WO2023071340A1 - 业务切片的调整方法、电子设备和存储介质 - Google Patents

业务切片的调整方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023071340A1
WO2023071340A1 PCT/CN2022/108688 CN2022108688W WO2023071340A1 WO 2023071340 A1 WO2023071340 A1 WO 2023071340A1 CN 2022108688 W CN2022108688 W CN 2022108688W WO 2023071340 A1 WO2023071340 A1 WO 2023071340A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
service
sub
parameter
parameters
Prior art date
Application number
PCT/CN2022/108688
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2024516681A priority Critical patent/JP2024531747A/ja
Priority to EP22885240.6A priority patent/EP4425866A1/en
Publication of WO2023071340A1 publication Critical patent/WO2023071340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical field of communications, for example, to a method for adjusting service slices, electronic devices, and storage media.
  • 5G network slicing technology can be divided into 5G network architecture slicing, core network slicing, transmission network slicing, and wireless network slicing. According to different slices, it can meet the requirements of different business scenarios for throughput, bandwidth, delay and reliability of network communication quality.
  • the system side of the base station has a corresponding differentiated slicing strategy design.
  • the enhanced mobile broadband network slicing solution for large bandwidth and large data volume services is applied to the millisecond-level low-latency communication network slicing solution, and is applied to the high network density and coverage network slicing solution in the Internet of Things field.
  • the network slicing solution is only on the core network side, followed by the wireless access network layer and the transmission network layer.
  • the terminal side cannot rationally schedule terminal resources according to different service scenarios and user needs.
  • the main purpose of the embodiments of the present application is to provide a method for adjusting a service slice, an electronic device, and a storage medium. It aims to realize the rational scheduling of terminal resources on the terminal side according to the business scenarios and user needs of the application service slice.
  • an embodiment of the present application provides a method for adjusting service slicing, which is applied to a terminal, including: obtaining service requirement parameters of an application service slicing configured for the terminal and current network parameters of the terminal, wherein, The service requirement parameters include service requirement parameters of each sub-slice of the application service slice; adjust the parameters of each sub-slice of the application service slice according to the service requirement parameter and the current network parameter.
  • an embodiment of the present application further provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the Instructions executed by at least one processor, where the instructions are executed by the at least one processor, so that the at least one processor can execute the above method for adjusting service slices.
  • the embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above method for adjusting service slices when the computer program is executed by a processor.
  • FIG. 1 is a schematic flowchart of a method for adjusting service slices provided in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for adjusting service slices provided in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for adjusting a service slice provided in an embodiment of the present application
  • Fig. 3a is a schematic structural diagram of a hard slicing circuit adjustment method provided in an embodiment of the present application.
  • Fig. 3b is a schematic structural diagram of the soft slice program adjustment method provided by the embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for adjusting a service slice provided in an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for adjusting a service slice provided in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a device for adjusting a service slice provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • the system side of the base station has a corresponding differentiated slicing strategy design.
  • 5G such as the enhanced mobile broadband network slicing solution for large bandwidth and large data volume services, It is applied to the millisecond-level low-latency communication network slicing solution, and is applied to the high network density and coverage network slicing solution in the Internet of Things field.
  • the required throughput will be very large, and slicing is required at this time Process to high-speed throughput mode; if end users only do WeChat chat, web browsing, and small file transfer, the required throughput will be relatively small, and only need to slice and process to low-speed throughput mode.
  • Traditional network slicing is only on the core network side, followed by the wireless access network layer and the transport network layer, but it is not mentioned on the terminal side.
  • the throughput and channel redundancy of the system allocation or current work will cause waste of traffic and power consumption; if the allocated throughput and channels are insufficient, or the channel is blocked and the bit error is serious, it will cause The actual use is stuck and not smooth.
  • An embodiment of the present application relates to a method for adjusting service slices, which is applied on the terminal side, as shown in FIG. 1 , including:
  • Step 101 acquire service requirement parameters of an application service slice configured for a terminal and current network parameters of the terminal, wherein the service requirement parameters include service requirement parameters of each sub-slice of the application service slice.
  • the application service slices of the terminal are simply divided into data service slices and call service slices, and specific applications include high-speed download and upload, high-definition video, high-definition video calls, high-traffic games, cloud services, augmented reality and virtual reality High-speed throughput application business slicing such as online chat, web browsing, single-player mini-games, mobile payment, mobile reading, and low-speed transmission and other low-speed throughput application business slicing. Due to the different nature of the business, the network types, upload and download traffic requirements, time delay, and the number of simultaneous access terminals required by the above-mentioned different services are all different.
  • business slice such as: game business slice
  • real-time requirements such as single-player online game business slice, multiplayer online game business slice, low-resolution game business slice, high-resolution game business slice, etc.
  • the service requirement parameters may include information such as throughput, throughput rate, spectrum range (i.e. operating frequency point), spectrum bandwidth, interference parameters, and uplink power parameters, etc., to obtain the service of the application service slice configured for the terminal Demand parameters can include the following four methods.
  • the first method when detecting the application service slice opened by the terminal, collect the radio frequency information parameter set of the terminal, perform statistical analysis on the radio frequency information parameter set, and obtain the service requirement parameters of the application service slice.
  • the second method When detecting the application service slice opened by the terminal, obtain the delay when the application service slice is opened and when the application service slice is running, obtain the speed of opening the application service slice, and obtain it according to the delay, speed and preset target threshold The business requirement parameters of the application business slice.
  • the third type the base station core network, bearer network, and transmission network slice network information are sent to the terminal through a specific message. After receiving the affected slice network information, the terminal uses the slice network information transmitted by the base station as the application service slice of the terminal. Business requirement parameters.
  • the fourth type the business requirement information set by the user UI interface refers to the application and setting of the specific slicing requirements of the end user. This setting is set through the setting menu on the terminal UI interface. Through the defined switching window and options, the user can Examples of slicing requirements on the terminal side are as follows: maximum uplink throughput, maximum downlink throughput, service matching network speed throughput, minimum latency throughput, minimum power consumption throughput, enhanced signal throughput, game mode throughput, high-definition video mode throughput, cooling mode throughput, Red packet slice mode throughput and other information.
  • the first method and the second method can be used in combination. After setting different weighting parameters for the parameters collected by the first method and the second method, the business requirements can be obtained through the weighted method parameter.
  • the current network parameters may include throughput, network speed, throughput rate, spectrum range (i.e. operating frequency point), spectrum bandwidth, interference parameters and uplink power parameters, etc., and the current network parameters are obtained by analyzing the current Obtained from the radio frequency information parameter set.
  • Step 102 adjust the parameters of each sub-slice of the application service slice according to the service requirement parameters and the current network parameters.
  • the sub-slice parameters of the application service slice may include throughput sub-slice parameters, power sub-slice parameters, bandwidth sub-slice parameters, spectrum sub-slice parameters, interference sub-slice parameters, resource block (Resource Block, RB for short) ) sub-slice parameters, etc.; when it is detected that there is a difference between the business requirement parameters and the current network parameters (that is, the business requirement parameters are different from the current network parameters, or the difference is greater than a preset threshold), each sub-slice parameter is adjusted to the same value as The parameter value corresponding to the business requirement parameter.
  • the service demand parameters of the application service slice configured for the terminal and the current network parameters of the terminal are obtained, wherein the service demand parameters include all The service requirement parameters of each sub-slice of the application service slice; adjust the parameters of each sub-slice of the application service slice according to the service requirement parameter and the current network parameter. Adjust the slice parameters of each application slice through the service requirement parameters and current network parameters of each application slice, so that the terminal can perform resource scheduling according to the business scenarios and user requirements of each application slice, and prevent the failure caused by inappropriate terminal configuration.
  • An embodiment of the present application relates to a method for adjusting service slices, as shown in FIG. 2 , including:
  • Step 201 acquiring service requirement parameters of an application service slice configured for a terminal and current network parameters of the terminal, wherein the service requirement parameters include service requirement parameters of each sub-slice of the application service slice.
  • this step is substantially the same as step 101 in the embodiment of the present application, and details are not repeated here.
  • Step 202 Select the slice adjustment mode corresponding to the application service slice from the preset slice adjustment modes according to the service requirement parameters, wherein the slice adjustment mode is used to indicate the adjustment order of the sub-slice parameters of the application service slice.
  • the adjustment of the application service slice of the 5G terminal involves the parameters of each sub-slice of each application service slice (such as throughput sub-slice, power sub-slice, spectrum sub-slice, antenna sub-slice, etc.)
  • the application Before the parameters of each sub-slice of the business slice, it is necessary to determine the adjustment order of the parameters of each sub-slice of the application business slice.
  • This module can be used to connect the information of the base station according to the current business requirements (optionally used to indicate the parameters of each sub-slice of the application business slice.
  • Slicing parameter adjustment method its own wireless parameter conditions (optional, that is, current network parameters) and internal parameter models (storage of preset slice adjustment modes, and storage of peak uplink and downlink throughput under different application service slice configurations, The previous peak and average uplink and downlink rates of different application software are stored and other information) are calculated to match the slice adjustment mode corresponding to the most suitable application business slice.
  • this application can also store the model parameters, test parameters and control parameters of each 5G slice (that is, the application service slice) on the terminal side; including different bandwidth, power, spectrum, interference, RB resource block, long-term evolution (Long Term Evolution, referred to as LTE) and new air interface (New Radio, referred to as NR), carrier aggregation (Carrier Aggregation, referred to as CA) mode, uplink channel estimation (Sounding Reference Signal, referred to as SRS) mode, multiple-input multiple-output (multiple- in multipleout (MIMO for short) mode, slice parameter storage in the upper and lower antenna switching mode; it is also used to control the storage of each slice adjustment parameter and drive code; it also stores the peak uplink and downlink throughput under different slice configurations, and the history of different application software The reached peak and average uplink and downlink rates are stored, and through a large amount of usage data, the throughput value required by the storage application software is refreshed in real time.
  • Step 203 adjust the parameters of each sub-slice of the application service slice according to the service requirement parameters, the current network parameters and the slice adjustment mode corresponding to the application service slice.
  • step 102 of the embodiment of the present application is roughly the same, and the only difference is that the adjustment sequence of each sub-slice parameter is added, which will not be repeated here.
  • the adjustment order of the parameters of each sub-slice in the application business slice can be obtained according to the current demand of the application business slice, and the parameters of each sub-slice can be adjusted according to the priority to improve the efficiency of the application. Efficiency adjusted by applying business slices.
  • An embodiment of the present application relates to a method for adjusting service slices, as shown in FIG. 3 , including:
  • Step 301 acquiring service requirement parameters of an application service slice configured for the terminal and current network parameters of the terminal, wherein the service requirement parameters include service requirement parameters of each sub-slice of the application service slice.
  • this step is substantially the same as step 101 in the embodiment of the present application, and details are not repeated here.
  • Step 302 obtain the parameter change value according to the service requirement parameter and the current network parameter, and obtain the adjustment step and adjustment mode according to the parameter change value.
  • the adjustment methods include: a hard slicing circuit adjustment method, a soft slicing program adjustment method, and a combination of soft and hard adjustment.
  • the hard-slicing circuit adjustment method includes: the hard-slicing circuit does not need to modify the radio frequency drive code, and the switch is completed through the logic gate device built in the terminal, and the input of the logic gate and the switch device is a conventional general-purpose input and The output port (General-purpose input/output, referred to as GPIO), the input signal is the base station slice indication signal or the slice indication signal output by the slice mode mapping algorithm unit, the realization of the hard slice circuit is as follows, and different networks and services are detected through multiple switches Threshold slice requirements, control the current terminal MIMO mode, SRS mode, power level, and sensitivity level.
  • GPIO General-purpose input/output
  • the soft slicing program adjustment method includes: parameter control and adjustment based on the soft slicing program, and the soft slicing adjustment includes network standard slicing, terminal NR working bandwidth slicing, CA combined slicing, SRS working mode slicing, and MIMO working mode Slicing, scheduling parameter slices.
  • the soft slicing adjustment includes network standard slicing, terminal NR working bandwidth slicing, CA combined slicing, SRS working mode slicing, and MIMO working mode Slicing, scheduling parameter slices.
  • the soft slicing adjustment includes network standard slicing, terminal NR working bandwidth slicing, CA combined slicing, SRS working mode slicing, and MIMO working mode Slicing, scheduling parameter slices.
  • the soft slicing adjustment includes network standard slicing, terminal NR working bandwidth slicing, CA combined slicing, SRS working mode slicing, and MIMO working mode Slicing, scheduling parameter slices.
  • the soft slicing control unit configures different slicing configurations by calling different radio frequency driver codes, that is, the radio frequency driver program controls network channel and working mode configurations under different services and requirements.
  • the network standard is divided into slices, the RFC is configured as RFC_LTEonly, RFC_SA, and RFC_NSA according to the slice bandwidth, and the RFC code is divided into RFC_WB1, RFC_WB2, RF3_WB3, ... RFC_WBn several modes.
  • Slicing division based on different CA combination methods divides the RF driver code (Request For Comments, RFC for short) code into RFC_CA1, RFC_CA2, RF3_CA3,...RFC_CAn several modes.
  • Slicing division based on different SRS working modes divides RFC codes into RFC_SRS_PMI, RFC_SRS_1T2R, RF3_SRS_1T4R, RFC_SRS_2T4R modes.
  • Slice division based on different MIMO working modes divides the RFC code into RFC_DL_SISO, RFC_DL_22mimo, RFC_DL_33mimo, RFC_DL_44mimo, RFC_UL_SISO, RFC_UL_MIMO modes.
  • RFC_UL_SISO RFC_UL_MIMO modes.
  • the current different scheduling limit parameters MOD1, MOD2, MOD3, and MODn divide RFC codes into RFC_MOD1, RFC_MOD2, RFC_MOD3, and RFC_MODn modes.
  • the adjustment steps may include small-grain adjustments, medium-grain adjustments, and large-grain adjustments, or any other appropriate granularity adjustment steps. For example, by comparing the difference between the current network throughput information and the target throughput, select the corresponding granularity adjustment method to meet the differentiated network requirements of different users and services. If the current uplink and downlink throughput increase demand is small, the terminal can directly switch from LTE mode to LTE CA mode, or LTE MIMO mode.
  • the terminal can directly switch from LTE mode to SA mode or NSA mode; if the current demand for uplink and downlink throughput increases is large, the terminal can switch from the current LTE mode to NR CA mode, or NR CA plus LTE CA mode, the granularity increases sequentially. Different granularities map different throughput adjustment thresholds and steps, and the adjustment is realized through closed-loop optimization until the requirements of business characteristics are met.
  • Step 303 adjust the parameters of each sub-slice of the application service slice according to the adjustment step, adjustment mode, service requirement parameters and current network parameters.
  • the adjustment method of this step in step 102 of the embodiment of the present application is roughly the same, the only difference is that the adjustment method and adjustment step of each sub-slice parameter are set, which will not be repeated here.
  • an appropriate adjustment step and adjustment method can be selected according to the service requirements of the application service slice and the current network parameters, so as to improve the efficiency of adjusting the application service slice.
  • An embodiment of the present application relates to a method for adjusting service slices, which is applied on the terminal side, as shown in FIG. 4 , including:
  • Step 401 acquire the service requirement parameters of the application service slice configured for the terminal and the current network parameters of the terminal, wherein the service requirement parameters include the service requirement parameters of each sub-slice of the application service slice.
  • this step is substantially the same as step 101 in the embodiment of the present application, and details are not repeated here.
  • Step 402 adjust the power sub-slice parameters of the application service slice according to the service requirement parameters and the current network parameters.
  • the service requirement parameter is the target uplink power parameter
  • the current network parameter is the current uplink power parameter
  • the uplink power parameter adjusts the uplink power parameter of the power sub-slice.
  • the uplink power parameter includes three adjustment methods: a maximum power limit adjustment method, an enhanced uplink power adjustment method, and a shared power adjustment method.
  • the method for adjusting the maximum power limit includes: invoking the corresponding maximum transmit power limit according to the target uplink power parameters and service scenarios; for example: the maximum transmit power limit for NR uplink is predetermined, and the uplink of NSA and SA The power limit may also be different. For example, in NSA mode, power level 3, the default power of NR is 23dBm, and the maximum power is generally lower than 24.5dBm; in SA mode, the default power of power level 2 is 25dB, and the maximum power is generally lower than 26.5dB.
  • the enhanced uplink power adjustment method includes: the uplink power parameters of the power sub-slice include the main antenna power parameter and the backup antenna power parameter; firstly adjust the main antenna power parameter of the power sub-slice according to the target uplink power parameter; when the main antenna When the power parameter meets the preset power limit, adjust the power parameter of the standby antenna of the power sub-slice according to the target uplink power parameter; adjusting the power parameter of the standby antenna can increase the system power by reducing the overall insertion loss through some passive device paths, and can By modifying the slicing method of the power level, modify the normal power level PC3 to the high power mode of PC2, or modify the slicing method of calibrating the maximum target power, and call the specific high-power calibration slice parameters to increase the target maximum power output; in addition In addition, it can also be carried out through the main and standby antenna compensation, so that the standby antenna can make a certain power compensation according to the needs.
  • the power of the NR main antenna is 25dB, and the default power of the standby antenna is 22dB.
  • the uplink power parameters can be compensated by 0-4dB to obtain uplink antenna slice powers of 22, 23, 24, 25, and 26 respectively.
  • the shared power adjustment method includes: when the power sub-slice is a shared power slice, the uplink power parameters include new air interface NR power parameters (5G) and long-term evolution LTE anchor point power parameters (4G);
  • the power parameter adjusts the size and proportion of the NR power parameter and the LTE anchor power parameter in the power sub-slice. For example: when LTE and NR are working at the same time, if shared power control is set, when NR is working at the maximum transmit power, LTE is allowed to fall back to a certain power. Similarly, when LTE is working at the maximum power, NR is also allowed to fall back to back down to a certain power.
  • the power value of LTE or NR fallback is sliced, such as 2dB, 4dB, 6dB, 8dB, 10dB, 12dB respectively, and the NR power and LTE anchor point power are adjusted according to the current service requirements and network conditions.
  • Step 403 adjust the spectrum sub-slice parameters of the application service slice according to the service requirement parameters and the current network parameters.
  • the service requirement parameter is the target operating frequency and target throughput
  • the current network parameter is the current operating frequency and current throughput
  • the target operating frequency and the current operating when there is a difference in frequency points, the working frequency points of the spectrum sub-slices are adjusted according to the target working frequency points.
  • the target spectrum bandwidth corresponding to the target throughput is obtained from the preset correspondence between the throughput and the spectrum bandwidth, and the spectrum bandwidth of the spectrum sub-slice is adjusted according to the target spectrum bandwidth.
  • the adjustment of the operating frequency of the spectrum sub-slice is as follows: if N78 has a spectrum range of 3300-3800MHz, divide N78 into segment A (3300-3500MHz), segment B (3500-3700MHz), and segment C (3700-3800MHz) three sections, which are assigned to different users and services respectively.
  • the sections here can realize slice control of a specific spectrum range by means of variable filters.
  • the target operating frequency point and current operating frequency are detected When there is a difference, for example, if the current operating frequency is 3400MHz and the target operating frequency is 3600MHz, there is a gap of 200MHz between the current operating frequency and the target operating frequency, and the spectrum of the application service slice should be based on the original
  • the working frequency points of the sub-slices are divided into spectrum segments corresponding to the target working frequency points, and the working frequency points of the spectrum sub-slices to which the service slice is applied are adjusted to the target working frequency points.
  • an example of adjusting the spectrum bandwidth of a spectrum sub-slice is as follows:
  • N78 has various bandwidth values of 10M, 20M, 40M, 50M, 60M, 80M, 90M, and 100M, and different service requirements correspond to network conditions.
  • Different bandwidths divide the current service throughput into corresponding ranges, such as 100Mbps, 200Mbps, 400Mbps, 500Mbps, 600Mbps, 800Mbps, 900Mbps, 1000Mbps and above.
  • the corresponding spectrum bandwidth is 10M
  • the target throughput is 300Mbps and the current throughput is 100Mbps, it means There is a certain gap between the throughput and the target throughput.
  • EVM Error Vector Magnitude
  • the operating frequencies of the spectrum sub-slice include the new air interface NR operating frequency (5G) and the long-term evolution LTE operating frequency (4G), and the spectrum of the spectrum sub-slice Bandwidth includes new air interface NR spectrum bandwidth (5G) and long-term evolution LTE spectrum bandwidth (4G); adjust the size and proportion of NR operating frequency points and LTE operating frequency points in the spectrum sub-slice according to the target operating frequency point; adjust according to the target spectrum bandwidth The size and proportion of NR spectrum bandwidth and LTE spectrum bandwidth in the spectrum sub-slice.
  • NR and LTE work in the same frequency band of FDD, such as N1, N3, N5, N7, N8 and LTE B1, B3, B5, B7, B8, you can use shared spectrum debugging to enhance throughput, such as N1 borrowing LTE B1 Spectrum, and because the bandwidth of N1 is more flexible, such as 30MHz, 40MHz, and 50MHz; so the throughput rate under the corresponding spectrum can be increased through such sharing.
  • the difference is that the traditional shared spectrum cannot be processed by slicing, that is, a unified spectrum sharing mode.
  • spectrum sub-slicing can be used to adjust the range, interval, and bandwidth of spectrum sharing; by detecting the signal quality of LTE and NR in the shared spectrum, Throughput requirements or mutual interference conditions, dynamic spectrum slice sharing and which frequency range of LTE and NR frequency range are shared.
  • Step 404 adjust the antenna sub-slice parameters of the application service slice according to the service requirement parameters and the current network parameters.
  • the service demand parameter is the target throughput
  • the current network parameter is the current throughput
  • the target number of antennas corresponding to the amount and the current number of antennas corresponding to the current throughput; according to the difference between the target number of antennas and the current number of antennas, the number of antennas in the antenna sub-slice is adjusted; according to the preset throughput and single-frequency bandwidth Corresponding relationship, obtain the target single-frequency point bandwidth corresponding to the target throughput and the current single-frequency point bandwidth corresponding to the current throughput; according to the difference between the target single-frequency point bandwidth and the current single-frequency point bandwidth, the antenna sub-slice Adjust the bandwidth of the single frequency point.
  • an example of adjusting the number of antennas in an antenna sub-slice is as follows: there are more than ten 4G-5G antennas on a 5G terminal, and when the terminal works in single-band SA mode, the minimum is 2 antennas, and the maximum is 4 antenna.
  • the terminal works in NR CA mode, such as N41-N79, it can have up to 8 antennas.
  • the number of antennas also depends on the number of current LTE anchor points. For example, when B3(4)+N78(4), the number of antennas can reach 8 antennas. When B1(4)+B3(4)+B8(2)+N78(4), but B1 and B3 do not share antennas, The number of antennas can reach 14.
  • the antenna slicing module divides the terminal antenna mode into single antenna, double antenna, three antenna, and N antenna modes, and sets the limit throughput corresponding to a certain antenna to a certain threshold, such as 2 antennas below 500M, and 4 antennas from 500M-1600M , 1600M-2400M corresponds to 8 antennas, and above 2400M corresponds to 10 antennas.
  • a certain threshold such as 2 antennas below 500M, and 4 antennas from 500M-1600M , 1600M-2400M corresponds to 8 antennas, and above 2400M corresponds to 10 antennas.
  • an example of adjusting the single-frequency bandwidth of the antenna sub-slice is as follows: the antenna bandwidth includes two parts: the single-frequency bandwidth and the total supported bandwidth, and the terminal radio frequency chip can support 5M, 10M, 15M, 20M, 30M, 40M, 50M, 60M, 70M, 80M, 90M, 100M, if the carrier aggregation frequency band is used, it can also support higher bandwidth such as 200M or higher.
  • the operating frequency of the antenna is sliced into the corresponding required range, and the frequency, bandwidth, and range beyond the sliced requirements are shielded or weakened.
  • the depth of the resonant frequency point of the antenna sub-slice can also be adjusted, for example as follows: when the terminal has a high demand for the antenna efficiency of a certain frequency band, frequency point or channel, fixed-point slice control can be performed to adjust Antenna matching enhances the resonance depth of this frequency point to the target threshold requirement until the signal strength or throughput meets the threshold requirement.
  • the present application may also adjust the application service slice or the working mode of the terminal according to the current network parameters.
  • the mobile phone slices into a high-bandwidth, multi-mimo mode.
  • the mobile phone When the current service demand is stuck in LTE, the mobile phone will slice into NR mode, and when the LTE anchor signal in NSA mode is unstable, the mobile phone will slice into SA mode.
  • the mobile phone When the current service demand is stuck under LTE non-CA, and the 5G NR signal is poor, the mobile phone will slice into the LTE CA link combination with strong signal.
  • the mobile phone will slice into the combination mode of LTE CA plus NR, or NR CA mode.
  • the mobile phone When the current business demand is stuck in a certain SRS 1T2R mode, the mobile phone will slice into the 1T4R or 2T4R SRS mode with better signal quality. When the business demand is stuck in the SISO or main diversity mode, the mobile phone will slice into the NR MIMO mode. When the current business demand has an uplink freeze or intermittent problem, the mobile phone will slice and enter the power priority mode.
  • Example 1 If you need to download a large-flow game software or program, slice monitoring program, take the mimo circuit control of NR hard slice as an example, such as N78mimo slice control, when the user demand is small flow and throughput, the control signal controls NR to enter 1*1mimo or 2*2mimo mode, when the user demand is large flow and throughput, the control signal controls NR to enter 4*4mimo mode.
  • the terminal receives the control command, it disconnects or turns on the corresponding RX mimo circuit and antenna of the N78, RFC radio frequency drive configuration, and forces the mobile phone to enter different MIMO slice modes until the throughput reaches the target threshold requirement.
  • Example 2 Slicing adjustment in SRS mode
  • SRS mode of NR hard slicing as an example, multiple switches detect different network and service threshold slicing requirements, control circuit switch logic, and force the current terminal SRS mode to PMI, 1T2R, 2T4R, and 1T4R. Or use the soft slice control unit to configure the radio frequency driver by calling different SRS slices.
  • RFC_SRS_PMI RFC_SRS_1T2R
  • RF3_SRS_1T4R RFC_SRS_2T4R
  • RFC_SRS_2T4R several modes through the radio frequency driver code RFC.
  • Example 3 For the current business requirements that require large upload throughput.
  • Uplink dual transmission circuit control can be performed through NR hard slicing.
  • N78's uplink dual transmission if the user's uplink business is high, but the current upload throughput cannot meet the user's service requirements, the N78 can be forced to enter the uplink mimo dual transmission through slice control. Transmit transmission mode, that is, tx1 and tx2 links work at the same time; if the user's uplink business throughput is low, and the current uplink throughput has redundancy, the slice can enter the single NR transmission mode.
  • the parameters of each sub-slice of the application service slice can be adjusted in various ways, so as to increase the diversity of adjusting the application service slice.
  • An embodiment of the present application relates to a method for adjusting service slices, which is applied on the terminal side, as shown in FIG. 5 , and may include the following steps.
  • Step 501 acquiring service requirement parameters of the application service slice configured for the terminal and current network parameters of the terminal, wherein the service requirement parameters include service requirement parameters of each sub-slice of the application service slice.
  • this step is substantially the same as step 101 in the embodiment of the present application, and details are not repeated here.
  • Step 502 adjust the parameters of each sub-slice of the application service slice according to the service requirement parameters and the current network parameters.
  • this step is substantially the same as step 102 in the embodiment of the present application, and details are not repeated here.
  • Step 503 acquire the adjusted performance parameters of the application service slice during operation, and stop the adjustment of the application service slice when the performance parameters meet the preset stop condition.
  • the application service slice is run, and the performance parameters ( It can be packet loss rate, bit error rate, delay and other information), and when the performance parameters meet the preset stop conditions (that is, when the current business requirements are met), the adjustment of the application business slice can be stopped, otherwise continue Adjust application business slices.
  • the performance parameters It can be packet loss rate, bit error rate, delay and other information
  • the current performance of the application service slice can be detected after the first adjustment of the application service slice is completed, and when the performance meets the preset conditions, the application service slice can be stopped.
  • the adjustment enables the adjustment method of the service slice provided by this application to perform closed-loop feedback control, and accurately judge whether to terminate the adjustment of the service slice.
  • FIG. 6 is a schematic diagram of an apparatus for adjusting service slices in this embodiment, including: an acquisition module 601 and an adjustment module 602 .
  • the acquisition module 601 is configured to acquire the service requirement parameters of the application service slice configured for the terminal and the current network parameters of the terminal, wherein the service requirement parameters include the service requirement parameters of each sub-slice of the application service slice.
  • the acquisition module 601 may further include a traffic prediction unit 6011 and a service detection unit 6012 .
  • the traffic prediction unit 6011 is used to obtain the service requirement parameters of the application service slice according to the first or second method mentioned in step 101 in the embodiment of the present application.
  • the service detection unit 6012 is used to obtain the service requirement parameters of the application service slice according to the third or fourth method mentioned in step 101 of the embodiment of the present application.
  • the adjustment module 602 is configured to adjust the parameters of each sub-slice of the application service slice according to the service requirement parameters and the current network parameters.
  • the adjustment module 602 may further include a power adjustment unit 6021 , a frequency adjustment unit 6022 and an antenna adjustment unit 6023 .
  • the power adjustment unit 6021 is configured to adjust the power sub-slice parameters of the application service slice according to the service demand parameters and the current network parameters.
  • the frequency adjustment unit 6022 is configured to adjust the frequency sub-slice parameters of the application service slice according to the service requirement parameters and the current network parameters.
  • the antenna adjustment unit 6023 is configured to adjust the antenna sub-slice parameters of the application service slice according to the service requirement parameters and current network parameters.
  • the device for adjusting service slices may further include a hard slice adjustment mode unit and a soft slice program adjustment mode unit.
  • the functions of these two units are to provide two modes for the adjustment module to adjust slice parameters.
  • the apparatus for adjusting a service slice may further include an adjustment determining unit, which is used to determine the adjustment step and adjustment mode for slice parameter adjustment by the adjustment module.
  • the device for adjusting a service slice may further include an adjustment order unit, which is used to determine the order in which the adjustment module adjusts the power adjustment unit, the frequency adjustment unit, and the antenna adjustment unit.
  • the device for adjusting service slices may further include a parameter storage unit, which is used to store relevant parameters of each service slice, peak uplink and downlink throughputs of each service slice under different configurations, and other data.
  • a parameter storage unit which is used to store relevant parameters of each service slice, peak uplink and downlink throughputs of each service slice under different configurations, and other data.
  • this embodiment is a system embodiment corresponding to the above method embodiment, and this embodiment can be implemented in cooperation with the above method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 7 Another embodiment of the present application relates to an electronic device, as shown in FIG. 7 , including: at least one processor 701; and a memory 702 communicatively connected to the at least one processor 701; wherein, the memory 702 stores An instruction that can be executed by the at least one processor 701, the instruction is executed by the at least one processor 701, so that the at least one processor 701 can execute the method for adjusting a service slice in each of the foregoing embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种业务切片的调整方法、电子设备和存储介质。所述方法应用在终端上,包括:获取为终端配置的应用业务切片的业务需求参数和所述终端的当前网络参数,其中,所述业务需求参数包含所述应用业务切片的各子切片的业务需求参数(101);根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整(102)。

Description

业务切片的调整方法、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为202111241569.3、申请日为2021年10月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及通信技术领域,例如涉及一种业务切片的调整方法、电子设备和存储介质。
背景技术
随着5G终端的发展和演进,单一网络业务设计已不能再满足5G多业务多场景的需求,基于不同业务及场景需求,将端到端的网络资源等进行差异化的不同的定制、分配及调度,我们将此称之为切片。5G网切片技术可分为5G组网架构切片、核心网切片、传输网切片、无线网切片几个部分。根据切片的不同,即可满足不同的业务场景对吞吐、带宽、时延及可靠性网络通讯质量需求。针对用户差异化的需求,基站系统侧已经有了相应的差异化切片策略设计,根据当前5G的三大应用场景,如应用于大带宽、大数据量业务的面向增强型移动宽带网络切片方案,应用于毫秒级低时延通讯网络切片方案,应用于物联网领域的高网络密度及覆盖网络切片方案。
目前网络切片方案仅在于核心网侧,其次是无线接入网层和传输网层,导致终端侧无法根据不同的业务场景和用户需求进行终端资源的合理化调度。
发明内容
本申请实施例的主要目的在于提出一种业务切片的调整方法、电子设备和存储介质。旨在实现终端侧根据应用业务切片的业务场景和用户需求进行终端资源的合理化调度。
为至少实现上述目的,本申请实施例提供了一种业务切片的调整方法,应用在终端上,包括:获取为终端配置的应用业务切片的业务需求参数和所述终端的当前网络参数,其中,所述业务需求参数包含所述应用业务切片的各子切片的业务需求参数;根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整。
为至少实现上述目的,本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的业务切片的调整方法。
为至少实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的业务切片的调整方法。
附图说明
图1是本申请实施方式提供的业务切片的调整方法的流程示意图;
图2是本申请实施方式提供的业务切片的调整方法的流程示意图;
图3是本申请实施方式提供的业务切片的调整方法的流程示意图;
图3a是本申请实施方式提供的硬切片电路调整方式的结构示意图;
图3b是本申请实施方式提供的软切片程序调整方式的结构示意图
图4是本申请实施方式提供的业务切片的调整方法的流程示意图;
图5是本申请实施方式提供的业务切片的调整方法的流程示意图;
图6是本申请实施方式提供的业务切片的调整装置的结构示意图;
图7是本申请实施方式提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
针对用户差异化的需求,基站系统侧已经有了相应的差异化切片策略设计,根据当前5G的三大应用场景,如应用于大带宽、大数据量业务的面向增强型移动宽带网络切片方案,应用于毫秒级低时延通讯网络切片方案,应用于物联网领域的高网络密度及覆盖网络切片方案。而对于5G终端侧的用户来说,如果终端用户涉及到高速上传下载,高清视频及语音,多人在线游戏,多人在线直播,高清等,所需的吞吐就会很大,此时需要切片处理到高速吞吐模式;如果终端用户只是做微信聊天,网页浏览,小文件传输,所需的吞吐相应会很小,此时只需要切片处理到低速吞吐模式。传统的网络切片仅在于核心网侧,其次是无线接入网层,和传输网层,而在终端这一侧没有提及。如果终端上没有做切片处理,而系统分配或当前工作的吞吐和通道冗余,就会造成流量,功耗的浪费;如果分配的吞吐和通道不足,或信道堵塞,误码严重,就会造成实际使用的卡顿和不顺。
本申请的一个实施例涉及一种业务切片的调整方法,应用在终端侧,如图1所示,包括:
步骤101,获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,终端的应用业务切片简单划分为数据业务切片和通话业务切片,具体到应用有高速下载上传、高清视频、高清视频通话、高流量游戏、云业务、增强现实和虚拟现实等高速吞吐应用业务切片;网络聊天业务、网页浏览、单人小游戏、手机支付、手机阅读和低速传输等低速吞吐应用业务切片。因业务性质的不同,上述不同的业务所需要的网络类型、上传和下载流量需求、时延、同时接入终端数量等都不同。而对于同一个应用业务切片(如:游戏业务切片)来讲,也会有不同的实时需求,比单人在线游戏业务切片、多人在线网络游戏业务切片、低分辨率游戏业务切片、高分辨率游戏业务切片、2D游戏业务切片、3D游戏业务切片等;由于不同游戏业务切片的画面、分辨率、剧情、地图,是否3D等不同,游戏业务切片所需要的切片参数就不相同。
在一示例性实施中,业务需求参数可以包括吞吐量、吞吐速率、频谱范围(即工作频点)、频谱带宽、干扰参数、和上行功率参数等信息,获取为终端配置的应用业务切片的业务需求 参数可以包括下述4种方法。
第一种:当检测终端打开的应用业务切片时,采集终端的射频信息参数集,对射频信息参数集进行统计分析,获取应用业务切片的业务需求参数。
第二种:当检测终端打开的应用业务切片时,获取打开应用业务切片时和运行应用业务切片时的时延,获取打开应用业务切片的速度,根据时延、速度和预设的目标阈值获取应用业务切片的业务需求参数。
第三种:基站核心网,承载网、传输网的切片网络信息通过特定消息下发给终端,终端接收到影响的切片网络信息后,将基站所传输的切片网络信息作为终端的应用业务切片的业务需求参数。
第四种:用户UI界面设置的业务需求信息,指的是终端用户专门的切片需求申请及设置,此设置通过在终端UI界面的设置菜单来设置,通过已定义的切换窗口及选项,用户可以设置终端侧的切片需求举例如下:最大上行吞吐,最大下行吞吐,业务匹配网速吞吐,最低时延吞吐,最低功耗吞吐,增强信号吞吐,游戏模式吞吐,高清视频模式吞吐,降温模式吞吐,红包切片模式吞吐等信息。
在一示例性实施中,可以将第一种和第二种方法结合起来使用,为第一种方法和第二种方法所采集的参数设置不同的加权参数之后,通过加权的方法获取到业务需求参数。
在一示例性实施中,当前网络参数可以包括吞吐量、网速、吞吐速率、频谱范围(即工作频点)、频谱带宽、干扰参数和上行功率参数等,当前网络参数是通过分析终端当前的射频信息参数集获取的。
步骤102,根据业务需求参数、当前网络参数对应用业务切片的各子切片参数进行调整。
在一示例性实施中,应用业务切片的各子切片参数可以包含吞吐子切片参数、功率子切片参数、带宽子切片参数、频谱子切片参数、干扰子切片参数、资源块(Resource Block,简称RB)子切片参数等;当检测到业务需求参数和当前网络参数之间存在差异(即业务需求参数和当前网络参数不相同,或者差值大于预设阈值)时,将各子切片参数调整至与业务需求参数对应的参数值。
本申请提出的业务切片的调整方法,在终端侧进行资源调度的过程中,获取为终端配置的应用业务切片的业务需求参数和所述终端的当前网络参数,其中,所述业务需求参数包含所述应用业务切片的各子切片的业务需求参数;根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整。通过各应用业务切片的业务需求参数和当前网络参数,为各应用业务切片的切片参数进行调整,使得终端能够根据各应用业务切片的业务场景和用户需求进行资源调度,防止终端配置不合适造成的应用业务切片峰值不达标的问题,均衡需求和终端网络资源,起到节电和降热的作用,提高了调度终端资源的合理性和终端资源的利用率,解决了现有技术中由于网络切片方案仅在于核心网侧,导致终端侧无法根据不同的业务场景和用户需求进行终端资源的合理化调度的问题。
本申请的一个实施例涉及一种业务切片的调整方法,如图2所示,包括:
步骤201,获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,本步骤与本申请实施例的步骤101大致相同,此处不一一赘述。
步骤202,根据业务需求参数从预设的切片调整模式中选取与应用业务切片对应的切片 调整模式,其中,切片调整模式用于指示应用业务切片的各子切片参数的调整顺序。
在一示例性实施中,由于5G终端的应用业务切片的调整涉及到各应用业务切片的各子切片参数(如吞吐子切片、功率子切片、频谱子切片、天线子切片等),在进行应用业务切片的各子切片参数之前,需要决定应用业务切片的各子切片参数的调整顺序,可以根据该模块根据当前的业务需求,连接基站信息(可选的,用于指示应用业务切片的各子切片参数的调整方式),自身无线参数条件(可选的,即当前网络参数)和内部参数模型(存储预设的切片调整模式,和不同应用业务切片配置下的峰值上行和下行吞吐的储存,不同应用软件历次达到的峰值及均值上下行速率储存等信息)进行计算,匹配最合适的应用业务切片对应的切片调整模式。
此处需要注意的是,本申请还可以存储终端侧各5G切片(即应用业务切片)模型参数,测试参数和控制参数的存储;包括不同带宽、功率、频谱、干扰、RB资源块、长期演进(Long Term Evolution,简称LTE)和新空口(New Radio,简称NR)、载波聚合(Carrier Aggregation,简称CA)模式、上行信道估计(Sounding Reference Signal,简称SRS)模式、多进多出(multiple-in multipleout,简称MIMO)模式、上下天线切换模式下的切片参数存储;同时也用于控制各切片调节参数及驱动代码的存储;还存储不同切片配置下的峰值上行和下行吞吐、不同应用软件历次达到的峰值及均值上下行速率储存,通过大量的使用数据,实时刷新存储应用软件所需的吞吐值。
步骤203,根据业务需求参数、当前网络参数和应用业务切片对应的切片调整模式对应用业务切片的各子切片参数进行调整。
在一示例性实施中,本步骤在本申请实施例的步骤102的调整方法大致相同,区别仅在于增加了各子切片参数的调整顺序,此处不一一赘述。
本申请的实施方式,在其他实施例的基础之上还可以根据应用业务切片的当前需求获取到应用业务切片中各子切片参数的调整顺序,根据优先级对各子切片参数进行调整,提高对应用业务切片进行调整的效率。
本申请的一个实施例涉及一种业务切片的调整方法,如图3所示,包括:
步骤301,获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,本步骤与本申请实施例的步骤101大致相同,此处不一一赘述。
步骤302,根据业务需求参数和当前网络参数获取参数变化值,并根据参数变化值获取调整步进和调整方式。
在一示例性实施中,根据当前的网络参数和业务需求参数,对比改变前后的参数变化值,选择各子切片参数的一种或两种调整方式,并根据参数变化值的大小选择调整步进。
在一示例性实施中,调整方式包括:硬切片电路调整方式、软切片程序调整方式和软硬结合调整三种方式。
在一示例性实施中,硬切片电路调整方式包括:硬切片电路不需要修改射频驱动代码,通过内置于终端内的逻辑门器件,开关完成,逻辑门及开关器件的输入为常规的通用输入与输出口(General-purpose input/output,简称GPIO),输入信号为基站切片指示信号或切片模式映射算法单元输出的切片指示信号,硬切片电路的实现如下,通过多路开关检测不同的网络及业务阈值切片需求,控制当前的终端MIMO模式,SRS模式、功率大小,灵敏度大小。 以NR硬切片的SRS方式为例,通过多路开关检测不同的网络及业务阈值切片需求,控制电路开关逻辑,将当前的终端SRS模式强制打到PMI、1T2R、2T4R、1T4R等几种模式;硬切片电路如图3a所示。
在一示例性实施中,软切片程序调整方式包括:基于软切片程序的参数控制及调整,软切片调整包括网络制式切片、终端NR工作带宽切片、CA组合切片、SRS工作模式切片、MIMO工作模式切片、调度参数切片。终端内部,有正常默认的射频通道驱动代码,用于控制手机按照默认参数进行工作。而这中RFC配置往往没有针对性,是大而全的配置不能满足对应的业务场景需求。软切片控制单元通过调用不同的射频驱动代码,配置不同的切片配置,即通过射频驱动程序控制不同业务和需求下的网络通道、工作模式配置。如图3b所示,以网络制式切片分,将RFC配置为RFC_LTEonly、RFC_SA、RFC_NSA以切片带宽分,将RFC代码分成RFC_WB1、RFC_WB2、RF3_WB3、.....RFC_WBn几种模式。以不同CA组合方式为基础的切片划分,将射频驱动代码(Request For Comments,简称RFC)代码分成RFC_CA1、RFC_CA2、RF3_CA3、.....RFC_CAn几种模式。以不同的SRS工作模式为基础的切片划分,将RFC代码分成RFC_SRS_PMI、RFC_SRS_1T2R、RF3_SRS_1T4R、RFC_SRS_2T4R几种模式。以不同的MIMO工作模式为基础的切片划分,将RFC代码分成RFC_DL_SISO、RFC_DL_22mimo、RFC_DL_33mimo、RFC_DL_44mimo、RFC_UL_SISO、RFC_UL_MIMO几种模式。以不同的调度参数工作模式为基础的切片划分,如当前不同调度限制参数MOD1、MOD2、MOD3、MODn将RFC代码分成RFC_MOD1、RFC_MOD2、RFC_MOD3、RFC_MODn几种模式。
在一示例性实施中,调整步进可以包括小颗粒度的调整、中颗粒度调整和大颗粒度调整或其他任意合适颗粒度的调整步进。例如:通过对比当前网络吞吐信息和目标吞吐的差异,选取对应的颗粒度调整方式,以满足不同用户和业务差异化网络需求。如果当前的上下行吞吐量增加需求量小,终端可直接从LTE模式切换到LTE CA模式,或LTE MIMO模式。如当前的上下行吞吐量增加需求量中等,终端可直接从LTE模式切换到SA模式或NSA模式,如当前的上下行吞吐量增加需求量大,则终端可从当前的LTE模式切换到NR CA模式,或NR CA加LTE CA模式,颗粒尺度依次增加。不同颗粒度映射不同吞吐调整阈值和步进,该调整通过闭环方式优化实现,直到满足业务特征需求。
步骤303,根据调整步进、调整方式、业务需求参数和当前网络参数对应用业务切片的各子切片参数进行调整。
在一示例性实施中,本步骤在本申请实施例的步骤102的调整方法大致相同,区别仅在于设置了各子切片参数的调整方式和调整步进,此处不一一赘述。
本申请的实施方式,在其他实施例的基础之上还可以根据应用业务切片的业务需求和当前网络参数选择合适的调整步进和调整方式,提高对应用业务切片进行调整的效率。
本申请的一个实施例涉及一种业务切片的调整方法,应用在终端侧,如图4所示,包括:
步骤401,获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,本步骤与本申请实施例的步骤101大致相同,此处不一一赘述。
步骤402,根据业务需求参数、当前网络参数对应用业务切片的功率子切片参数进行调整。
在一示例性实施中,当子切片为功率子切片时,业务需求参数为目标上行功率参数,当前网络参数为当前上行功率参数;当目标上行功率参数和当前上行功率参数存在差异时,根据目标上行功率参数调整功率子切片的上行功率参数。而上行功率参数包含三种调整方法:最大功率限值调整方法,增强上行功率调整方法,共享功率调整方法。
在一示例性实施中,最大功率限值调整方法包括:根据目标上行功率参数和业务场景调用相对应的最大发射功率限制;如:NR上行最大发射功率限值是既定的,NSA和SA的上行功率限值也可能不同。如NSA模式下,功率等级3,NR的默认功率23dBm,最大功率一般低于24.5dBm;如SA模式下,功率等级2默认功率25dB,最大功率一般低于26.5dB。而如果当前手机的上行信号比较弱,用户的业务需要提升上行功率来改善上行信号质量及吞吐,此时即需要通过NR功率切片控制,提升NR的上行功率限值。对于A业务场景,调用PowerA最大发射功率限值,对于B业务场景,调用PowerB最大发射功率限值,而一般情况下,调用PowerC默认的最大功率限值。
在一示例性实施中,增强上行功率调整方法包括:功率子切片的上行功率参数包括主天线功率参数和备天线功率参数;先根据目标上行功率参数调整功率子切片的主天线功率参数;当主天线功率参数满足预设的功率限值时,根据目标上行功率参数调整功率子切片的备天线功率参数;调整备天线功率参数可以通过某些无源器件路径以减少整体插损而提升系统功率、可以通过修改功率等级的切片方式,将常规功率等级PC3修改为PC2的高功率模式、或者通过修改校准最大目标功率的切片方式,调用特定高功率的校准切片参数,以提升目标最大功率输出;除此之外,还可以通过主备天线补偿的方式进行,让备天线可以根据需要做一定功率的补偿,如NR主天线功率为25dB,默认备天线功率为22dB,则根据当前上行业务及网络情况特定需求,可将上行功率参数做0-4dB补偿,分别得到22、23、24、25、26的上天线切片功率。
在一示例性实施中,共享功率调整方法包括:当功率子切片为共享功率切片时,上行功率参数包括新空口NR功率参数(5G)和长期演进LTE锚点功率参数(4G);根据目标上行功率参数调整功率子切片中NR功率参数和LTE锚点功率参数的大小和占比。如:当LTE和NR同时工作时,如果设置了共享功率控制,当NR工作在最大发射功率时,LTE容许回退到一定的功率,同理,当LTE工作在最大功率时,NR也容许回退到一定的功率。这里将LTE或NR回退的功率值做切片处理,如分别回退2dB、4dB、6dB、8dB、10dB、12dB,根据当前的业务需求和网络情况来调整NR功率及LTE锚点功率。
步骤403,根据业务需求参数、当前网络参数对应用业务切片的频谱子切片参数进行调整。
在一示例性实施中,当子切片为频谱子切片时,业务需求参数为目标工作频点和目标吞吐量,当前网络参数为当前工作频点和当前吞吐量;当目标工作频点和当前工作频点存在差异时,根据目标工作频点调整频谱子切片的工作频点。当目标吞吐量和当前吞吐量存在差异时,从预设的吞吐量和频谱带宽的对应关系获取与目标吞吐量对应的目标频谱带宽,根据目标频谱带宽调整频谱子切片的频谱带宽。
在一示例性实施中,对于频谱子切片的工作频点的调整举例如下:如N78有3300-3800MHz频谱范围,将N78分成A段(3300-3500MHz),B段(3500-3700MHz),C段(3700-3800MHz)三段,分别分配给不同的用户及业务,这里的分段可以通过可变滤波器的 方式来实现特定频谱范围的切片控制,而在检测到目标工作频点和当前工作频点存在差异时,如当前工作频点为3400MHz,而目标工作频点为3600MHz,此时当前工作频点和目标工作频点存在200MHz的差距,应该在原有的基础上将该应用业务切片的频谱子切片的工作频点划分到与目标工作频点对应的频谱段中,并将应用业务切片的频谱子切片的工作频点调整为目标工作频点。
在一示例性实施中,对于频谱子切片的频谱带宽的调整举例如下:如N78有10M、20M、40M、50M、60M、80M、90M、100M多种带宽值,不同的业务需求和网络情况对应不同的带宽,将当前的业务吞吐量分成对应的区间等级范围,如100Mbps、200Mbps、400Mbps、500Mbps、600Mbps、800Mbps、900Mbps、1000Mbps及以上。在业务吞吐量为100Mbps时对应的频谱带宽为10M,业务吞吐量为200Mbps时对应的频谱带宽为20M,依次类推;而当目标吞吐量为300Mbps,当前吞吐量为100Mbps时,说明频谱子切片当前吞吐量和目标吞吐量存在一定的差距,若使用当前吞吐量对应的频谱带宽10M在目标吞吐量下工作,会导致业务的延迟和堵塞,需要将频谱子切片的频谱带宽调整至目标吞吐量对应的频谱带宽30M,才能够保证业务的正常传输及运行。同时,不同的带宽通过不同代码来限制调用,即小吞吐业务调用小带宽,大吞吐业务调用大带宽。还由于不同上行质量要求调用不同的NR频谱带宽。如有对上行通讯质量有要求,如还可以误差向量幅度(Error Vector Magnitude,简称EVM)等值进行调整,则需调用对于EVM阈值范围内的NR带宽值,以N1频段为例,如要EVM要求小于1.5%,则只能调动N1 20M以下带宽,如EVM要求小于2%,则可调用N1 30M以下带宽,如EVM要求小于3%,则可调用N1 40M以下带宽。
在一示例性实施中,当频谱子切片为共享频谱切片时,频谱子切片的工作频点包括新空口NR工作频点(5G)和长期演进LTE工作频点(4G),频谱子切片的频谱带宽包括新空口NR频谱带宽(5G)和长期演进LTE频谱带宽(4G);根据目标工作频点调整频谱子切片中NR工作频点和LTE工作频点的大小和占比;根据目标频谱带宽调整频谱子切片中NR频谱带宽和LTE频谱带宽的大小和占比。如:NR和LTE在FDD同频段工作时,如N1、N3、N5、N7、N8和LTE B1、B3、B5、B7、B8,可以使用共享频谱的调试来增强吞吐,如N1借用LTE B1的频谱,而由于N1的带宽更灵活,如30MHz、40MHz、50MHz;所以通过如此共享可以增加相应频谱下的吞吐率。不同的是,传统的共享频谱是不能切片处理的,即是统一的频谱共享模式,而这里可以频谱子切片调整频谱共享的范围、区间、带宽;通过检测共享频谱的LTE及NR的信号质量、吞吐需求、或互扰情况,进行动态的频谱切片共享及LTE的哪一频率范围和NR频率范围之间共享。
步骤404,根据业务需求参数、当前网络参数对应用业务切片的天线子切片参数进行调整。
在一示例性实施中,当子切片为天线子切片时,业务需求参数为目标吞吐量,当前网络参数为当前吞吐量;根据预设的吞吐量和天线数的对应关系,分别获取与目标吞吐量对应的目标天线数和与当前吞吐量对应的当前天线数;根据目标天线数和当前天线数的差值,对天线子切片的天线数进行调整;根据预设的吞吐量和单频点带宽的对应关系,分别获取与目标吞吐量对应的目标单频点带宽和与当前吞吐量对应的当前单频点带宽;根据目标单频点带宽和当前单频点带宽的差值,对天线子切片的单频点带宽进行调整。
在一示例性实施中,对天线子切片的天线数进行调整的举例如下:5G终端上的4G-5G 天线多达十多个,当终端工作在单频段SA模式时,最少2天线,最多4天线。当终端工作在NR CA模式时,如N41-N79,最多可达8天线,当终端工作在NSA模式时,天线数量还取决于当前LTE锚点数量。如B3(4)+N78(4)时,天线数量可达8天线,当B1(4)+B3(4)+B8(2)+N78(4)时,而B1和B3不共用天线时,天线数量可达14根。天线切片模块将终端天线模式分为单天线,双天线,三天线,N天线几种模式,设置某一个天线对应数量的极限吞吐为一定阈值,如500M以下对应2天线,500M-1600M对应4天线,1600M-2400M对应8天线,2400M以上对应10天线。终端通过内部驱动代码及配置文件,控制终端打开不同的4G-5G天线数量,以及打开天线的序列,从而进行基于天线数量的切片控制。
在一示例性实施中,对天线子切片的单频点带宽进行调整的举例如下:天线带宽包含单频点带宽及总支持带宽两部分,终端射频芯片对于TDD及FDD频段带宽,可支持5M、10M、15M、20M、30M、40M、50M、60M、70M、80M、90M、100M,如果对于载波聚合频段,还可以支持更高带宽如200M或更高。而终端对于某一个运营线或频段可支持的频段范围也各不同,如A运营商是FreA=3500MHz-3600MHz,B运营商是FreB=3400MHz-3700MHz,C运营商是FreC=3300MHz-3800MHz,吞吐需求越高,所需的单频点带宽越高,吞吐需要支持的频点信道越多,所需的天线覆盖带宽越宽。这里通过天线匹配或天线调谐的调节,将天线工作频点切片到对应的需求范围内,而对于超出切片需求的频点、带宽及范围,则进行屏蔽或弱化。
在一示例性实施中,还可以对天线子切片的谐振频点深度进行调整,举例如下:当终端对某一个频段,频点或信道的天线效率有高需求时,可进行定点切片控制,调节天线匹配将此频点的谐振深度增强到目标阈值要求,直到信号强度或吞吐量满足阈值要求。
在一示例性实施中,本申请还可以根据当前网络参数调整应用业务切片或终端的工作模式。
在一示例性实施中,当前的业务需求大吞吐时,手机会切片进入大带宽,多mimo模式。当当前的业务需求在LTE下卡顿时,手机会切片进入NR模式,当NSA模式LTE锚点信号不稳定时,手机会切片进入SA模式。当当前的业务需求在LTE非CA下卡顿时,而5G NR信号差时,手机会切片进入信号强的LTE CA链路组合。当单NR都无法满足业务场景时,手机会切片进入LTE CA加上NR的组合模式,或NR CA模式。当当前的业务需求在某个SRS 1T2R模式下卡顿时,手机会切片进入信号质量更好的1T4R或2T4R SRS模式,当业务需求在SISO或主分集模式卡顿时,手机会切片进入NR MIMO模式,当当前的业务需求有上行卡顿或断续问题时,手机会切片进入功率优先模式。
实例1:若当前需要下载一个大流量游戏软件或程序、切片监控程序、以NR硬切片的mimo电路控制为例,如N78mimo切片控制,当用户需求是小流量及吞吐时,控制信号控制NR进入1*1mimo或2*2mimo模式,当用户需求是大流量及吞吐时,控制信号控制NR进入4*4mimo模式。当终端收到控制指令后,断开或导通N78相应的RX mimo电路及天线,RFC射频驱动配置,强制手机进入不同的MIMO切片模式,直到吞吐达到目标阈值要求。
实例2:SRS模式切片调节实例:针对当前需要峰值吞吐需求或峰值吞吐稳定性需求:进行终端侧的硬件或软件SRS切片控制。以NR硬切片的SRS方式为例,通过多路开关检测不同的网络及业务阈值切片需求,控制电路开关逻辑,将当前的终端SRS模式强制打到PMI、1T2R、2T4R和1T4R等几种模式。或采用软切片控制单元通过调用不同的SRS切片配置射 频驱动程序,具体地,在对应吞吐业务需求下,通过射频驱动代码RFC将终端设置成RFC_SRS_PMI、RFC_SRS_1T2R、RF3_SRS_1T4R、RFC_SRS_2T4R几种模式。
实例3:针对当前需要大上传吞吐的业务需求。可通过NR硬切片进行上行双发电路控制,以N78的上行双发,如果用户的上行业务较高,而当前的上传吞吐达不到用户业务需求,则可通过切片控制强制N78进入上行mimo双发传输模式,即tx1和tx2链路同时工作;如果用户的上行业务需求吞吐低,当前的上行吞吐有冗余,则可切片进入单NR发射模式。
本申请的实施方式,在其他实施例的基础之上还可以通过各种方式对应用业务切片的各子切片参数进行调整,提高对应用业务切片进行调整的多样性。
本申请的一个实施例涉及一种业务切片的调整方法,应用在终端侧,如图5所示,可以包括下述步骤。
步骤501,获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,本步骤与本申请实施例的步骤101大致相同,此处不一一赘述。
步骤502,根据业务需求参数、当前网络参数对应用业务切片的各子切片参数进行调整。
在一示例性实施中,本步骤与本申请实施例的步骤102大致相同,此处不一一赘述。
步骤503,获取调整后的应用业务切片运行时的性能参数,当性能参数满足预设的停止条件时,停止对应用业务切片的调整。
在一示例性实施中,在应用业务切片的一次调整完成之后,运行该应用业务切片,通过对该应用业务切片运行时所采集的运行参数进行分析,获取该应用业务切片运行时的性能参数(可以是丢包率、误码率、时延等信息),而当性能参数满足预设的停止条件时(即达到了当前的业务需求时),便可以停止对应用业务切片的调整,否则继续对应用业务切片进行调整。
本申请的实施方式,在其他实施例的基础之上还可以在应用业务切片的一次调节完成后,对应用业务切片当前的性能进行检测,在性能满足预设条件时,停止对应用业务切片的调整,使得本申请所提供的业务切片的调整方法可以进行闭环反馈控制,准确判断是否终止对业务切片的调整。
本申请的另一个实施例涉及一种业务切片的调整装置,下面对本实施例的业务切片的调整装置的细节进行在一个示例性实施中明,以下内容仅为方便理解提供的实现细节,并非实施本例的必须,图6是本实施例所述的业务切片的调整装置的示意图,包括:获取模块601、调整模块602。
其中,获取模块601,用于获取为终端配置的应用业务切片的业务需求参数和终端的当前网络参数,其中,业务需求参数包含应用业务切片的各子切片的业务需求参数。
在一示例性实施中,获取模块601中还可以包括流量预测单元6011、业务侦测单元6012。
其中,流量预测单元6011用于根据本申请实施方式中步骤101提及的第一种或第二种方式获取应用业务切片的业务需求参数的方式。
业务侦测单元6012用于根据本申请实施方式中步骤101提及的第三种或第四种方式获取应用业务切片的业务需求参数的方式。
调整模块602,用于根据业务需求参数、当前网络参数对应用业务切片的各子切片参数进行调整。
在一示例性实施中,调整模块602中还可以包括功率调整单元6021、频率调整单元6022 和天线调整单元6023。
其中,功率调整单元6021用于根据业务需求参数、当前网络参数对应用业务切片的功率子切片参数进行调整。
频率调整单元6022用于根据业务需求参数、当前网络参数对应用业务切片的频率子切片参数进行调整。
天线调整单元6023用于根据业务需求参数、当前网络参数对应用业务切片的天线子切片参数进行调整。
在一个示例性实施中,业务切片的调整装置还可以包含硬切片调整方式单元和软切片程序调整方式单元,这两个单元的作用在于给出调整模块进行切片参数调整的两种方式。
在一个示例性实施中,业务切片的调整装置还可以包含调整确定单元,该单元的作用在于确定调整模块进行切片参数调整的调整步进和调整方式。
在一个示例性实施中,业务切片的调整装置还可以包含调整顺序单元,该单元的作用在于确定调整模块对功率调整单元、频率调整单元和天线调整单元进行调整的顺序。
在一个示例性实施中,业务切片的调整装置还可以包含参数存储单元,该单元的作用在于存储各业务切片的相关参数、各业务切片在不同配置下的峰值上行和下行吞吐等数据。
不难发现,本实施例为与上述方法实施例对应的系统实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一个实施例涉及一种电子设备,如图7所示,包括:至少一个处理器701;以及,与所述至少一个处理器701通信连接的存储器702;其中,所述存储器702存储有可被所述至少一个处理器701执行的指令,所述指令被所述至少一个处理器701执行,以使所述至少一个处理器701能够执行上述各实施例中的业务切片的调整方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的本质和范围。

Claims (14)

  1. 一种业务切片的调整方法,应用在终端上,所述方法包括:
    获取为终端配置的应用业务切片的业务需求参数和所述终端的当前网络参数,其中,所述业务需求参数包含所述应用业务切片的各子切片的业务需求参数;
    根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整。
  2. 根据权利要求1所述的业务切片的调整方法,其中,所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整包括:
    根据所述业务需求参数从预设的切片调整模式中选取与所述应用业务切片对应的切片调整模式,其中,所述切片调整模式用于指示所述应用业务切片的各子切片参数的调整顺序;
    根据所述业务需求参数、所述当前网络参数和所述应用业务切片对应的切片调整模式对所述应用业务切片的各子切片参数进行调整。
  3. 根据权利要求1所述的业务切片的调整方法,其中,所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整之前,还包括:
    根据所述业务需求参数和所述当前网络参数获取参数变化值;
    根据所述参数变化值获取对所述应用业务切片的各子切片参数进行调整的调整步进和调整方式。
  4. 根据权利要求1所述的业务切片的调整方法,其中,所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整包括:
    通过硬切片电路调整方式或通过软切片程序调整方式对所述应用业务切片的各子切片参数进行调整。
  5. 根据权利要求1所述的业务切片的调整方法,其中,当所述子切片为功率子切片时,所述业务需求参数为目标上行功率参数,所述当前网络参数为当前上行功率参数;
    所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整,具体包括:
    当所述目标上行功率参数和所述当前上行功率参数存在差异时,根据所述目标上行功率参数调整所述功率子切片的上行功率参数。
  6. 根据权利要求5所述的业务切片的调整方法,其中,所述上行功率参数包括主天线功率参数和备天线功率参数;
    所述根据所述目标上行功率参数调整所述功率子切片的上行功率参数包括:
    根据所述目标上行功率参数调整所述功率子切片的所述主天线功率参数;
    当所述主天线功率参数满足预设的功率限值时,根据所述目标上行功率参数调整所述功率子切片的所述备天线功率参数,其中,所述调整所述功率子切片的所述备天线功率参数通过修改功率等级、校准最大目标功率或进行功率补偿的方式进行。
  7. 根据权利要求5所述的业务切片的调整方法,其中,当所述功率子切片为共享功率切片时,所述上行功率参数包括新空口NR功率参数和长期演进LTE锚点功率参数;
    所述根据所述目标上行功率参数调整所述功率子切片的上行功率参数包括:
    根据所述目标上行功率参数调整所述功率子切片中所述NR功率参数和所述LTE锚点功率参数的大小和占比。
  8. 根据权利要求1所述的业务切片的调整方法,其中,当所述子切片为频谱子切片时,所述业务需求参数为目标工作频点和目标吞吐量,所述当前网络参数为当前工作频点和当前吞吐量;
    所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整包括:
    当所述目标工作频点和所述当前工作频点存在差异时,根据所述目标工作频点调整所述频谱子切片的工作频点;
    当所述目标吞吐量和所述当前吞吐量存在差异时,从预设的吞吐量和频谱带宽的对应关系获取与所述目标吞吐量对应的目标频谱带宽,根据所述目标频谱带宽调整所述频谱子切片的频谱带宽。
  9. 根据权利要求8所述的业务切片的调整方法,其中,当所述频谱子切片为共享频谱切片时,所述频谱子切片的工作频点包括新空口NR工作频点和长期演进LTE工作频点,所述频谱子切片的频谱带宽包括新空口NR频谱带宽和长期演进LTE频谱带宽;
    所述根据所述目标工作频点调整所述频谱子切片的工作频点包括:根据所述目标工作频点调整所述频谱子切片中所述NR工作频点和所述LTE工作频点的大小和占比;
    所述根据所述目标频谱带宽调整所述频谱子切片的频谱带宽包括:根据所述目标频谱带宽调整所述频谱子切片中所述NR频谱带宽和所述LTE频谱带宽的大小和占比。
  10. 根据权利要求1所述的业务切片的调整方法,其中,当所述子切片为天线子切片时,所述业务需求参数为目标吞吐量,所述当前网络参数为当前吞吐量;
    所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整包括:
    根据预设的吞吐量和天线数的对应关系,分别获取与所述目标吞吐量对应的目标天线数和与所述当前吞吐量对应的当前天线数;
    根据所述目标天线数和所述当前天线数的差值,对所述天线子切片的天线数进行调整;
    根据预设的吞吐量和单频点带宽的对应关系,分别获取与所述目标吞吐量对应的目标单频点带宽和与所述当前吞吐量对应的当前单频点带宽;
    根据所述目标单频点带宽和所述当前单频点带宽的差值,对所述天线子切片的单频点带宽进行调整。
  11. 根据权利要求1所述的业务切片的调整方法,其中,所述获取终端的应用业务切片的业务需求参数包括:
    当检测所述终端打开的所述应用业务切片时,采集所述终端的射频信息参数集,对所述射频信息参数集进行统计分析,获取所述应用业务切片的业务需求参数;或者,
    当检测所述终端打开的所述应用业务切片时,获取打开所述应用业务切片时和运行所述应用业务切片时的时延,获取打开所述应用业务切片的速度,根据所述时延、所述速度和预设的目标阈值获取所述应用业务切片的业务需求参数;或者,
    将所接收的基站发送的切片网络信息作为所述应用业务切片的业务需求参数;或者,
    通过用户交互界面接收用户输入的所述应用业务切片的业务需求参数。
  12. 根据权利要求1所述的业务切片的调整方法,其中,所述根据所述业务需求参数、所述当前网络参数对所述应用业务切片的各子切片参数进行调整之后,还包括:
    获取调整后的所述应用业务切片运行时的性能参数;
    当所述性能参数满足预设的停止条件时,停止对所述应用业务切片的调整。
  13. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至12中任一项所述的业务切片的调整方法。
  14. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至12中任一项所述的业务切片的调整方法。
PCT/CN2022/108688 2021-10-25 2022-07-28 业务切片的调整方法、电子设备和存储介质 WO2023071340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024516681A JP2024531747A (ja) 2021-10-25 2022-07-28 サービススライスの調整方法、電子機器及び記憶媒体
EP22885240.6A EP4425866A1 (en) 2021-10-25 2022-07-28 Service slice adjustment method, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241569.3A CN116032761A (zh) 2021-10-25 2021-10-25 业务切片的调整方法、电子设备和存储介质
CN202111241569.3 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071340A1 true WO2023071340A1 (zh) 2023-05-04

Family

ID=86069206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108688 WO2023071340A1 (zh) 2021-10-25 2022-07-28 业务切片的调整方法、电子设备和存储介质

Country Status (4)

Country Link
EP (1) EP4425866A1 (zh)
JP (1) JP2024531747A (zh)
CN (1) CN116032761A (zh)
WO (1) WO2023071340A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082626A (zh) * 2023-07-26 2023-11-17 北京交通大学 列车无线通信网络的业务复用切片资源分配方法及系统
CN117835385A (zh) * 2024-03-06 2024-04-05 荣耀终端有限公司 数据传输方法、装置、芯片及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208438A1 (en) * 2018-01-02 2019-07-04 Verizon Patent And Licensing Inc. Systems and methods for a self-organizing network based on user equipment information
CN110858986A (zh) * 2018-08-23 2020-03-03 中兴通讯股份有限公司 带宽调整方法、装置、通信设备及计算机可读存储介质
CN111385112A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 切片资源部署方法、装置、切片管理器和计算机存储介质
CN112751685A (zh) * 2019-10-29 2021-05-04 中国电信股份有限公司 网络切片用户面容量配置方法、装置和系统
CN113498076A (zh) * 2020-03-20 2021-10-12 北京三星通信技术研究有限公司 基于o-ran的性能优化配置方法与设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208438A1 (en) * 2018-01-02 2019-07-04 Verizon Patent And Licensing Inc. Systems and methods for a self-organizing network based on user equipment information
CN110858986A (zh) * 2018-08-23 2020-03-03 中兴通讯股份有限公司 带宽调整方法、装置、通信设备及计算机可读存储介质
CN111385112A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 切片资源部署方法、装置、切片管理器和计算机存储介质
CN112751685A (zh) * 2019-10-29 2021-05-04 中国电信股份有限公司 网络切片用户面容量配置方法、装置和系统
CN113498076A (zh) * 2020-03-20 2021-10-12 北京三星通信技术研究有限公司 基于o-ran的性能优化配置方法与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Introduce support of network slice maximum data rate", SA WG2 MEETING #144E E-MEETING, S2-2102610, 6 April 2021 (2021-04-06), XP051993985 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082626A (zh) * 2023-07-26 2023-11-17 北京交通大学 列车无线通信网络的业务复用切片资源分配方法及系统
CN117082626B (zh) * 2023-07-26 2024-03-26 北京交通大学 列车无线通信网络的业务复用切片资源分配方法及系统
CN117835385A (zh) * 2024-03-06 2024-04-05 荣耀终端有限公司 数据传输方法、装置、芯片及存储介质

Also Published As

Publication number Publication date
EP4425866A1 (en) 2024-09-04
JP2024531747A (ja) 2024-08-29
CN116032761A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2023071340A1 (zh) 业务切片的调整方法、电子设备和存储介质
WO2021027863A1 (zh) 信息发送方法及装置、信息接收方法及装置、通信节点及存储介质
US10110294B2 (en) Adaptive use of receiver diversity
US9716995B2 (en) Systems and methods for dynamically adjusting roaming parameters
CN109495959A (zh) 功率控制方法、网络设备及终端
CN109890069A (zh) 网络连接方法、终端、基站及计算机存储介质
TW202044882A (zh) 具有功率節省功能的波束管理電子設備和方法
WO2019119364A1 (en) Antenna configuration in a communication network
CN112105058B (zh) 链路连接方法及相关装置
KR20080086895A (ko) 이동국 장치 및 기지국 장치 및 무선채널 상황의 통지방법
EP2858455A1 (en) Operating method of wireless access point device and wireless access point device
WO2020073807A1 (zh) 天线调谐方法、装置、移动终端及计算机可读存储介质
CN111212448A (zh) 一种bwp自适应选择调制方法及系统
EP4270823A1 (en) Anti-interference method and apparatus for dss, and electronic device and storage medium
WO2022052608A1 (zh) Srs传输方法、终端及存储介质
US20210391900A1 (en) Apparatus and methods for uplink mimo enhancement in wireless systems
KR102604940B1 (ko) 데이터 송신 방법, 장치 및 시스템
WO2021188852A1 (en) Ue-based energy efficient uplink data split in dual connectivity
WO2023045502A1 (zh) 组网工作参数控制方法、终端及存储介质
US9451553B2 (en) Method and arrangement for load sharing power control
WO2022253112A1 (zh) 终端的节电方法、装置、无线接入设备、电子设备和介质
CN112243296B (zh) 辅小区激活方法及装置
KR20230053952A (ko) 대역폭 부분을 이용하여 통신을 수행하는 전자 장치 및 네트워크와 그들의 동작 방법
JP2023548174A (ja) リソース測定の調整方法及び装置、端末並びに可読記憶媒体
WO2015096594A1 (zh) 网络的分流方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516681

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022885240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885240

Country of ref document: EP

Effective date: 20240527