WO2023048126A1 - ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法 - Google Patents

ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法 Download PDF

Info

Publication number
WO2023048126A1
WO2023048126A1 PCT/JP2022/034944 JP2022034944W WO2023048126A1 WO 2023048126 A1 WO2023048126 A1 WO 2023048126A1 JP 2022034944 W JP2022034944 W JP 2022034944W WO 2023048126 A1 WO2023048126 A1 WO 2023048126A1
Authority
WO
WIPO (PCT)
Prior art keywords
eps
bifidobacterium
fucose
strain
medium
Prior art date
Application number
PCT/JP2022/034944
Other languages
English (en)
French (fr)
Inventor
彩佳 田村
和香子 大坪
春樹 北澤
冰卉 周
優希 有川
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2023048126A1 publication Critical patent/WO2023048126A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/127Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Definitions

  • the present invention provides a method for producing EPS with improved EPS productivity, an EPS produced by the production method, a method for producing a fermented product containing EPS with improved EPS productivity, and a method for producing an EPS-containing fermented product with improved EPS productivity.
  • the present invention relates to the provision of a manufactured fermented product, an EPS production promoter for Bifidobacterium spp., a method for promoting production of exopolysaccharide (EPS) by Bifidobacterium spp.
  • EPS exopolysaccharide
  • Exopolysaccharide is a general term for polysaccharides secreted by bacteria to protect themselves from exogenous stress.
  • EPS is a high-molecular-weight polymer containing sugar residues, mainly composed of polysaccharides (exopolysaccharides) and proteins, and also contains macromolecules such as DNA and lipids.
  • EPS produced by bacteria such as lactic acid bacteria is known to have functions such as antibacterial properties, water retention, osmotic pressure resistance, and immunoregulatory action.
  • lactic acid bacteria is known to have functions such as antibacterial properties, water retention, osmotic pressure resistance, and immunoregulatory action.
  • EPS when humans and others ingest EPS, it has an effect of promoting the growth of intestinal bacteria and an immunostimulatory effect.
  • Patent Document 1 discloses that EPS produced by the lactic acid bacterium Lactobacillus delbrueckii subsp. discloses a method of producing EPS by culturing Bifidobacterium longum, and that EPS has moisturizing and immunostimulatory effects.
  • Patent Document 3 discloses a method for increasing the number of viable EPS-producing lactic acid bacteria by adding formic acid to a raw milk medium, thereby increasing the amount of EPS produced. is disclosed.
  • Non-Patent Document 1 discloses that EPS production by Bifidobacterium animalis subspecies lactis is promoted by bile. However, it has not been reported that EPS production by bacteria belonging to the genus Bifidobacterium is promoted by L-fucose.
  • JP 2021-101645 A Japanese Patent No. 5192808
  • the present invention provides a method for producing EPS with improved EPS productivity, an EPS produced by the production method, a method for producing a fermented product containing EPS with improved EPS productivity, and a method for producing an EPS-containing fermented product with improved EPS productivity.
  • An object of the present invention is to provide a fermented product to be produced, an EPS production promoter for Bifidobacterium bacteria, a method for promoting the production of exopolysaccharide (EPS) by Bifidobacterium bacteria, and the like.
  • the present inventors have made intensive studies, and as a result, produced EPS by Bifidobacterium by culturing Bifidobacterium in a medium containing L-fucose. The inventors have found that the properties are improved, and have completed the present invention.
  • the present invention (1) A method for producing an exopolysaccharide (EPS), comprising a step A of culturing a Bifidobacterium bacterium in a medium containing L-fucose; (2) The production method according to (1) above, wherein the Bifidobacterium bacterium is Bifidobacterium breve or Bifidobacterium lactis; (3) EPS produced by the production method described in (1) or 2 above; (4) A method for producing a fermented product containing EPS, comprising the step a of culturing a Bifidobacterium bacterium with a raw material for a fermented product containing L-fucose; (5) The production method according to (4) above, wherein the Bifidobacterium bacterium is Bifidobacterium breve or Bifidobacterium lactis; (6) The production method according to (4) or (5) above, wherein the fermented product raw material is a
  • an EPS production method with improved EPS productivity an EPS produced by the production method, a production method of an EPS-containing fermented product with improved EPS productivity, and the production It is possible to provide a fermented product produced by the method, an EPS production promoter for Bifidobacterium bacteria, a method for promoting the production of exopolysaccharide (EPS) by Bifidobacterium bacteria, and the like.
  • EPS exopolysaccharide
  • FIG. 2 A diagram showing the results of phylogenetic analysis of the nucleotide sequence of the 16S rRNA gene of the AT-APC-FucE1 strain isolated from a stool sample derived from a human infant by the present inventor.
  • FIG. 2 shows the results of observation of the morphology of the AT-APC-FucE1 strain with an optical microscope (oil immersion lens, ⁇ 1000).
  • FIG. 3 shows the results of observation of the morphology of the AT-APC-FucE1 strain with an electron microscope ( ⁇ 25000).
  • FIG. 3 shows the results of observing the AT-APC-FucE1 strain cultured in 1% Fuc mMRS medium with a transmission electron microscope.
  • FIG. 2 shows the results of observing the AT-APC-FucE1 strain cultured in 1% Glu mMRS medium with a transmission electron microscope.
  • FIG. 3 shows the results of observing EPS extracted from the culture supernatant of AT-APC-FucE1 with a scanning electron microscope.
  • FIG. 2 is a diagram showing the results of observation of cells in a culture medium of Bifidobacterium animalis subspecies lactis JCM10602 strain with a scanning electron microscope ( ⁇ 25000).
  • FIG. 7a shows the results of culturing the JCM10602 strain in 0.5% Fuc mMRS medium
  • FIG. 7b shows the results of culturing the JCM10602 strain in 0.5% Glu mMRS medium.
  • the present invention [1] A method for producing an exopolysaccharide (EPS), comprising a step A of culturing a Bifidobacterium bacterium in a medium containing L-fucose (hereinafter also referred to as the "EPS production method of the present invention”) ); [2] EPS produced by the method for producing EPS of the present invention (hereinafter also referred to as “EPS of the present invention”); [3] A method for producing a fermented product containing EPS (hereinafter also referred to as "the method for producing a fermented product of the present invention"), which includes the step a of culturing Bifidobacterium bacteria with a raw material for a fermented product containing L-fucose do.); [4] A fermented product produced by the method for producing a fermented product of the present invention (hereinafter also referred to as “the fermented product of the present invention”); [5] An EPS production promoter for
  • Bifidobacterium bacteria The "Bifidobacterium genus bacterium” used herein is not particularly limited as long as it is a Bifidobacterium bacterium having EPS-producing ability, and a Bifidobacterium genus bacterium having the ability to assimilate L-fucose. It is preferably mentioned. Bifidobacterium bacteria are not particularly limited as long as they belong to the Bifidobacterium genus. Bifidobacterium longum subsp. longum, Bifidobacterium animalis subsp. animalis (hereinafter also referred to as "Bifidobacterium animalis”) ), Bifidobacterium animalis subsp.
  • Bifidobacterium lactis Bifidobacterium lactis
  • Bifidobacterium lactis Bifidobacterium longum subspecies infantis ( infantis)
  • Bifidobacterium adolescentis Bifidobacterium angulatum
  • Bifidobacterium catenulatum Bifidobacterium catenulatum
  • Bifidobacterium adolescentis One or more selected from the group consisting of Bifidobacterium pseudocatenulatum, among which Bifidobacterium breve, Bifidobacterium lactis, Bifidobacterium animalis, and One or more selected from the group consisting of Bifidobacterium longum subsp.
  • Umm animalis is more preferred, and Bifidobacterium breve and Bifidobacterium lactis are more preferred.
  • the Bifidobacterium bacterium may be, for example, one isolated from nature such as an infant fecal sample, or one obtained from a culture collection.
  • the above-mentioned "Bifidobacterium bacterium having EPS-producing ability” means a Bifidobacterium bacterium capable of producing EPS when cultured under conditions suitable for the Bifidobacterium bacterium.
  • Bifidobacterium bacterium having EPS-producing ability is, for example, an mMRS liquid medium containing 0.5 to 2% by weight (or 1% by weight) of D-glucose, anaerobically at 37 ° C. for 12 hours. or Bifidobacterium bacteria that can confirm EPS production when cultured for more than 96 hours (e.g., 96 hours).
  • Bifidobacterium genus bacterium which yields EPS of 0.5 mg/1000 mL or more when EPS is extracted from the culture supernatant with trichloroacetic acid in a method of anaerobically culturing for 96 hours at .
  • the amount of EPS produced by culturing as described above (for example, in mMRS liquid medium containing 0.5 or 1% by weight of D-glucose, anaerobically culturing at 37° C. for 12 hours or 96 hours) (Preferably, the amount of EPS extracted from the culture supernatant with trichloroacetic acid) can be evaluated as the EPS-producing ability of the Bifidobacterium bacterium.
  • Bifidobacterium bacterium having the ability to assimilate L-fucose specifically, an mMRS liquid medium containing 0.5 to 2% by weight of L-fucose, anaerobic at 37 ° C. Bifidobacterium bacteria that can grow (preferably proliferate) when cultured in Bifidobacterium. More specifically, 1 mL of mMRS liquid medium containing 0.5 or 1% by weight of L-fucose is inoculated with 1 v/v% of the Bifidobacterium bacterium, and anaerobically cultured at 37° C. for 48 hours.
  • the turbidity (OD600) of the culture solution is measured, and from the measured value of turbidity, the turbidity (OD600 ) is, for example, 0.1 or more (preferably 0.2 or more, more preferably 0.3 or more, more preferably 0.4 or more, more preferably 0.5 or more, more preferably 0 .6 or more).
  • L-fucose assimilation ability when quantitatively comparing L-fucose assimilation means that 1 mL of mMRS liquid medium containing 0.5 or 1% by weight of L-fucose, Bifidobacterium genus bacteria were inoculated at 1 v / v% and the turbidity (OD600) of the culture solution after anaerobically culturing at 37 ° C. for 48 hours was measured. It means a value obtained by subtracting the measured value of turbidity (OD600) of a culture medium in which a medium not inoculated with Fidobacterium was cultured in the same manner.
  • Bifidobacterium bacteria that can be preferably used in the present invention include Bifidobacterium bacteria that improve the EPS productivity of Bifidobacterium bacteria by culturing in a medium containing L-fucose.
  • Bifidobacterium breve AT-APC-FucE1 strain and Bifidobacterium lactis are preferred.
  • Bifidobacterium bacteria that improve the EPS productivity of Bifidobacterium bacteria by culturing in a medium containing L-fucose is the same culture conditions except the medium used.
  • the same concentration of L-fucose was used instead of glucose in the culture medium as compared to the case of culturing in a medium containing glucose without bacteria or L-fucose (for example, mMRS liquid
  • Bifidobacterium bacteria that improve EPS productivity when cultured in a medium (mMRS liquid medium containing L-fucose), more specifically, EPS-producing ability of 10% by weight or more, preferably 20%
  • a medium mMRS liquid medium containing L-fucose
  • EPS-producing ability 10% by weight or more, preferably 20%
  • Examples include Bifidobacterium bacterium that improves by weight % or more.
  • the above-mentioned Bifidobacterium breve AT-APC-FucE1 strain is a strain isolated by the present inventors from a stool sample derived from a human infant as a strain capable of assimilating fucose.
  • the nucleotide sequence of the 16S rRNA gene of the AT-APC-FucE1 strain (SEQ ID NO: 1) has 99.9% sequence identity with the nucleotide sequence of the 16S rRNA gene of the Bifidobacterium breve type strain.
  • the AT-APC-FucE1 strain was believed to be Bifidobacterium breve by phylogenetic analysis of the nucleotide sequence of the 16S rRNA gene described in the Examples below.
  • AT-APC-FucE1 a novel AT-APC-FucE1 strain was deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ) (address: Inhoffenstr. 7B, D-38124 Braunschweig, Germany) on June 7, 2022 (deposit date). It has been deposited as Bifidobacterium breve strain AT-APC-FucE1 (DSMZ accession number; DSM 34284). (Mycological properties of AT-APC-FucE1 strain) It forms opaque white small colonies on MRS agar medium. It is Gram-positive on Gram staining and exhibits a branched morphology typical of bifidobacteria.
  • the Bifidobacterium breve type strain JCM1192 does not assimilate fucose, whereas the AT-APC-FucE1 strain can assimilate fucose.
  • the sequence of SEQ ID NO: 1 is as follows.
  • Bactedobacterium breve AT-APC-FucE1 strain refers to the strain itself deposited as DSM 34284 as described above under the strain name (hereinafter also referred to as "deposited strain” for convenience).
  • deposited strain for convenience.
  • homogeneous strains strains that are substantially the same as the deposited strain
  • derivative strains or “derived strains” subsumed.
  • the isogenic strain of the above deposited strain is a bacterium belonging to the genus Bifidobacterium, and the nucleotide sequence of the 16S rRNA gene is preferably 99.5% or more (more preferably 99.5%) that of the nucleotide sequence of the 16S rRNA gene of the deposited strain.
  • strain substantially equivalent to the deposited strain means that it belongs to the same species as the deposited strain, and is 0.8-fold or more (preferably 0.9-fold or more, more preferably 1.0-fold or more) of the deposited strain. 0-fold or more) L-fucose assimilation ability and/or 0.8-fold or more (preferably 0.9-fold or more, more preferably 1.0-fold or more) EPS production ability.
  • a strain that is substantially equivalent to the deposited strain may be, for example, a derivative of the deposited strain as a parent strain. Derivative strains include strains bred from the deposited strain and strains that arise naturally from the deposited strain.
  • Substantially equivalent strains include strains such as: (1) strains determined to be the same strain by the RAPD method (Randomly Amplified Polymorphic DNA) and the PFGE method (Pulsed-field gel electrophoresis) (described in Probiotics in food/Health and nutritional properties and guidelines for evaluation 85 Page 43); (2) a strain having only genes derived from the deposited strain, no foreign genes, and having a DNA identity of 95% or more (preferably 98% or more); (3) Strains bred from the strain (including genetic engineering modifications, mutations, and spontaneous mutations), strains with the same traits;
  • Bifidobacterium bacteria when culturing Bifidobacterium bacteria, only Bifidobacterium bacteria may be used, or Bifidobacterium bacteria may be used as long as the growth of Bifidobacterium bacteria is not excessively suppressed.
  • Microorganisms other than the genus Bifidobacterium may be used in combination.
  • Microorganisms other than Bifidobacterium include bacteria other than Bifidobacterium, such as lactic acid bacteria and Bacillus, and yeast.
  • lactic acid bacteria examples include bacteria that produce a large amount of lactic acid (preferably 50% or more of the sugar consumed) by lactic acid fermentation of sugar, such as bacteria of the genus Lactobacillus and Streptococcus. bacteria of the genus Lactococcus, bacteria of the genus Leuconostoc, bacteria of the genus Pediococcus, bacteria of the genus Enterococcus, and the like.
  • the “medium containing L-fucose” may be a general medium for culturing bacteria, except that it contains L-fucose.
  • the "medium containing L-fucose” includes a medium containing a carbon source (only L-fucose or L-fucose and other carbon sources) and a nitrogen source, and may further contain other components.
  • L-fucose may be extracted from seaweed such as kelp and wakame seaweed by a known method, or a commercially available product may be used.
  • the L-fucose concentration of the "medium containing L-fucose” is not particularly limited as long as the effects of the present invention can be obtained, but examples include 2 to 100 g/L, 5 to 90 g/L, 10 to 80 g/L, and the like. is preferably mentioned.
  • the carbon source in the "medium containing L-fucose” is preferably only L-fucose from the viewpoint of further improving EPS productivity, but carbon sources other than L-fucose may be used in combination.
  • Carbon sources other than L-fucose include carbon sources that can be assimilated by the Bifidobacterium bacterium used.
  • only one type of “carbon source other than L-fucose” may be used, or two or more types may be used in combination.
  • carbon sources other than L-fucose include sugars such as glucose, lactose, sucrose, maltose, mannose, galactose, fructose, starch hydrolysates and molasses; sugar alcohols such as mannitol and erythritol; glycerol , ethanol, propanol and other alcohols; and acetic acid, malic acid, lactic acid, citric acid, tartaric acid, succinic acid, fumaric acid, propionic acid, malonic acid and other organic acids; Among them, one or more selected from the group consisting of glucose, lactose, sucrose, maltose, galactose, and fructose are preferred.
  • the concentration of the carbon source other than L-fucose in the medium is not particularly limited as long as the effects of the present invention can be obtained, but 0 g/ more than 100 g/L, more than 0 g/L and less than 50 g/L, and from the viewpoint of further improving EPS productivity, more than 0 g/L and less than 30 g/L, more than 0 g/L and less than 15 g/L, More than 0 g/L and 8 g/L or less are preferred.
  • nitrogen source includes nitrogen sources that can be assimilated by the Bifidobacterium bacterium used. Moreover, only one type of nitrogen source may be used, or two or more types may be used in combination. Specific nitrogen sources contained in the L-fucose-containing medium used in the present invention include amino acids, potassium nitrate, ammonium citrate, ammonium nitrate, ammonium sulfate, ammonium phosphate, ammonium chloride, ammonia, urea, casein, polypeptone, and peptone.
  • the nitrogen source concentration of the L-fucose-containing medium is not particularly limited as long as the effects of the present invention can be obtained, and examples thereof include 1 to 30 g/L and 1 to 20 g/L.
  • the "other ingredients" in the medium and raw materials for fermentation products in the present specification are particularly limited as long as they do not excessively suppress the growth of Bifidobacterium bacteria when added to the medium or raw materials for fermentation products. It is effective to add inorganic ions and vitamins as needed, instead of adding a substance.
  • inorganic ions include potassium ions, sodium ions, calcium ions, magnesium ions, iron ions, manganese ions, molybdenum ions, phosphate ions, chloride ions, and sulfate ions.
  • vitamins include thiamine, inositol, pantothenic acid, nicotinamide and the like.
  • medium components other than L-fucose include, for example, mMRS medium (a medium obtained by removing sugar components from MRS medium), or a carbon source such as a sugar component added to the mMRS medium.
  • mMRS medium a medium obtained by removing sugar components from MRS medium
  • carbon source such as a sugar component added to the mMRS medium.
  • a culture medium prepared using the above method can be preferably used.
  • the composition of the mMRS medium is as follows.
  • composition of mMRS medium Beef Extract 10 g/L, Yeast Extract 5 g/L, Ammonium Citrate 2 g/L, Sodium Acetate 5 g/L, Magnesium Sulfate 0.1 g/L, Manganese Sulfate 0.05 g/L, Dipotassium Hydrogen Phosphate 2 g /L, L-cysteine hydrochloride 0.5 g/L.
  • the pH of the "L-fucose-containing medium” used herein is not particularly limited as long as Bifidobacterium bacteria can grow, and examples include pH 4-9.
  • L-fucose-containing medium may be a liquid medium or a plate medium.
  • the gel component to be contained is not particularly limited as long as it does not inhibit the growth of bacteria of the genus Bifidobacterium. is preferred.
  • Step A of culturing a Bifidobacterium bacterium in a medium containing L-fucose The step A of culturing Bifidobacterium bacteria in a medium containing L-fucose is not particularly limited as long as it is a step of culturing Bifidobacterium bacteria in a medium containing L-fucose. Culture conditions for culturing Bifidobacterium bacteria in a medium containing L-fucose are not particularly limited as long as the effects of the present invention can be obtained.
  • the culture temperature is not particularly limited as long as it is a temperature at which the bacteria of the genus Bifidobacterium can grow. be done.
  • the culture time is not particularly limited, and may be 6 hours to 5 days, preferably 12 to 48 hours, particularly preferably 12 to 24 hours, from the viewpoint of the growth of Bifidobacterium and EPS produced. .
  • Bifidobacterium bacteria are preferably cultured under anaerobic conditions, for example, they can be cultured while passing anaerobic gases such as carbon dioxide. Moreover, you may culture
  • the EPS obtained by culturing in step A may be used as it is.
  • a step B of collecting EPS from the object may be further included.
  • EPS from the culture As a method for collecting EPS from the culture, a known method can be used.
  • a method for collecting only acidic polysaccharides includes a method including the following steps 1 to 5.
  • Cells are removed from the culture by centrifugation.
  • Trichloroacetic acid is added to a final concentration of about 5 to 10% by weight to precipitate proteins, followed by centrifugation.
  • High-molecular-weight polysaccharides and proteins are recovered as precipitates by ethanol precipitation.
  • 4. Removes proteins and nucleic acids. a) Degrading nucleic acids with DNase and RNase.
  • a method for collecting only neutral polysaccharides includes a method including the following steps 1 to 5.
  • Trichloroacetic acid is added to the medium to a final concentration of 10% by weight to denature the proteins.
  • Denatured proteins and cells are removed from the culture by centrifugation.
  • High molecular weight polysaccharides are precipitated and recovered by ethanol precipitation.
  • the acidic polysaccharides are adsorbed by an anion exchange resin, and the neutral polysaccharides are recovered from the remaining eluate. 5.
  • Proteinase treatment degrades proteins.
  • Neutral polysaccharides are purified by ethanol precipitation and dialysis.
  • the EPS of the present invention is not particularly limited as long as it is manufactured by the EPS manufacturing method of the present invention.
  • the "raw material for fermentation product containing L-fucose” is not particularly limited as long as it is a raw material for fermentation product containing L-fucose.
  • the L-fucose concentration of the "raw material for fermented products containing L-fucose" is not particularly limited as long as the effects of the present invention can be obtained. L etc. are preferably mentioned.
  • the above-mentioned “fermented product raw material” is not particularly limited as long as it is a fermented product raw material, and such a fermented product raw material may contain a carbon source and a nitrogen source.
  • the fermented product raw material may further contain the aforementioned "other ingredients”.
  • a “fermented product raw material” may be in solid or liquid form.
  • fermented product ingredients include fermented milk product ingredients and natto product ingredients.
  • Raw materials for fermented milk products include raw materials containing milk raw materials, and raw materials for natto products include steamed soybeans.
  • the "dairy ingredients” in the present specification typically include "milk” defined in the Ministerial Ordinance on Milk, i.e., raw milk, cow milk, special milk, raw goat milk, sterilized goat milk, raw sheep milk, ingredient adjustment milk, such as cow's milk, low-fat milk, non-fat milk and processed milk, or those containing an equivalent or higher non-fat milk solids content (i.e., 8% or more), especially so long as it is a composition containing a milk component Not restricted.
  • milk defined in the Ministerial Ordinance on Milk, i.e., raw milk, cow milk, special milk, raw goat milk, sterilized goat milk, raw sheep milk, ingredient adjustment milk, such as cow's milk, low-fat milk, non-fat milk and processed milk, or those containing an equivalent or higher non-fat milk solids content (i.e., 8% or more), especially so long as it is a composition containing a milk component Not restricted.
  • milk component in the present specification includes milk fat derived from “milk” defined in the Ministerial Ordinance for Milk, etc., and non-fat milk solids derived from the “milk” (e.g., proteins and proteins derived from the "milk” / or one or more selected from the group consisting of sugars derived from the "milk”).
  • non-fat milk solids derived from the “milk” e.g., proteins and proteins derived from the “milk” / or one or more selected from the group consisting of sugars derived from the "milk”
  • the "dairy ingredients” in this specification can be prepared using milk, dairy products, and the like.
  • milk and / or dairy products as “dairy raw materials”, more specifically, milk, buffalo milk, sheep milk, goat milk, horse milk, concentrated milk, skim milk, skim concentrated milk, skim milk powder, Prepared using one or more selected from the group consisting of partially skim milk powder, whole milk powder, cream, butter, buttermilk, condensed milk, lactose, milk protein concentrate, whey protein concentrate, and water be able to.
  • the "fermented milk product raw material” includes milk components having a solid content concentration of, for example, 1 to 16% by weight, preferably 2 to 14% by weight, and more preferably 4 to 12% by weight.
  • the concentration of non-fat milk solids is, for example, 1-18% by weight, preferably 2-16% by weight, more preferably 2-14% by weight, even more preferably 4-12% by weight, 6-10% by weight % or 7 to 9% by weight
  • the concentration of milk fat is, for example, 0 to 8% by weight, preferably 0.1 to 7% by weight, more preferably 0.5 to 4% by weight. % or 1 to 3% by weight.
  • Step a of culturing a Bifidobacterium bacterium with a fermented product raw material containing L-fucose The step a of culturing the Bifidobacterium bacterium with the fermentation product raw material containing L-fucose is not particularly limited as long as it is a step of culturing the Bifidobacterium genus bacteria with the fermentation product raw material containing L-fucose. .
  • the culture conditions for culturing Bifidobacterium bacteria with L-fucose-containing fermentation product raw materials are not particularly limited as long as the effects of the present invention can be obtained, and culture temperature, culture time, oxygen conditions, etc. , the conditions exemplified for the step A, and preferable conditions can be mentioned.
  • the term "fermented product” as used herein is not particularly limited as long as it is a fermented product produced by the method for producing a fermented product of the present invention. Such “fermented products” include fermented milk and natto.
  • the term "fermented product” as used herein includes EPS produced by the Bifidobacterium bacterium of the present invention.
  • the concentration of EPS contained in the “fermented product” is not particularly limited, but examples thereof include 0.001 to 10% by weight, 0.01 to 10% by weight, and 0.01 to 5% by weight.
  • the "fermented product” herein may contain L-fucose.
  • the concentration of L-fucose contained in the "fermented product” is not particularly limited, but is 0.001 to 5% by weight, 0.01 to 5% by weight, 0.05 to 5% by weight, 0.05 to 3% by weight. %, 0.05 to 2% by weight, and the like.
  • EPS production promoter The "EPS production promoter" of the present invention is not particularly limited as long as it contains L-fucose as an active ingredient. Such an EPS production promoter can be used by adding it to a medium such as a general medium for culturing Bifidobacterium bacteria.
  • the "EPS production promoter" of the present invention may be solid or liquid, but from the viewpoint of storage stability, it is preferably solid.
  • the EPS production promoter is in a solid form, it preferably has a powder form, a granule form, or the like from the viewpoint of solubility in a medium.
  • the EPS production promoter is liquid, it contains a liquid carrier in addition to L-fucose, and examples of such a liquid carrier include water.
  • the concentration of L-fucose in the "EPS production promoter" of the present invention is not particularly limited, and may consist of L-fucose alone. 1 to 90% by weight, 3 to 85% by weight, 5 to 80% by weight, and the like.
  • the EPS production promoter is solid, it may contain optional components other than L-fucose, and if the EPS production promoter is liquid, it may contain additional optional components other than L-fucose and the liquid carrier.
  • optional components include, for example, part or all of the medium components other than L-fucose in the "L-fucose-containing medium” herein.
  • the EPS production promoter contains part or all of the medium components other than L-fucose in the "medium containing L-fucose" in the present specification, the EPS production promoter is added to the medium for promoting EPS production. can also be called
  • the "EPS production promoting method" of the present invention includes a step A of culturing Bifidobacterium bacteria in a medium containing L-fucose, producing exopolysaccharide (EPS) from Bifidobacterium bacteria. is not particularly limited as long as it is a method of promoting Process A is as described above.
  • Test 1 Isolation of Bifidobacterium bacteria capable of assimilating L-fucose mMRS liquid medium containing 1% by weight of L-fucose (hereinafter also referred to as "1% Fuc mMRS medium") (composition: beef Extract 10 g/L, Yeast Extract 5 g/L, Ammonium Citrate 2 g/L, Sodium Acetate 5 g/L, Magnesium Sulfate 0.1 g/L, Manganese Sulfate 0.05 g/L, Dipotassium Hydrogen Phosphate 2 g/L L, L-cysteine hydrochloride 0.5 g/L, L-fucose 1%) were prepared.
  • 1% Fuc mMRS medium composition: beef Extract 10 g/L, Yeast Extract 5 g/L, Ammonium Citrate 2 g/L, Sodium Acetate 5 g/L, Magnesium Sulfate 0.1 g/L, Manganes
  • a 1% Fuc mMRS medium was inoculated with a predetermined amount (1% by weight of the medium) of fecal samples derived from a plurality of human infants, and enrichment culture and subculture were performed under anaerobic conditions (CO 2 ) at 37°C.
  • a bacterial strain capable of assimilating L-fucose ie, also designated as "AT-APC-FucE1 strain" was repeatedly isolated.
  • the nucleotide sequence of the 16S rRNA gene of strain AT-APC-FucE1 was identified by sequencing.
  • the nucleotide sequence of the 16S rRNA gene is shown in SEQ ID NO:1.
  • the nucleotide sequence of the 16S rRNA gene of strain AT-APC-FucE1 was confirmed to have 99% sequence identity with the nucleotide sequence of the 16S rRNA gene of the type strain of Bifidobacterium breve.
  • a phylogenetic analysis of the nucleotide sequences of the 16S rRNA genes between various Bifidobacterium breve strains Fig.
  • the AT-APC-FucE1 strain is most closely related to Bifidobacterium breve strains. , was thought to be Bifidobacterium breve.
  • the inventor has deposited the AT-APC-FucE1 strain with the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ) on June 7, 2022 (deposit date) (DSMZ deposit number; DSM 34284).
  • the present inventors investigated the mycological properties of the AT-APC-FucE1 strain and found the following.
  • the strain formed opaque white small colonies on MRS agar. Gram staining was Gram-positive and showed a branched morphology typical of bifidobacteria. It grew only under anaerobic conditions and reached maximum turbidity in about 48 hours under glucose utilization conditions.
  • the AT-APC-FucE1 strain was inoculated into 0.5% Glu mMRS medium and precultured anaerobically at 37°C for 24 hours. 100 ⁇ L each of the precultured culture solution was inoculated into 0.5% Fuc mMRS medium (mMRS liquid medium containing 0.5% by weight of L-fucose) or 0.5% Glu mMRS medium, and inoculated at 37°C. and cultured anaerobically for 96 hours.
  • Fuc mMRS medium mMRS liquid medium containing 0.5% by weight of L-fucose
  • Glu mMRS medium 0.5% Glu mMRS medium
  • the JCM10602 strain was anaerobically cultured in 0.5% Fuc mMRS medium or 0.5% Glu mMRS medium at 37°C for 96 hours by the method described in Test 3 above.
  • FIG. 7 shows the results of observation of each culture supernatant with a transmission electron microscope. It was shown that EPS production was improved when cultured in 0.5% Fuc mMRS medium (Fig. 7a) compared to when cultured in 0.5% Glu mMRS medium (Fig. 7b). .
  • the EPS production amount was 132.97 mg / 1000 mL (when extracted with trichloroacetic acid ), 4.74 mg / 1000 mL (when extracted with ethanol), whereas in the medium using L-fucose (that is, 0.5% Fuc mMRS medium), the EPS production amount was 166.2 mg / 1000 mL ( (when extracted with trichloroacetic acid) and 13.33 mg/1000 mL (when extracted with ethanol).
  • JCM1192 the type strain of Bifidobacterium breve that is the same species as AT-APC-FucE1, no significant induction of L-fucose production was confirmed.
  • an EPS production method with improved EPS productivity an EPS produced by the production method, a production method of an EPS-containing fermented product with improved EPS productivity, and the production It is possible to provide a fermented product produced by the method, an EPS production promoter for Bifidobacterium bacteria, a method for promoting the production of exopolysaccharide (EPS) by Bifidobacterium bacteria, and the like.
  • EPS exopolysaccharide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、EPSの生産性が向上した、EPSの製造方法や、該製造方法により製造されるEPSや、EPSの生産性が向上した、EPSを含む発酵製品の製造方法や、該製造方法により製造される発酵製品や、ビフィドバクテリウム属細菌のEPS産生促進剤や、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法などを提供することを課題とする。 ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養することを特徴とする。

Description

ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法
 本発明は、EPSの生産性が向上した、EPSの製造方法や、該製造方法により製造されるEPSや、EPSの生産性が向上した、EPSを含む発酵製品の製造方法や、該製造方法により製造される発酵製品や、ビフィドバクテリウム属細菌のEPS産生促進剤や、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法などを提供すること等に関する。
 菌体外多糖(Exopolysaccharide:EPS)とは、細菌が外因性ストレスなどから自身を保護する等のために分泌する多糖の総称である。EPSは、糖残基を含む高分子量の重合体であって、主に多糖類(菌体外多糖)とタンパク質からなり、その他に、DNAや脂質等の巨大分子も含む。乳酸菌等の細菌が産生するEPSは、抗菌性、保水性、浸透圧耐性、免疫調節作用などの機能を有することが知られている。また、ヒトなどがそのEPSを摂取した場合は、腸内細菌の増殖を促進する作用、免疫賦活作用などが得られることから、近年ではかかるEPSを機能性食品に利用するなど、注目がなされている。例えば、特許文献1には、乳酸菌であるラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスが産生するEPSが、それを接種したヒト等の対象における免疫バランスを調節できることが開示され、特許文献2には、ビフィドバクテリウム・ロンガムを培養することによりEPSを製造する方法や、かかるEPSが保湿作用、免疫賦活作用を有することが開示されている。
 また、かかるEPSをより効率良く得る方法として、例えば特許文献3には、乳原料培地にギ酸を添加することで、EPSを産生する乳酸菌の生菌数を向上させ、EPS産生量を増加する方法が開示されている。また、非特許文献1には、ビフィドバクテリウム・アニマリス・サブスピーシーズ・ラクティスによるEPS産生が、胆汁により促進されることが開示されている。
 しかし、ビフィドバクテリウム属細菌によるEPS産生が、L-フコースにより促進されることはこれまでに知らせていなかった。
特開2021-101645号公報 特許第5192808号公報
APPLIED AND ENVIRONMENTAL MICROBIOLOGY (2009), Vol. 75, No. 4, p. 1204-1207
 本発明は、EPSの生産性が向上した、EPSの製造方法や、該製造方法により製造されるEPSや、EPSの生産性が向上した、EPSを含む発酵製品の製造方法や、該製造方法により製造される発酵製品や、ビフィドバクテリウム属細菌のEPS産生促進剤や、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法などを提供することを課題とする。
 本発明者らは、本発明の課題を解決するべく、鋭意検討した結果、ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養することにより、ビフィドバクテリウム属細菌によるEPSの生産性が向上することを見いだし、本発明を完成するに至った。
 すなわち、本発明は、
(1)ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、菌体外多糖(EPS)の製造方法;
(2)ビフィドバクテリウム属細菌が、ビフィドバクテリウム・ブレーベ、又は、ビフィドバクテリウム・ラクティスである、上記(1)に記載の製造方法;
(3)上記(1)又は2に記載の製造方法により製造されるEPS;
(4)ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程aを含む、EPSを含む発酵製品の製造方法;
(5)ビフィドバクテリウム属細菌が、ビフィドバクテリウム・ブレーベ、又は、ビフィドバクテリウム・ラクティスである、上記(4)に記載の製造方法;
(6)発酵製品原料が発酵乳製品原料であり、発酵製品が発酵乳製品である、上記(4)又は(5)に記載の製造方法;
(7)上記(4)~(6)のいずれかに記載の製造方法により製造される発酵製品;
(8)発酵製品が発酵乳製品である上記(7)に記載の発酵製品;
(9)L-フコースを有効成分として含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)産生促進剤;や
(10)ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法;
等に関する。
 本発明によれば、EPSの生産性が向上した、EPSの製造方法や、該製造方法により製造されるEPSや、EPSの生産性が向上した、EPSを含む発酵製品の製造方法や、該製造方法により製造される発酵製品や、ビフィドバクテリウム属細菌のEPS産生促進剤や、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法などを提供することができる。
本発明者が、ヒト乳児に由来する糞便試料から単離したAT-APC-FucE1株の16S rRNA遺伝子のヌクレオチド配列について、系統解析を行った結果を示す図である。 AT-APC-FucE1株の形態を光学顕微鏡(油浸レンズ、×1000)で観察した結果を示す図である。 AT-APC-FucE1株の形態を電子顕微鏡(×25000)で観察した結果を示す図である。 1%Fuc mMRS培地で培養したAT-APC-FucE1株を、透過型電子顕微鏡で観察した結果を示す図である。 1%Glu mMRS培地で培養したAT-APC-FucE1株を、透過型電子顕微鏡で観察した結果を示す図である。 AT-APC-FucE1の培養上清から抽出したEPSを走査型電子顕微鏡により観察した結果を示す図である。 ビフィドバクテリウム・アニマリス・サブスピーシズ・ラクティスJCM10602菌株の培養液中の菌体を、走査型電子顕微鏡(×25000)で観察した結果を示す図である。図7aは、JCM10602菌株を0.5%Fuc mMRS培地で培養した場合の結果を表し、図7bは、JCM10602菌株を0.5%Glu mMRS培地で培養した場合の結果を表す。
 本発明は、
[1]ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、菌体外多糖(EPS)の製造方法(以下、「本発明のEPSの製造方法」とも表示する。);
[2]本発明のEPSの製造方法により製造されるEPS(以下、「本発明のEPS」とも表示する。);
[3]ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程aを含む、EPSを含む発酵製品の製造方法(以下、「本発明の発酵製品の製造方法」とも表示する。);
[4]本発明の発酵製品の製造方法により製造される発酵製品(以下、「本発明の発酵製品」とも表示する。);
[5]L-フコースを有効成分として含む、ビフィドバクテリウム属細菌のEPS産生促進剤(以下、「本発明のEPS産生促進剤」とも表示する。);
[6]ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法(以下、「本発明のEPS産生促進方法」とも表示する。);
などの実施態様を含んでいる。
(ビフィドバクテリウム属細菌)
 本明細書における「ビフィドバクテリウム属細菌」としては、EPS産生能を有するビフィドバクテリウム属細菌である限り特に制限されず、さらにL-フコース資化能を有するビフィドバクテリウム属細菌が好ましく挙げられる。
 ビフィドバクテリウム属細菌としては、ビフィドバクテリウム属に属する細菌である限り特に制限されず、例えば、ビフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・ロンガム・サブスピーシーズ・ロンガム(Bifidobacterium longum subsp. longum)、ビフィドバクテリウム・アニマリス・サブスピーシーズ・アニマリス(Bifidobacterium animalis subsp. animalis)(以下、「ビフィドバクテリウム・アニマリス」とも表示する)、ビフィドバクテリウム・アニマリス・サブスピーシーズ・ラクティス(Bifidobacterium animalis subsp. lactis)(以下、「ビフィドバクテリウム・ラクティス」とも表示する)、ビフィドバクテリウム・ロンガム・サブスピーシーズ・インファンティス(Bifidobacterium longum subsp. infantis)、ビフィドバクテリウム・アドレセンティス(Bifidobacterium adolescentis)、ビフィドバクテリウム・アンギュラータム(Bifidobacterium angulatum)、ビフィドバクテリウム・カテヌラータム(Bifidobacterium catenulatum)、及び、ビフィドバクテリウム・シュードカテヌラータム(Bifidobacterium pseudocatenulatum)からなる群から選択される1種又は2種以上が挙げられ、中でも、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ラクティス、ビフィドバクテリウム・アニマリス、及び、ビフィドバクテリウム・ロンガム・サブスピーシーズ・インファンティスからなる群から選択される1種又は2種以上が好ましく挙げられ、中でも、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ラクティス、ビフィドバクテリウム・アニマリスがより好ましく挙げられ、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ラクティスがさらに好ましく挙げられる。
 ビフィドバクテリウム属細菌は、例えば、乳児糞便試料などの自然界から単離したものであってもよいし、カルチャーコレクションから入手したものなどであってもよい。
 なお、上記の「EPS産生能を有するビフィドバクテリウム属細菌」とは、そのビフィドバクテリウム属細菌にとって好適な条件下で培養した場合にEPSを産生することができるビフィドバクテリウム属細菌を意味する。「EPS産生能を有するビフィドバクテリウム属細菌」としては、例えば、0.5~2重量%(又は1重量%)のD-グルコースを含むmMRS液体培地で、37℃で嫌気的に12時間又はそれ以上(例えば96時間)培養した場合に、EPS産生が確認できるビフィドバクテリウム属細菌が挙げられ、実施例の試験5に記載の方法にしたがって、0.5%Glu mMRS培地で37℃で嫌気的に96時間培養する方法で、培養液上清からトリクロロ酢酸でEPSを抽出した場合に、0.5mg/1000mL 以上のEPSが得られるビフィドバクテリウム属細菌が好ましく挙げられる。また、前述のような培養(例えば、0.5又は1重量%のD-グルコースを含むmMRS液体培地で、37℃で嫌気的に12時間又は96時間培養すること)で産生されるEPSの量(好ましくは、培養液上清からトリクロロ酢酸で抽出したEPSの量)を、そのビフィドバクテリウム属細菌のEPS産生能と評価することができる。
 また、上記の「L-フコース資化能を有するビフィドバクテリウム属細菌」として、具体的には、0.5~2重量%のL-フコースを含むmMRS液体培地で、37℃で嫌気的に培養した場合に生育することができる(好ましくは増殖することができる)ビフィドバクテリウム属細菌が挙げられる。より具体的には、0.5又は1重量%のL-フコースを含むmMRS液体培地1mLに、そのビフィドバクテリウム属細菌を1v/v%接種し、37℃で嫌気的に48時間培養後の培養液の濁度(OD600)を測定し、その濁度の測定値から、コントロール培養液(ビフィドバクテリウム属細菌を接種しなかった培地を同様に培養した培養液)の濁度(OD600)の測定値を差し引いた値が例えば0.1以上(好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上、より好ましくは0.5以上、さらに好ましくは0.6以上)であるビフィドバクテリウム属細菌が挙げられる。本明細書において、L-フコース資化能を定量的に比較する場合の「L-フコース資化能」とは、0.5又は1重量%のL-フコースを含むmMRS液体培地1mLに、そのビフィドバクテリウム属細菌を1v/v%接種し、37℃で嫌気的に48時間培養後の培養液の濁度(OD600)を測定し、その濁度の測定値から、コントロール培養液(ビフィドバクテリウム属細菌を接種しなかった培地を同様に培養した培養液)の濁度(OD600)の測定値を差し引いた値を意味する。
 本発明に好適に用い得るビフィドバクテリウム属細菌としては、L-フコースを含む培地で培養することにより、ビフィドバクテリウム属細菌によるEPSの生産性が向上するビフィドバクテリウム属細菌が挙げられ、具体的には、ビフィドバクテリウム・ブレーベAT-APC-FucE1株や、ビフィドバクテリウム・ラクティス(例えばJCM10602菌株)が好ましく挙げられる。L-フコースを含む培地で培養することにより、ビフィドバクテリウム属細菌によるEPSの生産性が向上する程度は特に制限されない。
 なお、上記の「L-フコースを含む培地で培養することにより、ビフィドバクテリウム属細菌によるEPSの生産性が向上するビフィドバクテリウム属細菌」とは、用いる培地以外は同じ培養条件の下で、L-フコースを含まない培地で培養した場合と比較して、L-フコースを含む培地で培養した場合に、EPSの生産性が向上するビフィドバクテリウム属細菌を意味し、例えば、L-フコースを含まない培地で培養した場合と比較して、前述のL-フコースを含まない培地にL-フコースを添加した培地で培養した場合に、EPSの生産性が向上するビフィドバクテリウム属細菌や、L-フコースを含まず、グルコースを含む培地(例えばD-グルコースを含むmMRS液体培地)で培養した場合と比較して、その培地におけるグルコースに代えて同濃度のL-フコースを用いた培地(L-フコースを含むmMRS液体培地)で培養した場合に、EPSの生産性が向上するビフィドバクテリウム属細菌、より具体的には、EPSの生産能が10重量%以上、好ましくは20重量%以上向上するビフィドバクテリウム属細菌などが挙げられる。
 上記のビフィドバクテリウム・ブレーベAT-APC-FucE1株は、本発明者らが、ヒト乳児に由来する糞便試料から、フコースを資化し得る菌株として単離した菌株である。AT-APC-FucE1株の16S rRNA遺伝子のヌクレオチド配列(配列番号1)は、ビフィドバクテリウム・ブレーベ標準株の16S rRNA遺伝子のヌクレオチド配列と99.9%の配列同一性を有している。後述の実施例に記載する16S rRNA遺伝子のヌクレオチド配列の系統解析により、AT-APC-FucE1株はビフィドバクテリウム・ブレーベであると考えられた。かかる新規なAT-APC-FucE1株について、本発明者は、2021年9月15日(寄託日)に、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(住所:〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)にビフィドバクテリウム・ブレーベAT-APC-FucE1株として寄託申請を行ったが(受領番号NITE AP-03537)、受託されなかった。
 そこで、本発明者は、同株について別の寄託機関に寄託申請を行った。すなわち、かかる新規なAT-APC-FucE1株は、2022年6月7日(寄託日)に、German Collection of Microorganisms and Cell Cultures(DSMZ)(住所:Inhoffenstr.7B,D-38124 Braunschweig,ドイツ)にビフィドバクテリウム・ブレーベAT-APC-FucE1株(DSMZ寄託番号;DSM 34284)として寄託されている。
(AT-APC-FucE1株の菌学的性質)
 MRS寒天培地に不透明な白い小さなコロニーを形成する。グラム染色ではグラム陽性を示し、ビフィズス菌に典型的な枝分かれ状の形態を示す。嫌気条件でのみ生育し、グルコース資化条件下では約48時間で最大濁度に到達する。ビフィドバクテリウム・ブレーベ標準株JCM1192株はフコースを資化しないのに対し、AT-APC-FucE1株はフコースを資化し得る。
なお、配列番号1の配列は、以下のとおりである。
GGCTACCTTGTTACGACTTAGTCCCAATCACGAGCCTCACCTTAGACGGCTCCCTCCCGCAAGGGGTTAGGCCACCGGCTTCGGGTGCTGCCCACTTTCATGACTTGACGGGCGGTGTGTACAAGGCCCGGGAACGCATTCACCGCGACGTTGCTGATTCGCGATTACTAGCGACTCCGCCTTCACGCAGTCGAGTTGCAGACTGCGATCCGAACTGAGACCGGTTTTCAGGGATCCGCTCCAGCTCGCGCTGTCGCATCCCGTTGTACCGGCCATTGTAGCATGCGTGAAGCCCTGGACGTAAGGGGCATGATGATCTGACGTCATCCCCACCTTCCTCCGAGTTAACCCCGGCGGTCCCCCGTGAGTTCCCGGCACAATCCGCTGGCAACACGGGGCGAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACGACCATGCACCACCTGTGAACCCGCCCCGAAGGGAAACCCCATCTCTGGGATCGTCGGGAACATGTCAAGCCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCGCATGCTCCGCCGCTTGTGCGGGCCCCCGTCAATTTCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGATGCTTAACGCGTTAGCTCCGACACGGAACCCGTGGAACGGGCCCCACATCCAGCATCCACCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTAACGGCCCAGAGACCTGCCTTCGCCATTGGTGTTCTTCCCGATATCTACACATTCCACCGTTACACCGGGAATTCCAGTCTCCCCTACCGCACTCAAGCCCGCCCGTACCCGGCGCGGATCCACCGTTAAGCGATGGACTTTCACACCGGACGCGACGAACCGCCTACGAGCCCTTTACGCCCAATAATTCCGGATAACGCTTGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTATTCGAAAGGTACACTCAACACAAAATGCCTTGCTCCCTAACAAAAGAGGTTTACAACCCGAAGGCCTCCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAATGTGGCCGGTCGCCCTCTCAGGCCGGCTACCCGTCGAAGCCATGGTGGGCCGTTACCCCGCCATCAAGCTGATAGGACGCGACCCCATCCCATGCCGCAAAGGCTTTCCCAGAAGACCATGCGATCAACTGGAGCATCCGGCATTACCACCCGTTTCCAGGAGCTATTCCGGTGCATGGGGCAGGTCGGTCACGCATTACTCACCCGTTCGCCACTCTCACCACCAAGCAAAGCCCGATGGATCCCGTTCGACTTGCATGTGTTAAGCACGCCGCCAGCGTTCATC
 本明細書における「ビフィドバクテリウム・ブレーベAT-APC-FucE1株」には、当該菌株名で前述のようにDSM 34284として寄託されている株そのもの(以下、便宜上、「寄託菌株」ともいう)に限られず、寄託菌株と実質的に同質の株(以下、「同質株」ともいう)や、寄託菌株と実質的に同等な株(以下、「派生株」又は「誘導株」ともいう)も包含される。
 上記の寄託菌株の同質株とは、ビフィドバクテリウム属細菌であって、16S rRNA遺伝子のヌクレオチド配列が、寄託菌株の16S rRNA遺伝子のヌクレオチド配列と好ましくは99.5%以上(より好ましくは99.8%以上、さらに好ましくは99.9%以上、より好ましくは99.95%以上、さらに好ましくは99.99%以上、より好ましくは100%)の配列同一性を有し、かつ、本件寄託菌株の、0.1倍以上(好ましくは0.3倍以上、より好ましくは0.5倍以上、さらに好ましくは0.7倍以上、より好ましくは0.9倍以上、さらに好ましくは1.0倍以上)のL-フコース資化能、及び/又は、0.1倍以上(好ましくは0.3倍以上、より好ましくは0.5倍以上、さらに好ましくは0.7倍以上、より好ましくは0.9倍以上、さらに好ましくは1.0倍以上)のEPS産生能が得られる株を意味する。
 上記の「寄託菌株と実質的に同等の株」とは、上記寄託菌株と同一の種に属し、本件寄託菌株の、0.8倍以上(好ましくは0.9倍以上、より好ましくは1.0倍以上)のL-フコース資化能及び/又は、0.8倍以上(好ましくは0.9倍以上、より好ましくは1.0倍以上)のEPS産生能が得られる株を意味する。寄託菌株と実質的に同等の株は、例えば、当該寄託菌株を親株とする派生株であってよい。派生株としては、寄託菌株から育種された株や寄託菌株から自然に生じた株が挙げられる。
 実質的に同等の菌株(派生株など)としては、以下のような株が挙げられる。
(1)RAPD法(Randomly Amplified Polymorphic DNA)、PFGE法(Pulsed-field gel electrophoresis)により同一の菌株と判定される菌株(Probiotics in food/Health and nutritional properties and guidelines for evaluation 85 Page43に記載);
(2)当該寄託菌株由来の遺伝子のみ保有し、外来由来の遺伝子を持たず、DNAの同一性が95%以上(好適には98%以上)である菌株;
(3)当該菌株から育種された株(遺伝子工学的改変、突然変異、自然突然変異を含む)、同一の形質を有する株;
 また、本発明において、ビフィドバクテリウム属細菌を培養する場合、ビフィドバクテリウム属細菌のみを用いてもよいし、ビフィドバクテリウム属細菌の生育を過剰に抑制しない限り、ビフィドバクテリウム属細菌以外の微生物をビフィドバクテリウム属細菌と併用してもよい。ビフィドバクテリウム属細菌以外の微生物としては、乳酸菌、バシラス属細菌などの、ビフィドバクテリウム属細菌以外の細菌や、酵母等が挙げられる。
 上記の「乳酸菌」としては、糖を乳酸発酵して多量の乳酸(好ましくは、消費した糖の50%以上の乳酸)を生成する細菌が挙げられ、ラクトバシラス(Lactobacillus)属細菌、ストレプトコッカス(Streptococcus)属細菌、ラクトコッカス(Lactococcus)属細菌、ロイコノストック(Leuconostoc)属細菌、ペディオコッカス(Pediococcus)属細菌、エンテロコッカス(Enterococcus)属細菌等が挙げられる。
(L-フコースを含む培地)
 本明細書における「L-フコースを含む培地」としては、L-フコースを含むこと以外は、細菌培養用の一般的な培地であってよい。「L-フコースを含む培地」としては、炭素源(L-フコースのみ、又は、L-フコースとその他の炭素源)、窒素源を含む培地が挙げられ、さらにその他成分を含んでいてもよい。
 L-フコースは、昆布やワカメなどの海藻から公知の方法で抽出してもよいし、市販品を使用してもよい。
 「L-フコースを含む培地」のL-フコース濃度としては、本発明の効果が得られる限り特に制限されないが、2~100g/Lが挙げられ、5~90g/L、10~80g/Lなどが好ましく挙げられる。
 「L-フコースを含む培地」における炭素源としては、EPSの生産性をより多く向上させる観点から、L-フコースのみであることが好ましいが、L-フコース以外の炭素源を併用してもよい。「L-フコース以外の炭素源」としては、用いるビフィドバクテリウム属細菌が資化可能な炭素源が挙げられる。また、「L-フコース以外の炭素源」は1種類のみを用いてもよいし、2種類以上を併用してもよい。「L-フコース以外の炭素源」として、具体的には、グルコース、ラクトース、スクロース、マルトース、マンノース、ガラクトース、フラクトース、澱粉加水分解物、糖蜜等の糖類;マンニトール、エリスリトール等の糖アルコール類;グリセロール、エタノール、プロパノール等のアルコール類;及び、酢酸、リンゴ酸、乳酸、クエン酸、酒石酸、コハク酸、フマル酸、プロピオン酸、マロン酸等の有機酸;などから選択される1種又は2種以上が挙げられ、中でも、グルコース、ラクトース、スクロース、マルトース、ガラクトース、及び、フルクトースからなる群より選択される1種又は2種以上が好ましく挙げられる。
 L-フコースを含む培地が、L-フコース以外の炭素源を含む場合、L-フコース以外の炭素源の、培地中の濃度としては、本発明の効果が得られる限り特に制限されないが、0g/L超 100g/L以下、0g/L超 50g/L以下などが挙げられ、EPSの生産性をより多く向上させる観点から、0g/L超 30g/L以下、0g/L超 15g/L以下、0g/L超 8g/L以下が好ましく挙げられる。
 本明細書における「窒素源」としては、用いるビフィドバクテリウム属細菌が資化可能な窒素源が挙げられる。また、窒素源は1種類のみを用いてもよいし、2種類以上を併用してもよい。本発明に用いるL-フコースを含む培地が含有する窒素源として、具体的には、アミノ酸、硝酸カリウム、クエン酸アンモニウム、硝酸アンモニウム、硫酸アンモニウム、リン酸アンモニウム、塩化アンモニウム、アンモニア、尿素、カゼイン、ポリペプトン、ペプトン、カザミノ酸、NZアミン、トリプトース、コーンスティープリカー、酵母エキス、肉エキス、及び魚肉エキスなどから選択される1種又は2種以上が挙げられ、中でも、アミノ酸、硝酸カリウム、クエン酸アンモニウム、硝酸アンモニウム、硫酸アンモニウム、リン酸アンモニウム、塩化アンモニウム、酵母エキス、肉エキス、及び魚肉エキスから選択される1種又は2種以上が好ましく挙げられる。
 L-フコースを含む培地の窒素源濃度としては、本発明の効果が得られる限り特に制限されないが、1~30g/L、1~20g/Lなどが挙げられる。
 本明細書における培地や発酵製品原料における「その他の成分」としては、培地や発酵製品原料に添加されることによってビフィドバクテリウム属細菌の生育を過剰に抑制しないものであれば特に限定されるものではなく、無機イオンやビタミン類を必要に応じ添加することは有効である。無機イオンとしては、例えば、カリウムイオン、ナトリウムイオン、カルシウムイオン、マグネシウムイオン、鉄イオン、マンガンイオン、モリブデンイオン、リン酸イオン、塩化物イオン、硫酸イオン等が挙げられる。ビタミン類としては、チアミン、イノシトール、パントテン酸、ニコチン酸アミド等が挙げられる。
 また、「L-フコースを含む培地」において、L-フコース以外の培地成分としては、例えばmMRS培地(MRS培地から糖成分を除去した培地)、又は、mMRS培地に糖成分などの炭素源を添加した培地を好適に用いることができる。mMRS培地の組成は以下のとおりである。
(mMRS培地の組成)
牛肉エキス 10 g/L、酵母エキス 5 g/L、クエン酸アンモニウム 2 g/L、酢酸ナトリウム 5 g/L、硫酸マグネシウム 0.1 g/L、硫酸マンガン 0.05 g/L、リン酸水素二カリウム 2 g/L、L-システイン塩酸塩 0.5 g/L。
 本明細書における「L-フコースを含む培地」のpHは、ビフィドバクテリウム属細菌が生育可能である限り特に制限されないが、例えばpH4~9などが挙げられる。
 本明細書における「L-フコースを含む培地」は、液体培地であってもよく、平板培地であってもよい。平板培地の場合、含有するゲル成分としては、ビフィドバクテリウム属細菌の生育を抑制しないものであれば特に限定されるものではないが、汎用されており、取扱い性に優れている点から寒天が好ましい。
(ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程A)
 ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aとしては、ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程である限り特に制限されない。
 ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する際の培養条件としては、本発明の効果が得られる限り特に制限されない。
 培養温度としては、ビフィドバクテリウム属細菌が生育し得る温度である限り特に制限されないが、例えば15~50℃が挙げられ、30~50℃が好ましく挙げられ、35~45℃がより好ましく挙げられる。
 培養時間としては、特に制限されず、6時間~5日間が挙げられ、ビフィドバクテリウム属細菌の増殖と産生されるEPSの観点から、12~48時間が好ましく、12~24時間が特に好ましい。
 ビフィドバクテリウム属細菌の培養は嫌気的条件下で行うことが好ましく、例えば二酸化炭素等の嫌気ガスを通気しながら培養することができる。また、液体静置培養等の微好気条件下で培養してもよい。
(任意の工程)
 本発明のEPSの製造方法において、工程Aで培養して得られたEPSは、培養物をそのまま用いてもよいが、本発明のEPSの製造方法は、工程Aで培養して得られた培養物からEPSを採取する工程Bをさらに含んでいてもよい。
 上記培養物からEPSを採取する方法としては、公知の方法を用いることができる。
 例えば、酸性多糖類(酸性のEPS)のみを採取する方法としては、以下の1~5の工程を含む方法が挙げられる。
 1.遠心分離で培養物から菌体を除去する。
 2.最終濃度が5~10重量%程度になるようにトリクロロ酢酸を添加してタンパク沈殿し、遠心分離する。
 3.エタノール沈殿によって高分子量の多糖類や、タンパク質を沈殿として回収する。
 4.タンパク質と核酸を除去する。
  a) DNase、RNaseで核酸を分解処理する。
  b) プロティナーゼでタンパクを分解する。
  c) タンパク質を熱変性させた後、遠心分離と透析を行う。
 5.陰イオン交換樹脂で酸性多糖類を吸着した後、溶出して回収する。
 また、例えば、中性多糖類(中性のEPS)のみを採取する方法としては、以下の1~5の工程を含む方法が挙げられる。
 1.培地にトリクロロ酢酸を最終濃度10重量%で加え、タンパク質を変性させる。
 2.遠心分離により培養物から変性タンパク質と菌体を除去する。
 3.エタノール沈殿によって高分子量の多糖類を沈殿させこれを回収する。
 4.陰イオン交換樹脂により酸性多糖類を吸着させ、残りの溶出液より中性多糖類を回収する。
 5.DNase、RNase処理により核酸を分解する。
 6.プロティナーゼ処理によりタンパク質を分解する。
 7.90℃、10分間加熱して酵素を失活させる。
 8.エタノール沈殿、透析により中性多糖類を精製する。
(本発明のEPSの製造方法により製造されるEPS)
 本発明のEPSは、本発明のEPSの製造方法により製造されるEPSである限り特に制限されない。
(L-フコースを含む発酵製品原料)
 本明細書における「L-フコースを含む発酵製品原料」としては、L-フコースを含む発酵製品原料である限り特に制限されない。
 「L-フコースを含む発酵製品原料」のL-フコース濃度としては、本発明の効果が得られる限り特に制限されないが、2~100g/Lが挙げられ、5~90g/L、10~80g/Lなどが好ましく挙げられる。
 上記の「発酵製品原料」としては、発酵製品原料である限り特に制限されず、かかる発酵製品原料としては、炭素源及び窒素源を含んでいればよい。発酵製品原料は、前述の「その他の成分」をさらに含んでいてもよい。
 「発酵製品原料」は、固体状であっても、液体状であってもよい。
 「発酵製品原料」として、具体的には、発酵乳製品原料、納豆製品原料などが好ましく挙げられる。発酵乳製品原料としては、乳原料を含む原料が挙げられ、納豆製品原料としては、蒸煮大豆が挙げられる。
 本明細書における「乳原料」には、典型的には、乳等省令に定義される「乳」、すなわち、生乳、牛乳、特別牛乳、生山羊乳、殺菌山羊乳、生めん羊乳、成分調整牛乳、低脂肪牛乳、無脂肪牛乳および加工乳などの乳またはこれと同等以上の無脂乳固形分(すなわち8%以上)を含むものが挙げられるが、乳成分を含む組成物である限り特に制限されない。本明細書における「乳成分」としては、乳等省令に定義される「乳」由来の乳脂肪、及び、該「乳」由来の無脂乳固形分(例えば、該「乳」由来のタンパク質及び/又は該「乳」由来の糖)からなる群から選択される1種又は2種以上が挙げられる。
 本明細書における「乳原料」は、乳、乳製品等を用いて調製することができる。「乳原料」として、乳及び/又は乳製品を用いる場合は、より具体的には、牛乳、水牛乳、羊乳、山羊乳、馬乳、濃縮乳、脱脂乳、脱脂濃縮乳、脱脂粉乳、部分脱脂粉乳、全脂粉乳、クリーム、バター、バターミルク、練乳、乳糖、乳タンパク質濃縮物、ホエイタンパク質濃縮物、及び、水からなる群から選択される1種又は2種以上を用いて調製することができる。
 本明細書における「発酵乳製品原料」としては、乳成分の固形分の濃度が例えば1~16重量%、好ましくは2~14重量%、より好ましくは4~12重量%であるものが挙げられ、及び/又は、無脂乳固形分の濃度が例えば1~18重量%、好ましくは2~16重量%、より好ましくは2~14重量%、さらに好ましくは4~12重量%、6~10重量%若しくは7~9重量%であるものが挙げられ、及び/又は、乳脂肪分の濃度が例えば0~8重量%、好ましくは0.1~7重量%、より好ましくは0.5~4重量%又は1~3重量%であるものが挙げられる。
(ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程a)
 ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程aとしては、ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程である限り特に制限されない。
 ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する際の培養条件としては、本発明の効果が得られる限り特に制限されず、培養温度、培養時間、酸素条件などについては、工程Aについて例示した条件や、好ましい条件を挙げることができる。
(発酵製品)
 本明細書における「発酵製品」は、本発明の発酵製品の製造方法により製造される発酵製品である限り特に制限されない。かかる「発酵製品」としては、発酵乳や納豆が挙げられる。
 本明細書における「発酵製品」は、本発明におけるビフィドバクテリウム属細菌が産生するEPSを含んでいる。「発酵製品」に含まれるEPSの濃度としては、特に制限されないが、例えば0.001~10重量%、0.01~10重量%、0.01~5重量%などが挙げられる。
 また、本明細書における「発酵製品」は、L-フコースを含んでいてもよい。「発酵製品」に含まれるL-フコースの濃度としては、特に制限されないが、0.001~5重量%、0.01~5重量%、0.05~5重量%、0.05~3重量%、0.05~2重量%などが挙げられる。
(EPS産生促進剤)
 本発明の「EPS産生促進剤」としては、L-フコースを有効成分として含んでいる限り特に制限されない。かかるEPS産生促進剤は、ビフィドバクテリウム属細菌を培養する場合の、一般的な培地等の培地に添加する等して用いることができる。
 本発明の「EPS産生促進剤」は、固体状であっても、液体状であってもよいが、保存性の観点から、固体状であることが好ましい。EPS産生促進剤が固体状である場合は、培地への溶解性の観点から、粉末状、果粒状などが好ましく挙げられる。EPS産生促進剤が液体状である場合は、L-フコースの他に、液体担体を含んでおり、かかる液体担体としては、水などが挙げられる。
 本発明の「EPS産生促進剤」におけるL-フコース濃度としては特に制限されず、L-フコースのみから成っていてもよいが、例えば0.1~95重量%、0.5~90重量%、1~90重量%、3~85重量%、5~80重量%などが挙げられる。
 EPS産生促進剤が固体状の場合はL-フコース以外に、EPS産生促進剤が液体状の場合はL-フコース及び液体担体以外に、さらに任意成分を含んでいてもよい。かかる任意成分として、例えば、本明細書における「L-フコースを含む培地」における、L-フコース以外の培地成分の一部又は全部が挙げられる。EPS産生促進剤が、本明細書における「L-フコースを含む培地」における、L-フコース以外の培地成分の一部又は全部を含んでいる場合、かかるEPS産生促進剤は、EPS産生促進用培地とも呼ぶことができる。
(EPS産生促進方法)
 本発明の「EPS産生促進方法」としては、ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法である限り特に制限されない。
 工程Aは前述したとおりである。
 以下に、本発明を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[試験1]L-フコースを資化し得るビフィドバクテリウム属細菌の単離
 1重量%のL-フコースを含むmMRS液体培地(以下、「1%Fuc mMRS培地」とも表示する)(組成:牛肉エキス 10 g/L、酵母エキス 5 g/L、クエン酸アンモニウム 2 g/L、酢酸ナトリウム 5 g/L、硫酸マグネシウム 0.1 g/L、硫酸マンガン 0.05 g/L、リン酸水素二カリウム 2 g/L、L-システイン塩酸塩 0.5 g/L、L-フコース 1%)を調製した。
 1%Fuc mMRS培地に、複数のヒト乳児に由来する糞便試料を所定量(培地の1重量%の量)植菌し、嫌気条件(CO)、37℃下で集積培養および継代培養を繰り返して、L-フコースを資化し得る細菌株(すなわち、「AT-APC-FucE1株」とも表示する)を単離した。
 AT-APC-FucE1株の16S rRNA遺伝子のヌクレオチド配列をシーケンスにより同定した。その16S rRNA遺伝子のヌクレオチド配列を配列番号1に示す。AT-APC-FucE1株の16S rRNA遺伝子のヌクレオチド配列は、ビフィドバクテリウム・ブレーベの標準株の16S rRNA遺伝子のヌクレオチド配列と99%の配列同一性が確認された。16S rRNA遺伝子のヌクレオチド配列について、様々なビフィドバクテリウム・ブレーベとの間で系統解析を行ったところ(図1)、AT-APC-FucE1株はビフィドバクテリウム・ブレーベと最も近縁であり、ビフィドバクテリウム・ブレーベであると考えられた。本発明者は、2022年6月7日(寄託日)に、AT-APC-FucE1株をGerman Collection of Microorganisms and Cell Cultures GmbH(DSMZ)に寄託した(DSMZ寄託番号;DSM 34284)。
 本発明者らは、AT-APC-FucE1株の菌学的性質を調べたところ、以下のことが分かった。
 該株は、MRS寒天培地に不透明な白い小さなコロニーを形成した。グラム染色ではグラム陽性を示し、ビフィズス菌に典型的な枝分かれ状の形態を示した。嫌気条件でのみ生育し、グルコース資化条件下では約48時間で最大濁度に到達した。
 AT-APC-FucE1株の形態を光学顕微鏡、及び、電子顕微鏡(SEM)でそれぞれ観察した結果を、図2、図3にそれぞれ示す。図2、図3から分かるように、AT-APC-FucE1株は、長さ1~2μmで、桿状又は分岐状の形態を示した。
[試験2]AT-APC-FucE1株の培養による、EPS産生の確認
 0.5重量%又は1重量%のD-グルコースを含むmMRS液体培地(以下、それぞれ「0.5%Glu mMRS培地」、「1%Glu mMRS培地」とも表示する)(組成:牛肉エキス 10 g/L、酵母エキス 5 g/L、クエン酸アンモニウム 2 g/L、酢酸ナトリウム 5 g/L、硫酸マグネシウム 0.1 g/L、硫酸マンガン 0.05 g/L、リン酸水素二カリウム 2 g/L、L-システイン塩酸塩 0.5 g/L、D-グルコース 0.5%又は1%)を調製した。0.5%Glu mMRS培地にAT-APC-FucE1株を植菌し、37℃で嫌気的に24時間、前培養を行った。
 前培養した培養液を、1%Fuc mMRS培地に100μL植菌し、37℃で嫌気的に培養した。12時間培養した培養液から、AT-APC-FucE1株を集菌した後、PBSで菌体を洗浄し、次いで、菌体をメンブレン上に固定し、透過型電子顕微鏡により、菌体のEPS産生を確認した。その結果を図4に示す。
 一方、前述の前培養した培養液を、コントロールとして、1%Glu mMRS培地に100μL植菌し、37℃で嫌気的に培養した。12時間培養した培養液から、AT-APC-FucE1株を集菌した後、PBSで菌体を洗浄し、次いで、菌体をメンブレン上に固定し、透過型電子顕微鏡により、菌体のEPS産生を確認した。その結果を図5に示す。
 図4及び図5の結果から分かるように、L-フコースを含む培地でAT-APC-FucE1株を培養した場合は、D-グルコースを含み、L-フコースを含まない培地でAT-APC-FucE1株を培養した場合と比較して、EPS産生が顕著に促進されることが示された。
[試験3]培地中のL-フコースの有無による、AT-APC-FucE1株のEPS産生量への影響
 AT-APC-FucE1株を、L-フコースを含む培地で培養した場合と、L-フコースを含まない培地で培養した場合とで、EPS産生量を比較することとした。
 0.5%Glu mMRS培地にAT-APC-FucE1株を植菌し、37℃で嫌気的に24時間、前培養を行った。前培養した培養液を、0.5%Fuc mMRS培地(0.5重量%のL-フコースを含むmMRS液体培地)、又は、0.5%Glu mMRS培地に、それぞれ100μL植菌し、37℃で嫌気的に96時間培養した。
 それぞれの培養液の上清から抽出した粗EPSはほぼ同じ量(13.33mg/1000mL)であった。しかし、それらの粗EPS試料中のタンパク質量を測定し、そのタンパク質量を差し引くと、D-グルコースを用いた培地(すなわち、0.5%Glu mMRS培地)ではEPS産生量は9.34mg/1000mLであったのに対し、L-フコースを用いた培地(すなわち、0.5%Fuc mMRS培地)ではEPS産生量は13.14mg/1000mLであった。
 これらの結果から、L-フコースを含む培地でAT-APC-FucE1株を培養した場合は、D-グルコースを含み、L-フコースを含まない培地でAT-APC-FucE1株を培養した場合と比較して、EPS産生が顕著に促進されることが定量的にも示された。
[試験4]AT-APC-FucE1から抽出したEPSの形態
 AT-APC-FucE1の培養上清から抽出したEPSを走査型電子顕微鏡により観察したところ、乳酸菌等で観察されるEPSに類似した形態が確認された(図6)。
[試験5]他のビフィズス属細菌における、L-フコースによるEPS産生誘導の確認
 他のビフィズス属細菌において、L-フコースによるEPS産生誘導が認められるかどうかを確認するために、JCM10602菌株や、JCM1192菌株を用いて以下の試験を行った。
 なお、JCM10602菌株は、プロバイオティクスとして頻用され、EPSを高産生することが知られるビフィドバクテリウム・アニマリス・サブスピーシズ・ラクティス(すなわち、ビフィドバクテリウム・ラクティス)であり、JCM1192菌株は、AT-APC-FucE1と同種のビフィドバクテリウム・ブレーベの標準株である。
 JCM10602菌株を、前述の試験3に記載の方法で、0.5%Fuc mMRS培地、又は、0.5%Glu mMRS培地にて37℃で嫌気的に96時間培養した。それぞれの培養上清を透過型電子顕微鏡で観察した結果を図7に示す。0.5%Glu mMRS培地で培養した場合(図7b)と比較して、0.5%Fuc mMRS培地で培養した場合(図7a)では、EPSの産生が向上していることが示された。
 また、培養液上清から抽出したEPSを定量したところ、D-グルコースを用いた培地(すなわち、0.5%Glu mMRS培地)ではEPS産生量が132.97mg/1000mL(トリクロロ酢酸で抽出した場合)、4.74mg/1000mL(エタノールで抽出した場合)であったのに対し、L-フコースを用いた培地(すなわち、0.5%Fuc mMRS培地)ではEPS産生量が166.2mg/1000mL(トリクロロ酢酸で抽出した場合)、13.33mg/1000mL(エタノールで抽出した場合)であった。すなわち、L-フコースを含む培地でJCM10602菌株を培養した場合は、D-グルコースを含み、L-フコースを含まない培地でJCM10602菌株を培養した場合と比較して、EPS産生が顕著に促進されることが定量的に示された。
 これらの結果から、L-フコースによるEPS産生誘導は、ビフィドバクテリウム・ブレーベのAT-APC-FucE1株においてのみ認められるのではなく、他のビフィドバクテリウム属細菌であって、EPS産生能を有する菌株(例えば、ビフィドバクテリウム・ラクティスJCM10602菌株)でも認められることが示された。
 なお、AT-APC-FucE1と同種のビフィドバクテリウム・ブレーベの標準株であるJCM1192では、L-フコースによる顕著な産生誘導は確認されなかった。
 本発明によれば、EPSの生産性が向上した、EPSの製造方法や、該製造方法により製造されるEPSや、EPSの生産性が向上した、EPSを含む発酵製品の製造方法や、該製造方法により製造される発酵製品や、ビフィドバクテリウム属細菌のEPS産生促進剤や、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法などを提供することができる。

Claims (10)

  1.  ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、菌体外多糖(EPS)の製造方法。
  2.  ビフィドバクテリウム属細菌が、ビフィドバクテリウム・ブレーベ、又は、ビフィドバクテリウム・ラクティスである、請求項1に記載の製造方法。
  3.  請求項1又は2に記載の製造方法により製造されるEPS。
  4.  ビフィドバクテリウム属細菌を、L-フコースを含む発酵製品原料で培養する工程aを含む、EPSを含む発酵製品の製造方法。
  5.  ビフィドバクテリウム属細菌が、ビフィドバクテリウム・ブレーベ、又は、ビフィドバクテリウム・ラクティスである、請求項4に記載の製造方法。
  6.  発酵製品原料が発酵乳製品原料であり、発酵製品が発酵乳製品である、請求項4に記載の製造方法。
  7.  請求項4~6のいずれかに記載の製造方法により製造される発酵製品。
  8.  発酵製品が発酵乳製品である請求項7に記載の発酵製品。
  9.  L-フコースを有効成分として含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)産生促進剤。
  10.  ビフィドバクテリウム属細菌を、L-フコースを含む培地で培養する工程Aを含む、ビフィドバクテリウム属細菌の菌体外多糖(EPS)の産生を促進する方法。
PCT/JP2022/034944 2021-09-21 2022-09-20 ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法 WO2023048126A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021153486 2021-09-21
JP2021-153486 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023048126A1 true WO2023048126A1 (ja) 2023-03-30

Family

ID=85719510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034944 WO2023048126A1 (ja) 2021-09-21 2022-09-20 ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法

Country Status (1)

Country Link
WO (1) WO2023048126A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AYAKA TAMURA, BING ZHOU, WAKAKO OTSUBO, HARUKI KITAZAWA: "Isolation and characterization of L-fucose-utilizing bifidobacteria", MIRUKU SAIENSU - MILK SCIENCE, HON RAKUNO KAGAKUKAI, SENDAI, MIYAGI-KEN, NI, vol. 70, no. 2, 28 September 2021 (2021-09-28), NI , pages 102, XP009544914, ISSN: 1343-0289, DOI: 10.11465/milk.70.102 *
GUIYANG LIU, HUAHAI CHEN, JUNKUI CHEN, XIN WANG, QING GU, YESHI YIN: "Effects of bifidobacteria-produced exopolysaccharides on human gut microbiota in vitro", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 103, no. 4, 1 February 2019 (2019-02-01), Berlin/Heidelberg, pages 1693 - 1702, XP055744772, ISSN: 0175-7598, DOI: 10.1007/s00253-018-9572-6 *
WAKAKO OHTSUBO: " Development of probiotics for the control of inflammatory bowel disease. ", 12 June 2019 (2019-06-12), XP093054506, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-17K19883/17K19883seika.pdf> [retrieved on 20230614] *

Similar Documents

Publication Publication Date Title
JP5944824B2 (ja) エキソ多糖の過剰発現による、食品をテキスチャリングするための改変されたガラクトキナーゼ発現を伴う乳酸菌
JP4862053B2 (ja) 新規乳酸菌
KR101399712B1 (ko) 신규 유발효물 및 그의 이용
JP6789931B2 (ja) 発酵乳の製造方法
EP3435773B1 (en) Use of glucose deficient streptococcus thermophilus strains in a process for producing fermented milk products
JP5774517B2 (ja) ビフィドバクテリウム属細菌含有発酵食品の製造方法
JP4802216B2 (ja) ビフィドバクテリウム属菌含有組成物及びビフィドバクテリウム属菌含有組成物の製造方法
JP5845169B2 (ja) ビフィドバクテリウム属細菌含有発酵食品の製造方法
US6110725A (en) Recombinant sequence-modified L. johnsonii bacteria which produce only + L()-lactate
WO2023048126A1 (ja) ビフィドバクテリウム属細菌の菌体外多糖の産生を促進する方法
JP4794592B2 (ja) 新規乳酸菌
Verma et al. Sustainable utilization of dairy waste paneer whey by Pediococcus pentosaceus NCDC 273 for lactic acid production
US11272716B2 (en) Bacteria
JP4794593B2 (ja) 新規乳酸菌を用いた発酵乳の製造方法
WO2024111464A1 (ja) ラクチカゼイバチルス・パラカゼイの胃酸胆汁酸耐性向上方法
JP7486728B2 (ja) 乳酸菌及び同乳酸菌を含有する食品・化粧品
JP5351113B2 (ja) ビフィドバクテリウム属細菌含有発酵食品の製造方法
Nahaei et al. Isolation and Phenotypic Characterization of Lactobacillus Species from Various Dairy Products"" H. Forouhandeh," S. Zununi Vahed," MS Hejazi
Jo et al. Properties of the Fusants of Lactobacillus acidophilus 88 and Lactobacillus casei subsp. casei KCTC 1121
MXPA98003427A (en) Production of l (+) - lact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549693

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005226

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE