WO2012100745A1 - 多输入多输出模式切换方法和终端设备 - Google Patents

多输入多输出模式切换方法和终端设备 Download PDF

Info

Publication number
WO2012100745A1
WO2012100745A1 PCT/CN2012/070736 CN2012070736W WO2012100745A1 WO 2012100745 A1 WO2012100745 A1 WO 2012100745A1 CN 2012070736 W CN2012070736 W CN 2012070736W WO 2012100745 A1 WO2012100745 A1 WO 2012100745A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
mimo mode
closed
optimal precoding
loop mimo
Prior art date
Application number
PCT/CN2012/070736
Other languages
English (en)
French (fr)
Inventor
苏威
周卫荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012100745A1 publication Critical patent/WO2012100745A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multiple input multiple output mode switching method and a terminal device.
  • BACKGROUND In order to achieve higher spectrum efficiency and system capacity, based on long-term evolution technology
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • MIMO Multi-Input Multi-Output
  • MIMO technology MIMO technology It can be divided into two modes, namely, an open-loop MIMO mode and a closed-loop MIMO mode.
  • the terminal equipment UE, User Equipment
  • the PMI Precoding Matrix Indicator
  • the base station can weight the transmit data of each antenna according to the PMI selection weighting matrix reported by the UE.
  • the UE is in the open-loop MIMO mode
  • the PMI is not reported to the base station, and the base station does not weight the data transmitted by each antenna, or adds a random weight.
  • Closed-loop MIMO mode can achieve higher spectral efficiency than open-loop MIMO mode.
  • the system cannot implement closed-loop MIMO mode, but can only switch open-loop according to channel conditions. MIMO mode and closed-loop MIMO mode.
  • the B3G/4G cellular mobile communication system implements a process of adaptively switching the open-loop MIMO mode and the closed-loop MIMO mode according to channel conditions, as follows:
  • the base station determines whether the UE has entered the closed-loop MIMO mode according to the preset condition (such as the channel quality). If yes, the UE is required to feed back the PMI to the base station, and the base station processes the PMI fed back by the UE, and determines the UE according to the processing result. Whether the UE can enter the closed-loop MIMO mode. If not, the base station instructs the UE to stop feeding back the PMI. If yes, the base station instructs the UE to enter the closed-loop MIMO mode, and the base station continues to process the PMI fed back by the UE until it is obtained. The UE cannot enter the judgment result of the closed-loop MIMO mode, and the base station instructs the UE to exit the closed loop.
  • the preset condition such as the channel quality
  • Embodiments of the present invention provide a multiple input multiple output mode switching method and a base station.
  • a multi-input and multi-output mode switching method includes: acquiring a first optimal precoding matrix; acquiring a first invariant probability according to a first optimal precoding matrix; determining whether the first invariant probability is greater than a first threshold; If yes, sending a first report message to the base station, where the first report message carries information requesting to enter the closed-loop multiple-input multiple-output MIMO mode; and receiving information sent by the base station to enter the closed-loop MIMO mode.
  • a multi-input multi-output mode switching method comprising: obtaining a second optimal precoding matrix after entering a closed-loop multi-input multi-output MIMO mode; acquiring a second invariant probability according to a second optimal precoding matrix; Whether the variable probability is less than the second threshold, and if yes, sending a second report message to the base station, where the second report message carries information requesting to exit the closed-loop MIMO mode; and receiving information sent by the base station to exit the closed-loop MIMO mode.
  • a terminal device comprising: a first acquiring unit, configured to acquire a first optimal precoding matrix, and obtain a first constant probability according to a first optimal precoding matrix; a first determining unit, configured to determine the first Whether the first invariant probability obtained by the acquiring unit is greater than the first threshold; the first transceiver unit is configured to send the first report message to the base station when the first constant probability is greater than the first threshold, the first The report message carries information requesting to enter the closed-loop MIMO mode, and information sent by the receiving base station indicating that the closed-loop MIMO mode is entered.
  • a terminal device comprising: a second acquiring unit, configured to acquire a second optimal precoding matrix after the terminal device enters a closed MIMO mode; obtain a second constant probability according to a second optimal precoding matrix; a unit, configured to determine whether the second constant probability is less than The second transceiver unit is configured to: when the second constant probability is less than the second threshold, send a second report message to the base station, where the second report message carries the request to exit the closed loop
  • the information of the MIMO mode the information sent by the receiving base station indicating to exit the closed-loop MIMO mode.
  • the UE may obtain the first optimal precoding matrix, and then obtain the first constant probability according to the obtained first optimal precoding matrix, and the UE determines the first constant probability and the first threshold.
  • the size relationship determines whether the closed-loop MIM 0 mode can be entered. If yes, the first reporting message is sent to the base station, so the UE can enter the closed-loop MIMO mode when the channel conditions are suitable, and the UE only enters the closed-loop MIMO mode.
  • the first report message that consumes a small amount of air interface spectrum resources is fed back to the base station, which saves the air interface spectrum resources.
  • FIG. 1 is a schematic flowchart of a multiple input multiple output mode switching method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a multiple input multiple output mode switching method according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the logical structure of a terminal device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the logical structure of a terminal device according to another embodiment of the present invention.
  • the embodiments of the present invention provide a method for switching multiple input and multiple output modes.
  • the embodiments of the present invention further provide corresponding terminal devices, which are respectively described in detail below.
  • an embodiment of the present invention provides a multiple input multiple output mode switching method, where a UE can determine whether to switch from an open loop MIMO mode to a closed loop MIMO mode, and the specific processes include:
  • a set of precoding matrices (PM, Precoding Matrix) can be established, and the set is known to both the base station and the UE.
  • the matrix set is called a MIMO codebook, once the MIMO is determined.
  • the codebook used by the system, the UE will observe the channel and select the optimal precoding matrix.
  • the method for the UE to obtain the optimal precoding matrix includes the following two methods:
  • the UE uses each precoding matrix in the codebook to match the actual air interface channel, and selects a precoding matrix with the best matching effect according to channel state information (CSI, Channel State Information), that is, optimal precoding. matrix.
  • CSI channel state information
  • the UE can judge the matching effect between the precoding matrix and the actual air interface channel according to the error probability or throughput of the system. When the error probability of the system is the smallest or the throughput is the largest, the precoding matrix and the actual air interface channel are considered to be matched at this time. The matching effect is the best.
  • This precoding matrix is the optimal precoding matrix.
  • the UE may also use direct calculation to obtain an optimal precoding matrix. For example, the UE may first use a covariance matrix or a channel matrix to perform SVD (Singular Value Decomposition) or eigenvalue decomposition to obtain a precoding matrix. If there is this precoding matrix in the codebook, then the precoding matrix is the optimal precoding matrix. If there is no precoding matrix in the codebook, the UE looks for the most similar precoding in the codebook with the calculated precoding matrix. The coding matrix uses the precoding matrix found from the codebook as the optimal precoding matrix.
  • SVD Single Value Decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • the UE may obtain the first optimal precoding matrix by using the foregoing method. It should be noted that the first optimal precoding matrix does not represent the optimal precoding moment. The order of the array is limited.
  • the first invariant probability is obtained according to the first optimal precoding matrix.
  • the invariant probability indicates whether the current optimal precoding matrix is identical to the previous optimal precoding matrix.
  • the initial value of the first invariant probability can take a value of zero.
  • the first constant probability does not mean that the order of the invariant probability is limited.
  • step 103 determining whether the first constant probability is greater than the first threshold, if not, executing step 104, and if yes, performing step 105;
  • the UE may preset the first threshold value or perform test evaluation under the channel condition to obtain the first threshold value.
  • the first threshold value obtained by the UE may be different according to different scenarios and/or different channel conditions.
  • the first threshold value is any value from 1/N to 1, where N is the number of precoding matrices in the codebook, and the first threshold is adjusted by the largest to the smallest.
  • the value of the value can increase the probability that the UE can enter the closed-loop MIMO mode.
  • the first threshold does not mean that the threshold is limited in order. It should be noted that when the UE first enters the network, since the open loop does not need to use the air interface channel characteristic between the base station and the UE, the UE first adopts an open loop MIMO mode.
  • the UE may learn that the closed loop MIMO mode cannot be implemented according to the current channel condition, and the UE performs step 104 to maintain the current open loop MIMO mode.
  • the UE may learn that: the closed-loop MIMO mode may be implemented according to the current channel condition, and the UE performs step 105, and the UE enters a closed-loop MIMO mode, thereby obtaining higher spectral efficiency.
  • step 103 When the result of the determination in step 103 is that the first constant probability is not greater than the first threshold, the UE maintains the current open-loop MIMO mode, and the UE performs step 101 again.
  • 105 Send a first report message to the base station, where the first report message carries information requesting to enter a closed loop MIMO mode.
  • the UE When the result of the determination in step 103 is that the first constant probability is greater than the first threshold, the UE sends a first report message to the base station, where the first report message carries information requesting to enter the closed-loop MIMO mode.
  • the UE After the UE sends the first report information to the base station, the UE receives the information sent by the base station to let the UE enter the closed-loop MIMO mode, and the UE switches from the open-loop MIMO mode to the closed-loop MIMO mode, and the UE continuously feeds back the PMI to the base station in the closed-loop MIMO mode.
  • the base station is configured to perform weighting on each antenna according to the PMI selection weighted evidence fed back by the UE, so that the base station aggregates more transmission energy to the UE.
  • the method provided by this embodiment may be performed by a UE, where the UE may obtain a first optimal precoding matrix, and then obtain a first constant probability according to the obtained first optimal precoding matrix, and the UE determines the first constant probability. Determine the size of the first threshold, determine whether the closed-loop MIMO mode can be entered, and if yes, send the first report message to the base station, so the UE can enter the closed-loop MIMO mode when the channel conditions are suitable, and the UE can only enter the closed loop. In the MIMO mode, the first reported message that consumes a small amount of air interface spectrum resources is fed back to the base station, which saves the air interface spectrum resources.
  • the UE can perform the above embodiments, whether it is an FDD system or a Time Division Duplexing (TDD) system, thereby implementing a switched open-closed MIMO mode. Therefore, the above embodiment is applicable to both the FDD system and the TDD system.
  • TDD Time Division Duplexing
  • another embodiment of the present invention provides a multiple input multiple output mode switching method.
  • the system can further determine whether the UE should switch from the closed-loop MIMO mode back to the open-loop MIMO mode. This embodiment may include the following steps:
  • the UE After the UE enters the closed loop MIMO mode, the UE acquires the second optimal precoding matrix. It should be noted that the second optimal precoding matrix does not represent the order of the optimal precoding matrix. a method for a UE to acquire a second optimal precoding matrix and a UE to obtain a first optimal pre The method of encoding the matrix can be the same and will not be described again.
  • the UE acquires a second constant probability according to the second optimal precoding matrix.
  • the second constant probability does not mean that the order of the invariant probability is limited.
  • step 203 Determine whether the second constant probability is less than the second threshold. If no, go to step 204. If yes, go to step 205.
  • the UE may preset a second threshold, and the second threshold may be set to be not greater than the first threshold, or may be tested and evaluated under channel conditions to obtain a second threshold,
  • the second threshold value obtained by the UE may be different according to different scenarios and/or different channel conditions.
  • the second threshold value is any value from 1/N to 1, where N is the number of precoding matrices in the codebook, and the second threshold value is adjusted. Frequent open-closed MIMO mode switching can be prevented, thereby reducing processing overhead.
  • the UE may learn that the UE can still implement the closed-loop MIMO mode according to the current channel condition, and the UE performs step 204 to maintain the current closed-loop MIMO mode.
  • the UE may learn that: the closed loop MIMO mode cannot be implemented according to the current channel condition, and the UE performs step 205, and the UE enters the open loop MIMO mode.
  • step 204 Maintain the current closed-loop MIMO mode, and perform step 201 again.
  • the result of the determination in step 208 is that the second constant probability is not less than the first threshold, the UE maintains the current closed-loop MIMO mode, and the UE performs step 201 again.
  • the UE sends a second report message to the base station, where the second report message carries information requesting to exit the closed-loop MIMO mode.
  • the UE receives the information sent by the base station to let the UE exit the closed-loop MIMO mode, and the UE switches from the closed-loop MIMO mode to the open-loop MIMO mode.
  • the method provided in this embodiment may be performed by a UE.
  • the UE after the UE enters the closed-loop MIMO mode, the UE continues to acquire the second optimal precoding matrix.
  • the UE may determine whether to obtain closed-loop MIMO. The mode is switched back to the open-loop MIMO mode. Compared with the prior art, whether the UE switches from the closed-loop MIMO mode to the open-loop MIMO mode can save the power of the base station and the resources of the base station.
  • the UE can perform the embodiment shown in FIG. 2, thereby implementing the switching open-closed MIMO mode. Therefore, the embodiment shown in Fig. 2 is applicable to both the FDD system and the TDD system.
  • Another embodiment of the present invention provides a multiple input multiple output mode switching method.
  • This embodiment describes a process in which a UE enters a closed loop MIMO mode from an open loop MIMO mode and an open loop MIMO mode from a closed loop MIMO mode.
  • the UE acquires the first optimal precoding matrix, obtains the first invariant probability according to the first optimal precoding matrix by performing an Alpha filtering process, and then enters the closed loop MIMO mode from the open loop MIMO mode, and then acquires the first
  • the second optimal precoding matrix also acquires the second invariant probability according to the second optimal precoding matrix by performing the Alpha filtering process, and then enters the open loop MIMO mode from the closed loop MIMO mode, and the UE can enter the closed loop MIMO mode according to the channel condition.
  • the UE can save the air interface spectrum resources in the process of entering the closed-loop MIMO mode, and the switching of the open-closed MIMO mode is controlled by the UE, and further saves the power of the base station and the resources of the base station.
  • N is placed in parentheses and is a part of the parameter X, that is, the form of X ( N ), which represents the obtained Nth parameter X.
  • PM_best is used to represent the optimal precoding matrix
  • PM_best (N) is used to represent the Nth optimal precoding matrix acquired by the UE, N ⁇ l.
  • use? _0)11 indicates a constant probability.
  • P_Con refers to whether the current PM_best is the same as the previous PM_best, in this embodiment.
  • the UE may process the optimal precoding matrix to obtain an invariant probability, which may be an Alpha filtering process, and specifically includes:
  • the current invariant probability P_Con ( N+1 ) takes the following values: 1 and the product of the absolute difference between the filter coefficient Alpha and the previous first invariant probability P_Con ( N ) and the current probability coefficient P_Cur ( N+1 ) and the filter
  • the probability coefficient P_Cur ( N+1 ) takes a value of 1, otherwise P_Cur( N+l ) takes the value To be 0, to ensure that ?_0)11 is a probability greater than zero, Alpha is any number greater than 0 and less than or equal to one.
  • the UE may preset the filter coefficient Alpha, or perform test evaluation under the channel condition to obtain Alpha. It will be understood by those skilled in the art that the value of the Alpha obtained by the UE may be different depending on different scenarios and/or different channel conditions. By adjusting the value of Alpha, it is possible to avoid frequent open-closed MIMO mode switching due to constant probability instability, which results in large processing overhead and avoids open-close MIMO mode delay switching or no switching.
  • the UE performs switching between the closed-loop MIMO mode and the open-loop MIMO mode according to the relationship between the invariant probability and the threshold value corresponding to the invariant probability, and the UE may also perform the closed-loop gain and the UE. Switching between the closed-loop MIMO mode and the open-loop MIMO mode is performed according to the relationship of the threshold value of the closed-loop gain.
  • the above embodiment can be performed according to the closed-loop gain according to actual needs.
  • the first threshold value corresponding to the first closed-loop gain is taken as any one of 1 to M, Where M is any number greater than 2, by adjusting M according to the number of transmitted and received antennas and the number of transmitted codewords, thereby adjusting the value of the first threshold, the probability that the UE can enter the closed-loop MIMO mode can be increased.
  • the first closed loop gain is not greater than the first threshold, the UE maintains the current open loop MIMO mode.
  • a second threshold value corresponding to the value of the second closed-loop gain is 1 to N Any value, where N is any number greater than 2, and the second threshold is not greater than the first threshold, and the UE adjusts M by adjusting the number of transmitted and received antennas and the number of transmitted codewords.
  • the value of the second threshold value can prevent frequent open-closed MIMO mode switching, thereby reducing processing overhead.
  • the terminal device 30 may include a first obtaining unit 301, a first determining unit 302, and a first transmitting and receiving unit 303. among them,
  • the first obtaining unit 301 is configured to obtain a first optimal precoding matrix, and obtain a first constant probability according to the first optimal precoding matrix;
  • the first determining unit 302 is configured to determine whether the first constant probability obtained by the first acquiring unit 301 is greater than a first threshold
  • the first transceiver unit 303 is configured to: when the first constant probability is greater than the first threshold, send a first report message to the base station, where the first report message carries information requesting to enter the closed loop MIMO mode, and the indication sent by the receiving base station enters Information in closed-loop MIMO mode.
  • the first obtaining unit 301 When the first obtaining unit 301 obtains the first invariant probability according to the first optimal precoding matrix, the first obtaining unit 301 is specifically configured to use the initial value of the first invariant probability as 0; The first obtaining unit 301 is specifically configured to: if the current first optimal precoding matrix is equal to the previous optimal precoding matrix, the current probability coefficient takes a value of 1; or, if the current first optimal precoding matrix is not Equal to the last optimal precoding matrix, the current probability coefficient takes a value of zero.
  • the first obtaining unit 302 is specifically configured to use the precoding matrix in the codebook to match the actual air interface channel, according to channel state information. According to the channel capacity maximization, the precoding matrix with the best matching effect is selected as the first optimal precoding matrix.
  • the terminal device 30 in this embodiment can be used in the method provided by the embodiment shown in FIG. 1, that is, the actions implemented by the terminal device in the method are performed, and the parameters adopted by the terminal device in this embodiment may also be used. Referring to the description in the method, it will not be described here. and, The terminal device 30 in this embodiment is applicable to both the FDD system and the TDD system.
  • the first obtaining unit 301 may obtain the first optimal precoding matrix, and then obtain the first constant probability according to the obtained first optimal precoding matrix, and the first determining unit 302 determines the first unchanged. The relationship between the probability and the first threshold value determines whether the closed-loop MIMO mode can be entered.
  • the first transceiver unit 303 sends the first report message to the base station, so the terminal device 30 can enter the closed-loop MIMO mode when the channel condition is suitable. And the terminal device 30 only feeds back to the base station the first report message that needs to consume a small amount of air interface spectrum resources, and saves the air interface spectrum resource.
  • the terminal device 40 includes a second acquisition unit 401, a second determination unit 402, and a second transceiver unit 403. among them,
  • a second obtaining unit 401 configured to acquire a second optimal precoding matrix; and obtain a second constant probability according to the second optimal precoding matrix;
  • the second obtaining unit 401 is specifically configured to perform singular value decomposition using the covariance matrix to obtain a second optimal precoding matrix.
  • the second determining unit 402 is configured to determine whether the second constant probability is less than the second threshold.
  • the second transceiver unit 403 is configured to send the second report to the base station when the second constant probability is less than the second threshold. a message, where the second report message carries information requesting to exit the closed-loop MIMO mode, and receiving information sent by the base station to exit the closed-loop MIMO mode;
  • the terminal device 40 in this embodiment further includes a switching unit 404, configured to enter a closed-loop MIMO mode after receiving information indicating that the base station sends the closed-loop MIMO mode, and/or After the information of the closed-loop MIMO mode, the closed-loop MIMO mode is exited.
  • a switching unit 404 configured to enter a closed-loop MIMO mode after receiving information indicating that the base station sends the closed-loop MIMO mode, and/or After the information of the closed-loop MIMO mode, the closed-loop MIMO mode is exited.
  • the terminal device 40 in this embodiment can be used in the method provided in the embodiment shown in FIG. 2, that is, the actions implemented by the terminal device in the method are performed, and the parameters adopted by the terminal device in this embodiment may also be used. Referring to the description in the method, it will not be described here. Moreover, the terminal device 40 in this embodiment is applicable to both the FDD system and the TDD system.
  • the second acquisition order The element 401 obtains the second optimal precoding matrix, and the second determining unit 402 determines whether to switch from the closed loop MIMO mode to the open loop MIMO mode by determining the magnitude relationship between the second invariant probability and the second threshold value.
  • the embodiment of the present invention further provides a terminal device, including a first obtaining unit 301, a first determining unit 302, a first transceiver unit 303, and a second obtaining unit 401, a second determining unit 402, and a second transceiver unit. 403.
  • the functions of the respective units are substantially the same as those of the corresponding units in the above embodiment.
  • the terminal device may further include a switching unit 404 whose function is substantially the same as that of the corresponding unit (i.e., switching unit) in the above embodiment.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

多输入多输出模式切换方法和终端设备 技术领域
本发明涉及通信技术领域,具体涉及一种多输入多输出模式切换 方法和终端设备。 背景技术 为了获得更高的频谱效率和系统容量, 以基于长期演进技术
( LTE, Long Term Evolution )的频分双工 ( FDD, Frequency Division Duplex ) 系统为代表的超三代移动通信系统( B3G , Beyond Third
Generation in mobile communication system )和第四代移动通信系统 ( 4G, Forth Generation in mobile communication system ) 的虫奪寫移动 通信系统普遍采用多输入多输出 (MIMO, Multi-Input Multi-Output ) 技术, MIMO技术可以分为两种模式, 分别为开环 MIMO模式和闭环 MIMO模式, 终端设备(UE, User Equipment )处于闭环 MIMO模式 时, 会向基站持续上报预编码矩阵指示 (PMI, Precoding Matrix Indicator ) , 使得基站能够根据 UE上报的 PMI选取加权矩阵对各天线 发射数据进行加权, UE处于开环 MIMO模式时,不会向基站上报 PMI, 基站对各天线发射数据不加权值, 或者加随机权值, 虽然闭环 MIMO 模式与开环 MIMO模式相比, 能够获得更高的频谱效率, 但是由于系 统中信道条件是变化的, 系统不能实现一直采用闭环 MIMO模式, 而 是只能根据信道条件自适应切换开环 MIMO模式和闭环 MIMO模式。
现有技术中, B3G/4G的蜂窝移动通信系统实现根据信道条件自 适应切换开环 MIMO模式和闭环 MIMO模式的流程, 具体如下:
UE入网后, 基站根据预置条件(比如信道质量)判断 UE是否有 进入闭环 MIMO模式的可能, 若有, 则要求 UE向基站反馈 PMI, 基站 对 UE反馈的 PMI进行处理, 根据处理结果判断 UE是否可以进入闭环 MIMO模式, 若否, 基站指示 UE停止反馈 PMI, 若是, 基站指示 UE 进入闭环 MIMO模式, 基站继续对 UE反馈的 PMI进行处理, 直至得出 UE不能进入闭环 MIMO模式的判断结果, 基站指示 UE退出闭环
MIMO模式。
虽然基站会预先判断 UE是否有进入闭环 MIMO模式的可能, 然 后才要求 UE向基站反馈 PMI ,但是基站对 PMI的处理结果仍有可能是 UE无法进入闭环 MIMO模式, 这样 UE向基站反馈的 PMI就浪费了空 口频谱资源。 发明内容 本发明实施例提供一种多输入多输出模式切换方法和基站。
一种多输入多输出模式切换方法, 包括: 获取第一最优预编码矩 阵; 按照第一最优预编码矩阵获取第一不变概率; 判断第一不变概率 是否大于第一门限值; 若是, 则向基站发送第一上报消息, 第一上报 消息携带请求进入闭环多输入多输出 MIMO模式的信息; 接收基站发 送的指示进入闭环 MIMO模式的信息。
一种多输入多输出模式切换方法, 包括: 进入闭环多输入多输出 MIMO模式后, 获取第二最优预编码矩阵; 按照第二最优预编码矩阵 获取第二不变概率; 判断第二不变概率是否小于第二门限值, 若是, 则向基站发送第二上报消息, 第二上报消息携带请求退出闭环 MIMO 模式的信息; 接收基站发送的指示退出闭环 MIMO模式的信息。
一种终端设备, 包括: 第一获取单元, 用于获取第一最优预编码 矩阵, 按照第一最优预编码矩阵获取第一不变概率; 第一判断单元, 用于判断所述第一获取单元获取的第一不变概率是否大于第一门限 值; 所述第一收发单元, 用于在第一不变概率大于第一门限值时, 向 基站发送第一上报消息, 第一上报消息携带请求进入闭环 MIMO模式 的信息, 以及接收基站发送的指示进入闭环 MIMO模式的信息。
一种终端设备, 包括: 第二获取单元, 用于在终端设备进入闭环 MIMO模式后, 获取第二最优预编码矩阵; 按照第二最优预编码矩阵 获取第二不变概率; 第二判断单元, 用于判断第二不变概率是否小于 第二门限值; 所述第二收发单元, 用于在第二不变概率小于第二门限 值时, 向基站发送第二上报消息, 第二上报消息携带请求退出闭环
MIMO模式的信息, 接收基站发送的指示退出闭环 MIMO模式的信息。
本发明实施例中, UE可以获取第一最优预编码矩阵, 然后按照所 获取的第一最优预编码矩阵得到第一不变概率, UE通过判断第一不变 概率与第一门限值的大小关系, 确定是否可以进入闭环 M I M 0模式, 若是,则向基站发送第一上报消息, 因此 UE能够在信道条件适合的时 候进入闭环 MIMO模式, 并且 UE只在能进入闭环 MIMO模式时, 才向 基站反馈消耗很少空口频谱资源的第一上报消息,节约了空口频谱资 源。
附图说明 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例 描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中 的附图是本发明的一些实施例,对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明实施例中一个实施例提供的多输入多输出模式切换 方法的流程示意图; 图 2是本发明实施例中另一个实施例提供的多输入多输出模式切 换方法的流程示意图;
图 3是本发明实施例中一个实施例提供的终端设备的逻辑结构示 意图;
图 4是本发明实施例中另一个实施例提供的终端设备的逻辑结构 示意图。 具体实施方式 本发明实施例提供一种多输入多输出模式切换方法,本发明实施 例还提供相应的终端设备, 以下分别进行详细说明。 请参阅图 1 , 本发明的一个实施例提供了多输入多输出模式切换 方法, UE能够确定是否从开环 MIMO模式切换到闭环 MIMO模式, 具 体流程包括:
101、 获取第一最优预编码矩阵;
在 MIMO系统中, 对于每个发送天线的配置, 都可以建立一个预 编码矩阵(PM, Precoding Matrix ) 的集合, 并且基站和 UE都已知 这个集合, 矩阵集合称为 MIMO 码本, 一旦确定 MIMO 系统使用的 码本, UE就会观察信道的情况, 选择最优预编码矩阵。
UE获取最优预编码矩阵的方法包括如下两种:
1、 UE按照一定规则, 使用码本中的每个预编码矩阵和实际空口 信道故匹配, 依据信道状态信息 (CSI, Channel State Information ) 选取匹配效果最好的预编码矩阵, 即最优预编码矩阵。 UE可以按照 系统的错误概率或吞吐量来判断预编码矩阵和实际空口信道的匹配 效果, 当系统的错误概率最小或者吞吐量最大时, 则认为此时进行匹 配的预编码矩阵和实际空口信道的匹配效果最好,这个预编码矩阵就 是最优预编码矩阵。
2、 UE也可以采用直接计算来获得最优预编码矩阵, 例如 UE可 以先使用协方差矩阵或信道矩阵做奇异值分解( SVD , Singular Value Decomposition )或特征值分解, 得到一个预编码矩阵。 若码本中有这 个预编码矩阵, 那么该预编码矩阵就是最优预编码矩阵, 若码本中没 有这个预编码矩阵, 那么 UE在码本中寻找与计算所得的预编码矩阵 最相似的预编码矩阵,将从码本中寻找到的预编码矩阵作为最优预编 码矩阵。
在本发明实施例中, UE可以采用上述方法获取第一最优预编码 矩阵。 需要说明的是, 第一最优预编码矩阵并不表示对最优预编码矩 阵进行次序上的限定。
102、 按照第一最优预编码矩阵获取第一不变概率;
当 UE获取到第一最优预编码矩阵后, 按照第一最优预编码矩阵 获取第一不变概率。在本文中, 不变概率表示当前的最优预编码矩阵 与上一个最优预编码矩阵之间是否相同的概率。第一不变概率的初始 值可以取值为 0。
需要说明的是,第一不变概率并不表示对不变概率进行次序上的 限定。
103、 判断第一不变概率是否大于第一门限值, 若否, 则执行步 骤 104, 若是, 则执行步骤 105 ;
本步骤中, UE可以预设第一门限值, 也可以在信道条件下进行 测试评估, 从而获得第一门限值。 本领域技术人员可以理解的, 根据 不同的场景和 /或不同的信道条件 UE获得的第一门限值取值可能不同。 例如, 根据不变概率的定义, 第一门限值取值为 1/N至 1中的任一值, 其中 N为码本中的预编码矩阵数量, 通过从大到小调整第一门限值取 值, 可以增大 UE能够进入闭环 MIMO模式的机率。
需要说明的是,第一门限值并不表示对门限值进行次序上的限定。 需要说明的是, UE刚入网时, 由于开环不需要使用基站和 UE之 间的空口信道特性, UE首先采用的是开环 MIMO模式。
如果第一不变概率不大于第一门限值, 则 UE可以获知:依据当前 信道条件无法实现闭环 MIMO模式, 则 UE执行步骤 104, 保持当前的 开环 MIMO模式。
如果第一不变概率大于第一门限值, 则 UE可以获知: 依据当前 信道条件可以实现闭环 MIMO模式, UE执行步骤 105 , UE进入闭环 MIMO模式, 从而获得更高的频谱效率。
104、 保持当前的开环 MIMO模式, 返回步骤 101 ;
当步骤 103的判断结果为第一不变概率不大于第一门限值, UE保 持当前的开环 MIMO模式, 并且 UE再次执行步骤 101。 105、 向基站发送第一上报消息, 第一上报消息携带请求进入闭 环 MIMO模式的信息;
当步骤 103的判断结果为第一不变概率大于第一门限值, UE向基 站发送第一上报消息, 第一上报消息携带请求进入闭环 MIMO模式的 信息。
UE向基站发送第一上报信息后, UE接收基站下发的指示让 UE 进入闭环 MIMO模式的信息, UE从开环 MIMO模式切换到闭环 MIMO 模式, UE在闭环 MIMO模式下会向基站持续反馈 PMI, 使得基站能够 根据 UE反馈的 PMI选取加权举证对各天线发射数据进行加权,让基站 将更多发射能量汇聚到 UE。
本实施例提供的方法可以由 UE来执行, UE可以获取第一最优预 编码矩阵,然后按照所获取的第一最优预编码矩阵得到第一不变概率 , UE通过判断第一不变概率与第一门限值的大小关系, 确定是否可以 进入闭环 MIMO模式, 若是, 则向基站发送第一上报消息, 因此 UE 能够在信道条件适合的时候进入闭环 MIMO模式, 并且 UE只在能进 入闭环 MIMO模式时, 才向基站反馈消耗很少空口频谱资源的第一上 报消息, 节约了空口频谱资源。
本领域技术人员可以理解的, 无论是 FDD系统, 还是时分双工 ( TDD, Time Division Duplexing )系统, UE都可以执行上述实施例, 从而实现切换开闭环 MIMO模式。 因此, 上述实施例既适用于 FDD系 统, 又适用于 TDD系统。
请参阅图 2 , 本发明的另一个实施例提供了多输入多输出模式切 换方法。 本实施例中, 在 UE进入闭环 MIMO模式后, 系统可以进一 步确定 UE是否要从闭环 MIMO模式切换回开环 MIMO模式。本实施例 可以包括如下步骤:
201、 获取第二最优预编码矩阵;
UE进入闭环 MIMO模式后, UE获取第二最优预编码矩阵。 需要 说明的是,第二最优预编码矩阵并不表示对最优预编码矩阵进行次序 上的限定。 UE获取第二最优预编码矩阵的方法和 UE获取第一最优预 编码矩阵的方法可以相同, 就不再赘述。
202、 按照第二最优预编码矩阵获取第二不变概率;
UE按照第二最优预编码矩阵获取第二不变概率。
需要说明的是,第二不变概率并不表示对不变概率进行次序上的 限定。
203、 判断第二不变概率是否小于第二门限值, 若否, 则执行步 骤 204, 若是, 则执行步骤 205。
本步骤中, UE可以预设第二门限值, 将第二门限值可以设置为 不大于第一门限值, 也可以在信道条件下进行测试评估,从而获得第 二门限值, 本领域技术人员可以理解的, 根据不同的场景和 /或不同 的信道条件 UE获得的第二门限值取值可能不同。 例如, 根据不变概 率的定义, 第二门限值取值为 1/N至 1中的任一值, 其中 N为码本中的 预编码矩阵数量, 通过调整第二门限值取值, 可以防止频繁的开闭环 MIMO模式切换, 从而降低处理开销。
如果第二不变概率不小于第二门限值, 则 UE可以获知:依据当前 信道条件 UE仍然可以实现闭环 MIMO模式, 则 UE执行步骤 204 , 保持 当前的闭环 MIMO模式。
如果第二不变概率小于第二门限值, 则 UE可以获知: 依据当前 信道条件无法实现闭环 MIMO模式, UE执行步骤 205 , UE进入开环 MIMO模式。
204、 保持当前的闭环 MIMO模式, 并且再次执行步骤 201 ; 当步骤 208的判断结果为第二不变概率不小于第一门限值, UE保 持当前的闭环 MIMO模式, UE再次执行步骤 201。
205、 向基站发送第二上报消息, 第二上报消息携带请求退出闭 环 MIMO模式的信息。
当步骤 203的判断结果为第二不变概率小于第二门限值, UE向基 站发送第二上报消息, 第二上报消息携带请求退出闭环 MIMO模式的 信息。 UE向基站发送第二上报信息后, UE接收基站下发的指示让 UE 退出闭环 MIMO模式的信息, UE从闭环 MIMO模式切换到开环 MIMO 模式。
本实施例提供的方法可以由 UE来执行。 本实施例中, 当 UE进入 闭环 MIMO模式后, UE继续获取第二最优预编码矩阵, 当通过判断 第二不变概率与第二门限值的大小关系, UE可以确定是否要从闭环 MIMO模式切换回开环 MIMO模式, 与现有技术相比, 由 UE来确定是 否从闭环 MIMO模式切换到开环 MIMO模式, 能够节约基站的电量以 及基站的资源。
本领域技术人员可以理解的, 无论是 FDD系统, 还是 TDD系统, UE都可以执行如图 2所示的实施例, 从而实现切换开闭环 MIMO模式。 因此, 如图 2所示的实施例既适用于 FDD系统, 又适用于 TDD系统。
本发明的另一个实施例提供了多输入多输出模式切换方法,本实 施例描述了 UE从开环 MIMO模式进入闭环 MIMO模式, 以及从闭环 MIMO模式进入开环 MIMO模式的过程。 在本实施例中, UE获取第一 最优预编码矩阵, 通过进行 Alpha滤波过程按照第一最优预编码矩阵 获取第一不变概率, 然后从开环 MIMO模式进入闭环 MIMO模式, 再 获取第二最优预编码矩阵, 同样通过进行 Alpha滤波过程按照第二最 优预编码矩阵获取第二不变概率, 然后从闭环 MIMO模式进入开环 MIMO模式, UE不仅可以根据信道条件进入闭环 MIMO模式, 而且 UE在执行进入闭环 MIMO模式的过程中, 能够节约空口频谱资源, 并且开闭环 MIMO模式的切换都是由 UE来控制, 还进一步节约了基 站的电量以及基站的资源。
本实施例中, 将 N放在括号中并作为参数 X的一部份, 即 X ( N ) 的形式, 表示获取的第 N个参数 X。 例如, 在本实施例中, 用 PM_best 表示最优预编码矩阵, 则, 用 PM_best ( N )表示 UE获取的第 N个最 优预编码矩阵, N≥l。
在本实施例中, 用?_0)11表示不变概率, 如前所述, P_Con指的 是当前的 PM_best与上一个 PM_best之间是否相同的概率,在本实施例 中, UE对最优预编码矩阵进行处理得到不变概率可以是一个 Alpha滤 波过程, 具体包括:
当前不变概率 P_Con ( N+1 )取值为: 1和滤波系数 Alpha的绝对 差值与上一个第一不变概率 P_Con ( N ) 的乘积再和当前概率系数 P_Cur ( N+1 )与滤波系数 Alpha的乘积相加所得的值, 可用公式来描 述: P_Con ( N+1 ) = ( 1 -Alpha ) *P_Con ( N ) +Alpha*P_Cur ( N+1 ) , 其中不变概率的初始值?_0)11( 1 )=0, UE用 PM_best( N+1 W PM_best ( N )进行比较, 如果相等, 则概率系数 P_Cur ( N+1 )取值为 1 , 否 则P_Cur( N+l )取值为 0,为了保证?_0)11是一个大于零的概率, Alpha 为大于 0并且小于或者等于 1的任一数。
需要说明的是, UE可以预设滤波系数 Alpha, 也可以在信道条 件下进行测试评估, 从而获得 Alpha。 本领域技术人员可以理解的, 根据不同的场景和 /或不同的信道条件 UE获得的 Alpha取值可能不同。 通过调整 Alpha取值, 既可以避免由于不变概率不稳定, 导致频繁的 开闭环 MIMO模式切换, 从而致使处理开销较大, 又可以避免开闭环 MIMO模式延时切换或者不切换。
还需要说明的是, 虽然上述实施例中, UE是按照不变概率与对 应于不变概率的门限值的关系, 进行闭环 MIMO模式和开环 MIMO模 式的切换, UE还可以按照闭环增益与对应于闭环增益的门限值的关 系, 进行闭环 MIMO模式和开环 MIMO模式的切换, 对于本领域技术 人员来说,根据本发明的教义, 显然可以根据实际需要按照闭环增益 对上述实施例进行修改, 实现闭环 MIMO模式和开环 MIMO模式的切 换, 例如, UE获取到第一闭环增益后, 将对应于第一闭环增益的第 一门限值取值为 1至 M中的任一值, 其中 M为大于 2的任一数, 通过按 照发射以及接收的天线数和传输的码字个数调整 M,从而调整第一门 限值取值, 可以增大 UE能够进入闭环 MIMO模式的机率, 当第一闭 环增益不大于第一门限值, UE保持当前的开环 MIMO模式, 当第一 闭环增益大于第一门限值, UE进入闭环 MIMO模式, UE获取到第二 闭环增益后, 将对应与第二闭环增益的第二门限值取值为 1至 N中的 任一值, 其中 N为大于 2的任一数, 并且第二门限值不大于第一门限 值, UE通过按照发射以及接收的天线数和传输的码字个数调整 M , 从而调整第二门限值取值, 可以防止频繁的开闭环 MIMO模式切换, 从而降低处理开销, 当第二闭环增益不小于第二门限值, UE保持当 前的闭环 MIMO模式, 当第二闭环增益小于对应于第二门限值, UE 进入开环 MIMO模式。
请参阅图 3 , 本发明的另一个实施例提供了一种终端设备 30。 该 终端设备 30可以包括第一获取单元 301、 第一判断单元 302、 第一收发 单元 303。 其中,
第一获取单元 301 , 用于获取第一最优预编码矩阵, 按照第一最 优预编码矩阵获取第一不变概率;
第一判断单元 302,用于判断第一获取单元 301获取的第一不变概 率是否大于第一门限值;
第一收发单元 303 , 用于在第一不变概率大于第一门限值时, 向 基站发送第一上报消息, 第一上报消息携带请求进入闭环 MIMO模式 的信息, 以及接收基站发送的指示进入闭环 MIMO模式的信息。
当第一获取单元 301按照第一最优预编码矩阵获取第一不变概率 时, 可选的, 第一获取单元 301 , 具体用于第一不变概率的初始值取 值为 0; 可选的, 第一获取单元 301 , 具体用于若当前第一最优预编码 矩阵等于上一个最优预编码矩阵, 则当前概率系数取值为 1 ; 或者, 若当前第一最优预编码矩阵不等于上一个最优预编码矩阵,则当前概 率系数取值为 0。
当第一获取单元 301获取第一最优预编码矩阵时, 可选的, 第一 获取单元 302, 具体用于使用码本中的每个预编码矩阵和实际空口信 道做匹配,依据信道状态信息按照信道容量最大化选取匹配效果最好 的预编码矩阵作为第一最优预编码矩阵。
本实施例中的终端设备 30可用于如图 1所示的实施例所提供的方 法中, 即执行该方法中由终端设备实现的各动作, 本实施例中的终端 设备所采用的参数也可参照该方法中的说明, 此处不再赘述。 并且, 本实施例中的终端设备 30既适用于 FDD系统, 又适用于 TDD系统。 本实施例中, 第一获取单元 301可以获取第一最优预编码矩阵, 然后按照所获取的第一最优预编码矩阵得到第一不变概率,第一判断 单元 302通过判断第一不变概率与第一门限值的大小关系, 确定是否 可以进入闭环 MIMO模式, 若是, 则第一收发单元 303向基站发送第 一上报消息, 因此终端设备 30能够在信道条件适合的时候进入闭环 MIMO模式, 并且终端设备 30只在能进入闭环 MIMO模式时, 才向基 站反馈需要消耗很少空口频谱资源的第一上报消息,节约了空口频谱 资源。
请参阅图 4, 本发明的另一个实施例提供了一种终端设备 40。 该 终端设备 40包括第二获取单元 401、第二判断单元 402和第二收发单元 403。 其中,
第二获取单元 401 , 用于获取第二最优预编码矩阵; 按照第二最 优预编码矩阵获取第二不变概率;
可选的, 第二获取单元 401 , 具体用于使用协方差矩阵做奇异值 分解, 获取第二最优预编码矩阵。
第二判断单元 402,用于判断第二不变概率是否小于第二门限值; 第二收发单元 403 , 用于在第二不变概率小于第二门限值时, 向 基站发送第二上报消息, 第二上报消息携带请求退出闭环 MIMO模式 的信息, 接收基站发送的指示退出闭环 MIMO模式的信息;
可选的, 本实施例中的终端设备 40还包括切换单元 404, 用于在 接收基站发送的指示进入闭环 MIMO模式的信息之后, 进入闭环 MIMO模式; 和 /或, 在接收基站发送的指示退出闭环 MIMO模式的信 息之后, 退出闭环 MIMO模式。
本实施例中的终端设备 40可用于如图 2所示的实施例所提供的方 法中, 即执行该方法中由终端设备实现的各动作, 本实施例中的终端 设备所采用的参数也可参照该方法中的说明, 此处不再赘述。 并且, 本实施例中的终端设备 40既适用于 FDD系统, 又适用于 TDD系统。
本实施例中, 当终端设备 40进入闭环 MIMO模式后, 第二获取单 元 401获取第二最优预编码矩阵 ,第二判断单元 402通过判断第二不变 概率与第二门限值的大小关系, 可以确定是否要从闭环 MIMO模式切 换回开环 MIMO模式, 与现有技术相比, 由终端设备 40来确定是否要 从闭环 MIMO模式切换回开环 MIMO模式, 能够节约基站的电量以及 基站的资源。
进一步地, 本发明实施例还提供一种终端设备, 包括第一获取单 元 301、第一判断单元 302、第一收发单元 303 ,以及第二获取单元 401、 第二判断单元 402和第二收发单元 403 ,各个单元的功能和上述实施例 中对应单元的功能实质相同。 此外, 该终端设备还可以包括切换单元 404, 其功能和上述实施例中对应单元(即切换单元) 的功能实质相 同。 本领域普通技术人员可以理解上述实施例的各种方法中的全部 或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存 储于一计算机可读存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的多输入多输出模式切换方法以及 终端设备进行了详细介绍,本文中应用了具体个例对本发明的原理及 实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的 方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明 的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求
1、一种多输入多输出 MIMO模式切换方法,其特征在于, 包括: 获取第一最优预编码矩阵;
按照第一最优预编码矩阵获取第一不变概率;
判断第一不变概率是否大于第一门限值;
若是, 则向基站发送第一上报消息, 第一上报消息携带请求进入 闭环多输入多输出 MIMO模式的信息;
接收基站发送的指示进入闭环 MIMO模式的信息。
2、 根据权利要求 1所述的方法, 其特征在于,
按照第一最优预编码矩阵获取第一不变概率, 包括:
第一不变概率的初始值取值为 0。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 按照第一最优 预编码矩阵获取第一不变概率, 包括:
若当前第一最优预编码矩阵等于上一个最优预编码矩阵,则当前 概率系数取值为 1 ; 或者
若当前第一最优预编码矩阵不等于上一个最优预编码矩阵,则当 前概率系数取值为 0。
4、 根据权利要求 3所述的方法, 其特征在于,
获取第一最优预编码矩阵, 具体包括:
使用码本中的每个预编码矩阵和实际空口信道做匹配,依据信道 状态信息选取匹配效果最好的预编码矩阵作为第一最优预编码矩阵。
5、 根据权利要求 4所述的方法, 其特征在于, 接收基站发送的指 示进入闭环 MIMO模式的信息的步骤之后, 还包括:
进入闭环 MIMO模式。
6、 一种多输入多输出模式切换方法, 其特征在于, 包括: 进入闭环多输入多输出 MIMO模式后, 获取第二最优预编码矩阵; 按照第二最优预编码矩阵获取第二不变概率;
判断第二不变概率是否小于第二门限值, 若是, 则向基站发送第 二上报消息, 第二上报消息携带请求退出闭环 MIMO模式的信息; 接收基站发送的指示退出闭环 MIMO模式的信息。
7、 根据权利要求 6所述的方法, 其特征在于,
获取第二最优预编码矩阵, 具体包括:
使用协方差矩阵做奇异值分解, 获取第二最优预编码矩阵。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 接收基站发送 的指示退出闭环 MIMO模式的信息的步骤之后, 还包括:
退出闭环 MIMO模式。
9、 一种终端设备, 其特征在于, 包括:
第一获取单元, 用于获取第一最优预编码矩阵,按照第一最优预 编码矩阵获取第一不变概率;
第一判断单元,用于判断所述第一获取单元获取的第一不变概率 是否大于第一门限值;
所述第一收发单元, 用于在第一不变概率大于第一门限值时, 向 基站发送第一上报消息, 第一上报消息携带请求进入闭环 MIMO模式 的信息, 以及接收基站发送的指示进入闭环 MIMO模式的信息。
10、 根据权利要求 9所述的终端设备, 其特征在于,
所述第一获取单元, 具体用于第一不变概率的初始值取值为 0。
11、 根据权利要求 9或 10所述的终端设备, 其特征在于, 所述第一获取单元,具体用于若当前第一最优预编码矩阵等于上 一个最优预编码矩阵, 则当前概率系数取值为 1 ; 或者, 若当前第一 最优预编码矩阵不等于上一个最优预编码矩阵,则当前概率系数取值 为 0。
12、 根据权利要求 11所述的终端设备, 其特征在于,
所述第一获取单元,具体用于使用码本中的每个预编码矩阵和实 际空口信道做匹配,依据信道状态信息选取匹配效果最好的预编码矩 阵作为第一最优预编码矩阵。
13、 一种终端设备, 其特征在于, 包括:
第二获取单元, 用于在终端设备进入闭环 MIMO模式后, 获取第 二最优预编码矩阵; 按照第二最优预编码矩阵获取第二不变概率; 第二判断单元, 用于判断第二不变概率是否小于第二门限值; 所述第二收发单元, 用于在第二不变概率小于第二门限值时, 向 基站发送第二上报消息, 第二上报消息携带请求退出闭环 MIMO模式 的信息, 接收基站发送的指示退出闭环 MIMO模式的信息。
14、 根据权利要求 13所述的终端设备, 其特征在于,
所述第二获取单元, 具体用于使用协方差矩阵做奇异值分解, 获 取第二最优预编码矩阵。
15、根据权利要求 13或 14所述的终端设备,其特征在于,还包括: 切换单元, 用于在接收基站发送的指示进入闭环 MIMO模式的信 息之后, 进入闭环 MIMO模式; 和 /或
在接收基站发送的指示退出闭环 MIMO模式的信息之后, 退出闭 环 MIMO模式。
PCT/CN2012/070736 2011-01-26 2012-01-29 多输入多输出模式切换方法和终端设备 WO2012100745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110028691.2A CN102055567B (zh) 2011-01-26 2011-01-26 多输入多输出模式切换方法和终端设备
CN201110028691.2 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012100745A1 true WO2012100745A1 (zh) 2012-08-02

Family

ID=43959532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070736 WO2012100745A1 (zh) 2011-01-26 2012-01-29 多输入多输出模式切换方法和终端设备

Country Status (2)

Country Link
CN (1) CN102055567B (zh)
WO (1) WO2012100745A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055567B (zh) * 2011-01-26 2014-04-02 上海华为技术有限公司 多输入多输出模式切换方法和终端设备
US8644181B2 (en) * 2011-08-16 2014-02-04 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for estimation of channel temporal correlation and MIMO mode selection in LTE system
CN103138821B (zh) 2011-11-30 2017-02-08 华为技术有限公司 一种数据传输方法、装置及系统
CN104486041B (zh) * 2012-04-11 2018-06-05 华为技术有限公司 一种传输模式配置方法和装置
WO2014107864A1 (zh) * 2013-01-10 2014-07-17 华为技术有限公司 一种传输模式配置方法和基站
WO2018232734A1 (en) * 2017-06-23 2018-12-27 Qualcomm Incorporated SIGNALING OF TRANSMISSION STRATEGY
US12126409B2 (en) 2020-03-12 2024-10-22 Beijing Xiaomi Mobile Software Co., Ltd. Multiple-input multiple-output mode configuration method and apparatus, and storage medium
CN115412114B (zh) * 2022-07-26 2024-02-23 中国电信股份有限公司 一种异系统干扰处理方法、装置、电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
US20100150266A1 (en) * 2008-12-15 2010-06-17 Motorola, Inc. Method and apparatus for codebook-based feedback in a closed loop wireless communication system
CN101873159A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 一种多输入多输出下行传输控制方法及装置
CN102055567A (zh) * 2011-01-26 2011-05-11 上海华为技术有限公司 多输入多输出模式切换方法和终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578135B1 (ko) * 2008-08-29 2015-12-16 삼성전자주식회사 광대역 무선통신 시스템에서 고속 피드백 정보 송수신 장치 및 방법
CN101640561B (zh) * 2009-09-02 2013-04-24 华为技术有限公司 传输模式切换处理方法与装置、基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
US20100150266A1 (en) * 2008-12-15 2010-06-17 Motorola, Inc. Method and apparatus for codebook-based feedback in a closed loop wireless communication system
CN101873159A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 一种多输入多输出下行传输控制方法及装置
CN102055567A (zh) * 2011-01-26 2011-05-11 上海华为技术有限公司 多输入多输出模式切换方法和终端设备

Also Published As

Publication number Publication date
CN102055567A (zh) 2011-05-11
CN102055567B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2022083593A1 (zh) 波束上报方法、波束信息确定方法及相关设备
WO2012100745A1 (zh) 多输入多输出模式切换方法和终端设备
EP4135226A1 (en) Method and apparatus for adjusting neural network
KR20230169948A (ko) Fdd mimo 시스템에서 csi 피드백을 위한 기계학습 또는 인공지능 기술 지원 방법 및 장치
JP2014090453A (ja) ワイヤレス通信ネットワーク中の複数ユーザのmimoのためのスケジューリング
WO2010121537A1 (zh) 一种多输入多输出下行传输控制方法及装置
CA3185386A1 (en) Signaling to aid enhanced nr type ii csi feedback
CN111756457B (zh) 信道预测方法、装置及计算机存储介质
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
KR20140098509A (ko) 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
US11546041B2 (en) Method and apparatus for beamspace processing based on multiple beamspace bases
CN115173909A (zh) 用于频率参数化线性组合码本的码本子集限制
KR101426722B1 (ko) 변환 디바이스 및 방법
JP6553292B2 (ja) 重み値取得方法及び装置
WO2017000258A1 (zh) 一种获取信道状态信息的方法、装置
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
WO2017166185A1 (zh) 一种协调多用户间干扰的方法及基站
Sun et al. Joint user scheduling and power allocation for massive MIMO downlink with two-stage precoding
WO2019023828A1 (zh) 一种jt预编码权值矩阵的生成方法、装置及系统
WO2024012256A1 (zh) 信道反馈方法及装置
WO2023179460A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备
WO2023011436A1 (zh) 通信处理方法和通信处理装置
US20240214035A1 (en) Determination of uplink mimo transmission state for a ue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739461

Country of ref document: EP

Kind code of ref document: A1