけるナイロン6の添加量は0質量%である。
(参考例1)
 基材層におけるナイロン6の添加量を0.1質量%としたこと以外は実施例1と同様にして封止フィルムを作製した。封止フィルム全体におけるナイロン6の添加量は0.1質量%である。
(参考例2)
 基材層におけるナイロン6の添加量を0.2質量%としたこと以外は実施例2と同様にして封止フィルムを作製した。封止フィルム全体におけるナイロン6の添加量は0.1質量%である。
(参考例3)
 基材層におけるナイロン6の添加量を80質量%としたこと以外は実施例2と同様にして封止フィルムを作製した。封止フィルム全体におけるナイロン6の添加量は40質量%である。
<電極リード線の作製>
 リード線本体と、リード線本体の表面に形成された表面処理層とを有する電極リード線を作製した。リード線本体としては、幅45mm×長さ52mmの矩形状のニッケルめっき銅箔を用いた。
<試験1:電極リード線に対する接着強度の測定(非浸漬)>
 実施例1~15、比較例1、および参考例1~3の封止フィルムについて、電極リード線に対する封止フィルムの接着強度を次のようにして測定した。この試験は、測定用検体を電解液に浸漬(後述)しないため、「非浸漬」条件の試験である。
 封止フィルムと電極リード線とを重ね合わせ、ヒートシールにより接着して測定用検体を得た。ヒートシールの条件は、180℃、0.5MPa、10秒間とした。
 この測定用検体について、試験機(株式会社島津製作所製の卓上形精密万能試験機:オートグラフAGS-500NX)を用いて、180度剥離強度(接着強度)を次のようにして測定した。
 封止フィルムの端部と、電極リード線の端部とを試験機の把持部で把持し、180度剥離となるように、封止フィルムを電極リード線から剥離させた。剥離速度は50mm/minとした。
 実施例1~10、比較例1、および参考例1~3の封止フィルムについての測定結果を表1に示す。実施例11~15の封止フィルムについての測定結果を表2に示す。
<試験2:電極リード線に対する接着強度の測定(浸漬後)>
 実施例1~15、比較例1、および参考例1~3の封止フィルムについて、電極リード線に対する封止フィルムの接着強度を次のようにして測定した。この試験は、測定用検体を電解液に浸漬した後に測定を行うため、「浸漬後」条件の試験である。電池外装用積層体を用いて包装袋を作製し、その中に、LiPF6を1.6mol/リットル含む電解液(DMC:EMC:EC(体積基準)=4:3:3)を入れた。電解液には、純水を0.2質量%(2000ppm)添加した。
 この包装袋に、前述の試験1と同様にして作製した測定用検体を入れ、電解液に浸漬させた。測定用検体を入れた包装袋を85℃のオーブンに7日間保管した後、試験1と同様にして180度剥離強度(接着強度)を測定した。
 試験1および試験2において、接着強度が1N/mm以上となった場合を「良」と判定した。接着強度が1N/mm未満となった場合を「低」と判定した。実施例1~10、比較例1、および参考例1~3の封止フィルムについての測定結果を表1に示す。実施例11~15の封止フィルムについての測定結果を表2に示す。
<機械的強度の測定>
 実施例1~15、比較例1、および参考例1~3の封止フィルムについて、封止フィルムの機械的強度を次のようにして測定した。
 各封止フィルムを用いて、JIS  K7127に規定されたタイプ5のダンベル状の試験片を作製した。この試験片について、JIS  K7127に従い、島津製作所社製の卓上形精密万能試験機オートグラフAGS-Xを用いて引張試験を行った。チャック間距離は80mmとした。試験速度(引張速度)は500mm/minとした。試験環境は、温度23℃、湿度50%RHとした。
 切断時の引張強度(破断強度)が25MPa以上となった場合を「良」と判定した。破断強度が25MPa未満となった場合を「低」と判定した。実施例1~10、比較例1、および参考例1~3の封止フィルムについての測定結果を表1に示す。実施例11~15の封止フィルムについての測定結果を表2に示す。
 表1および表2には、各層における水素結合性樹脂(ナイロン6またはナイロンMXD6)の添加量[質量%]と、当該層の厚さ[μm]との積(水素結合性樹脂の添加量×厚さ)[質量%・μm]、および、封止フィルム全体の水素結合性樹脂添加量 [質量%]を併せて示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1および表2に示すように、実施例1~15では、非浸漬および浸漬後のいずれも高い接着強度が得られた。実施例1~15は、機械的強度も高い値を示した。
 これに対し、水素結合性樹脂を含まない比較例1では、電解液に浸漬させた後の接着強度が低くなった。水素結合性樹脂の添加量が低い参考例1,2では、電解液に浸漬させた後の接着強度が低くなった。水素結合性樹脂の添加量が多い参考例3では、機械的強度が低くなった。
 本発明の封止フィルム、電極リード線部材および電池によれば、フッ化水素による接着強度低下を抑制できるから、本発明は産業上の利用が可能である。
 1,401,501…封止フィルム
 2…第1接着層(第1の熱可塑性樹脂層)
 3…第2接着層(第2の熱可塑性樹脂層)
 4…基材層(第3の熱可塑性樹脂層)
 10…電極リード線部材
 11…電極リード線
 20…収容容器
 21…容器本体
 22…蓋
 30…リチウムイオン電池
 100…電池
 102…第1接着層(第1の熱可塑性樹脂層)
 103…第2接着層(第2の熱可塑性樹脂層)
 111…リード線本体
 112…表面処理層
 201…第1フィルム基材
 202…第2フィルム基材
 203…金属層
 204…シーラント層

Claims (11)

  1.  電池本体と電気的に接続される電極リード線と、前記電池本体を収容する収容容器との間を封止する封止フィルムであって、
     1または複数の熱可塑性樹脂層を備え、
     少なくとも1つの前記熱可塑性樹脂層は、分子中に水素結合可能な構造を有する水素結合性樹脂を含む、封止フィルム。
  2.  前記熱可塑性樹脂層は、複数設けられ、
     複数の前記熱可塑性樹脂層は、
      前記電極リード線に接着する第1接着層である第1の熱可塑性樹脂層と、
      前記収容容器に接着する第2接着層である第2の熱可塑性樹脂層と、
      前記第1接着層と前記第2接着層との間に設けられた基材層である第3の熱可塑性樹脂層とを含み、
     前記水素結合性樹脂は、前記第1~第3の熱可塑性樹脂層のうち少なくとも1つに含まれる、請求項1記載の封止フィルム。
  3.  前記第1の熱可塑性樹脂層は、酸変性ポリオレフィンを含む、請求項2記載の封止フィルム。
  4.  前記水素結合性樹脂は、前記第1の熱可塑性樹脂層に含まれる、請求項2または3に記載の封止フィルム。
  5.  前記水素結合性樹脂は、前記第3の熱可塑性樹脂層に含まれる、請求項2~4のうちいずれか1項に記載の封止フィルム。
  6.  前記第1の熱可塑性樹脂層は、前記酸変性ポリオレフィンを50質量%以上含む、請求項3記載の封止フィルム。
  7.  前記第3の熱可塑性樹脂層は、酸変性ポリオレフィンを10質量%以上含む、請求項2~6のうちいずれか1項に記載の封止フィルム。
  8.  前記封止フィルム全体における前記水素結合性樹脂の添加量は、0.2質量%以上30質量%以下である、請求項1~7のうちいずれか1項に記載の封止フィルム。
  9.  前記水素結合性樹脂は、ポリアミド系樹脂である、請求項1~8のうちいずれか1項に記載の封止フィルム。
  10.  請求項1~9のうちいずれか1項に記載の封止フィルムと、
     一方向に延在する前記電極リード線とを備える電極リード線部材。
  11.  電池本体と、前記電池本体を収容する収容容器と、請求項10に記載の電極リード線部材を備える電池。
PCT/JP2022/035403 2021-09-24 2022-09-22 封止フィルム、電極リード線部材および電池 WO2023048242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247009218A KR20240065089A (ko) 2021-09-24 2022-09-22 봉지 필름, 전극 리드선 부재, 및 전지
CA3232500A CA3232500A1 (en) 2021-09-24 2022-09-22 Sealing film, electrode lead wire member, and battery
CN202280063290.7A CN117981147A (zh) 2021-09-24 2022-09-22 密封膜、电极引线构件以及电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155742 2021-09-24
JP2021155742 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048242A1 true WO2023048242A1 (ja) 2023-03-30

Family

ID=85720777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035403 WO2023048242A1 (ja) 2021-09-24 2022-09-22 封止フィルム、電極リード線部材および電池

Country Status (5)

Country Link
KR (1) KR20240065089A (ja)
CN (1) CN117981147A (ja)
CA (1) CA3232500A1 (ja)
TW (1) TW202324825A (ja)
WO (1) WO2023048242A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242548A (ja) * 2006-03-10 2007-09-20 Nec Lamilion Energy Ltd フィルム外装電気デバイスの製造方法、ヒータおよびフィルム外装電気デバイス
JP2011151030A (ja) * 2011-02-07 2011-08-04 Dainippon Printing Co Ltd 電池ケース用シートおよび電池装置
WO2012020721A1 (ja) * 2010-08-11 2012-02-16 大倉工業株式会社 端子接着用テープの製造方法、および端子接着用テープ
JP2016184546A (ja) * 2015-03-26 2016-10-20 大日本印刷株式会社 金属端子用接着性フィルム
JP6055300B2 (ja) 2012-12-18 2016-12-27 大倉工業株式会社 フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP2021155742A (ja) 2020-04-20 2021-10-07 セイコーエプソン株式会社 光硬化型インクジェットインクセット及びこれを用いたインクジェット記録方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055300U (ja) 1983-09-26 1985-04-18 東光株式会社 ブラシレスモ−タ駆動回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242548A (ja) * 2006-03-10 2007-09-20 Nec Lamilion Energy Ltd フィルム外装電気デバイスの製造方法、ヒータおよびフィルム外装電気デバイス
WO2012020721A1 (ja) * 2010-08-11 2012-02-16 大倉工業株式会社 端子接着用テープの製造方法、および端子接着用テープ
JP2011151030A (ja) * 2011-02-07 2011-08-04 Dainippon Printing Co Ltd 電池ケース用シートおよび電池装置
JP6055300B2 (ja) 2012-12-18 2016-12-27 大倉工業株式会社 フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP2016184546A (ja) * 2015-03-26 2016-10-20 大日本印刷株式会社 金属端子用接着性フィルム
JP2021155742A (ja) 2020-04-20 2021-10-07 セイコーエプソン株式会社 光硬化型インクジェットインクセット及びこれを用いたインクジェット記録方法

Also Published As

Publication number Publication date
TW202324825A (zh) 2023-06-16
CA3232500A1 (en) 2023-03-30
KR20240065089A (ko) 2024-05-14
CN117981147A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP5755975B2 (ja) 電池用外装材及びリチウム二次電池
US10121995B2 (en) Battery packaging material
JP7105114B2 (ja) タブリード用フィルム、及びこれを用いたタブリード
KR20120112136A (ko) 이차 전지 외장재용 알루미늄박 적층 시트 및 이차 전지 외장재
JP2014127258A (ja) 電池用外装材及びリチウム二次電池
KR20210127636A (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
JP5278521B2 (ja) 電気化学セル用包装材料
KR20160073837A (ko) 플렉서블 셀 파우치 및 이를 포함하는 이차전지
KR20230145964A (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2023048242A1 (ja) 封止フィルム、電極リード線部材および電池
JP7093898B1 (ja) 封止フィルム、電極リード線部材および電池
JP2014186914A (ja) タブリード
JP6038600B2 (ja) 電池外包材用シーラントフィルムとその製造方法
WO2021241560A1 (ja) 封止フィルム、電極リード線部材および電池
WO2021261478A1 (ja) 封止フィルム、電極リード線部材および電池
KR20180057926A (ko) 내화학성 및 성형성이 우수한 셀 파우치
JP2017147225A (ja) 電池用包装材料、その製造方法、及び電池
JP7160048B2 (ja) 樹脂成形体およびタブリード
JP2000223084A (ja) ポリマー電池用外装体
WO2021246472A1 (ja) 封止フィルム、電極リード線部材および電池
JP2023110360A (ja) 封止フィルム、電極リード線部材および電池
JP2021197226A (ja) 封止フィルム、電極リード線部材および電池
JP2015156404A (ja) 電池用外装材及びリチウム二次電池
JP2022182409A (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス
JP2021140941A (ja) 封止フィルム、電極リード線部材及び電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549754

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247009218

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280063290.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3232500

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022872993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872993

Country of ref document: EP

Effective date: 20240424