WO2017166185A1 - 一种协调多用户间干扰的方法及基站 - Google Patents

一种协调多用户间干扰的方法及基站 Download PDF

Info

Publication number
WO2017166185A1
WO2017166185A1 PCT/CN2016/078030 CN2016078030W WO2017166185A1 WO 2017166185 A1 WO2017166185 A1 WO 2017166185A1 CN 2016078030 W CN2016078030 W CN 2016078030W WO 2017166185 A1 WO2017166185 A1 WO 2017166185A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user
user equipment
csi
channel
Prior art date
Application number
PCT/CN2016/078030
Other languages
English (en)
French (fr)
Inventor
阙程晟
陈凯
杨非
蒋培刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/078030 priority Critical patent/WO2017166185A1/zh
Publication of WO2017166185A1 publication Critical patent/WO2017166185A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a base station for coordinating interference between multiple users.
  • the frequency division duplexing (FDD)-long term evolution (LTE) system pursues the goal of being able to communicate with anyone anywhere, at any time, and at a lower cost. With hundreds of megabits/s of multimedia data communication rate, it is obvious that a high-efficiency wireless transmission scheme must be developed to achieve this goal. With the rapid development of wireless communication technology, serious shortage of spectrum resources has increasingly become a curb for wireless communication. The bottleneck of the cause. How to fully exploit and utilize limited spectrum resources and improve spectrum utilization is one of the hot topics in the current communication industry. Pursuing the highest possible spectrum utilization has become and will remain a challenging issue in the future. Efforts have been made to develop efficient coding, modulation, and signal processing techniques to increase the efficiency of the wireless spectrum.
  • Multi-input multi-output (MIMO) technology utilizes multiple transmit antennas and multiple receive antennas to suppress channel fading, improve channel capacity, and improve spectrum utilization.
  • MIMO channels use multiple antennas at both ends of the transceiver.
  • a MIMO subchannel is formed between each transmitting and receiving antenna. It is assumed that there are n R transmitting antennas at the transmitting end, and n T receiving antennas at the receiving end, and an n R ⁇ n T channel matrix H is formed between the transmitting and receiving antennas, as follows:
  • the element of H is a subchannel between any pair of transmitting and receiving antennas.
  • the signal transmission between the transmitting antennas and the receiving antennas can be regarded as independent of each other, and the rank of the matrix H is large, and ideally, the full rank can be achieved.
  • the transmitting and receiving antennas are close to each other, the signal transmission between each transmitting antenna and each receiving antenna can be regarded as related, matrix H
  • the rank is small. Therefore, the MIMO channel capacity and the size of the matrix H are closely related.
  • a typical implementation method is to provide multiple antennas only at the base station, thereby achieving the purpose of reducing the cost and complexity of the mobile terminal. If the parameters of the channel matrix are determined and the total transmit power P is constant, and the power at the transmitting end is evenly distributed to each of the transmitting antennas, the capacity formula is:
  • the channel capacity increases almost linearly with the increase of the number of antennas under the determined signal-to-noise ratio. That is to say, without increasing the bandwidth and the transmission power, the number of transmitting and receiving antennas can be increased to double the wireless channel capacity, so that the spectrum utilization rate is multiplied, so MIMO technology is considered as future mobile communication and personal communication.
  • the system achieves high-speed data transmission and an important way to improve transmission quality.
  • the base station eNB has two pairs of polar antennas, and then four MIMO subchannels can be established between the eNB and the UE0, and four MIMO subchannels are also established between the eNB and the UE1.
  • the eNB may acquire the downlink channel information according to the precoding matrix indicator (PMI) codebook feedback manner, where the eNB, the UE0, and the UE1 each store a set of precoding matrices including a plurality of precoding matrices.
  • the precoding codebook, the PMI is used to indicate the precoding matrix in the precoding codebook.
  • the eNB sends the downlink pilot signal to UE0 and UE1, and UE0 and UE1 detect the downlink pilot signal and estimate the downlink channel, and according to The criterion set internally by UE0 and UE1 selects the precoding matrix of the optimal quantization result of the current downlink channel estimation result in the precoding codebook, as the PMI of 4 antennas, and includes 4 PMIs in the channel state information (channel state) In information, CSI), UE0 and UE1 transmit CSI to the eNB in the uplink channel resource.
  • the criterion set internally by UE0 and UE1 selects the precoding matrix of the optimal quantization result of the current downlink channel estimation result in the precoding codebook, as the PMI of 4 antennas, and includes 4 PMIs in the channel state information (channel state) In information, CSI), UE0 and UE1 transmit CSI to the eNB in the uplink channel resource.
  • the eNB After the eNB detects 4 PMIs of UE0 and 4 PMIs of UE1, because UE0 and UE1 occupy the same time-frequency resource, the eNB needs to simultaneously transmit the original signal s0 of UE0 and the original signal s1 of UE1, and combine 4 PMIs of UE0. And the MU-MIMO weight of the UE0 and the MU-MIMO weight of the UE1 are calculated by the four PMIs of the UE1, and the orthogonalization processing is performed on the s0 and s1 according to the MU-MIMO weight of the UE0 and the MU-MIMO weight of the UE1. , to get the orthogonal 4 signals, These four signals are transmitted through two pairs of polar antennas.
  • the UE0 can analyze the orthogonalized 4-channel signal to obtain the original signal s0, and the UE1 can analyze the positive The cross-talked 4-channel signal yields the original signal s1.
  • UE0 and UE1 obtain PMI (that is, the precoding matrix selected from the precoding codebook) according to the optimal quantization criterion. If there is a quantization error in the precoding codebook stored in UE0, the PMI in the CSI fed back by UE0 must also have a quantization error, even if there is no quantization error in the precoding codebook stored by UE1, since UE0 and UE1 are calculated. For the MU-MIMO weight, the CSI fed back by UE0 and the CSI fed back by UE1 are needed. Therefore, not only the MU-MIMO weight of UE0 is deviated, but also the MU-MIMO weight of UE1 is affected.
  • Embodiments of the present invention provide a method for coordinating inter-user interference and a base station, in a MU-MIMO system after antenna grouping and user grouping, a base station uses a CSI of each base station antenna group fed back by each user equipment to perform a channel. Reconstruction and MU-MIMO weight calculation to coordinate interference between multiple users can effectively solve the interference problem between multiple users.
  • a first aspect of the present invention provides a method for coordinating inter-user interference, which is applied to a MU-MIMO system, where the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station.
  • An antenna group the method comprising:
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, each base station antenna group includes at least two antennas, and each user equipment corresponds to one base station antenna group, the base station and Each user equipment stores a set of precoding codebooks including a plurality of precoding matrices, and the base station continuously transmits downlink pilot signals, and the user equipment in the coverage area of the base station detects the downlink pilot signals and estimates the downlink channels, according to the internal setting.
  • the criterion selects the optimal quantization result of the current downlink channel estimation result in the precoding codebook, that is, obtains the PMI, the PMI is carried in the CSI by default, and each base station antenna group has a CSI, and the user equipment will each
  • the CSI of the base station antenna group is sent to the base station, and the base station receives the CSI fed back by the user equipment, performs channel reconstruction according to the CSI, obtains a channel matrix, obtains the MU-MIMO weight of the user equipment according to the channel matrix, and obtains the MU of the user equipment.
  • the user signal is sent according to the MU-MIMO weight in the base station antenna group corresponding to the user equipment.
  • each user equipment allocates different base station antenna groups, and multiple user equipments occupy the same time.
  • channel reconstruction and MU-MIMO for each user equipment are performed according to the CSI of each base station antenna group fed back by each user equipment.
  • the user signal corresponding to the user equipment is sent by the base station antenna group corresponding to each user equipment.
  • the CSI includes a PMI
  • Performing channel reconstruction according to the CSI to obtain a channel matrix including:
  • Channel reconstruction is performed according to the precoding matrix to obtain a channel matrix.
  • each user equipment After detecting the downlink pilot signal and estimating the downlink channel, each user equipment selects the optimal quantization result of the current downlink channel estimation result in the precoding codebook according to the internally set criterion, that is, the PMI, and the PMI is carried in the CSI by default. And each base station antenna group has a corresponding CSI, and the user equipment feeds back the CSI to the base station corresponding to the downlink pilot signal, and after receiving the CSI, the base station parses the CSI. Obtaining a PMI, obtaining a precoding matrix from the precoding codebook according to the PMI, performing channel reconstruction according to the precoding matrix, obtaining a channel matrix, and refining the channel reconstruction step, so that the scheme is more detailed.
  • the method before performing channel reconstruction according to the CSI to obtain a channel matrix, the method further includes:
  • Performing channel reconstruction according to the precoding matrix to obtain a channel matrix including:
  • the RSRP is squared and multiplied by the precoding matrix to obtain a channel matrix.
  • the Reference Signal Received Power is one of the key parameters that can represent the strength of the wireless signal and one of the physical layer measurement requirements.
  • the RSRP can be understood as the Cell Reference Signal (CRS).
  • CRS Cell Reference Signal
  • the average power of the resource particle RE the user equipment detects the CRS transmitted by the base station, can obtain the RSRP, and sends the RSRP to the base station corresponding to the CRS, or the base station estimates the RSRP of the user equipment to the base station, and the base station obtains the RSRP.
  • the RSRP is pre-defined and multiplied by the precoding matrix to obtain a channel matrix, and the calculation method of obtaining the channel matrix is refined to make the scheme more specific.
  • the CSI includes a PMI and an RSRP
  • Performing channel reconstruction according to the CSI to obtain a channel matrix including:
  • the RSRP is squared and multiplied by the precoding matrix to obtain a channel matrix.
  • the CSI that is fed back by the user equipment includes the PMI and the RSRP, and the base station obtains the PMI and the RSRP of the user equipment by parsing the CSI, and obtains a precoding matrix from the precoding codebook according to the PMI, and opens the RSRP.
  • the square is multiplied by the precoding matrix to obtain the channel matrix.
  • the MU-MIMO according to the MU-MIMO The weight sends a user signal to the base station antenna group corresponding to each user equipment, including:
  • the communication system sends the user signal corresponding to the user equipment to the base station through a device such as a switch, and the base station acquires a user signal that needs to be transmitted to each user equipment. Since the power of the user signal fails to meet the propagation requirement, each of the needs is required.
  • the user signal of the user equipment is multiplied by the MU-MIMO weight of the corresponding user equipment to perform orthogonalization processing, and the processed user signal is transmitted through the antenna group corresponding to each user equipment, so that the user equipment can receive and correctly parse Get the corresponding user signal.
  • a second aspect of the present invention provides a base station, which is applied to a MU-MIMO system, where the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station antenna group, and the base station include:
  • a receiving module configured to receive a CSI of each base station antenna group sent by each user equipment
  • a processing module configured to perform channel reconstruction according to the CSI, to obtain a channel matrix
  • the processing module is further configured to obtain, according to the channel matrix, a MU-MIMO weight of each user equipment;
  • the sending module sends a user signal to the base station antenna group corresponding to each user equipment according to the MU-MIMO weight.
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, each base station antenna group includes at least two antennas, each user equipment corresponds to one base station antenna group, and the base station and each user equipment are stored.
  • a set of precoding codebooks including a plurality of precoding matrices, the base station continuously transmits downlink pilot signals, and the user equipment in the coverage area of the base station detects the downlink pilot signals and estimates the downlink channels, and selects the current downlink according to the internally set criteria.
  • the optimal quantization result of the channel estimation result in the precoding codebook that is, the PMI is obtained, the PMI is carried in the CSI by default, and each base station antenna group has a CSI, and the user equipment sends the CSI of each base station antenna group.
  • the base station receiving module receives the CSI fed back by the user equipment, and the processing module performs channel reconstruction according to the CSI to obtain a channel matrix, and calculates the MU-MIMO weight of the user equipment according to the channel matrix, and obtains the MU-MIMO of the user equipment.
  • the sending module bases the base station antenna corresponding to the user equipment according to the MU-MIMO weight
  • the group sends a user signal.
  • each user equipment allocates a different base station antenna group, and when multiple user equipments occupy the same time-frequency resource, the CSI of each base station antenna group fed back by each user equipment is performed.
  • the sending module sends the user signal corresponding to the user equipment by using the base station antenna group corresponding to each user equipment, compared with the prior art, when a user equipment stores When there is a quantization error in the precoding codebook, and there is no quantization error in the precoding codebook stored by other user equipments, since the channel matrix is obtained according to the CSI of each antenna group, the channel matrix is obtained, and each user is calculated according to the channel matrix.
  • the MU-MIMO weight of the device is unbiased.
  • the obtained MU-MIMO weights of the user equipments are all deviated, and the user signals are transmitted through the antenna groups corresponding to the user equipments.
  • the transmitted user signal is orthogonalized according to the MU-MIMO weight of the corresponding user equipment, and then transmitted through each antenna of the antenna group. Therefore, each user equipment in the solution can receive and correctly parse the corresponding user signal, which effectively solves the problem of interference between multiple users in the prior art.
  • the CSI includes a PMI
  • the processing module is further configured to parse the CSI to obtain a PMI;
  • the processing module is further configured to determine a precoding matrix according to the PMI;
  • the processing module is further configured to perform channel reconstruction according to the precoding matrix to obtain a channel matrix.
  • each user equipment After detecting the downlink pilot signal and estimating the downlink channel, each user equipment selects the optimal quantization result of the current downlink channel estimation result in the precoding codebook according to the internally set criterion, that is, the PMI, and the PMI is carried in the CSI by default.
  • each base station antenna group has a corresponding CSI, and the user equipment feeds back the CSI to the base station corresponding to the downlink pilot signal, and after receiving the CSI, the processing module parses the CSI to obtain a PMI, and the precoding code according to the PMI. In this case, a precoding matrix is obtained, and channel reconstruction is performed according to the precoding matrix to obtain a channel matrix, and the processing module refines the channel reconstruction step to make the scheme more detailed.
  • the receiving module is further configured to obtain an RSRP of each user equipment.
  • the processing module is further configured to perform encapsulation on the RSRP and multiply the precoding matrix to obtain a channel matrix.
  • RSRP is one of the key parameters that can represent the strength of the wireless signal and one of the physical layer measurement requirements.
  • the RSRP can be understood as the average power of the RE carrying the CRS.
  • the user equipment detects the CRS transmitted by the base station, and can obtain the RSRP.
  • the base station sends the RSRP corresponding to the CRS, or the base station obtains the RSRP of the user equipment to the base station.
  • the receiving module obtains the RSRP
  • the processing module performs the RSRP and multiplies the precoding matrix to obtain the RSRP.
  • the channel matrix is refined to obtain the calculation method of the channel matrix, so that the scheme is more specific.
  • the CSI includes a PMI and an RSRP.
  • the processing module is further configured to parse the CSI to obtain a PMI and an RSRP;
  • the processing module is further configured to determine a precoding matrix according to the PMI;
  • the processing module is further configured to perform encapsulation on the RSRP and multiply the precoding matrix to obtain a channel matrix.
  • the processing module obtains the PMI and the RSRP by parsing the CSI, obtains a precoding matrix from the precoding codebook according to the PMI, and prescribes the RSRP, and Multiplying the precoding matrix to obtain the channel matrix, and explaining another way of obtaining the RSRP, makes the scheme implementation more flexible.
  • the sending module includes:
  • a signal processing unit configured to acquire a user signal corresponding to each user equipment, and process the user signal according to the MU-MIMO weight;
  • a transmitting unit configured to send the processed user signal to the antenna group corresponding to each user equipment.
  • the communication system sends the user signal corresponding to the user equipment to the base station through a device such as a switch, and the signal processing unit acquires the user signal that needs to be transmitted to each user equipment, and the signal processing fails due to the characteristics of the power of the user signal, so the signal processing
  • the unit needs to orthogonalize the user signal of each user equipment by the MU-MIMO weight of the corresponding user equipment, and the transmitting unit transmits the processed user signal through the antenna group corresponding to the user equipment, so that the user equipment Can receive and correctly parse the corresponding user signal.
  • a third aspect of the present invention provides a base station, which is applied to a MU-MIMO system, where the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station antenna group, and the base station include:
  • transceiver station configured to receive a CSI of each base station antenna group sent by each user equipment
  • a console configured to perform channel reconstruction according to the CSI, to obtain a channel matrix
  • the console is further configured to obtain, according to the channel matrix, a MU-MIMO weight of each user equipment;
  • the transceiver station is further configured to send a user signal to the base station antenna group corresponding to each user equipment according to the MU-MIMO weight.
  • each base station antenna group and at least two user equipments are included, and each user equipment corresponds to one base station antenna group, and the base station and each user equipment store a set of precoding including several precoding matrices.
  • the code base the base station continuously transmits the downlink pilot signal
  • the user equipment in the coverage area of the base station detects the downlink pilot signal and estimates the downlink channel, and selects the current downlink channel estimation result in the precoding codebook according to the internally set criterion.
  • the PMI is obtained by default, and the PMI is carried in the CSI by default.
  • Each base station antenna group has a CSI.
  • the user equipment sends the CSI of each base station antenna group to the base station, and the transceiver station receives the feedback from the user equipment.
  • the console performs channel reconstruction according to the CSI, obtains a channel matrix, calculates the MU-MIMO weight of the user equipment according to the channel matrix, and obtains the MU-MIMO weight of the user equipment, and the transceiver station according to the MU-MIMO weight Sending user signals to the base station antenna group corresponding to the user equipment. If there are multiple user equipments, each user equipment allocates different base station antennas.
  • the channel is reconstructed according to the CSI of each base station antenna group fed back by each user equipment, and the MU-MIMO weight calculation of each user equipment is performed.
  • the base station antenna group corresponding to the user equipment sends the user signal corresponding to the user equipment.
  • channel reconfiguration is performed according to the CSI of each antenna group. If the channel matrix is obtained, the MU-MIMO weights of the user equipments are unbiased according to the calculation of the channel matrix. However, in the prior art, the obtained MU-MIMO weights of the user equipments are all biased and passed.
  • the antenna group corresponding to each user equipment transmits a user signal, and the user signal transmitted by the antenna group is orthogonalized according to the MU-MIMO weight of the corresponding user equipment, and then transmitted through each antenna of the antenna group, therefore, the party In the case, each user equipment can receive and correctly parse the corresponding user signal, which effectively solves the problem of interference between multiple users in the prior art.
  • FIG. 1 is a schematic diagram of a conventional MU-MOMO system provided by the present invention.
  • FIG. 2 is a schematic diagram of a single-cell MU-MIMO system provided by the present invention.
  • FIG. 3 is a schematic diagram of a multi-cell MU-MIMO system provided by the present invention.
  • FIG. 4 is a schematic flowchart of a method for coordinating interference between multiple users according to the present invention.
  • FIG. 5 is another schematic flowchart of a method for coordinating interference between multiple users according to the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to the present invention.
  • FIG. 7 is another schematic structural diagram of a base station provided by the present invention.
  • FIG. 8 is a schematic diagram of a physical device of a base station provided by the present invention.
  • Embodiments of the present invention provide a method for coordinating inter-user interference and a base station, in a MU-MIMO system after antenna grouping and user grouping, a base station uses a CSI of each antenna group fed back by each user equipment to perform channel weighting.
  • the MU-MIMO weight calculation and coordination of interference between multiple users can effectively solve the interference problem between multiple users.
  • the present invention is applied to a single-cell MU-MIMO system or a multi-cell MU-MIMO system of an FDD-LTE communication system, and a single-cell MU-MIMO system is shown in FIG. 2, and a multi-cell MU-MIMO system is shown in FIG.
  • the base station antenna group in the single-cell MU-MIMO system and the multi-cell MU-MIMO system includes at least two groups and at least two user equipments.
  • the number of base station eNBs is one, then the eNB
  • FIG. 2 the number of base station eNBs is one, then the eNB
  • each base station has at least one group of base station antennas, and two base stations can acquire data from each other, and at least two or more user equipments occupying the same time slot resource within the common coverage of the two base stations.
  • the dual-polarized antennas are a new type of antenna technology, which combines two antennas whose polarization directions are orthogonal to each other and operates in the duplex mode at the same time.
  • the present invention is exemplified by a dual-polarized antenna, but is not limited to a dual-polarized antenna.
  • the base station antenna 0 and the base station antenna 2 in FIG. 2 are a pair of dual-polarized antennas, and the base station antenna 1 and the base station antenna 3 are one.
  • base station antenna 0 and base station antenna 1 with similar polarization directions are selected as one base station antenna group, which is denoted as Process 0, and base station antenna 2 and base station antenna 3 with similar polarization directions are selected as one base station antenna group.
  • Process 1 since the base station antenna 0 and the base station antenna 2 are orthogonal to each other, and the base station antenna 1 and the base station antenna 3 are orthogonal to each other, the isolation between the base station antenna group Process 0 and Process 1 is performed. The degree will be better.
  • the base station antenna 0 of the base station 0 and the base station antenna 1 of the base station 1 are grouped as Process 0, and the base station antenna 2 of the base station 0 and the base station antenna 3 of the base station 1 are used as Group, remember Process 1.
  • the packet mode of the user equipment is based on the performance optimization criterion.
  • the present invention uses the signal reception strength as a grouping criterion. For example, in FIG. 2, it is assumed that the signal strength of UE0 received by Process 0 is greater than the signal strength of Process 1 received, then UE0 is obtained. In the same manner, the UE1 is divided into the antenna group Process 1; in FIG. 3, the UE0 is divided into Process 0, and the UE1 is divided into Process 1. In the specific implementation, the manner of grouping the user equipment may also be other. Way, no limit.
  • an embodiment of the present invention provides a method for coordinating interference between multiple users, which is applied to MU-MIMO system, the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station antenna group, and the method includes:
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, each user equipment corresponding to one base station antenna group, and the base station and the user equipment each store a set of precoding matrices.
  • the precoding codebook the base station continuously transmits the downlink pilot signal, and the user equipment in the coverage of the base station checks the downlink pilot signal and estimates the downlink channel, and selects the current downlink channel estimation result in the precoding codebook according to the internally set criterion.
  • the optimal quantization result is that the PMI is obtained, and the PMI is carried in the CSI by default, and each user equipment feeds back the CSI of each base station antenna group to the base station, and the base station receives each base station antenna group fed back by each user equipment. CSI.
  • the base station after obtaining the CSI of each base station antenna group, the base station performs channel reconstruction according to CSI to obtain a channel matrix.
  • the MU-MIMO weights of each user equipment are obtained according to a preset calculation manner (for example, a ZF criterion or a SLNR criterion) according to a channel matrix obtained after channel reconstruction.
  • a preset calculation manner for example, a ZF criterion or a SLNR criterion
  • the user signal is orthogonalized according to the MU-MIMO weight, for example, the base station antenna group corresponding to the user signal has two In the antenna, the orthogonalized user signal is two signals, and the two signals are respectively transmitted through two antennas of the base station antenna group.
  • the user equipment corresponding to the user signal receives the two signals transmitted by the corresponding base station antenna group, The user equipment can correctly parse the user signal.
  • the MU-MIMO weights of the user equipments are obtained according to the channel matrix, and the obtained MU-MIMO weights are unbiased.
  • the MU-MIMO weight of each user equipment is deviated, because Therefore, each user equipment in the solution can receive and correctly parse the corresponding user signal, which effectively solves the problem of interference between multiple users in the prior art.
  • the foregoing embodiment introduces the main steps of the method for coordinating inter-user interference.
  • the following describes the detailed description of the single-cell MU-MIMO system shown in FIG. 2 in the application scenario.
  • a method for coordinating inter-user interference includes:
  • the base station eNB includes two base station antenna groups Process 0 and Process 1, each antenna group includes two antennas, and UE0 corresponds to the base station antenna group Process 0 (including the base station antenna 0).
  • the UE1 corresponds to the base station antenna group Process 1 (including the base station antennas 2 and 3), and the eNB, the UE0, and the UE1 each store a set of precoding codebooks W including a plurality of precoding matrices, and the eNB continuously transmits the downlink pilot signals, After UE0 and UE1 check the downlink pilot signal and estimate the downlink channel, the optimal quantization result of the current downlink channel estimation result in the pre-coded codebook is selected according to the internally set criterion, that is, the PMI is obtained, and the PMI is carried in the CSI by default.
  • the CSI of the base station antenna group Process 0 that UE0 feeds back to the eNB is CSI 00
  • the CSI of the base station antenna group Process 1 that UE0 feeds back to the eNB is CSI01
  • the CSI that UE1 feeds back to Process 0 is CSI 10
  • CSI 11 since each base station antenna group includes two antennas, CSI 00, CSI 01, CSI 10, and CSI 11 both contain two PMIs, and the base station receives the CSIs sent by UE0 and UE1.
  • the CSI is parsed to obtain a PMI, and the PMI corresponding to the base station antenna 0 and the base station antenna 1 is obtained in the CSI 00. Similarly, the CSI 01, the CSI 10, and the CSI 11 are analyzed.
  • the precoding matrix is indicated in the precoding codebook according to the PMI of the base station antenna 0 and the base station antenna 1, and the precoding matrix is Indicates that the CSI fed back to the antenna group Process 1 by UE0 is CSI 01, and the precoding matrix is Indicates that the CSI fed back to Process 0 by UE1 is CSI 10, and the precoding matrix is Indicates that the CSI fed back to Process 1 by UE 1 is CSI 11, and the precoding matrix is It is indicated that the RSRP of UE0 is P 0 and the RSRP of UE1 is P 1 .
  • the RSRP is a key parameter that can represent the wireless signal strength and the physical layer measurement requirement.
  • the RSRP can be understood as the average power of the REs carrying the CRS, the UE0 and the UE1 detect the CRS transmitted by the eNB, the RSRP can be obtained, the RSRP is transmitted to the eNB, or the eNB obtains the RSRP of the UE0 and the UE1 to the eNB by estimation. ;
  • the step is performed, specifically:
  • the channel reconfiguration of UE0 to Process 0 is: The UE0 to Process 1 channel is reconstructed as: The channel of UE1 to Process 0 is reconstructed as: The channel of UE1 to Process 1 is reconstructed as: Obtaining a channel matrix with
  • the MU-MIMO weight calculation process of UE1 is:
  • ⁇ 0 is the noise energy of UE0 and interference between cells
  • I 2 is a unit matrix of 2 rows and 2 columns.
  • the weight calculation process of UE 1 is:
  • ⁇ 1 is the noise energy of UE1 and the interference between cells
  • I 2 is a unit matrix of 2 rows and 2 columns.
  • the communication system sends the user signal s0 corresponding to UE0 and the user signal s1 corresponding to UE1 to the base station through a device such as a switch, and performs orthogonalization processing on s0 and s1 according to the MU-MIMO weight corresponding to UE0 and UE1, in Process 0.
  • the user signals transmitted by the base station antennas 0 and 1 are: W 0 s 0
  • the transmitted user signals of the base station antennas 2 and 3 in Process 1 are: W 1 s 1 , wherein if the ZF criterion is used, If the SLNR criterion is adopted, then Since both Process 0 and Process 1 are two antennas, the processed W 0 s 0 is the orthogonalized two signals.
  • W 1 s 1 is also the orthogonalized two signals, and the corresponding process in UE0.
  • Base station antennas 0 and 1 in 0 transmit s0 after orthogonalization processing
  • base station antennas 2 and 3 in Process 1 corresponding to UE1 transmit s1 after orthogonalization processing
  • UE0 can receive s0 after orthogonalization processing
  • UE1 can receive s1 after orthogonalization and correctly parse s1.
  • the channel is reconstructed according to the CSI, and the channel matrix is obtained, and the MU-MIMO weight of the user equipment is calculated according to the channel matrix, and the antenna is grouped compared with the prior art, and Channel reconstruction is performed, and even if there is a quantization error in the precoding codebook stored by one user equipment, no interference occurs between multiple users.
  • the base station eNB0 and the eNB1 can mutually share data, and it is assumed that the CSI fed back to the antenna group Process 0 by the UE0 is CSI. 00, the CSI fed back to the antenna group Process 1 by UE0 is CSI 01, the CSI fed back to Process 0 by UE1 is CSI 10, and the CSI fed back to Process 1 by UE1 is CSI 11, CSI 00, CSI 01, CSI 10, and CSI 11 are included.
  • Two PMIs, the precoding matrix corresponding to two PMIs in CSI 00 is:
  • the RSRP of UE0 to eNB0 is P 00
  • the RSRP of UE0 to eNB1 is P 01
  • the channel reconstructions of base station antenna 0 and base station antenna 1 in UE0 to Process 0 are respectively: with
  • the channel reconstruction of UE0 to Process 1, UE1 to Process 0 and Process 1 is the same as the channel reconstruction of UE0 to antenna group Process 0, the calculation of MU-MIMO weights of UE0 and UE1 and the calculation of single-cell MU-MIMO system
  • base station antennas 0 and 1 are respectively on eNB0 and eNB1, eNB0 and eNB1 need to know each other about the channel matrix and the MU-MIMO weight of each user equipment.
  • the foregoing embodiment describes a method for coordinating interference between multiple users in the present invention.
  • the base station will be described in detail below by way of an embodiment.
  • an embodiment of the present invention provides a base station, which is applied to a MU-MIMO system.
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station antenna group, including :
  • the receiving module 601 is configured to receive CSI of each base station antenna group sent by each user equipment;
  • the processing module 602 is configured to perform channel reconstruction according to CSI to obtain a channel matrix.
  • the processing module 602 is further configured to obtain, according to the channel matrix, a MU-MIMO weight of each user equipment;
  • the sending module 603 sends a user signal to the base station antenna group corresponding to each user equipment according to the MU-MIMO weight.
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, each user equipment corresponding to one base station antenna group, and the base station and the user equipment both store a set of precodings.
  • the precoding codebook of the matrix the base station continuously transmits the downlink pilot signal, and the user equipment in the coverage area of the base station checks the downlink pilot signal and estimates the downlink channel, according to the internal setting
  • the criterion selects the optimal quantization result of the current downlink channel estimation result in the precoding codebook, that is, obtains the PMI, and the PMI is carried in the CSI by default, and each user equipment feeds back the CSI of each base station antenna group to the base station, and the receiving module
  • the 601 receives the CSI of each base station antenna group fed back by each user equipment, and the processing module 602 performs channel reconstruction according to the CSI to obtain a channel matrix, and the processing module 602 calculates the MU-MIMO weight of each user equipment according to the channel matrix.
  • the sending module 603 sends a user signal to the base station antenna group corresponding to each user equipment according to the MU-MIMO weight, and the precoding codebook stored by one user equipment is quantized compared with the prior art. Error, and when there is no quantization error in the precoding codebook stored by other user equipments, since the channel matrix is obtained according to the CSI of each antenna group, the MU-MIMO weight of each user equipment is calculated according to the channel matrix. There is no deviation in the prior art, and in the prior art, the obtained MU-MIMO weights of each user equipment are deviated, therefore, the party Each user equipment can receive and properly parsed signal corresponding to the user, effectively solves the problems of the prior art interference among multiple users.
  • the CSI includes a PMI
  • the processing module 602 is further configured to parse the CSI to obtain a PMI.
  • the processing module 602 is further configured to determine a precoding matrix according to the PMI;
  • the processing module 602 is further configured to perform channel reconstruction according to the precoding matrix to obtain a channel matrix.
  • each user equipment in the coverage of the base station selects an optimal quantization result of the current downlink channel estimation result in the precoding codebook according to an internally set criterion. That is, PMI, the PMI is carried in the CSI by default.
  • PMI the PMI is carried in the CSI by default.
  • Each user equipment feeds back the CSI of each base station antenna group to the base station.
  • the processing module 602 parses the CSI. Obtaining a PMI, obtaining a precoding matrix from the precoding codebook according to the PMI, performing channel reconstruction according to the precoding matrix to obtain a channel matrix, and processing module 602 refines the channel reconstruction step to make the scheme more detailed.
  • the receiving module 601 is further configured to obtain an RSRP of each user equipment.
  • the processing module 602 is further configured to perform precoding on the RSRP and multiply the precoding matrix to obtain a channel matrix.
  • the RSRP is one of the key parameters of the radio signal strength and the physical layer measurement requirement in the LTE network.
  • the RSRP can be understood as the average power of the RE carrying the CRS, and the user equipment detects the CRS transmitted by the base station.
  • the RSRP is obtained, and the RSRP is sent to the base station corresponding to the CRS, or the base station obtains the RSRP of the user equipment to the base station by using the estimation, and the processing module 602 pre-sends the RSRP and multiplies the precoding matrix to obtain a channel matrix.
  • the calculation of the channel matrix is refined to make the scheme more specific.
  • the CSI includes a PMI and an RSRP.
  • the processing module 602 is further configured to parse the CSI to obtain a PMI and an RSRP.
  • the processing module 602 is further configured to determine a precoding matrix according to the PMI;
  • the processing module 602 is further configured to perform precoding on the RSRP and multiply the precoding matrix to obtain a channel matrix.
  • the CSI fed back by the user equipment includes the PMI and the RSRP
  • the processing module 602 obtains the PMI and the RSRP by parsing the CSI, obtains the precoding matrix from the precoding codebook according to the PMI, and performs the precoding of the RSRP and multiplies the RSRP. Taking the precoding matrix to obtain the channel matrix, another way of obtaining the RSRP is explained, which makes the scheme implementation more flexible.
  • the sending module 603 includes:
  • the signal processing unit 701 is configured to acquire a user signal corresponding to each user equipment, and process the user signal according to the MU-MIMO weight;
  • the transmitting unit 702 is configured to send the processed user signal to the base station antenna group corresponding to each user equipment.
  • the communication system sends a user signal corresponding to each user equipment to the base station through a device such as a switch, and the signal processing unit 701 acquires a user signal that needs to be transmitted to each user equipment, due to characteristics of the power of the user signal.
  • the propagation requirement is not met, so the signal processing unit 701 needs to multiply the user signal by the MU-MIMO weight of the corresponding user equipment for orthogonalization processing, and the transmitting unit 702 passes the user signal processed by the signal processing unit 701 to each user.
  • the base station antenna group corresponding to the device transmits, and the user equipment can receive and correctly parse the corresponding user signal.
  • an embodiment of the present invention provides a base station, which is applied to a MU-MIMO system.
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, and each user equipment corresponds to one base station antenna group, including :
  • the transceiver station 801 is configured to receive CSI of each antenna group sent by each user equipment;
  • a console 802 configured to perform channel reconstruction according to CSI, to obtain a channel matrix
  • the console 802 is further configured to obtain, according to the channel matrix, a MU-MIMO weight of the user equipment;
  • the transceiver station 801 is further configured to send a user signal by using a base station antenna group corresponding to each user equipment according to the MU-MIMO weight.
  • the MU-MIMO system includes at least two base station antenna groups and at least two user equipments, each user equipment corresponding to one base station antenna group, and the base station and the user equipment both store a set of precodings.
  • the precoding codebook of the matrix the base station continuously transmits the downlink pilot signal, and the user equipment in the coverage of the base station detects the downlink pilot signal and estimates the downlink channel, and selects the current downlink channel estimation result in the precoding code according to the internally set criterion.
  • the optimal quantization result in the present is that the PMI is obtained, and the PMI is carried in the CSI by default, and each user equipment feeds back the CSI of each base station antenna group to the base station, and the transceiver station 801 receives each feedback of each user equipment.
  • the CSI of the base station antenna group, the console 802 performs channel reconstruction according to the CSI, obtains a channel matrix, calculates the MU-MIMO weight of each user equipment according to the channel matrix, and obtains the MU-MIMO weight of each user equipment, and then sends and receives the MU-MIMO weight value of each user equipment.
  • the station 801 sends a user signal through the base station antenna group corresponding to each user equipment according to the MU-MIMO weight, compared with the prior art.
  • a precoding codebook stored by a user equipment has a quantization error If there is no quantization error in the precoding codebook stored by other user equipments, since the channel matrix is obtained according to the CSI of each antenna group, the MU-MIMO weights of each user equipment are calculated according to the channel matrix. In the prior art, the obtained MU-MIMO weights of the user equipments are all deviated. Therefore, in this solution, each user equipment can receive and correctly parse the corresponding user signals, which is effective. The problem of interference between multiple users in the prior art is solved.
  • the transceiver station includes a base station antenna
  • the single-cell MU-MIMO system is shown in FIG. 2
  • the multi-cell MU-MIMO system is as shown in FIG. 3
  • the single-cell MU-MIMO system or the multi-cell MU-MIMO system is shown in FIG.
  • the number of antenna groups in the group includes at least two groups, and the number of users is also at least two.
  • the number of eNBs is one
  • the number of base station antenna groups in the eNB transceiver station is at least two, and is at At least two or more user equipments occupying the same time slot resource in the coverage of the eNB, as can be seen from FIG.
  • the number of base stations is two (eNB0 and eNB1), and the base station antenna included in the transceiver station of each base station
  • the group is at least one, and the console between the two base stations is to acquire the CSI of each base station antenna group and the MU-MIMO weight of each user equipment.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种协调多用户间干扰的方法及基站,用于在天线分组和用户分组后的MU-MIMO系统中,基站利用多个用户设备反馈的CSI进行信道重构和MU-MIMO权值计算,从而协调多个用户之间干扰,可以有效的解决多个用户之间的干扰问题。本发明实施例协调多用户间干扰的方法应用于MU-MIMO系统,MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,方法包括:接收每一个用户设备发送的每一个基站天线组的CSI;根据CSI进行信道重构,得到信道矩阵;根据信道矩阵得到每一个用户设备的MU-MIMO权值;根据MU-MIMO权值在每一个用户设备对应的基站天线组发送用户信号。

Description

一种协调多用户间干扰的方法及基站 技术领域
本发明涉及通信技术领域,具体涉及一种协调多用户间干扰的方法及基站。
背景技术
频分双工(frequency division duplexing,FDD)-长期演进(long term evolution,LTE)系统所追求的目标就是任何人,任何时候可以与任何地方的任何人进行通信,并要求能以更低成本提供上百兆bits/s的多媒体数据通信速率,显然必须开发高频谱效率的无线传输方案才可能实现此目标,而随着无线通信技术的快速发展,频谱资源的严重不足己经日益成为遏制无线通信事业的瓶颈。如何充分开发利用有限的频谱资源,提高频谱利用率,是当前通信界研究的热点课题之一,追求尽可能高的频谱利用率已成为并且在今后仍然是一个充满挑战的问题,这种挑战促使人们努力开发高效的编码,调制及信号处理技术来提高无线频谱的效率。
多输入多输出(multi-input multi-output,MIMO)技术利用多个发射天线和多个接收天线来抑制信道衰落,提高信道容量,提高频谱利用率,MIMO信道是在收发两端使用多个天线,每个收发天线之间形成一个MIMO子信道,假定发送端存在nR个发送天线,接收端有nT个接收天线,在收发天线之间形成nR×nT信道矩阵H,如下:
Figure PCTCN2016078030-appb-000001
其中H的元素是任意一对收发天线之间的子信道。当天线相互之间足够远的距离时,各发送天线之间到各接收天线之间的信号传输就可以看成是相互独立的,矩阵H的秩较大,理想情况下能达到满秩。如果收发天线相互之间较近,各发送天线到各接收天线之间的信号传输可以看成是相关的,矩阵H 的秩较小。因此MIMO信道容量和矩阵H的大小关系密切,目前较为典型的实现方法是仅仅在基站处配备多副天线,达到降低移动终端的成本和复杂性的目的。如果信道矩阵的参数确定,且总的发射功率P一定,将发送端的功率平均分配到每一个发送天线上,则容量公式为:
Figure PCTCN2016078030-appb-000002
考虑满秩MIMO信道,nR=nT=n,则秩为n,且矩阵H是单位阵,HHH=In×n,可以得到容量公式:
Figure PCTCN2016078030-appb-000003
从上式可以看出,满秩MIMO信道矩阵H在单位阵情况下,信道容量在确定的信噪比下随着天线数量的增大而几乎线性增大。也就是说在不增加带宽和发送功率的情况下,可以利用增加收发天线数成倍地提高无线信道容量,从而使得频谱利用率成倍地提高,因此MIMO技术被认为是未来移动通信与个人通信系统实现高速率数据传输,提高传输质量的重要途径。
如图1所示的MU-MIMO系统中,基站eNB具有两对极性天线,那么eNB与UE0之间可以建立4条MIMO子信道,同样eNB与UE1之间也建立4条MIMO子信道。根据现有协议规定,eNB可基于预编码矩阵指示(precoding matrix indicator,PMI)码本反馈的方式获取下行信道信息,具体方式为在eNB、UE0及UE1均存储一套包含若干个预编码矩阵的预编码码本,PMI用于指示预编码码本中的预编码矩阵,在通信过程中,eNB发送下行导频信号至UE0和UE1,UE0和UE1检测下行导频信号并估计下行信道,并按照UE0和UE1内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果的预编码矩阵,作为4个天线的PMI,并将4个PMI包含于信道状态信息(channel state information,CSI)中,UE0和UE1在上行信道资源中将CSI发送至eNB。eNB检测到UE0的4个PMI和UE1的4个PMI后,因为UE0和UE1占用了相同的时频资源,eNB需要同时发射UE0的原始信号s0和UE1的原始信号s1,结合UE0的4个PMI和UE1的4个PMI计算得到UE0的MU-MIMO权值和UE1的MU-MIMO权值,根据UE0的MU-MIMO权值和UE1的MU-MIMO权值对s0和s1做正交化处理后,得到正交化的4路信号, 通过两对极性天线发射这4路信号。由于PMI是UE0和UE1选取的,那么eNB与UE0和UE1构建的信道,对于UE0和UE1来说是已知的,因此UE0可以解析正交化的4路信号得到原始信号s0,UE1可以解析正交化的4路信号得到原始信号s1。
上述方式中,UE0和UE1得到PMI(即从预编码码本中选取出的预编码矩阵)是依据最优量化准则。如果UE0中存储的预编码码本本身就存在量化误差时,UE0反馈的CSI中的PMI必然也是存在量化误差的,即使UE1存储的预编码码本不存在量化误差,但由于计算UE0和UE1的MU-MIMO权值时,都需要用到UE0反馈的CSI和UE1反馈的CSI,因此不仅UE0的MU-MIMO权值出现偏差,UE1的MU-MIMO权值也会受到影响出现偏差。UE0和UE1的MU-MIMO权值对s0和s1做正交化处理后,得到正交化的4路信号,由于UE0和UE1的MU-MIMO权值是存在偏差的,那么UE0和UE1将不能正确解析正交化的4路信号得到s0和s1,这样就导致多个用户之间产生干扰。
发明内容
本发明实施例提供一种协调多用户间干扰的方法及基站,用于在天线分组和用户分组后的MU-MIMO系统中,基站利用每一个用户设备反馈的每一个基站天线组的CSI进行信道重构和MU-MIMO权值计算,从而协调多个用户之间干扰,可以有效的解决多个用户之间的干扰问题。
本发明第一方面提供一种协调多用户间干扰的方法,应用于MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述方法包括:
接收每一个用户设备发送的每一个基站天线组的CSI;
根据所述CSI进行信道重构,得到信道矩阵;
根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个基站天线组至少包含两根天线,每个用户设备对应一个基站天线组,基站和 每一个用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检测下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每个基站天线组都有一个CSI,用户设备将每一个基站天线组的CSI发送到基站,基站接收到用户设备反馈的CSI,根据CSI进行信道重构,得到信道矩阵,根据信道矩阵得到该用户设备的MU-MIMO权值,得到该用户设备的MU-MIMO权值后,根据MU-MIMO权值在用户设备对应的基站天线组发送用户信号,如果用户设备是多个,每一个用户设备分配不同的基站天线组,并且多个用户设备占用相同的时频资源时,根据每个用户设备反馈的各基站天线组的CSI进行信道重构和每个用户设备的MU-MIMO权值计算后,通过每个用户设备对应的基站天线组发送用户设备对应的用户信号,与现有技术相比,当一个用户设备存储的预编码码本存在量化误差,而其他用户设备存储的预编码码本不存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,因此,本方案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
结合本发明第一方面,本发明第一方面第一实施方式中,所述CSI包含PMI,
所述根据所述CSI进行信道重构,得到信道矩阵,包括:
解析所述CSI,得到PMI;
根据所述PMI确定预编码矩阵;
根据所述预编码矩阵进行信道重构,得到信道矩阵。
每一个用户设备检测到下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即PMI,PMI是默认承载于CSI中的,并且每一个基站天线组都有一个对应的CSI,用户设备将CSI反馈至下行导频信号对应的基站,基站接收到CSI后,对CSI进行解析, 得到PMI,根据PMI从预编码码本中得到预编码矩阵,根据预编码矩阵进行信道重构,得到信道矩阵,对进行信道重构步骤的细化,使得方案更加详细。
结合本发明第一方面第一实施方式,本发明第一方面第二实施方式中,所述根据所述CSI进行信道重构,得到信道矩阵之前,还包括:
获取所述每一个用户设备的RSRP;
所述根据所述预编码矩阵进行信道重构,得到信道矩阵,包括:
对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
在LTE网络中,小区参考信号接收强度(Reference Signal Received Power,RSRP)是可以代表无线信号强度的关键参数以及物理层测量需求之一,RSRP可以理解为承载小区参考信号(Cell Reference Signal,CRS)的资源粒子RE的平均功率,用户设备检测到基站发射的CRS,可以得到RSRP,将RSRP发送至与CRS对应的基站,或者,基站通过估测得到用户设备到该基站的RSRP,基站得到RSRP后,对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对得到信道矩阵的计算方式进行细化,使得方案更加具体。
结合本发明第一方面,本发明第一方面第三实施方式中,所述CSI包含PMI及RSRP,
所述根据所述CSI进行信道重构,得到信道矩阵,包括:
解析所述CSI,得到PMI及RSRP;
根据所述PMI确定预编码码本;
对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
现有的一种情形是,用户设备反馈的CSI中包含PMI和RSRP,基站通过解析CSI,得到PMI及用户设备到的RSRP,根据PMI从预编码码本中得到预编码矩阵,对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对RSRP的获得的第二种方式进行说明,使得方案实施更加灵活。
结合本发明第一方面、第一方面第一实施方式、第一方面第二实施方式或第一方面第三实施方式,本发明第一方面第四实施方式中,所述根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号,包括:
获取所述每一个用户设备对应的用户信号,根据所述MU-MIMO权值对所述用户信号进行处理;
在所述每一个用户设备对应的基站天线组发送处理后的所述用户信号。
通信系统通过交换机等设备将用户设备对应的用户信号下发至基站,基站获取到需要发射到每一个用户设备的用户信号,由于用户信号的功率等特性未能达到传播要求,因此需要将每一个用户设备的用户信号乘以对应的用户设备的MU-MIMO权值进行正交化处理,并且将处理后的用户信号通过每一个用户设备对应的天线组进行发射,使得用户设备能接收并正确解析得到对应的用户信号。
本发明第二方面提供一种基站,应用于MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述基站包括:
接收模块,用于接收每一个用户设备发送的每一个基站天线组的CSI;
处理模块,用于根据所述CSI进行信道重构,得到信道矩阵;
所述处理模块,还用于根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
发送模块,根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个基站天线组至少包含两根天线,每个用户设备对应一个基站天线组,基站和每一个用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检测下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每一个基站天线组都有一个CSI,用户设备将每一个基站天线组的CSI发送到基站,基站接收模块接收到用户设备反馈的CSI,处理模块根据CSI进行信道重构,得到信道矩阵,根据信道矩阵计算得到该用户设备的MU-MIMO权值,得到该用户设备的MU-MIMO权值后,发送模块根据MU-MIMO权值在用户设备对应的基站天线 组发送用户信号,如果用户设备是多个,每一个用户设备分配不同的基站天线组,并且多个用户设备占用相同的时频资源时,根据每个用户设备反馈的各基站天线组的CSI进行信道重构和每个用户设备的MU-MIMO权值计算后,发送模块通过每个用户设备对应的基站天线组发送用户设备对应的用户信号,与现有技术相比,当一个用户设备存储的预编码码本存在量化误差时,而其他用户设备存储的预编码码本不存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,又通过各用户设备对应的天线组发射用户信号,天线组发射的用户信号是根据对应用户设备的MU-MIMO权值做正交化处理后,通过天线组的各天线发射的,因此,本方案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
结合本发明第二方面,本发明第二方面第一实施方式中,所述CSI包含PMI,
所述处理模块,还用于解析所述CSI,得到PMI;
所述处理模块,还用于根据所述PMI确定预编码矩阵;
所述处理模块,还用于根据所述预编码矩阵进行信道重构,得到信道矩阵。
每一个用户设备检测到下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即PMI,PMI是默认承载于CSI中的,并且每一个基站天线组都有一个对应的CSI,用户设备将CSI反馈至下行导频信号对应的基站,处理模块接收到CSI后,对CSI进行解析,得到PMI,根据PMI从预编码码本中得到预编码矩阵,根据预编码矩阵进行信道重构,得到信道矩阵,处理模块对进行信道重构步骤的细化,使得方案更加详细。
结合本发明第二方面第一实施方式,本发明第二方面第二实施方式中,
所述接收模块,还用于获取所述每一个用户设备的RSRP;
所述处理模块,还用于对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
在LTE网络中,RSRP是可以代表无线信号强度的关键参数以及物理层测量需求之一,RSRP可以理解为承载CRS的RE的平均功率,用户设备检测到基站发射的CRS,可以得到RSRP,将RSRP发送至与CRS对应的基站,或者,基站通过估测得到用户设备到该基站的RSRP,基站得到RSRP后,接收模块获取RSRP后,处理模块对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对得到信道矩阵的计算方式进行细化,使得方案更加具体。
结合本发明第二方面,本发明第二方面第三实施方式中,所述CSI包含PMI及RSRP,
所述处理模块,还用于解析所述CSI,得到PMI及RSRP;
所述处理模块,还用于根据所述PMI确定预编码矩阵;
所述处理模块,还用于对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
现有的一种情形是,用户设备反馈的CSI中包含PMI和RSRP,处理模块通过解析CSI,得到PMI及RSRP,根据PMI从预编码码本中得到预编码矩阵,对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对RSRP的获得的另外一种方式进行说明,使得方案实施更加灵活。
结合本发明第二方面第三实施方式,本发明第二方面第四实施方式中,所述发送模块包括:
信号处理单元,用于获取所述每一个用户设备对应的用户信号,根据所述MU-MIMO权值对所述用户信号进行处理;
发射单元,用于在所述每一个用户设备对应的天线组发送处理后的所述用户信号。
通信系统通过交换机等设备将用户设备对应的用户信号下发至基站,信号处理单元获取到需要发射到每一个用户设备的用户信号,由于用户信号的功率等特性未能达到传播要求,因此信号处理单元需要将每一个用户设备的用户信号乘以对应的用户设备的MU-MIMO权值进行正交化处理,并且发射单元将处理后的用户信号通过用户设备对应的天线组进行发射,使得用户设备能接收并正确解析得到对应的用户信号。
本发明第三方面提供一种基站,应用于MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述基站包括:
收发台,用于接收每一个用户设备发送的每一个基站天线组的CSI;
控制台,用于根据所述CSI进行信道重构,得到信道矩阵;
所述控制台,还用于根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
所述收发台,还用于根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,基站和每一个用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检测下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每个基站天线组都有一个CSI,用户设备将每一个基站天线组的CSI发送到基站,收发台接收到用户设备反馈的CSI,控制台根据CSI进行信道重构,得到信道矩阵,根据信道矩阵计算得到该用户设备的MU-MIMO权值,得到该用户设备的MU-MIMO权值后,收发台根据MU-MIMO权值在用户设备对应的基站天线组发送用户信号,如果用户设备是多个,每一个用户设备分配不同的基站天线组,并且多个用户设备占用相同的时频资源时,根据每个用户设备反馈的各基站天线组的CSI进行信道重构和每个用户设备的MU-MIMO权值计算后,收发台通过每个用户设备对应的基站天线组发送用户设备对应的用户信号,与现有技术相比,当一个用户设备存储的预编码码本存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,又通过各用户设备对应的天线组发射用户信号,天线组发射的用户信号是根据对应用户设备的MU-MIMO权值做正交化处理后,通过天线组的各天线发射的,因此,本方 案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明提供的现有的MU-MOMO系统的示意图;
图2为本发明提供的单小区MU-MIMO系统的示意图;
图3为本发明提供的多小区间MU-MIMO系统的示意图;
图4为本发明提供的协调多用户间干扰的方法的一个流程示意图;
图5为本发明提供的协调多用户间干扰的方法的另一个流程示意图;
图6为本发明提供的基站的一个结构示意图;
图7为本发明提供的基站的另一个结构示意图;
图8为本发明提供的基站的一个实体装置示意图。
具体实施方式
本发明实施例提供一种协调多用户间干扰的方法及基站,用于在天线分组和用户分组后的MU-MIMO系统中,基站利用每一个用户设备反馈的每一个天线组的CSI进行信道重构和MU-MIMO权值计算,从而协调多个用户之间干扰,可以有效的解决多个用户之间的干扰问题。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
首先简单介绍本发明应用的系统构架或场景。
本发明应用于FDD-LTE通信系统的单小区MU-MIMO系统或多小区间MU-MIMO系统,单小区MU-MIMO系统如图2所示,多小区间MU-MIMO系统如图3所示,单小区MU-MIMO系统和多小区间MU-MIMO系统中的基站天线组至少包括两组以上,用户设备至少两个以上,从图2中可以看出,基站eNB的数量为1个,那么eNB具有的基站天线组至少为两组,并且处于该eNB覆盖范围内的占用相同时隙资源的用户设备至少两个以上,从图3中可以看出,基站的数量为两个(eNB0和eNB1),那么每个基站具有的基站天线组至少为一组,并且两个基站之间可以相互获取数据,且处于两基站共同覆盖范围内的占用相同时隙资源的用户设备至少两个以上。
在现有的基站中,以双极化天线的使用最为普遍,双极化天线是一种新型天线技术,组合了两副极化方向相互正交的天线并同时工作在收发双工模式下,本发明中以双极化天线进行举例,但是,并不局限于双极化天线,图2中的基站天线0和基站天线2为一对双极化天线,基站天线1和基站天线3为一对双极化天线,选取极化方向相近的基站天线0和基站天线1作为一个基站天线组,记为Process 0,选取极化方向相近的基站天线2和基站天线3作为一个基站天线组,记为Process 1,因为基站天线0与基站天线2是极化方向相互正交的,基站天线1与基站天线3是极化方向相互正交的,那么基站天线组Process 0和Process 1之间的隔离度会较好,同理,图3中,将基站0的基站天线0和基站1的基站天线1作为一组,记为Process 0,将基站0的基站天线2和基站1的基站天线3作为一组,记为Process 1。
用户设备的分组方式以性能最优为准则,本发明以信号接收强度为分组准则举例,例如图2中,假设UE0接收到Process 0的信号强度大于接收到Process 1的信号强度,那么就将UE0划分至天线组Process 0,同理,将UE1划分至天线组Process 1;图3中,将UE0划分至Process 0,UE1划分至Process 1,在具体实施时用户设备的分组的方式还可以为其他方式,不做限定。
下面通过实施例对在上述系统构架或场景中的协调多用户间干扰的方法进行说明。
请参阅图4,本发明实施例提供一种协调多用户间干扰的方法,应用于 MU-MIMO系统,MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,方法包括:
401、接收每一个用户设备发送的每一个基站天线组的CSI;
本实施例中,在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,基站和用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检查下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每一个用户设备反馈每一个基站天线组的CSI至基站,基站接收到各用户设备反馈的每一个基站天线组的CSI。
402、根据CSI进行信道重构,得到信道矩阵;
本实施例中,基站获得每一个基站天线组的CSI后,根据CSI进行信道重构,得到信道矩阵。
403、根据信道矩阵得到每一个用户设备的MU-MIMO权值;
本实施例中,根据信道重构之后得到的信道矩阵,按照预置的计算方式(例如ZF准则或SLNR准则等)进行计算,得到每一个用户设备的MU-MIMO权值。
404、根据MU-MIMO权值在每一个用户设备对应的基站天线组发送用户信号。
本实施例中,在得到各用户设备的MU-MIMO权值之后,按照现有技术,将用户信号根据MU-MIMO权值进行正交化处理,例如该用户信号对应的基站天线组有两根天线,则正交化处理后的用户信号为两路信号,两路信号分别通过基站天线组的两根天线发射,当用户信号对应的用户设备接收到对应基站天线组发射的两路信号时,用户设备能正确解析得到用户信号。
本发明实施例中,多个用户设备占用相同的时频资源时,与现有技术相比,当一个用户设备存储的预编码码本存在量化误差,而其他用户设备存储的预编码码本不存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,因 此,本方案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
上述实施例介绍了协调多用户间干扰的方法的主要步骤,下面结合应用场景中图2所示的单小区MU-MIMO系统进行详细的说明。
请参阅图5,本发明的一些实施例中,协调多用户间干扰的方法包括:
501、接收每一个用户设备发送的每一个基站天线组的CSI;
在图2所示的单小区MU-MIMO系统中,包含基站eNB具有两个基站天线组Process 0和Process 1,每个天线组包含两根天线,UE0对应基站天线组Process 0(包含基站天线0和1),UE1对应基站天线组Process 1(包含基站天线2和3),eNB、UE0和UE1均存储一套包含若干个预编码矩阵的预编码码本W,eNB连续发射下行导频信号,UE0和UE1检查下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,UE0反馈给eNB的基站天线组Process 0的CSI为CSI 00,UE0反馈给eNB的基站天线组Process 1的CSI为CSI01,UE1反馈给Process 0的CSI为CSI 10,UE1反馈给Process 1的CSI为CSI 11,由于每个基站天线组包含两根天线,因此CSI 00、CSI 01、CSI 10及CSI 11都包含两个PMI,基站接收到UE0和UE1发送的CSI。
502、解析CSI,得到PMI;
对CSI进行解析,得到PMI,解析CSI 00中得到对应基站天线0和基站天线1的PMI,同理,对CSI 01、CSI 10和CSI 11进行解析。
503、根据PMI确定预编码矩阵;
解析得到CSI 00中对应基站天线0和基站天线1的PMI后,根据基站天线0和基站天线1的PMI在预编码码本中指示出预编码矩阵,预编码矩阵以
Figure PCTCN2016078030-appb-000004
表示,UE0反馈给天线组Process 1的CSI为CSI 01,预编码矩阵以
Figure PCTCN2016078030-appb-000005
表示,UE1反馈给Process 0的CSI为CSI 10,预编码矩阵以
Figure PCTCN2016078030-appb-000006
表示;UE 1反馈给Process 1的CSI为CSI 11,预编码矩阵以
Figure PCTCN2016078030-appb-000007
表示,UE0的RSRP是P0,UE1的RSRP是P1
504、根据预编码矩阵进行信道重构,得到信道矩阵;
如果在步骤502中,未从CSI中解析得到RSRP,则该步骤之前还需要获取UE0和UE1发送给eNB的RSRP,在LTE网络中,RSRP是可以代表无线信号强度的关键参数以及物理层测量需求之一,RSRP可以理解为承载CRS的RE的平均功率,UE0和UE1检测到eNB发射的CRS,可以得到RSRP,将RSRP发射至eNB,或者,eNB通过估测得到UE0和UE1到该eNB的RSRP;
如果在步骤502中,解析CSI得到了RSRP,则执行该步骤,具体的:
UE0到Process 0的信道重构为:
Figure PCTCN2016078030-appb-000008
UE0到Process 1信道重构为:
Figure PCTCN2016078030-appb-000009
UE1到Process 0的信道重构为:
Figure PCTCN2016078030-appb-000010
UE1到Process 1的信道重构为:
Figure PCTCN2016078030-appb-000011
得到信道矩阵
Figure PCTCN2016078030-appb-000012
Figure PCTCN2016078030-appb-000013
505、根据信道矩阵得到每一个用户设备的MU-MIMO权值;
MU-MIMO权值计算方法有很多种,本实施例以ZF准则和SLNR准则为例进行说明,若采用ZF准则,则UE0的MU-MIMO权值计算过程为:
Figure PCTCN2016078030-appb-000014
其中
Figure PCTCN2016078030-appb-000015
是为了将小区权值矩阵
Figure PCTCN2016078030-appb-000016
的每一列功率归一化,其对角线上第i个元素为矩阵
Figure PCTCN2016078030-appb-000017
的第i列向量的模的倒数,则UE0的MU-MIMO权值
Figure PCTCN2016078030-appb-000018
Figure PCTCN2016078030-appb-000019
的第一列向量。
UE1的MU-MIMO权值计算过程为:
Figure PCTCN2016078030-appb-000020
其中
Figure PCTCN2016078030-appb-000021
是为了将小区权值矩阵
Figure PCTCN2016078030-appb-000022
的每一列功率归一化,其对角线上第i个元素为矩阵
Figure PCTCN2016078030-appb-000023
的第i列向量的模的倒数。则UE1的MU-MIMO权值
Figure PCTCN2016078030-appb-000024
Figure PCTCN2016078030-appb-000025
的第二列向量。
若采用SLNR准则,则UE0的权值计算过程为:
Figure PCTCN2016078030-appb-000026
其中
Figure PCTCN2016078030-appb-000027
σ0是UE0的噪声能量及小区之间的干扰,I2是2行2列的单位阵。
UE 1的权值计算过程为:
Figure PCTCN2016078030-appb-000028
其中
Figure PCTCN2016078030-appb-000029
σ1是UE1的噪声能量及小区之间的干扰,,I2是2行2列的单位阵。
506、根据MU-MIMO权值通过每一个用户设备对应的基站天线组发送用户信号。
通信系统通过交换机等设备将UE0对应的用户信号s0和UE1对应的用户信号s1下发至基站中,根据UE0和UE1对应的MU-MIMO权值对s0和s1进行正交化处理,Process 0中基站天线0和1发射的用户信号为:W0s0,Process 1中基站天线2和3的发射的用户信号为:W1s1,其中若采用ZF准则,则
Figure PCTCN2016078030-appb-000030
若采用SLNR准则,则
Figure PCTCN2016078030-appb-000031
由于Process 0和Process 1均是两根天线的,那么处理后的W0s0是正交化的两路信号,同样,W1s1也是正交化的两路信号,在UE0对应的Process 0中的基站天线0和1发射正交化处理后的s0,在UE1对应的Process 1中的基站天线2和3发射正交化处理后的s1,UE0能接收正交化处理后的s0并正确解析得到s0,UE1能接收正交化处理后的s1并正确解析得到s1。
本发明实施例中,根据CSI进行信道重构,得到信道矩阵,根据信道矩阵计算得到用户设备的MU-MIMO权值进行详细的说明,与现有技术相比,天线是进行了分组的,并且进行了信道重构,即使一个用户设备存储的预编码码本存在量化误差的情况下,多个用户之间也不会产生干扰。
需要说明的是,图3所示的多小区MU-MIMO系统中,基站eNB0和eNB1之间是可以相互进行数据共享的,假设UE0反馈给天线组Process 0的CSI为CSI 00,UE0反馈给天线组Process 1的CSI为CSI 01,UE1反馈给Process 0的CSI为CSI 10,UE1反馈给Process 1的CSI为CSI 11,CSI 00、CSI 01、CSI 10及CSI 11都包含两个PMI,CSI 00中两个PMI对应的预编码矩阵是:
Figure PCTCN2016078030-appb-000032
Figure PCTCN2016078030-appb-000033
设UE0到eNB0的RSRP是P00,设UE0到eNB1的RSRP是P01,则UE0到Process 0中基站天线0和基站天线1的信道重构分别为:
Figure PCTCN2016078030-appb-000034
Figure PCTCN2016078030-appb-000035
UE0到Process 1、UE1到Process 0及Process 1的信道重构与UE0到天线组Process 0的信道重构同理,UE0和UE1的MU-MIMO权值的计算与单小区MU-MIMO系统的计算方式相同,由于基站天线0和1是分别在eNB0和eNB1上的,那么eNB0和eNB1需要相互知道信道矩阵及各用户设备的MU-MIMO权值。
上述实施例对本发明中协调多用户间干扰的方法进行了说明,下面通过实施例对基站进行详细说明。
请参阅图6,本发明实施例提供一种基站,应用于MU-MIMO系统,MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,包括:
接收模块601,用于接收每一个用户设备发送的每一个基站天线组的CSI;
处理模块602,用于根据CSI进行信道重构,得到信道矩阵;
处理模块602,还用于根据信道矩阵得到每一个用户设备的MU-MIMO权值;
发送模块603,根据MU-MIMO权值在每一个用户设备对应的基站天线组发送用户信号。
本发明实施例中,在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,基站和用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检查下行导频信号并估计下行信道后,按照内部设定的 准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每一个用户设备反馈每一个基站天线组的CSI至基站,接收模块601接收到每一个用户设备反馈的每一个基站天线组的CSI,处理模块602根据CSI进行信道重构,得到信道矩阵,处理模块602根据信道矩阵计算得到每一个用户设备的MU-MIMO权值,得到MU-MIMO权值后,发送模块603根据MU-MIMO权值在每一个用户设备对应的基站天线组发送用户信号,与现有技术相比,当一个用户设备存储的预编码码本存在量化误差,而其他用户设备存储的预编码码本不存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,因此,本方案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
可选的,本发明的一些实施例中,CSI包含PMI,
处理模块602,还用于解析CSI,得到PMI;
详细内容参考步骤502所述。
处理模块602,还用于根据PMI确定预编码矩阵;
详细内容参考步骤503所述。
处理模块602,还用于根据预编码矩阵进行信道重构,得到信道矩阵。
详细内容参考步骤504所述。
本发明实施例中,基站覆盖范围内的每一个用户设备检测到下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即PMI,PMI是默认承载于CSI中的,每一个用户设备反馈每一个基站天线组的CSI至基站,接收模块601接收到每一个基站天线组的CSI后,处理模块602对CSI进行解析,得到PMI,根据PMI从预编码码本中得到预编码矩阵,根据预编码矩阵进行信道重构,得到信道矩阵,处理模块602对进行信道重构步骤的细化,使得方案更加详细。
可选的,本发明的一些实施例中,
接收模块601,还用于获取每一个用户设备的RSRP;
详细内容参考步骤504所述。
处理模块602,还用于对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵。
详细内容参考步骤504所述。
本发明实施例中,RSRP在LTE网络中是可以代表无线信号强度的关键参数以及物理层测量需求之一,RSRP可以理解为承载CRS的RE的平均功率,用户设备检测到基站发射的CRS,可以得到RSRP,将RSRP发送至与CRS对应的基站,或者,基站通过估测得到用户设备到该基站的RSRP,处理模块602对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对得到信道矩阵的计算方式进行细化,使得方案更加具体。
可选的,本发明的一些实施例中,CSI包含PMI及RSRP,
处理模块602,还用于解析CSI,得到PMI及RSRP;
详细内容参考步骤503所述。
处理模块602,还用于根据PMI确定预编码矩阵;
详细内容参考步骤503所述。
处理模块602,还用于对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵。
详细内容参考步骤504所述。
本发明实施例中,用户设备反馈的CSI中包含PMI和RSRP,处理模块602通过解析CSI,得到PMI及RSRP,根据PMI从预编码码本中得到预编码矩阵,对RSRP进行开方,并乘以预编码矩阵,得到信道矩阵,对RSRP的获得的另一种方式进行说明,使得方案实施更加灵活。
可选的,如图7所示,本发明的一些实施例中,发送模块603包括:
信号处理单元701,用于获取每一个用户设备对应的用户信号,根据MU-MIMO权值对用户信号进行处理;
详细内容参考步骤506所述。
发射单元702,用于在每一个用户设备对应的基站天线组发送处理后的用户信号。
详细内容参考步骤506所述。
本发明实施例中,通信系统通过交换机等设备将每一个用户设备对应的用户信号下发至基站,信号处理单元701获取到需要发射到每一个用户设备的用户信号,由于用户信号的功率等特性未能达到传播要求,因此信号处理单元701需要将用户信号乘以对应用户设备的MU-MIMO权值进行正交化处理,并且发射单元702将信号处理单元701处理后的用户信号通过每一个用户设备对应的基站天线组进行发射,用户设备能接收并正确解析得到对应的用户信号。
上面介绍了基站模块化结构的实施例,下面介绍基站的实体装置。
请参阅图8,本发明实施例提供一种基站,应用于MU-MIMO系统,MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,包括:
收发台801,用于接收每一个用户设备发送的每一个天线组的CSI;
控制台802,用于根据CSI进行信道重构,得到信道矩阵;
控制台802,还用于根据信道矩阵得到用户设备的MU-MIMO权值;
收发台801,还用于根据MU-MIMO权值通过每一个用户设备对应的基站天线组发送用户信号。
本发明实施例中,在MU-MIMO系统中,包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,基站和用户设备均存储一套包含若干个预编码矩阵的预编码码本,基站连续发射下行导频信号,该基站覆盖范围内的用户设备检测下行导频信号并估计下行信道后,按照内部设定的准则选取当前下行信道估计结果在预编码码本中的最优量化结果,即得到PMI,PMI是默认承载于CSI中的,并且每一个用户设备反馈每一个基站天线组的CSI至基站,收发台801接收到每一个用户设备反馈的每一个基站天线组的CSI,控制台802根据CSI进行信道重构,得到信道矩阵,根据信道矩阵计算得到每一个用户设备的MU-MIMO权值,得到每一个用户设备的MU-MIMO权值后,收发台801根据MU-MIMO权值通过每一个用户设备对应的基站天线组发送用户信号,与现有技术相比,当一个用户设备存储的预编码码本存在量化误 差,而其他用户设备存储的预编码码本不存在量化误差时,由于根据各天线组的CSI进行了信道重构,得到信道矩阵,那么根据信道矩阵计算得到各用户设备的MU-MIMO权值是无偏差的,而现有技术中,得到的各用户设备的MU-MIMO权值是都存在偏差的,因此,本方案中各用户设备都能接收并正确解析得到对应的用户信号,有效的解决了现有技术中多个用户之间产生干扰的问题。
需要说明的是,收发台包括基站天线,单小区MU-MIMO系统如图2所示,多小区间MU-MIMO系统如图3所示,单小区MU-MIMO系统或多小区间MU-MIMO系统中的天线组数量至少包括两组以上,用户数量也至少两个以上,从图2中可以看出,eNB的数量为1个,那么eNB收发台中具有的基站天线组至少为两个,并且处于该eNB覆盖范围内的占用相同时隙资源的用户设备至少两个以上,从图3中可以看出,基站的数量为两个(eNB0和eNB1),那么每个基站的收发台包括的基站天线组至少为一个,并且两个基站之间的控制台是可以相互获取每一个基站天线组的CSI和每一个用户设备的MU-MIMO权值。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本发明实施例所提供的数据传输的方法、接入网设备及用户设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (11)

  1. 一种协调多用户间干扰的方法,其特征在于,应用于多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述方法包括:
    接收每一个用户设备发送的每一个基站天线组的信道状态信息CSI;
    根据所述CSI进行信道重构,得到信道矩阵;
    根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
    根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
  2. 根据权利要求1所述的协调多用户间干扰的方法,其特征在于,所述CSI包含预编码矩阵指示PMI,
    所述根据所述CSI进行信道重构,得到信道矩阵,包括:
    解析所述CSI,得到PMI;
    根据所述PMI确定预编码矩阵;
    根据所述预编码矩阵进行信道重构,得到信道矩阵。
  3. 根据权利要求2所述的协调多用户间干扰的方法,其特征在于,所述根据所述CSI进行信道重构,得到信道矩阵之前,还包括:
    获取所述每一个用户设备的小区参考信号接收强度RSRP;
    所述根据所述预编码矩阵进行信道重构,得到信道矩阵,包括:
    对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
  4. 根据权利要求1所述的协调多用户间干扰的方法,其特征在于,所述CSI包含PMI及RSRP,
    所述根据所述CSI进行信道重构,得到信道矩阵,包括:
    解析所述CSI,得到PMI及RSRP;
    根据所述PMI确定预编码矩阵;
    对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
  5. 根据权利要求1至4中任一项所述的协调多用户间干扰的方法,其特征在于,所述根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组 发送用户信号,包括:
    获取所述每一个用户设备对应的用户信号,根据所述MU-MIMO权值对所述用户信号进行处理;
    在所述每一个用户设备对应的基站天线组发送处理后的所述用户信号。
  6. 一种基站,其特征在于,应用于多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述基站包括:
    接收模块,用于接收每一个用户设备发送的每一个基站天线组的信道状态信息CSI;
    处理模块,用于根据所述CSI进行信道重构,得到信道矩阵;
    所述处理模块,还用于根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
    发送模块,根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
  7. 根据权利要求6所述的基站,其特征在于,所述CSI包含预编码矩阵指示PMI,
    所述处理模块,还用于解析所述CSI,得到PMI;
    所述处理模块,还用于根据所述PMI确定预编码矩阵;
    所述处理模块,还用于根据所述预编码矩阵进行信道重构,得到信道矩阵。
  8. 根据权利要求7所述的基站,其特征在于,
    所述接收模块,还用于获取所述每一个用户设备的小区参考信号接收强度RSRP;
    所述处理模块,还用于对所述RSRP进行开方,并乘以所述预编码矩阵,得到信道矩阵。
  9. 根据权利要求6所述的基站,其特征在于,所述CSI包含PMI及RSRP,
    所述处理模块,还用于解析所述CSI,得到PMI及RSRP;
    所述处理模块,还用于根据所述PMI确定预编码矩阵;
    所述处理模块,还用于对所述RSRP进行开方,并乘以所述预编码矩阵, 得到信道矩阵。
  10. 根据权利要求9所述的基站,其特征在于,所述发送模块包括:
    信号处理单元,用于获取所述每一个用户设备对应的用户信号,根据所述MU-MIMO权值对所述用户信号进行处理;
    发射单元,用于在所述每一个用户设备对应的天线组发送处理后的所述用户信号。
  11. 一种基站,其特征在于,应用于多用户多输入多输出MU-MIMO系统,所述MU-MIMO系统包含至少两个基站天线组及至少两个用户设备,每个用户设备对应一个基站天线组,所述基站包括:
    收发台,用于接收每一个用户设备发送的每一个基站天线组的信道状态信息CSI;
    控制台,用于根据所述CSI进行信道重构,得到信道矩阵;
    所述控制台,还用于根据所述信道矩阵得到所述每一个用户设备的MU-MIMO权值;
    所述收发台,还用于根据所述MU-MIMO权值在所述每一个用户设备对应的基站天线组发送用户信号。
PCT/CN2016/078030 2016-03-31 2016-03-31 一种协调多用户间干扰的方法及基站 WO2017166185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078030 WO2017166185A1 (zh) 2016-03-31 2016-03-31 一种协调多用户间干扰的方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078030 WO2017166185A1 (zh) 2016-03-31 2016-03-31 一种协调多用户间干扰的方法及基站

Publications (1)

Publication Number Publication Date
WO2017166185A1 true WO2017166185A1 (zh) 2017-10-05

Family

ID=59962396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078030 WO2017166185A1 (zh) 2016-03-31 2016-03-31 一种协调多用户间干扰的方法及基站

Country Status (1)

Country Link
WO (1) WO2017166185A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242273A (zh) * 2022-07-26 2022-10-25 四川创智联恒科技有限公司 一种5g mu-mimo用户识别、配对的方法
WO2023024095A1 (en) * 2021-08-27 2023-03-02 Lenovo (Beijing) Limited Method and apparatus for power control and interference coordination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291192A (zh) * 2007-04-18 2008-10-22 中兴通讯股份有限公司 时分双工方式下下行多用户多输入多输出的预编码方法
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN101998301A (zh) * 2009-08-21 2011-03-30 华为技术有限公司 实现CoMP场景下多用户MIMO的方法、装置及系统
US20130034187A1 (en) * 2010-02-24 2013-02-07 Ntt Docomo, Inc. Precoding weight generation method and control apparatus
CN103220088A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行干扰抵消的方法、终端和基站
CN104917559A (zh) * 2014-03-14 2015-09-16 华为技术有限公司 预编码矩阵索引测量装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291192A (zh) * 2007-04-18 2008-10-22 中兴通讯股份有限公司 时分双工方式下下行多用户多输入多输出的预编码方法
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN101998301A (zh) * 2009-08-21 2011-03-30 华为技术有限公司 实现CoMP场景下多用户MIMO的方法、装置及系统
US20130034187A1 (en) * 2010-02-24 2013-02-07 Ntt Docomo, Inc. Precoding weight generation method and control apparatus
CN103220088A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行干扰抵消的方法、终端和基站
CN104917559A (zh) * 2014-03-14 2015-09-16 华为技术有限公司 预编码矩阵索引测量装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024095A1 (en) * 2021-08-27 2023-03-02 Lenovo (Beijing) Limited Method and apparatus for power control and interference coordination
CN115242273A (zh) * 2022-07-26 2022-10-25 四川创智联恒科技有限公司 一种5g mu-mimo用户识别、配对的方法
CN115242273B (zh) * 2022-07-26 2023-09-26 四川创智联恒科技有限公司 一种5g mu-mimo用户识别、配对的方法

Similar Documents

Publication Publication Date Title
US11831379B2 (en) Method for feeding backchannel state information, user equipment, and base station
CN108028742B (zh) 用于先进的mimo通信系统的信号通知方法和装置
EP2557698B1 (en) Method and apparatus for information feedback and pre-coding
CN106165314B (zh) 用于在无线通信系统中报告信道状态信息的方法和装置
JP6325652B2 (ja) 無線通信システムにおいてチャネル状態情報送信方法及び装置
WO2018028310A1 (zh) 用于确定预编码矩阵的方法和装置
KR101832766B1 (ko) 무선 통신 시스템에서 코드북을 이용한 신호 송수신 방법 및 장치
US9369193B2 (en) Efficient feedback transmission method in multi-antenna wireless communication system and device for same
KR101995431B1 (ko) 무선통신 시스템에서 코드북 기반 프리코딩 행렬 정보를 피드백하는 방법 및 이를 위한 장치
EP2899896B1 (en) Method for transmitting efficient feedback in multi-antenna wireless communication system and apparatus therefor
TWI517620B (zh) 在多輸入多輸出(mimo)網路中通信的方法及裝置
US8693441B2 (en) Method and user equipment for feeding back multi-cell channel state information
WO2014036070A1 (en) Method and wireless terminal for mitigating downlink interference
EP3139509B1 (en) Multi-antenna data transmission method, base station, user equipment and system
JP6464143B2 (ja) 無線通信システムにおいてチャネル状態情報送信方法及び装置
EP4106246A1 (en) Channel state information feedback method and communication apparatus
WO2017166185A1 (zh) 一种协调多用户间干扰的方法及基站
CN109314563B (zh) 用于确定mimo无线通信系统中的csi的方法和装置
CN107733478B (zh) 信道反馈和预编码方法、基站、用户终端和系统
CN117678163A (zh) 用于端口选择码本增强的方法和装置
Li MU-MIMO uplink transmission scheme based on SVD in multicell scenario

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895966

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895966

Country of ref document: EP

Kind code of ref document: A1