WO2023047812A1 - 電力分配器 - Google Patents

電力分配器 Download PDF

Info

Publication number
WO2023047812A1
WO2023047812A1 PCT/JP2022/029826 JP2022029826W WO2023047812A1 WO 2023047812 A1 WO2023047812 A1 WO 2023047812A1 JP 2022029826 W JP2022029826 W JP 2022029826W WO 2023047812 A1 WO2023047812 A1 WO 2023047812A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
terminal
plate electrode
laminate
circuit
Prior art date
Application number
PCT/JP2022/029826
Other languages
English (en)
French (fr)
Inventor
誠 尾形
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023549401A priority Critical patent/JPWO2023047812A1/ja
Priority to CN202280063120.9A priority patent/CN117957767A/zh
Publication of WO2023047812A1 publication Critical patent/WO2023047812A1/ja
Priority to US18/605,938 priority patent/US20240222838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/48Networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present disclosure relates to power dividers, and more particularly to techniques for improving characteristics in power dividers.
  • Patent Document 1 discloses a power distribution/combining component for distributing or combining high frequency power.
  • the power distribution/combination component is connected between a common terminal and a connection point that branches the path to the first terminal and the second terminal.
  • a configuration is described that improves isolation characteristics by arranging an inductor and a capacitor respectively connected between the common terminal and connection point and the ground.
  • a power distributor as described above is used, for example, in mobile terminals such as mobile phones or smart phones, and base stations for mobile communications.
  • array antennas using a plurality of radiating elements may be adopted as antennas used in these communication devices.
  • a power divider as described above is required in order to branch the high-frequency signal into a plurality of paths and supply them to each radiating element.
  • the present disclosure has been made to solve such problems, and the purpose thereof is to suppress characteristic fluctuations of demultiplexed signals in a power divider to widen the band.
  • a power distributor includes a common terminal, a ground terminal, first and second terminals, and first and second circuits.
  • a first circuit is connected to the common terminal.
  • the second circuit is connected to the first terminal and the second terminal, branches the signal that has passed through the first circuit at a branch point, and transmits the signal to the first terminal and the second terminal.
  • the first circuit includes a first inductor and a second inductor connected in parallel between the common terminal and the branch point, a first capacitor connected between the common terminal and the ground terminal, and the branch point and the ground terminal. and a second capacitor connected between.
  • the second circuit includes third and fourth inductors, third and fourth capacitors, and a resistive element.
  • the third inductor has one end connected to the branch point and is arranged on a path from the branch point to the first terminal.
  • the fourth inductor has one end connected to the branch point and is arranged on a path from the branch point to the second terminal.
  • a third capacitor is connected between the other end of the third inductor and the ground terminal.
  • a fourth capacitor is connected between the other end of the fourth inductor and the ground terminal.
  • a resistive element is connected between the other end of the third inductor and the other end of the fourth inductor.
  • the inductor arranged between the common terminal and the branch point is composed of two inductors connected in parallel.
  • the path from the common terminal to the first terminal and the path from the common terminal to the second terminal can have a symmetrical structure. As a result, it is possible to suppress characteristic fluctuations of the demultiplexed signal and widen the band.
  • FIG. 2 is an equivalent circuit diagram of the power distributor according to Embodiment 1.
  • FIG. 1 is an external perspective view of a power distributor according to Embodiment 1.
  • FIG. 3 is an exploded perspective view of the power distributor of FIG. 2;
  • FIG. 4 is a diagram for explaining the arrangement of inductors in a laminate; It is an equivalent circuit diagram of a power divider of a comparative example.
  • FIG. 5 is a diagram for explaining the arrangement of inductors in a comparative example;
  • FIG. 10 is an external perspective view of a power distributor according to Embodiment 2;
  • FIG. 10 is an external perspective view of a power distributor according to Embodiment 2;
  • FIG. 10 is an external perspective view of a power distributor according to Embodiment 2;
  • FIG. 10 is an external perspective view of
  • FIG. 10 is an exploded perspective view of the power distributor of FIG. 9;
  • FIG. 4 is a diagram for explaining the arrangement of inductors in a laminate;
  • FIG. 1 is a first diagram showing the characteristics of the power distributor of Embodiment 2;
  • FIG. 2 is a second diagram showing characteristics of the power distributor of Embodiment 2;
  • FIG. 1 is an equivalent circuit diagram of power distributor 100 according to the first embodiment.
  • Power distributor 100 is used, for example, when distributing a common high-frequency signal to a plurality of radiating elements, such as an array antenna in which a plurality of radiating elements are arranged.
  • the power distributor 100 includes a common terminal T0, a first terminal T1, a second terminal T2, a first circuit CR1, and a second circuit CR2.
  • the first circuit CR1 is connected to the common terminal T0.
  • the second circuit CR2 is connected between the first circuit CR1 and the first terminal T1 and the second terminal T2.
  • the second circuit CR2 branches the signal supplied to the common terminal T0 and passed through the first circuit CR1, and transmits the branched signal to the first terminal T1 and the second terminal T2.
  • the first circuit CR1 includes inductors L11 and L12 and capacitors C1 and C2. Inductor L11 and inductor L12 are connected in parallel between common terminal T0 and branch point BP1 in second circuit CR2. Capacitor C1 is connected between common terminal T0 and ground terminal GND. Capacitor C2 is connected between branch point BP1 and ground terminal GND. That is, the first circuit CR1 functions as a ⁇ -type low-pass filter.
  • the second circuit CR2 includes inductors L21 and L22, capacitors C21 and C22, and a resistive element R1.
  • the inductor L21 is connected between the branch point BP1 to which the first circuit CR1 is connected and the first terminal T1.
  • the inductor L22 is connected between the branch point BP1 and the second terminal T2.
  • the capacitor C21 is connected between the first terminal T1 and the ground terminal GND.
  • Capacitor C22 is connected between second terminal T2 and ground terminal GND.
  • the resistive element R1 is connected between the first terminal T1 and the second terminal T2.
  • the inductance value of the inductor L21 is set to the same value as the inductance value of the inductor L22.
  • the capacitance value of the capacitor C21 is set to the same value as the capacitance value of the capacitor C22. That is, the impedance value of the path from the branch point BP1 to the first terminal T1 is the same as the impedance value of the path from the branch point BP1 to the second terminal T2. As a result, the power supplied to the common terminal T0 is equally divided by the second circuit CR2 and output from the first terminal T1 and the second terminal T2.
  • the first circuit CR1 forms at least one attenuation pole in the isolation characteristics of the path from the first terminal T1 to the second terminal T2. Also, one attenuation pole is formed in the isolation characteristic by the resistance element R1 included in the second circuit CR2.
  • FIG. 2 is an external perspective view of the power distributor 100
  • FIG. 3 is an exploded perspective view showing an example of the laminated structure of the power distributor 100. As shown in FIG.
  • power distributor 100 includes a rectangular parallelepiped or substantially rectangular parallelepiped laminate 110 in which a plurality of dielectric layers LY1 to LY9 are laminated in the lamination direction, and a laminate 110 provided outside laminate 110. and a resistive element R1.
  • the dielectric layers LY1 to LY9 are made of ceramic such as low temperature co-fired ceramics (LTCC) or resin.
  • LTCC low temperature co-fired ceramics
  • the inductors and capacitors in the first circuit CR1 and the second circuit CR2 in FIG. Configured.
  • the term "via” refers to a conductor provided in a dielectric layer for connecting electrodes provided on different dielectric layers. Vias are formed, for example, by conductive paste, plating, and/or metal pins.
  • the stacking direction of the dielectric layers LY1 to LY9 in the laminate 110 is defined as the "Z-axis direction", and the direction perpendicular to the Z-axis direction and along the long side of the laminate 110 is defined as the "X-axis direction.”
  • the direction along the short side of the laminate 110 is defined as the “Y-axis direction”.
  • the positive direction of the Z-axis in each drawing may be referred to as the upper side, and the negative direction may be referred to as the lower side.
  • the laminate 110 has a top surface 111, a bottom surface 112, and side surfaces 113-116.
  • the upper surface 111 is the surface of the laminate 110 in the positive Z-axis direction
  • the lower surface 112 is the surface of the laminate 110 in the negative Z-axis direction.
  • the side surface 113 is the surface of the laminate 110 in the positive direction of the X axis
  • the side surface 114 is the surface of the laminate 110 in the negative direction of the X axis.
  • the side surface 115 is the surface of the laminate 110 in the positive Y-axis direction
  • the side surface 116 is the surface of the laminate 110 in the negative Y-axis direction.
  • a directional mark DM for specifying the direction of the power distributor 100 is arranged on the upper surface 111 (dielectric layer LY1) of the laminated body 110 .
  • a plurality of external terminals (a common terminal T0, a first terminal T1, a second terminal T2 and a ground terminal GND) are arranged on side surfaces 115 and 116 of the laminate 110 for connecting the laminate 110 to other devices.
  • Each external terminal has a substantially C-shape and extends from top surface 111 through side surface 115 to bottom surface 112 or from top surface 111 through side surface 116 to bottom surface 112 .
  • a first terminal T1, a second terminal T2, and a ground terminal GND are arranged on the side surface 115 side.
  • a common terminal T0 and a ground terminal GND are arranged on the side surface 116 side.
  • the resistive element R1 is connected to the first terminal T1 and the second terminal T2.
  • the common terminal T0 is connected to the capacitor electrode PC1 arranged on the dielectric layer LY9 on the lower surface 112 side.
  • the capacitor electrode PC1 at least partially overlaps the substantially rectangular ground electrode PG1 disposed on the dielectric layer LY8 when the multilayer body 110 is viewed from the stacking direction (Z-axis direction).
  • the ground electrode PG1 is connected to the ground terminal GND.
  • the capacitor C1 in the first circuit CR1 of FIG. 1 is configured by the capacitor electrode PC1 and the ground electrode PG1.
  • the common terminal T0 is also connected to the plate electrode P10 arranged on the dielectric layer LY2.
  • the plate electrode P10 is a strip-shaped electrode extending in the X-axis direction, and is connected to the common terminal T0 at its central portion.
  • a via V11 is connected to one end of the plate electrode P10, and a via V15 is connected to the other end of the plate electrode P10.
  • the via V11 is connected to one end of a strip-shaped plate electrode PL11 arranged on the dielectric layer LY3.
  • the plate electrode PL11 has a substantially U-shaped or C-shaped shape.
  • a via V12 is connected to the other end of the plate electrode PL11.
  • the via V12 is connected to one end of a strip-shaped plate electrode PL12 arranged on the dielectric layer LY4.
  • the plate electrode PL12 has a substantially U- or C-shape.
  • a via V13 is connected to the other end of the plate electrode PL12.
  • the via V13 is connected to one end of a strip-shaped plate electrode PL13 arranged on the dielectric layer LY5.
  • the plate electrode PL13 has a substantially U- or C-shape.
  • a via V14 is connected to the other end of the plate electrode PL13.
  • the plate electrodes PL11, PL12, and PL13 are arranged so that most of the paths overlap each other when the laminate 110 is viewed from above in the lamination direction. That is, the plate electrodes PL11, PL12, PL13 and the vias V11, V12, V13, V14 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L11 in FIG.
  • the via V15 is connected to one end of a strip-shaped plate electrode PL15 arranged on the dielectric layer LY3.
  • the plate electrode PL15 has a substantially U- or C-shape.
  • a via V16 is connected to the other end of the plate electrode PL15.
  • the via V16 is connected to one end of a strip-shaped plate electrode PL16 arranged on the dielectric layer LY4.
  • the plate electrode PL16 has a substantially U- or C-shape.
  • a via V17 is connected to the other end of the plate electrode PL16.
  • the via V17 is connected to one end of a strip-shaped plate electrode PL17 arranged on the dielectric layer LY5.
  • the plate electrode PL17 has a substantially U- or C-shape.
  • a via V18 is connected to the other end of the plate electrode PL17.
  • the plate electrodes PL15, PL16, and PL17 are arranged so that most of the paths overlap each other when the laminate 110 is viewed from above in the lamination direction. That is, the plate electrodes PL15, PL16, PL17 and the vias V15, V16, V17, V18 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L12 in FIG.
  • a via V14 forming the inductor L11 and a via V18 forming the inductor L12 are connected to the plate electrode P11 arranged on the dielectric layer LY6.
  • the plate electrode P11 is a strip-shaped electrode extending in the X-axis direction. One end of the plate electrode P11 is connected to a via V14, and the other end of the plate electrode P11 is connected to a via V18.
  • the plate electrode P11 is connected in the central portion to a plate electrode P12 extending parallel to the plate electrode P11.
  • a via V19 is connected to the connecting portion P13 connecting the flat plate electrode P11 and the flat plate electrode P12.
  • the via V19 is connected to the plate electrode PC2 arranged on the dielectric layer LY7.
  • the flat plate electrode PC2 has a rectangular shape, and at least partially overlaps the ground electrode PG1 of the dielectric layer LY8 when the laminate 110 is viewed from above in the lamination direction.
  • a capacitor C2 in the first circuit CR1 of FIG. 1 is configured by the plate electrode PC2 and the ground electrode PG1.
  • the flat plate electrode P12 is a strip-shaped electrode extending in the X-axis direction. One end of the flat plate electrode P12 is connected to the flat plate electrode PL21, and the other end of the flat plate electrode P12 is connected to the flat plate electrode PL25.
  • the plate electrode PL21 is a strip-shaped electrode having a substantially U- or C-shape.
  • a via V21 is connected to the end of the plate electrode PL21 opposite to the end connected to the plate electrode P12.
  • the via V21 is connected to one end of a strip-shaped plate electrode PL22 arranged on the dielectric layer LY5.
  • the plate electrode PL22 has a substantially U- or C-shape.
  • a via V22 is connected to the other end of the plate electrode PL22.
  • the via V22 is connected to one end of a strip-shaped plate electrode PL23 arranged on the dielectric layer LY4.
  • the plate electrode PL23 has a substantially U- or C-shape.
  • a via V23 is connected to the other end of the plate electrode PL23.
  • the via V23 is connected to one end of a strip-shaped plate electrode PL24 arranged on the dielectric layer LY3.
  • the plate electrode PL24 has a substantially U-shaped or C-shaped shape.
  • the other end of plate electrode PL24 is connected to first terminal T1 arranged on side surface 115 .
  • the plate electrodes PL21, PL22, PL23, and PL24 are arranged so that most of the paths overlap each other when the laminate 110 is viewed from above in the lamination direction. That is, the flat plate electrodes PL21, PL22, PL23, PL24 and the vias V21, V22, V23 form a helical coil whose winding axis is the Z-axis. This helical coil corresponds to inductor L21 in FIG.
  • the first terminal T1 is connected to a plate-shaped capacitor electrode PC3 arranged on the dielectric layer LY9.
  • the capacitor electrode PC3 at least partially overlaps the ground electrode PG1 of the dielectric layer LY8 when the laminate 110 is viewed from above in the lamination direction.
  • a capacitor C21 in the second circuit CR2 of FIG. 1 is configured by the plate electrode PC3 and the ground electrode PG1.
  • the plate electrode PL25 on the dielectric layer LY6 is a strip-shaped electrode having a substantially U- or C-shape.
  • a via V25 is connected to the end of the plate electrode PL25 opposite to the end connected to the plate electrode P12.
  • the via V25 is connected to one end of a strip-shaped plate electrode PL26 arranged on the dielectric layer LY5.
  • the plate electrode PL26 has a substantially U- or C-shape.
  • a via V26 is connected to the other end of the plate electrode PL26.
  • the via V26 is connected to one end of a strip-shaped plate electrode PL27 arranged on the dielectric layer LY4.
  • the plate electrode PL27 has a substantially U- or C-shape.
  • a via V27 is connected to the other end of the plate electrode PL27.
  • the via V27 is connected to one end of a strip-shaped plate electrode PL28 arranged on the dielectric layer LY3.
  • the plate electrode PL28 has a substantially U- or C-shape.
  • the other end of plate electrode PL28 is connected to second terminal T2 arranged on side surface 115 .
  • the plate electrodes PL25, PL26, PL27, and PL28 are arranged so that most of the paths overlap with each other when the laminate 110 is viewed from above in the lamination direction. That is, the plate electrodes PL25, PL26, PL27, PL28 and the vias V25, V26, V27 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L22 in FIG.
  • the second terminal T2 is connected to a plate-shaped capacitor electrode PC4 arranged on the dielectric layer LY9.
  • the capacitor electrode PC4 at least partially overlaps the ground electrode PG1 of the dielectric layer LY8 when the laminate 110 is viewed from above in the lamination direction.
  • the capacitor C22 in the second circuit CR2 of FIG. 1 is configured by the capacitor electrode PC4 and the ground electrode PG1.
  • a resistance element R1 in the second circuit CR2 of FIG. 1 is connected to the first terminal T1 and the second terminal T2.
  • the resistive element R1 is configured as an individual chip resistor arranged outside the laminate 110, and external terminals of the resistive element R1 are connected to the first terminal T1 and the second terminal T2.
  • the resistive element R1 may be configured as a plate electrode PR1 arranged inside or on the upper surface 111 of the laminate 110 .
  • the plate electrode PR1 is, for example, a strip-shaped electrode arranged on the dielectric layer LY2 and extending in the X-axis direction.
  • the other end of plate electrode PR1 is connected to second terminal T2 on side surface 115 .
  • the plate electrode PR1 may be configured as a meandering electrode in order to obtain a desired resistance value.
  • FIG. 4 is a schematic plan view of the inductors L11, L12, L21, and L22 formed in the dielectric layers LY2 to LY6, viewed from the positive direction of the Z axis.
  • the inductors L11 and L12 are arranged at positions symmetrical with respect to the virtual line CL1 passing through the common terminal T0.
  • the inductor L21 and the inductor L22 are arranged at positions that are symmetrical with respect to the virtual line CL1.
  • the winding direction (CW direction: first direction) of inductor L11 is opposite to the winding direction (CCW direction: second direction) of inductor L12
  • the winding direction (CW direction) of inductor L21 is opposite to inductor L22.
  • the winding direction of inductor L11 is the same as the winding direction of inductor L21
  • the winding direction of inductor L12 is the same as the winding direction of inductor L22.
  • the path from the common terminal T0 to the first terminal T1 and the path from the common terminal T0 to the second The path to terminal T2 can be structurally symmetrical.
  • the electromagnetic field generated by the inductor can be made symmetrical.
  • FIG. 5 is an equivalent circuit diagram of a power divider 100X in a comparative example.
  • power divider 100X has a configuration in which first circuit CR1 in power divider 100 of FIG. 1 is replaced with first circuit CR1X.
  • the second circuit CR2 in the power divider 100X is similar to the power divider 100.
  • FIG. 6 is a diagram for explaining an overview of the arrangement of inductors in the power divider 100X of the comparative example, and corresponds to FIG. 4 above.
  • the structure in the case of power distributor 100X, although the structure can be substantially line-symmetrical with respect to imaginary line CL2, there is only one inductor L1 in first circuit CR1X. Therefore, the winding direction of inductor L1 is opposite to the winding direction of either inductor L21 or inductor L22. Therefore, the electromagnetic field generated by the power distributor 100X is not symmetrical, and the electromagnetic fields cancel each other between the inductors whose winding directions are opposite to each other (the inductor L1 and the inductor L22 in FIG. 6). . As a result, fluctuations may occur in the phase difference and the amplitude difference in the power divider 100X.
  • FIG. 7 is a diagram showing a comparison of the phase difference (PD) and the amplitude balance (AB) in the power divider 100 of Embodiment 1 and the power divider 100X of the comparative example.
  • the upper part of FIG. 7 shows the characteristics of the power divider 100X of the comparative example, and the lower part shows the characteristics of the power divider 100 of the first embodiment.
  • both the phase difference (line LN10) and the amplitude balance (line LN15) fluctuate greatly as the frequency increases.
  • both the phase difference (line LN11) and the amplitude balance (line LN16) are almost zero even if the frequency changes, and compared to the comparative example, the phase difference is almost zero. Phase difference and amplitude difference are improved.
  • the inductor arranged between the common terminal T0 and the branch point BP1 is composed of two parallel-connected inductors, and the laminate is planar.
  • the power distributor 100 outputs the signal input to the common terminal T0 from the first terminal T1 and the second terminal T2 has been described as an example.
  • the power divider 100 can also function as a power combiner that combines signals input to the first terminal T1 and the second terminal T2 and outputs the combined signal from the common terminal T0.
  • “Inductor L11,” “Inductor L12,” “Inductor L21,” and “Inductor L22” in Embodiment 1 correspond to “first inductor,” “second inductor,” “third inductor,” and “fourth inductor” in the present disclosure.
  • “Inductor”. “Capacitor C1,” “Capacitor C2,” “Capacitor C21,” and “Capacitor C22” in Embodiment 1 correspond to “first capacitor,” “second capacitor,” “third capacitor,” and “fourth capacitor” in the present disclosure. Capacitor”, respectively.
  • FIG. 8 is an equivalent circuit diagram of power distributor 100A according to the second embodiment.
  • the power distributor 100A has a configuration in which the second circuit CR2 in the power distributor 100 of the first embodiment is replaced with a second circuit CR2A.
  • the second circuit CR2A further includes a third circuit CR3 in addition to the configuration of the second circuit CR2 of the first embodiment.
  • description of elements that overlap with power splitter 100 of the first embodiment will not be repeated.
  • the third circuit CR3 is arranged between the configuration of the second circuit CR2 and the first terminal T1 and the second terminal T2.
  • the third circuit CR3 includes inductors L31, L32 and capacitors C31, C32.
  • the inductor L31 is connected between the inductor L21 and the first terminal T1.
  • inductors L21 and L31 are connected in series between branch point BP1 and first terminal T1.
  • Inductor L32 is connected between inductor L22 and second terminal T2. In other words, inductors L22 and L32 are connected in series between branch point BP1 and second terminal T2.
  • the capacitor C31 is connected in parallel with the resistance element R1. Also, the capacitor C32 is connected between the first terminal T1 and the second terminal T2.
  • the third circuit CR3 included in the second circuit CR2A forms a further attenuation pole in the isolation characteristics of the path from the first terminal T1 to the second terminal T2.
  • FIG. 9 is an external perspective view of the power distributor 100A
  • FIG. 10 is an exploded perspective view showing an example of the laminated structure of the power distributor 100A.
  • a power distributor 100A includes a rectangular parallelepiped or substantially rectangular parallelepiped laminate 110A in which a plurality of dielectric layers LY11 to LY23 are laminated in the lamination direction, and a laminate 110A provided outside the laminate 110A. and a resistive element R1.
  • the dielectric layers LY11 to LY23 are made of ceramic such as low temperature co-fired ceramics (LTCC) or resin, as in the first embodiment.
  • a directional mark DM for specifying the direction of the power distributor 100A is arranged on the upper surface 111 (dielectric layer LY11) of the laminate 110A. External terminals are also arranged on the side surfaces 113 and 114 of the laminate 110A. The external terminal on the side surface 114 is the first terminal T1, and the external terminal on the side surface 113 is the second terminal T2.
  • a common terminal T0 and a ground terminal GND are arranged on the side surface 116, and a ground terminal GND and connection terminals T3 and T4 are arranged on the side surface 115.
  • the resistance element R1 is connected to the connection terminals T3 and T4.
  • the common terminal T0 is connected to the capacitor electrode PC11 arranged on the dielectric layer LY23 on the lower surface 112 side.
  • the capacitor electrode PC11 at least partially overlaps the substantially rectangular ground electrode PG10 disposed on the dielectric layer LY22 when the laminate 110A is viewed from above in the lamination direction.
  • the ground electrode PG10 is connected to the ground terminal GND.
  • the capacitor C1 in the first circuit CR1 of FIG. 8 is configured by the capacitor electrode PC11 and the ground electrode PG10.
  • the common terminal T0 is also connected to the plate electrodes PL31 and PL41 arranged on the dielectric layer LY19.
  • Each of the plate electrodes PL31 and PL41 is a belt-like electrode having a substantially U-shape or C-shape, and one ends thereof are connected to each other.
  • a common terminal T0 is connected to the connecting portion between the plate electrode PL31 and the plate electrode PL41.
  • a via V31 is connected to the other end of the plate electrode PL31, and a via V41 is connected to the other end of the plate electrode PL41.
  • the via V31 is connected to one end of a strip-shaped plate electrode PL32 arranged on the dielectric layer LY18.
  • the plate electrode PL32 has a substantially U- or C-shape.
  • a via V32 is connected to the other end of the plate electrode PL32.
  • the via V32 is connected to one end of a strip-shaped plate electrode PL33 arranged on the dielectric layer LY17.
  • the plate electrode PL33 has a substantially U- or C-shape.
  • a via V33 is connected to the other end of the plate electrode PL33.
  • the via V33 is connected to one end of a strip-shaped plate electrode PL34 arranged on the dielectric layer LY16.
  • the plate electrode PL34 has a substantially U- or C-shape.
  • a via V34 is connected to the other end of the plate electrode PL34.
  • the via V34 is connected to one end of a strip-shaped plate electrode PL35 arranged on the dielectric layer LY15.
  • the plate electrode PL35 has a substantially U- or C-shape.
  • the plate electrodes PL31, PL32, PL33, PL34, and PL35 are arranged so that most of the paths overlap with each other when the laminate 110A is viewed from above in the lamination direction. That is, the plate electrodes PL31, PL32, PL33, PL34, PL35 and the vias V31, V32, V33, V34 form a helical coil with the Z-axis as the winding axis. This helical coil corresponds to inductor L11 in FIG.
  • the via V41 is connected to one end of a strip-shaped plate electrode PL42 arranged on the dielectric layer LY18.
  • the plate electrode PL42 has a substantially U- or C-shape.
  • a via V42 is connected to the other end of the plate electrode PL42.
  • the via V42 is connected to one end of a strip-shaped plate electrode PL43 arranged on the dielectric layer LY17.
  • the plate electrode PL43 has a substantially U- or C-shape.
  • a via V43 is connected to the other end of the plate electrode PL43.
  • the via V43 is connected to one end of a strip-shaped plate electrode PL44 arranged on the dielectric layer LY16.
  • the plate electrode PL44 has a substantially U-shaped or C-shaped shape.
  • a via V44 is connected to the other end of the plate electrode PL44.
  • the via V44 is connected to one end of a strip-shaped plate electrode PL45 arranged on the dielectric layer LY15.
  • the plate electrode PL45 has a substantially U- or C-shape.
  • the plate electrodes PL41, PL42, PL43, PL44, and PL45 are arranged so that most of the paths overlap each other when the laminate 110A is viewed from above in the lamination direction. That is, the plate electrodes PL41, PL42, PL43, PL44, PL45 and the vias V41, V42, V43, V44 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L12 in FIG.
  • a portion of the plate electrode PL35 overlaps a portion of the plate electrode PL45, and the other ends are shared.
  • a via V1 is connected to the common other end of the plate electrode PL35 and the plate electrode PL45.
  • the via V1 is connected to the plate electrode P20 arranged on the dielectric layer LY14 and the capacitor electrode PC14 arranged on the dielectric layer LY13.
  • Each of the plate electrode P20 and the capacitor electrode PC14 is a strip-shaped electrode extending in the X-axis direction, and is connected to the via V1 at the central portion in the extending direction.
  • Capacitor C2 in the equivalent circuit of FIG. 8 is configured by capacitor electrode PC14 and ground electrode PG11.
  • a via V51 is connected to one end of the flat plate electrode P20 on the dielectric layer LY14, and a via V61 is connected to the other end of the flat plate electrode P20.
  • the via V51 is connected to one end of the plate electrode PL51 arranged on the dielectric layer LY15.
  • the plate electrode PL51 has a substantially U- or C-shape.
  • a via V52 is connected to the other end of the plate electrode PL51.
  • the via V52 is connected to one end of a strip-shaped plate electrode PL52 arranged on the dielectric layer LY16.
  • the plate electrode PL52 has a substantially U- or C-shape.
  • a via V53 is connected to the other end of the plate electrode PL52.
  • the via V53 is connected to one end of a strip-shaped plate electrode PL53 arranged on the dielectric layer LY17.
  • the plate electrode PL53 has a substantially U-shaped or C-shaped shape.
  • a via V54 is connected to the other end of the plate electrode PL53.
  • the via V54 is connected to one end of a strip-shaped plate electrode PL54 arranged on the dielectric layer LY18.
  • the plate electrode PL53 has a substantially U-shaped or C-shaped shape.
  • the other end of the plate electrode PL53 is connected to the connection terminal T3 arranged on the side surface 115, and is also connected to one end of the strip-shaped plate electrode PL71.
  • the plate electrodes PL51, PL52, PL53, and PL54 are arranged so that most of the paths overlap with each other when the laminate 110A is viewed from above in the lamination direction. That is, the plate electrodes PL51, PL52, PL53, PL54 and the vias V51, V52, V53, V54 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L21 in FIG.
  • the via V61 is connected to one end of the plate electrode PL61 arranged on the dielectric layer LY15.
  • the plate electrode PL61 has a substantially U- or C-shape.
  • a via V62 is connected to the other end of the plate electrode PL61.
  • the via V62 is connected to one end of a strip-shaped plate electrode PL62 arranged on the dielectric layer LY16.
  • the plate electrode PL62 has a substantially U- or C-shape.
  • a via V63 is connected to the other end of the plate electrode PL62.
  • the via V63 is connected to one end of a strip-shaped plate electrode PL63 arranged on the dielectric layer LY17.
  • the plate electrode PL63 has a substantially U- or C-shape.
  • a via V64 is connected to the other end of the plate electrode PL63.
  • the via V64 is connected to one end of a strip-shaped plate electrode PL64 arranged on the dielectric layer LY18.
  • the plate electrode PL63 has a substantially U- or C-shape.
  • the other end of the plate electrode PL63 is connected to the connection terminal T4 arranged on the side surface 115, and is also connected to one end of the strip-shaped plate electrode PL81.
  • the plate electrodes PL61, PL62, PL63, and PL64 are arranged so that most of the paths overlap with each other when the laminate 110A is viewed from above in the lamination direction. That is, the plate electrodes PL61, PL62, PL63, PL64 and the vias V61, V62, V63, V64 form a helical coil with the Z-axis as the winding axis. This helical coil corresponds to inductor L22 in FIG.
  • a via V71 is connected to the other end of the plate electrode PL71 on the dielectric layer LY18.
  • the via V71 is connected to one end of a strip-shaped plate electrode PL72 arranged on the dielectric layer LY17.
  • the plate electrode PL72 has a substantially U- or C-shape.
  • a via V72 is connected to the other end of the plate electrode PL72.
  • the via V72 is connected to one end of a strip-shaped plate electrode PL73 arranged on the dielectric layer LY16.
  • the plate electrode PL73 has a substantially U- or C-shape.
  • a via V74 is connected to the other end of the plate electrode PL73.
  • the via V74 is connected to one end of a strip-shaped plate electrode PL74 arranged on the dielectric layer LY15.
  • the plate electrode PL74 has a substantially U-shaped or C-shaped shape.
  • the other end of plate electrode PL74 is connected to first terminal T1 arranged on side surface 114 .
  • the plate electrodes PL71, PL72, PL73, and PL74 are arranged so that most of the paths overlap with each other when the laminate 110A is viewed from above in the lamination direction. That is, the plate electrodes PL71, PL72, PL73, PL74 and the vias V71, V72, V73 form a helical coil having the Z-axis as the winding axis. This helical coil corresponds to inductor L31 in FIG.
  • a via V81 is connected to the other end of the plate electrode PL81 on the dielectric layer LY18.
  • the via V81 is connected to one end of a strip-shaped plate electrode PL82 arranged on the dielectric layer LY17.
  • the plate electrode PL82 has a substantially U- or C-shape.
  • a via V82 is connected to the other end of the plate electrode PL82.
  • the via V82 is connected to one end of a strip-shaped plate electrode PL83 arranged on the dielectric layer LY16.
  • the plate electrode PL83 has a substantially U- or C-shape.
  • a via V84 is connected to the other end of the plate electrode PL83.
  • the via V84 is connected to one end of a strip-shaped plate electrode PL84 arranged on the dielectric layer LY15.
  • the plate electrode PL84 has a substantially U- or C-shape.
  • the other end of plate electrode PL84 is connected to second terminal T2 arranged on side surface 113 .
  • the plate electrodes PL81, PL82, PL83, and PL84 are arranged so that most of the paths overlap each other when the laminate 110A is viewed from above in the lamination direction. That is, the flat plate electrodes PL81, PL82, PL83, PL84 and the vias V81, V82, V83 form a helical coil whose winding axis is the Z-axis. This helical coil corresponds to inductor L32 in FIG.
  • a via V2 is connected in the middle of the plate electrode PL74 in the dielectric layer LY15.
  • the via V2 is connected to the capacitor electrode PC15 arranged on the dielectric layer LY13.
  • the capacitor electrode PC15 is a strip-shaped electrode extending in the X-axis direction.
  • a via V3 is connected in the middle of the plate electrode PL84.
  • the via V3 is connected to the capacitor electrode PC16 arranged on the dielectric layer LY13.
  • the capacitor electrode PC16 is a strip-shaped electrode extending in the X-axis direction.
  • capacitor electrode PC15 When the laminate 110A is viewed from the lamination direction, part of the capacitor electrode PC15 and part of the capacitor electrode PC16 overlap with the capacitor electrode PC17 arranged on the dielectric layer LY12.
  • the capacitor electrode PC17 is a strip-shaped electrode extending in the X-axis direction.
  • Capacitor electrodes PC15, PC16, and PC17 constitute a capacitor C32 in the equivalent circuit of FIG.
  • the connection terminal T3 arranged on the side surface 115 of the laminate 110A includes the plate electrodes PL54 and PL71 arranged on the dielectric layer LY18, the capacitor electrode PC19 arranged on the dielectric layer LY20, and the dielectric layer LY23. is connected to the capacitor electrode PC12.
  • a part of the capacitor electrode PC12 arranged on the dielectric layer LY23 overlaps the ground electrode PG11 of the dielectric layer LY22.
  • Capacitor electrode PC12 and ground electrode PG11 constitute capacitor C21 in the equivalent circuit of FIG.
  • the connection terminal T4 arranged on the side surface 115 of the laminate 110A includes the plate electrodes PL64 and PL81 arranged on the dielectric layer LY18, the capacitor electrode PC20 arranged on the dielectric layer LY20, and the dielectric layer LY23. is connected to the capacitor electrode PC13.
  • a part of the capacitor electrode PC13 arranged on the dielectric layer LY23 overlaps the ground electrode PG11 of the dielectric layer LY22.
  • Capacitor electrode PC13 and ground electrode PG11 constitute capacitor C22 in the equivalent circuit of FIG.
  • Capacitor electrodes PC18, PC19, and PC20 constitute a capacitor C31 in the equivalent circuit of FIG.
  • connection terminals T3 and T4 are connected to a resistance element R1 provided outside the laminate 110A.
  • the resistive element R1 may be arranged inside the laminate 110A.
  • FIG. 11 is a schematic plan view of the inductors L11, L12, L21, L22, L31, and L32 formed in the dielectric layers LY15 to LY19, viewed from the positive direction of the Z axis.
  • the inductors L11 and L12 are arranged at positions that are symmetrical with respect to a virtual line CL2 passing through the common terminal T0.
  • the inductors L21 and L22, and the inductors L31 and L32 are also arranged at positions that are symmetrical with respect to the virtual line CL2.
  • the winding directions of the inductors L11, L21, and L31 are all the same CW direction.
  • the winding directions of the inductors L12, L22, and L32 are all the same in the CCW direction.
  • the path from the common terminal T0 to the first terminal T1 and the path from the common terminal T0 to the second terminal T2 are structurally symmetrical.
  • the inductor can be made symmetrical.
  • FIG. 12 is a diagram showing isolation between the first terminal T1 and the second terminal T2 in the power divider 100A of the second embodiment and the power divider 100X of the comparative example shown in the first embodiment. is.
  • a solid line LN20 indicates the power divider 100A of the second embodiment
  • a dashed line LN21 indicates the power divider 100X of the comparative example.
  • Attenuation poles occur at two locations near 3.5 GHz and 4.7 GHz in the power divider 100X of the comparative example.
  • power distributor 100A of the second embodiment attenuation poles are added by third circuit CR3, and attenuation poles occur at three locations near 2.7 GHz, near 3.9 GHz, and near 5.0 GHz. ing.
  • the attenuation amount in the power divider 100A of the second embodiment is generally larger than in the comparative example. Therefore, comparing frequency bandwidths that can achieve isolation of 20 dB, for example, the bandwidth BW1 of the power divider 100A is wider than the bandwidth BW2 in the comparative example (BW1>BW2). In other words, wideband isolation characteristics are realized.
  • FIG. 13 is a diagram showing the phase difference (PD) and amplitude balance (AB) between the first terminal T1 and the second terminal T2 of the power divider 100A of the second embodiment.
  • PD phase difference
  • AB amplitude balance
  • the phase difference and the Fluctuations in amplitude difference can be suppressed.
  • the “inductor L31” and “inductor L32” in the second embodiment respectively correspond to the “fifth inductor” and “sixth inductor” in the present disclosure.
  • “Capacitor C31” and “Capacitor C32” in Embodiment 1 respectively correspond to “Fifth capacitor” and “Sixth capacitor” in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

電力分配器(100)は、共通端子(T0)と、接地端子(GND)と、第1端子(T1)と、第2端子(T2)と、共通端子に接続された第1回路(CR1)と、第2回路(CR2)とを備える。第2回路は、第1回路からの信号を分岐して第1端子および第2端子に伝達する。第1回路は、共通端子と分岐点(BP1)との間に並列に接続されたインダクタ(L11,L12)と、インダクタ(L11)の各端と接地端子との間に接続されたキャパシタ(C1,C2)とを含む。第2回路は、インダクタ(L21,L22)と、キャパシタ(C21,C22)と、抵抗素子(R1)とを含む。インダクタ(L21)は、分岐点と第1端子との間に接続される。インダクタ(L22)は、分岐点と第2端子との間に接続される。キャパシタ(C21)は、第1端子と接地端子との間に接続される。キャパシタ(C22)は、第2端子と接地端子との間に接続される。抵抗素子は、第1端子と第2端子との間に接続される。

Description

電力分配器
 本開示は、電力分配器に関し、より特定的には、電力分配器における特性を向上させるための技術に関する。
 国際公開第2020/045576号明細書(特許文献1)は、高周波電力を分配あるいは結合するための電力分配/結合部品を開示している。国際公開第2020/045576号明細書(特許文献1)に開示された電力分配/結合部品においては、共通端子と、第1端子および第2端子へ経路を分岐する接続点との間に接続されたインダクタ、ならびに、当該共通端子および接続点とグランドとの間にそれぞれ接続されたキャパシタを配置することによって、アイソレーション特性を改善する構成が記載されている。
国際公開第2020/045576号明細書
 上述のような電力分配器は、たとえば、携帯電話またはスマートフォンなどの携帯端末、および、移動体通信の基地局などに用いられる。近年、これらの通信機器に用いられるアンテナとして、複数の放射素子を用いたアレイアンテナが採用される場合がある。この場合、高周波信号を複数の経路に分岐して各放射素子に供給するために、上記のような電力分配器が必要となる。
 このような電力分配器においては、特性のさらなる広帯域化が望まれており、それを実現するために、分波後の信号間の特性変動を抑制することが必要とされている。
 本開示は、このような課題を解決するためになされたものであって、その目的は、電力分配器において、分波後の信号の特性変動を抑制して広帯域化を図ることである。
 本開示に係る電力分配器は、共通端子と、接地端子と、第1端子および第2端子と、第1回路および第2回路とを備える。第1回路は、共通端子に接続される。第2回路は、第1端子および第2端子に接続され、第1回路を通過した信号を分岐点において分岐して第1端子および第2端子に伝達する。第1回路は、共通端子と分岐点との間に並列に接続された第1インダクタおよび第2インダクタと、共通端子と接地端子との間に接続された第1キャパシタと、分岐点と接地端子との間に接続された第2キャパシタとを含む。第2回路は、第3インダクタおよび第4インダクタと、第3キャパシタおよび第4キャパシタと、抵抗素子とを含む。第3インダクタは、一方端が分岐点に接続され、分岐点から第1端子に至る経路に配置される。第4インダクタは、一方端が分岐点に接続され、分岐点から第2端子に至る経路に配置される。第3キャパシタは、第3インダクタの他方端と接地端子との間に接続される。第4キャパシタは、第4インダクタの他方端と接地端子との間に接続される。抵抗素子は、第3インダクタの他方端と第4インダクタの他方端との間に接続される。
 本開示の電力分配器によれば、共通端子と分岐点との間に配置されるインダクタが、並列接続された2つのインダクタによって構成されている。これにより、共通端子から第1端子に至る経路、および、共通端子から第2端子に至る経路を対称的な構造とすることができる。これにより、分波後の信号の特性変動を抑制して広帯域化を図ることができる。
実施の形態1に係る電力分配器の等価回路図である。 実施の形態1に係る電力分配器の外形斜視図である。 図2の電力分配器の分解斜視図である。 積層体における各インダクタの配置を説明するための図である。 比較例の電力分配器の等価回路図である。 比較例における各インダクタの配置を説明するための図である。 実施の形態1および比較例の電力分配器における特性を示す図である。 実施の形態2に係る電力分配器の等価回路図である。 実施の形態2に係る電力分配器の外形斜視図である。 図9の電力分配器の分解斜視図である。 積層体における各インダクタの配置を説明するための図である。 実施の形態2の電力分配器の特性を示す第1図である。 実施の形態2の電力分配器の特性を示す第2図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (電力分配器の回路構成)
 図1は、実施の形態1に係る電力分配器100の等価回路図である。電力分配器100は、たとえば、複数の放射素子が配列されたアレイアンテナのように、共通の高周波信号を複数の放射素子に分配するような場合に用いられる。
 図1を参照して、電力分配器100は、共通端子T0と、第1端子T1と、第2端子T2と、第1回路CR1と、第2回路CR2とを備える。第1回路CR1は、共通端子T0に接続されている。第2回路CR2は、第1回路CR1と、第1端子T1および第2端子T2との間に接続されている。第2回路CR2は、共通端子T0に供給されて第1回路CR1を通過した信号を分岐して、第1端子T1および第2端子T2に伝達する。
 第1回路CR1は、インダクタL11,L12と、キャパシタC1,C2とを含む。インダクタL11およびインダクタL12は、共通端子T0と、第2回路CR2における分岐点BP1との間に並列に接続されている。キャパシタC1は、共通端子T0と接地端子GNDとの間に接続されている。キャパシタC2は、分岐点BP1と接地端子GNDとの間に接続されている。すなわち、第1回路CR1は、π型のローパスフィルタとして機能する。
 第2回路CR2は、インダクタL21,L22と、キャパシタC21,C22と、抵抗素子R1とを含む。インダクタL21は、第1回路CR1が接続される分岐点BP1と、第1端子T1との間に接続される。インダクタL22は、分岐点BP1と第2端子T2との間に接続される。
 キャパシタC21は、第1端子T1と接地端子GNDとの間に接続される。キャパシタC22は、第2端子T2と接地端子GNDとの間に接続される。抵抗素子R1は、第1端子T1と第2端子T2との間に接続される。
 第2回路CR2において、インダクタL21のインダクタンス値は、インダクタL22のインダクタンス値と同じ値に設定される。また、キャパシタC21のキャパシタンス値は、キャパシタC22のキャパシタンス値と同じ値に設定される。すなわち、分岐点BP1から第1端子T1に至る経路のインピーダンス値は、分岐点BP1から第2端子T2に至る経路のインピーダンス値と同じ値となる。これにより、共通端子T0に供給された電力は、第2回路CR2によって等分されて第1端子T1および第2端子T2から出力される。
 上記のような回路において、第1回路CR1によって、第1端子T1から第2端子T2に至る経路のアイソレーション特性において、少なくとも1つの減衰極が形成される。また、第2回路CR2に含まれる抵抗素子R1によって、アイソレーション特性において1つの減衰極が形成される。
 (電力分配器の構造)
 次に図2および図3を用いて、電力分配器100の詳細な構造について説明する。図2は電力分配器100の外形斜視図であり、図3は電力分配器100の積層構造の一例を示す分解斜視図である。
 図2および図3を参照して、電力分配器100は、複数の誘電体層LY1~LY9が積層方向に積層された、直方体または略直方体の積層体110と、積層体110の外部に設けられた抵抗素子R1とを含む。誘電体層LY1~LY9は、たとえば低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)などのセラミック、あるいは樹脂により形成されている。積層体110の内部において、各誘電体層に設けられた複数の電極、および、誘電体層間に設けられた複数のビアによって、図1の第1回路CR1および第2回路CR2におけるインダクタおよびキャパシタが構成される。なお、本明細書において「ビア」とは、異なる誘電体層に設けられた電極を接続するために、誘電体層中に設けられる導体を示す。ビアは、たとえば、導電ペースト、めっき、および/または金属ピンなどによって形成される。
 なお、以降の説明においては、積層体110における誘電体層LY1~LY9の積層方向を「Z軸方向」とし、Z軸方向に垂直であって積層体110の長辺に沿った方向を「X軸方向」とし、積層体110の短辺に沿った方向を「Y軸方向」とする。また、以下では、各図におけるZ軸の正方向を上側、負方向を下側と称する場合がある。
 積層体110は上面111と、下面112と、側面113~116とを有する。上面111は積層体110のZ軸の正方向の面であり、下面112は積層体110のZ軸の負方向の面である。側面113は積層体110のX軸の正方向の面であり、側面114は積層体110のX軸の負方向の面である。側面115は積層体110のY軸の正方向の面であり、側面116は積層体110のY軸の負方向の面である。
 積層体110の上面111(誘電体層LY1)には、電力分配器100の方向を特定するための方向性マークDMが配置されている。積層体110の側面115,116には、積層体110を他の機器と接続するための複数の外部端子(共通端子T0、第1端子T1、第2端子T2および接地端子GND)が配置されている。各外部端子は、略C字形状を有しており、上面111から側面115を通って下面112まで、あるいは、上面111から側面116を通って下面112まで延在している。側面115側には、第1端子T1、第2端子T2および接地端子GNDが配置されている。側面116側には、共通端子T0および接地端子GNDが配置されている。抵抗素子R1は、第1端子T1および第2端子T2に接続されている。
 共通端子T0は、下面112側の誘電体層LY9に配置されたキャパシタ電極PC1に接続されている。キャパシタ電極PC1は、積層体110を積層方向(Z軸方向)から平面視した場合に、誘電体層LY8に配置された、略矩形形状の接地電極PG1と少なくとも一部が重なっている。接地電極PG1は、接地端子GNDに接続されている。キャパシタ電極PC1と接地電極PG1とによって、図1の第1回路CR1におけるキャパシタC1が構成される。
 また、共通端子T0は、誘電体層LY2に配置された平板電極P10にも接続されている。平板電極P10は、X軸方向に延在する帯状の電極であり、その中央部分において、共通端子T0と接続されている。平板電極P10の一方端にはビアV11が接続されており、平板電極P10の他方端にはビアV15が接続されている。
 ビアV11は、誘電体層LY3に配置された帯状の平板電極PL11の一方端に接続される。平板電極PL11は、略U字またはC字形状を有している。平板電極PL11の他方端には、ビアV12が接続される。ビアV12は、誘電体層LY4に配置された帯状の平板電極PL12の一方端に接続される。平板電極PL12は、略U字またはC字形状を有している。平板電極PL12の他方端には、ビアV13が接続される。ビアV13は、誘電体層LY5に配置された帯状の平板電極PL13の一方端に接続される。平板電極PL13は、略U字またはC字形状を有している。平板電極PL13の他方端には、ビアV14が接続される。
 平板電極PL11,PL12,PL13は、積層体110を積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL11,PL12,PL13およびビアV11,V12,V13,V14によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図1におけるインダクタL11に対応する。
 ビアV15は、誘電体層LY3に配置された帯状の平板電極PL15の一方端に接続される。平板電極PL15は、略U字またはC字形状を有している。平板電極PL15の他方端には、ビアV16が接続される。ビアV16は、誘電体層LY4に配置された帯状の平板電極PL16の一方端に接続される。平板電極PL16は、略U字またはC字形状を有している。平板電極PL16の他方端には、ビアV17が接続される。ビアV17は、誘電体層LY5に配置された帯状の平板電極PL17の一方端に接続される。平板電極PL17は、略U字またはC字形状を有している。平板電極PL17の他方端には、ビアV18が接続される。
 平板電極PL15,PL16,PL17は、積層体110を積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL15,PL16,PL17およびビアV15,V16,V17,V18によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図1におけるインダクタL12に対応する。
 インダクタL11を構成するビアV14、および、インダクタL12を構成するビアV18は、誘電体層LY6に配置された平板電極P11に接続されている。平板電極P11はX軸方向に延在する帯状の電極であり、平板電極P11の一方端にビアV14が接続されており、平板電極P11の他方端にビアV18が接続されている。平板電極P11は、中央部分において、平板電極P11と平行に延在する平板電極P12に接続される。
 平板電極P11と平板電極P12とを接続している接続部分P13には、ビアV19が接続されている。ビアV19は、誘電体層LY7に配置された平板電極PC2に接続されている。平板電極PC2は矩形形状を有しており、積層体110を積層方向から平面視した場合に、誘電体層LY8の接地電極PG1と少なくとも一部が重なっている。平板電極PC2と接地電極PG1とによって、図1の第1回路CR1におけるキャパシタC2が構成される。
 平板電極P12は、X軸方向に延在する帯状の電極であり、平板電極P12の一方端に平板電極PL21が接続されており、平板電極P12の他方端に平板電極PL25が接続されている。
 平板電極PL21は、略U字またはC字形状を有する帯状の電極である。平板電極PL21において、平板電極P12と接続される端部とは反対の端部に、ビアV21が接続される。ビアV21は、誘電体層LY5に配置された帯状の平板電極PL22の一方端に接続される。平板電極PL22は、略U字またはC字形状を有している。平板電極PL22の他方端には、ビアV22が接続される。ビアV22は、誘電体層LY4に配置された帯状の平板電極PL23の一方端に接続される。平板電極PL23は、略U字またはC字形状を有している。平板電極PL23の他方端には、ビアV23が接続される。ビアV23は、誘電体層LY3に配置された帯状の平板電極PL24の一方端に接続される。平板電極PL24は、略U字またはC字形状を有している。平板電極PL24の他方端は、側面115に配置された第1端子T1に接続される。
 平板電極PL21,PL22,PL23,PL24は、積層体110を積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL21,PL22,PL23,PL24およびビアV21,V22,V23によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図1におけるインダクタL21に対応する。
 第1端子T1は、誘電体層LY9に配置された平板形状のキャパシタ電極PC3に接続される。キャパシタ電極PC3は、積層体110を積層方向から平面視した場合に、誘電体層LY8の接地電極PG1と少なくとも一部が重なっている。平板電極PC3と接地電極PG1とによって、図1の第2回路CR2におけるキャパシタC21が構成される。
 誘電体層LY6における平板電極PL25は、略U字またはC字形状を有する帯状の電極である。平板電極PL25において、平板電極P12と接続される端部とは反対の端部に、ビアV25が接続される。ビアV25は、誘電体層LY5に配置された帯状の平板電極PL26の一方端に接続される。平板電極PL26は、略U字またはC字形状を有している。平板電極PL26の他方端には、ビアV26が接続される。ビアV26は、誘電体層LY4に配置された帯状の平板電極PL27の一方端に接続される。平板電極PL27は、略U字またはC字形状を有している。平板電極PL27の他方端には、ビアV27が接続される。ビアV27は、誘電体層LY3に配置された帯状の平板電極PL28の一方端に接続される。平板電極PL28は、略U字またはC字形状を有している。平板電極PL28の他方端は、側面115に配置された第2端子T2に接続される。
 平板電極PL25,PL26,PL27,PL28は、積層体110を積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL25,PL26,PL27,PL28およびビアV25,V26,V27によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図1におけるインダクタL22に対応する。
 第2端子T2は、誘電体層LY9に配置された平板形状のキャパシタ電極PC4に接続される。キャパシタ電極PC4は、積層体110を積層方向から平面視した場合に、誘電体層LY8の接地電極PG1と少なくとも一部が重なっている。キャパシタ電極PC4と接地電極PG1とによって、図1の第2回路CR2におけるキャパシタC22が構成される。
 第1端子T1および第2端子T2には、図1の第2回路CR2における抵抗素子R1が接続される。抵抗素子R1は、図2に示したように、積層体110の外部に配置された個別のチップ抵抗として構成され、抵抗素子R1の外部端子が第1端子T1および第2端子T2に接続される。あるいは、抵抗素子R1は、積層体110の内部あるいは上面111に配置された平板電極PR1として構成されてもよい。図3の例においては、平板電極PR1は、たとえば、誘電体層LY2に配置されたX軸方向に延在する帯状の電極であり、平板電極PR1が側面115の第1端子T1に接続され、平板電極PR1の他方端が側面115の第2端子T2に接続される。なお、平板電極PR1は、所望の抵抗値を得るために、メアンダ形状の電極として構成されてもよい。
 図4は、誘電体層LY2~LY6において構成されるインダクタL11,L12、L21,L22の部分を、Z軸の正方向から平面視した概略図である。図4に示されるように、インダクタL11とインダクタL12とは、共通端子T0を通る仮想線CL1に対して線対称となる位置に配置されている。また、インダクタL21とインダクタL22についても、仮想線CL1に対して線対称となる位置に配置されている。
 さらに、インダクタL11の巻回方向(CW方向:第1方向)はインダクタL12の巻回方向(CCW方向:第2方向)とは反対であり、インダクタL21の巻回方向(CW方向)はインダクタL22の巻回方向(CCW方向)とは反対である。一方、インダクタL11の巻回方向はインダクタL21の巻回方向と同じであり、インダクタL12の巻回方向はインダクタL22の巻回方向と同じである。
 このように、積層体110において第1回路CR1および第2回路CR2に含まれるインダクタを対称的に配置することによって、共通端子T0から第1端子T1へ至る経路、および、共通端子T0から第2端子T2へ至る経路を構造的に対称とすることができる。また、仮想線CL1に対して同じ側に配置されたインダクタの巻回方向を同じ方向とするとともに、仮想線CL1に対して反対側に配置されたインダクタの巻回方向を逆方向とすることによって、インダクタによって生じる電磁界を対称的にすることができる。
 このような構成とすることによって、構造的および電磁的に対称な構成とすることができるので、電力分配器100における位相差および振幅差の変動を抑制することができる。また、仮想線CL1に対して同じ側に配置されたインダクタの巻回方向を同じ方向とすることによって、インダクタL11およびインダクタL21によって生じる電磁界同士の打ち消し合い、ならびに、インダクタL12およびインダクタL22によって生じる電磁界同士の打ち消し合いが防止できるため、電磁的特性の低下を抑制することができる。
 (電力分配器の特性)
 実施の形態1の電力分配器100の特性を、比較例とともに説明する。図5は、比較例における電力分配器100Xの等価回路図である。図5を参照して、電力分配器100Xにおいては、図1の電力分配器100における第1回路CR1が、第1回路CR1Xに置き換わった構成を有している。電力分配器100Xにおける第2回路CR2は、電力分配器100と同様である。電力分配器100Xの第1回路CR1Xにおいては、電力分配器100におけるインダクタL11,L12の並列回路が、単独のインダクタL1に置き換わった構成となっている。
 図6は、比較例の電力分配器100Xにおける、各インダクタの配置の概要を説明するための図であり、上記の図4に対応する図である。図6を参照して、電力分配器100Xの場合には、構造的には仮想線CL2に対してほぼ線対称な構成とすることはできるが、第1回路CR1XにおけるインダクタL1が1つであるため、インダクタL1の巻回方向は、インダクタL21あるいはインダクタL22のいずれかの巻回方向と反対になる。そのため、電力分配器100Xで発生する電磁界は対称的にならず、巻回方向が互いに逆方向になるインダクタ同士(図6においては、インダクタL1とインダクタL22)で電磁界の打ち消し合いが発生する。これより、電力分配器100Xにおいて、位相差および振幅差に変動が生じ得る。
 図7は、実施の形態1の電力分配器100および比較例の電力分配器100Xにおける位相差(PD:Phase Difference)と振幅バランス(AB:Amplitude Balance)の比較を示す図である。図7の上段は比較例の電力分配器100Xの特性であり、下段は実施の形態1の電力分配器100の特性である。
 図7を参照して、比較例の電力分配器100Xの場合には、位相差(線LN10)および振幅バランス(線LN15)ともに、周波数が高くなるにつれて大きく変動している。一方、実施の形態1の電力分配器100の場合には、位相差(線LN11)および振幅バランス(線LN16)とも、周波数が変化してもほぼゼロとなっており、比較例に比べて位相差および振幅差が改善している。
 以上のように、実施の形態1の電力分配器100のように、共通端子T0と分岐点BP1との間に配置されるインダクタを並列接続された2つのインダクタで構成するとともに、積層体を平面視した場合に、共通端子T0から第1端子T1までの経路と共通端子T0から第2端子T2までの経路が線対称となるように各インダクタを配置することによって、位相差および振幅差を改善することができる。
 なお、上記の説明においては、電力分配器100が、共通端子T0に入力された信号を第1端子T1および第2端子T2から出力する場合を例として説明したが、これとは反対に、第1端子T1および第2端子T2に入力された信号を合成して共通端子T0から出力する電力合成器として電力分配器100を機能させることも可能である。
 実施の形態1における「インダクタL11」、「インダクタL12」、「インダクタL21」および「インダクタL22」は、本開示における「第1インダクタ」、「第2インダクタ」、「第3インダクタ」および「第4インダクタ」にそれぞれ対応する。実施の形態1における「キャパシタC1」、「キャパシタC2」、「キャパシタC21」および「キャパシタC22」は、本開示における「第1キャパシタ」、「第2キャパシタ」、「第3キャパシタ」および「第4キャパシタ」にそれぞれ対応する。
 [実施の形態2]
 実施の形態2においては、電力分配器の第2回路にさらに回路が追加された構成について説明する。
 (電力分配器の回路構成)
 図8は、実施の形態2に係る電力分配器100Aの等価回路図である。電力分配器100Aは、実施の形態1の電力分配器100における第2回路CR2が、第2回路CR2Aに置き換えられた構成となっている。第2回路CR2Aは、実施の形態1の第2回路CR2の構成に加えて、さらに第3回路CR3を含んでいる。なお、電力分配器100Aにおいて、実施の形態1の電力分配器100と重複する要素の説明は繰り返さない。
 図8を参照して、第3回路CR3は、第2回路CR2の構成と第1端子T1および第2端子T2との間に配置されている。第3回路CR3は、インダクタL31,L32およびキャパシタC31,C32を含む。
 インダクタL31は、インダクタL21と第1端子T1との間に接続される。言い換えれば、インダクタL21,L31は、分岐点BP1と第1端子T1との間に直列に接続される。インダクタL32は、インダクタL22と第2端子T2との間に接続される。言い換えれば、インダクタL22,L32は、分岐点BP1と第2端子T2との間に直列に接続される。
 キャパシタC31は、抵抗素子R1に並列に接続される。また、キャパシタC32は、第1端子T1と第2端子T2との間に接続される。
 第2回路CR2Aに含まれる第3回路CR3によって、第1端子T1から第2端子T2に至る経路のアイソレーション特性において、さらに1つの減衰極が形成される。
 (電力分配器の構造)
 次に図9および図10を用いて、電力分配器100Aの詳細な構造について説明する。図9は電力分配器100Aの外形斜視図であり、図10は電力分配器100Aの積層構造の一例を示す分解斜視図である。
 図9および図10を参照して、電力分配器100Aは、複数の誘電体層LY11~LY23が積層方向に積層された、直方体または略直方体の積層体110Aと、積層体110Aの外部に設けられた抵抗素子R1とを含む。誘電体層LY11~LY23は、実施の形態1と同様に、たとえば低温同時焼成セラミックス(LTCC)などのセラミック、あるいは樹脂により形成されている。
 積層体110Aの上面111(誘電体層LY11)には、電力分配器100Aの方向を特定するための方向性マークDMが配置されている。積層体110Aにおいては、側面113,114にも外部端子が配置されている。側面114の外部端子は第1端子T1であり、側面113の外部端子は第2端子T2である。また、側面116には共通端子T0と接地端子GNDが配置されており、側面115には接地端子GNDと接続端子T3,T4が配置されている。抵抗素子R1は、接続端子T3,T4に接続されている。
 共通端子T0は、下面112側の誘電体層LY23に配置されたキャパシタ電極PC11に接続されている。キャパシタ電極PC11は、積層体110Aを積層方向から平面視した場合に、誘電体層LY22に配置された、略矩形形状の接地電極PG10と少なくとも一部が重なっている。接地電極PG10は、接地端子GNDに接続されている。キャパシタ電極PC11と接地電極PG10とによって、図8の第1回路CR1におけるキャパシタC1が構成される。
 また、共通端子T0は、誘電体層LY19に配置された平板電極PL31,PL41にも接続されている。平板電極PL31,PL41の各々は、略U字またはC字形状を有する帯状の電極であり、互いの一方端同士が接続されている。平板電極PL31と平板電極PL41との接続部分に、共通端子T0が接続されている。平板電極PL31の他方端にはビアV31が接続されており、平板電極PL41の他方端にはビアV41が接続されている。
 ビアV31は、誘電体層LY18に配置された帯状の平板電極PL32の一方端に接続される。平板電極PL32は、略U字またはC字形状を有している。平板電極PL32の他方端には、ビアV32が接続される。ビアV32は、誘電体層LY17に配置された帯状の平板電極PL33の一方端に接続される。平板電極PL33は、略U字またはC字形状を有している。平板電極PL33の他方端には、ビアV33が接続される。ビアV33は、誘電体層LY16に配置された帯状の平板電極PL34の一方端に接続される。平板電極PL34は、略U字またはC字形状を有している。平板電極PL34の他方端には、ビアV34が接続される。ビアV34は、誘電体層LY15に配置された帯状の平板電極PL35の一方端に接続される。平板電極PL35は、略U字またはC字形状を有している。
 平板電極PL31,PL32,PL33,PL34,PL35は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL31,PL32,PL33,PL34,PL35およびビアV31,V32,V33,V34によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL11に対応する。
 ビアV41は、誘電体層LY18に配置された帯状の平板電極PL42の一方端に接続される。平板電極PL42は、略U字またはC字形状を有している。平板電極PL42の他方端には、ビアV42が接続される。ビアV42は、誘電体層LY17に配置された帯状の平板電極PL43の一方端に接続される。平板電極PL43は、略U字またはC字形状を有している。平板電極PL43の他方端には、ビアV43が接続される。ビアV43は、誘電体層LY16に配置された帯状の平板電極PL44の一方端に接続される。平板電極PL44は、略U字またはC字形状を有している。平板電極PL44の他方端には、ビアV44が接続される。ビアV44は、誘電体層LY15に配置された帯状の平板電極PL45の一方端に接続される。平板電極PL45は、略U字またはC字形状を有している。
 平板電極PL41,PL42,PL43,PL44,PL45は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL41,PL42,PL43,PL44,PL45およびビアV41,V42,V43,V44によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL12に対応する。
 誘電体層LY15において、平板電極PL35の一部は平板電極PL45の一部と重複しており、互いの他方端は共通化されている。平板電極PL35および平板電極PL45の共通化された他方端には、ビアV1が接続されている。
 ビアV1は、誘電体層LY14に配置された平板電極P20、および、誘電体層LY13に配置されたキャパシタ電極PC14に接続される。平板電極P20およびキャパシタ電極PC14の各々は、いずれもX軸方向に延在する帯状の電極であり、延在方向の中央部分でビアV1に接続されている。
 積層体110Aを積層方向から平面視した場合に、キャパシタ電極PC14の一部は、誘電体層LY12に配置された接地電極PG11と重なっている。接地電極PG11は、X軸方向に延在する帯状の電極である。接地電極PG11の両方の端部は、側面116に配置された接地端子GNDに接続される。キャパシタ電極PC14と接地電極PG11とによって、図8の等価回路におけるキャパシタC2が構成される。
 誘電体層LY14における平板電極P20の一方端にはビアV51が接続されており、平板電極P20の他方端にはビアV61が接続されている。ビアV51は、誘電体層LY15に配置された平板電極PL51の一方端に接続される。平板電極PL51は、略U字またはC字形状を有している。平板電極PL51の他方端には、ビアV52が接続される。ビアV52は、誘電体層LY16に配置された帯状の平板電極PL52の一方端に接続される。平板電極PL52は、略U字またはC字形状を有している。平板電極PL52の他方端には、ビアV53が接続される。ビアV53は、誘電体層LY17に配置された帯状の平板電極PL53の一方端に接続される。平板電極PL53は、略U字またはC字形状を有している。平板電極PL53の他方端には、ビアV54が接続される。ビアV54は、誘電体層LY18に配置された帯状の平板電極PL54の一方端に接続される。平板電極PL53は、略U字またはC字形状を有している。平板電極PL53の他方端は、側面115に配置された接続端子T3に接続されるとともに、帯状の平板電極PL71の一方端に接続される。
 平板電極PL51,PL52,PL53,PL54は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL51,PL52,PL53,PL54およびビアV51,V52,V53,V54によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL21に対応する。
 ビアV61は、誘電体層LY15に配置された平板電極PL61の一方端に接続される。平板電極PL61は、略U字またはC字形状を有している。平板電極PL61の他方端には、ビアV62が接続される。ビアV62は、誘電体層LY16に配置された帯状の平板電極PL62の一方端に接続される。平板電極PL62は、略U字またはC字形状を有している。平板電極PL62の他方端には、ビアV63が接続される。ビアV63は、誘電体層LY17に配置された帯状の平板電極PL63の一方端に接続される。平板電極PL63は、略U字またはC字形状を有している。平板電極PL63の他方端には、ビアV64が接続される。ビアV64は、誘電体層LY18に配置された帯状の平板電極PL64の一方端に接続される。平板電極PL63は、略U字またはC字形状を有している。平板電極PL63の他方端は、側面115に配置された接続端子T4に接続されるとともに、帯状の平板電極PL81の一方端に接続される。
 平板電極PL61,PL62,PL63,PL64は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL61,PL62,PL63,PL64およびビアV61,V62,V63,V64によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL22に対応する。
 誘電体層LY18における平板電極PL71の他方端には、ビアV71が接続される。ビアV71は、誘電体層LY17に配置された帯状の平板電極PL72の一方端に接続される。平板電極PL72は、略U字またはC字形状を有している。平板電極PL72の他方端には、ビアV72が接続される。ビアV72は、誘電体層LY16に配置された帯状の平板電極PL73の一方端に接続される。平板電極PL73は、略U字またはC字形状を有している。平板電極PL73の他方端には、ビアV74が接続される。ビアV74は、誘電体層LY15に配置された帯状の平板電極PL74の一方端に接続される。平板電極PL74は、略U字またはC字形状を有している。平板電極PL74の他方端は、側面114に配置された第1端子T1に接続される。
 平板電極PL71,PL72,PL73,PL74は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL71,PL72,PL73,PL74およびビアV71,V72,V73によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL31に対応する。
 誘電体層LY18における平板電極PL81の他方端には、ビアV81が接続される。ビアV81は、誘電体層LY17に配置された帯状の平板電極PL82の一方端に接続される。平板電極PL82は、略U字またはC字形状を有している。平板電極PL82の他方端には、ビアV82が接続される。ビアV82は、誘電体層LY16に配置された帯状の平板電極PL83の一方端に接続される。平板電極PL83は、略U字またはC字形状を有している。平板電極PL83の他方端には、ビアV84が接続される。ビアV84は、誘電体層LY15に配置された帯状の平板電極PL84の一方端に接続される。平板電極PL84は、略U字またはC字形状を有している。平板電極PL84の他方端は、側面113に配置された第2端子T2に接続される。
 平板電極PL81,PL82,PL83,PL84は、積層体110Aを積層方向から平面視した場合に、互いに経路の大部分が重なるように配置されている。すなわち、平板電極PL81,PL82,PL83,PL84およびビアV81,V82,V83によって、Z軸を巻回軸とするヘリカルコイルが構成される。このヘリカルコイルは、図8におけるインダクタL32に対応する。
 誘電体層LY15において、平板電極PL74の途中には、ビアV2が接続されている。ビアV2は、誘電体層LY13に配置されたキャパシタ電極PC15に接続される。キャパシタ電極PC15は、X軸方向に延在する帯状の電極である。同様に、誘電体層LY15において、平板電極PL84の途中には、ビアV3が接続されている。ビアV3は、誘電体層LY13に配置されたキャパシタ電極PC16に接続される。キャパシタ電極PC16は、X軸方向に延在する帯状の電極である。
 積層体110Aを積層方向から平面視した場合に、キャパシタ電極PC15の一部、および、キャパシタ電極PC16の一部は、誘電体層LY12に配置されたキャパシタ電極PC17と重なっている。キャパシタ電極PC17は、X軸方向に延在する帯状の電極である。キャパシタ電極PC15,PC16,PC17によって、図8の等価回路におけるキャパシタC32が構成される。
 積層体110Aの側面115に配置された接続端子T3は、誘電体層LY18に配置された平板電極PL54,PL71、誘電体層LY20に配置されたキャパシタ電極PC19、および、誘電体層LY23に配置されたキャパシタ電極PC12に接続されている。積層体110Aを積層方向から平面視した場合に、誘電体層LY23に配置されたキャパシタ電極PC12の一部は、誘電体層LY22の接地電極PG11と重なっている。キャパシタ電極PC12と接地電極PG11とによって、図8の等価回路におけるキャパシタC21が構成される。
 積層体110Aの側面115に配置された接続端子T4は、誘電体層LY18に配置された平板電極PL64,PL81、誘電体層LY20に配置されたキャパシタ電極PC20、および、誘電体層LY23に配置されたキャパシタ電極PC13に接続されている。積層体110Aを積層方向から平面視した場合に、誘電体層LY23に配置されたキャパシタ電極PC13の一部は、誘電体層LY22の接地電極PG11と重なっている。キャパシタ電極PC13と接地電極PG11とによって、図8の等価回路におけるキャパシタC22が構成される。
 誘電体層LY20に配置されたキャパシタ電極PC19の一部、および、キャパシタ電極PC20の一部は、積層体110Aを積層方向から平面視した場合に、誘電体層LY21に配置されたキャパシタ電極PC18と重なっている。キャパシタ電極PC18,PC19,PC20よって、図8の等価回路におけるキャパシタC31が構成される。
 図10には示されていないが、接続端子T3,T4には、積層体110Aの外部に設けられた抵抗素子R1が接続される。なお、抵抗素子R1は、積層体110Aの内部に配置されていてもよい。
 図11は、誘電体層LY15~LY19において構成されるインダクタL11,L12、L21,L22,L31,L32の部分を、Z軸の正方向から平面視した概略図である。図11に示されるように、インダクタL11とインダクタL12とは、共通端子T0を通る仮想線CL2に対して線対称となる位置に配置されている。また、インダクタL21とインダクタL22、および、インダクタL31とインダクタL32についても、仮想線CL2に対して線対称となる位置に配置されている。
 インダクタL11,L21,L31の巻回方向はいずれもCW方向で同じ方向となっている。一方、インダクタL12,L22,L32の巻回方向はいずれもCCW方向で同じ方向となっている。
 このように、積層体110Aに含まれるインダクタを対称的に配置することによって、共通端子T0から第1端子T1へ至る経路、および、共通端子T0から第2端子T2へ至る経路を構造的に対称とすることができる。さらに、仮想線CL2に対して同じ側に配置された巻回方向を同じ方向とするとともに、仮想線CL2に対して反対側に配置されたインダクタの巻回方向を逆方向とすることによって、インダクタによって生じる電磁界を対称的にすることができる。
 このような構成とすることによって、構造的および電磁的に対称な構成とすることができるので、電力分配器100Aにおける位相差および振幅差の変動を抑制することができる。また、仮想線CL2に対して同じ側に配置されたインダクタの巻回方向を同じ方向とすることによって、インダクタL11,L21,L31によって生じる電磁界同士の打ち消し合い、ならびに、インダクタL12,L22,L32によって生じる電磁界同士の打ち消し合いが防止できるため、電磁的特性の低下を抑制することができる。
 (アイソレーション特性)
 図12は、実施の形態2の電力分配器100A、および実施の形態1で示した比較例の電力分配器100Xにおける、第1端子T1と第2端子T2との間のアイソレーションを示した図である。図12において、実線LN20は実施の形態2の電力分配器100Aを示しており、破線LN21は比較例の電力分配器100Xを示している。
 図12を参照して、比較例の電力分配器100Xにおいては3.5GHz付近および4.7GHz付近の2箇所に減衰極が生じている。一方、実施の形態2の電力分配器100Aにおいては、第3回路CR3によって減衰極が追加されており、2.7GHz付近、3.9GHz付近、および5.0GHz付近の3箇所に減衰極が生じている。これによって、比較例に比べて実施の形態2の電力分配器100Aにおける減衰量が全体的に大きくなっている。そのため、たとえば20dBのアイソレーションを達成し得る周波数帯域幅を比べると、電力分配器100Aの帯域幅BW1は、比較例における帯域幅BW2よりも拡大している(BW1>BW2)。すなわち、アイソレーション特性の広帯域化が実現されている。
 図13は、実施の形態2の電力分配器100Aについての、第1端子T1と第2端子T2との間の位相差(PD)と振幅バランス(AB)を示す図である。位相差(線LN30)については、周波数が高くなるにつれて若干の位相差が生じているが、位相差は1°未満に抑えられている。また、振幅バランス(線LN31)については、周波数の全域においてゼロdBが達成されている。すなわち、実施の形態2の電力分配器100Aの構成においても、図7で示した比較例の場合に比べて位相差および振幅差の変動が抑制されている。
 以上のように、電力分配器において、信号分岐後の回路に第3回路を追加した構成においても、インダクタを対称的に配置するとともに、インダクタの巻回方向を対称とすることによって、位相差および振幅差の変動が抑制できる。
 なお、実施の形態2における「インダクタL31」および「インダクタL32」は、本開示における「第5インダクタ」および「第6インダクタ」にそれぞれ対応する。実施の形態1における「キャパシタC31」および「キャパシタC32」は、本開示における「第5キャパシタ」および「第6キャパシタ」にそれぞれ対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100,100A,100X 電力分配器、110,110A 積層体、111 上面、112 下面、113~116 側面、BP1 分岐点、C1,C2,C21,C22,C31,C32 キャパシタ、CR1,CR1X 第1回路、CR2,CR2A 第2回路、CR3 第3回路、DM 方向性マーク、GND 接地端子、L1,L11,L12,L21,L22,L31,L32 インダクタ、LY1~LY9,LY11~LY23 誘電体層、P10~P12,P20,PC2,PC3,PL11~PL13,PL15~PL17,PL21~PL28,PL31~PL35,PL41~PL45,PL51~PL54,PL61~PL64,PL71~PL74,PL81~PL84,PR1 平板電極、P13 接続部分、PC1,PC3,PC4,PC11~PC20 キャパシタ電極、PG1,PG10,PG11 接地電極、R1 抵抗素子、T0 共通端子、T1 第1端子、T2 第2端子、T3,T4 接続端子、V1~V3,V11~V19,V21~V23,V25~V27,V31~V34,V41~V44,V51~V54,V61~V64,V71~V74,V81~V84 ビア。

Claims (10)

  1.  共通端子と、
     接地端子と、
     第1端子および第2端子と、
     前記共通端子に接続された第1回路と、
     前記第1端子および前記第2端子に接続され、前記第1回路を通過した信号を分岐点において分岐して前記第1端子および前記第2端子に伝達する第2回路とを備え、
     前記第1回路は、
      前記共通端子と前記分岐点との間に並列に接続された第1インダクタおよび第2インダクタと、
      前記共通端子と前記接地端子との間に接続された第1キャパシタと、
      前記分岐点と前記接地端子との間に接続された第2キャパシタとを含み、
     前記第2回路は、
      一方端が前記分岐点に接続され、前記分岐点から前記第1端子に至る経路に配置された第3インダクタと、
      一方端が前記分岐点に接続され、前記分岐点から前記第2端子に至る経路に配置された第4インダクタと、
      前記第3インダクタの他方端と前記接地端子との間に接続された第3キャパシタと、
      前記第4インダクタの他方端と前記接地端子との間に接続された第4キャパシタと、
      前記第3インダクタの他方端と前記第4インダクタの他方端との間に接続された抵抗素子とを含む、電力分配器。
  2.  複数の誘電体層が積層された積層体をさらに備え、
     前記第1インダクタ、前記第2インダクタ、前記第3インダクタおよび前記第4インダクタの各々は、前記積層体の内部に配置され、前記積層体の積層方向を巻回軸とするコイルであり、
     前記積層体を積層方向から平面視した場合に、
      前記第1インダクタおよび前記第2インダクタは、前記共通端子を通る仮想線に対して線対称の位置に配置され、
      前記第3インダクタおよび前記第4インダクタは、前記仮想線に対して線対称の位置に配置される、請求項1に記載の電力分配器。
  3.  前記積層体を積層方向から平面視した場合に、
      前記第1インダクタおよび前記第3インダクタの巻回方向は第1方向であり、
      前記第2インダクタおよび前記第4インダクタの巻回方向は、前記第1方向と反対の第2方向である、請求項2に記載の電力分配器。
  4.  前記抵抗素子は、前記積層体の外部に配置される、請求項2または3に記載の電力分配器。
  5.  前記第2回路は、
      前記第3インダクタの他方端と前記第1端子との間に接続された第5インダクタと、
      前記第4インダクタの他方端と前記第2端子との間に接続された第6インダクタと、
      前記抵抗素子に並列に接続された第5キャパシタと、
      前記第1端子と前記第2端子との間に接続された第6キャパシタとをさらに備える、請求項1に記載の電力分配器。
  6.  複数の誘電体層が積層された積層体をさらに備え、
     前記第1インダクタ~前記第6インダクタの各々は、前記積層体の内部に配置され、前記積層体の積層方向を巻回軸とするコイルであり、
     前記積層体を積層方向から平面視した場合に、
      前記第1インダクタおよび前記第2インダクタは、前記共通端子を通る仮想線に対して線対称の位置に配置され、
      前記第3インダクタおよび前記第4インダクタは、前記仮想線に対して線対称の位置に配置され、
      前記第5インダクタおよび前記第6インダクタは、前記仮想線に対して線対称の位置に配置される、請求項5に記載の電力分配器。
  7.  前記積層体を積層方向から平面視した場合に、
      前記第1インダクタ、前記第3インダクタおよび前記第5インダクタの巻回方向は第1方向であり、
      前記第2インダクタ、前記第4インダクタおよび前記第6インダクタの巻回方向は、前記第1方向と反対の第2方向である、請求項6に記載の電力分配器。
  8.  前記抵抗素子は、前記積層体の外部に配置される、請求項6または7に記載の電力分配器。
  9.  前記第1回路によって、前記第1端子から前記第2端子に至る経路のアイソレーション特性において、少なくとも1つの減衰極が生じる、請求項1~8のいずれか1項に記載の電力分配器。
  10.  前記第2回路によって、前記第1端子から前記第2端子に至る経路のアイソレーション特性において、少なくとも1つの減衰極が生じる、請求項1~9のいずれか1項に記載の電力分配器。
PCT/JP2022/029826 2021-09-21 2022-08-03 電力分配器 WO2023047812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023549401A JPWO2023047812A1 (ja) 2021-09-21 2022-08-03
CN202280063120.9A CN117957767A (zh) 2021-09-21 2022-08-03 功率分配器
US18/605,938 US20240222838A1 (en) 2021-09-21 2024-03-15 Power divider

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021153152 2021-09-21
JP2021-153152 2021-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/605,938 Continuation US20240222838A1 (en) 2021-09-21 2024-03-15 Power divider

Publications (1)

Publication Number Publication Date
WO2023047812A1 true WO2023047812A1 (ja) 2023-03-30

Family

ID=85719426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029826 WO2023047812A1 (ja) 2021-09-21 2022-08-03 電力分配器

Country Status (4)

Country Link
US (1) US20240222838A1 (ja)
JP (1) JPWO2023047812A1 (ja)
CN (1) CN117957767A (ja)
WO (1) WO2023047812A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344276A (ja) * 2001-05-16 2002-11-29 Murata Mfg Co Ltd 高周波電力分配・合成回路および高周波電力分配・合成部品
JP2011166344A (ja) * 2010-02-08 2011-08-25 Tdk Corp 積層型電子部品
WO2020045576A1 (ja) * 2018-08-30 2020-03-05 株式会社村田製作所 電力分配/結合回路および電力分配/結合部品
WO2020121985A1 (ja) * 2018-12-12 2020-06-18 株式会社村田製作所 電力分配器
WO2021085002A1 (ja) * 2019-10-30 2021-05-06 株式会社村田製作所 コイル部品および、これを含むフィルタ回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344276A (ja) * 2001-05-16 2002-11-29 Murata Mfg Co Ltd 高周波電力分配・合成回路および高周波電力分配・合成部品
JP2011166344A (ja) * 2010-02-08 2011-08-25 Tdk Corp 積層型電子部品
WO2020045576A1 (ja) * 2018-08-30 2020-03-05 株式会社村田製作所 電力分配/結合回路および電力分配/結合部品
WO2020121985A1 (ja) * 2018-12-12 2020-06-18 株式会社村田製作所 電力分配器
WO2021085002A1 (ja) * 2019-10-30 2021-05-06 株式会社村田製作所 コイル部品および、これを含むフィルタ回路

Also Published As

Publication number Publication date
CN117957767A (zh) 2024-04-30
JPWO2023047812A1 (ja) 2023-03-30
US20240222838A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US6987984B1 (en) High-frequency switch module
US9065506B2 (en) High-frequency switch module
KR100233744B1 (ko) 안테나 스위치
WO2016042990A1 (ja) 高周波部品
US7262675B2 (en) Laminated filter with improved stop band attenuation
US9319092B2 (en) High-frequency module
US20170070203A1 (en) Tunable Duplexer Having a Circulator
US11972894B2 (en) Power divider
US9883585B2 (en) Radio-frequency circuit module
WO2023047812A1 (ja) 電力分配器
JPWO2010147197A1 (ja) 高周波モジュール
US9240383B2 (en) High frequency switch module
US10276912B2 (en) Directional coupler
WO2021241104A1 (ja) Lcフィルタ、ならびにそれを用いたダイプレクサおよびマルチプレクサ
JP2001185972A (ja) 積層フィルタ
JP7568070B2 (ja) フィルタ装置およびそれを備えた高周波フロントエンド回路
JP5545363B2 (ja) 複合部品
JP2003158467A (ja) Rfデバイスおよびそれを用いた通信機器
WO2022163090A1 (ja) 方向性結合器
JP7524966B2 (ja) フィルタ装置およびそれを搭載した高周波フロントエンド回路
WO2023013267A1 (ja) フィルタ装置
CN112290903B (zh) 双工器
WO2022059373A1 (ja) フィルタ装置およびそれを備えた高周波フロントエンド回路
JP2004241875A (ja) アンテナスイッチ
JP2022077784A (ja) フィルタ装置およびそれを搭載した高周波フロントエンド回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063120.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872568

Country of ref document: EP

Kind code of ref document: A1