WO2010121537A1 - 一种多输入多输出下行传输控制方法及装置 - Google Patents

一种多输入多输出下行传输控制方法及装置 Download PDF

Info

Publication number
WO2010121537A1
WO2010121537A1 PCT/CN2010/071909 CN2010071909W WO2010121537A1 WO 2010121537 A1 WO2010121537 A1 WO 2010121537A1 CN 2010071909 W CN2010071909 W CN 2010071909W WO 2010121537 A1 WO2010121537 A1 WO 2010121537A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
loop
channel
mode
channel fading
Prior art date
Application number
PCT/CN2010/071909
Other languages
English (en)
French (fr)
Inventor
张弓
龙毅
黄凯斌
程勇
刘坚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10766627.3A priority Critical patent/EP2416502B1/en
Priority to ES10766627.3T priority patent/ES2489117T3/es
Priority to BRPI1014172-3A priority patent/BRPI1014172B1/pt
Publication of WO2010121537A1 publication Critical patent/WO2010121537A1/zh
Priority to US13/278,645 priority patent/US8611244B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3911Fading models or fading generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme

Definitions

  • Multi-input multi-output downlink transmission control method and device The present application claims to be submitted to the Chinese Patent Office on April 21, 2009, and the application number is 200910130992.9.
  • the invention name is "a multi-input multi-output downlink transmission control method and device" in China.
  • the present invention relates to the field of communications technologies, and in particular, to a MIMO (Multi-input Multiple-output) downlink transmission control method and apparatus. BACKGROUND OF THE INVENTION Input multiple output MIMO technology has been widely used in current high speed communications and next generation wireless communication systems. Currently, MIMO technology has become an important physical layer part of the latest communication standards.
  • the MIMO technology is called closed loop; otherwise, it is called open loop.
  • closed loop the MIMO technology
  • open loop the advantages of closed-loop technology over open-loop technology are: Support for precoding, better link reliability, higher system throughput and simpler receiver structure.
  • the embodiment of the invention provides a multi-input and multi-output downlink transmission control method and device, which realizes feedback delay and mobility in downlink transmission control, and supports open-loop and closed-loop hybrid modes.
  • An embodiment of the present invention provides a MIMO downlink transmission control method, including: acquiring a channel fading change rate and a feedback delay of a user;
  • a closed loop MIMO throughput gain is calculated according to the channel fading rate of change and a feedback delay; and a downlink transmission mode is determined according to the closed loop MIMO throughput gain, the downlink transmission mode including a closed loop mode or an open loop mode.
  • an embodiment of the present invention provides a MIMO downlink transmission control apparatus, which includes:
  • An obtaining unit configured to acquire a channel fading change rate and a feedback delay of the user
  • a calculating unit configured to calculate a closed-loop MIMO throughput gain according to the channel fading change rate and a feedback delay
  • the mode switching control unit determines a downlink transmission mode according to a closed loop MIMO throughput gain, and the downlink transmission mode includes a closed loop mode or an open loop mode.
  • FIG. 1 is a flowchart of a MIMO downlink transmission control method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a MIMO downlink transmission control apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a mode selection handover control unit in the MIMO downlink transmission control apparatus shown in FIG.
  • FIG. 4 is a schematic structural view of an embodiment of an acquisition unit in the MIMO downlink transmission control apparatus shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of another embodiment of an acquiring unit in the MIMO downlink transmission control apparatus shown in FIG. Schematic diagram
  • FIG. 6 is a schematic structural diagram of a MIMO downlink transmission control apparatus according to still another embodiment of the present invention.
  • the embodiment of the invention provides a MIMO downlink transmission control method, where downlink transmission refers to data transmission from a base station device to a terminal device.
  • the MIMO downlink transmission control method includes:
  • a closed loop MIMO throughput gain is calculated according to the channel fading rate of change and a feedback delay; and a downlink transmission mode is determined according to the closed loop MIMO throughput gain, the downlink transmission mode including a closed loop mode or an open loop mode.
  • the embodiment of the present invention selects a downlink transmission mode according to a channel fading rate of change (ie, mobility) and a feedback delay of the user, and simultaneously supports different operation modes (open loop and closed loop), facilitates multi-user joint transmission, and further realizes utilization.
  • User mobility is different to increase downstream throughput.
  • An embodiment of the present invention provides a MIMO downlink transmission control method, which is illustrated in FIG. 1 and includes the following steps:
  • Step 10 Obtain the user's channel fading rate of change and feedback delay.
  • the rate of change of the channel fading of the user can be calculated according to the parameter information carried by the pilot signal.
  • the first implementation manner of obtaining the channel fading rate of change of the user is:
  • the channel state information CSI is obtained (for example, channel estimation).
  • the channel fading change rate of the user is calculated according to the CSI, that is, the base station itself calculates the channel fading change rate according to the pilot signal sent by the user.
  • the method for calculating the channel fading rate of the user by using the CSI may be: after obtaining the CSI according to the parameter information carried by the pilot signal, sampling the pilot signal according to a certain frequency to estimate the channel coefficient, and calculating the correlation according to the channel coefficient. Function, the Fourier transform of the correlation function to obtain the normalized channel fading rate of change, for example, by frequency ! (! indicates the sampling period)
  • the normalized channel fading variation is obtained. Rate / ⁇ 7.
  • a second implementation manner of obtaining a channel fading rate of change of a user is:
  • the base station receives the channel fading change rate calculated by the user according to the parameter information carried by the pilot signal sent by the base station, that is, the user equipment calculates the channel fading change rate according to the pilot signal sent by the base station, and sends the rate to the base station. .
  • the method for calculating the channel fading rate of change by the user equipment is the same as the method for calculating the channel fading rate of change with the base station.
  • the feedback delay in this embodiment can be estimated by calculating the transmission delay of the training sequence signal transmitted by the user side device at the base station. For example, Turin's discrete time model is used to calculate the delay.
  • the feedback delay may not be estimated by the training sequence signal, but the variation in the feedback delay includes the transmission delay. After ignoring the transmission delay, the feedback delay can be directly calculated according to the system frame structure.
  • Step 11 Calculate closed-loop MIMO throughput gain based on the channel fading rate of change and feedback delay.
  • the closed-loop MIMO throughput gain can be considered as the difference between the closed-loop MIMO and open-loop MIMO throughput; the base station calculates the closed-loop MIMO throughput gain for each user.
  • the closed-loop MIMO throughput gain can be expressed as " ⁇ , where" is a constant, a parameter related to the fading rate of change, and D is the user's feedback delay.
  • Step 12 Determine a downlink transmission mode according to the closed-loop MIMO throughput gain, and the downlink Transmission modes include closed loop mode or open loop mode.
  • the closed-loop MIMO throughput gain is greater than or equal to the first threshold, the closed-loop mode is used for downlink transmission. If the closed loop MIMO throughput gain is less than the second threshold, the open loop mode is used for downlink transmission.
  • the first threshold may be the same as or different from the second threshold. In the case where the first threshold is different from the second threshold, a gray band can be considered. When the closed-loop MIMO throughput gain is between the first threshold and the second threshold, the original mode can be maintained.
  • the embodiment of the present invention selects a downlink transmission mode based on a channel fading rate of change (ie, mobility) and a feedback delay of the user.
  • This embodiment implements different modes of operation simultaneously. (open loop and closed loop) for easy multi-user joint transmission. Further realize the difference in mobility to increase the downlink throughput.
  • the base station selects different modes of operation based on the closed-loop MIMO throughput gain of each user.
  • the feedback controller can adjust the user feedback frequency and feedback bandwidth through the user's mobility to alleviate the performance degradation caused by mobility.
  • control process of the feedback frequency in the embodiment is: adjusting the frequency of the user feedback channel state information according to the channel fading change rate, and the frequency of the user feedback channel state information increases as the channel fading change rate increases, ideally The frequency of the user feedback channel state information increases linearly with the increase of the channel fading rate.
  • This can compress the multi-user CSI feedback by channel time correlation, that is, the frequency utilization time correlation of the feedback channel state information of a user is obtained.
  • the frequency of feedback channel status information for other users is: adjusting the frequency of the user feedback channel state information according to the channel fading change rate, and the frequency of the user feedback channel state information increases as the channel fading change rate increases, ideally The frequency of the user feedback channel state information increases linearly with the increase of the channel fading rate.
  • the feedback bandwidth allocation control method in this embodiment is: determining whether the channel fading change rate is lower than a predetermined threshold; if lower than the predetermined threshold, allocating feedback bandwidth to the user according to different channel fading rate ratio Otherwise, the user feedback bandwidth is not allocated, that is, the high-speed mobile user is switched to the open-loop mode, and the solution allocates the feedback bandwidth according to the mobility of the user, thereby alleviating performance degradation due to mobility.
  • the user is scheduled after completing the operation mode selection and completing the user feedback frequency and the feedback bandwidth allocation.
  • the closed-loop user with the largest channel energy may be scheduled first, and then the user with the maximum throughput is scheduled in the user queue to be scheduled until Schedule all users.
  • the scheduling in the middle includes the allocation of resources, the order in which the subsequent data is sent, and the like.
  • the user's signal is encoded after the scheduling is completed.
  • the embodiments of the present invention provide the following two coding schemes:
  • the open-loop user signal is first coded by using a space-time code encoding method, and then the closed-loop user signal is pre-coded by selecting an encoding method that is less than a specified threshold value by the open-loop user signal. Specifically, including:
  • the interference generated by the user B's signal after precoding with the open loop user A is less than a specified threshold, that is, the signal of the closed loop user B is precoded to ensure the average of the signal from the closed loop user B to the open loop user A.
  • the interference power is less than the specified threshold.
  • the precoding subset can be obtained by calculating the subspace distance in the space time code matrix used by the open loop user A, and using the feedback CSI information of the closed loop user B to select one can maximize the closed loop user B.
  • a pre-coded subset of throughput can be obtained by calculating the subspace distance in the space time code matrix used by the open loop user A, and using the feedback CSI information of the closed loop user B to select one can maximize the closed loop user B.
  • the direct view portion of the channel of the open loop user is precoded, and then the result of the precoding of the open loop user is based on the orthogonality of the channel with the open loop user.
  • the closed loop user performs precoding.
  • the direct view portion of the open loop user's Rice channel that is, the long-term channel state information, refers to the average value of the channel state information that the user has feedback for a long time.
  • the coding scheme considers multiplexing some closed-loop users to open-loop users to improve spectrum efficiency.
  • the open-loop user channel is a Rice channel, and the slow-changing direct-view channel portion can be obtained through feedback, and the open-loop user A
  • the channel vector can be expressed as: Where h A ⁇ represents the direct view portion of the channel, and the change is slow; l A indicates the multipath portion of the channel, which changes rapidly;
  • K is the Rice factor, which determines the h A L ° S , power ratio.
  • h B is used to represent the channel vector of closed-loop user B, it is assumed to be a Rayleigh channel.
  • a user B is selected from a plurality of closed-loop users to be scheduled, and the channel is orthogonal to h A L ° s and most closely reflects the CSI channel characteristics of the feedback, and the coding is as follows:
  • the open loop user A uses a matched filter to transmit beamforming, utilizing
  • the precoding of the user B should select a coding scheme that is orthogonal to h A L ° s and similar to the CSI information fed back by the user B. Can be as follows: * -h D A _ ll, obtain f _ ⁇ v B *x) H user B's selection result, and approximate channel characteristic *x, and finally, obtain the pre-coding of the user by the formula ⁇ * ⁇ .
  • the embodiment of the present invention obtains the channel fading change rate (ie, mobility) and the feedback delay of the user according to the parameter information carried by the pilot signal, so that the downlink throughput can be increased by using different user mobility, and the embodiment is based on Channel fading rate of change (ie, mobility) and feedback delay calculation closed-loop ⁇ throughput gain, based on closed-loop ⁇ throughput gain as a basis for determining open-loop and closed-loop modes, enabling simultaneous support of different operating modes (open-loop and closed-loop) At the same time, it is convenient for multi-user joint transmission.
  • An embodiment of the present invention provides a downlink transmission control apparatus. As shown in FIG. 2, the apparatus includes:
  • the obtaining unit 20 is configured to acquire a channel fading change rate and a feedback delay of the user;
  • the calculating unit 21 is configured to calculate a closed loop ⁇ throughput gain according to the channel fading change rate and the feedback delay;
  • the mode switching control unit 22 determines a downlink transmission mode according to a closed loop MIMO throughput gain, and the downlink transmission mode includes a closed loop mode or an open loop mode.
  • the mode selection switching control unit 22 includes:
  • the first selecting unit 221 is configured to select to adopt a closed loop mode for downlink transmission when the closed loop MIMO throughput gain is greater than or equal to the first threshold.
  • the second selecting unit 223 is configured to select, in the open loop mode, downlink transmission when the closed loop MIMO throughput gain is less than the second threshold.
  • the obtaining unit 20 further includes:
  • a first receiving subunit 201 configured to receive a pilot signal
  • a first calculating subunit 202 configured to calculate channel state information according to parameter information carried by the pilot signal
  • the second calculating subunit 203 is configured to calculate a channel fading change rate and a feedback delay of the user according to the channel state information.
  • the obtaining unit 20 further includes:
  • the second receiving subunit 204 is configured to receive, by the user, a channel fading change rate and a feedback delay calculated by the parameter information carried by the pilot signal.
  • the MIMO downlink transmission control apparatus may further include: a feedback control unit 23, configured to: after acquiring the channel fading change rate, adjust a frequency of user feedback channel state information according to the channel fading change rate, And determining whether the channel fading change rate is lower than a predetermined threshold. If the threshold is lower than the predetermined threshold, the feedback bandwidth is allocated to the user according to different channel fading rate ratios, otherwise the feedback bandwidth is not allocated;
  • the scheduling unit 24 is configured to schedule the user, firstly schedule a closed-loop user with the largest channel energy, and then schedule the user with the largest throughput in the user queue to be scheduled.
  • the first coding unit 25 is configured to distinguish the ring mode of the user by using different coding modes, including: coding the open-loop user signal by using space-time code coding mode, and selecting a code that generates interference with the open-loop user signal that is less than a specified threshold. The method precodes the closed loop user signal. ,
  • the second coding unit 26 is configured to distinguish the mode of the user by using different coding modes, and the open loop The direct view portion of the user's channel is precoded, and then the closed loop user is precoded based on the orthogonality of the channel with the open loop user based on the result of the open loop user precoding
  • a plurality of first coding units or a plurality of second coding units may be set depending on the situation.
  • the channel fading rate of change (ie, mobility) and the feedback delay of the user in the embodiment of the present invention select the downlink transmission mode.
  • This embodiment implements different modes of operation simultaneously ( Open loop and closed loop) for easy multi-user joint transmission. Further realize the difference in mobility to increase the downlink throughput.
  • the embodiment of the present invention improves the downlink throughput by utilizing the channel fading rate of change (i.e., mobility) and the feedback delay of the user, thereby improving the downlink throughput by using different user mobility. It also supports different operating modes (open loop and closed loop) while facilitating multi-user joint transmission.
  • channel fading rate of change i.e., mobility
  • feedback delay of the user thereby improving the downlink throughput by using different user mobility. It also supports different operating modes (open loop and closed loop) while facilitating multi-user joint transmission.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk magnetic disk
  • optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Transmitters (AREA)
  • Studio Circuits (AREA)

Description

一种多输入多输出下行传输控制方法及装置 本申请要求于 2009年 04月 21 日提交中国专利局、 申请号为 200910130992.9发明名称为 "一种多输入多输出下行传输控制方法及装 置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种多输入多输出 (MIMO, Multiple-input Multiple-output ) 下行传输控制方法及装置。 发明背景 输入多输出 MIMO技术已广泛应用于当前的高速通信和下一代无线通 信系统中。 目前, MIMO技术已成为最新通信标准重要的物理层部分。 如果 要求反馈信道状态信息,该 MIMO技术称为闭环;反之称为开环。一般来说, 利用反馈的信道状态信息, 闭环技术比开环技术优势体现在: 支持预编码, 获取更好的链路的可靠性, 更高的系统吞吐量和更简单的接收器结构。
但闭环系统的性能受各种误差的影响较大, 例如, 反馈延迟、 用户移 动性、 CSI量化误差等, 而目前对于闭环系统的研究主要集中在有限反馈条 件下设计有效的量化算法和指出信道状态信息量化误差对下行吞吐量影响 的特征, 从而得到各种基于码字的预编码算法。 发明人在实现本发明过程 中, 发现现有技术至少存在如下缺点:
现有基数大多数多用户 MIMO的下行调度算法只考虑用户的信道状态 信息(CSI, Channel State Information), 不能很好的反映移动性并且现有 MIMO方案无法实现开环和闭环混合模式。
发明内容 本发明实施例提供一种多输入多输出下行传输控制方法及装置, 实现 了下行传输控制中考虑反馈延迟和移动性, 并支持开环与闭环混合模式。
本发明实施例提供一种多输入多输出 MIMO下行传输控制方法, 包括: 获取用户的信道衰落变化率和反馈延迟;
根据所述信道衰落变化率和反馈延迟计算得到闭环 MIMO吞吐量增益; 根据所述闭环 MIMO吞吐量增益确定下行传输模式,所述下行传输模式 包括闭环模式或开环模式。
同时本发明实施例提供一种多输入多输出 MIMO下行传输控制装置,包 括:
获取单元, 用于获取用户的信道衰落变化率和反馈延迟;
计算单元, 用于根据所述信道衰落变化率和反馈延迟计算闭环 MIMO 吞吐量增益;
模式切换控制单元,根据闭环 MIMO吞吐量增益确定下行传输模式,所 述下行传输模式包括闭环模式或开环模式。
由上述本发明实施例提供的技术方案可以看出, 本发明实施例基于用户的 信道衰落变化率 (即移动性)和反馈延迟选择下行传输模式, 本实施例实 现了同时支持不同的运行模式(开环和闭环) , 便于多用户联合传输。 进 一步实现移动性的不同来增加下行的吞吐量。 附图简要说明 图 1为本发明实施例 MIMO下行传输控制方法流程图;
图 2为本发明一种实施例 MIMO下行传输控制装置结构示意图; 图 3为图 2所示 MIMO下行传输控制装置中模式选择切换控制单元一种 实施例结构示意图
图 4为图 2所示 MIMO下行传输控制装置中获取单元一种实施例结构示 意图;
图 5为图 2所示 MIMO下行传输控制装置中获取单元又一种实施例结构 示意图;
图 6为本发明又一种实施例 MIMO下行传输控制装置结构示意图。
实施本发明的方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 可以理解的是, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。
本发明实施例提供一种 MIMO下行传输控制方法,下行传输指从基站设 备到终端设备方向的数据传输。 本例中 MIMO下行传输控制方法包括:
获取用户的信道衰落变化率和反馈延迟;
根据所述信道衰落变化率和反馈延迟计算闭环 MIMO吞吐量增益; 根据所述闭环 MIMO吞吐量增益确定下行传输模式,所述下行传输模式 包括闭环模式或开环模式。
本发明实施例根据用户的信道衰落变化率 (即移动性)和反馈延迟选 择下行传输模式, 实现了同时支持不同的运行模式(开环和闭环) , 便于 多用户联合传输, 并进一步实现利用多用户移动性的不同来增加下行的吞 吐量。 本发明实施例提供一种多输入多输出 MIMO下行传输控制方法, 以图 1 中所示为例, 包括如下步骤:
步骤 10: 获取用户的信道衰落变化率和反馈延迟。
用户的信道衰落变化率可以根据导频信号携带的参数信息计算得到。 获取用户的信道衰落变化率的第一种实施方式为:
基站接收到所述用户发送的导频信号; 根据导频信号携带的参数信息 (例如信道估计)得到信道状态信息 CSI; ^^据所述 CSI计算得到用户的信 道衰落变化率, 也就是基站本身根据用户发送的导频信号来计算信道衰落 变化率。 本实施例中 ^CSI计算得到用户的信道衰落变化率方法可以为: 根据导频信号携带的参数信息得到 CSI后, 按一定频率对导频信号进行采样 估计出信道系数, 根据信道系数计算出相关函数, 对该相关函数做傅利叶 转换即得到归一化的信道衰落变化率, 例如按频率丄 (!表示采样周期)
Ts
对导频信号进行采样, 估计出信道系 ¾ ^列 h2, ··· , hN, 计算出相关 函数 S = =i ft ^ , 通过对该函数做傅利叶转换即得到归一化的信道衰 落变化率/ β 7。
获取用户的信道衰落变化率的第二种实施方式为:
基站接收所述用户发送的根据基站发送的导频信号携带的参数信息计 算得到的用户的信道衰落变化率, 也就是由用户设备根据基站发送的导频 信号计算信道衰落变化率, 并发送给基站。 用户设备计算信道衰落变化率 的方法同基站计算信道衰落变化率的方法。
本实施例中反馈延迟可通过在基站计算用户侧设备发送的训练序列信 号的传输时延来估计。如采用 Turin的离散时间模型来计算延迟 。在本实施 例中也可以不通过训练序列信号估计反馈延迟, 而是反馈延迟中变化量包 含传输延迟, 忽略传输延迟后, 反馈延迟是可以依据系统帧结构直接计算 的。
步骤 11:根据所述信道衰落变化率和反馈延迟计算闭环 MIMO吞吐量增 益。
所述闭环 MIMO吞吐量增益可以认为闭环 MIMO和开环 MIMO的吞吐 量之差;基站为每个用户计算闭环 MIMO吞吐量增益。一般在高散射的环境 中, 闭环 MIMO吞吐量增益可以表示成" ^, 其中"是一个常数, 是衰落 变化率相关的参数, D是用户的反馈延迟。
步骤 12:根据所述闭环 MIMO吞吐量增益确定下行传输模式,所述下行 传输模式包括闭环模式或开环模式。
若所述闭环 MIMO吞吐量增益大于或等于第一阔值,则采用闭环模式进 行下行传输。若所述闭环 MIMO吞吐量增益小于第二阔值, 则采用开环模式 进行下行传输。 实践中该第一阔值可以与第二阔值相同, 也可以不同。 在 第一阔值与第二阔值不同的情况下可以认为有一个灰色带, 当闭环 MIMO 吞吐量增益在第一阔值与第二阔值之间时可以保持原来的模式不变。
由上述本发明实施例提供的技术方案可以看出, 本发明实施例基于用 户的信道衰落变化率 (即移动性)和反馈延迟选择下行的传输模式, 本实 施例实现了同时支持不同的运行模式(开环和闭环) , 便于多用户联合传 输。 进一步实现移动性的不同来增加下行的吞吐量。
基站基于每个用户的闭环 MIMO吞吐量增益选择不同操作模式。同时反 馈控制器可通过用户的移动性来调整用户反馈频率和反馈带宽, 缓解由于 移动性带来的性能退化。
进一步, 本实施例中反馈频率的控制过程为: 根据所述信道衰落变化 率调整用户反馈信道状态信息的频率, 用户反馈信道状态信息的频率随信 道衰落变化率的增加而增加, 理想的情况下用户反馈信道状态信息的频率 随信道衰落变化率的增加呈线性增加, 这样可以利用信道时间相关性压缩 多用户的 CSI反馈, 也就是通过一个用户的反馈信道状态信息的频率利用时 间相关性得到相关的其他用户的反馈信道状态信息的频率。
本实施例中反馈带宽分配控制方法过程为: 判断所述信道衰落变化率 是否低于预定临界值; 若低于所述预定临界值, 则根据不同信道衰落变化 率比例分配反馈带宽给所述用户, 否则不分配所述用户反馈带宽, 即, 将 高速移动的用户切换到开环模式, 本方案才 据用户的移动性来分配反馈带 宽, 缓解了由于移动性带来的性能退化。
完成操作模式选择及完成用户反馈频率的和反馈带宽分配之后对用户 进行调度, 调度用户时, 可以先调度最大信道能量的闭环用户, 然后在待 调度的用户队列中调度最大吞吐量的用户, 直到调度完所有用户。 在本例 中讲的调度包含资源的分配, 排列后续发送数据的顺序等。
调度完成后对用户的信号进行编码。 本发明实施例提供如下两种编码 方案:
作为编码方案的第一种实施方式, 先对开环用户信号使用空时码编码 方式编码, 再选择与所述开环用户信号产生的干扰小于规定阔值的编码方 式对闭环用户信号进行预编码, 具体包括:
先在空时编码矩阵中选择开环用户 A的编码信号, 在对闭环用户 B信号 编码前, 对开环用户 A的信号采用空时码, 同时存在 B的一个预编码子集, 满足对闭环用户 B的信号进行预编码后与所述开环用户 A的信号产生的干扰 小于规定阔值, 即对闭环用户 B的信号进行预编码要确保从闭环用户 B到开 环用户 A的信号的平均干扰功率小于规定阔值。所述预编码子集可通过计算 从开环用户 A使用的空时码矩阵中的子空间距离来获得,利用反馈的闭环用 户 B的 CSI的信息,来选择一个可最大限度地提高闭环用户 B吞吐量的预编码 子集。
作为编码方案的第二种实施方式, 对开环用户的信道的直视部分进行 预编码, 然后^^据开环用户预编码的结果, 基于与所述开环用户的信道的 正交性对闭环用户进行预编码。
本发明实施例所述开环用户莱斯信道的直视部分, 即长期信道状态信 息, 是指该用户预定长时间内反馈的信道状态信息的平均值。
目前, 有限的流量使得开环用户不能充分利用给定的时频资源, 导致 正交接入效率不高。 本编码方案考虑复用一些闭环用户到开环用户上, 以 提高频谱效率, 一般情况下开环用户信道是莱斯信道, 其变化缓慢的直视 信道部分可通过反馈获得, 则开环用户 A的信道矢量可表示成:
Figure imgf000008_0001
其中 hA ^表示信道的直视部分, 变化较慢; l A表示信道多径部分, 变化较快;
K为莱斯因子, 决定 hA L°S, 功率比。
如果用 hB表示闭环用户 B的信道矢量,假定是瑞利信道。在调度该开环 用户 A的过程中从多个待调度闭环用户中选择一用户 B, 使其信道与 hA L°s正 交且最能近似反映反馈的 CSI信道特征, 编码如下:
在预编码处理时,对开环用户 A使用匹配滤波器来传输波束成型, 利用
公式
Figure imgf000009_0001
表示 A用户的预编码, 对于闭环用户 B, 为减少与用 户 A干扰, 用户的 B的预编码应该选择与 hA L°s正交且与用户 B反馈的 CSI信息 相近的编码方案, 具体算法可以如下: * -hD
Figure imgf000009_0002
A _ ll, 获得 f _ {vB *x)H 用户 B的选择结果, 和近似的信道特征 *x, 最后, 通过公式 Ι^ * Ι获 得 Β用户的预编码。
本发明实施例根据导频信号携带的参数信息获得用户的信道衰落变化 率 (即移动性)和反馈延迟, 从而可利用多用户移动性的不同来增加下行 的吞吐量, 另外, 本实施例根据信道衰落变化率 (即移动性)和反馈延迟 计算闭环 ΜΙΜΟ吞吐量增益,根据闭环 ΜΙΜΟ吞吐量增益作为确定开环和闭 环模式的根据, 实现了同时支持不同的运行模式(开环和闭环) 的同时, 便于多用户联合传输。 本发明实施例提供一种 ΜΙΜΟ下行传输控制装置, 以图 2中所示为例, 该装置包括:
获取单元 20, 用于获取用户的信道衰落变化率和反馈延迟;
计算单元 21,用于根据所述信道衰落变化率和反馈延迟计算闭环 ΜΙΜΟ 吞吐量增益; 模式切换控制单元 22, 根据闭环 MIMO吞吐量增益确定下行传输模式, 所述下行传输模式包括闭环模式或开环模式。
如图 3所示, 模式选择切换控制单元 22包括:
第一选择单元 221, 用于当所述闭环 MIMO吞吐量增益大于或等于第一 阔值时, 选择采用闭环模式进行下行传输。
第二选择单元 223,用于当所述闭环 MIMO吞吐量增益小于第二阔值时, 选择采用开环模式进行下行传输。
如图 4所示, 所述获取单元 20进一步包括:
第一接收子单元 201, 用于接收导频信号;
第一计算子单元 202, 用于根据导频信号携带的参数信息计算信道状态 信息;
第二计算子单元 203, 用于根据所述信道状态信息计算得到用户的信道 衰落变化率和反馈延迟。
或者, 如图 5所示, 所述获取单元 20进一步包括:
第二接收子单元 204, 用于接收所述用户发送的根据导频信号携带的参 数信息计算得到的用户的信道衰落变化率和反馈延迟。
如图 6所示, 该 MIMO下行传输控制装置还可以包括下述单元: 反馈控制单元 23, 用于获取所述信道衰落变化率后根据所述信道衰落 变化率调整用户反馈信道状态信息的频率, 以及判断所述信道衰落变化率 是否低于预定临界值, 若低于所述预定临界值, 则根据不同信道衰落变化 率比例分配反馈带宽给所述用户, 否则不分配反馈带宽;
调度单元 24, 用于对用户进行调度, 先调度最大信道能量的闭环用户, 然后在待调度的用户队列中调度最大吞吐量的用户。
第一编码单元 25, 用于区分用户的环模式采用不同的编码方式, 包括: 对开环用户信号使用空时码编码方式编码, 选择与所述开环用户信号产生 干扰小于规定阔值的编码方式对闭环用户信号进行预编码。 ,
第二编码单元 26, 用于区分用户的模式采用不同的编码方式, 对开环 用户的信道的直视部分进行预编码, 然后根据开环用户预编码的结果, 基 于与所述开环用户的信道的正交性对闭环用户进行预编码
实际的应用中根据情况可以设置多个第一编码单元或多个第二编码单 元。
由上述本发明实施例提供的技术方案可以看出, 本发明实施例用户的 信道衰落变化率 (即移动性)和反馈延迟选择下行的传输模式, 本实施例 实现了同时支持不同的运行模式(开环和闭环) , 便于多用户联合传输。 进一步实现移动性的不同来增加下行的吞吐量。
综上所述, 本发明实施例^^据用户的信道衰落变化率 (即移动性)和 反馈延迟, 从而可利用多用户移动性的不同来增加下行的吞吐量, 另外, 本实施例实现了同时支持不同的运行模式(开环和闭环) 的同时, 便于多 用户联合传输。
本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分 步骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计 算机可读存储介质中。 该可读存储介质例如只读存储器(简称 ROM ) 、 随 取存储器(简称 RAM ) 、 磁盘、 光盘等。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并 不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种多输入多输出 MIMO下行传输控制方法, 其特征在于, 包括: 获取用户的信道衰落变化率和反馈延迟;
根据所述信道衰落变化率和反馈延迟计算得到闭环 MIMO吞吐量增益; 根据所述闭环 MIMO吞吐量增益确定下行传输模式,所述下行传输模式 包括闭环模式或开环模式。
2、如权利要求 1所述的方法, 其特征在于,根据闭环 MIMO吞吐量增益 确定下行传输模式包括:
若所述闭环 MIMO吞吐量增益大于或等于第一阔值,则采用闭环模式进 行下行传输。
3、如权利要求 1所述的方法, 其特征在于,根据闭环 MIMO吞吐量增益 确定下行传输模式包括:
若所述闭环 MIMO吞吐量增益小于第二阔值,则采用开环模式进行下行 传输。
4、 如权利要求 1所述的方法, 其特征在于, 还包括:
获取所述信道衰落变化率后根据所述信道衰落变化率调整用户反馈信 道状态信息的频率, 所述用户反馈信道状态信息的频率随信道衰落变化率 的增力口而增力口。
5、 如权利要求 1所述的方法, 其特征在于, 还包括:
判断所述信道衰落变化率是否低于预定临界值;
若低于所述预定临界值, 则根据信道衰落变化率分配反馈带宽给所述 用户, 否则不分配反馈带宽。
6、 如权利要求 4所述的方法, 其特征在于, 还包括:
对用户进行调度, 先调度最大信道能量的闭环用户, 然后在待调度的 用户队列中调度最大吞吐量的用户。
7、 如权利要求 6所述的方法, 其特征在于, 还包括:
对开环用户信号使用空时码编码方式编码;
选择与所述开环用户信号产生干扰小于规定阔值的编码方式对闭环用 户信号进行预编码。
8、 如权利要求 6所述的方法, 其特征在于, 还包括:
对开环用户的信道的直视部分进行预编码, 然后根据开环用户预编码 的结果, 基于与所述开环用户的信道的正交性对闭环用户进行预编码。
9、 如权利要求 1所述的方法, 其特征在于, 所述信道衰落变化率根据 导频信号携带的参数信息计算获得;
所述获取用户的信道衰落变化率和反馈延迟包括:
接收到所述用户发送的导频信号;
根据导频信号携带的参数信息得到信道状态信息;
根据所述信道状态信息计算得到用户的信道衰落变化率和反馈延迟。
10、 如权利要求 1所述的方法, 其特征在于, 所述根据所述信道衰落变 化率和反馈延迟计算闭环 MIMO吞吐量增益过程包括:
所述闭环 MIMO吞吐量增益为 o^, 其中"为常数, 为根据所述信道 衰落变化率获得的信道衰落变化率参数, D为所述反馈延迟。
11、 一种多输入多输出 MIMO下行传输控制装置, 其特征在于, 包括: 获取单元, 用于获取用户的信道衰落变化率和反馈延迟;
计算单元, 用于根据所述信道衰落变化率和反馈延迟计算闭环 MIMO 吞吐量增益;
模式切换控制单元,根据闭环 MIMO吞吐量增益确定下行传输模式,所 述下行传输模式包括闭环模式或开环模式。
12、 如权利要求 11所述的装置, 其特征在于, 所述模式切换控制单元 包括第一选择单元,用于当所述闭环 MIMO吞吐量增益大于或等于第一阔值 时, 选择采用闭环模式进行下行传输。
13、 如权利要求 11所述的装置, 其特征在于, 所述模式切换控制单元 包括第二选择单元,用于当所述闭环 MIMO吞吐量增益小于第二阔值时,选 择采用开环模式进行下行传输。
14、 如权利要求 11所述的装置, 其特征在于, 所述获取单元进一步包 括:
第一接收子单元, 用于接收导频信号;
第一计算子单元, 用于根据导频信号携带的参数信息计算信道状态信 息;
第二计算子单元, 用于根据所述信道状态信息计算得到用户的信道衰 落变化率和反馈延迟。
15、 如权利要求 11所述的装置, 其特征在于, 所述获取单元进一步包 括:
第二接收子单元, 用于接收所述用户发送的根据导频信号携带的参数 信息计算得到的用户的信道衰落变化率和反馈延迟。
16、 如权利要求 11所述的装置, 其特征在于, 还包括:
反馈控制单元, 用于获取所述信道衰落变化率后根据所述信道衰落变 化率调整用户反馈信道状态信息的频率, 以及判断所述信道衰落变化率是 否低于预定临界值, 若低于所述预定临界值, 则根据不同信道衰落变化率 比例分配反馈带宽给所述用户, 否则不分配反馈带宽。
17、 如权利要求 11所述的装置, 其特征在于, 还包括:
调度单元, 用于对用户进行调度, 先调度最大信道能量的闭环用户, 然后在待调度的用户队列中调度最大吞吐量的用户。
18、 如权利要求 11所述的装置, 其特征在于, 还包括:
第一编码单元, 用于区分用户的模式采用不同的编码方式, 对开环用 户信号使用空时码编码方式编码, 选择与所述开环用户信号产生干扰小于 规定阔值的编码方式对闭环用户信号进行预编码。
19、 如权利要求 11所述的装置, 其特征在于, 还包括: 第二编码单元, 用于区分用户的模式采用不同的编码方式, 对开环用 户的信道的直视部分进行预编码, 然后根据开环用户预编码的结果, 基于 与所述开环用户的信道的正交性对闭环用户进行预编码。
20、如权利要求 11所述的装置,其特征在于,所述计算单元通过公式" ^ 计算闭环 MIMO吞吐量增益,其中"是一个常数, 为信道衰落变化率参数, D为所述反馈延迟。
PCT/CN2010/071909 2009-04-21 2010-04-20 一种多输入多输出下行传输控制方法及装置 WO2010121537A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10766627.3A EP2416502B1 (en) 2009-04-21 2010-04-20 Method and apparatus for multiple input multiple output (mimo) downlink transmission control
ES10766627.3T ES2489117T3 (es) 2009-04-21 2010-04-20 Método y aparato para un control de transmisión de enlace descendente del tipo de Múltiples Entradas, Múltiples Salidas (MIMO)
BRPI1014172-3A BRPI1014172B1 (pt) 2009-04-21 2010-04-20 método e aparelho para controle de transmissão de enlace descendente de múltiplas entradas e múltiplas saídas
US13/278,645 US8611244B2 (en) 2009-04-21 2011-10-21 Method and apparatus for multi-input multi-output downlink transmission control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910130992.9 2009-04-21
CN2009101309929A CN101873159B (zh) 2009-04-21 2009-04-21 一种多输入多输出下行传输控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/278,645 Continuation US8611244B2 (en) 2009-04-21 2011-10-21 Method and apparatus for multi-input multi-output downlink transmission control

Publications (1)

Publication Number Publication Date
WO2010121537A1 true WO2010121537A1 (zh) 2010-10-28

Family

ID=42997842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071909 WO2010121537A1 (zh) 2009-04-21 2010-04-20 一种多输入多输出下行传输控制方法及装置

Country Status (6)

Country Link
US (1) US8611244B2 (zh)
EP (1) EP2416502B1 (zh)
CN (1) CN101873159B (zh)
BR (1) BRPI1014172B1 (zh)
ES (1) ES2489117T3 (zh)
WO (1) WO2010121537A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022142A1 (en) * 2011-07-20 2013-01-24 Sairamesh Nammi Base station and method for implementing an adaptive closed-loop mimo and open-loop mimo technique in a wireless communication system
US8611244B2 (en) 2009-04-21 2013-12-17 Huawei Technologies Co., Ltd. Method and apparatus for multi-input multi-output downlink transmission control
US9762456B2 (en) 2015-03-17 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Access node, control node, and various methods for adapting a reporting period for a user equipment

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244564B (zh) * 2010-05-11 2014-12-10 中兴通讯股份有限公司 多输入多输出mimo系统的下行传输方法和基站
CN102055567B (zh) * 2011-01-26 2014-04-02 上海华为技术有限公司 多输入多输出模式切换方法和终端设备
US9705659B2 (en) 2011-04-11 2017-07-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for providing uplink feedback optimization
WO2012152993A1 (en) * 2011-05-10 2012-11-15 Nokia Corporation Delay feedback for coordinated multi-point transmission
CN102255694A (zh) * 2011-07-19 2011-11-23 电信科学技术研究院 信道状态信息传输方法和设备
US8644181B2 (en) * 2011-08-16 2014-02-04 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for estimation of channel temporal correlation and MIMO mode selection in LTE system
CN104486041B (zh) * 2012-04-11 2018-06-05 华为技术有限公司 一种传输模式配置方法和装置
EP2950459B1 (en) * 2012-04-11 2019-10-02 Huawei Technologies Co., Ltd. Method and apparatus for configuring transmission mode
CN103378925B (zh) * 2012-04-18 2018-01-02 中兴通讯股份有限公司 基于传输时间间隔捆绑的数据传输方法和装置
US10153811B2 (en) * 2012-06-14 2018-12-11 Samsung Electronics Co., Ltd. Communication system with communication-layer maximization mechanism and method of operation thereof
US9036608B2 (en) * 2012-11-09 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive transmission mode switching
CN104798318B (zh) * 2012-11-15 2017-10-31 安华高科技通用Ip(新加坡)公司 使用大量基站天线的蜂窝通信系统的预编码和调度
US9060287B2 (en) * 2013-03-11 2015-06-16 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measurement method for non-intrusive throughput measurement in communication networks
KR102357905B1 (ko) * 2015-08-18 2022-02-03 삼성전자 주식회사 개루프 다중 입출력 기술을 이용해 신호를 송수신하는 방법 및 장치
WO2018161299A1 (zh) * 2017-03-09 2018-09-13 华为技术有限公司 无线通信的方法、控制设备、节点和终端设备
WO2018232734A1 (en) * 2017-06-23 2018-12-27 Qualcomm Incorporated SIGNALING OF TRANSMISSION STRATEGY
CN110661557B (zh) * 2018-06-29 2021-08-24 中兴通讯股份有限公司 基于mumimo进行模式切换的方法、设备和存储介质
CN109150348B (zh) * 2018-08-28 2021-03-16 合肥工业大学 一种莱斯因子矩估计方法及无线信道莱斯因子矩实现系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691536A (zh) * 2004-04-28 2005-11-02 索尼株式会社 无线通信系统
CN1805326A (zh) * 2005-01-11 2006-07-19 松下电器产业株式会社 多用户多输入多输出系统的跨层联合优化方法及装置
CN1829113A (zh) * 2005-03-04 2006-09-06 松下电器产业株式会社 一种信道自适应的多用户多输入多输出传输调度方法
CN1893308A (zh) * 2005-07-06 2007-01-10 都科摩(北京)通信技术研究中心有限公司 Mimo通信系统以及用户调度方法
US20080219369A1 (en) * 2007-03-09 2008-09-11 The Hong Kong University Of Science And Technology Robust rate, power and precoder adaptation for slow fading mimo channels with noisy limited feedback

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831943B1 (en) * 1999-08-13 2004-12-14 Texas Instruments Incorporated Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification
KR100896682B1 (ko) 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
KR100899735B1 (ko) 2002-07-03 2009-05-27 삼성전자주식회사 이동 통신 시스템에서 적응적 전송 안테나 다이버시티장치 및 방법
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
SE0400370D0 (sv) * 2004-02-13 2004-02-13 Ericsson Telefon Ab L M Adaptive MIMO architecture
KR101072892B1 (ko) 2007-06-26 2011-10-17 브로드콤 코포레이션 다중 안테나 시스템들을 위한 상이한 폐-루프, 개방-루프 및 하이브리드 기법들 사이에서 적응을 위한 방법 및 시스템
US8259871B2 (en) * 2007-07-18 2012-09-04 Panasonic Corporation Reception device, transmission device, and adaptive transmission rate control method
US8098752B2 (en) * 2007-07-31 2012-01-17 Samsung Electronics Co., Ltd. Apparatus and method for supporting a plurality of MIMO modes in a wireless communication system
WO2009025029A1 (ja) * 2007-08-21 2009-02-26 Fujitsu Limited 移動局および送信ダイバーシチ制御方法
JP5136557B2 (ja) * 2007-09-06 2013-02-06 富士通株式会社 適応マルチアンテナを用いる移動体通信システム
KR101001015B1 (ko) * 2008-09-25 2010-12-14 한국전자통신연구원 다운링크 송신 모드를 적응적으로 결정하는 다중 안테나 무선 통신 시스템
KR101549004B1 (ko) * 2008-12-31 2015-09-11 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 모드 결정 기법
CN101873159B (zh) 2009-04-21 2013-01-16 华为技术有限公司 一种多输入多输出下行传输控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691536A (zh) * 2004-04-28 2005-11-02 索尼株式会社 无线通信系统
CN1805326A (zh) * 2005-01-11 2006-07-19 松下电器产业株式会社 多用户多输入多输出系统的跨层联合优化方法及装置
CN1829113A (zh) * 2005-03-04 2006-09-06 松下电器产业株式会社 一种信道自适应的多用户多输入多输出传输调度方法
CN1893308A (zh) * 2005-07-06 2007-01-10 都科摩(北京)通信技术研究中心有限公司 Mimo通信系统以及用户调度方法
US20080219369A1 (en) * 2007-03-09 2008-09-11 The Hong Kong University Of Science And Technology Robust rate, power and precoder adaptation for slow fading mimo channels with noisy limited feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416502A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611244B2 (en) 2009-04-21 2013-12-17 Huawei Technologies Co., Ltd. Method and apparatus for multi-input multi-output downlink transmission control
US20130022142A1 (en) * 2011-07-20 2013-01-24 Sairamesh Nammi Base station and method for implementing an adaptive closed-loop mimo and open-loop mimo technique in a wireless communication system
US9762456B2 (en) 2015-03-17 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Access node, control node, and various methods for adapting a reporting period for a user equipment

Also Published As

Publication number Publication date
EP2416502A4 (en) 2012-04-18
EP2416502A1 (en) 2012-02-08
CN101873159B (zh) 2013-01-16
BRPI1014172A2 (pt) 2019-04-16
CN101873159A (zh) 2010-10-27
BRPI1014172B1 (pt) 2021-02-23
US8611244B2 (en) 2013-12-17
ES2489117T3 (es) 2014-09-01
US20120093016A1 (en) 2012-04-19
EP2416502B1 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2010121537A1 (zh) 一种多输入多输出下行传输控制方法及装置
KR101536551B1 (ko) Mimo 시스템에서 피드백 레이트를 감소시키는 피드백 스케줄링
JP4173137B2 (ja) データ伝送レートのランクアダプティブな適合化を有するmimo信号処理方法
JP5244172B2 (ja) 無線通信ネットワークにおける複数アンテナ送信を制御する方法及び装置
WO2009030102A1 (fr) Procédé de codage à l'avance et de planification pour utilisateurs multiples et station de base pour mettre en œuvre le procédé
WO2008128439A1 (fr) Procédé et dispositif pour réduire le nombre de bits de précodage par rétroaction en fonction d'une recherche de livre de codage dans un système mimo-ofdm
KR101978771B1 (ko) 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
WO2012000290A1 (zh) Mimo系统中的资源调度方法和装置
WO2010043129A1 (zh) 一种下行多输入多输出模式自适应切换的方法和系统
WO2011140788A1 (zh) 用于多输入多输出系统的下行传输方法和基站
WO2005055465A1 (en) Apparatus and method for transmitting data by selected eigenvector in closed loop mimo mobile communication system
JP2009141957A (ja) Mimoシステムのプレコーディング伝送方法
JP2013502834A (ja) ワイヤレス通信ネットワーク中の複数ユーザのmimoのためのスケジューリング
WO2012037480A1 (en) Low complexity link adaptation for lte/lte-a uplink with a turbo receiver
TWI538428B (zh) 在網路中通信的方法、副站台及主站台
WO2012100745A1 (zh) 多输入多输出模式切换方法和终端设备
WO2010081412A1 (zh) 预编码反馈方法及系统、用户设备和基站
WO2011160387A1 (zh) 多输入多输出的资源调度方法和基站
US20100322101A1 (en) Method and device for reporting, through a wireless network, a channel state information between a first telecommunication device and a second telecommunication device
US9641235B2 (en) Method and apparatus for transmitting and receiving channel state information
WO2009092184A1 (zh) 时分双工多入多出下行发射系统的用户调度方法和装置
Xia et al. Open-loop link adaptation for next-generation IEEE 802.11 n wireless networks
CN102158270A (zh) 一种多用户mimo系统的子信道选择和发送预编码方法
WO2009089721A1 (fr) Procédé, dispositif et système de formation de faisceaux par duplexage à répartition dans le temps à entrées multiples et sorties multiples
WO2011046825A1 (en) An adaptive beam-forming and space-frequency block coding transmission scheme for mimo-ofdma systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010766627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4553/KOLNP/2011

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014172

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014172

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111021