WO2021056844A1 - 数据处理方法、主机单元、基站系统和存储介质 - Google Patents

数据处理方法、主机单元、基站系统和存储介质 Download PDF

Info

Publication number
WO2021056844A1
WO2021056844A1 PCT/CN2019/124675 CN2019124675W WO2021056844A1 WO 2021056844 A1 WO2021056844 A1 WO 2021056844A1 CN 2019124675 W CN2019124675 W CN 2019124675W WO 2021056844 A1 WO2021056844 A1 WO 2021056844A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote unit
signal
user equipment
unit
host
Prior art date
Application number
PCT/CN2019/124675
Other languages
English (en)
French (fr)
Inventor
林敏�
区洋
丁宝国
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2021056844A1 publication Critical patent/WO2021056844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • This application relates to the field of wireless communication, and in particular to a data processing method, a host unit, a base station system, and a storage medium.
  • the distributed base station system is a small low-power base station that provides users with deep coverage of mobile communication signals.
  • the existing indoor wireless distributed system it is generally composed of a host unit + an extension unit + a remote unit.
  • the host unit is connected to multiple extension units, and the extension unit can be connected to multiple remote units to achieve the coverage effect of a common cell.
  • Traditional indoor wireless distributed systems mostly use option 7 in Figure 1 to divide the functions of the host unit and the extension unit.
  • the host unit implements the high-level protocol stack function, and the extension unit implements the physical layer and the IQ data combination function of each remote unit. Or combine the IQ data of the next-level expansion unit in the cascade; the host unit combines and demodulates all the received uplink combined signals.
  • the prior art generally adopts a method of limiting the number of combined remote unit groups.
  • a preset number of multiple remote units simultaneously receive uplink signals sent by user equipment and upload them to the host unit.
  • the host unit processes the multiple uplink signals to obtain uplink data.
  • a data processing method is applied to a base station system.
  • the base station system includes: a host unit, a plurality of extension units, and a plurality of remote unit groups; the host unit is in communication connection with a plurality of extension units, and each extension unit is connected to at least one remote Unit group communication connection, multiple remote unit groups are used for communication connection with user equipment, the method includes:
  • the host unit obtains the measurement data reported by the extension unit; the measurement data is obtained by the extension unit based on the uplink signal sent by the same user equipment, and is used to indicate the signal transmission quality between each remote unit group connected to the extension unit and the user equipment;
  • the host unit determines whether the signal of the user equipment is interfered according to the measurement data
  • the host unit determines at least two target remote unit groups from the multiple remote unit groups to receive the uplink signal sent by the user equipment.
  • the base station system includes: a host unit, a plurality of extension units, and a plurality of remote unit groups; the host unit is communicatively connected with a plurality of extension units, and each extension unit is communicatively connected with at least one remote unit group; A remote unit group is used to communicate with the user equipment; the host unit implements the steps of the above-mentioned data processing method.
  • the above-mentioned data processing method host unit, base station system, and storage medium.
  • the host unit obtains the measurement data reported by the extension unit; the measurement data is obtained by the extension unit based on the uplink signal sent by the same user equipment, and is used to indicate each connection connected to the extension unit.
  • the signal transmission quality between the remote unit group and the user equipment then, according to the measurement data, determine whether the signal of the user equipment is interfered; if the signal of the user equipment is interfered, determine at least two from the multiple remote unit groups A target remote unit group to receive the uplink signal sent by the user equipment.
  • the host unit determines at least two target remote unit groups from multiple remote unit groups when the signal of the user equipment receives interference, so that when the signal of the user equipment is interfered, the host unit can communicate with multiple channels.
  • the line signal is demodulated, which reduces the fronthaul bandwidth requirements of the host unit and the expansion unit, and at the same time improves the uplink signal quality of the user equipment.
  • Figure 1 is a schematic diagram of the functional division of the host unit and the expansion unit of a distributed system
  • Figure 2 is an application environment diagram of a data processing method in an embodiment
  • Figure 3 is a schematic flow chart of a data processing method in an embodiment
  • Figure 4 is a schematic diagram of a base station system in an embodiment
  • FIG. 5 is a schematic flowchart of a data processing method in another embodiment
  • Fig. 6 is a schematic flowchart of a data processing method in another embodiment
  • Figure 7 is a schematic diagram of a base station system in another embodiment
  • FIG. 8 is a schematic flowchart of a data processing method in another embodiment
  • Figure 9 is a structural block diagram of a host unit in an embodiment
  • Figure 10 is a structural block diagram of a host unit in an embodiment
  • Figure 11 is a structural block diagram of a host unit in an embodiment
  • Figure 12 is a structural block diagram of a host unit in an embodiment.
  • Fig. 13 is a structural block diagram of a base station system in an embodiment.
  • the data processing method provided in the present application can be applied to the base station system shown in FIG. 2.
  • the base station system may include: a host unit (AU) 100, multiple extension units (CP) 200, and multiple remote unit groups ( DPG) 300 and other multiple network elements, the base station system can realize the connection between the network elements based on the topology shown in Figure 2; the host unit 100 is in communication connection with multiple extension units 200, among which, multiple extension units 200 can be staged Association relationship; each extension unit 200 can be connected to at least one remote unit group (DP Group) 300, and each remote unit group 300 can include multiple remote units.
  • AU host unit
  • CP multiple extension units
  • DPG remote unit groups
  • the host unit 100 mainly completes the modulation and demodulation of baseband signals
  • the extension unit 200 mainly completes the forwarding and convergence of uplink/downlink signals
  • the remote unit group 300 mainly completes the RF reception/radio transmission of uplink/downlink signals; generally, the host unit 100 is in communication connection with the core network, and the remote unit group 300 is in communication connection with the user equipment 400. Therefore, the aforementioned base station system can realize the communication between the host unit 100 and the user equipment 400, the communication between the core network and the user equipment 400, and the user equipment. Communication between 400 and user equipment 400, etc.
  • the user equipment 400 may be, but is not limited to, devices with radio frequency receiving/transmitting functions, such as smart phones, computer equipment, portable wearable devices, Internet of Things equipment, vehicles, drones, and industrial equipment.
  • a data processing method is provided. Taking the method applied to the host unit in FIG. 2 as an example for description, the method may include the following steps:
  • a data processing method is applied to a base station system.
  • the base station system includes: a host unit, a plurality of extension units, and a plurality of remote unit groups; the host unit is in communication connection with a plurality of extension units, and each extension unit is connected to at least one remote Unit group communication connection, multiple remote unit groups are used for communication connection with user equipment, the method includes:
  • the host unit obtains the measurement data reported by the extension unit; the measurement data is obtained by the extension unit based on the uplink signal sent by the same user equipment, and is used to indicate signal transmission between each remote unit group connected to the extension unit and the user equipment quality.
  • the above-mentioned host unit mainly completes the modulation and demodulation of baseband signals, including the User Equipment (UE) location management subsystem, the user uplink selection subsystem, and the enhanced Common Public Radio Interface (hereinafter referred to as eCPRI interface subsystem), Operation Administration and Maintenance (OAM) system, scheduler subsystem, and protocol stack (Radio Access Network, RAN for short) defined by the 3rd Generation Partnership Project (3GPP) ) Subsystem.
  • UE position management subsystem implements the UE's positioning function and position information identification function.
  • the UE Based on the data processing of the high-level physical layer (High-Physical, H-PHY) subsystem, the UE performs the remote unit (Distributed Part, DP for short) level or remote unit group (Distributed Part Group, DPG for short) level location identification.
  • the above-mentioned user uplink selection subsystem updates the DPG available to the UE in real time, and selects the DPG for the UE in different locations to perform uplink joint demodulation and decoding.
  • the above-mentioned eCPRI interface subsystem realizes the analysis and encapsulation of the eCPRI protocol package, and performs data transmission based on the eCPRI package with the expansion unit.
  • the above-mentioned OAM subsystem implements software management, configuration management, fault management, and performance management functions.
  • the above-mentioned scheduling subsystem implements air interface resource management and scheduling.
  • the above-mentioned RAN protocol stack subsystem includes: H-PHY subsystem, media access control layer MAC (Media Access Control, MAC for short) subsystem, radio link control layer (Radio Link Control, RLC) subsystem, packet data convergence protocol layer (Packet Data Convergence Protocol, PDCP for short) subsystem, Service Data Adaptation Protocol (SDAP for short) subsystem, scheduler subsystem, Layer 3 (L3) subsystem, S1/NG Interface subsystem.
  • H-PHY subsystem media access control layer MAC (Media Access Control, MAC for short) subsystem
  • radio link control layer Radio Link Control, RLC
  • packet data convergence protocol layer Packet Data Convergence Protocol, PDCP for short
  • SDAP Service Data Adaptation Protocol
  • the above-mentioned H-PHY subsystem, MAC layer subsystem, and RLC subsystem implement data processing strictly related to the RAN system and the TTI sequence of the transmission time interval.
  • the Packet Data Convergence Protocol (PDCP) layer subsystem implements data integrity protection, air interface encryption, and Internet Protocol Address (IP address) header compression.
  • the above-mentioned L3 subsystem implements RRC protocol signaling processing and implements LTE system radio resource management.
  • the S1/NG interface subsystem realizes core network S1-MME/NG-AMF control signaling processing and GTP-U tunnel data processing.
  • the above-mentioned extension unit (Centralized Part, CP for short) mainly completes the forwarding and convergence of uplink/downlink signals, and is responsible for the H-PHY protocol function; including the DPG management subsystem, the low-layer physical layer (Low-PHY, subsystem, eCPRI interface subsystem, CPRI interface subsystem and OAM subsystem.
  • the DPG management subsystem the low-layer physical layer (Low-PHY, subsystem, eCPRI interface subsystem, CPRI interface subsystem and OAM subsystem.
  • the above-mentioned DPG management subsystem implements DPG management of uplink and downlink data based on the scheduling information on the host unit side;
  • the above-mentioned L-PHY subsystem implements the underlying physical layer functions, including FFT/IFFT, cyclic shift Bit removal/addition, RE demapping/mapping function;
  • the above-mentioned eCPRI interface subsystem realizes eCPRI-based data packet transmission with the host unit;
  • the above-mentioned CPRI interface subsystem realizes the CPRI-based IQ data stream transmission with DP;
  • the above-mentioned OAM sub-system implements software management, configuration management, fault management, and performance management functions.
  • the above-mentioned remote unit mainly completes the radio frequency reception/ radio frequency transmission of uplink/downlink signals, including the CPRI interface subsystem, the radio frequency (RF) subsystem, and the OAM subsystem; the above RF subsystem provides radio frequency signal processing, which is completed through an antenna Signal transceiving; the above-mentioned CPRI interface subsystem realizes the CPRI-based IQ data stream transmission with the CP; the above-mentioned OAM subsystem realizes the functions of software management, configuration management, fault management, and performance management.
  • the above uplink signal may be a preamble signal uploaded through a physical random access channel (PRACH, Physical Random Access Channel), or a sounding reference signal (SRS, Sounding Reference Signal), or data accessed through other physical channels; understandable Yes, different remote unit groups correspond to different uplink signals for different user equipment. Therefore, for a certain user equipment, the main unit can receive multiple uplink signals sent by all remote unit groups through the extension unit connected to the remote unit .
  • PRACH Physical Random Access Channel
  • SRS Sounding Reference Signal
  • the extension unit After the extension unit receives the uplink signal of the user equipment through the remote unit group, it can evaluate the signal transmission quality of each remote unit group according to the uplink signal, and obtain the measurement data of the remote unit group; the above measurement data may be noise in the physical channel
  • the power level can also refer to the signal strength, which is not limited here.
  • the expansion unit After the expansion unit obtains the measurement data of each remote unit group connected to it, it can send the measurement data to the host unit.
  • the extension unit can also send the identification code of the extension unit, so that the host unit can determine which extension unit reports the measurement data, and can also send the identification of the user equipment and the identification of the remote unit group.
  • the host unit determines whether the signal of the user equipment is interfered according to the measurement data.
  • the uplink signal of the user equipment may be interfered; after the host unit receives the measurement data uploaded by each extension unit, it can determine the user equipment’s performance based on the measurement data. Whether the signal is disturbed.
  • the host unit can determine whether the signal of the user equipment is interfered by the uplink signal reported by the extension unit.
  • the data reported by the extension unit contains the test result of the signal quality of the user equipment, so that the host unit can be based on the above signal.
  • the quality test result directly determines whether the signal of the user equipment is interfered; in addition, the host unit can also process the above-mentioned uplink signal, for example, according to the demodulation of the uplink signal, and the bit error rate in the demodulation result. Determine whether the signal of the user equipment has been interfered. For example, after the uplink signal of the user equipment is demodulated, the bit error rate does not meet the preset condition, then the host unit can consider that the signal of the user equipment has been interfered; the determination of the aforementioned interference The method is not limited here.
  • the host unit determines at least two target remote unit groups from the multiple remote unit groups to receive the uplink signal sent by the user equipment.
  • the host unit After the host unit determines that the signal of the user equipment is interfered, the host unit can determine at least two target remote unit groups from the multiple remote unit groups, and simultaneously receive the uplink signals sent by the user equipment through the multiple target remote unit groups.
  • the power of the uplink signal received by the host unit is relatively large; although combining the uplink signals sent by multiple target remote unit groups will cause an increase in the uplink noise floor, but by increasing The uplink receive diversity gain can make the difference between the useful signal power and the noise power in the uplink signal meet the demodulation requirements, thereby improving the signal quality of the uplink signal.
  • the host unit determines at least two target remote unit groups, it can be determined according to the location of the target remote unit group. For example, the host unit can consider interference signals received by two remote unit groups that are farther apart. Different, you can select multiple target remote unit groups that are farther apart to determine the target remote unit group; in addition, the host unit can also determine the target remote unit group according to the expansion unit connected to the remote unit group, for example, the host The unit can select the remote unit group connected with different expansion units as the target remote unit group; the determination method of the above-mentioned target remote unit group is not limited here.
  • the host unit can select a preset number of remote unit groups as the target remote unit group when the user equipment is interfered. For example, select 3 remote unit groups to increase the uplink Receive diversity gain; in addition, the host unit can also determine the number of target remote unit groups according to the interference situation of the user equipment; optionally, the host unit can also select as many as possible within the acceptable range of the baseband processing capacity
  • the target remote unit group is used to improve the quality of the uplink signal; the method for determining the number of the above-mentioned target remote unit group is not limited here.
  • the host unit may receive the uplink signal sent by the user equipment through the multiple target remote unit groups. Specifically, the host unit may receive the uplink signal sent by the target remote unit group according to the identifier of the target remote unit group carried in the uplink signal; optionally, the host unit may send the identification information of the target remote unit group to the The target extension unit connected to the target remote unit group, and then receives the uplink combined data sent by the target extension unit; where the uplink combined data is that the target extension unit receives the remote unit in the target remote unit group corresponding to the identification information The uplink signals are combined to obtain.
  • the host unit can also send downlink signals to the user equipment through the target remote unit group.
  • the host unit can deliver the downlink signal sent to the user equipment to the extension unit connected to the target remote unit group, and then the extension unit sends the downlink signal to each target remote unit group, and finally passes through each remote unit group.
  • Each remote unit in the unit group sends a downlink signal to the user equipment.
  • the host unit obtains the measurement data reported by the extension unit; the measurement data is obtained by the extension unit based on the uplink signal sent by the same user equipment, and is used to indicate the connection between each remote unit group connected to the extension unit and the user equipment Then, according to the measurement data, determine whether the signal of the user equipment is interfered; if the signal of the user equipment is interfered, determine at least two target remote unit groups from multiple remote unit groups to receive Uplink signal sent by user equipment. Since the host unit determines at least two target remote unit groups from multiple remote unit groups when the signal of the user equipment receives interference, so that when the signal of the user equipment is interfered, the host unit can communicate with multiple channels.
  • the line signal is demodulated, which reduces the fronthaul bandwidth requirements of the host unit and the expansion unit, and at the same time improves the uplink signal quality of the user equipment.
  • Fig. 5 is a schematic flow chart of a data processing method in another embodiment. This embodiment relates to a specific method for a host unit to determine a target remote unit group. On the basis of the foregoing embodiment, as shown in Fig. 5, the foregoing S103 includes:
  • the host unit determines the signal correlation of any two remote unit groups according to the measurement data of each remote unit group.
  • the host unit determines the target remote unit group according to the measurement data reported by the expansion unit, it can determine the signal correlation of any two remote unit groups in each remote unit group according to the above-mentioned measurement data.
  • the above-mentioned signal correlation refers to the degree of correlation between the two remote unit groups respectively receiving the two sets of uplink signals sent by the user equipment. If the uplink signals received by the two remote unit groups are more similar, then the two remote unit groups are more similar. The signal correlation of the unit group is higher.
  • the host unit can calculate the signal correlation of two remote unit groups that are adjacent in the above arrangement order according to the arrangement order of the remote unit groups corresponding to the user equipment, and can also calculate the signal correlation for each remote unit group of the user equipment.
  • the unit group calculates the signal correlation with other remote unit groups. For example, if the remote unit group corresponding to the user equipment includes DGP1, DPG2, and DPG3, then the signal correlation obtained by the host unit can include the signal correlation between DPG1 and DPG2.
  • the signal correlation degree with DPG2 and DPG3 can also include the signal correlation degree between DPG1 and DPG2, the signal correlation degree between DPG1 and DPG3, and the signal correlation degree between DPG2 and DPG3; here is how to select any two remote unit groups. Not limited.
  • the host unit determines the signal correlation of any two remote unit groups according to the measurement data of each remote unit group, it can be determined according to one of the measurement data. For example, the noise of each remote unit group can be determined.
  • the signal correlation of two remote unit groups with similar power levels can be the difference between the noise powers of the two remote unit groups; in addition, the host unit can also determine two remote unit groups in combination with multiple measurement data.
  • the determination method of the above-mentioned signal correlation degree is not limited here.
  • the aforementioned measurement data may include the signal received power of the remote unit group, and the host unit may calculate the difference between the signal received power of any two remote unit groups based on the signal received power of each remote unit group; The value is determined as the signal correlation of the two remote unit groups.
  • the signal received power of the above remote unit group may be the signal power of the physical random access channel PRACH, the signal power of the sounding reference signal SRS, or the signal power of other channels, such as the physical uplink shared channel ( Signal power such as Physical Uplink Shared Channel (PUSCH) and Channel State Information (CSI);
  • the above-mentioned signal reception power can also be the average value of the signal power of each channel, which can be an arithmetic average or It is a weighted average value, and there is no limitation on the form of the above-mentioned signal received power.
  • the above-mentioned signal receiving power may be the carrier power of the signal in each channel, such as Reference Signal Receiving Power (RSRP), which characterizes the power value of each subcarrier, or it may be the carrier power and carrier power contained in each channel.
  • RSRP Reference Signal Receiving Power
  • the noise power received signal strength indication (Received Signal Strength Indication, RSSI for short), the type of the foregoing signal received power is not limited here.
  • the host unit can calculate the difference of the signal receiving power of any two remote unit groups, and then determine the difference as the above two remote unit groups.
  • the above difference can be the subtraction of the signal received power of the two remote unit groups, or the subtracted value can be an absolute value, or it can be a value that normalizes the above absolute value, for example, the above-mentioned absolute value is normalized.
  • the ratio of the absolute value to the average value of the signal received power of the two remote unit groups is determined as the signal correlation, and the type of the above difference is not limited here.
  • Far when the relative distance between the two remote unit groups is relatively far, the difference between the interference signals in the received data is also greater, that is to say, the correlation between the signals received by the two remote unit groups is lower .
  • the host unit determines the remote unit group corresponding to the signal correlation that meets the preset judgment condition as the target remote unit group.
  • the host unit may determine the two remote unit groups as the target remote unit group when the signal correlation of any two remote unit groups meets a preset judgment condition.
  • the aforementioned preset judgment condition may be a signal correlation threshold. When the aforementioned signal correlation is less than the preset signal correlation threshold, the host unit determines the two remote unit groups as the target remote unit group; in addition, the aforementioned preset
  • the decision condition can also be combined with the signal correlation of the remote unit group and other conditions, such as combining the received signal signal-to-noise ratio of each remote unit group, etc., to jointly determine the target remote unit group, which is not limited here.
  • the host unit determines the target remote unit group according to the signal correlation of the two remote unit groups, so that the host unit can receive the uplink signals with relatively low signal correlation sent by multiple remote unit groups, thereby Make the demodulation of the uplink signal more accurate and improve the quality of the uplink signal.
  • Fig. 6 is a schematic flow chart of a data processing method in another embodiment. This embodiment relates to a specific manner in which a host unit determines a target remote unit group based on signal correlation.
  • the foregoing S202 includes:
  • the host unit compares each difference with a preset power difference threshold.
  • the host unit determines the target remote unit group according to the remote unit group corresponding to the target difference value greater than the power difference threshold.
  • the host unit can compare each difference with a preset power difference threshold, and then determine a target difference less than the power difference threshold Value, and determine the target remote unit group according to the remote unit group corresponding to the target difference.
  • the host unit receives the signal power according to the three remote unit groups DPG1, DPG2, and DPG3, which are respectively A, B, and C; where the difference M1 between A and B is greater than the difference M2 between A and C.
  • DPG1, DPG2, and DPG3 which are respectively A, B, and C; where the difference M1 between A and B is greater than the difference M2 between A and C.
  • the corresponding 10 bits of the uplink signal sent by DPG2 may be The first 8 bits are correct, and the last 2 bits are wrong; and because the difference between A and C is small, that is, the distance between DPG1 and DPG3 is relatively close, among the 10 bits of the corresponding uplink signal sent by DPG3, It may also be that the first 5 bits are correct and the last 5 bits are wrong; from the above, it can be seen that the uplink signal received by the host unit through DPG1 and DPG2 has lower correlation, which can make the host unit demodulate the quality of the uplink signal higher.
  • the above difference M1 may be greater than the preset power difference threshold, and the difference M2 may be smaller than the preset power difference threshold, then the DPG1 corresponding to the difference M1 DPG2 to determine the target difference threshold.
  • the host unit may determine all remote unit groups corresponding to the target difference value as the target remote unit group, and may also perform further screening on all remote unit groups corresponding to the above-mentioned target difference value.
  • the host unit determines whether the number of remote unit groups corresponding to the target difference is greater than the preset system maximum unit group value; if so, the host unit determines that each target difference corresponds to the remote according to the order of the target difference The priority order of the unit group; the host unit selects the corresponding number of remote unit groups with the highest priority in the priority order according to the maximum unit group value of the system, and determines the target remote unit group of the user equipment.
  • the host unit can obtain the number of remote unit groups corresponding to the target difference, and then compare the number of remote unit groups corresponding to the target difference with the system maximum The unit group values are compared.
  • the maximum unit group value of the above system is determined by the maximum number of remote unit groups supported by the baseband processing capability of the host unit, and the relationship between the receive diversity gain and the noise floor boost gain when the remote unit is combined; the baseband processing of the host unit
  • the maximum number of remote unit groups supported by the capability is determined by the baseband processing capability of the host unit, and can be a preset value determined empirically.
  • the increase of the receive diversity gain caused by the multiple remote unit combined path needs to be greater than the noise floor boost caused by the multiple remote unit combined path
  • the maximum number of combined circuits can be determined according to the above relationship. For example, when 4 remote units are combined, the receive diversity gain is increased by 6dB, and the noise floor boosting gain caused by the combining is less than 6dB, then the host unit can combine the 4 remote units; when continuing to add a remote unit When combining 5 remote unit groups, although the receive diversity gain increases by 8dB, the noise floor boost gain caused by the combining is 9dB, then the host unit will not be able to combine the 5 remote unit groups.
  • the maximum The number of combined roads is 4.
  • the above-mentioned system maximum unit group value is the maximum number of remote unit groups supported by the above-mentioned baseband processing capacity, and the minimum value of the above-mentioned maximum number of combined channels, that is, when the maximum number of remote unit groups supported by the baseband processing capacity is 3, When the maximum number of combined circuits is 4, the maximum unit group value of the above system is taken as 3.
  • the host unit needs to further filter the remote unit groups corresponding to the target difference value.
  • the host unit can determine the priority order of each target difference corresponding to the remote unit group according to the order of the size of the target difference; the host unit selects the corresponding number with the highest priority in the priority order according to the maximum unit group value of the system
  • the remote unit group is determined as the target remote unit group of the user equipment.
  • the above difference M1 and difference M2 are both greater than the preset power difference threshold
  • the remote unit group corresponding to the target difference of the user equipment includes DPG1, DPG2, and DPG3, according to the difference M1 and The size of the difference M2, set the priority of the DPG1 and DPG2 corresponding to the difference M1 to be high, and this arrangement is ⁇ DPG1, DPG2, DPG3 ⁇ , if the maximum unit group value of the above system is 2, select the priority from the above arrangement
  • the first DPG1 and DPG2 are the target remote unit groups.
  • the host unit determines the target remote unit group based on the difference in the signal received power of each remote unit group and compares it with a preset power difference threshold, so that the host unit can be directly based on the obtained signal
  • the correlation determines the target remote unit group, which saves the computing resources of the host unit; further, the host unit determines the number of target remote unit groups according to the maximum unit group value of the system, which can make the host unit within the processing capacity range,
  • the uplink signals of multiple remote unit groups are received as much as possible to improve the quality of the uplink signals.
  • the host unit may also determine whether the signal of the user equipment is interfered according to the received signal signal noise contained in the measurement data of each remote unit group. Ratio, each remote unit group whose received signal signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold is determined as the candidate remote unit group of the user equipment.
  • the above-mentioned received signal signal-to-noise ratio may be the ratio of the average power of the received signal to the noise power, or the ratio of the energy of the received signal to the sum of interference energy and additive noise energy, that is, the signal-to-interference and noise ratio of the received signal.
  • the host unit screens the remote unit groups according to the received signal-to-noise ratio of each remote unit group, so that the host unit only processes the uplink signals of the remote unit group with high received signal-to-noise ratio, and improves the quality of the uplink signal ; At the same time, it further narrows the selection range of the target remote unit group.
  • the host unit may determine the candidate remote unit group when determining the target remote unit group of the user equipment. For example, the host unit can calculate the difference between the signal received power of any two candidate remote unit groups in the candidate remote unit group according to the signal received power of each remote unit group; and then further determine the target remote unit based on the above difference Unit group.
  • the host unit may determine the priority order of each candidate remote unit group according to the order of signal reception power from large to small, and obtain a linked list of candidate remote unit groups of the user equipment. For example, the host unit screens the candidate remote unit groups according to the signal-to-noise ratio of the received signals of each remote unit group, including DPG1, DPG2, and DPG3, and determines that the signal received power of the three candidate remote unit groups are A and B, respectively. And C. At the same time, it is determined that A is greater than B and B is greater than C, then the candidate remote unit group linked list of the user equipment is ⁇ DPG1, DPG2, DPG3 ⁇ .
  • the host unit After determining the linked list of candidate remote unit groups of the user equipment, the host unit can determine the target remote unit group based on the above-mentioned linked list of candidate remote unit groups when the user equipment is determined to be interfered; When the device is not disturbed, the host unit determines the candidate remote unit group with the highest priority in the linked list of candidate remote unit groups as the target remote unit group of the user equipment. For example, the aforementioned linked list ⁇ DPG1, DPG2, DPG3 ⁇ DPG1 in is directly determined as the target remote unit group of the user equipment that is not interfered with.
  • the AU generates the sequence of the remote unit groups corresponding to the target difference of each UE according to the measurement data reported by the CP. ,As follows:
  • the list of candidate remote unit groups for UE0 is ⁇ DPG1, DPG4, DPG2 ⁇ ;
  • the list of candidate remote unit groups for UE1 is ⁇ DPG3, DPG5, DPG6 ⁇ ;
  • the list of candidate remote unit groups for UE2 is ⁇ DPG2, DPG4, DPG3 ⁇ ;
  • the list of candidate remote unit groups for UE3 is ⁇ DPG3, DPG4, DPG6 ⁇ ;
  • the AU learns that the signals of UE0 and UE2 are not interfered, the signals of UE1 and UE3 are interfered, and the maximum unit group value of the system is 2, then:
  • AU directly selects the remote unit group with the highest priority in the linked list of respective candidate remote unit groups as its target remote unit group, that is, the target remote unit group of UE0 is DPG1, and the target remote unit group of UE2 is the target remote unit group. It is DPG2. Since there is no uplink interference between UE0 and UE2, diversity reception does not greatly improve the uplink performance of this type of user. Therefore, multi-line combination is not performed for these two users.
  • AU completes the uplink signal reception and downlink signal reception of UE0 through DPG1. Send; AU completes uplink signal reception and downlink signal transmission to UE2 through DPG2.
  • AU For UE1, AU from its candidate remote unit group linked list ⁇ DPG3, DPG5, DPG6 ⁇ according to the remote end that satisfies the RSRP difference of the PRACH corresponding to any two remote unit groups and is greater than the preset power difference threshold (for example, 5dB)
  • the unit group determines the target remote unit group of the UE. For example, the RSRP difference between DPG3 and DPG5 is greater than the preset power difference threshold, and DPG3 and DPG5 are determined as the target remote unit group of UE1.
  • the AU communicates with UE1 through DPG3 and DPG5.
  • the uplink signal receives diversity to improve the uplink signal quality of UE1, and the downlink signal transmission to UE1 is completed through DPG3 and DPG5.
  • the AU selects the remote end from its list of candidate remote unit groups ⁇ DPG3, DPG4, DPG6 ⁇ according to which the RSRP difference of the PRACH corresponding to any two remote unit groups is greater than the preset power difference threshold (for example, 5dB)
  • the unit group determines the target remote unit group of the UE, for example, the difference between DPG3 and DPG6, DPG4 and DPG6 is greater than a preset power difference threshold; further, the remote unit groups are sorted according to the magnitude of the difference as ⁇ DPG3, DPG6, DPG4 ⁇ , and select the first two remote unit groups DPG4 and DPG6 as the target remote unit groups of UE3 according to the maximum unit group value of the system, and use DPG4 and DPG6 to perform diversity reception on the uplink signal of UE3 to improve UE3 Uplink performance, and complete the downlink signal transmission to UE3 through DPG4 and DPG6.
  • the host unit determines the candidate remote unit group of the user equipment by measuring the signal-to-noise ratio of the received signal in the data, and then further determines the target remote unit group of the user equipment in the candidate remote unit group, so that the host unit The determined signal-to-noise ratio of the received signal of the target remote unit group can meet the data processing requirements of the host unit, and the screening range of the target remote unit group is further reduced, and the efficiency of the host unit in determining the target remote unit group is improved.
  • FIG. 8 is a schematic flowchart of a data processing method in another embodiment. This embodiment relates to a specific manner for a host unit to determine whether a signal of a user equipment is interfered.
  • the foregoing S102 includes :
  • the host unit determines the quality of the transmitted signal of the user equipment according to the signal-to-noise ratio of the received signal of each remote unit group.
  • the host unit determines the transmitted signal quality of the user equipment, it can be determined according to the received signal-to-noise ratio of each remote unit group reported by the extension unit; the host unit determines the signal-to-noise ratio of one of the remote unit groups Is the transmitted signal quality of the user equipment; the signal-to-noise ratio of the received signal of all remote unit groups connected to the user equipment can also be analyzed to determine the transmitted signal quality of the user equipment, for example, the received signal signal of each remote unit group The noise ratio is summed, and the result of the summation is determined as the transmitted signal quality of the user equipment, or the received signal-to-noise ratio of each remote unit group can be averaged, and the average value is determined as the transmitted signal quality of the user equipment , It is not limited here.
  • the host unit may jointly determine the transmitted signal quality of the user equipment according to the signal received power of each remote unit group and the received signal signal-to-noise ratio of each remote unit group.
  • the host unit can calculate the average value of the signal received power of each remote unit group; then, the ratio of the signal received power of each remote unit group to the average value is determined as the weighting coefficient of each remote unit group;
  • the weighting coefficient of the remote unit group performs a weighted summation on the received signal-to-noise ratio of each remote unit group to obtain the transmitted signal quality of the user equipment.
  • the host unit can compare the above-mentioned transmitted signal quality with a preset signal quality threshold. When the transmitted signal quality is greater than the preset signal quality threshold, the host unit considers the user received by the remote unit group In the uplink signal of the device, the noise power is small, and the signal of the user equipment may not be interfered; when the transmitted signal quality is less than or equal to the preset signal quality threshold, the host unit considers that in the uplink signal of the user equipment received by the remote unit group, The noise power is large, and the signal of the user equipment may be interfered.
  • the host unit determines whether the signal of the user equipment is interfered according to the signal-to-noise ratio of the received signal of the remote unit group, and can directly determine the interference state of the user equipment from the measurement data reported by the extension unit, thereby improving the data processing efficiency .
  • a host unit which is applied to a base station system.
  • the base station system includes: a host unit, a plurality of expansion units, and a plurality of remote unit groups; a host unit and a plurality of expansion units Communication connection, each expansion unit is in communication connection with at least one remote unit group, and multiple remote unit groups are used for communication connection with user equipment; the host unit includes:
  • the acquisition module 10 is used to acquire the measurement data reported by the extension unit; the measurement data is obtained by the extension unit based on the uplink signal sent by the same user equipment, and is used to indicate the communication between each remote unit group connected to the extension unit and the user equipment Signal transmission quality;
  • the determining module 20 is used to determine whether the signal of the user equipment is interfered according to the measurement data
  • the receiving module 30 is configured to, when the user equipment is interfered, the host unit determines at least two target remote unit groups from the multiple remote unit groups to receive the uplink signal sent by the user equipment.
  • the host unit provided in the embodiment of the present application can implement the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again.
  • the determining unit 301 is configured to determine the signal correlation of any two remote unit groups according to the measurement data of each remote unit group;
  • the measurement data includes the signal received power of the remote unit group
  • the above-mentioned determining unit 301 is specifically configured to: the host unit calculates any two signals according to the signal received power of each remote unit group. The difference between the signal received power of the two remote unit groups; the difference is determined as the signal correlation of the two remote unit groups.
  • the foregoing determination unit 302 includes:
  • the comparison subunit 3021 is configured to compare each difference with a preset power difference threshold
  • the determining subunit 3022 is configured to determine the target remote unit group according to the remote unit group corresponding to the target difference value greater than the power difference threshold.
  • the determining subunit 3022 is specifically configured to: determine whether the number of remote unit groups corresponding to the target difference is greater than the preset system maximum unit group value; if so, according to each target The order of the difference value determines the priority order of each target difference value corresponding to the remote unit group; according to the maximum unit group value of the system, select the corresponding number of remote unit groups with the highest priority in the priority order, and determine it as the user The target remote unit group of the device.
  • the measurement data further includes the received signal-to-noise ratio of the remote unit group
  • the above-mentioned host unit further includes a candidate module 40 for making the received signal-to-noise ratio greater than the preset signal.
  • Each remote unit group of the noise ratio threshold is determined as a candidate remote unit group of the user equipment.
  • the above-mentioned determining unit 301 is specifically configured to: the host unit calculates any two candidate remote unit groups in the candidate remote unit group according to the signal receiving power of each remote unit group The difference in the received signal power of the group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据处理方法、主机单元、基站系统和存储介质,主机单元获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设备之间的信号传输质量;然后,根据测量数据,确定用户设备的信号是否受到了干扰;若用户设备的信号受到干扰,则从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。采用上述方法可以在降低了主机单元和扩展单元的前传带宽需求的同时,提升用户设备的上行信号质量。

Description

数据处理方法、主机单元、基站系统和存储介质 技术领域
本申请涉及无线通信领域,特别是涉及一种数据处理方法、主机单元、基站系统和存储介质。
背景技术
分布式基站系统是一种小型低功率基站,为用户提供移动通信信号深度覆盖。对于现有室内无线分布式系统来说,一般由主机单元+扩展单元+远端单元组成,主机单元连接多个扩展单元,扩展单元又可连接多个远端单元,实现共小区的覆盖效果。传统室内无线分布式系统多采用基于图1中的option7进行主机单元和扩展单元的功能划分,其中主机单元实现高层协议栈功能,扩展单元实现物理层以及各个远端单元的IQ数据合路功能,或者将级联的下一级扩展单元的IQ数据合路;主机单元将接收到的所有上行合路信号一起合并解调。但是,采用上述方式会导致主机单元中上行底噪的抬升,同时对主机单元的基带处理能力要求非常高,并且主机单元和扩展单元、扩展单元和远端单元之间传输数据的前传带宽需求也非常大。
针对上述问题,现有技术中一般采取限制远端单元组的合路个数的方法,通过预设数量的多个远端单元同时接收用户设备发送的上行信号,并上传给主机单元,然后通过主机单元对多路上行信号进行处理,获得上行数据。
但是,采用上述方法,在用户设备受到干扰时,如何提升用户设备的上行信号质量成为亟待解决的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种数据处理方法、主机单元、基站系统和存储介质。
一种数据处理方法,应用于基站系统,基站系统包括:主机单元、多个扩展单元和多个远端单元组;主机单元与多个扩展单元通信连接,每个扩展单元均与至少一个 远端单元组通信连接,多个远端单元组用于与用户设备通信连接,方法包括:
主机单元获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设备之间的信号传输质量;
主机单元根据测量数据,确定用户设备的信号是否受到了干扰;
若用户设备的信号受到干扰,主机单元从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。
一种基站系统,基站系统包括:主机单元、多个扩展单元和多个远端单元组;主机单元与多个扩展单元通信连接,每个扩展单元均与至少一个远端单元组通信连接,多个远端单元组用于与用户设备通信连接;主机单元实现上述数据处理方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述数据处理方法的步骤。
上述数据处理方法、主机单元、基站系统和存储介质,主机单元获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设备之间的信号传输质量;然后,根据测量数据,确定用户设备的信号是否受到了干扰;若用户设备的信号受到干扰,则从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。由于主机单元在用户设备的信号收到干扰时,从多个远端单元组中确定出至少两个目标远端单元组,使得用户设备的信号收到干扰的情况下,主机单元可以对多路上行信号进行解调,在降低了主机单元和扩展单元的前传带宽需求的同时,提升了用户设备的上行信号质量。
附图说明
图1为分布式系统的主机单元和扩展单元的功能切分示意图;
图2为一个实施例中数据处理方法的应用环境图;
图3为一个实施例中数据处理方法的流程示意图;
图4为一个实施例中基站系统示意图;
图5为另一个实施例中数据处理方法的流程示意图;
图6为另一个实施例中数据处理方法的流程示意图;
图7为另一个实施例中基站系统示意图;
图8为另一个实施例中数据处理方法的流程示意图;
图9为一个实施例中主机单元的结构框图;
图10为一个实施例中主机单元的结构框图;
图11为一个实施例中主机单元的结构框图;
图12为一个实施例中主机单元的结构框图;及
图13为一个实施例中基站系统的结构框图。
具体实施方式
本申请提供的数据处理方法,可以应用于如图2所示的基站系统中,该基站系统可以包括:主机单元(AU)100、多个扩展单元(CP)200和多个远端单元组(DPG)300等多个网元,基站系统可以基于图2所示的拓扑方式实现各网元之间的连接;主机单元100与多个扩展单元200通信连接,其中,多个扩展单元200可以级联关系;每个扩展单元200可以连接至少一个远端单元组(DP Group)300,每个远端单元组300中可以包括多个远端单元。主机单元100主要完成基带信号的调制和解调,扩展单元200主要完成上/下行信号的转发和汇聚,远端单元组300主要完成上/下行信号的射频接收/射频发送;一般地,主机单元100与核心网通信连接,远端单元组300与用户设备400通信连接,因此上述基站系统可以实现主机单元100与用户设备400之间的通信、核心网与用户设备400之间的通信、用户设备400与用户设备400之间的通信等。其中,用户设备400可以但不限于是智能手机、计算机设备、便携式可穿戴设备、物联网设备、车辆、无人机、工业设备等具有射频收/发功能的设备。
下面对执行主体为主机单元一侧涉及的实施例进行详细说明。在一个实施例中,如图2所示,提供了一种数据处理方法,以该方法应用于图2中的主机单元为例进行说明,可以包括以下步骤:
一种数据处理方法,应用于基站系统,基站系统包括:主机单元、多个扩展单元和多个远端单元组;主机单元与多个扩展单元通信连接,每个扩展单元均与至少一个远端单元组通信连接,多个远端单元组用于与用户设备通信连接,方法包括:
S101、主机单元获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设 备之间的信号传输质量。
其中,上述主机单元主要完成基带信号的调制和解调,包括用户设备(User Equipment,简称UE)位置管理子系统、用户上行选择子系统、通用公共无线电接口子系统(enhanced Common Public Radio Interface,简称eCPRI接口子系统)、操作维护(Operation Administration and Maintenance,简称OAM)系统、调度器子系统,以及第三代合作项目(3rd Generation Partnership Project,简称3GPP)定义的协议栈(Radio Access Network,简称RAN)子系统。如图4所示,上述UE位置管理子系统实现UE的定位功能以及位置信息的识别功能,基于高层物理层(High-Physical,简称H-PHY)子系统的数据处理,对UE进行远端单元(Distributed Part,简称DP)级或远端单元组(Distributed Part Group,简称DPG)级的定位识别。上述用户上行选择子系统实时更新UE可用的DPG,为处于不同位置的UE选择DPG进行上行联合解调解码。上述eCPRI接口子系统实现eCPRI协议包的解析与封装,与扩展单元进行基于eCPRI包的数据传输。上述OAM子系统实现软件管理、配置管理以及故障管理、性能管理功能。上述调度子系统实现对空口资源管理及调度。上述RAN协议栈子系统包括:H-PHY子系统、媒体介入控制层MAC(Media Access Control,简称MAC)子系统、无线链路控制层(Radio Link Control,RLC)子系统、分组数据汇聚协议层(Packet Data Convergence Protocol,简称PDCP)子系统、服务数据自适应协议层(Service Data Adaptation Protocol,简称SDAP)子系统、调度器子系统、层3(Layer 3,简称L3)子系统、S1/NG接口子系统。上述H-PHY子系统、MAC层子系统及RLC子系统实现RAN系统与传输时间间隔TTI时序严格相关的数据处理。分组数据汇聚协议(Packet Data Convergence Protocol,简称PDCP)层子系统实现数据的完整性保护、空口加密及互联网协议地址(Internet Protocol Address,IP地址)报文头压缩功能。上述L3子系统实现RRC协议信令处理及实现LTE系统无线资源管理。S1/NG接口子系统实现核心网S1-MME/NG-AMF控制信令处理及GTP-U隧道数据处理。
上述扩展单元(Centralized Part,简称CP)主要完成上/下行信号的转发和汇聚,负责H-PHY协议功能;包括DPG管理子系统、低层物理层(Low-PHY,子系统、eCPRI接口子系统、CPRI接口子系统以及OAM子系统。上述DPG管理子系统基于主机单元侧的调度信息,实现上、下行数据的DPG管理;上述L-PHY子系统实现底层物理层功能,包括FFT/IFFT、循环移位移除/添加、RE解映射/映射功能;上述eCPRI接口子 系统实现与主机单元的基于eCPRI的数据包传输;上述CPRI接口子系统实现与DP的基于CPRI的IQ数据流传输;上述OAM子系统实现软件管理、配置管理以及故障管理、性能管理功能。
上述远端单元主要完成上/下行信号的射频接收/射频发送,包括CPRI接口子系统、射频(Radio Frequency,简称RF)子系统以及OAM子系统;上述RF子系统提供射频信号处理,通过天线完成信号收发;上述CPRI接口子系统实现与CP的基于CPRI的IQ数据流传输;上述OAM子系统实现软件管理、配置管理以及故障管理、性能管理功能。
上述上行信号可以为通过物理随机接入信道(PRACH,Physical Random Access Channel)上传的前导码信号,或者为探测参考信号(SRS,Sounding Reference Signal),或者其它物理信道接入的数据;可以理解的是,不同的远端单元组与不同的用户设备对应不同的上行信号,因此针对某一用户设备,主机单元可以接收所有远端单元组通过与远端单元连接的扩展单元发送的多个上行信号。
扩展单元通过远端单元组接收到用户设备的上行信号之后,可以根据上行信号来评估各远端单元组的信号传输质量,获得远端单元组的测量数据;上述测量数据可以是物理信道内噪声功率大小,也可以是指信号的强度,在此不做限定。
扩展单元在获得了与其连接的各远端单元组的测量数据后,可以将测量数据发送给主机单元。扩展单元在发送测量数据的同时,还可以发送扩展单元的身份识别码,以便主机单元可以确定是哪一个扩展单元上报的测量数据,另外还可以发送用户设备的标识以及远端单元组的标识。
S102、主机单元根据测量数据,确定用户设备的信号是否受到了干扰。
在基站系统中,由于同频组网以及小区内资源复用等原因,用户设备的上行信号可能被干扰;主机单元在接收到各个扩展单元上传的测量数据之后,可以根据测量数据确定用户设备的信号是否受到了干扰。
具体地,主机单元可以通过扩展单元上报的上行信号来确定用户设备的信号是否受到了干扰,例如,扩展单元上报的数据中包含了用户设备的信号质量的测试结果,使得主机单元可以根据上述信号质量的测试结果来直接确定该用户设备的信号是否受到了干扰;另外,主机单元也可以对上述上行信号进行处理,例如根据对上行信号进行解调,根据解调结果中误码率等参数来判断用户设备的信号是否收到了干扰,例如, 该用户设备的上行信号被解调后误码率不满足预设条件,那么主机单元可以认为该用户设备的信号受到了干扰;对于上述干扰的确定方式在此不做限定。
S103、若用户设备的信号受到干扰,主机单元从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。
当主机单元确定用户设备的信号受到干扰之后,主机单元可以从多个远端单元组中确定至少两个目标远端单元组,通过多个目标远端单元组同时接收用户设备发送的上行信号,来获得较高的上行接收分集增益,使得主机单元接收到的上行信号的功率比较大;虽然将多个目标远端单元组发送的上行信号进行合路会造成上行底噪的抬升,但是通过提升上行接收分集增益,可以使得上行信号中有用信号功率与噪声功率的差值可以满足解调要求,从而提升上行信号的信号质量。
具体地,主机单元在确定至少两个目标远端单元组时,可以根据目标远端单元组的位置来确定,例如,主机单元可以认为距离较远的两个远端单元组接收到的干扰信号不同,可以选择距离较远的多个目标远端单元组确定为目标远端单元组;另外,主机单元还可以根据与远端单元组连接的扩展单元来确定目标远端单元组,例如,主机单元可以选择连接不同扩展单元的远端单元组作为目标远端单元组;对于上述目标远端单元组的确定方式在此不做限定。
对于上述目标远端单元组的数量,主机单元可以在用户设备受到干扰的情况下,选择预设数量的远端单元组作为目标远端单元组,例如,选择3个远端单元组来提高上行接收分集增益;另外,主机单元也可以根据用户设备的干扰情况来确定目标远端单元组的数量;可选地,主机单元还可以在基带处理能力的可承受范围之内,尽可能选择多个目标远端单元组,以提升上行信号的质量;对于上述目标远端单元组数量的确定方式在此不做限定。
进一步地,主机单元在确定了多个目标远端单元组之后,可以通过上述多个目标远端单元组来接收用户设备发送的上行信号。具体地,主机单元可以根据上行信号中携带的目标远端单元组的标识来接收目标远端单元组发送的上行信号;可选地,主机单元可以将目标远端单元组的标识信息发送给与目标远端单元组连接的目标扩展单元,然后接收目标扩展单元发送的上行合路数据;其中,上行合路数据为目标扩展单元将标识信息对应的目标远端单元组中各远端单元接收到的上行信号合路获得。
另外,主机单元还可以通过目标远端单元组向用户设备发送下行信号。例如,主 机单元可以将发送给该用户设备的下行信号下发给与目标远端单元组连接的扩展单元,然后由扩展单元将下行信号下发给各目标远端单元组,最后通过各远端单元组中的各个远端单元将下行信号发送给用户设备。
上述数据处理方法,主机单元获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设备之间的信号传输质量;然后,根据测量数据,确定用户设备的信号是否受到了干扰;若用户设备的信号受到干扰,则从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。由于主机单元在用户设备的信号收到干扰时,从多个远端单元组中确定出至少两个目标远端单元组,使得用户设备的信号收到干扰的情况下,主机单元可以对多路上行信号进行解调,在降低了主机单元和扩展单元的前传带宽需求的同时,提升了用户设备的上行信号质量。
图5为另一个实施例中数据处理方法的流程示意图,本实施例涉及主机单元确定目标远端单元组的具体方式,在上述实施例的基础上,如图5所示,上述S103包括:
S201、主机单元根据各远端单元组的测量数据,确定任意两个远端单元组的信号相关度。
具体地,主机单元根据扩展单元上报的测量数据来确定目标远端单元组时,可以根据上述测量数据来确定各远端单元组中,任意两个远端单元组的信号相关度。其中,上述信号相关度是指两个远端单元组分别接收用户设备发送的两组上行信号的相关性高低的程度,如果两个远端单元组接收的上行信号越相似,那么两个远端单元组的信号相关度越高。
其中,主机单元可以按照用户设备对应的远端单元组的排列顺序,计算上述排列顺序中排列位次相邻的两个远端单元组的信号相关度,也可以对用户设备的每一个远端单元组都与其它远端单元组进行信号相关度的计算,例如,用户设备对应的远端单元组包括DGP1、DPG2以及DPG3,那么主机单元得到的信号相关度可以包括DPG1与DPG2的信号相关度与DPG2与DPG3的信号相关度,也可以包括DPG1与DPG2的信号相关度、DPG1与DPG3的信号相关度以及DPG2与DPG3的信号相关度;对于上述任意两个远端单元组的选取方式在此不做限定。
具体地,主机单元根据各远端单元组的测量数据来确定上述任意两个远端单元组的信号相关度时,可以根据其中一个测量数据来确定,例如,可以将各远端单元组的 噪声功率大小相近的两个远端单元组的信号相关度,上述信号相关度可以是两个远端单元组的噪声功率的差值;另外,主机单元还可结合多个测量数据来共同确定两个远端单元组的信号相关度,对于上述信号相关度的确定方式在此不做限定。
可选地,上述测量数据可以包括远端单元组的信号接收功率,主机单元可以根据各远端单元组的信号接收功率,计算任意两个远端单元组的信号接收功率的差值;将差值确定为两个远端单元组的信号相关度。
具体地,上述远端单元组的信号接收功率可以是物理随机接入信道PRACH的信号功率,也可以是探测参考信号SRS的信号功率,还可以是其它信道的信号功率,例如物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)以及信道状态信息(Channel State Information,简称CSI)等信号功率;另外,上述信号接收功率还可以是各个信道的信号功率的平均值,可以是算术平均值,也可以是加权平均值,对于上述信号接收功率的形式在此不做限定。
另外,上述信号接收功率可以是各个信道内信号的载波功率,例如表征每个子载波的功率值的参考信号接收功率(Reference Signal Receiving Power,简称RSRP),也可以是各个信道内包含了载波功率和噪声功率的接收信号强度指示(Received Signal Strength Indication,简称RSSI),对于上述信号接收功率的类型在此不做限定。
进一步地,在获得了各远端单元组的信号接收功率的基础上,主机单元可以计算任意两个远端单元组的信号接收功率的差值,然后将上述差值确定为上述两个远端单元组的信号相关度。其中,上述差值可以是两个远端单元组的信号接收功率相减,也可将上述相减后的值取绝对值,还可以是将上述绝对值进行归一化的值,例如将上述绝对值与两个远端单元组的信号接收功率的平均值的比值确定为信号相关度,对于上述差值的类型在此不做限定。
一般情况下,用户设备与远端单元组的距离越近,远端单元组接收到的用户设备发送的上行信号的功率越大,而用户设备与远端单元组的距离越远,远端单元组接收到的用户设备发送的上行信号的功率越小;因此,主机单元可以认为,两个远端单元组的信号接收功率差值越大,那么上述两个远端单元组的相对距离就越远;当两个远端单元组的相对距离较远时,所接收到的数据中,干扰信号的差异也就越大,也就是说两个远端单元组接收到的信号的相关度越低。
S202、主机单元将满足预设判决条件的信号相关度对应的远端单元组确定为目标 远端单元组。
进一步地,主机单元可以在任意两个远端单元组的信号相关度满足预设的判决条件时,将上述两个远端单元组确定为目标远端单元组。上述预设的判决条件可以是信号相关度阈值,当上述信号相关度小于预设的信号相关度阈值时,主机单元将上述两个远端单元组确定为目标远端单元组;另外上述预设判决条件还可以结合远端单元组的信号相关度以及其它条件,例如结合各远端单元组的接收信号信噪比等,共同确定目标远端单元组,在此不做限定。
上述数据处理方法,主机单元根据两个远端单元组的信号相关度来确定目标远端单元组,使得主机单元可以接收到多个远端单元组发送的信号相关性比较低的上行信号,从而使对上行信号的解调更准确,提升上行信号的质量。
图6为另一个实施例中数据处理方法的流程示意图,本实施例涉及主机单元根据信号相关度确定目标远端单元组的具体方式,在上述实施例的基础上,上述S202包括:
S301、主机单元分别将各差值与预设的功率差值门限进行比较。
S302、主机单元根据大于功率差值门限的目标差值对应的远端单元组,确定目标远端单元组。
具体地,当信号相关度为两个远端单元组的信号接收功率差值时,主机单元可以将各差值与预设功率差值门限进行比较,然后确定出小于功率差值门限的目标差值,并根据上述目标差值对应的远端单元组来确定目标远端单元组。
例如,主机单元根据三个远端单元组DPG1、DPG2以及DPG3的信号接收功率,分别为A、B和C;其中A和B的差值M1大于A和C的差值M2,在一种场景下,主机单元接收到DPG1发送的上行信号10个比特位中,前5个比特位正确,后5个比特位错误,此时接收到DPG2发送的对应的上行信号10个比特位中,可能是前8个比特位正确,后2个比特位错误;而由于A和C的差值较小,也就是DPG1与DPG3的距离较近,接收到DPG3发送的对应的上行信号10个比特位中,也可能是前5个比特位正确,后5个比特位错误;由以上可以看出,主机单元通过DPG1和DPG2接收的上行信号的相关性更低,可以使主机单元解调得到的上行信号质量更高。
进一步地,通过与功率差值门限进行比较,上述差值M1可以大于预设的功率差值门限,而差值M2可以小于预设的功率差值门限,那么可以根据差值M1对应的DPG1、DPG2来确定目标差值门限。
主机单元可以将目标差值对应的所有远端单元组确定为目标远端单元组,也可以对上述目标差值对应的所有远端单元组进行进一步筛选。
可选地,主机单元确定目标差值对应的远端单元组的数量是否大于预设的系统最大单元组数值;若是,主机单元根据各目标差值的大小顺序,确定各目标差值对应远端单元组的优先级顺序;主机单元根据系统最大单元组数值,在优先级顺序中选择优先级靠前的相应数量的远端单元组,确定为用户设备的目标远端单元组。
具体地,主机单元在确定了目标差值对应的远端单元组之后,可以获得目标差值对应的远端单元组的数量,然后将上述目标差值对应的远端单元组的数量与系统最大单元组数值进行比较。其中,上述系统最大单元组数值由主机单元的基带处理能力支持的最大远端单元组数量,以及远端单元组合路时接收分集增益和底噪抬升增益的关系来确定;上述主机单元的基带处理能力支持的最大远端单元组数量由主机单元中基带处理能力决定,可以是一个按照经验确定的预设值。对于上述远端单元组合路时接收分集增益和底噪抬升增益的关系,对多个远端单元组合路导致的接收分集增益的抬升,需要大于由多个远端单元组合路导致的底噪抬升增益,可以根据上述关系确定最大合路路数。例如,当4个远端单元组合路时,接收分集增益增加6dB,而合路导致的底噪抬升增益小于6dB,那么主机单元可以将4个远端单元组合路;当继续增加一个远端单元组,对5个远端单元组进行合路时,虽然接收分集增益增加8dB,但是合路导致的底噪抬升增益为9dB,那么主机单元将不能对5个远端单元组进行合路,最大合路路数为4个。上述系统最大单元组数值为上述基带处理能力支持的最大远端单元组数量,与上述最大合路路数的最小值,也就是说,当基带处理能力支持的最大远端单元组数量为3,而最大合路路数为4时,上述系统最大单元组数值取3。
进一步地,当目标差值对应的远端单元组的数量大于系统最大单元组数值时,主机单元需要对上述目标差值对应的远端单元组进行进一步筛选。主机单元可以根据各目标差值的大小顺序,确定各目标差值对应远端单元组的优先级顺序;主机单元根据系统最大单元组数值,在优先级顺序中选择优先级靠前的相应数量的远端单元组,确定为用户设备的目标远端单元组。继续以上述基站系统为例,上述差值M1和差值M2均大于预设的功率差值门限,用户设备的目标差值对应的远端单元组包括DPG1、DPG2以及DPG3,根据差值M1和差值M2的大小,设置差值M1对应的DPG1、DPG2的优先级高,以此排列为{DPG1、DPG2、DPG3},若上述系统最大单元组数值为2,则 从上述排列中选择优先级靠前的DPG1和DPG2为目标远端单元组。
上述数据处理方法,主机单元根据各远端单元组的信号接收功率的差值,与预设的功率差值门限进行比较来确定目标远端单元组,使得主机单元可以很直接地根据获得的信号相关度确定出目标远端单元组,节约了主机单元的计算资源;进一步地,主机单元根据系统最大单元组数值来确定目标远端单元组的数量,可以使主机单元在处理能力范围内,在不影响主机单元处理能力以及主机单元与扩展单元的前传带宽的前提下,尽可能地接收多个远端单元组的上行信号,以提升上行信号的质量。
在一个实施例中,在上述实施例的基础上,主机单元在根据测量数据,确定用户设备的信号是否受到了干扰之后,还可以根据各远端单元组的测量数据中包含的接收信号信噪比,将接收信号信噪比大于预设信噪比门限的各远端单元组,确定为用户设备的候选远端单元组。
其中,上述接收信号信噪比可以是接收信号平均功率与噪声功率的比值,也可以是接收信号的能量与干扰能量和加性噪声能量的和的比值,也就是接收信号的信干噪比。
主机单元根据各远端单元组的接收信号信噪比对远端单元组进行筛选,使得主机单元只对接收信号信噪比较高的远端单元组的上行信号进行处理,提升上行信号的质量;同时,也进一步缩小了目标远端单元组的选择范围。
在确定了候选远端单元组的基础上,主机单元在确定用户设备的目标远端单元组时,可以在上述候选远端单元组中进行确定。例如,主机单元可以根据各远端单元组的信号接收功率,计算候选远端单元组中,任意两个候选远端单元组的信号接收功率的差值;然后根据上述差值进一步确定目标远端单元组。
进一步地,主机单元可以按照信号接收功率从大到小的顺序,确定各候选远端单元组的优先级顺序,获得用户设备的候选远端单元组链表。例如,主机单元根据各远端单元组的接收信号信噪比筛选得到的候选远端单元组包括DPG1、DPG2和DPG3,并确定上述三个候选远端单元组的信号接收功率分别为A、B和C,同时确定A大于B且B大于C,那么该用户设备的候选远端单元组链表为{DPG1、DPG2、DPG3}。
在确定了用户设备的候选远端单元组链表的基础上,主机单元可以在确定用户设备受到干扰的情况下,基于上述候选远端单元组链表确定目标远端单元组;另外,也可以在用户设备未受到干扰时,主机单元将候选远端单元组链表中,优先级最高的候 选远端单元组确定为用户设备的目标远端单元组,例如,可以将上述链表{DPG1、DPG2、DPG3}中的DPG1直接确定为未受到干扰的用户设备的目标远端单元组。
以一个基站系统为例,如图7所示,假设存在UE0、UE1、UE2、UE3这4个UE,AU根据CP上报的测量数据生成各个UE的目标差值对应的远端单元组的排列顺序,如下所示:
UE0的候选远端单元组链表为{DPG1、DPG4、DPG2};
UE1的候选远端单元组链表为{DPG3、DPG5、DPG6};
UE2的候选远端单元组链表为{DPG2、DPG4、DPG3};
UE3的候选远端单元组链表为{DPG3、DPG4、DPG6};
并且AU获知UE0和UE2的信号没有受到干扰,UE1和UE3的信号受到干扰,且系统最大单元组数值为2,则有:
针对UE0和UE2,AU直接选择各自候选远端单元组链表中优先级最高的远端单元组作为其目标远端单元组,即UE0的目标远端单元组为DPG1,UE2的目标远端单元组为DPG2,由于UE0和UE2不存在上行干扰,分集接收对该类用户上行性能提升不大,因此不针对这两个用户进行多路上行合并,AU通过DPG1完成对UE0的上行信号接收和下行信号发送;AU通过DPG2完成对UE2的上行信号接收和下行信号发送。
针对UE1,AU从其候选远端单元组链表{DPG3、DPG5、DPG6}中根据满足任意两个远端单元组对应的PRACH的RSRP差值大于预设功率差值门限(例如5dB)的远端单元组确定该UE的目标远端单元组,例如DPG3和DPG5的RSRP差值大于预设功率差值门限,将DPG3和DPG5确定为UE1的目标远端单元组,AU通过DPG3和DPG5对UE1的上行信号进行分集接收,改善UE1的上行信号质量,并通过DPG3和DPG5完成对UE1的下行信号发送。
针对UE3,AU从其候选远端单元组链表{DPG3、DPG4、DPG6}中根据满足任意两个远端单元组对应的PRACH的RSRP差值大于预设功率差值门限(例如5dB)的远端单元组确定该UE的目标远端单元组,例如DPG3与DPG6、DPG4与DPG6的差值均大于预设功率差值门限;进一步地,根据上述差值大小对上述各远端单元组进行排序为{DPG3、DPG6、DPG4},并根据系统最大单元组数值选择前两个远端单元组DPG4和DPG6为UE3的目标远端单元组,通过DPG4和DPG6对UE3的上行信号进行分集 接收,改善UE3的上行性能,并通过DPG4和DPG6完成对UE3的下行信号发送。
上述数据处理方法,主机单元通过测量数据中的接收信号信噪比来确定用户设备的候选远端单元组,然后在候选远端单元组中进一步确定用户设备的目标远端单元组,使得主机单元确定的目标远端单元组的接收信号信噪比可以满足主机单元的数据处理要求,且进一步缩小了目标远端单元组的筛选范围,提升主机单元确定目标远端单元组的效率。
图8为另一个实施例中数据处理方法的流程示意图,本实施例涉及主机单元确定用户设备的信号是否受到干扰的具体方式,在上述实施例的基础上,如图8所示,上述S102包括:
S401、主机单元根据各远端单元组的接收信号信噪比,确定用户设备的发送信号质量。
具体地,主机单元在确定用户设备的发送信号质量时,可以根据扩展单元上报的各远端单元组的接收信号信噪比来确定;主机单元将其中一个远端单元组的信噪比,确定为用户设备的发送信号质量;也可以对于用户设备连接的所有远端单元组的接收信号信噪比进行分析,来确定该用户设备的发送信号质量,例如对各远端单元组的接收信号信噪比进行求和,将求和结果确定为该用户设备的发送信号质量,也可以对对各远端单元组的接收信号信噪比进行平均,将平均值确定为该用户设备的发送信号质量,在此不做限定。
可选地,主机单元可以根据各远端单元组的信号接收功率与各远端单元组的接收信号信噪比共同确定用户设备的发送信号质量。主机单元可以计算各远端单元组的信号接收功率的平均值;然后,分别将各远端单元组的信号接收功率与平均值的比值,确定为各远端单元组的加权系数;并根据各远端单元组的加权系数,对各远端单元组的接收信号信噪比进行加权求和,获得用户设备的发送信号质量。
S402、当用户设备的发送信号质量大于预设信号质量门限时,主机单元确定用户设备的信号没有受到干扰。
S403、当用户设备的发送信号质量小于等于预设信号质量门限时,主机单元确定用户设备的信号受到干扰。
主机单元在确定了用户设备的发送信号质量之后,可以将上述发送信号质量与预设信号质量门限进行比较,当发送信号质量大于预设信号质量门限时,主机单元认为 远端单元组接收的用户设备的上行信号中,噪声功率较小,该用户设备的信号可能没有受到干扰;当发送信号质量小于等于预设信号质量门限时,主机单元认为远端单元组接收的用户设备的上行信号中,噪声功率较大,该用户设备的信号可能受到干扰。
上述数据处理方法,主机单元根据远端单元组的接收信号信噪比来确定用户设备的信号是否受到了干扰,可以直接从扩展单元上报的测量数据中确定用户设备的干扰状态,提升数据处理效率。
应该理解的是,虽然图3-8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3-8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图9所示,提供了一种主机单元,应用于基站系统,基站系统包括:主机单元、多个扩展单元和多个远端单元组;主机单元与多个扩展单元通信连接,每个扩展单元均与至少一个远端单元组通信连接,多个远端单元组用于与用户设备通信连接;主机单元包括:
获取模块10,用于获取扩展单元上报的测量数据;测量数据为扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与扩展单元连接的各远端单元组与用户设备之间的信号传输质量;
确定模块20,用于根据测量数据,确定用户设备的信号是否受到了干扰;
接收模块30,用于在用户设备受到干扰时,主机单元从多个远端单元组中确定至少两个目标远端单元组,以接收用户设备发送的上行信号。
本申请实施例提供的主机单元,可以实现上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
在一个实施例中,如图10所示,在上述实施例的基础上,上述接收模块30包括:
确定单元301,用于根据各远端单元组的测量数据,确定任意两个远端单元组的信号相关度;
判决单元302,用于将满足预设判决条件的信号相关度对应的远端单元组确定为目 标远端单元组。
在一个实施例中,在上述实施例的基础上,测量数据包括远端单元组的信号接收功率,上述确定单元301具体用于:主机单元根据各远端单元组的信号接收功率,计算任意两个远端单元组的信号接收功率的差值;将差值确定为两个远端单元组的信号相关度。
在一个实施例中,如图11所示,在上述实施例的基础上,上述判决单元302包括:
比较子单元3021,用于分别将各差值与预设的功率差值门限进行比较;
确定子单元3022,用于根据大于功率差值门限的目标差值对应的远端单元组,确定目标远端单元组。
在一个实施例中,在上述实施例的基础上,确定子单元3022具体用于:确定目标差值对应的远端单元组的数量是否大于预设的系统最大单元组数值;若是,根据各目标差值的大小顺序,确定各目标差值对应远端单元组的优先级顺序;根据系统最大单元组数值,在优先级顺序中选择优先级靠前的相应数量的远端单元组,确定为用户设备的目标远端单元组。
在一个实施例中,在上述实施例的基础上,测量数据还包括远端单元组的接收信号信噪比,上述主机单元还包括候选模块40,用于将接收信号信噪比大于预设信噪比门限的各远端单元组,确定为用户设备的候选远端单元组。
在一个实施例中,在上述实施例的基础上,上述确定单元301具体用于:主机单元根据各远端单元组的信号接收功率,计算候选远端单元组中,任意两个候选远端单元组的信号接收功率的差值。
在一个实施例中,如图12所示,在上述实施例的基础上,上述候选模块40还用于:按照信号接收功率从大到小的顺序,确定各候选远端单元组的优先级顺序,获得用户设备的候选远端单元组链表;在用户设备未受到干扰时,将候选远端单元组链表中,优先级最高的候选远端单元组确定为用户设备的目标远端单元组。
在一个实施例中,在上述实施例的基础上,上述确定模块20具体用于:根据各远端单元组的接收信号信噪比,确定用户设备的发送信号质量;当用户设备的发送信号质量大于预设信号质量门限时,确定用户设备的信号没有受到干扰;当用户设备的发送信号质量小于等于预设信号质量门限时,确定用户设备的信号受到干扰。
在一个实施例中,在上述实施例的基础上,上述确定模块20具体用于:计算各远 端单元组的信号接收功率的平均值;分别将各远端单元组的信号接收功率与平均值的比值,确定为各远端单元组的加权系数;根据各远端单元组的加权系数,对各远端单元组的接收信号信噪比进行加权求和,获得用户设备的发送信号质量。
在一个实施例中,在上述实施例的基础上,上述接收模块30具体用于:将目标远端单元组的标识信息发送给与目标远端单元组连接的目标扩展单元;接收目标扩展单元发送的上行合路数据;上行合路数据为目标扩展单元将标识信息对应的目标远端单元组中各远端单元接收到的上行信号合路获得。
在一个实施例中,在上述实施例的基础上,上述接收模块30还用于:主机单元通过目标远端单元组向用户设备发送下行信号。
关于主机单元的具体限定可以参见上文中对于数据处理方法的限定,在此不再赘述。上述主机单元中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于基站系统中的处理器中,也可以以软件形式存储于基站系统中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,如图13所示,提供了一种基站系统,包括:主机单元、多个扩展单元和多个远端单元组;主机单元与多个扩展单元通信连接,每个扩展单元均与至少一个远端单元组通信连接,多个远端单元组用于与用户设备通信连接。
关于上述主机单元的具体限定可以参见上文中对于数据处理方法的限定,在此不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取所述扩展单元上报的测量数据;所述测量数据为所述扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与所述扩展单元连接的各远端单元组与用户设备之间的信号传输质量;
根据所述测量数据,确定所述用户设备的信号是否受到了干扰;
若所述用户设备的信号受到干扰,从所述多个远端单元组中确定至少两个目标远端单元组,以接收所述用户设备发送的上行信号。
本实施例提供的计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。

Claims (15)

  1. 一种数据处理方法,应用于基站系统,所述基站系统包括:主机单元、多个扩展单元和多个远端单元组;所述主机单元与多个所述扩展单元通信连接,每个扩展单元均与至少一个所述远端单元组通信连接,多个所述远端单元组用于与用户设备通信连接,所述方法包括:
    所述主机单元获取所述扩展单元上报的测量数据;所述测量数据为所述扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与所述扩展单元连接的各远端单元组与所述用户设备之间的信号传输质量;
    所述主机单元根据所述测量数据,确定所述用户设备的信号是否受到了干扰;
    若所述用户设备的信号受到干扰,所述主机单元从所述多个远端单元组中确定至少两个目标远端单元组,以接收所述用户设备发送的上行信号。
  2. 根据权利要求1所述的数据处理方法,所述主机单元从所述多个远端单元组中确定至少两个目标远端单元组,包括:
    所述主机单元根据各所述远端单元组的测量数据,确定任意两个远端单元组的信号相关度;
    所述主机单元将满足预设判决条件的信号相关度对应的远端单元组确定为所述目标远端单元组。
  3. 根据权利要求2所述的数据处理方法,所述测量数据包括所述远端单元组的信号接收功率;所述主机单元根据各所述远端单元组的测量数据,确定任意两个远端单元组的信号相关度,包括:
    所述主机单元根据各远端单元组的信号接收功率,计算任意两个所述远端单元组的信号接收功率的差值;
    将所述差值确定为所述两个远端单元组的信号相关度。
  4. 根据权利要求3所述的数据处理方法,所述主机单元将满足预设判决条件的信号相关度对应的远端单元组确定为所述目标远端单元组,包括:
    所述主机单元分别将各所述差值与预设的功率差值门限进行比较;
    所述主机单元根据大于所述功率差值门限的目标差值对应的远端单元组,确定所述目标远端单元组。
  5. 根据权利要求4所述的数据处理方法,所述主机单元根据大于所述功率差值门 限的目标差值对应的远端单元组,确定所述目标远端单元组,包括:
    所述主机单元确定所述目标差值对应的远端单元组的数量是否大于预设的系统最大单元组数值;
    若是,所述主机单元根据各所述目标差值的大小顺序,确定各所述目标差值对应远端单元组的优先级顺序;
    所述主机单元根据所述系统最大单元组数值,在所述优先级顺序中选择优先级靠前的相应数量的远端单元组,确定为所述用户设备的目标远端单元组。
  6. 根据权利要求3-5任一项所述的数据处理方法,所述测量数据还包括所述远端单元组的接收信号信噪比,所述主机单元根据所述测量数据,确定所述用户设备的信号是否受到了干扰之后,还包括:
    所述主机单元将所述接收信号信噪比大于预设信噪比门限的各所述远端单元组,确定为所述用户设备的候选远端单元组。
  7. 根据权利要求6所述的数据处理方法,所述主机单元根据各远端单元组的信号接收功率,计算任意两个所述远端单元组的信号接收功率的差值,包括:
    所述主机单元根据各远端单元组的信号接收功率,计算所述候选远端单元组中,任意两个候选远端单元组的信号接收功率的差值。
  8. 根据权利要求6所述的数据处理方法,所述主机单元将所述接收信号信噪比大于预设信噪比门限的各所述远端单元组,确定为所述用户设备的候选远端单元组之后,还包括:
    所述主机单元按照信号接收功率从大到小的顺序,确定各所述候选远端单元组的优先级顺序,获得所述用户设备的候选远端单元组链表;
    在所述用户设备未受到干扰时,所述主机单元将所述候选远端单元组链表中,优先级最高的候选远端单元组确定为所述用户设备的目标远端单元组。
  9. 根据权利要求6所述的数据处理方法,所述主机单元根据所述测量数据,确定所述用户设备的信号是否受到了干扰,包括:
    所述主机单元根据各远端单元组的接收信号信噪比,确定所述用户设备的发送信号质量;
    当所述用户设备的发送信号质量大于预设信号质量门限时,所述主机单元确定所述用户设备的信号没有受到干扰;
    当所述用户设备的发送信号质量小于等于预设信号质量门限时,所述主机单元确定所述用户设备的信号受到干扰。
  10. 根据权利要求9所述的数据处理方法,所述主机单元根据各远端单元组的接收信号信噪比,确定所述用户设备的发送信号质量,包括:
    所述主机单元计算各远端单元组的信号接收功率的平均值;
    所述主机单元分别将各远端单元组的信号接收功率与所述平均值的比值,确定为各所述远端单元组的加权系数;
    所述主机单元根据各所述远端单元组的加权系数,对各所述远端单元组的接收信号信噪比进行加权求和,获得所述用户设备的发送信号质量。
  11. 根据权利要求1-5任一项所述的数据处理方法,所述接收所述用户设备发送的上行信号,包括:
    所述主机单元将所述目标远端单元组的标识信息发送给与所述目标远端单元组连接的目标扩展单元;
    所述主机单元接收所述目标扩展单元发送的上行合路数据;所述上行合路数据为所述目标扩展单元将所述标识信息对应的目标远端单元组中各远端单元接收到的上行信号合路获得。
  12. 根据权利要求1-5任一项所述的数据处理方法,所述方法还包括:
    所述主机单元通过所述目标远端单元组向所述用户设备发送下行信号。
  13. 一种主机单元,应用于基站系统,所述基站系统包括:主机单元、多个扩展单元和多个远端单元组;所述主机单元与多个所述扩展单元通信连接,每个扩展单元均与至少一个所述远端单元组通信连接,多个所述远端单元组用于与用户设备通信连接;所述主机单元包括:
    获取模块,用于获取所述扩展单元上报的测量数据;所述测量数据为所述扩展单元基于同一个用户设备发送的上行信号获得的,用于指示与所述扩展单元连接的各远端单元组与用户设备之间的信号传输质量;
    确定模块,用于根据所述测量数据,确定所述用户设备的信号是否受到了干扰;
    接收模块,用于在所述用户设备受到干扰时,所述主机单元从所述多个远端单元组中确定至少两个目标远端单元组,以接收所述用户设备发送的上行信号。
  14. 一种基站系统,所述基站系统包括:主机单元、多个扩展单元和多个远端单 元组;所述主机单元与多个所述扩展单元通信连接,每个扩展单元均与至少一个所述远端单元组通信连接,多个所述远端单元组用于与用户设备通信连接;所述主机单元实现权利要求1至12中任一项所述方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至12中任一项所述的方法的步骤。
PCT/CN2019/124675 2019-09-29 2019-12-11 数据处理方法、主机单元、基站系统和存储介质 WO2021056844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936140.2A CN110662235B (zh) 2019-09-29 2019-09-29 数据处理方法、主机单元、基站系统和存储介质
CN201910936140.2 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021056844A1 true WO2021056844A1 (zh) 2021-04-01

Family

ID=69040088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124675 WO2021056844A1 (zh) 2019-09-29 2019-12-11 数据处理方法、主机单元、基站系统和存储介质

Country Status (2)

Country Link
CN (1) CN110662235B (zh)
WO (1) WO2021056844A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683386A (zh) * 2020-06-08 2020-09-18 太仓市同维电子有限公司 一种分布式室分5g系统中远端单元干扰避免方法及智能控制器
CN112312533B (zh) * 2020-11-05 2023-05-12 京信网络系统股份有限公司 功率调整方法、装置、接入网设备和存储介质
CN113260074B (zh) * 2021-07-15 2022-04-22 成都爱瑞无线科技有限公司 上行数据处理方法、系统、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757844A1 (en) * 2011-09-19 2014-07-23 Huawei Technologies Co., Ltd. Method and device for allocating multi-radio remote unit co-cell resources
CN104168595A (zh) * 2014-08-27 2014-11-26 中国联合网络通信集团有限公司 一种多点协作传输方法、装置及系统
WO2015099967A1 (en) * 2013-12-23 2015-07-02 Adc Telecommunications, Inc. Systems and methods for capacity management for a distributed antenna system
CN110278572A (zh) * 2019-06-24 2019-09-24 京信通信系统(中国)有限公司 数据传输方法、主机单元、扩展单元和基站系统
CN110290533A (zh) * 2019-06-24 2019-09-27 京信通信系统(中国)有限公司 数据传输方法、系统、计算机设备和存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135520A (zh) * 2016-02-26 2017-09-05 中兴通讯股份有限公司 一种rru宏扇区间资源分配方法及装置
CN106685508B (zh) * 2017-02-10 2020-06-23 京信通信系统(中国)有限公司 一种数据传输方法及装置
CN110278613B (zh) * 2019-06-24 2022-08-23 京信网络系统股份有限公司 资源调度方法、装置、接入网设备和可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757844A1 (en) * 2011-09-19 2014-07-23 Huawei Technologies Co., Ltd. Method and device for allocating multi-radio remote unit co-cell resources
WO2015099967A1 (en) * 2013-12-23 2015-07-02 Adc Telecommunications, Inc. Systems and methods for capacity management for a distributed antenna system
CN104168595A (zh) * 2014-08-27 2014-11-26 中国联合网络通信集团有限公司 一种多点协作传输方法、装置及系统
CN110278572A (zh) * 2019-06-24 2019-09-24 京信通信系统(中国)有限公司 数据传输方法、主机单元、扩展单元和基站系统
CN110290533A (zh) * 2019-06-24 2019-09-27 京信通信系统(中国)有限公司 数据传输方法、系统、计算机设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Analysis on uplink/downlink time delay issue for distributed antenna system", 3GPP TSG RAN WG1#55, R1-084336, 14 November 2018 (2018-11-14), XP050317611 *

Also Published As

Publication number Publication date
CN110662235A (zh) 2020-01-07
CN110662235B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
US11337189B2 (en) Terminal, network device, and communication method to improve transmission reliability
CN110290533B (zh) 数据传输方法、系统、计算机设备和存储介质
US9628151B2 (en) Selection of access points for coordinated multipoint uplink reception
JP5715300B2 (ja) 無線通信システム、そのマスタ・ユニット、およびスレーブ・ユニットでアップリンク無線周波数信号を受信する方法
US8830965B2 (en) Radio communication method, radio communication system, radio base station, and radio terminal station
CN110572847B (zh) 数据传输方法、系统、计算机设备和存储介质
CN108810928A (zh) 一种接收波束恢复请求的方法及网络设备
CN104685917A (zh) 动态频谱管理系统中的信道质量测量和发射功率分配
WO2012134531A1 (en) Uplink power control scheme for distributed rrh systems with same cell id
WO2021000680A1 (zh) 一种协作传输方法及通信装置
WO2021056844A1 (zh) 数据处理方法、主机单元、基站系统和存储介质
WO2020243971A1 (zh) 一种车联网系统中的资源选取方法及其用户设备
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
WO2015167379A1 (en) Method and radio network node for scheduling of wireless devices in a cellular network
WO2019095963A1 (en) Determining beam failure based on a dynamic range of transmission power ratios
WO2020155184A1 (zh) 干扰或信号接收功率测量的方法和设备
WO2009155740A1 (zh) 一种高速上行分组接入业务分扇区调度方法和系统
JP6580702B2 (ja) 協調型マルチセル通信技術に基づくワイヤレスネットワークの接続障害検出
US10681774B2 (en) Electronic device and communication method
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
WO2021036910A1 (zh) 数据传输方法及装置
WO2022016933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2014198067A1 (zh) 一种下行功率分配参数的通知方法及装置
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022151391A1 (zh) 一种发送频率调整方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946890

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19946890

Country of ref document: EP

Kind code of ref document: A1