WO2023045502A1 - 组网工作参数控制方法、终端及存储介质 - Google Patents

组网工作参数控制方法、终端及存储介质 Download PDF

Info

Publication number
WO2023045502A1
WO2023045502A1 PCT/CN2022/105022 CN2022105022W WO2023045502A1 WO 2023045502 A1 WO2023045502 A1 WO 2023045502A1 CN 2022105022 W CN2022105022 W CN 2022105022W WO 2023045502 A1 WO2023045502 A1 WO 2023045502A1
Authority
WO
WIPO (PCT)
Prior art keywords
networking
current
network
power consumption
working parameters
Prior art date
Application number
PCT/CN2022/105022
Other languages
English (en)
French (fr)
Inventor
王婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023045502A1 publication Critical patent/WO2023045502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication networks, for example, to a method for controlling network working parameters, a terminal and a storage medium.
  • the fifth generation mobile communication (Fifth Generation, 5G) network supports a larger system bandwidth.
  • 5G networks often use Non-Standalone (NSA) networking, but NSA networking consumes a lot of power and has obvious heating problems.
  • NSA networking consumes a lot of power and has obvious heating problems.
  • Long-term use of 5G networks has a serious impact on the battery life and temperature performance of terminals.
  • the advantage of the 5G system is its high speed, which has an absolute advantage in high-speed business scenarios, but its advantages cannot be brought into play in scenarios where users browse web pages, pictures or standby, etc. The problem persists.
  • the solution is to set a 5G switch on the terminal, automatically search for the network and switch to the 5G network after it is turned on, and switch to the fourth generation mobile communication (Fifth Generation, 4G) after it is turned off Network to save power and reduce heat.
  • This method requires manual operations by the user, and cannot effectively balance the relationship between service requirements and power consumption. Moreover, each switching of the network will cause short-term service interruptions and affect service quality.
  • the present application provides a network working parameter control method, a terminal, and a storage medium, so as to effectively control power consumption, meet different business requirements, and improve business service quality.
  • This application provides a method for controlling network working parameters, including:
  • the present application also provides a network working parameter control device, including:
  • the obtaining module is configured to obtain the current power consumption characteristic value of the current networking; the parameter adjustment module is configured to, when the current power consumption characteristic value is not within the target range, according to the networking type and business of the current networking The demand type adjusts the corresponding networking working parameters until the next power consumption characteristic value of the current networking is within the target range.
  • the present application also provides a terminal, including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the above method for controlling network working parameters when executing the program.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above method for controlling network working parameters is realized.
  • FIG. 1 is a schematic flowchart of a method for controlling network working parameters provided by an embodiment
  • FIG. 2 is a schematic flowchart of another method for controlling network working parameters provided by an embodiment
  • Fig. 3 is a schematic structural diagram of a networking working parameter control device provided by an embodiment
  • FIG. 4 is a schematic diagram of a hardware structure of a terminal provided by an embodiment
  • Fig. 5 is a schematic structural diagram of a network working parameter control system provided by an embodiment.
  • Fig. 1 is a schematic flowchart of a method for controlling network working parameters provided by an embodiment. This embodiment is applicable to the situation where the power consumption is controlled by adjusting the working parameters of the current networking.
  • the method for controlling network working parameters can be executed by a device for controlling network working parameters.
  • the device for controlling network working parameters can be realized by means of software and/or hardware, and integrated in a terminal. Terminals include but are not limited to electronic devices such as computers, tablet computers, smart phones, and smart watches.
  • the method for controlling network working parameters in this embodiment may include the following S110 and S120.
  • the current networking may be regarded as the networking type currently used by the user terminal.
  • networking There are two types of networking, one is NSA networking, that is, the radio frequency function of the new generation communication network is added on the basis of the first generation communication network, and the two generations of communication networks work together; the other is the independent (Standalone, SA) group network, that is, a new generation of communication network that operates independently.
  • SA Standalone
  • both the NSA network and the SA network can be considered as a 5G network.
  • the NSA network can refer to a 5G network formed by connecting 5G base stations to the 4G core network, that is, to transform the 4G network and add 5G functions on the basis of the 4G network to construct a 5G network.
  • SA networking can refer to a kind of original ecological 5G network independently constructed by using 5G technology.
  • the NSA network consumes a lot of power and generates high heat. When users use the NSA network for a long time, it will have a serious impact on the battery life and heat generation of the terminal. However, the heat generation of the SA network is generally lower than that of the NSA network; therefore, the user is using the NSA network.
  • the SA network can be enabled first. If the SA network cannot be used (for example, the user's area does not support the SA network, or the terminal used by the user does not support the SA network, etc.), the NSA network can be used.
  • the characteristic value of the current power consumption may refer to information representing the current power consumption state of the terminal.
  • the current power consumption characteristic value may be one or more, for example, the total current value, the total voltage value of the transmitting link and the receiving link of the terminal, and/or the temperature value of the terminal.
  • the transmission link may refer to the link through which the terminal transmits signals to the base station;
  • the reception link may refer to the link through which the terminal receives signals from the base station; and multiple frequency bands in which the terminal works are configured with corresponding transmission links and reception links.
  • the total current value of the transmitting link and the receiving link is positively correlated with the power consumption of the terminal.
  • the temperature value of the terminal is related to the heat generated by multiple heat-generating devices inside the terminal. Usually, the temperature value of the terminal is also positively correlated with power consumption. In this embodiment, the current characteristic value of power consumption is monitored in real time.
  • the target range may refer to a range of characteristic values of power consumption that is set so that the terminal is in a state of power consumption balance.
  • the power consumption balance state can be regarded as a balance state that can not only make the terminal be in a proper low power consumption and low heat generation state, but also meet the user's network speed requirement.
  • the target range can be set according to actual requirements, which is not limited here.
  • Services may refer to services implemented based on the network during terminal operation, such as reporting information to the base station, receiving information from the base station, and transmitting data to other terminals through the base station.
  • the types of business requirements can be divided according to the direction of the business, for example, the main uplink (such as the number of uplink services or network speed requirements is greater than the number of downlink services or network speed requirements, or the real-time performance of uplink services is higher than that of downlink services.
  • the uplink can refer to the user through The direction in which the terminal uploads data to the base station
  • the downlink can refer to the direction in which the user receives data from the base station through the terminal.
  • the types of business requirements can also be divided according to the overall network speed requirements of the business, such as first-level requirements and second-level requirements. Or the real-time requirements of the business, etc., the higher the demand for network speed, the higher or lower the corresponding level.
  • the network speed demand corresponding to the first-level requirement is low, which may mean that the number of services currently used by the user is small, or the amount of data to be transmitted in the current service is small, or the real-time requirements of the current service are not high (
  • the real-time requirements of services such as sending and receiving emails or downloading files are relatively low
  • the demand for network speed corresponding to the second-level demand is relatively high, which can mean that the number of services or the amount of data to be transmitted has increased compared with the first-level demand, or the current
  • the real-time requirements of the business are relatively high (for example, the real-time requirements of services such as telephone and video are relatively high), etc.
  • the working parameters of the networking mainly refer to the working parameters that can be used to control the power consumption of the terminal in the networking.
  • the working parameters of the networking include the transmission power of the terminal in the wireless communication process (such as the transmission power of the long-term evolution frequency band, the transmission power of the new air interface frequency band, etc.), multiple transmission paths of data communication (such as auxiliary carrier unit path, multiple input and multiple output access, etc.), and the switch of the transmission link sharing the transmission power, etc.
  • the networking working parameters corresponding to different networking types may be different.
  • the next characteristic value of power consumption can be regarded as the characteristic value of power consumption monitored after adjusting the working parameters of the networking. For example, according to the set period or frequency, the characteristic value of power consumption is continuously monitored. If it is detected that the characteristic value of power consumption exceeds the target range at a moment, the characteristic value of this power consumption is the current power consumption value. After adjusting the working parameters of the network, The characteristic value of power consumption re-monitored in the next cycle is the next characteristic value of power consumption; Consume eigenvalues.
  • first determine the current networking type of the terminal that is, NSA networking or SA networking. Then use NSA networking for networking; then obtain the current power consumption characteristic value of the current networking monitored in real time, and monitor the current user's business demand type (such as main uplink, main downlink, primary demand or secondary demand ); Finally, if the current power consumption characteristic value is not within the preset target range, the corresponding networking working parameters can be adjusted according to the current networking type and the monitored business demand type until the current networking until the next power consumption characteristic value is within the target range.
  • the current networking type of the terminal that is, NSA networking or SA networking.
  • the power consumption characteristic value is allowed to increase to a certain extent.
  • the method for controlling working parameters of a networking includes: obtaining the current characteristic value of power consumption of the current networking; Adjust the corresponding networking working parameters according to the business requirement type until the next power consumption characteristic value of the current networking is within the target range.
  • This method combines the current networking type with the type of business requirements, and adjusts the corresponding networking working parameters to control the characteristic value of power consumption of the terminal. The inconvenience caused to users by switching networks is improved, thereby improving the user experience of using terminal network functions.
  • the method also controls power consumption according to different types of business requirements, which can meet different business requirements and improve business service quality.
  • the current power consumption characteristic value of the current networking before obtaining the current power consumption characteristic value of the current networking, it also includes: determining a supported networking type, and the supported networking type includes at least one of the independent SA networking and the non-independent NSA networking One: when the supported networking type includes the SA networking, adopt the SA networking as the current networking.
  • the terminal can use the radio frequency module to realize the 5G radio frequency function. If the 5G radio frequency function can work independently, the terminal supports SA networking; if the 5G radio frequency function can be used as a supplement to the 4G radio frequency function to share traffic, the terminal supports NSA. networking.
  • the SA network is preferentially enabled, that is, if the terminal supports the SA network, the SA network is used to access the network. SA networking is preferred. It can also be understood that the priority of SA networking is higher than that of NSA networking. That is, when the current network of the terminal can set up both SA networking and NSA networking, Prioritize the establishment of an SA network with low energy consumption. If the SA network cannot be established, the NSA network can be used as the current network.
  • the networking working parameters include at least one of the following: long-term evolution (Long Term Evolution, LTE) frequency band transmit power; new air interface (New Radio, NR) The transmit power of the frequency band; the number of uplink Secondary Component Carrier (SCC) channels; the number of downlink SCC channels; the number of uplink Multiple-In Multiple-Out (MIMO) channels; the number of downlink MIMO channels;
  • the working parameters of the network include at least one of the following: transmit power in the NR frequency band; number of uplink SCC channels; number of downlink SCC channels; number of uplink MIMO channels; number of downlink MIMO channels, On/off status of each transmit link.
  • the transmit power of the LTE frequency band mainly refers to the transmit power of the terminal to the base station in multiple operating frequency bands using the LTE technology, which is a corresponding networking working parameter in the uplink direction.
  • the transmission power of the NR frequency band mainly refers to the transmission power of the terminal to the base station in multiple working frequency bands using NR technology, which is the corresponding networking working parameter in the uplink direction.
  • the networking type is NSA networking
  • the terminal can realize wireless communication between the terminal and the base station through dual-connection LTE technology and NR technology; when the networking type is SA networking, the terminal can connect to NR technology Realize the wireless communication between the terminal and the base station.
  • the transmission power of the LTE frequency band is mainly the network working parameter corresponding to the uplink direction when the terminal works in the NSA network; the transmission power of the NR frequency band can be when the terminal works in the SA network or NSA network.
  • the corresponding networking working parameters in the uplink direction is mainly the network working parameter corresponding to the uplink direction when the terminal works in the NSA network; the transmission power of the NR frequency band can be when the terminal works in the SA network or NSA network.
  • Carrier Aggregation is a multi-carrier data communication technology that allows terminals to simultaneously transmit and receive data on multiple sub-bands.
  • CA technology can be used to increase the bandwidth of wireless data transmission to increase the transmission rate.
  • the SCC is each carrier unit in the CA; each carrier unit corresponds to a data transmission channel, which is the SCC channel.
  • the NSA network or SA network supports the CA function, the uplink or downlink direction of the terminal can correspond to multiple SCC channels respectively.
  • MIMO technology is a communication technology that uses multiple transmitting antennas and receiving antennas at the transmitting end and receiving end respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and receiving end.
  • the multiple transmit antennas and the multiple receive antennas may respectively correspond to multiple data transmission paths, that is, MIMO paths.
  • multiple MIMO channels can be respectively corresponded to in the uplink or downlink process of the terminal.
  • the number of uplink SCC channels and the number of uplink MIMO channels can be the network working parameters corresponding to the uplink direction when the terminal works in the NSA network or SA network; the number of downlink SCC channels and the number of downlink MIMO channels can be In the case that the terminal works in the NSA network or the SA network, the corresponding network working parameters in the downlink direction.
  • the dual-transmission link may refer to two transmission links that share transmission power in the uplink direction of the terminal, where the two transmission links that share transmission power can increase the data transmission rate compared with single-link transmission.
  • terminals in the SA network can support the dual-link function. Since the transmission link is a link for the terminal to transmit data to the base station, the switching status of each transmission link in the dual transmission link is mainly the corresponding network configuration in the uplink direction when the terminal works in the SA network. working parameters.
  • the characteristic value of power consumption of the terminal may be adjusted by adjusting one or more networking working parameters, so that the adjusted characteristic value of power consumption (that is, the next characteristic value of power consumption) is within a target range.
  • the corresponding networking working parameters are adjusted according to the current networking type and service requirement type until the next power consumption characteristic value of the current networking is within the target range, including: the current networking type is NSA Networking, and the type of business demand is mainly downlink, adjust the corresponding networking working parameters in at least one of the following ways to reduce the next power consumption characteristic value to the target range: reduce the transmit power of some LTE frequency bands; Transmit power in the NR frequency band; close at least one uplink SCC channel; close at least one uplink MIMO channel; the basis for adjusting the frequency selection and/or channel selection of the above-mentioned network working parameters includes the power consumption of the frequency band.
  • the networking type is NSA networking and the service requirement type is mainly downlink, you can adjust the corresponding At least one networking working parameter (such as one or a combination of multiples) is used to adjust the characteristic value of power consumption of the terminal so that it returns to a preset target range.
  • the current terminal adopts NSA networking and supports the CA function. If the current power consumption characteristic value obtained by real-time monitoring is not within the target range (such as higher than a preset threshold), then monitor the user's current network usage status (ie Business requirement type): If the main requirement is the downlink rate (that is, the main downlink), then in the case of giving priority to ensuring the normal operation of the downlink network speed rate, you can adjust the power consumption characteristic value by adjusting the corresponding networking parameters in the uplink direction to within the target range.
  • the target range such as higher than a preset threshold
  • the SCC path and/or one or more uplink MIMO paths reduce the total power consumption of the terminal.
  • the transmit power of the LTE frequency band can be readjusted to a constant value, and according to the user's
  • One or more uplink paths are selectively opened according to the demand of the business on the network speed (that is, the network speed demand).
  • the basis for frequency selection i.e. selecting the LTE frequency band and/or NR frequency band with reduced transmit power
  • path selection i.e. selecting the closed SCC path and/or MIMO path
  • the power consumption of the frequency band is included, for example, the transmission power of the frequency band with the highest power consumption is preferentially reduced, or the SCC channel and/or the MIMO channel in the frequency band with the highest power consumption is preferentially turned off.
  • the power consumption may be reflected by current, voltage and/or temperature.
  • the corresponding networking working parameters are adjusted according to the networking type and service requirement type of the current networking until the next power consumption characteristic value of the current networking is within the target range, including: the current networking type is SA Networking, and the service demand type is mainly downlink, adjust the corresponding networking working parameters in at least one of the following ways, so that the next power consumption characteristic value is reduced to the target range: reduce the transmit power of some NR frequency bands; Close the transmission link with a large power consumption characteristic value in the dual transmission link; close at least one uplink SCC channel; close at least one uplink MIMO channel; adjust the frequency selection, transmission link selection and/or channel selection of the above-mentioned network working parameters
  • the basis includes the power consumption of the frequency band.
  • At least one networking working parameter corresponding to the uplink direction can be adjusted (for example, it can be one or multiple combinations), to adjust the characteristic value of power consumption of the terminal so as to restore it to a preset target range.
  • the current terminal adopts the SA network and supports the CA function. If the current power consumption characteristic value obtained by real-time monitoring is not within the target range (for example, higher than a preset threshold value), then monitor the user's network usage status at this time: if The main requirement is the downlink rate, and in the case of giving priority to ensuring the normal operation of the downlink network speed, the characteristic value of power consumption can be adjusted to the target range by adjusting the network working parameters corresponding to the uplink direction.
  • the target range for example, higher than a preset threshold value
  • the basis for selecting the transmission link includes the power consumption of the frequency band.
  • the transmission power of the NR frequency band can be readjusted to a constant value, and one or more corresponding ones can be selectively turned on according to the user's network speed demand. Uplink path, or open the closed transmission link.
  • the corresponding networking working parameters are adjusted according to the current networking type and service requirement type until the next power consumption characteristic value of the current networking is within the target range, including: the current networking type is NSA Networking or SA networking, and the type of business demand is mainly uplink, adjust the corresponding networking working parameters in at least one of the following ways to reduce the next power consumption characteristic value to the target range: turn off at least one downlink SCC channel ; Turn off at least one downlink MIMO channel; the basis for selecting the channel for adjusting the working parameters of the networking includes the power consumption of the frequency band.
  • At least one networking working parameter corresponding to the downlink direction can be adjusted (such as one or multiple combination) to adjust the characteristic value of power consumption of the terminal to restore it to the preset target range.
  • the current terminal adopts NSA networking or SA networking, and supports the CA function
  • one or more closed downlink paths can be selectively restarted according to the user's network speed requirements.
  • the current networking type is NSA networking or SA networking
  • the service requirement type is a first-level requirement
  • at least one of the following methods is used to adjust the corresponding networking working parameters to meet the first-level requirement: close At least one SCC channel; close at least one MIMO channel; reduce the transmit power of some LTE frequency bands; reduce the transmit power of some NR frequency bands; the basis for adjusting the frequency selection and/or channel selection of the network working parameters includes the power consumption of the frequency band.
  • the network working parameters are adjusted mainly according to the network speed demand, so as to control the power consumption of the terminal within a reasonable range. , to meet different levels of business needs as much as possible.
  • the networking working parameters may be determined according to the networking type of the current terminal.
  • the types of business requirements can be divided into primary requirements and secondary requirements according to network speed requirements.
  • the business requirement type is a first-level requirement
  • the network speed requirements of the user's business on the terminal are not much, or the real-time requirements of the business are not high.
  • the network speed can be appropriately reduced while ensuring that the user's network demand is met. , for example, some channels may be closed, and/or the transmit power of some (for example, the most power-consuming) LTE or NR frequency bands may be reduced.
  • the corresponding networking working parameters are adjusted in at least one of the following ways to meet the secondary requirement: open at least one closed SCC channel; open at least one closed SCC channel Increase the transmission power of some LTE frequency bands; increase the transmission power of some NR frequency bands; among them, the network speed demand of the second-level requirement is higher than that of the first-level requirement.
  • the amount of business performed by the user on the terminal increases, or the real-time requirements of the business become higher, that is, the requirements of the second-level requirements
  • the network speed requirement is higher than the first-level requirement.
  • one or more closed channels can be properly opened, and/or the transmission power of some (for example, the most power-consuming) LTE or NR frequency bands can be increased.
  • the network speed requirements used in this embodiment can be set and adjusted according to actual needs, terminal types, and applicable groups of people, and are not limited here.
  • this embodiment does not limit the frequency to which the transmit power of the operating frequency band of the terminal is adjusted to be reduced or increased to adjust the characteristic value of power consumption.
  • Fig. 2 is a schematic flowchart of another method for controlling network working parameters provided by an embodiment. As shown in Figure 2, the method may include:
  • the characteristic value of the current power consumption may be a total current value, a total voltage value, and/or a temperature value of the terminal's transmitting link and receiving link.
  • the service requirement type may be primary uplink or primary downlink, or primary requirement or secondary requirement.
  • S230 is the current characteristic value of power consumption within the target range? If the current characteristic value of power consumption is within the target range, return to execute S210 and S220, and continue to control the networking working parameters to control power consumption. If the current characteristic value of power consumption is not within the target range, execute S240.
  • S250 is the next characteristic value of power consumption within the target range? If the next characteristic value of power consumption is within the target range, return to execute S210 and S220, and continue to control the networking working parameters to control power consumption. If the next characteristic value of power consumption is not within the target range, go back to S240 and continue to adjust the working parameters of the networking.
  • the terminal is currently using the NSA network, and the type of business demand is mainly uplink.
  • the characteristic value of power consumption is detected to be high and exceeds the target range, the current of frequency band 1 of the terminal radio frequency is relatively small, and the current of frequency band 3 is relatively large.
  • one or more closed SCC channels or MIMO channels can be opened again to meet the user's network demand.
  • the terminal is currently using the NSA network, and the type of service demand is mainly downlink.
  • the LTE frequency band 3 and NR frequency band 4 of the terminal radio frequency transmit at the same time, and the LTE frequency band 3.
  • the transmission power of NR frequency band 4 can be reduced, or one or more SCC channels of the uplink CA of NR frequency band 4 can be closed; continue to monitor the characteristic value of power consumption, and the power consumption of the terminal After the characteristic value is reduced to the target range, the SCC channel of the uplink CA of NR frequency band 4 can be re-opened, and the transmit power of NR frequency band 4 can also be increased to meet the user's network requirements.
  • the terminal currently uses the NSA network, and the demand for uplink and downlink network speeds is small (first-level requirements), and the characteristic value of power consumption is not high.
  • the current function can be selectively turned off.
  • One or more SCC channels of uplink or downlink CAs that consume a large frequency band, close some MIMO channels, and/or reduce the transmit power of some frequency bands; in addition, after the demand for uplink or downlink network speed increases (secondary demand) , can re-open the uplink or downlink CA SCC channel of the closed frequency band, and can also open the closed MIMO channel and increase the transmission power of some frequency bands according to actual needs. On this basis, it can be based on the uplink and downlink. Continuous power consumption control to meet different levels of network speed requirements.
  • the power consumption when the current power consumption characteristic value exceeds the target range, the power consumption can be effectively controlled by adjusting the working parameters of the current networking in the corresponding direction without switching the network, and meeting the requirements of the main uplink Or the main downlink business requirements; in the case of low or high network speed requirements, you can also adjust the working parameters to allow power consumption to increase or decrease to a certain extent to adapt to different levels of network speed requirements, thereby Intelligently adjust working parameters, improve the flexibility of business transmission control in networking, and improve business service quality.
  • FIG. 3 is a schematic structural diagram of a SerDes testing device provided by an embodiment. As shown in Figure 3, the device includes:
  • the obtaining module 310 is configured to obtain the current power consumption characteristic value of the current networking; the parameter adjustment module 320 is configured to, when the current power consumption characteristic value is not within the target range, according to the networking type of the current networking And adjust the corresponding networking working parameters according to the service requirement type until the next power consumption characteristic value of the current networking is within the target range.
  • the device obtains the current power consumption characteristic value of the current networking through the acquisition module; through the parameter adjustment module, if the current power consumption characteristic value is not within the target range, then according to the current network configuration Adjust the corresponding networking working parameters according to the network type and service requirement type until the next power consumption characteristic value of the current networking is within the target range.
  • the device combines the current networking type with the type of business demand, and adjusts the corresponding networking working parameters to control the characteristic value of power consumption of the terminal. The inconvenience caused by switching the networking type to the user improves the user experience of using terminal network functions.
  • the device also controls power consumption according to the types of business requirements, which can meet different business requirements and improve business service quality.
  • the device further includes a networking determination module 330, which is configured to:
  • the supported networking type includes at least one of independent SA networking and non-independent NSA networking; in the supported networking
  • the SA network is used as the current network.
  • the networking working parameters include at least one of the following: transmit power in the LTE frequency band; transmit power in the NR frequency band; number of uplink SCC channels; downlink The number of SCC channels; the number of uplink MIMO channels; the number of downlink MIMO channels; in the case that the current networking is an SA network, the working parameters of the networking include at least one of the following: transmit power in the NR frequency band; the number of uplink SCC channels; downlink SCC channels number; number of uplink MIMO channels; number of downlink MIMO channels; switch status of each transmit link in the dual-transmit link.
  • the parameter adjustment module 320 is set to:
  • the current networking type is a non-independent NSA networking, and the service requirement type is mainly downlink, then adjust the corresponding networking working parameters in at least one of the following ways, so that the next power consumption characteristic value is reduced to Within the target range: reduce the transmit power of some LTE frequency bands; reduce the transmit power of some NR frequency bands; close at least one uplink SCC channel; close at least one uplink MIMO channel; adjust the frequency selection and/or channel selection of the above-mentioned network working parameters
  • the basis includes the power consumption of the frequency band.
  • the parameter adjustment module 320 is set to:
  • the current networking type is SA networking, and the business requirement type is mainly downlink, then adjust the corresponding networking working parameters in at least one of the following ways, so that the next power consumption characteristic value is reduced to the Within the target range: reduce the transmission power of some NR frequency bands; close the transmission link with a large power consumption characteristic value in the dual transmission link; close at least one uplink SCC channel; close at least one uplink MIMO channel;
  • the basis for frequency selection, transmission link selection and/or channel selection includes the power consumption of the frequency band.
  • the parameter adjustment module 320 is set to:
  • the current networking type is NSA networking or SA networking
  • the service demand type is mainly uplink, then adjust the corresponding networking working parameters in at least one of the following ways, so that the next power consumption characteristic value Lowered to within stated target range:
  • the device also includes:
  • the first-level demand adjustment module 340 is set so that the current networking type is NSA networking or SA networking, and the business demand type is first-level demand, then adjust the corresponding networking working parameters in at least one of the following ways, with To meet the first-level requirements: close at least one SCC channel; close at least one MIMO channel; reduce the transmit power of some LTE frequency bands; reduce the transmit power of some NR frequency bands; adjust the frequency selection and/or channel selection of the above-mentioned network working parameters
  • the basis includes the power consumption of the frequency band.
  • the device also includes:
  • the secondary demand adjustment module 350 is configured to switch the business demand type to secondary demand, and then adjust the corresponding networking working parameters in at least one of the following ways to meet the secondary demand: enabling at least one closed SCC channel; open at least one closed MIMO channel; increase the transmit power of some LTE frequency bands; increase the transmit power of some NR frequency bands; wherein, the network speed requirement of the secondary requirement is higher than the network speed requirement of the primary requirement fast demand.
  • the network working parameter control device proposed in this embodiment belongs to the same idea as the network working parameter control method proposed in the above embodiment, and the technical details not described in detail in this embodiment can be referred to any of the above embodiments, and this embodiment has It has the same effect as the control method of network working parameters.
  • FIG. 4 is a schematic diagram of the hardware structure of a terminal provided by an embodiment.
  • the terminal provided by the present application includes a processor 410, a memory 420, and an A computer program, when the processor 410 executes the program, implements the above-mentioned method for controlling network working parameters.
  • the terminal may also include a memory 420; there may be one or more processors 410 in the terminal, and one processor 410 is taken as an example in FIG. 4; the memory 420 is configured to store one or more programs; the one or more programs Executed by the one or more processors 410, so that the one or more processors 410 implement the method for controlling network working parameters as described in the embodiment of the present application.
  • the terminal further includes: a communication device 430 , an input device 440 and an output device 450 .
  • the processor 410, the memory 420, the communication device 430, the input device 440, and the output device 450 in the terminal may be connected through a bus or in other ways. In FIG. 4, connection through a bus is taken as an example.
  • the input device 440 can be configured to receive input numbers or character information, and generate key signal input related to user settings and function control of the terminal.
  • the output device 450 may include a display device such as a display screen.
  • Communications device 430 may include a receiver and a transmitter.
  • the communication device 430 is configured to perform information sending and receiving communication according to the control of the processor 410 .
  • the memory 420 can be set to store software programs, computer executable programs and modules, such as the program instructions/modules corresponding to the network working parameter control method described in the embodiment of the present application (for example, networking work module in the parameter control unit).
  • the memory 420 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 420 may include a memory that is remotely located relative to the processor 410, and these remote memories may be connected to the terminal through a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Fig. 5 is a schematic structural diagram of a network working parameter control system provided by an embodiment.
  • the system includes: a terminal 510, a power consumption monitoring module 520 connected to the terminal 510, a radio frequency module 530 and The network speed tracking module 540, wherein the power consumption monitoring module 520, the radio frequency module 530 and the network speed tracking module 540 can be built in the terminal 510, or can be connected with the processor in the terminal 510, and set to realize corresponding functions.
  • the power consumption monitoring module 520 is configured to monitor the characteristic value of power consumption corresponding to the current networking; the radio frequency module 530 is configured to establish the current networking; the network speed tracking module 540 is configured to monitor the network speed demand of the current networking.
  • the network speed demand of the current networking mainly refers to the network speed demand of the ongoing service of the monitored terminal, which may include the uplink network speed demand, downlink network speed demand and/or total network speed demand, etc. It is used to determine the type of service requirements, such as primary uplink, primary downlink, primary requirements, or secondary requirements.
  • the networking working parameter control system of this embodiment can adjust the corresponding networking working parameters to control the characteristic value of power consumption of the terminal by combining the current networking type with the service demand type, and can meet the user's network requirements. At the same time, power consumption can be effectively controlled, and the inconvenience caused to users by frequent switching of networking types can be avoided, thereby improving the user experience of terminal network functions.
  • the system also controls power consumption according to the types of business needs, which can meet different business needs and improve business service quality.
  • the radio frequency module 530 includes an LTE radio frequency module and an NR radio frequency module.
  • the LTE radio frequency module can be set to realize the 4G radio frequency function, which includes hardware circuits such as a corresponding 4G PA, a duplexer, a low noise amplifier (Low Noise Amplifier, LNA), and a filter.
  • 4G radio frequency function which includes hardware circuits such as a corresponding 4G PA, a duplexer, a low noise amplifier (Low Noise Amplifier, LNA), and a filter.
  • the NR radio frequency module can be set to realize 5G radio frequency function, which includes corresponding 5G PA, duplexer, LNA, filter and other hardware circuits.
  • the power consumption monitoring module 520 includes a plurality of monitoring devices, and the monitoring devices include a current detection circuit, a temperature sensing device and/or a resistive device; the monitoring device is configured to monitor at least one transmitting link and/or at least one receiving The characteristic value of the power consumption of the link.
  • the current detection circuit can be integrated on the PA or radio frequency transceiver chip inside the terminal 510, so as to monitor the characteristic value of power consumption in real time.
  • the temperature sensing device may refer to a device composed of multiple temperature sensing elements (such as thermistor elements), which may be placed in the transmitting link and receiving link corresponding to each working frequency band of the terminal 510 .
  • temperature sensing elements such as thermistor elements
  • the temperature sensing device may change accordingly, and the corresponding voltage will also change; Current values corresponding to multiple working frequency bands.
  • Resistive devices can also refer to devices composed of multiple thermistor elements, which can be externally connected to the radio frequency transceiver chip (provided that the function of the radio frequency transceiver chip can be supported), on this basis, according to the voltage change can be calculated Real-time current values corresponding to multiple working frequency bands of the terminal 510 are obtained.
  • the power consumption monitoring module 520 can either directly monitor the current value (such as a current detection circuit), or obtain a corresponding current value by monitoring a parameter related to the current as a conversion (such as a temperature sensing device and a resistive device).
  • the monitoring device is configured to monitor characteristic values of power consumption of at least one transmit link and/or at least one receive link.
  • a monitoring device can be placed correspondingly for each link; or in order to reduce complexity, a plurality of operating frequency bands with similar frequencies in the terminal 510 can be divided into a group for group monitoring.
  • the network working parameter control system further includes: a central control module, wherein the central control module includes a network mode switching module, a power control module and an SCC control module.
  • the central control module can be independently integrated as a module, or can be integrated with a radio frequency transceiver chip or a baseband chip; wherein, the central control module can be integrated inside the terminal 510 and connected to the processor 410 .
  • the power consumption monitoring module can monitor the characteristic value of power consumption of the terminal 510 in real time, such as the power consumption of multiple radio frequency bands, and transmit the data back to the central control module in real time.
  • the network mode switching module mainly switches the networking mode to SA networking or NSA networking based on the network networking status of the user's current area, and can be adjusted according to the current power consumption status of multiple frequency bands and the demand for uplink and downlink network speeds.
  • the number of MIMO channels in the LTE and NR frequency bands is Single Input Single Output (SISO), 2*2MIMO, 3*3MIMO, 4*4MIMO, etc.
  • the power control module chooses to increase or decrease the transmit power of LTE or NR high-power consumption frequency bands and the opening and closing of multiple channels according to the current power consumption status of multiple frequency bands and the demand for uplink and downlink network speeds.
  • the frequency band with high power consumption and current allocates less power to reduce the total power consumption; for the network mode of the dual link of the SA network, you can choose to turn off the power consumption of the current according to the uplink network speed demand and current data A transmit link to reduce power consumption.
  • the SCC control module selects to open or close the uplink or downlink SCC channel of the frequency band with high power consumption according to the current power consumption status of multiple frequency bands and the demand for uplink and downlink network speed, or modify the CA of the frequency band with a large power consumption to 2*2 or 1*1 state to reduce power consumption.
  • the network speed demand of the user at the terminal 510 is monitored in real time through the network speed tracking module, and the power consumption monitoring module
  • Real-time tracking of the current power consumption characteristic value of the terminal can determine the frequency band corresponding to the SCC channel that is turned on or off, which SCC paths are closed, or which ones are turned on Several SCC pathways. While ensuring the user's network requirements, the number of SCC channels and data transmission volume are controlled within an appropriate range, which can reduce power consumption, achieve the purpose of reducing heat generation of the terminal 510 and improving battery life.
  • the terminal 510 For example, if the terminal 510 is currently using NSA networking, the main uplink, that is, the demand for uplink network speed is large, and the total power consumption of the radio frequency of the mobile phone is too large, and the heat is serious, the current of the frequency band 1 of the terminal 510 radio frequency is small, and the current of the frequency band 3 is relatively low. is large, the internal system of the terminal 510 can choose to close multiple SCC paths of the downlink CA of the frequency band 3, that is, SCC path 1, SCC path 2, and so on.
  • frequency band 3 is configured with a downlink MIMO channel, you can choose to close some of its MIMO channels; after the temperature of the terminal 510 drops, the network speed tracking module detects the network demand for opening the closed SCC channel and MIMO channel, and then reopens the frequency band 3 Multiple channels such as SCC channel 1 and SCC channel 2 of the downlink CA also open some of the closed MIMO channels, and control the next round of power consumption characteristic values according to the uplink and downlink real-time network speed requirements and power consumption.
  • the terminal 510 If the terminal 510 is currently using the NSA network, the main downlink, that is, the demand for downlink network speed is large, and the total power consumption of the radio frequency of the mobile phone is too large, and the heat is serious, the LTE frequency band 3 and the NR frequency band 4 of the terminal 510 radio frequency transmit power simultaneously, and the LTE frequency 3, the current is small, and the current in NR frequency band 4 is relatively large, then the internal system of terminal 510 can choose to reduce the transmission power of NR frequency band 4, or close multiple channels such as SCC channel 1 and SCC channel 2 of the uplink CA of NR frequency band 4; After the 510 temperature drops, the network speed tracking module detects the network demand for opening the closed SCC channel, then reopens multiple channels such as SCC channel 1 and SCC channel 2 of the uplink CA of NR frequency band 4, and transmits the NR frequency band 4 The power rises to a constant value. On this basis, the next round of power consumption characteristic value control can be carried out according to the uplink and downlink real-
  • one or more SCC channels Close some MIMO channels and/or reduce the transmit power of some frequency bands to reduce power consumption; after the uplink or downlink network demand increases, the SCC channel of the uplink or downlink CA of the closed frequency band can be re-opened. It is required to open the closed MIMO channel and increase the transmission power of some frequency bands.
  • the next round of power consumption characteristic value control can be carried out according to the uplink and downlink real-time network speed requirements and power consumption.
  • the network speed demand size threshold and the power consumption threshold on which the network mode switching is based can be adjusted by developers according to different terminals 510 and applicable groups.
  • the control of network working parameters such as closing several SCC channels, reducing LTE and NR transmission power to how many dBm, etc., can be adjusted according to the radio frequency scheme of terminal 510 itself, which is not limited here.
  • this embodiment can automatically switch the networking status under the 5G network, and comprehensively and autonomously adjust the SCC of the uplink and downlink CAs Frequency band enabling status and multiple frequency band transmission power status, under the condition of ensuring the user's network requirements, control the radio frequency current, the number of SCC channels, the number of MIMO channels, etc. within a reasonable range, reduce power consumption as much as possible, and achieve
  • the terminal 510 generates heat and improves battery life.
  • the network working parameter control system proposed in this embodiment belongs to the same idea as the network working parameter control method proposed in the above embodiment, and the technical details not described in detail in this embodiment can be referred to any of the above embodiments, and this embodiment has It has the same effect as the control method of network working parameters.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, it realizes any of the networking working parameters described in the embodiments of the present application Control Method.
  • the method includes: obtaining the current characteristic value of power consumption of the current networking; when the characteristic value of the current power consumption is not within the target range, adjusting the corresponding group according to the networking type and service demand type of the current networking Network working parameters until the next power consumption characteristic value of the current networking is within the target range.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to: an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof.
  • Examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, Random Access Memory (RAM), Read Only Memory (Read Only) Memory, ROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM (Compact Disk Read Only Memory, CD-ROM), optical storage device, magnetic memory components, or any suitable combination of the above.
  • a computer readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wires, optical cables, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to: wireless, wires, optical cables, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program codes for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it may be connected to an external computer such as use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • the term user terminal covers any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicular mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to ROM, RAM, optical memory devices and systems (Digital Video Disc (DVD) or CD, etc.
  • the computer-readable medium may include a non-transitory storage medium.
  • the data processor may be any type suitable for the local technical environment, such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processing, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), programmable logic device (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general-purpose computer such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processing, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), programmable logic device (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种组网工作参数控制方法、终端及存储介质。该组网工作参数控制方法包括:获取当前组网的当前功耗特征值;在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整所述当前组网对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。

Description

组网工作参数控制方法、终端及存储介质 技术领域
本申请涉及无线通信网络技术领域,例如涉及一种组网工作参数控制方法、终端及存储介质。
背景技术
第五代移动通信(Fifth Generation,5G)网络相比于以往的无线通信系统支持更大的系统带宽。5G网络常采用非独立(Non-Standalone,NSA)组网,但NSA组网耗电量大、发热问题明显,长时间使用5G网络对终端的续航能力及温度性能都有严重影响。5G系统的优点是速率高,在高速业务的场景中有绝对的优势,但在用户浏览网页、图片或待机等对网速需求不高的场景中,其优势无法得到发挥,但耗电和发热问题依然存在。对于使用NSA组网的耗电和发热问题,其解决方案是,在终端上设置一个5G开关,打开后自动寻网切换至5G网络,关闭后切换为第四代移动通信(Fifth Generation,4G)网络以节省电量、减少发热。这种方法需要用户手动操作,无法有效平衡业务需求与功耗之间的关系,并且每次切换组网都会导致短时内的业务中断,影响服务质量。
发明内容
本申请提供一种组网工作参数控制方法、终端及存储介质,以有效控制功耗,并满足不同业务需求,提高业务服务质量。
本申请提供一种组网工作参数控制方法,包括:
获取当前组网的当前功耗特征值;在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
本申请还提供了一种组网工作参数控制装置,包括:
获取模块,设置为获取当前组网的当前功耗特征值;参数调整模块,设置为在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
本申请还提供了一种终端,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的组网工 作参数控制方法。
本申请还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的组网工作参数控制方法。
附图说明
图1为一实施例提供的一种组网工作参数控制方法的流程示意图;
图2为一实施例提供的另一种组网工作参数控制方法的流程示意图;
图3为一实施例提供的一种组网工作参数控制装置的结构示意图;
图4为一实施例提供的一种终端的硬件结构示意图;
图5为一实施例提供的一种组网工作参数控制系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多个步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,多个步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
本申请施例中提及的“第一”、“第二”等概念仅用于对不同的装置、模块、单元或其他对象进行区分,并非用于限定这些装置、模块、单元或其他对象所执行的功能的顺序或者相互依存关系。
图1为一实施例提供的一种组网工作参数控制方法的流程示意图。本实施例可适用于通过对当前组网的工作参数进行调整以控制功耗的情况。该组网工作参数控制方法可以由组网工作参数控制装置执行,该组网工作参数控制装置可以通过软件和/或硬件的方式实现,并集成在终端中。终端包括但不限于:计算机、平板电脑、智能手机以及智能手表等电子设备。
如图1所示,本实施例的组网工作参数控制方法可以包括下述S110和S120。
在S110中,获取当前组网的当前功耗特征值。
本实施例中,当前组网可以认为是用户的终端当前所使用的组网类型。组 网类型包括两种,一种是NSA组网,即在一代通信网络的基础上加装新一代通信网络的射频功能,两代通信网络共同运作;另一种是独立(Standalone,SA)组网,即新一代通信网络单独运作。以4G和5G网络为例,NSA组网和SA组网都可以认为是一种5G网络。其中,NSA组网可以指将5G基站接入4G核心网络所形成的一种5G网络,也就是说,对4G网络进行改造,在4G网络的基础上增加5G功能,以构建出的一种5G网络。SA组网可以指完全采用5G技术所独立建设的一种原生态的5G网络。NSA组网耗电量大、发热高,用户在长时间使用NSA组网时会对终端续航、发热等有着较严重的影响,而SA组网发热普遍低于NSA组网;因此,用户在使用5G网络时,可以优先使能SA网络,若SA组网无法使用(例如,用户所在区域不支持SA组网,或者用户所使用终端不支持SA网络等),则可以采用NSA网络。
当前功耗特征值,可以指表征当前终端功耗状态的信息。当前功耗特征值可以为一个或多个,例如终端发射链路和接收链路的总电流值、总电压值和/或终端的温度值。其中,发射链路可以指终端发射信号至基站的链路;接收链路可以指终端接收基站信号的链路;并且终端所工作的多个频段都配置有对应的发射链路和接收链路,发射链路和接收链路的总电流值与终端的功耗呈正相关。终端的温度值与终端内部多个发热器件工作时产生的热量有关,通常情况下,终端的温度值与功耗也呈正相关。本实施例中,当前功耗特征值是实时监测的。
在S120中,在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
本实施例中,目标范围可以指所设定的使得终端处于功耗平衡状态的功耗特征值的范围。其中,功耗平衡状态可以认为是既可以使得终端处于适当的低功耗、低发热状态,又可以满足用户网速需求的一个平衡状态。目标范围可以根据实际需求进行设定,此处对此不作限定。
业务可以指终端运行过程中基于网络实现的业务,如向基站上报信息、接收基站的信息、通过基站向其他终端传输数据等。业务需求类型可以按照业务的方向划分,例如划分为主上行(如上行业务的数量或网速需求量大于下行业务的数量或网速需求量,或者上行业务的实时性高于下行业务的实时性等)以及主下行(如上行业务的数量或网速需求量小于下行业务的数量或网速需求量,或者上行业务的实时性低于下行业务的实时性等),其中,上行可以指用户通过终端上传数据至基站的方向,下行可以指用户通过终端接收来自基站的数据的方向。
业务需求类型也可以按照业务整体的网速需求量划分,例如划分为一级需 求和二级需求等,其中,网速需求量与用户当前所使用的业务数量、业务中需要传输的数据量、或者业务的实时性要求等有关,网速需求量越高,相应的级别可以越高或者越低。例如,一级需求对应的网速需求量较低,可以指用户当前所使用的业务数量少,或者是当前业务中所需要传输的数据量小,又或者是当前业务的实时性要求不高(如收发邮件或者下载文件等业务的实时性要求相对较低);二级需求对应的网速需求量较高,可以指业务数量或要传输的数据量相对于一级需求有所增加,或者当前业务的实时性要求较高(如电话和视频等业务的实时性要求相对较高)等。
组网工作参数主要指组网内可用于控制终端功耗的工作参数。组网工作参数包括终端在无线通信过程中的发射功率(如长期演进频段的发射功率、新空口频段的发射功率等)、数据通信的多个传输通路(如辅载波单元通路、多进多出通路等)、以及共享发射功率的传输链路的开关等。其中,不同的组网类型对应的组网工作参数可以不同。
下一功耗特征值可以认为是调整组网工作参数之后监测到的功耗特征值。例如,按照设定的周期或频率持续监测功耗特征值,在一时刻监测到功耗特征值超出目标范围,则此功耗特征值为当前功耗值,对组网工作参数进行调整之后,在下一个周期内重新监测到的功耗特征值即为下一功耗特征值;又如,在对组网工作参数进行调整之后的设定时长内监测到的功耗特征值即为下一功耗特征值。
在一实施例中,首先确定终端当前的组网类型(即NSA组网或SA组网),例如用户在开启5G网络之后,终端优先组建能耗较低的SA组网,若终端无法组建SA组网再采用NSA组网;然后获取实时监测的当前组网的当前功耗特征值,并监测当前用户的业务需求类型是哪一种(如主上行、主下行、一级需求或二级需求);最后,若当前功耗特征值不在所预设的目标范围内,则可以根据当前组网的组网类型以及所监测得到的业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内为止。例如,若当前功耗特征值过高,超出了目标范围,则可以通过调整对应的组网工作参数使其变低;若当前功耗特征值在目标范围内,但是网速需求量较高,则也可以通过调整对应的组网工作参数以提升网络传输能力和效率,这种情况下,允许功耗在一定程度上增大。
本实施例提供的组网工作参数控制方法,该方法包括:获取当前组网的当前功耗特征值;在当前功耗特征值不在目标范围内的情况下,根据当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内。该方法通过当前组网类型与业务需求类型相结合,据 此调整对应的组网工作参数以控制终端的功耗特征值,能够在满足用户用网需求的同时有效控制功耗,并可以避免频繁切换网络给用户带来的不便,从而改善了用户对终端网络功能的使用体验。此外,该方法还根据不同的业务需求类型控制功耗,能够满足不同业务需求,提高业务服务质量。
在一实施例中,在获取当前组网的当前功耗特征值之前,还包括:确定支持的组网类型,所述支持的组网类型包括独立SA组网和非独立NSA组网中的至少一种;在所述支持的组网类型包括所述SA组网的情况下,采用所述SA组网作为所述当前组网。
本实施例中,终端可利用射频模块实现5G射频功能,如果5G射频功能可以独立工作,则终端支持SA组网;如果5G射频功能可作为4G射频功能的补充,共同分担流量,则终端支持NSA组网。本实施例中优先使能SA网络,即,如果终端支持SA组网,则采用SA组网接入网络。优先采用SA组网,也可以理解为,SA组网的优先级高于NSA组网的优先级,即,在终端的当前网络既可组建SA组网,又可组建NSA组网的情况下,优先组建能耗较低的SA组网,而在SA组网不可组建的情况下,可以使用NSA组网作为当前组网。
在一实施例中,在当前组网为NSA组网的情况下,组网工作参数包括以下至少之一:长期演进(Long Term Evolution,LTE)频段的发射功率;新空口(New Radio,NR)频段的发射功率;上行辅载波单元(Secondary Component Carrier,SCC)通路数;下行SCC通路数;上行多进多出(Multiple-In Multiple-Out,MIMO)通路数;下行MIMO通路数;在当前组网为SA组网的情况下,组网工作参数包括以下至少之一:NR频段的发射功率;上行SCC通路数;下行SCC通路数;上行MIMO通路数;下行MIMO通路数,双发链路中每条发射链路的开关状态。
本实施例中,LTE频段的发射功率主要指终端采用LTE技术在多个工作频段向基站的发射功率,是上行方向对应的组网工作参数。NR频段的发射功率主要指终端采用NR技术在多个工作频段向基站的发射功率,是上行方向对应的组网工作参数。在组网类型为NSA组网的情况下,终端可通过双连接LTE技术和NR技术实现终端与基站之间的无线通信;在组网类型为SA组网的情况下,终端可通过连接NR技术实现终端与基站之间的无线通信。因此,LTE频段的发射功率主要是在终端工作在NSA组网的情况下,在上行方向对应的组网工作参数;NR频段的发射功率可以是在终端工作在SA组网或NSA组网的情况下,在上行方向对应的组网工作参数。
载波聚合(Carrier Aggregation,CA)是一种可允许终端在多个子频带上同时进行数据收发的多载波数据通信技术。在采用LTE技术或NR技术进行无线通信的过程中,可利用CA技术来增加无线数据传输的带宽以提升传输速率。 SCC为CA中的每个载波单元;其中,每个载波单元都对应一个数据传输通路,即为SCC通路。在NSA组网或SA组网支持CA功能的情况下,终端的上行或下行方向,可分别对应多个SCC通路。
MIMO技术是一种在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收数据的通信技术。其中,多个发射天线和多个接收天线可分别对应多个数据传输通路,即MIMO通路。在NSA组网或SA组网支持MIMO功能的情况下,终端的上行或下行过程中,可分别对应多个MIMO通路。因此,上行SCC通路数和上行MIMO通路数可以是在终端工作在NSA组网或SA组网的情况下,在上行方向所对应的组网工作参数;下行SCC通路数和下行MIMO通路数可以是在终端工作在NSA组网或SA组网的情况下,在下行方向所对应的组网工作参数。
双发链路可以指终端上行方向共享发射功率的两个发射链路,其中共享发射功率的两个发射链路相较于单链路发射,能够提高数据传输速率。通常情况下,处于SA组网下的终端可以支持双发链路功能。由于发射链路是用于终端向基站发射数据的链路,因此双发链路中每条发射链路的开关状态主要是在终端工作在SA组网的情况下,在上行方向对应的组网工作参数。
本实施例中,可以通过调整一个或多个组网工作参数来调整终端的功耗特征值,以使得调整后的功耗特征值(即下一功耗特征值)在目标范围内。
在一实施例中,根据当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内,包括:当前组网类型为NSA组网,且业务需求类型为主下行,则通过如下至少一种方式调整对应的组网工作参数,以使下一功耗特征值降低至目标范围内:降低部分LTE频段的发射功率;降低部分NR频段的发射功率;关闭至少一个上行SCC通路;关闭至少一个上行MIMO通路;上述调整组网工作参数的选频和/或通路选择的依据包括频段的功耗。
本实施例中,当业务需求类型为主下行时,需要优先保证下行网速速率的正常运行,因此当组网类型为NSA组网,且业务需求类型为主下行时,可以通过调整上行方向对应的至少一个组网工作参数(如可以是一个,也可以是多个结合),来调整终端的功耗特征值以使其恢复至预设目标范围内。
例如,当前终端采用NSA组网且支持CA功能,若实时所监测获取的当前功耗特征值不在目标范围内(如高于一预设阀值),则监测用户此时的用网状态(即业务需求类型):若主需求为下行速率(即主下行),则在优先保证下行网速速率的正常运行的情况下,可以通过调整上行方向对应的组网工作参数来调整功耗特征值至目标范围内。例如可以选择降低部分LTE频段的发射功率 (如降低电流较大或功耗较大的LTE频段的发射功率、降低电流超过设定电流阈值的LTE频段的发射功率、或降低功耗超过设定功耗阈值的LTE频段的发射功率等)、和/或降低部分NR频段的发射功率(如降低电流较大或功耗较大的NR频段的发射功率、降低电流超过设定电流阈值的NR频段的发射功率、或降低功耗超过设定功耗阈值的NR频段的发射功率等),以降低功率放大器(Power Amplifier,PA)电流,也可以关闭功耗较大的频段中的一条或多条上行SCC通路、和/或一条或多条上行MIMO通路以减小终端总功耗。此外,当终端当前功耗特征值降低至目标范围内(如终端射频总功耗以及终端温度降至阀值以下)之后,可以再重新调整该LTE频段的发射功率至常值,并根据用户的业务对网速的需求量(即网速需求量)选择性开启一个或多个上行的通路。其中,调整组网工作参数的过程中,选频(即选择被降低发射功率的LTE频段和/或NR频段)和/或通路选择(即选择被关闭的SCC通路和/或MIMO通路)的依据包括频段的功耗,例如,优先降低功耗最大的频段的发射功率,或者优先关闭功耗最大的频段中的SCC通路和/或MIMO通路等。其中,功耗可以通过电流、电压和/或温度等体现。
在一实施例中,根据当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内,包括:当前组网类型为SA组网,且业务需求类型为主下行,则通过如下至少一种方式调整对应的组网工作参数,以使下一功耗特征值降低至所述目标范围内:降低部分NR频段的发射功率;关闭双发链路中功耗特征值较大的发射链路;关闭至少一个上行SCC通路;关闭至少一个上行MIMO通路;上述调整组网工作参数的选频、发射链路选择和/或通路选择的依据包括频段的功耗。
本实施例中,当组网类型为SA组网,且业务需求类型为主下行时,可以通过调整上行方向对应的至少一个组网工作参数(如可以是一个,也可以是多个结合),来调整终端的功耗特征值以使其恢复至预设目标范围内。
例如,当前终端采用SA组网且支持CA功能,若实时所监测获取的当前功耗特征值不在目标范围内(如高于一预设阀值),则监测用户此时的用网状态:若主需求为下行速率,则在优先保证下行网速速率的正常运行的情况下,可以通过调整上行方向对应的组网工作参数来调整功耗特征值至目标范围内。例如可以选择降低功耗最大的NR频段的发射功率以降低PA电流,也可以关闭双发链路中功耗特征值较大的发射链路以降低终端总功耗,或者也可以关闭一条或多条上行SCC通路、和/或一条或多条上行MIMO通路等。其中,发射链路选择(即选择双发链路中被关闭的发射链路)的依据包括频段的功耗。此外,当终端的射频总功耗降至阀值以下且终端温度降低后,可以再重新调整该NR频段的发射功率至常值,并根据用户的网速需求量选择性开启对应一个或多个上行 的通路,或者开启所关闭的发射链路。
在一实施例中,根据当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内,包括:当前组网类型为NSA组网或SA组网,且业务需求类型为主上行,则通过如下至少一种方式调整对应的组网工作参数,以使下一功耗特征值降低至目标范围内:关闭至少一个下行SCC通路;关闭至少一个下行MIMO通路;上述调整组网工作参数的通路选择的依据包括频段的功耗。
本实施例中,当组网类型为NSA组网或SA组网,且业务需求类型为主上行时,可以通过调整下行方向对应的至少一个组网工作参数(如可以是一个,也可以是多个结合),来调整终端的功耗特征值以使其恢复至预设目标范围内。
例如,当前终端采用NSA组网或SA组网,且支持CA功能,若主需求为上行速率,则在优先保证上行速率的正常运行的情况下,可以选择关闭一条或多条下行SCC通路,或者是可以关闭大功耗频段的MIMO通路,以减小总功耗。此外,当终端射频总功耗降至阀值以下且终端温度降低后,可以根据用户的网速需求量选择性重启一个或多个所关闭的下行的通路。
在一实施例中,当前组网类型为NSA组网或SA组网,且业务需求类型为一级需求,则通过如下至少一种方式调整对应的组网工作参数,以满足一级需求:关闭至少一个SCC通路;关闭至少一个MIMO通路;降低部分LTE频段的发射功率;降低部分NR频段的发射功率;上述调整组网工作参数的选频和/或通路选择的依据包括频段的功耗。
在本实施例中,可以不考虑当前功耗特征值是否已经处于目标范围内,而是主要根据网速需求量的高低来调整组网工作参数,以在控制终端功耗在合理范围的前提下,尽可能满足不同级别的业务需求。其中,组网工作参数可根据当前终端的组网类型来确定。本步骤中可以根据网速需求量将业务需求类型分为一级需求和二级需求。当业务需求类型为一级需求时,用户在终端所进行的业务网速需求量不多、或者是业务实时性要求不高,此时可以在保证满足用户用网需求的情况下适当降低网速,例如可以关闭一些通路、和/或降低部分(例如功耗最大的)LTE或NR频段的发射功率。
在一实施例中,业务需求类型切换为二级需求,则通过如下至少一种方式调整对应的组网工作参数,以满足二级需求:开启至少一个被关闭的SCC通路;开启至少一个被关闭的MIMO通路;增大部分LTE频段的发射功率;增大部分NR频段的发射功率;其中,二级需求的网速需求量高于一级需求的网速需求量。
本实施例中,在一级需求的基础上,当业务需求类型切换为二级需求时, 用户在终端所进行的业务量有所增加、或者是业务实时性要求变高等,即二级需求的网速需求量高于一级需求的网速需求量,此时可以适当开启一个或多个被关闭的通路、和/或增大部分(例如功耗最大的)LTE或NR频段的发射功率。
本实施例中所依据的网速需求量可根据实际需求、终端类型以及适用人群等进行设置和调整,此处对此不作限定。此外,本实施例对为调整功耗特征值而进行的调整终端的工作频段的发射功率的降低或提高至多少频率,也不作限定。
图2为一实施例提供的另一种组网工作参数控制方法的流程示意图。如图2所示,该方法可以包括:
S210,获取当前组网的当前功耗特征值。
一实施例中,当前功耗特征值可以为终端的发射链路和接收链路的总电流值、总电压值和/或终端的温度值。
S220,确定当前的业务需求类型。
一实施例中,业务需求类型可以为主上行或主下行,也可以为一级需求或二级需求。
S230,当前功耗特征值是否在目标范围内?若当前功耗特征值在目标范围内,则返回执行S210以及S220,继续进行组网工作参数控制以控制功耗。若当前功耗特征值不在目标范围内,执行S240。
S240,根据组网类型以及业务需求类型调整对应的组网工作参数。
S250,下一功耗特征值是否在目标范围内?若下一功耗特征值在目标范围内,则返回执行S210以及S220,继续进行组网工作参数控制以控制功耗。若下一功耗特征值不在目标范围内,返回执行S240,继续调整组网工作参数。
以下通过示例对组网工作参数控制过程进行说明:
例如,终端当前使用的是NSA组网,业务需求类型为主上行,当监测到功耗特征值较高、超过目标范围时,终端射频的频段1电流较小、频段3电流较大,则可以关闭频段3的下行CA的一个或多个SCC通路,例如关闭SCC通路1和SCC通路2;若频段3配置有下行MIMO通路,则还可选择关闭一个或多个MIMO通路,例如关闭MIMO通路1;继续监测功耗特征值,在终端的功耗特征值降低到目标范围后,也可以再开启一个或多个被关闭SCC通路或MIMO通路,以满足用户的用网需求。
又如,终端当前使用的是NSA组网,业务需求类型为主下行,当监测到功 耗特征值较高、超过目标范围时,终端射频的LTE频段3与NR频段4同时发射,且LTE频段3电流较小、NR频段4电流较大,则可以降低NR频段4的发射功率,或关闭NR频段4的上行CA的一个或多个SCC通路;继续监测功耗特征值,在终端的功耗特征值降低到目标范围后,可以重新开启NR频段4的上行CA的SCC通路,也可以将NR频段4的发射功率升高,以满足用户的用网需求,在此基础上,可依据上下行实时的网速需求量和功耗特征值进行持续的功耗控制。
再如,终端当前使用NSA网络,且上下行网速需求量均较小(一级需求),功耗特征值也不高,这种情况下为了节省终端的功耗,可选择性关闭电流功耗较大频段的上行或下行CA的一个或多个SCC通路、关闭部分MIMO通路、和/或降低部分频段的发射功率;此外,待上行或下行网速需求量增大后(二级需求),可重新开启所关闭频段的上行或下行CA的SCC通路,还可根据实际需求开启所关闭的MIMO通路以及提高部分频段的发射功率,在此基础上,可依据上下行实时网速需求量进行持续的功耗控制,以满足不同级别的网速需求。
本实施例的组网工作参数控制方法,在当前功耗特征值超出目标范围时,无需切换网络,通过调整当前组网在相应方向上的工作参数,即可有效控制功耗,并满足主上行或主下行的业务需求;在网速需求量较低或者升高的情况下,也可以通过调整工作参数,允许功耗在一定程度上升高或降低,以适应不同级别的网速需求量,从而智能化地调整工作参数,提高组网中业务传输控制进行的灵活性,提高业务服务质量。
本申请实施例还提供了一种组网工作参数控制装置。图3为一实施例提供的一种串行解串器测试装置的结构示意图。如图3所示,该装置包括:
获取模块310,设置为获取当前组网的当前功耗特征值;参数调整模块320,设置为在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
本实施例的组网工作参数控制装置,该装置通过获取模块获取当前组网的当前功耗特征值;通过参数调整模块,若当前功耗特征值不在目标范围内,则根据当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至当前组网的下一功耗特征值在目标范围内。该装置通过当前组网类型与业务需求类型相结合,据此调整对应的组网工作参数以控制终端的功耗特征值,能够在满足用户用网需求的同时有效控制功耗,并可以避免频繁切换组网类型给用户带来的不便,从而改善了用户对终端网络功能的使用体验。此外,该装置还根 据的业务需求类型以控制功耗,能够满足不同业务需求,提高业务服务质量。
在一实施例中,该装置还包括组网确定模块330,设置为:
在获取当前组网的当前功耗特征值之前,确定支持的组网类型,所述支持的组网类型包括独立SA组网和非独立NSA组网中的至少一种;在所述支持的组网类型包括所述SA组网的情况下,采用所述SA组网作为所述当前组网。
在一实施例中,在所述当前组网为NSA组网的情况下,所述组网工作参数包括以下至少之一:LTE频段的发射功率;NR频段的发射功率;上行SCC通路数;下行SCC通路数;上行MIMO通路数;下行MIMO通路数;在当前组网为SA组网的情况下,组网工作参数包括以下至少之一:NR频段的发射功率;上行SCC通路数;下行SCC通路数;上行MIMO通路数;下行MIMO通路数;双发链路中每条发射链路的开关状态。
在一实施例中,参数调整模块320设置为:
所述当前组网类型为非独立NSA组网,且所述业务需求类型为主下行,则通过如下至少一种方式调整对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:降低部分LTE频段的发射功率;降低部分NR频段的发射功率;关闭至少一个上行SCC通路;关闭至少一个上行MIMO通路;上述调整组网工作参数的选频和/或通路选择的依据包括频段的功耗。
在一实施例中,参数调整模块320设置为:
所述当前组网类型为SA组网,且所述业务需求类型为主下行,则通过如下至少一种方式调整对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:降低部分NR频段的发射功率;关闭双发链路中功耗特征值较大的发射链路;关闭至少一个上行SCC通路;关闭至少一个上行MIMO通路;上述调整组网工作参数的选频、发射链路选择和/或通路选择的依据包括频段的功耗。
在一实施例中,参数调整模块320设置为:
所述当前组网类型为NSA组网或SA组网,且所述业务需求类型为主上行,则通过如下至少一种方式调整对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:
关闭至少一个下行SCC通路;关闭至少一个下行MIMO通路;上述调整组网工作参数的通路选择的依据包括频段的功耗。
在一实施例中,该装置还包括:
一级需求调整模块340,设置为述当前组网类型为NSA组网或SA组网,且所述业务需求类型为一级需求,则通过如下至少一种方式调整对应的组网工 作参数,以满足所述一级需求:关闭至少一个SCC通路;关闭至少一个MIMO通路;降低部分LTE频段的发射功率;降低部分NR频段的发射功率;上述调整组网工作参数的选频和/或通路选择的依据包括频段的功耗。
在一实施例中,该装置还包括:
二级需求调整模块350,设置为所述业务需求类型切换为二级需求,则通过如下至少一种方式调整对应的组网工作参数,以满足所述二级需求:开启至少一个被关闭的SCC通路;开启至少一个被关闭的MIMO通路;增大部分LTE频段的发射功率;增大部分NR频段的发射功率;其中,所述二级需求的网速需求量高于所述一级需求的网速需求量。
本实施例提出的组网工作参数控制装置与上述实施例提出的组网工作参数控制方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行组网工作参数控制方法相同的效果。
本申请实施例还提供了一种终端。图4为一实施例提供的一种终端的硬件结构示意图,如图4所示,本申请提供的终端,包括处理器410、存储器420以及存储在存储器420上并可在处理器410上运行的计算机程序,处理器410执行所述程序时实现上述的组网工作参数控制方法。
终端还可以包括存储器420;该终端中的处理器410可以是一个或多个,图4中以一个处理器410为例;存储器420设置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器410执行,使得所述一个或多个处理器410实现如本申请实施例中所述的组网工作参数控制方法。
终端还包括:通信装置430、输入装置440和输出装置450。
终端中的处理器410、存储器420、通信装置430、输入装置440和输出装置450可以通过总线或其他方式连接,图4中以通过总线连接为例。
输入装置440可设置为接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的按键信号输入。输出装置450可包括显示屏等显示设备。
通信装置430可以包括接收器和发送器。通信装置430设置为根据处理器410的控制进行信息收发通信。
存储器420作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述组网工作参数控制方法对应的程序指令/模块(例如,组网工作参数控制装置中的模块)。存储器420可包括存 储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种组网工作参数控制系统。图5为一实施例提供的一种组网工作参数控制系统的结构示意图,如图5所示,该系统包括:终端510、以及分别与终端510相连的功耗监测模块520、射频模块530以及网速跟踪模块540,其中,功耗监测模块520、射频模块530以及网速跟踪模块540可以内置在终端510中,也可以与终端510中的处理器连接,设置为实现相应的功能。例如,功耗监测模块520设置为监测当前组网对应的功耗特征值;射频模块530设置为建立当前组网;网速跟踪模块540设置为监测当前组网的网速需求量。当前组网的网速需求量主要指当前所监测的终端正在进行的业务对网速的需求量,可以包括上行网速需求量、下行网速需求量和/或总网速需求量等,用于确定业务需求类型,例如是主上行、主下行、一级需求或者是二级需求等。
本实施例的组网工作参数控制系统,通过将当前组网类型与业务需求类型相结合,据此调整对应的组网工作参数以控制终端的功耗特征值,能够在满足用户用网需求的同时还可以有效控制功耗,并可以避免频繁切换组网类型给用户带来的不便,从而改善了用户对终端网络功能的使用体验。此外,该系统还根据的业务需求类型以控制功耗,能够满足不同业务需求,提高业务服务质量。
在一实施例中,射频模块530包括LTE射频模块以及NR射频模块。
本实施例中,LTE射频模块可以设置为实现4G射频功能,其包括对应的4G PA、双工器、低噪声放大器(Low Noise Amplifier,LNA)、滤波器等硬件电路。
NR射频模块可以设置为实现5G射频功能,其包括对应的5G PA、双工器、LNA、滤波器等硬件电路。
在一实施例中,功耗监测模块520包括多个监测装置,监测装置包括电流检测电路、温感器件和/或阻性器件;监测装置设置为监测至少一个发射链路和/或至少一个接收链路的功耗特征值。
本实施例中,电流检测电路可以集成在终端510内部的PA或射频收发芯片 上,以实时监测功耗特征值。
温感器件可以指由多个温感元件(如热敏电阻元件)所构成的器件,其可以放置在终端510每个工作频段所对应的发射链路和接收链路中。例如,当终端510温度改变后,温感器件的阻值就会随之发生变化,对应的电压也会发生变化;在此基础上,通过终端510内部系统的表格查询并计算可以得到终端510的多个工作频段对应的电流值。
阻性器件也可以指由多个热敏电阻元件所构成的器件,其可以外接在射频收发芯片上(前提是在射频收发芯片功能可支持状态下),在此基础上,根据电压变化可以计算得到终端510的多个工作频段对应的实时电流值。
功耗监测模块520既可以直接监测电流值(如电流检测电路),也可以通过监测与电流相关的一种参数作为换算得到对应的电流值(如温感器件和阻性器件)。
监测装置设置为监测至少一个发射链路和/或至少一个接收链路的功耗特征值。在本实施例中,可以针对于每条链路都对应放置一个监测装置;也可以为了减小复杂度,将终端510内频率相近的多个工作频段划分为一组,进行分组监测。
在一实施例中,组网工作参数控制系统还包括:中央控制模块,其中,中央控制模块内包括网络模式切换模块、功率控制模块和SCC控制模块。
本实施例中,中央控制模块可独立集成一个模块,也可与射频收发芯片或基带芯片集成设计;其中,中央控制模块可集成在终端510内部,与处理器410连接。功耗监测模块可以实时监测终端510的功耗特征值,如多个射频频段的耗电情况,并将数据实时传回中央控制模块。
网络模式切换模块主要依据用户当前所处地区的网络组网状态,切换组网模式为SA组网或NSA组网,同时可依据当前多个频段电流功耗状态及上下行网速需求量等调节LTE和NR频段的MIMO通道数量为单输入单输出(Single Input Single Output,SISO)、2*2MIMO、3*3MIMO、4*4MIMO等。
功率控制模块依据当前多个频段电流功耗状态及上下行网速需求量,选择升高或降低LTE或NR大功耗频段的发射功率及多个通路的开闭。在SA组网模式下,控制NR大功耗频段的发射功率及通路的开闭;在NSA组网模式下,LTE和NR频段的发射功率同发,依据对电流的监控,对LTE和NR中功耗电流大的频段分配更小的功率,以降低总功耗;对于SA组网的双发链路的网络模式下,可依据上行网速需求量和电流数据,选择关闭电流功耗较大的一条发射链路以降低功耗。
SCC控制模块依据当前多个频段电流功耗状态及上下行网速需求量选择开启或关闭功耗大的频段的上行或下行SCC通路,或将一大功耗频段的CA修改成2*2或1*1的状态来减小功耗。
在一实施例中,在SCC通路的控制方面,由于CA的总下载速率和上传速率与SCC有着直接关系,通过网速跟踪模块实时监测用户在终端510的网速需求量,通过功耗监测模块实时追踪终端的当前功耗特征值,并根据实时所监测的用户网速需求量以及当前功耗特征值,可以确定开启或关闭的SCC通路对应的频段,关闭哪几条SCC通路,或开启哪几条SCC通路。在保证用户用网需求的同时,将SCC通路数量和数据传输量控制在一个适当范围内,能够减少功耗,达到减小终端510发热和提高续航的目的。
示例性的,若终端510当前使用NSA组网,主上行,即上行网速需求量大,且手机射频总功耗过大,发热严重,终端510射频的频段1电流较小,频段3电流较大,则终端510内部系统可以选择关闭频段3的下行CA的多个SCC通路,即SCC通路1、SCC通路2等。若频段3配置有下行MIMO通路,则可选择关闭其部分MIMO通路;在终端510温度降低后,网速跟踪模块检测到开启所关闭SCC通路及MIMO通路的用网需求,则重新开启频段3的下行CA的SCC通路1、SCC通路2等多个通路,同样开启所关闭的部分MIMO通路,并依据上下行实时网速需求量和功耗进行下一轮功耗特征值的控制。
若终端510当前使用NSA组网,主下行,即下行网速需求量大,且手机射频总功耗过大,发热严重,终端510射频的LTE频段3与NR频段4同时发射功率,且LTE频段3电流较小,NR频段4电流较大,则终端510内部系统可以选择降低NR频段4的发射功率,或关闭NR频段4的上行CA的SCC通路1、SCC通路2等多个通路;在终端510温度降低后,网速跟踪模块检测到开启所关闭SCC通路的用网需求,则重新开启NR频段4的上行CA的SCC通路1、SCC通路2等多个通路,并将NR频段4的发射功率升至常值,在此基础上,可依据上下行实时网速需求量和功耗进行下一轮功耗特征值的控制。
若终端510当前使用NSA网络,且上下行网速需求量均较小,终端510温度也不高,则可选择性关闭电流功耗较大频段的上行或下行CA的一个或多个SCC通路、关闭部分MIMO通路、和/或降低部分频段的发射功率,以降低功耗;待上行或下行用网需求增大后,可重新开启所关闭频段的上行或下行CA的SCC通路,还可根据实际需求开启所关闭的MIMO通路以及提高部分频段的发射功率,在此基础上,可依据上下行实时网速需求量和功耗进行下一轮功耗特征值的控制。
网络模式切换所依据的网速需求量大小门限及耗电门限可由开发人员依据 不同的终端510和适用人群进行调整。组网工作参数的控制,如关闭几条SCC通路,降低LTE、NR发射功率至多少dBm等,可依据终端510本身的射频方案调整,此处对此不作限定。
本实施例依据实时获得的上下行网络速率、终端510使用状态、终端510多个射频频段的耗电情况等,能够自动切换5G网络下的组网状态,并综合自主调整上行及下行CA的SCC频段使能情况及多个频段发射功率状态,在保证用户用网需求的条件下,将射频电流、SCC通路数、MIMO通路数等控制在一个合理范围内,尽可能减少功耗,达到减小终端510发热和提高续航的效果。
本实施例提出的组网工作参数控制系统与上述实施例提出的组网工作参数控制方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行组网工作参数控制方法相同的效果。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的组网工作参数控制方法。该方法,包括:获取当前组网的当前功耗特征值;在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式光盘只读存储器(Compact Disk Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使 用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于ROM、RAM、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或CD等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理 器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (10)

  1. 一种组网工作参数控制方法,包括:
    获取当前组网的当前功耗特征值;
    在所述当前功耗特征值不在目标范围内的情况下,根据所述当前组网的组网类型以及业务需求类型调整所述当前组网对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内。
  2. 根据权利要求1所述的方法,在所述获取当前组网的当前功耗特征值之前,还包括:
    确定支持的组网类型,所述支持的组网类型包括独立SA组网和非独立NSA组网中的至少一种;
    在所述支持的组网类型包括所述SA组网的情况下,采用所述SA组网作为所述当前组网。
  3. 根据权利要求1所述的方法,其中,在所述当前组网为NSA组网的情况下,所述组网工作参数包括以下至少之一:长期演进LTE频段的发射功率;新空口NR频段的发射功率;上行辅载波单元SCC通路数;下行SCC通路数;上行多进多出MIMO通路数;下行MIMO通路数;
    在所述当前组网为SA组网的情况下,所述组网工作参数包括以下至少之一:NR频段的发射功率;上行SCC通路数;下行SCC通路数;上行MIMO通路数;下行MIMO通路数;双发链路中每条发射链路的开关状态。
  4. 根据权利要求3所述的方法,其中,所述根据所述当前组网的组网类型以及业务需求类型调整所述当前组网对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内,包括:
    在所述当前组网类型为NSA组网,且所述业务需求类型为主下行的情况下,通过如下至少一种方式调整所述当前组网对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:
    降低部分LTE频段的发射功率;
    降低部分NR频段的发射功率;
    关闭至少一个上行SCC通路;
    关闭至少一个上行MIMO通路;
    其中,调整所述组网工作参数的选频和通路选择中的至少之一的依据包括频段的功耗。
  5. 根据权利要求3所述的方法,其中,所述根据所述当前组网的组网类型 以及业务需求类型调整所述当前组网对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内,包括:
    在所述当前组网类型为SA组网,且所述业务需求类型为主下行的情况下,通过如下至少一种方式调整所述当前组网对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:
    降低部分NR频段的发射功率;
    关闭双发链路中功耗特征值较大的发射链路;
    关闭至少一个上行SCC通路;
    关闭至少一个上行MIMO通路;
    其中,调整所述组网工作参数的选频、链路选择和通路选择中的至少之一的依据包括频段的功耗。
  6. 根据权利要求3所述的方法,其中,所述根据所述当前组网的组网类型以及业务需求类型调整所述当前组网对应的组网工作参数,直至所述当前组网的下一功耗特征值在所述目标范围内,包括:
    在所述当前组网类型为NSA组网或SA组网,且所述业务需求类型为主上行的情况下,通过如下至少一种方式调整所述当前组网对应的组网工作参数,以使所述下一功耗特征值降低至所述目标范围内:
    关闭至少一个下行SCC通路;
    关闭至少一个下行MIMO通路;
    其中,调整所述组网工作参数的通路选择的依据包括频段的功耗。
  7. 根据权利要求3所述的方法,还包括:
    在所述当前组网类型为NSA组网或SA组网,且所述业务需求类型为一级需求的情况下,通过如下至少一种方式调整所述当前组网对应的组网工作参数,以满足所述一级需求:
    关闭至少一个SCC通路;
    关闭至少一个MIMO通路;
    降低部分LTE频段的发射功率;
    降低部分NR频段的发射功率;
    其中,调整所述组网工作参数的选频和通路选择中的至少之一的依据包括频段的功耗。
  8. 根据权利要求7所述的方法,还包括:
    在所述业务需求类型切换为二级需求的情况下,通过如下至少一种方式调整所述当前组网对应的组网工作参数,以满足所述二级需求:
    开启至少一个被关闭的SCC通路;
    开启至少一个被关闭的MIMO通路;
    增大部分LTE频段的发射功率;
    增大部分NR频段的发射功率;
    其中,所述二级需求的网速需求量高于所述一级需求的网速需求量。
  9. 一种终端,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-8中任一项所述的组网工作参数控制方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-8中任一项所述的组网工作参数控制方法。
PCT/CN2022/105022 2021-09-23 2022-07-12 组网工作参数控制方法、终端及存储介质 WO2023045502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114921.7A CN115866617A (zh) 2021-09-23 2021-09-23 组网工作参数控制方法、终端及存储介质
CN202111114921.7 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045502A1 true WO2023045502A1 (zh) 2023-03-30

Family

ID=85652288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105022 WO2023045502A1 (zh) 2021-09-23 2022-07-12 组网工作参数控制方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN115866617A (zh)
WO (1) WO2023045502A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116911578B (zh) * 2023-09-13 2024-02-27 华能信息技术有限公司 一种风电控制系统的人机交互方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135696A1 (en) * 2009-05-07 2012-05-31 Telefonaktiebolaget L M Ericsson (Publ) Managing A Power Consumption Of A Mobile Communication Device
CN108495344A (zh) * 2015-11-28 2018-09-04 广东欧珀移动通信有限公司 一种网络切换方法、装置以及终端
CN110536346A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
CN112738831A (zh) * 2021-01-22 2021-04-30 广东以诺通讯有限公司 一种5g终端的sa组网和nsa组网的选网方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135696A1 (en) * 2009-05-07 2012-05-31 Telefonaktiebolaget L M Ericsson (Publ) Managing A Power Consumption Of A Mobile Communication Device
CN108495344A (zh) * 2015-11-28 2018-09-04 广东欧珀移动通信有限公司 一种网络切换方法、装置以及终端
CN110536346A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
CN112738831A (zh) * 2021-01-22 2021-04-30 广东以诺通讯有限公司 一种5g终端的sa组网和nsa组网的选网方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Consideration on UE adaptation to the traffic and UE power consumption characteristics", 3GPP DRAFT; R1-1810338 CONSIDERATION ON UE ADAPTATION TO THE TRAFFIC AND UE POWER CONSUMPTION CHARACTERISTICS FINAL, vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 6, XP051504375 *

Also Published As

Publication number Publication date
CN115866617A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US11026103B2 (en) Machine learning deployment in radio access networks
US8265563B2 (en) Techniques for enhanced co-existence of co-located radios
CN103339994B (zh) 为用户装置设置最大输出功率并报告功率余量的方法以及用户装置
JP2022543895A (ja) 情報伝送方法およびデバイス、情報受信方法およびデバイス、通信ノード、および記憶媒体
CN108419281B (zh) 一种网络切换方法、装置及通信终端
CN110446235B (zh) 通话模式确定方法及装置、电子设备、存储介质
WO2013123082A2 (en) Methods and apparatus for intelligent receiver operation
JP2021519023A (ja) 伝送モード決定方法及び機器
KR102126614B1 (ko) 웨이크-업 라디오 링크 적응
WO2020073807A1 (zh) 天线调谐方法、装置、移动终端及计算机可读存储介质
WO2023071340A1 (zh) 业务切片的调整方法、电子设备和存储介质
WO2023045502A1 (zh) 组网工作参数控制方法、终端及存储介质
EP2898607A1 (en) Antenna resource management for multi-antenna structure
WO2015081277A1 (en) Method and apparatus for downlink transmission in a cloud radio access network
WO2012100745A1 (zh) 多输入多输出模式切换方法和终端设备
JPWO2011142214A1 (ja) 移動通信端末
CN110169108B (zh) 一种高速数据传输降级方法、设备及系统
US10271272B2 (en) Methods and apparatus to estimate application data traffic characteristics to condition data communication channels
JP2018534840A (ja) 重み値取得方法及び装置
TW201914237A (zh) 一種通道跳頻的確定方法及裝置、電腦儲存媒介
CN112637943B (zh) 射频组件工作模式控制方法、装置、电子设备和存储介质
KR102232679B1 (ko) 5g nsa/sa 듀얼 모드 지원 단말에서의 망 접속 방법 및 장치
CN110839111B (zh) 工作模式的切换方法、装置、设备及存储介质
CN112585918B (zh) 控制方法及相关设备
CN113473494B (zh) 管理交叉链路干扰的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE