WO2022052608A1 - Srs传输方法、终端及存储介质 - Google Patents

Srs传输方法、终端及存储介质 Download PDF

Info

Publication number
WO2022052608A1
WO2022052608A1 PCT/CN2021/104561 CN2021104561W WO2022052608A1 WO 2022052608 A1 WO2022052608 A1 WO 2022052608A1 CN 2021104561 W CN2021104561 W CN 2021104561W WO 2022052608 A1 WO2022052608 A1 WO 2022052608A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
channel
terminal
path
scene
Prior art date
Application number
PCT/CN2021/104561
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/006,663 priority Critical patent/US20230283428A1/en
Priority to EP21865664.3A priority patent/EP4195571A4/en
Priority to JP2023504009A priority patent/JP2023536401A/ja
Publication of WO2022052608A1 publication Critical patent/WO2022052608A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to, but is not limited to, the field of communication technologies, and in particular, relates to an SRS transmission method, a terminal, and a storage medium.
  • the terminal adopts the multiple-input multiple-output (MIMO) technology of multiple antennas. transmission performance.
  • the wireless performance parameter is one of the manifestations of transmission performance.
  • the wireless performance parameter of the terminal usually depends on the resources allocated by the base station.
  • the terminal sends a channel sounding reference signal (Sounding Reference Signal, SRS) to the base station, and the base station obtains the channel quality detection according to the SRS. results, and allocate resources based on the detection results. Due to the large number of antennas and channels, the SRS is easily interfered by various factors in the transmission path, resulting in fewer resources allocated by the base station according to the SRS, which affects the transmission performance of the terminal.
  • SRS channel sounding reference signal
  • Embodiments of the present application provide an SRS transmission method, a terminal, and a storage medium.
  • an embodiment of the present application provides an SRS transmission method, which is applied to a terminal, including: acquiring a channel quality parameter of an SRS transmission path; determining an SRS interference scenario according to the channel quality parameter, and according to the interference The scene adjusts the transmission path.
  • an embodiment of the present application further provides a terminal, including: a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the above when executing the computer program The SRS transmission method described above.
  • embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the above-mentioned SRS transmission method or the above-mentioned SRS transmission method.
  • FIG. 1 is a flowchart of an SRS transmission method applied to a terminal provided by an embodiment of the present application
  • FIG. 3 is a flowchart of determining an interfered scenario according to uplink signal power in an SRS transmission method provided by another embodiment of the present application;
  • FIG. 5 is a flowchart of determining an interfered scene according to a conduction path quality parameter in an SRS transmission method provided by another embodiment of the present application;
  • FIG. 6 is a flowchart of transmission path adjustment according to uplink signal power in an SRS transmission method provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of transmission path adjustment according to channel power in an SRS transmission method provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of transmission path adjustment according to a conduction path quality parameter in an SRS transmission method provided by another embodiment of the present application.
  • FIG. 9 is a flowchart of a transmission path adjustment of an SRS transmission method provided by another embodiment of the present application.
  • FIG. 10 is a schematic diagram of functional modules of a terminal for performing an SRS transmission method provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a path reorganization module in a terminal for executing an SRS transmission method provided by another embodiment of the present application.
  • the embodiments of the present application provide an SRS transmission method, a terminal, and a storage medium, which acquire the current transmission requirement of the terminal and the current first wireless performance parameter of the terminal, and determine the wireless performance parameter threshold according to the current transmission requirement;
  • the wireless performance parameter is less than the wireless performance parameter threshold, the transmission path of the SRS is determined, and the channel quality parameter of the transmission path is obtained;
  • the interference scenario of the SRS is determined according to the channel quality parameter, and the interference scenario is adjusted according to the interference scenario transmission path.
  • the SRS interference scenario can be determined, and the SRS transmission path can be adjusted according to the interference scenario, which can reduce the SRS in the transmission path.
  • the received interference makes the SRS received by the base station more stable, and allocates more accurate resources to the terminal, thereby improving the wireless performance parameters and transmission performance of the terminal.
  • the terminals described in the embodiments of this application may be of any type, such as 5G mobile phones, tablet computers, etc., or may be equipment such as Customer Premise Equipment (CPE), which can communicate with base stations through SRS. It suffices to perform communication and obtain the resources allocated by the base station to determine the wireless performance, and can also be applied to the antenna selection path module of the terminal. It should be noted that the embodiments of this application do not improve the networking method, the number of antennas, and the sending and receiving method of 5G terminals.
  • the networking method may be a common non-standalone (NSA) or independent networking.
  • the number of antennas can be determined according to the networking method, for example, NSA can be 6 antennas, SA can be 4 antennas, and the transceiver mode can be the common 1T2R (one antenna transmits, one antenna receives), 2T4R (two antennas transmit, four antennas receive) or 1T4R (one antenna transmits, four antennas receive), etc., there are no restrictions in this embodiment, and the transmission path of the SRS can be adjusted, and no further Repeat.
  • the SRS transmission method in the embodiment of the present application may exist in the terminal as a function that can be turned on.
  • the function of "SRS anti-interference mode" is set in the terminal, and the user can turn it on by operating the terminal.
  • this function may be disabled, or it may be a system function enabled by default in the terminal, and the specific method may be determined according to the actual situation of the terminal, which will not be described in detail later.
  • FIG. 1 is a flowchart of a method for performing SRS transmission by a terminal according to an embodiment of the present application.
  • the SRS transmission method includes, but is not limited to, step S100 and step S200 .
  • Step S100 acquiring channel quality parameters of the transmission path of the SRS.
  • the terminal can obtain sufficient wireless performance resources by sending SRS to the base station.
  • the SRS sent by the terminal is interfered, resulting in The acquired wireless performance resources cannot meet the service requirements.
  • the antenna selection or reporting value of the SRS may be biased, resulting in reporting the crossed signal value to the base station, causing the base station to incorrectly evaluate the channel quality of each antenna channel. , thus lower scheduling is given.
  • only the interference caused by the transmission path is discussed, and other types of interference are beyond the scope of discussion in this embodiment, and are not repeated here.
  • the channel quality parameters of the transmission path may be uplink and downlink throughput rate, reference signal receiving success rate (Reference Signal Receiving Power, RSRP), signal-to-noise ratio (Signal Noise Ratio, SNR), channel quality indicator (Channel Quality). Indication, CQI), bit error rate, the highest supportable modulation and coding strategy (Modulation and Coding Scheme, MCS), etc., can reflect the parameters of the channel quality.
  • RSRP Reference Signal Receiving Power
  • SNR Signal-to-noise ratio
  • CQI channel quality indicator
  • bit error rate the highest supportable modulation and coding strategy
  • MCS Modulation and Coding Scheme
  • the quality of the transmitted and received signals of each channel of the terminal can be evaluated through the channel pre-calculation evaluation function module of the terminal.
  • the uplink signal power can be obtained by evaluating the information of the uplink channel, and then
  • parameters such as RSRP and SNR are obtained by detecting the level of each downlink channel, and the specific data acquisition method can adopt the existing technical content. This embodiment does not involve the improvement of the specific parameter acquisition method, which is not limited here.
  • the acquisition of the channel quality parameter can also set the interference weight parameter.
  • the parameters such as the conduction performance of the signal in the transmission path and the antenna efficiency are usually fixed and known, and are set as fixed parameters. The scene and external factors will cause certain interference, such as the current handheld mode, antenna orientation, co-channel interference, etc. Therefore, the interference weight parameter can be set on the basis of fixed parameters.
  • the interference weight parameter can be a preset weighted value. It can also be a weight coefficient. For example, when the fixed parameters are fixed, if the hand-held mode is detected to be horizontal, the interference weight parameters corresponding to the horizontal screen are obtained, and the channel quality parameters are collected according to the fixed parameters and interference weight parameters. , so that the obtained channel quality parameters are more in line with the actual situation, and the accuracy of transmission path adjustment is improved.
  • the network mode parameter may also be acquired, for example, to detect whether the current SRS message mode is 1T2R, 2T4R or 1T4R, whether the networking mode is the NSA mode or the SA mode, and the specific air interface standard used. etc.
  • the specific network parameter mode the specific channel quality parameters to be collected can be determined. For example, in the NSA mode, network parameters such as the frequency band and frequency point, bandwidth, modulation method, and MIMO stream number of the air interface can also be collected.
  • the specific network mode The parameter acquisition method may adopt the existing scheme, and details are not described herein again.
  • Step S200 Determine the interference scenario of the SRS according to the channel quality parameter, and execute an adjustment strategy corresponding to the determined interference scenario.
  • the terminal usually has multiple antennas.
  • the terminal needs to inform the base station of the signal capability of each transmission path through SRS, so that the base station can allocate more accurate resources to the terminal.
  • the more antennas that transmit SRS the more accurate the base station can calculate the channel capability, and the greater the wireless performance parameters that the terminal can obtain.
  • the parameters first determine the interfered scene of the SRS, so as to obtain a more targeted adjustment method.
  • the adjustment of the transmission path can be realized by the interference adjustment function of the terminal. After a specific adjustment scheme is determined according to the disturbed scene, the interference adjustment module sends the transmission path adjusted scheme to the control module of the terminal. , so that the control module of the terminal sends the SRS according to the scheme adjusted by the transmission path.
  • the number of interference scenarios can be any number, so the number of adjustment strategies obtained may be one or more.
  • the interference adjustment module can be applied one by one. If the adjusted wireless performance parameters meet the wireless performance If the parameter threshold is set, no other adjustment is required, or multiple adjustment schemes can work together to improve the adjustment effect of the transmission path.
  • step S100 in the embodiment shown in FIG. 1 is executed, it further includes but is not limited to the following steps:
  • Step S310 obtaining the current transmission requirement of the terminal and the current first wireless performance parameter of the terminal, and determining the wireless performance parameter threshold according to the current transmission requirement;
  • Step S320 when the first wireless performance parameter is less than the wireless performance parameter threshold, determine the transmission path of the SRS
  • Step S330 acquiring the determined channel quality parameter of the transmission path of the SRS.
  • the current transmission demand of the terminal can be obtained through a common demand detection method. For example, real-time demand or demand statistics for a period of time can be performed on all services in the terminal that need to upload and/or download data, so as to obtain all services that meet the needs of the terminal. The required bandwidth is taken as the current transmission requirement. It is understandable that, when determining the current transmission demand, the current environment of the terminal and the individual needs of the user can also be comprehensively considered. For example, it is detected that the environment where the terminal is located is underground or indoor.
  • the wireless performance parameter threshold may be the real-time upload amount and/or real-time download amount that can meet service requirements, such as performing a download task, and the wireless performance parameter threshold may be the maximum download amount that the terminal can achieve; or The sum of the wireless performance parameters that meet the service requirements for a period of time. For example, to watch live video through a terminal, it is necessary to have the upload volume and download volume to meet the live broadcast requirements within a certain period of time. The specific selection method of the wireless performance parameter threshold depends on the actual service requirements of the terminal. Adjust it.
  • the first wireless performance parameter may be the real-time upload and/or download volume of the terminal in practical applications.
  • the wireless performance parameter for a period of time may also be selected according to service requirements, and adjusted according to actual needs. This will not be repeated here.
  • step S200 further includes but is not limited to the following steps:
  • Step S400 when the uplink signal power of each channel of the terminal is different, determine that the interfered scene is an uplink signal interference scene.
  • the collection of uplink signal power can be implemented by adding a feedback detection circuit to the transmission path of the SRS.
  • a feedback detection circuit to the transmission path of the SRS.
  • step S200 further includes but is not limited to the following steps:
  • Step S500 when the channel power of each channel of the terminal is unbalanced, it is determined that the interfered scene is a channel interference scene.
  • the channel imbalance there is a difference between the transmit power of the transmission path and the received RSRP due to the difference of its own loss, that is, the channel imbalance. Due to the imbalance of the MIMO channel, the signals of each channel of the terminal collected by the base station are also different. Unbalanced, it is impossible to perform balanced resource allocation to the terminal. At the same time, due to the differences between different channels, the resource distribution of each path is not the largest. If the uplink signal of a certain path is weak, it will allocate lower wireless performance resources. Therefore, when detecting When the channel power of each channel to the terminal is not balanced, the interfered scene can be determined as a channel interference scene.
  • step S200 further includes, but is not limited to, the following steps:
  • Step S600 when the conduction path quality parameter is less than the preset reference value, determine that the disturbed scene is the conduction path interference scene.
  • an antenna selection module needs to be set in the terminal.
  • the path in this module is a conduction path, and the quality parameter of the conduction path can be calculated by the signal strength, such as the difference of RSRP. value, SNR difference, uplink and downlink bit error rate difference, maximum supported MCS modulation mode difference, uplink and downlink wireless performance difference, etc.
  • a preset reference value can be set for each conduction path quality parameter. When the calculated conduction path quality parameter is less than the preset reference value, the effect of sending SRS through the conduction path cannot be achieved.
  • the terminal detects that the current mode is the hand-held mode or the head-to-head call mode, which has a certain impact on the transmission and reception of the antenna, and can be selected through path reorganization. Better conduction path.
  • step S400 in the embodiment shown in FIG. 3 further includes but is not limited to the following steps:
  • Step S410 adjusting the uplink signal power
  • Step S420 Acquire the second wireless performance parameter of the terminal after the uplink signal power is adjusted.
  • the adjusted uplink signal power is set as the uplink signal power of the transmission path.
  • the uplink signal power can be adjusted arbitrarily, such as increasing or decreasing.
  • the interference between channels increases, and the wireless performance parameters may decrease after the uplink signal power is reduced. Therefore, this embodiment does not limit the specific adjustment direction, but the wireless performance parameters of the terminal before and after the uplink signal power adjustment is adjusted.
  • a comparison is made to determine the uplink signal power that is more suitable for the current SRS. For example, it is detected that the uplink signal power of the four antennas is 15dB, 16dB, 13dB and 17dB respectively, and the maximum uplink signal power is 17dB.
  • the uplink signal power of the four antennas are all set to 17dB.
  • the wireless performance parameters after adjustment are improved compared to before the adjustment , then 17dB is used as the uplink signal power of the SRS. If the wireless performance parameters after adjustment are lower than those before the adjustment, then further adjust to 16dB, and so on, until the wireless performance parameters meet the wireless performance parameter threshold, so as to achieve the improvement of wireless performance parameters .
  • the mapping relationship between the uplink signal power and the wireless performance parameters can also be saved, so as to quickly adjust the uplink signal power when the terminal demands are the same.
  • step S500 in the embodiment shown in FIG. 4 includes but is not limited to the following steps:
  • Step S510 obtaining a preset channel power threshold
  • Step S520 performing power compensation on the channel power of each channel of the terminal according to the channel power threshold
  • Step S530 feedback adjustment is performed according to the channel power after power compensation and the channel power threshold, so that the channel power conforms to the channel power threshold.
  • the channel power threshold can be preset, for example, set to 17dB. If the original signal are 15dB, 16dB, 13dB and 17dB. Through simple difference calculation, it can be known that the compensation values for the channel power of each channel are 2dB, 1dB, 4dB and 0dB respectively.
  • the power compensation can be implemented in any manner, such as modifying software parameters. It can be understood that, in order to improve the transmission quality of the transmission path, the power compensation of the channel power can be adaptively performed in real time. For example, the channel power of each channel can be detected in real time, and it can be automatically adjusted every time a channel is detected that does not meet the channel power threshold. It is to perform unified adjustment after completing one traversal, and the specific method can be selected according to actual needs, and will not be repeated here.
  • step S600 in the embodiment shown in FIG. 5 includes but is not limited to the following steps:
  • Step S610 determining the current conduction path and available conduction path of the SRS, and the conduction path includes a radio frequency link path and an antenna path;
  • Step S620 obtaining the conduction path quality parameters of the current conduction path and the available conduction path respectively;
  • Step S630 when the conduction path quality parameter of the available conduction path is greater than the conduction path quality parameter of the current conduction path, set the available conduction path as the conduction path of the SRS.
  • the conduction path adjustment is usually completed in the form of recombination, for example, two or four paths in the SRS are recombined, for example, through a radio frequency choke coil. Choke, RFC) handover is controlled by path matching.
  • the available conduction path may be any available path other than the current conduction path, and the path reorganization can be completed through RFC switching.
  • various parameters in the conduction path quality parameters can be obtained from the reported value of modern.
  • the parameters of the preset reference value are compared. For example, if the obtained SNR difference is smaller than the preset reference value, the SNR difference of the current conduction path is obtained, and the available conduction path is used for SRS transmission through path reorganization, and the conduction path is obtained. If the SNR difference of the available conduction path is better, keep the reorganization of the path, otherwise re-select another available conduction path for reorganization; of course, you can also reorganize all available conduction paths
  • the quality parameters of the conduction paths are compared, and a better path is selected after a comprehensive performance comparison is obtained. The specific method is selected according to the actual needs, which can obtain higher signal quality, greater throughput and more stable transmission rate through path reorganization. The path is sufficient, and details are not repeated here.
  • step S200 in the embodiment shown in FIG. 1 after the execution of step S200 in the embodiment shown in FIG. 1 is completed, it further includes but is not limited to the following steps:
  • Step S700 Obtain the third wireless performance parameter of the terminal after the transmission path is adjusted.
  • the third wireless performance parameter is less than the wireless performance parameter threshold, determine the current SRS interference scene and adjust the transmission path according to the interference scene.
  • the closed-loop feedback adjustment of the transmission path can be realized by judging the third wireless performance parameter.
  • the interference of the transmission path usually does not remain constant. During the adjustment of the transmission path, new interference may appear, and the adjustment result may not accurately reach the wireless performance parameter threshold. For example, after the adjustment of the conduction path is completed through path reorganization , new interference may occur between the new conduction path signals, resulting in the wireless performance parameter still being less than the wireless performance parameter threshold. Thresholds are compared and adjustments to the transmission path are performed.
  • the closed-loop feedback can be stopped after the wireless performance parameter meets the wireless performance parameter threshold, or the maximum wireless performance parameter that can be realized by the terminal has been reached, which can be determined according to the signal quality of the actual use scenario of the terminal. Repeat.
  • FIG. 10 is a schematic diagram of functional modules of a terminal for executing an SRS transmission method provided by an embodiment of the present application.
  • the terminal 200 includes but is not limited to a network mode detection module 210, an interference detection module 220, a control module 230, a channel pre-calculation evaluation module 240, an interference adjustment module 250, a path reorganization module 260, a power feedback adjustment module 270, and a channel power compensation module. module 280.
  • the network mode detection module 210 is in communication connection with the base station 100 and the control module 230, and is set to acquire network mode parameters of the terminal;
  • the interference detection module 220 is in communication connection with the control module 230, and is set to collect the channel quality parameters of the terminal 200, and The collected channel quality parameters are sent to the control module 230 for analysis and processing;
  • the control module 230 may be a chip in the terminal 200, or a device such as a processor of an antenna selection module, which can analyze and process data and respond to interference adjustment instructions , the transmission path can be adjusted according to the determined adjustment scheme;
  • the channel pre-calculation evaluation module 240 is respectively connected with the path reorganization module 260, the power feedback adjustment module 270, the channel power compensation module 280 and the base station 100, and is set to 200 Evaluate the quality of the transmitted and received signals of each channel, so as to determine the wireless performance parameters achieved after the transmission path is adjusted;
  • the interference adjustment module 250 is respectively connected with the path reorganization module 260, the power feedback adjustment module
  • the schematic diagram of the path reorganization module 260 can be referred to as shown in FIG. 11 .
  • the transmission of the signal starts from the Voltage-Controlled Oscillator (VCO) of the RF chip, and goes through the front-stage switch and the intermediate-stage low-noise amplifier. (Low Noise Smplifier, LNA) switch module, post-stage switch, antenna switch, and finally the antenna array.
  • VCO Voltage-Controlled Oscillator
  • LNA Low Noise Smplifier
  • the schematic diagram of the structure can be referred to as shown in Figure 11.
  • the compatibility of the channels is different, and different conduction paths will be formed. Therefore, when switches are switched at each stage, two or four groups of conduction paths can be reorganized. The specific switching methods and internal circuits are not made by this embodiment. Improvements will not be repeated here.
  • each module in the terminal 200 only needs to implement corresponding functions, which may be virtual modules or existing circuit structures capable of implementing the functions, which are not limited in this embodiment.
  • FIG. 10 do not constitute limitations to the embodiments of the present application, and may include more or less components than those shown in the figure, or combine some components, or different components layout.
  • control module 230 can call the control program stored in the terminal, so as to execute the SRS transmission method applied to the terminal.
  • an embodiment of the present application also provides a terminal, the terminal includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • the non-transitory software programs and instructions required to realize the SRS transmission method of the above-mentioned embodiment are stored in the memory, and when executed by the processor, the SRS transmission method applied to the terminal in the above-mentioned embodiment is executed, for example, the above-described SRS transmission method is executed.
  • Method steps S100 to S200 in FIG. 1 method steps S310 to S330 in FIG. 2 , method step S400 in FIG. 3 , method step S500 in FIG. 4 , method step S600 in FIG. 5 , method in FIG. 6 Steps S410 to S420 , method steps S510 to S520 in FIG. 7 , method steps S610 to S630 in FIG. 8 , method step S700 in FIG. 9 .
  • the embodiments of the present application include: acquiring a channel quality parameter of a transmission path of the SRS; determining an interference scenario of the SRS according to the channel quality parameter, and executing an adjustment strategy corresponding to the determined interference scenario.
  • the interference scenario of the SRS can be determined, and the transmission path of the SRS can be adjusted according to the interference scenario, the interference of the SRS in the transmission path can be reduced, and the SRS received by the base station can be more stable, This enables the base station to allocate more accurate resources to the terminal, thereby improving the wireless performance parameters and transmission performance of the terminal.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned
  • the execution of a processor in the embodiment of the control unit can cause the above-mentioned processor to execute the SRS transmission method applied to the terminal in the above-mentioned embodiment, for example, to perform the above-described method steps S100 to S200 in FIG. Method steps S310 to S330, method step S400 in Fig. 3, method step S500 in Fig. 4, method step S600 in Fig. 5, method steps S410 to S420 in Fig. 6, method steps S510 to S520 in Fig.
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种SRS传输方法、终端及存储介质,该SRS传输方法包括:获取信道探测信号SRS的传输路径的信道质量参数(S100);根据所述信道质量参数确定SRS的受干扰场景,执行与所确定的所述受干扰场景对应的调整策略(S200)。

Description

SRS传输方法、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202010960731.6、申请日为2020年09月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种SRS传输方法、终端及存储介质。
背景技术
随着通信技术的发展,5G通信应用越来越广泛,终端采用了多天线的多进多出(Multiple Input Multiple Output,MIMO)技术,通过MIMO天线的使用实现空间服用增益的提升,大幅提升了传输性能。无线性能参数是传输性能的其中一种体现,终端的无线性能参数通常取决于基站分配的资源,终端向基站发送信道探测参考信号(Sounding Reference Signal,SRS),基站根据SRS得出信道质量的检测结果,并根据检测结果分配资源。由于天线和信道较多,SRS在传输路径中很容易受到各种因素的干扰,导致基站根据SRS分配的资源较少,影响终端的传输性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种SRS传输方法、终端及存储介质。
第一方面,本申请实施例提供了一种SRS传输方法,应用于终端,包括:获取SRS的传输路径的信道质量参数;根据所述信道质量参数确定SRS的受干扰场景,根据所述受干扰场景调整所述传输路径。
第二方面,本申请实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的SRS传输方法。
第三方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的SRS传输方法或如上所述的SRS传输方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的应用于终端的SRS传输方法的流程图;
图2是本申请另一个实施例提供的SRS传输方法的中触发传输路径调整的流程图;
图3是本申请另一个实施例提供的SRS传输方法的中根据上行信号功率确定受干扰场景的流程图;
图4是本申请另一个实施例提供的SRS传输方法的中根据信道功率确定受干扰场景的流程图;
图5是本申请另一个实施例提供的SRS传输方法的中根据传导路径质量参数确定受干扰场景的流程图;
图6是本申请另一个实施例提供的SRS传输方法的中根据上行信号功率进行传输路径调整的流程图;
图7是本申请另一个实施例提供的SRS传输方法的中根据信道功率进行传输路径调整的流程图;
图8是本申请另一个实施例提供的SRS传输方法的中根据传导路径质量参数进行传输路径调整的流程图;
图9是本申请另一个实施例提供的SRS传输方法的进行传输路径调整后的流程图;
图10是本申请另一个实施例提供的用于执行SRS传输方法的终端的功能模块示意图;
图11是本申请另一个实施例提供的用于执行SRS传输方法的终端中的路径重组模块的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种SRS传输方法、终端及存储介质,获取终端的当前传输需求和终端当前的第一无线性能参数,根据所述当前传输需求确定无线性能参数阈值;当所述第一无线性能参数小于所述无线性能参数阈值,确定SRS的传输路径,并获取所述传输路径的信道质量参数;根据所述信道质量参数确定SRS的受干扰场景,根据所述受干扰场景调整所述传输路径。根据本申请实施例提供的方案,能够在当前的无线性能参数小于无线性能参数阈值时,确定SRS的受干扰场景,并根据受干扰场景对SRS的传输路径进行调整,能够减少SRS在传输路径中受到的干扰,使得基站接收到的SRS更加稳定,对终端分配更加准确的资源,进而提高终端的无线性能参数和传输性能。
需要说明的是,本申请实施例中所述的终端可以是任意类型,例如5G手机,平板电脑、等,也可以是客户前置设备(Customer Premise Equipment,CPE)等设备,能够通过SRS与基站进行通信,并且获取基站分配的资源确定无线性能即可,也可以应用于终端的天线选择路径模块,为了叙述方便,以下实施例的终端以5G终端为例进行原理性说明, 后续不再赘述。需要说明的是,本申请实施例并不对5G终端的组网方式、天线数量和收发方式作出改进,例如,组网方式可以是常见的非独立组网(Non Stand Alone,NSA)或者独立组网(Stand Alone,SA),天线数量可以根据组网方式确定,例如NSA可以是6根天线,SA可以是4根天线,收发方式可以是常见的1T2R(一根天线发射、一根天线接收)、2T4R(两根天线发射、,四根天线接收)或者1T4R(一根天线发射、四根天线接收)等,本实施例不多作限制,能够对SRS的传输路径进行调整即可,后续不再赘述。
需要说明的是,本申请实施例的SRS传输方法,体现在终端中可以是以可开启的功能形式存在,例如在终端中设置“SRS抗干扰模式”的功能,用户可以通过在终端的操作开启或者关闭该功能,也可以是终端中默认开启的系统功能,根据终端的实际情况确定具体方式即可,后续不再赘述。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的终端执行SRS传输方法的流程图,该SRS传输方法包括但不限于有步骤S100和步骤S200。
步骤S100,获取SRS的传输路径的信道质量参数。
在一实施例中,在带宽允许的情况下,终端是能够通过向基站发送SRS获取足够的无线性能资源,当第一无线性能参数小于无线性能参数阈值,则终端发送的SRS受到了干扰,导致获取的无线性能资源无法满足业务需求。需要说明的是,在终端的多根天线之间存在干扰或者互绕,SRS的天线选择或者汇报值可能会存在偏差,导致向基站汇报交叉的信号值,导致基站错误评估各天线通道的信道质量,从而给出较低的调度,本实施例仅对传输路径造成的干扰进行讨论,其他干扰类型不在本实施例讨论范围,在此不再赘述。
在一实施例中,传输路径的信道质量参数可以是上下行吞吐率、参考信号接收成功率(Reference Signal Receiving Power,RSRP)、信噪比(Signal Noise Ratio,SNR)、信道质量指示(Channel Quality Indication,CQI)、误码率、最高可支持的调制与编码策略(Modulation and Coding Scheme,MCS)等,能够体现信道质量的参数即可。可以理解的是,信道质量参数可以从终端的射频芯片模块和基带芯片模块中获取,也可以从调节解调器(modern)的汇报值中获取,例如从modern的上报日志中抓取对应的数值,具体方式根据实际需求选取即可,在此不再赘述。需要说明的是,为了获取信道质量参数,可以通过终端的信道预计算评估功能模块对终端各通道的发射和接收信号质量进行评估,例如通过对上行信道的信息进行评估得出上行信号功率,又如对下行各通道电平进行探测得出RSRP和SNR等参数,具体的数据获取方法可以采用现有的技术内容,本实施例并不涉及具体参数获取方式的改进,在此不多作限定。
在一实施例中,信道质量参数的获取还可以设定干扰权重参数,例如,信号在传输路径中的传导性能和天线效率等参数通常是固定已知的,设置为固定参数,而终端的使用场景和外界因素会造成一定的干扰,例如当前的手持方式、天线朝向、同频干扰等,因此可以在固定参数的基础上,设置干扰权重参数,干扰权重参数可以是预先设定的加权值,也可以是权重系数,例如在固定参数一定的情况下,若检测到手持方式为横屏,则获取与横屏所对应的干扰权重参数,同时根据固定参数和干扰权重参数对信道质量参数进行采集,从而使获取的信道质量参数更加符合实际情况,提高传输路径调整的准确性。
在一实施例中,获取信道质量参数之前,还可以对网络模式参数进行获取,例如检测 当前的SRS消息模式是1T2R、2T4R还是1T4R,组网模式是NSA模式还是SA模式,具体使用的空口制式等,根据具体的网络参数模式,能够确定具体采集的信道质量参数,例如在NSA模式下,还可以采集空口的频段及频点、带宽、调制方式、MIMO流数等网络参数,具体的网络模式参数获取方法可以采用现有的方案,在此不再赘述。
步骤S200,根据信道质量参数确定SRS的受干扰场景,执行与所确定的受干扰场景对应的调整策略。
需要说明的是,终端通常有多条天线,为了提高传输路径的使用效率,需要让终端通过SRS将每条传输路径的信号能力告知基站,使得基站分配更精准的资源到终端,因此,能够参与发送SRS的天线数越多,基站对信道能力的计算就越准确,终端能够获取的无线性能参数就更大,在这种情况下,天线之间造成的干扰也较多,因此需要通过信道质量参数先对SRS的受干扰场景进行确定,从而得出更加具有针对性的调整方法。
在一实施例中,对传输路径进行调整,可以通过在终端的干涉调节功能实现,根据受干扰场景确定具体的调整方案后,由干涉调节模块将传输路径调整后的方案发送至终端的控制模块,使得终端的控制模块根据传输路径调整后的方案发送SRS。需要说明的是,受干扰场景可以是任意数量,因此所得出的调整策略的数量可能是一个或多个,此时干涉调节模块可以是逐个调整方案应用,若调整后的无线性能参数满足无线性能参数阈值,则无需进行其他调整,也可以是多个调整方案协同作用,提高传输路径的调整效果,具体方式根据实际需求确定,能够使得调整后的无线性能参数满足无线性能参数阈值即可。
另外,参照图2,在一实施例中,图1所示实施例中的步骤S100执行之前还包括但不限于有以下步骤:
步骤S310,获取终端的当前传输需求和终端当前的第一无线性能参数,根据当前传输需求确定无线性能参数阈值;
步骤S320,当第一无线性能参数小于无线性能参数阈值,确定SRS的传输路径;
步骤S330,获取所确定的SRS的传输路径的信道质量参数。
在一实施例中,终端的当前传输需求可以通过常见的需求检测方法获取,例如,可以对终端中所有需要上传和/或下载数据的业务进行实时需求或者一段时间需求的统计,获取满足所有业务需求的带宽作为当前传输需求。可以理解的是,确定当前传输需求时也可以综合考虑当前终端所处的环境和用户的个性化需求,例如检测到终端所处的环境为地下或室内,由于信号受干扰的程度较大,可以在满足所有业务需求的带宽基础上进行适应性的增加,例如根据不同场景设置加权值等,又如,用户可以对终端的运行温度进行设定,避免数据流量过大时终端温度过高,本领域技术人员有动机根据实际情况调整具体的数值,具体方式并非本实施例作出的改进,在此不再赘述。
在一实施例中,无线性能参数阈值可以是能够满足业务需求的实时上传量和/或实时下载量,例如执行下载任务,无线性能参数阈值可以是终端所能达到的最大下载量;也可以是满足一段时间内业务需求的无线性能参数之和,例如通过终端观看视频直播,需要在一段时间内具备满足直播需求的上传量和下载量,无线性能参数阈值的具体选取方式根据终端的实际业务需求调整即可。
在一实施例中,第一无线性能参数在实际应用中可以是终端实时的上传量和/或下载量,当然也可以根据业务需求选取一段时间的无线性能参数,根据实际需求调整即可,在 此不再赘述。
另外,在一实施例中,信道质量参数包括上行信号功率;参考图3,步骤S200还包括但不限于有以下步骤:
步骤S400,当终端的每个信道的上行信号功率不同,确定受干扰场景为上行信号干扰场景。
在一实施例中,上行信号功率的采集可以通过在SRS的传输路径增加反馈检测电路实现,在终端的工作过程中,当检测到采集的上下行无线性能参数有异常的变化值,例如在某一瞬间降低导致无法满足业务需求,在这种情况下,通常是由于上行信号功率异常,可以确定受干扰场景为上行信号干扰场景。
另外,在一实施例中,信道质量参数包括信道功率;参考图4,步骤S200还包括但不限于有以下步骤:
步骤S500,当终端的每个信道的信道功率不均衡,确定受干扰场景为信道干扰场景。
在一实施例中,传输路径由于自身损耗的差异,路径发射功率和接收的RSRP之间存在差异,即信道的不均衡性,由于MIMO信道的不均衡,基站采集到的终端各通道的信号也不均衡,无法对终端进行均衡的资源分配,同时,由于不同信道存在差异,各路径的资源分布也不是最大,某一个路径上行信号较弱,则会分配较低无线性能资源,因此,当检测到终端的每个信道的信道功率不均衡时,可以确定受干扰场景为信道干扰场景。
另外,在一实施例中,信道质量参数包括传导路径质量参数;参考图5,步骤S200还包括但不限于有以下步骤:
步骤S600,当传导路径质量参数小于预设参考值,确定受干扰场景为传导路径干扰场景。
在一实施例中,由于终端具有多条天线同时发送SRS,因此需要在终端中设置天线选择模块,该模块中的路径为传导路径,传导路径质量参数可以通过信号强度进行计算,例如RSRP的差值、SNR差值、上下行误码率差值、最高可支持MCS调制方式差值、上下行无线性能差值等。需要说明的是,为了快速识别出干扰,可以针对每一个传导路径质量参数设定预设参考值,当计算出的传导路径质量参数小于预设参考值,则通过该传导路径发送SRS的效果无法达到预期,即存在干扰,因此可以确定受干扰场景为传导路径干扰场景,例如,终端检测到当前的模式为手握模式或者人头通话模式,对天线的收发有一定的影响,可以通过路径重组选择更优的传导路径。
另外,参照图6,在一实施例中,图3所示实施例中的步骤S400还包括但不限于有以下步骤:
步骤S410,调整上行信号功率;
步骤S420,获取终端在上行信号功率调整后的第二无线性能参数,当第二无线性能参数大于第一无线性能参数,将调整后的上行信号功率设置为传输路径的上行信号功率。
基于上述实施例,在SRS的传输路径中通过反馈检测电路获取各天线的功率后,可以对上行信号功率进行任意的调整,例如增大或者减小,增大上行信号功率后,可能会导致各通道之间的干扰增大,减小上行信号功率后可能会出现无线性能参数减少的情况,因此,本实施例并不对具体调整方向进行限制,而是对上行信号功率调整前后终端的无线性能参数进行对比,从而确定更适合当前SRS的上行信号功率。例如,检测到四条天线的上行信 号功率分别15dB、16dB、13dB和17dB,最大的上行信号功率为17dB,将四条天线的上行信号功率均设置为17dB,若调整后无线性能参数对比调整前有提升,则应用17dB作为SRS的上行信号功率,若调整后无线性能参数对比调整前有所降低,则进一步调整为16dB,依次类推,直至无线性能参数满足无线性能参数阈值,从而实现无线性能参数的提升。另外,通过上行信号功率调整使得无线性能参数提升后,还可以保存上行信号功率与无线性能参数之间的映射关系,以便在终端需求相同的情况下快速调整上行信号功率。
另外,参照图7,在一实施例中,图4所示实施例中的步骤S500包括但不限于有以下步骤:
步骤S510,获取预先设定的信道功率阈值;
步骤S520,根据信道功率阈值对终端每个信道的信道功率进行功率补偿;
步骤S530,根据功率补偿后的信道功率和所述信道功率阈值进行反馈调节,以使所述信道功率符合所述信道功率阈值。
基于上述实施例,传输路径中各信道保持均衡能够提高终端的无线性能参数,信道的均衡通常可以通过信道功率相同实现,因此可以预先设定好信道功率阈值,例如设定为17dB,若原始信号为15dB、16dB、13dB和17dB,通过简单的差值计算可知,对每个信道的信道功率的补偿值分别为2dB、1dB、4dB和0dB。
需要说明的是,功率补偿可以通过任意方式实现,例如对软件参数进行修改等。可以理解的是,为了提高传输路径的传输质量,可以实时自适应对信道功率进行功率补偿,例如实时检测每个信道的信道功率,每检测到一个信道不符合信道功率阈值时自动调整,也可以是完成一次遍历后进行统一的调整,具体方式根据实际需求选取即可,在此不再赘述。
另外,参照图8,在一实施例中,图5所示实施例中的步骤S600包括但不限于有以下步骤:
步骤S610,确定SRS的当前传导路径和可用传导路径,传导路径包括射频链路路径和天线路径;
步骤S620,分别获取当前传导路径和可用传导路径的传导路径质量参数;
步骤S630,当可用传导路径的传导路径质量参数大于当前传导路径的传导路径质量参数,将可用传导路径设置为SRS的传导路径。、
在一实施例中,由于终端需要通过多个天线发送SRS,因此传导路径调整通常以重组的形式完成,例如对SRS中的两个或者四个路径进行重组,例如通过射频扼流圈(Radio Frequency Choke,RFC)的切换进行路径匹配控制。需要说明的是,可用传导路径可以是除当前传导路径之外任意的可用路径,能够通过RFC切换完成路径重组即可。
在一实施例中,传导路径质量参数中的各种参数可以从modern的汇报值中获取,在本实施例步骤S620中,可以对任意数量和类型的参数进行获取和对比,也可以仅对小于预设参考值的参数进行对比,例如,获取到的SNR差值小于预设参考值,则获取当前传导路径的SNR差值,通过路径重组使用可用传导路径进行SRS的发送后,获取该传导路径的SNR差值,将两次SNR差值进行对比,若可用传导路径的SNR差值更优,保留路径的重组,否则重新选取另一条可用传导路径进行重组;当然,也可以将所有能获取的传导路径质量参数进行对比,得出综合的性能对比后选择更优的路径,具体方式根据实际需求选取,能够通过路径重组得出更高的信号质量、更大的吞吐率和更稳定速率的传导路径即可,在此 不再赘述。
另外,参照图9,在一实施例中,图1所示实施例中的步骤S200执行完成后还包括但不限于有以下步骤:
步骤S700,获取终端在传输路径调整后第三无线性能参数,当第三无线性能参数小于无线性能参数阈值,确定当前SRS的受干扰场景并根据受干扰场景调整传输路径。
在一实施例中,通过第三无线性能参数的判断,能够实现对传输路径的闭环反馈调节。传输路径的干扰通常不会保持恒定,在传输路径调整的过程中,可能会出现新的干扰,也可能调整的结果并不能准确达到无线性能参数阈值,例如,通过路径重组完成传导路径的调整后,新的传导路径信号之间可能会产生新的干扰,导致无线性能参数依然小于无线性能参数阈值,在这种情况下,可以通过获取传输路径调整后终端的无线性能参数,进一步与无线性能参数阈值进行比对并且执行传输路径的调整。
在一实施例中,闭环反馈可以在无线性能参数满足无线性能参数阈值后停止,或者已经达到终端所能实现的最大无线性能参数,根据终端的实际使用场景的信号质量确定即可,在此不再赘述。
另外,如图10所示,图10是本申请一个实施例提供的用于执行SRS传输方法的终端的功能模块示意图。
在终端200中,包括但不限于网络模式检测模块210、干扰检测模块220、控制模块230、信道预计算评估模块240、干涉调节模块250、路径重组模块260、功率反馈调节模块270、信道功率补偿模块280。其中,网络模式检测模块210与基站100和控制模块230通信连接,被设置成获取终端的网络模式参数;干扰检测模块220与控制模块230通信连接,被设置成采集终端200的信道质量参数,将采集到的信道质量参数发送至控制模块230中进行分析和处理;控制模块230可以是终端200中的芯片,或者是天线选择模块的处理器等装置,能够实现数据的分析处理以及响应干涉调节指令,根据确定好的调整方案对传输路径进行调整即可;信道预计算评估模块240分别与路径重组模块260、功率反馈调节模块270、信道功率补偿模块280和基站100通信连接,被设置成对终端200各通道的发射和接收信号质量进行评估,从而确定传输路径调整后所实现的无线性能参数;干涉调节模块250分别与路径重组模块260、功率反馈调节模块270、信道功率补偿模块280和控制模块230通信连接,被设置成获取路径重组模块260、功率反馈调节模块270或信道功率补偿模块280确定的调整方案,并向控制模块230发送干涉调节指令,使得控制模块230根据确调整后的传输路径收发SRS;路径重组模块260被设置成执行图8所示实施例的传导路径重组;功率反馈调节模块270被设置成执行图6所示实施例的上行信号功率的调整;信道功率补偿模块280被设置成执行图7所示实施例的信道功率补偿的调整。
在一实施例中,路径重组模块260的示意图可以参考图11所示,信号的传输从射频芯片的压控震荡电路(Voltage-Controlled Oscillator,VCO)开始,经过前级开关、中间级低噪声放大器(Low Noise Smplifier,LNA)开关模组、后级开关、天线切换开关,最后达到天线阵列,其结构示意图可以参考图11所示,根据VCO的不同,经过的各级开关路径不同,内外部硬件通道的兼容性不同,会形成不同的传导路径,因此在每一级开关进行切换,均可以实现两组或四组的传导路径重组,具体的开关切换方式和内部的电路并非本实施例作出的改进,在此不再赘述。
需要说明的是,终端200中的各模块能够实现相应的功能即可,可以是虚拟模块,也可以是现有的能够实现该功能的电路结构,本实施例不多作限定。
本领域技术人员可以理解的是,图10中示出的功能模块并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图10所示的终端中,控制模块230可以调用储存在终端中的控制程序,从而执行应用于终端的SRS传输方法。
另外,本申请的一个实施例还提供了一种终端,该终端包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
实现上述实施例的SRS传输方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的应用于终端的SRS传输方法,例如,执行以上描述的图1中的方法步骤S100至S200,图2中的方法步骤S310至步骤S330,图3中的方法步骤S400,图4中的方法步骤S500,图5中的方法步骤S600,图6中的方法步骤S410至S420,图7中的方法步骤S510至S520,图8中的方法步骤S610至S630,图9中的方法步骤S700。
本申请实施例包括:获取SRS的传输路径的信道质量参数;根据所述信道质量参数确定SRS的受干扰场景,执行与所确定的所述受干扰场景对应的调整策略。根据本申请实施例提供的方案,能够确定SRS的受干扰场景,并根据受干扰场景对SRS的传输路径进行调整,能够减少SRS在传输路径中受到的干扰,使得基站接收到的SRS更加稳定,从而使基站对终端分配更加准确的资源,进而提高终端的无线性能参数和传输性能。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述控制单元实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的应用于终端的SRS传输方法,例如,执行以上描述的图1中的方法步骤S100至S200,图2中的方法步骤S310至步骤S330,图3中的方法步骤S400,图4中的方法步骤S500,图5中的方法步骤S600,图6中的方法步骤S410至S420,图7中的方法步骤S510至S520,图8中的方法步骤S610至S630,图9中的方法步骤S700。本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信 息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种信道探测信号SRS传输方法,应用于终端,包括:
    获取SRS的传输路径的信道质量参数;
    根据所述信道质量参数确定SRS的受干扰场景,执行与所确定的所述受干扰场景对应的调整策略。
  2. 根据权利要求1所述的一种SRS传输方法,其中,所述获取SRS的传输路径的信道质量参数,包括:
    获取终端的当前传输需求和终端当前的第一无线性能参数,根据所述当前传输需求确定无线性能参数阈值;
    当所述第一无线性能参数小于所述无线性能参数阈值,确定SRS的传输路径;
    获取所确定的SRS的传输路径的信道质量参数。
  3. 根据权利要求2所述的一种SRS传输方法,其中,所述信道质量参数包括上行信号功率;所述根据所述信道质量参数确定SRS的受干扰场景,包括:
    当终端的每个信道的所述上行信号功率不同,确定所述受干扰场景为上行信号干扰场景。
  4. 根据权利要求1所述的一种SRS传输方法,其中,所述信道质量参数包括信道功率;所述根据所述信道质量参数确定SRS的受干扰场景,包括:
    当终端的每个信道的所述信道功率不均衡,确定所述受干扰场景为信道干扰场景。
  5. 根据权利要求1所述的一种SRS传输方法,其中,所述信道质量参数包括传导路径质量参数;所述根据所述信道质量参数确定SRS的受干扰场景,包括:
    当所述传导路径质量参数小于预设参考值,确定所述受干扰场景为传导路径干扰场景。
  6. 根据权利要求3所述的一种SRS传输方法,其中,当确定所述受干扰场景为上行信号干扰场景,所述执行与所确定的所述受干扰场景对应的调整策略,包括:
    调整所述上行信号功率;
    获取终端在所述上行信号功率调整后的第二无线性能参数,当所述第二无线性能参数大于所述第一无线性能参数,将调整后的所述上行信号功率设置为所述传输路径的上行信号功率。
  7. 根据权利要求4所述的一种SRS传输方法,其中,当确定所述受干扰场景为信道干扰场景,所述执行与所确定的所述受干扰场景对应的调整策略,包括:
    获取预先设定的信道功率阈值;
    根据所述信道功率阈值对终端每个信道的所述信道功率进行功率补偿;
    根据功率补偿后的信道功率和所述信道功率阈值进行反馈调节,以使所述信道功率符合所述信道功率阈值。
  8. 根据权利要求5所述的一种SRS传输方法,其中:当确定所述受干扰场景为传导路径干扰场景,所述执行与所确定的所述受干扰场景对应的调整策略,包括:
    确定SRS的当前传导路径和可用传导路径,所述传导路径包括射频链路路径和天线路径;
    分别获取所述当前传导路径和所述可用传导路径的传导路径质量参数;
    当所述可用传导路径的传导路径质量参数大于所述当前传导路径的传导路径质量参数,将所述可用传导路径设置为SRS的传导路径。
  9. 根据权利要求2所述的一种SRS传输方法,其中,还包括:
    获取终端在传输路径调整后第三无线性能参数,当所述第三无线性能参数小于所述无线性能参数阈值,确定当前SRS的受干扰场景并根据所述受干扰场景调整所述传输路径。
  10. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至9中任意一项所述的SRS传输方法。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至9中任意一项所述的SRS传输方法。
PCT/CN2021/104561 2020-09-14 2021-07-05 Srs传输方法、终端及存储介质 WO2022052608A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/006,663 US20230283428A1 (en) 2020-09-14 2021-07-05 Srs transmission method, terminal, and storage medium
EP21865664.3A EP4195571A4 (en) 2020-09-14 2021-07-05 SRS TRANSMISSION METHOD, TERMINAL AND STORAGE MEDIUM
JP2023504009A JP2023536401A (ja) 2020-09-14 2021-07-05 Srs伝送方法、端末及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010960731.6A CN112532363B (zh) 2020-09-14 2020-09-14 Srs传输方法、终端及存储介质
CN202010960731.6 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052608A1 true WO2022052608A1 (zh) 2022-03-17

Family

ID=74978815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104561 WO2022052608A1 (zh) 2020-09-14 2021-07-05 Srs传输方法、终端及存储介质

Country Status (5)

Country Link
US (1) US20230283428A1 (zh)
EP (1) EP4195571A4 (zh)
JP (1) JP2023536401A (zh)
CN (1) CN112532363B (zh)
WO (1) WO2022052608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745033B (zh) * 2022-05-10 2024-03-12 中国电信股份有限公司 信号传输方法、装置、设备及介质
CN115865669A (zh) * 2022-11-30 2023-03-28 中国联合网络通信集团有限公司 参数调整方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413557A (zh) * 2011-11-25 2012-04-11 中国电信股份有限公司 上行参考信号传输方法、终端和多天线通信系统
CN102415007A (zh) * 2009-05-04 2012-04-11 高通股份有限公司 无线通信的上行链路功率控制
CN102938930A (zh) * 2011-08-16 2013-02-20 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
CN103379603A (zh) * 2012-04-17 2013-10-30 电信科学技术研究院 功控信息通知及功控方法和设备
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
US20150319703A1 (en) * 2011-11-15 2015-11-05 Pantech Co., Ltd. Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
EP2782409A1 (en) * 2013-03-20 2014-09-24 Panasonic Intellectual Property Corporation of America Deterministic UE behaviour for CSI/SRS Reporting during DRX
CN106255190B (zh) * 2015-12-31 2019-11-01 北京智谷睿拓技术服务有限公司 功率控制方法及功率控制装置
CN107889209B (zh) * 2016-09-29 2023-09-22 华为技术有限公司 一种功率控制的方法及终端设备
WO2018176491A1 (en) * 2017-04-01 2018-10-04 Qualcomm Incorporated Enhanced power headroom report for feeding back beamformed srs power scaling
CN110875749A (zh) * 2018-09-03 2020-03-10 中兴通讯股份有限公司 功率确定方法、装置、终端和计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415007A (zh) * 2009-05-04 2012-04-11 高通股份有限公司 无线通信的上行链路功率控制
CN102938930A (zh) * 2011-08-16 2013-02-20 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
US20150319703A1 (en) * 2011-11-15 2015-11-05 Pantech Co., Ltd. Apparatus and method for controlling uplink transmission power in a multiple element carrier wave system
CN102413557A (zh) * 2011-11-25 2012-04-11 中国电信股份有限公司 上行参考信号传输方法、终端和多天线通信系统
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
CN103379603A (zh) * 2012-04-17 2013-10-30 电信科学技术研究院 功控信息通知及功控方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195571A4 *

Also Published As

Publication number Publication date
JP2023536401A (ja) 2023-08-25
CN112532363B (zh) 2022-04-22
EP4195571A4 (en) 2024-01-24
EP4195571A1 (en) 2023-06-14
CN112532363A (zh) 2021-03-19
US20230283428A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US10111177B2 (en) Uplink power control in multi-user unlicensed wireless networks
US20180249421A1 (en) Power control for uplink transmissions
CN102726090B (zh) 上行链路最小化路测测量方法
US11095393B2 (en) Outer loop link adaptation adjustment method and apparatus
US8285321B2 (en) Method and apparatus for using virtual noise figure in a wireless communication network
US10110294B2 (en) Adaptive use of receiver diversity
US10925117B2 (en) Method and apparatus for transmitting RRC message
RU2008107086A (ru) Способ эффективного управления радиоресурсами
JP2007532027A (ja) 移動局の物理的測定およびmac性能の統計をアクセスポイントの管理情報ベースに格納する方法および装置
WO2022052608A1 (zh) Srs传输方法、终端及存储介质
US8238957B2 (en) Communication control method, communication control system and its control program
EP3414854A1 (en) Controlling the channel occupancy measurement quality
KR20130016334A (ko) 이종 네트워크들 내의 중단들을 완화시키기 위한 방법
US20120108249A1 (en) Power control technique to mitigate intereference in multi-tier networks
JP6580702B2 (ja) 協調型マルチセル通信技術に基づくワイヤレスネットワークの接続障害検出
CN103404192A (zh) 上行覆盖测量项的测量结果获取和上报方法、设备
TW202142016A (zh) 側鏈路通道狀態資訊報告方法與裝置
US8542148B1 (en) Polarization control for cell telecommunication system
CN109756963B (zh) 工作模式的确定方法、装置和设备
WO2021056844A1 (zh) 数据处理方法、主机单元、基站系统和存储介质
CN112804718A (zh) 网络切换方法、终端及存储介质
KR20010073137A (ko) 기지국 장치, 통신 단말 장치 및 회선 품질 열화 방지 방법
RU2528377C1 (ru) Способ обработки и система для определения соответствия относительного предоставления и абсолютного предоставления
EP3449676A1 (en) Coverage extension for wireless devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504009

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021865664

Country of ref document: EP

Effective date: 20230306

NENP Non-entry into the national phase

Ref country code: DE