WO2023045416A1 - 一种升降压逆变器及其控制方法 - Google Patents

一种升降压逆变器及其控制方法 Download PDF

Info

Publication number
WO2023045416A1
WO2023045416A1 PCT/CN2022/098578 CN2022098578W WO2023045416A1 WO 2023045416 A1 WO2023045416 A1 WO 2023045416A1 CN 2022098578 W CN2022098578 W CN 2022098578W WO 2023045416 A1 WO2023045416 A1 WO 2023045416A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switch
current
input
grid
Prior art date
Application number
PCT/CN2022/098578
Other languages
English (en)
French (fr)
Inventor
姚志垒
祁杰
单长磊
蔡亮
何翔宇
周树朋
Original Assignee
上海海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海事大学 filed Critical 上海海事大学
Priority to JP2023529029A priority Critical patent/JP2023549868A/ja
Publication of WO2023045416A1 publication Critical patent/WO2023045416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the field of inverters, in particular to a buck-boost inverter and a control method thereof.
  • the output voltage of photovoltaic modules is usually low, requiring non-isolated inverters to realize the function of buck-boost conversion.
  • the traditional method uses two-stage conversion to realize buck-boost conversion, that is, a cascaded method of boost converter and inverter , reducing the system efficiency.
  • the purpose of the present invention is to provide a buck-boost inverter and its control method, which aims to solve the problem that the traditional inverter cannot realize the buck-boost conversion, eliminate the common-mode leakage phenomenon, and improve the conversion of the photovoltaic inverter system. efficiency.
  • a buck-boost inverter comprising:
  • An input power supply the negative pole of which is connected to the negative pole of the power grid, and the negative pole of the input power supply and the negative pole of the power grid are commonly grounded;
  • the filter unit includes a filter inductor, a damping resistor and a filter capacitor; the first end of the filter inductor is connected to the positive pole of the power grid, the first end of the damping resistor is respectively connected to the second end of the second switch and the negative pole of the grid, and the second end of the damping resistor is connected to the negative pole of the grid.
  • the two terminals are connected to the first terminal of the filter capacitor;
  • the coupled inductor includes a primary winding and a secondary winding; the first end of the primary winding of the coupled inductor is respectively connected to the second end of the filter inductor, the second end of the filter capacitor, and the fourth end of the secondary winding of the coupled inductor, The second end is respectively connected to the positive pole of the input power supply through a third switch and a first switch, then the primary winding of the coupled inductor is connected to the power grid, the filter unit, the input power supply, the third switch and the
  • the first switch constitutes a first closed loop; the primary winding of the coupled inductor, the power grid, the filter unit, the third switch and a second switch constitute a first freewheeling loop;
  • the third end of the secondary winding of the coupled inductor is respectively connected to the negative pole of the grid through a fourth switch and the second switch, and the secondary winding of the coupled inductor is connected to the grid, the filter unit, and the fourth switch and the second switch to form a second freewheeling circuit;
  • the drive unit is controlled, the input ends are respectively connected to the power grid, the input power supply, the primary winding of the coupled inductor, and the secondary winding of the coupled inductor, and the output ends are respectively connected to the first switch, the second switch, the
  • the third switch is connected to the fourth switch, and is used to respectively drive and control the opening and closing of each switch, so as to connect each closed circuit, and then complete the adjustment of the grid current.
  • control drive unit also includes:
  • the sensor system the input end is respectively connected with the grid, the input power supply, the primary winding of the coupled inductor, and the secondary winding of the coupled inductor, and respectively collects the grid voltage feedback signal of the grid, the voltage feedback signal of the input power supply, the A first current feedback signal of the primary winding of the coupled inductor and a second current feedback signal of the secondary winding of the coupled inductor;
  • DSP the input end of which is connected to the first output end of the sensor system, performs voltage signal processing on the grid voltage feedback signal, and generates the first current reference signal and the second current reference signal respectively;
  • a control circuit the first input terminal is connected to the output terminal of the DSP, the second input terminal is connected to the output terminal of the sensor system, according to the first current reference signal and the second current reference signal, and the The signal obtained by subtracting the first current feedback signal from the second current feedback signal is subjected to current comparison control to generate a first switch logic signal, a second switch logic signal, a third switch logic signal and a fourth switch logic signal;
  • a drive circuit the input terminal is connected to the output terminal of the control circuit, and the output terminal is respectively connected to the first switch, the second switch, the third switch and the fourth switch, according to the first
  • the switch logic signal, the second switch logic signal, the third switch logic signal, and the fourth switch logic signal generate a first drive signal, a second drive signal, a third drive signal, and a fourth drive signal correspondingly, To drive the opening and closing of each switch accordingly.
  • the sensor system includes:
  • a grid voltage sensor the input terminal is connected to the grid, and the first output terminal is connected to the input terminal of the DSP, for collecting the grid voltage feedback signal and transmitting it to the DSP;
  • an input voltage sensor the input end of which is connected to the input power supply, and the first output end is connected to the input end of the DSP, for collecting the input power supply voltage feedback signal and transmitting it to the DSP;
  • the first current sensor has an input end connected to the primary winding of the transformer, and an output end connected to the second input end of the control circuit, for collecting the first current feedback signal and transmitting it to the control circuit ;
  • the second current sensor has an input end connected to the secondary winding of the transformer, and an output end connected to the second input end of the control circuit, for collecting the second current feedback signal and transmitting it to the control circuit .
  • the digital signal processor includes:
  • a first analog-to-digital conversion module the input end of which is connected to the first output end of the grid voltage sensor, and performs the first analog-to-digital conversion on the grid voltage feedback signal to obtain a first digital signal;
  • a phase-locked loop the input end of which is connected to the first output end of the first analog-to-digital conversion module, and digitally processes the first digital signal to obtain the voltage phase of the power grid;
  • a second analog-to-digital conversion module the input end of which is connected to the output end of the input voltage sensor, and performs a second analog-to-digital conversion on the input voltage feedback signal to obtain a second digital signal;
  • the first current reference calculation module the first input terminal is connected to the first output terminal of the phase-locked loop, the second input terminal is connected to the second output terminal of the first analog-to-digital conversion module, according to the first digital signal and the voltage phase, and calculate a first current reference signal to obtain a first current reference digital signal;
  • a first digital-to-analog conversion module the input terminal of which is connected to the output terminal of the first current reference calculation module, and performs the first digital-to-analog conversion on the reference digital signal of the first current to obtain a first current reference signal;
  • the first input terminal is connected to the second output terminal of the phase-locked loop, the second input terminal is connected to the third output terminal of the first analog-to-digital conversion module, and the third input terminal is connected to the second output terminal of the first analog-to-digital conversion module.
  • the output end of the second analog-to-digital conversion module is connected, and according to the voltage phase, the first digital signal and the second digital signal, a second current reference signal is calculated to obtain a second reference digital signal;
  • the second digital-to-analog conversion module has an input terminal connected to the output terminal of the second current reference calculation module, and performs a second digital-to-analog conversion on the second reference digital signal to obtain a second current reference signal.
  • the driving circuit further includes: a first driving circuit, a second driving circuit, a third driving circuit and a fourth driving circuit, the output ends of which are respectively connected to the first switch, the second switch, the third The switch is connected to the fourth switch.
  • control circuit includes:
  • a first comparator the first input terminal is connected to the second output terminal of the grid voltage sensor, the second input terminal is connected to the second output terminal of the input voltage sensor, and the input voltage feedback signal is connected to the grid Comparing the voltage feedback signals to obtain a first mode selection signal;
  • a second comparator the input terminal of which is connected to the third output terminal of the grid voltage sensor, and compares the grid voltage feedback signal with ground to obtain a second mode selection signal
  • a first inverter the input end of which is connected to the first output end of the first comparator to obtain a third mode selection signal
  • a second inverter the input end of which is connected to the first output end of the second comparator to obtain a fourth mode selection signal
  • the first current regulator the first input terminal is connected to the output terminal of the first digital-to-analog conversion module, and the second input terminal is connected to the output terminal obtained by subtracting the first current feedback signal and the second current feedback signal Connecting, performing a first current adjustment on a signal obtained by subtracting the first current feedback signal from the second current feedback signal and the first current reference signal to obtain a first high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the second digital-to-analog conversion module, and the second input terminal is connected to the output terminal obtained by subtracting the first current feedback signal and the second current feedback signal. Connecting, performing a second current adjustment on the subtracted signal of the first current feedback signal and the second current feedback signal and the second current reference signal to obtain a second high-frequency switching signal;
  • a third inverter the input end of which is connected to the first output end of the second current regulator to obtain a third high-frequency switching signal
  • a first AND gate the first input terminal is connected to the second output terminal of the first comparator, the second input terminal is connected to the second output terminal of the second comparator, and is selected according to the first and second mode signals , to obtain a fifth mode selection signal;
  • the second AND gate the first input terminal is connected to the output terminal of the first inverter, the second input terminal is connected to the third output terminal of the second comparator, and according to the second and third mode selection signals, obtaining a sixth mode selection signal;
  • the third AND gate the first input terminal is connected to the second output terminal of the second current regulator, the second input terminal is connected to the output terminal of the second inverter, according to the second high frequency switching signal and the second mode selection signal to obtain a fourth high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the third inverter, and the second input terminal is connected to the output terminal of the second AND gate, according to the sixth mode selection signal and the first Three high-frequency switching signals to obtain a fifth high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the fourth AND gate
  • the second input terminal is connected to the output terminal of the third AND gate
  • the fourth and fifth high-frequency switching signals are used to obtain the first OR gate.
  • the second OR gate the first input terminal is connected to the first output terminal of the first OR gate, the second input terminal is connected to the first output terminal of the first AND gate, and the fifth mode selection signal and The sixth high-frequency switching signal obtains a third switching logic signal and transmits it to the third driving circuit;
  • the fifth AND gate the first input terminal is connected to the second output terminal of the first AND gate, the second input terminal is connected to the output terminal of the first current regulator, according to the fifth mode selection signal and the The first high-frequency switching signal is obtained to obtain the seventh high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the fifth AND gate, and the second input terminal is connected to the second output terminal of the second OR gate, according to the seventh high-frequency switching signal and the The third switch logic signal is obtained to obtain the first switch logic signal and transmitted to the first drive circuit;
  • a fourth inverter the input end of which is connected to the second output end of the third OR gate, obtains a second switching logic signal according to the first switching logic signal, and transmits it to the second driving circuit;
  • a fifth inverter the input end of which is connected to the third output end of the first AND gate, to obtain a seventh mode selection signal
  • a sixth inverter the input end of which is connected to the second output end of the first OR gate, to obtain an eighth high-frequency switching signal
  • the sixth AND gate the first input terminal is connected to the output terminal of the fifth inverter, the second input terminal is connected to the output terminal of the sixth inverter, and the output terminal is connected to the input terminal of the fourth drive circuit connected to obtain a fourth switch logic signal according to the seventh mode selection signal and the eighth high-frequency switch signal, and transmit it to the fourth drive circuit.
  • the present invention provides a buck-boost inverter control method.
  • the inverter control method is implemented based on a buck-boost inverter.
  • the inverter control method includes the following steps:
  • Step 1 The sensor system monitors the input voltage and the grid voltage in real time, and performs a first judgment on the magnitude of the input voltage and the grid voltage, and determines that the input voltage is greater than or less than the grid voltage;
  • Step 2 The sensor system monitors the grid voltage in real time, and performs a second judgment on the power frequency period of the grid voltage, and determines whether the power frequency period of the grid voltage is a positive half cycle or a negative half cycle;
  • Step 3 When the power frequency cycle of the grid voltage is a positive half cycle and the input voltage is greater than the grid voltage, control the drive unit to regulate the first switch and/or the second switch to conduct the first closed loop and/or the first continuous circuit A current loop, so that the subtracted signal of the first current feedback signal and the second current feedback signal tracks the first reference current, so as to complete the current regulation of the power grid;
  • Step 4 When the power frequency cycle of the grid voltage is a negative half cycle or the power frequency cycle of the grid voltage is a positive half cycle and the input voltage is lower than the grid voltage, the control drive unit regulates the first switch, the second switch, The third switch and/or the fourth switch are used to turn on the first closed loop and/or the second freewheeling loop, so that the subtracted signal of the first current feedback signal and the second current feedback signal tracks the second Reference current to complete the current regulation of the grid.
  • the driving unit regulating the first switch and/or the second switch of the inverter comprises the following steps:
  • Step 3.1 the control drive unit adjusts the fourth switch to be turned off, and the third switch is turned on, then the second freewheeling circuit is turned off;
  • Step 3.2 after subtracting the first and second current feedback signals collected in real time by the first and second current sensors respectively, and comparing them with the first current reference signal generated by the DSP;
  • Step 3.3 When the subtracted signal of the first and second current feedback signals is smaller than the first current reference signal, the control drive unit regulates the conduction of the first switch tube, and the first closed loop conducts through, the input power supply adjusts the current increase of the filter inductor through the first closed loop, and completes the current regulation of the power grid;
  • Step 3.4 When the subtracted signal of the first and second current feedback signals is greater than the first current reference signal, the control drive unit regulates the first switching tube to be turned off, and the first freewheeling circuit If it is turned on, the current of the filter inductor decreases, and the current regulation of the power grid is completed.
  • controlling the driving unit to regulate the first switch, the second switch, the third switch and/or the fourth switch of the inverter comprises the following steps:
  • Step 4.1 Carry out a second judgment on the working mode of the inverter, and determine whether the working mode of the inverter is a boost mode or a buck-boost mode;
  • Step 4.2 compare the first current feedback signal and the second current feedback signal subtracted by the first current sensor and the second current sensor in real time with the second current reference signal generated by the DSP;
  • Step 4.3 When the power frequency cycle of the grid voltage is a positive half cycle and the input voltage is lower than the grid voltage, the inverter works in a boost mode, and the control drive unit regulates all high-frequency switches;
  • Step 4.4 When the subtracted signal of the first and second current feedback signals is greater than the second current reference signal, the control drive unit regulates the conduction of the first and third switch tubes, and the first The closed loop is turned on, the input power adjusts the current of the filter inductor through the first closed loop to reduce, and completes the current regulation of the power grid;
  • Step 4.5 When the subtracted signal of the first and second current feedback signals is smaller than the second current reference signal, the control drive unit regulates the first and third switch tubes to be turned off, and the second When the freewheeling circuit is turned on, the current of the filter inductor increases to complete the current regulation of the power grid;
  • Step 4.6 When the power frequency cycle of the grid voltage is a negative half cycle, the working mode of the inverter is a buck-boost mode, and the control drive unit regulates all high-frequency switches;
  • Step 4.7 When the subtracted signal of the first and second current feedback signals is smaller than the second current reference signal, the control drive unit regulates the first and third switch tubes to be turned on, and the first The closed loop is turned on, and the input power adjusts the current of the filter inductor through the first closed loop to decrease negatively to complete the current regulation of the power grid;
  • Step 4.8 When the subtracted signal of the first and second current feedback signals is greater than the second current reference signal, the control drive unit regulates the first and third switch tubes to be turned off, and the second When the freewheeling circuit is turned on, the current of the filter inductor increases in a negative direction, and the current regulation of the power grid is completed.
  • the third and fourth switches are devices capable of withstanding positive and negative voltages, such as two anti-series MOSFETs or IGBTs.
  • the present invention has the following advantages:
  • the inverter provided by the present invention is a single-stage conversion, which improves the conversion efficiency of the inverter system.
  • the inverter provided by the present invention can realize buck-boost conversion.
  • the inverter provided by the present invention grounds the input power supply and the power grid together, which can effectively eliminate the common-mode leakage current of the photovoltaic inverter.
  • FIG. 1 is a schematic diagram of the inverter circuit provided by an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a control driving unit provided by an embodiment of the present invention.
  • This embodiment provides that the present invention provides a buck-boost inverter, as shown in FIG. 1 , including: an input power supply U in , a coupling inductor L, a first switch S 1 , a second switch S 2 , and a third switch S 3 , fourth switch S 4 , filter capacitor C 1 , filter inductance L g , damping resistor R d and a control drive unit (not shown in the drawings).
  • the negative pole of the input power supply U in is connected to the negative pole of the power grid U, and the negative pole of the input power supply U in and the negative pole of the power grid U are commonly grounded.
  • the input power U in is used to provide electric energy for the inverter; and the input power U in and the power grid U are commonly grounded, which can effectively eliminate the common-mode leakage current of the inverter.
  • the input power source U in may be a photovoltaic cell, a vehicle battery, a fuel cell, or the like.
  • the filter unit includes a filter inductor Lg , a damping resistor Rd , and a filter capacitor C1 ; the first end of the filter inductor Lg is connected to the positive pole of the grid U, and the first end of the damping resistor Rd is respectively connected to the second switch S2 The second end is connected to the negative pole of the grid U, and the second end of the damping resistor Rd is connected to the first end of the filter capacitor C1 ;
  • Coupled inductor L including primary winding N P and secondary winding N S ;
  • the first end of the primary winding N P of coupled inductor L is connected to the second end of filter inductor L g , the second end of filter capacitor C1 and
  • the fourth end of the secondary winding NS of the coupled inductor is connected, and the second end of the primary winding N P of the coupled inductor L is respectively connected to the anode of the input power supply U in through the third switch S 3 and the first switch S 1 ;
  • the input power supply U in is sequentially connected in series with the first switch S 1 , the third switch S 3 , the primary winding NP of the coupled inductor, the filter unit and the grid U to form a first closed loop;
  • the primary winding NP of the coupled inductor is connected in series with the third switch S 3 , the second switch S 2 , the grid U and the filter unit in sequence to form a first freewheeling circuit;
  • the third end of the secondary winding NS of the coupled inductor is connected to the negative pole of the grid U through the fourth switch S4 and the second switch S2 respectively;
  • the input terminals are respectively connected to the power grid U, the input power supply U in , the primary winding N P of the coupled inductor, and the secondary winding NS of the coupled inductor, and the output terminals are respectively connected to the first switch S 1 and the second switch S 2 , the third switch S3 and the fourth switch S4 are connected, and are used to respectively drive and control the opening and closing of each switch, so as to connect each closed circuit, and then complete the adjustment of the grid current.
  • the filter capacitor C1 is a non-polar capacitor.
  • both the first switch S1 and the second switch S2 are metal oxide semiconductor field effect transistors (MOS) transistors and/or insulated gate bipolar transistors (Insulated Gate Bipolar Transistor, IGBT); the third switch S3 and the second The four switches S4 are anti-series connections of two metal oxide semiconductor field effect transistors (MOS) transistors and/or insulated gate bipolar transistors (Insulated Gate Bipolar Transistor, IGBT).
  • MOS metal oxide semiconductor field effect transistors
  • IGBT Insulated Gate Bipolar Transistor
  • control drive unit further includes: a sensor system 1 , a digital signal processor (DSP) 2 , a control circuit 3 and a drive circuit 4 .
  • DSP digital signal processor
  • the sensor system 1 the input end is respectively connected with the grid U, the input power supply U in , the primary winding NP of the coupled inductor, and the secondary winding NS of the coupled inductor, and collects the grid voltage feedback signal u gf of the grid U and the input power supply
  • the voltage feedback signal U inf of U in the first current feedback signal i L1f of the primary winding NP of the coupled inductor, and the second current feedback signal i L2f of the secondary winding NS of the coupled inductor;
  • DSP 2 whose input terminal is connected to the first output terminal of sensor system 1, performs voltage signal processing on the grid voltage feedback signal u gf of the grid U, and generates the first current reference signal i ref1 and the second current reference signal i respectively ref2 ;
  • the control circuit 3 the first input terminal is connected to the output terminal of the DSP 2, the second input terminal is connected to the output terminal of the sensor system 1, according to the first current reference signal i ref1 and the second current reference signal i ref2 , and the second current reference signal i ref2 A signal obtained by subtracting the current feedback signal i L1f from the second current feedback signal i L2f is subjected to current comparison control to generate the first switch logic signal O 1 , the second switch logic signal O 2 , and the third switch logic signal O 3 and the fourth switch logic signal O 4 ;
  • the drive circuit 4 the input terminal is connected to the output terminal of the control circuit 3, and the output terminals are respectively connected to the first switch S1 , the second switch S2 , the third switch S3 and the fourth switch S4 , respectively according to the first switch logic
  • the signal O 1 , the second switch logic signal O 2 , the third switch logic signal O 3 and the fourth switch logic signal O 4 correspondingly generate a first drive signal, a second drive signal, a third drive signal and a fourth drive signal, The opening and closing of the switches S 1 -S 4 are driven accordingly.
  • the sensor system 1 includes:
  • a grid voltage sensor 101 the input terminal is connected to the grid U, and the first output terminal is connected to the input terminal of the DSP 2, for collecting the grid voltage feedback signal u gf of the grid U and transmitting it to the DSP 2;
  • An input voltage sensor 102 the input terminal is connected to the input power supply Uin , and the first output terminal is connected to the input terminal of the DSP 2, for collecting the input voltage feedback signal Uinf of the input power supply Uin and transmitting it to the DSP 2;
  • the first current sensor 103 has an input terminal connected to the primary winding NP of the transformer, and an output terminal connected to the second input terminal of the control circuit 3 for collecting the first current feedback signal i L1f and transmitting it to the control circuit 3;
  • the second current sensor 104 the input terminal is connected to the secondary winding NS of the transformer, and the output terminal is connected to the second input terminal of the control circuit 3 for collecting the second current feedback signal i L2f and transmitting it to the control circuit 3 middle.
  • the digital signal processor (DSP) 2 includes:
  • the first analog-to-digital conversion module AD1 the input end of which is connected to the first output end of the grid voltage sensor 101 in the sensor system 1, performs the first analog-to-digital conversion on the grid voltage feedback signal u gf of the grid U to obtain the first digital signal ;
  • the phase-locked loop 201 the input terminal is connected to the first output terminal of the first analog-to-digital conversion module AD1, digitally processes the first digital signal, and obtains the voltage phase of the grid U
  • the second analog-to-digital conversion module AD2 the input terminal is connected to the output terminal of the input voltage sensor 102 in the sensor system 1, and performs the second analog-to-digital conversion on the input voltage feedback signal U inf of the input power supply U in to obtain the second digital signal ;
  • the first current reference calculation module 202 the first input terminal is connected to the first output terminal of the phase-locked loop 201, the second input terminal is connected to the first output terminal of the first analog-to-digital conversion module AD1, according to the first digital signal and the grid U voltage phase Carrying out the calculation of the first current reference signal to obtain the first current reference digital signal;
  • a first digital-to-analog conversion module the input terminal of which is connected to the output terminal of the first current reference calculation module, and performs the first digital-to-analog conversion on the reference digital signal of the first current to obtain a first current reference signal;
  • the first digital-to-analog conversion module DA1 the input terminal of which is connected to the output terminal of the first current reference calculation module 202, performs the first digital-to-analog conversion on the reference digital signal of the first current to obtain the first current reference signal i ref1 ; the first The current reference signal i ref1 satisfies:
  • the second current reference calculation module 203 the first input end is connected to the second output end of the phase-locked loop 201, the second input end is connected to the third output end of the first analog-to-digital conversion module AD1, and the third input end is connected to the second
  • the output terminal of the analog-to-digital conversion module AD2 is connected, according to the voltage phase of the grid U
  • the first digital signal and the second digital signal are calculated by performing a second current reference signal to obtain a second reference digital signal;
  • the second digital-to-analog conversion module DA2 the input end is connected to the output end of the second current reference calculation module 203, and the second digital-to-analog conversion is performed on the second reference digital signal to obtain the second current reference signal i ref2 ; and the second current reference Signal i ref2 foot:
  • the driving circuit 4 also includes: a first driving circuit 401, a second driving circuit 402, a third driving circuit 403 and a fourth driving circuit 404, the output terminals of which are respectively connected to the first switch S1 , the second switch S2 , the third switch S 3 is connected to the fourth switch S 4 .
  • control circuit 3 includes:
  • the first comparator 301 the first input end is connected with the second output end of the grid voltage sensor 101 in the sensor system 1, the second input end is connected with the second output end of the input voltage sensor 102 in the sensor system 1, and the input
  • the input voltage feedback signal U inf of the power supply U in is compared with the grid voltage feedback signal u gf of the power grid U to obtain the first mode selection signal;
  • the second comparator 302 has an input terminal connected to the third output terminal of the grid voltage sensor 101 in the sensor system 1, and compares the grid voltage feedback signal u gf of the grid U with the ground to obtain a second mode selection signal;
  • the first inverter 303 the input end of which is connected to the first output end of the first comparator 301, to obtain a third mode selection signal
  • the second inverter 304 the input end of which is connected to the first output end of the second comparator 302, to obtain a fourth mode selection signal
  • the first current regulator 305 the first input terminal is connected to the output terminal of the first digital-to-analog conversion module DA1, and the second input terminal is connected to the output terminal obtained by subtracting the first current feedback signal i L1f and the second current feedback signal i L2f Connecting, the first current adjustment is performed on the signal i Lf and the first current reference signal i ref1 obtained by subtracting the first current feedback signal i L1f and the second current feedback signal i L2f , to obtain the first high-frequency switching signal;
  • the second current regulator 306, the first input terminal is connected to the output terminal of the second digital-to-analog conversion module DA2, and the second input terminal is connected to the output terminal obtained by subtracting the first current feedback signal i L1f and the second current feedback signal i L2f Connecting, performing a second current adjustment on the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f and the second current reference signal i ref2 to obtain a second high -frequency switching signal;
  • a third inverter 307 the input end of which is connected to the first output end of the second current regulator 306, to obtain a third high-frequency switching signal
  • the first AND gate 308, the first input end is connected to the second output end of the first comparator 301, the second input end is connected to the second output end of the second comparator 302, according to the first and second mode selection signals, obtaining a fifth mode selection signal;
  • the first input terminal is connected to the output terminal of the first inverter 303, the second input terminal is connected to the third output terminal of the second comparator 302, and according to the second and third mode selection signals, the obtained a sixth mode selection signal;
  • the third AND gate 310 the first input end is connected to the second output end of the second current regulator 306, the second input end is connected to the output end of the second inverter 304, according to the second high frequency switching signal and the a second mode selection signal to obtain a fourth high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the third inverter 307, and the second input terminal is connected to the output terminal of the second AND gate 309, according to the sixth mode selection signal and the third high frequency switching signal , to obtain the fifth high-frequency switching signal;
  • the first input terminal is connected to the output terminal of the fourth AND gate 311, and the second input terminal is connected to the output terminal of the third AND gate 310.
  • the sixth OR gate is obtained. High frequency switching signal;
  • the first input end is connected to the first output end of the first OR gate 312, the second input end is connected to the first output end of the first AND gate 308, and is selected according to the fifth mode and the sixth high Frequency switch signal, obtain the third switch logic signal O 3 for controlling the third switch S 3 , and transmit it to the third drive circuit 403 in the drive circuit 4;
  • the fifth AND gate 314, the first input end is connected to the second output end of the first AND gate 308, the second input end is connected to the output end of the first current regulator 305, and is selected according to the fifth mode signal and the first high frequency switching signal to obtain the seventh high-frequency switching signal;
  • the third OR gate 315 the first input end is connected to the output end of the fifth AND gate 314, the second input end is connected to the second output end of the second OR gate 313, according to the seventh high frequency switching signal and the third switch S 3 , obtain the first switch logic signal O 1 controlling the first switch S 1 , and transmit it to the first drive circuit 401 in the drive circuit 4;
  • the fourth inverter 316 obtains the second switch logic signal for controlling the second switch S2 according to the first switch logic signal O1 of the first switch S1 O 2 , and transmitted to the second driving circuit 402 in the driving circuit 4;
  • the fifth inverter 317 the input end of which is connected to the third output end of the first AND gate 308, to obtain the seventh mode selection signal
  • the sixth inverter 318 the input end of which is connected to the second output end of the first OR gate 312, to obtain the eighth high-frequency switching signal;
  • the sixth AND gate 319 the first input terminal is connected to the output terminal of the fifth inverter 317, the second input terminal is connected to the output terminal of the sixth inverter 318, and the output terminal is connected to the fourth drive circuit in the drive circuit 4 404 is connected to the input terminal, and according to the seventh mode selection signal and the eighth high-frequency switching signal, the fourth switching logic signal O 4 for controlling the fourth switch S 4 is obtained, and transmitted to the fourth driving circuit in the driving circuit 4 404.
  • the first current regulator 305 and the second current regulator 306 adopt any one of PI control, hysteresis control or proportional resonance control.
  • the present invention also provides a buck-boost inverter control method, which is realized based on a buck-boost inverter, and includes the following steps:
  • Step 1 The sensor system 1 monitors the input voltage U in and the grid voltage u g in real time, and makes a first judgment on the magnitudes of the input voltage U in and the grid voltage u g , and judges that the voltage of the input power source U in is greater than or less than the voltage of the grid U;
  • the first judgment on the magnitude of the input voltage U in and the grid voltage u g includes:
  • Step 1.1 Determine the magnitude of the input voltage feedback signal U inf of the input power supply U in and the grid voltage feedback signal u gf of the grid U;
  • Step 1.2 According to the magnitude of the input voltage feedback signal U inf of the input power U in and the grid voltage feedback signal u gf of the power grid U, it is judged that the voltage of the input power U in is greater than or smaller than the voltage of the grid U;
  • Step 2 The sensor system monitors the grid voltage u g in real time, and makes a second judgment on the power frequency period of the grid voltage u g , and determines whether the power frequency period of the grid voltage u g is a positive half cycle or a negative half cycle;
  • the second determination of the power frequency period of the grid voltage u g includes:
  • Step 2.1 Determine the positive and negative values of the grid voltage feedback signal u gf of the grid U;
  • Step 2.2 According to the positive and negative values of the grid voltage feedback signal u gf of the grid U, determine whether the power frequency period of the grid U voltage is a positive half cycle or a negative half cycle;
  • Step 3 When the power frequency cycle of the grid U voltage is a positive half cycle and the voltage of the input power supply U in is greater than the grid U voltage, the control drive unit regulates the first switch S 1 and/or the second switch S 2 to turn on the first closed loop and/or the first freewheeling loop, so that the signal i Lf after the subtraction of the first current feedback signal i L1f and the second current feedback signal i L2f tracks the first reference current i ref1 to complete the current regulation of the grid;
  • the driving unit regulating the first switch S1 and/or the second switch S2 of the inverter includes the following steps:
  • Step 3.1 Control the drive unit to regulate the fourth switch S4 to turn off, the third switch S3 to turn on, then the second freewheeling circuit is turned off;
  • Step 3.2 Subtract the first current feedback signal i L1f and the second current feedback signal i L2f respectively collected by the first current sensor 103 and the second current sensor 104 in the sensor system 1 in real time, and subtract the signal i Lf from the DSP 2 The generated first current reference signal i ref1 is compared;
  • Step 3.3 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is smaller than the first current reference signal i ref1 , control the drive unit to control the conduction of the first switching tube S1 , then the first closed loop is turned on, and the input power adjusts the current increase of the filter inductance Lg through the first closed loop to complete the current regulation of the grid;
  • Step 3.4 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is greater than the first current reference signal i ref1 , the control drive unit regulates the first switching tube S1 to be turned off, then When the first freewheeling circuit is turned on, the current of the filter inductor Lg decreases, and the current regulation of the power grid is completed.
  • Step 4 When the power frequency cycle of the grid U voltage is a negative half cycle or the power frequency cycle of the grid U voltage is a positive half cycle and the voltage of the input power source U in is lower than the grid U voltage, control the drive unit to regulate the first switch S 1 , the second The switch S 2 , the third switch S 3 and/or the fourth switch S 4 are used to conduct the first closed loop and/or the second freewheeling loop, so that the first current feedback signal i L1f and the second current feedback signal i L2f The subtracted signal i Lf tracks the second reference current i ref2 to complete the current regulation of the grid.
  • controlling the driving unit to regulate the first switch S 1 , the second switch S 2 , the third switch S 3 and/or the fourth switch S 4 of the inverter includes the following steps:
  • Step 4.1 Carry out a second judgment on the working mode of the inverter, and determine whether the working mode of the inverter is a boost mode or a buck-boost mode;
  • Step 4.2 Subtract the first current feedback signal i L1f and the second current feedback signal i L2f respectively collected by the first current sensor 103 and the second current sensor 104 in the sensor system 1 in real time, and subtract the signal i Lf from the DSP 2 The generated second current reference signal i ref2 is compared;
  • Step 4.3 When the power frequency period of the grid U voltage is a positive half cycle and the voltage of the input power supply U in is lower than the grid U voltage, the working mode of the inverter is a boost mode, and the control drive unit regulates all high-frequency switches of the switches;
  • Step 4.4 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is greater than the second current reference signal i ref2 , control the drive unit to regulate the first switching tube S1 and the second switching tube S1 When the three switching tubes S3 are turned on, the first closed loop is turned on, and the input power adjusts the current of the filter inductance Lg through the first closed loop to decrease, thereby completing the current regulation of the grid;
  • Step 4.5 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is smaller than the second current reference signal i ref2 , control the drive unit to regulate the first switch S1 and the third switch When the tube S3 is turned off, the second freewheeling circuit is turned on, and the current of the filter inductance Lg increases to complete the current regulation of the grid;
  • Step 4.6 When the power frequency cycle of the U voltage of the grid is a negative half cycle, the working mode of the inverter is buck-boost mode, and the driving unit is controlled to regulate all high-frequency switches;
  • Step 4.7 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is smaller than the second current reference signal i ref2 , control the drive unit to regulate the first switch S1 and the second switch S1
  • the three switching tubes S3 are turned on, and the first closed loop is turned on, and the input power U in adjusts the current of the filter inductance L g to decrease negatively through the first closed loop, and completes the current regulation of the grid;
  • Step 4.8 When the subtracted signal i Lf of the first current feedback signal i L1f and the second current feedback signal i L2f is greater than the second current reference signal i ref2 , control the drive unit to regulate the first switch S1 and the third switch When the tube S3 is turned off, the second freewheeling circuit is turned on, and the current of the filter inductance L g increases negatively to complete the current regulation of the power grid.
  • the sensor system monitors the input voltage and the grid voltage in real time, and makes a first judgment on the magnitude of the input voltage and the grid voltage, and determines whether the input voltage is greater than or lower than the grid voltage; the sensor system monitors the grid voltage in real time, and The power frequency cycle of the voltage is judged for the second time, and it is determined that the power frequency cycle of the grid voltage is a positive half cycle or a negative half cycle; when the power frequency cycle of the grid voltage is a positive half cycle and the input voltage is greater than the grid voltage, the control drive unit regulates the The first switch and/or the second switch of the inverter are used to turn on the first closed loop and/or the first freewheeling loop, so that the subtracted signal of the first current feedback signal and the second current feedback signal tracks the first Current reference signal to complete the current regulation of the grid; when the power frequency cycle of the grid voltage is a negative half cycle or the power frequency cycle of the grid voltage is a positive half cycle and the input voltage is less than the grid voltage, the control drive unit regulates the invert
  • the present invention is a buck-boost inverter and its control method, which solves the problem of low efficiency of the traditional photovoltaic inverter for buck-boost conversion, eliminates the common-mode leakage current phenomenon, and realizes the buck-boost conversion , improving the conversion efficiency of the photovoltaic inverter system.

Abstract

本发明公开了一种升降压逆变器及其控制方法,该升降压逆变器包含输入电源、耦合电感、滤波单元、第一开关、第二开关、第三开关和第四开关等部件,其中滤波单元由滤波电感、阻尼电阻和滤波电容组成。第一开关与第二开关互补开关,当输入电压大于电网电压且电网电压为正半周时,第三开关常通,第四开关常关,通过调节第一开关占空比,控制电网电流跟踪第一参考电流;其它时刻,第一和第三开关同时高频开关,第二和第四开关同时高频开关,通过调节第一开关占空比,控制电网电流跟踪第二参考电流;此发明可实现升降压变换,消除了非隔离光伏逆变器的共模漏电流,采用单级变换,提高了系统变换效率。

Description

一种升降压逆变器及其控制方法 技术领域
本发明涉及逆变器领域,具体涉及一种升降压逆变器及其控制方法。
背景技术
由于非隔离逆变器在光伏组件和电网之间没有隔离,从而可能产生共模漏电流流过光伏组件的对地寄生电容。该共模漏电流会引起电磁干扰,增加系统损耗,甚至对人身安全构成威胁。国内外专家学者对如何抑制非隔离逆变器的共模漏电流展开了一系列卓有成效的研究;常用的方法有:改进调制技术、增加开关器件、增加滤波器和改进控制方法等。但上述方法抑制共模漏电流的效果易受光伏组件对地寄生电容和电路参数变化的影响。
此外,光伏组件的输出电压通常较低,要求非隔离逆变器能实现升降压变换的功能,传统方法采用两级变换实现升降压,即升压变换器和逆变器级联的方式,降低了系统效率。
因此,有必要研究能从根本上消除共模漏电流且能实现高效率升降压变换的逆变器拓扑及其控制方法。
发明的公开
本发明的目的在于提供了一种升降压逆变器及其控制方法,旨在解决传统逆变器无法实现升降压变换的问题,消除共模漏电现象,提高光伏逆变器系统的变换效率。
为了达到上述目的,本发明通过以下技术方案实现:
一种升降压逆变器,包括:
输入电源,其负极与电网的负极连接,且所述输入电源的负极和电网的负极共同接地;
滤波单元,包括滤波电感、阻尼电阻和滤波电容;滤波电感的第一端与电网的正极连接,阻尼电阻的第一端分别与第二开关的第二端和电网的负极连接,阻尼电阻的第二端与滤波电容的第一端连接;
耦合电感,包括原边绕组和副边绕组;耦合电感的原边绕组的第一端分别与滤波电感的第二端、滤波电容的第二端和耦合电感的副边绕组的第四端 连接,第二端分别通过一第三开关、一第一开关与所述输入电源的正极连接,则所述耦合电感的原边绕组与电网、滤波单元、所述输入电源、所述第三开关和所述第一开关,构成第一闭合回路;所述耦合电感的原边绕组与电网、滤波单元、所述第三开关和一第二开关,构成第一续流回路;
耦合电感的副边绕组的第三端分别通过一第四开关、所述第二开关与电网的负极连接,则所述耦合电感的副边绕组与电网、所述滤波单元、所述第四开关和所述第二开关,构成第二续流回路;
控制驱动单元,输入端分别与电网、输入电源、所述耦合电感的原边绕组和所述耦合电感的副边绕组连接,输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接,用于分别驱动控制各个开关的开闭,来连通各个闭合电路,进而完成电网电流的调节。
最优选的,该控制驱动单元还包括:
传感器系统,输入端分别与与电网、输入电源、所述耦合电感的原边绕组和所述耦合电感的副边绕组连接,分别采集电网的电网电压反馈信号、输入电源的电压反馈信号、所述耦合电感的原边绕组的第一电流反馈信号和所述耦合电感的副边绕组的第二电流反馈信号;
DSP,输入端与所述传感器系统的第一输出端连接,对所述电网电压反馈信号进行电压信号处理,并分别生成所述第一电流参考信号和所述第二电流参考信号;
控制电路,第一输入端与所述DSP的输出端连接,第二输入端与所述传感器系统的输出端连接,根据所述第一电流参考信号和所述第二电流参考信号,与所述第一电流反馈信号和所述第二电流反馈信号相减后的信号,进行电流比较控制,分别生成第一开关逻辑信号、第二开关逻辑信号、第三开关逻辑信号和第四开关逻辑信号;
驱动电路,输入端与所述控制电路的输出端连接,输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接,分别根据所述第一开关逻辑信号、所述第二开关逻辑信号、所述第三开关逻辑信号和所述第四开关逻辑信号,相应生成第一驱动信号、第二驱动信号、第三驱动信号和第四驱动信号,以相应驱动各个开关的开闭。
最优选的,传感器系统包括:
电网电压传感器,输入端与电网连接,第一输出端与所述DSP的输入端连接,用于采集所述电网电压反馈信号并传输至所述DSP中;
输入电压传感器,输入端与所述输入电源连接,第一输出端与所述DSP的输入端连接,用于采集所述输入电源电压反馈信号并传输至所述DSP中;
第一电流传感器,输入端与所述变压器的原边绕组连接,输出端与所述控制电路的第二输入端连接,用于采集所述第一电流反馈信号,并传输至所述控制电路中;
第二电流传感器,输入端与所述变压器的副边绕组连接,输出端与所述控制电路的第二输入端连接,用于采集所述第二电流反馈信号,并传输至所述控制电路中。
最优选的,数字信号处理器(DSP)包括:
第一模数转换模块,输入端与所述电网电压传感器的第一输出端连接,对所述电网电压反馈信号进行第一次模数转换,获得第一数字信号;
锁相环,输入端与所述第一模数转换模块的第一输出端连接,对所述第一数字信号进行数字处理,获得电网的电压相位;
第二模数转换模块,输入端与所述输入电压传感器的输出端连接,对所述输入电压反馈信号进行第二次模数转换,获得第二数字信号;
第一电流参考计算模块,第一输入端与所述锁相环的第一输出端连接,第二输入端与所述第一模数转换模块的第二输出端连接,根据所述第一数字信号和所述电压相位,进行第一电流参考信号计算,获得第一电流参考数字信号;
第一数模转换模块,输入端与所述第一电流参考计算模块的输出端连接,对所述第一电流的参考数字信号进行第一次数模转换,获得第一电流参考信号;
第二电流参考计算模块,第一输入端与所述锁相环的第二输出端连接,第二输入端与所述第一模数转换模块的第三输出端连接,第三输入端与所述第二模数转换模块的输出端连接,根据所述电压相位、所述第一数字信号和所述第二数字信号,进行第二电流参考信号计算,获得第二参考数字信号;
第二数模转换模块,输入端与所述第二电流参考计算模块的输出端连接,对所述第二参考数字信号进行第二次数模转换,获得第二电流参考信号。
最优选的,驱动电路还包括:第一驱动电路、第二驱动电路、第三驱动电路和第四驱动电路,其输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接。
最优选的,控制电路包括:
第一比较器,第一输入端与所述电网电压传感器的第二输出端连接,第二输入端与所述输入电压传感器的第二输出端连接,将所述输入电压反馈信号与所述电网电压反馈信号进行比较,获得第一模式选择信号;
第二比较器,输入端与所述电网电压传感器的第三输出端连接,将所述电网电压反馈信号与地进行比较,获得第二模式选择信号;
第一反相器,输入端与所述第一比较器的第一输出端连接,获得第三模式选择信号;
第二反相器,输入端与所述第二比较器的第一输出端连接,获得第四模式选择信号;
第一电流调节器,第一输入端与所述第一数模转换模块的输出端连接,第二输入端与所述第一电流反馈信号和所述第二电流反馈信号相减后的输出端连接,对所述第一电流反馈信号和所述第二电流反馈信号相减后的信号和所述第一电流参考信号进行第一次电流调节,获得第一高频开关信号;
第二电流调节器,第一输入端与所述第二数模转换模块的输出端连接,第二输入端与所述第一电流反馈信号和所述第二电流反馈信号相减后的输出端连接,对所述第一电流反馈信号和所述第二电流反馈信号相减后的信号和所述第二电流参考信号进行第二次电流调节,获得第二高频开关信号;
第三反相器,输入端与所述第二电流调节器的第一输出端连接,获得第三高频开关信号;
第一与门,第一输入端与所述第一比较器的第二输出端连接,第二输入端与所述第二比较器的第二输出端连接,根据第一和第二模式选择信号,获得第五模式选择信号;
第二与门,第一输入端与所述第一反相器的输出端连接,第二输入端与所述第二比较器的第三输出端连接,根据第二和第三模式选择信号,获得第六模式选择信号;
第三与门,第一输入端与所述第二电流调节器的第二输出端连接,第二 输入端与所述第二反相器的输出端连接,根据所述第二高频开关信号和所述第二模式选择信号,获得第四高频开关信号;
第四与门,第一输入端与所述第三反相器的输出端连接,第二输入端与所述第二与门的输出端连接,根据所述第六模式选择信号和所述第三高频开关信号,获得第五高频开关信号;
第一或门,第一输入端与所述第四与门的输出端连接,第二输入端与所述第三与门的输出端连接,根据第四和第五高频开关信号,获得第六高频开关信号;
第二或门,第一输入端与所述第一或门的第一输出端连接,第二输入端与所述第一与门的第一输出端连接,根据所述第五模式选择信号和所述第六高频开关信号,获得第三开关逻辑信号,并传输至所述第三驱动电路;
第五与门,第一输入端与所述第一与门的第二输出端连接,第二输入端与所述第一电流调节器的输出端连接,根据所述第五模式选择信号和所述第一高频开关信号,获得第七高频开关信号;
第三或门,第一输入端与所述第五与门的输出端连接,第二输入端与所述第二或门的第二输出端连接,根据所述第七高频开关信号和所述第三开关逻辑信号,获得第一开关逻辑信号,并传输至所述第一驱动电路;
第四反相器,输入端与所述第三或门的第二输出端连接,根据所述第一开关逻辑信号,获得第二开关逻辑信号,并传输至所述第二驱动电路;
第五反相器,输入端与所述第一与门的第三输出端连接,获得第七模式选择信号;
第六反相器,输入端与所述第一或门的第二输出端连接,获得第八高频开关信号;
第六与门,第一输入端与所述第五反相器的输出端连接,第二输入端与所述第六反相器的输出端连接,输出端与所述第四驱动电路输入端连接,根据所述第七模式选择信号和所述第八高频开关信号,获得第四开关逻辑信号,并传输至所述第四驱动电路。
本发明提供了一种升降压逆变器控制方法,该逆变器控制方法是基于一种升降压逆变器实现的,该逆变器控制方法包括以下步骤:
步骤1:传感器系统实时监测输入电压和电网电压,并对所述输入电压 和电网电压的大小进行第一次判定,判定所述输入电压大于或小于电网电压;
步骤2:传感器系统实时监测电网电压,并对所述电网电压的工频周期进行第二次判定,判定所述电网电压的工频周期为正半周或者负半周;
步骤3:当所述电网电压的工频周期为正半周且输入电压大于电网电压时,控制驱动单元调控第一开关和/或第二开关,以导通第一闭合回路和/或第一续流回路,使得所述第一电流反馈信号和所述第二电流反馈信号相减后的信号跟踪第一参考电流,以完成电网的电流调节;
步骤4:当所述电网电压的工频周期为负半周或所述电网电压的工频周期为正半周且输入电压小于电网电压时,所述控制驱动单元调控该第一开关、第二开关、第三开关和/或第四开关,以导通第一闭合回路和/或第二续流回路,使得所述第一电流反馈信号和所述第二电流反馈信号相减后的信号跟踪第二参考电流,以完成电网的电流调节。
最优选的,驱动单元调控该逆变器的第一开关和/或第二开关包括以下步骤:
步骤3.1:所述控制驱动单元调控所述第四开关关断,第三开关导通,则所述第二续流回路关断;
步骤3.2:将第一和第二电流传感器分别实时采集的第一和第二电流反馈信号相减后,与DSP生成的第一电流参考信号比较;
步骤3.3:当第一和第二电流反馈信号相减后的信号小于所述第一电流参考信号时,所述控制驱动单元调控所述第一开关管导通,则所述第一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流增加,完成电网的电流调节;
步骤3.4:当第一和第二电流反馈信号相减后的信号大于所述第一电流参考信号时,所述控制驱动单元调控所述第一开关管关断,则所述第一续流回路导通,则所述滤波电感的电流减小,完成电网的电流调节。
最优选的,控制驱动单元调控该逆变器的第一开关、第二开关、第三开关和/或第四开关包括以下步骤:
步骤4.1:对该逆变器的工作模式进行第二次判定,判定该逆变器的工作模式为升压模式或升降压模式;
步骤4.2:将第一电流传感器和第二电流传感器分别实时采集的第一电流 反馈信和第二电流反馈信号相减后的信号,与DSP生成的第二电流参考信号比较;
步骤4.3:当所述电网电压的工频周期为正半周且输入电压小于电网电压时,该逆变器的工作模式为升压模式,所述控制驱动单元调控所有开关高频开关;
步骤4.4:当第一和第二电流反馈信号相减后的信号大于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管导通,则所述第一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流减小,完成电网的电流调节;
步骤4.5:当第一和第二电流反馈信号相减后的信号小于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管关断,则所述第二续流回路导通,则所述滤波电感的电流增加,完成电网的电流调节;
步骤4.6:当所述电网电压的工频周期为负半周时,该逆变器的工作模式为升降压模式,所述控制驱动单元调控所有开关高频开关;
步骤4.7:当第一和第二电流反馈信号相减后的信号小于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管导通,则所述第一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流负向减小,完成电网的电流调节;
步骤4.8:当第一和第二电流反馈信号相减后的信号大于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管关断,则所述第二续流回路导通,则所述滤波电感的电流负向增加,完成电网的电流调节。
最优选的,第三和第四开关为可承受正反压的器件,如:两个反串联的MOSFET或者IGBT。
运用此发明,解决了传统光伏逆变器升降压变换效率低的问题,消除了共模漏电流现象,实现了升降压变换,提高了光伏逆变器系统的变换效率。
本发明与现有技术相比具有以下优点:
1、本发明提供的逆变器为单级变换,提高了逆变器系统的变换效率。
2、本发明提供的逆变器,可实现升降压变换。
本发明提供的逆变器,将输入电源与电网共同接地,可有效消除光伏逆变器的共模漏电流。
附图的简要说明
图1为本发明实施例提供的该逆变器电路示意图;
图2为本发明实施例提供的控制驱动单元的电路示意图。
实现本发明的最佳方式
以下结合附图和具体实施方式对本发明提出的一种单叶片吊具传动装置及单叶片吊具作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施方式的目的。为了使本发明的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
本实施例提供了本发明提供了一种升降压逆变器,如图1所示,包括:输入电源U in、耦合电感L、第一开关S 1、第二开关S 2、第三开关S 3、第四开关S 4、滤波电容C 1、滤波电感L g、阻尼电阻R d和控制驱动单元(附图中未示出)。
输入电源U in,其负极与电网U的负极连接,且输入电源U in的负极和电网U的负极共同接地。其中,输入电源U in用于为该逆变器提供电能;且输入电源U in与电网U共同接地,能够有效消除该逆变器的共模漏电流。在本实施例中,输入电源U in可为光伏电池、车用电池、燃料电池等。
滤波单元,包括滤波电感L g、阻尼电阻R d和滤波电容C 1;滤波电感L g的第一端与电网U的正极连接,阻尼电阻R d的第一端分别与第二开关S 2的第二端和电网U的负极连接,阻尼电阻R d的第二端与滤波电容C 1的第一端连接;
耦合电感L,包括原边绕组N P和副边绕组N S;耦合电感L的原边绕组N P的第一端分别与滤波电感L g的第二端、滤波电容C 1的第二端和耦合电感的副边绕组N S的第四端连接,耦合电感L的原边绕组N P的第二端分别通过 第三开关S 3、第一开关S 1与所述输入电源U in的正极连接;
则输入电源U in依次与第一开关S 1、第三开关S 3、耦合电感的原边绕组N P、滤波单元和电网U串联成第一闭合回路;
耦合电感的原边绕组N P依次与第三开关S 3、第二开关S 2、电网U和滤波单元串联成第一续流回路;
耦合电感的副边绕组N S的第三端分别通过第四开关S 4、第二开关S 2与电网U的负极连接;
则耦合电感的副边绕组N S依次与第四开关S 4、第二开关S 2、电网U和滤波单元串联成第二续流回路;
控制驱动单元,输入端分别与电网U、输入电源U in、耦合电感的原边绕组N P和耦合电感的副边绕组N S连接,输出端分别与第一开关S 1、第二开关S 2、第三开关S 3和第四开关S 4连接,用于分别驱动控制各个开关的开闭,来连通各个闭合电路,进而完成电网电流的调节。
在本实施例中,滤波电容C 1为无极性电容。
其中,第一开关S 1和第二开关S 2均为金氧半场效晶体(MOS)管和/或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT);第三开关S 3和第四开关S 4均为两金氧半场效晶体(MOS)管和/或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)的反串联。
其中,如图2所示,该控制驱动单元还包括:传感器系统1、数字信号处理器(DSP)2、控制电路3和驱动电路4。
传感器系统1,输入端分别与与电网U、输入电源U in、耦合电感的原边绕组N P和耦合电感的副边绕组N S连接,分别采集电网U的电网电压反馈信号u gf、输入电源U in的电压反馈信号U inf、耦合电感的原边绕组N P的第一电流反馈信号i L1f和所述耦合电感的副边绕组N S的第二电流反馈信号i L2f
DSP 2,输入端与传感器系统1的第一输出端连接,对电网U的电网电压反馈信号u gf进行电压信号处理,并分别生成第一电流参考信号i ref1和所述第二电流参考信号i ref2
控制电路3,第一输入端与DSP 2的输出端连接,第二输入端与传感器系统1的输出端连接,根据第一电流参考信号i ref1和所述第二电流参考信号i ref2,与第一电流反馈信号i L1f和所述第二电流反馈信号i L2f相减后的信号,进 行电流比较控制,分别生成第一开关逻辑信号O 1、第二开关逻辑信号O 2、第三开关逻辑信号O 3和第四开关逻辑信号O 4
驱动电路4,输入端与控制电路3的输出端连接,输出端分别与第一开关S 1、第二开关S 2、第三开关S 3和第四开关S 4连接,分别根据第一开关逻辑信号O 1、第二开关逻辑信号O 2、第三开关逻辑信号O 3和第四开关逻辑信号O 4,相应生成第一驱动信号、第二驱动信号、第三驱动信号和第四驱动信号,以相应驱动开关S 1-S 4的开闭。
其中,传感器系统1包括:
电网电压传感器101,输入端与电网U连接,第一输出端与DSP 2的输入端连接,用于采集电网U的电网电压反馈信号u gf并传输至所述DSP 2中;
输入电压传感器102,输入端与输入电源U in连接,第一输出端与DSP 2的输入端连接,用于采集输入电源U in的输入电压反馈信号U inf并传输至所述DSP 2中;
第一电流传感器103,输入端与变压器的原边绕组N P连接,输出端与控制电路3的第二输入端连接,用于采集第一电流反馈信号i L1f,并传输至控制电路3中;
第二电流传感器104,输入端与所述变压器的副边绕组N S连接,输出端与控制电路3的第二输入端连接,用于采集第二电流反馈信号i L2f,并传输至控制电路3中。
数字信号处理器(DSP)2包括:
第一模数转换模块AD1,输入端与传感器系统1中的电网电压传感器101的第一输出端连接,对电网U的电网电压反馈信号u gf进行第一次模数转换,获得第一数字信号;
锁相环201,输入端与第一模数转换模块AD1的第一输出端连接,对第一数字信号进行数字处理,获得电网U的电压相位
Figure PCTCN2022098578-appb-000001
第二模数转换模块AD2,输入端与传感器系统1中的输入电压传感器102的输出端连接,对输入电源U in的输入电压反馈信号U inf进行第二次模数转换,获得第二数字信号;
第一电流参考计算模块202,第一输入端与锁相环201的第一输出端连接,第二输入端与第一模数转换模块AD1的第一输出端连接,根据第一数字 信号和电网U的电压相位
Figure PCTCN2022098578-appb-000002
进行第一电流参考信号计算,获得第一电流参考数字信号;
第一数模转换模块,输入端与所述第一电流参考计算模块的输出端连接,对所述第一电流的参考数字信号进行第一次数模转换,获得第一电流参考信号;
第一数模转换模块DA1,输入端与第一电流参考计算模块202的输出端连接,对第一电流的参考数字信号进行第一次数模转换,获得第一电流参考信号i ref1;第一电流参考信号i ref1满足:
Figure PCTCN2022098578-appb-000003
第二电流参考计算模块203,第一输入端与锁相环201的第二输出端连接,第二输入端与第一模数转换模块AD1的第三输出端连接,第三输入端与第二模数转换模块AD2的输出端连接,根据电网U的电压相位
Figure PCTCN2022098578-appb-000004
第一数字信号和第二数字信号,进行第二电流参考信号计算,获得第二参考数字信号;
第二数模转换模块DA2,输入端与第二电流参考计算模块203的输出端连接,对第二参考数字信号进行第二次数模转换,获得第二电流参考信号i ref2;且第二电流参考信号i ref2足:
Figure PCTCN2022098578-appb-000005
驱动电路4还包括:第一驱动电路401、第二驱动电路402、第三驱动电路403和第四驱动电路404,其输出端分别与第一开关S 1、第二开关S 2、第三开关S 3和第四开关S 4连接。
其中,控制电路3包括:
第一比较器301,第一输入端与传感器系统1中的电网电压传感器101的第二输出端连接,第二输入端与传感器系统1中的输入电压传感器102的第二输出端连接,将输入电源U in中的输入电压反馈信号U inf与电网U的电网电压反馈信号u gf进行比较,获得第一模式选择信号;
第二比较器302,输入端与传感器系统1中的电网电压传感器101的第三输出端连接,将电网U的电网电压反馈信号u gf与地进行比较,获得第二模式选择信号;
第一反相器303,输入端与第一比较器301的第一输出端连接,获得第三模式选择信号;
第二反相器304,输入端与第二比较器302的第一输出端连接,获得第四模式选择信号;
第一电流调节器305,第一输入端与第一数模转换模块DA1的输出端连接,第二输入端与第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的输出端连接,对第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf和第一电流参考信号i ref1进行第一次电流调节,获得第一高频开关信号;
第二电流调节器306,第一输入端与第二数模转换模块DA2的输出端连接,第二输入端与第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的输出端连接,对第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf和第二电流参考信号i ref2进行第二次电流调节,获得第二高频开关信号;
第三反相器307,输入端与第二电流调节器306的第一输出端连接,获得第三高频开关信号;
第一与门308,第一输入端与第一比较器301的第二输出端连接,第二输入端与第二比较器302的第二输出端连接,根据第一和第二模式选择信号,获得第五模式选择信号;
第二与门309,第一输入端与第一反相器303的输出端连接,第二输入端与第二比较器302的第三输出端连接,根据第二和第三模式选择信号,获得第六模式选择信号;
第三与门310,第一输入端与第二电流调节器306的第二输出端连接,第二输入端与第二反相器304的输出端连接,根据第二高频开关信号和所述第二模式选择信号,获得第四高频开关信号;
第四与门311,第一输入端与第三反相器307的输出端连接,第二输入端与第二与门309的输出端连接,根据第六模式选择信号和第三高频开关信号,获得第五高频开关信号;
第一或门312,第一输入端与第四与门311的输出端连接,第二输入端与第三与门310的输出端连接,根据第四和第五高频开关信号,获得第六高频开关信号;
第二或门313,第一输入端与第一或门312的第一输出端连接,第二输 入端与第一与门308的第一输出端连接,根据第五模式选择信号和第六高频开关信号,获得控制第三开关S 3的第三开关逻辑信号O 3,并传输至驱动电路4中的第三驱动电路403;
第五与门314,第一输入端与第一与门308的第二输出端连接,第二输入端与第一电流调节器305的输出端连接,根据第五模式选择信号和第一高频开关信号,获得第七高频开关信号;
第三或门315,第一输入端与第五与门314的输出端连接,第二输入端与第二或门313的第二输出端连接,根据第七高频开关信号和第三开关S 3的第三开关逻辑信号O 3,获得控制第一开关S 1的第一开关逻辑信号O 1,并传输至驱动电路4中的第一驱动电路401;
第四反相器316,输入端与第三或门315的第二输出端连接,根据第一开关S 1的第一开关逻辑信号O 1,获得控制第二开关S 2的第二开关逻辑信号O 2,并传输至驱动电路4中的第二驱动电路402;
第五反相器317,输入端与第一与门308的第三输出端连接,获得第七模式选择信号;
第六反相器318,输入端与第一或门312的第二输出端连接,获得第八高频开关信号;
第六与门319,第一输入端与第五反相器317的输出端连接,第二输入端与第六反相器318的输出端连接,输出端与驱动电路4中的第四驱动电路404输入端连接,根据第七模式选择信号和第八高频开关信号,获得第控制第四开关S 4的第四开关逻辑信号O 4,并传输至所述驱动电路4中的第四驱动电路404。
在本实施例中,第一电流调节器305和第二电流调节器306采用PI控制、滞环控制或比例谐振控制中的任意一种。
本发明还提供了一种升降压逆变器控制方法,该逆变器控制方法是基于一种升降压逆变器实现的,包括以下步骤:
步骤1:传感器系统1实时监测输入电压U in和电网电压u g,并对输入电压U in和电网电压u g的大小进行第一次判定,判定输入电源U in电压大于或小于电网U电压;
其中,对输入电压U in和电网电压u g的大小进行第一次判定包括:
步骤1.1:对输入电源U in的输入电压反馈信号U inf和电网U的电网电压反馈信号u gf的大小进行判定;
步骤1.2:根据输入电源U in的输入电压反馈信号U inf和电网U的电网电压反馈信号u gf的大小判定输入电源U in电压大于或小于电网U电压;
步骤2:传感器系统实时监测电网电压u g,并对电网电压u g的工频周期进行第二次判定,判定电网电压u g的工频周期为正半周或者负半周;
其中,对电网电压u g的工频周期进行第二次判定包括:
步骤2.1:对电网U的电网电压反馈信号u gf的正负值进行判定;
步骤2.2:根据电网U的电网电压反馈信号u gf的正负值判定电网U电压的工频周期为正半周或者负半周;
步骤3:当电网U电压的工频周期为正半周且输入电源U in电压大于电网U电压时,控制驱动单元调控第一开关S 1和/或第二开关S 2,以导通第一闭合回路和/或第一续流回路,使得第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf跟踪第一参考电流i ref1,以完成电网的电流调节;
其中,驱动单元调控该逆变器的第一开关S 1和/或第二开关S 2包括以下步骤:
步骤3.1:控制驱动单元调控第四开关S 4关断,第三开关S 3导通,则第二续流回路关断;
步骤3.2:将传感器系统1中的第一电流传感器103和第二电流传感器104分别实时采集的第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf,与DSP 2生成的第一电流参考信号i ref1比较;
步骤3.3:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf小于第一电流参考信号i ref1时,控制驱动单元调控所述第一开关管S 1导通,则第一闭合回路导通,输入电源通过第一闭合回路调节滤波电感L g的电流增加,完成电网的电流调节;
步骤3.4:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf大于第一电流参考信号i ref1时,控制驱动单元调控第一开关管S 1关断,则第一续流回路导通,则所述滤波电感L g的电流减小,完成电网的电流调节。
步骤4:当电网U电压的工频周期为负半周或电网U电压的工频周期为正半周且输入电源U in电压小于电网U电压时,控制驱动单元调控该第一开 关S 1、第二开关S 2、第三开关S 3和/或第四开关S 4,以导通第一闭合回路和/或第二续流回路,使得第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf跟踪第二参考电流i ref2,以完成电网的电流调节。
其中,控制驱动单元调控该逆变器的第一开关S 1、第二开关S 2、第三开关S 3和/或第四开关S 4包括以下步骤:
步骤4.1:对该逆变器的工作模式进行第二次判定,判定该逆变器的工作模式为升压模式或升降压模式;
步骤4.2:将传感器系统1中的第一电流传感器103和第二电流传感器104分别实时采集的第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf,与DSP 2生成的第二电流参考信号i ref2比较;
步骤4.3:当电网U电压的工频周期为正半周且输入电源U in电压小于电网U电压时,该逆变器的工作模式为升压模式,所述控制驱动单元调控所有开关高频开关;
步骤4.4:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf大于第二电流参考信号i ref2时,控制驱动单元调控所述第一开关管S 1和第三开关管S 3导通,则第一闭合回路导通,输入电源通过第一闭合回路调节滤波电感L g的电流减小,完成电网的电流调节;
步骤4.5:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf小于第二电流参考信号i ref2时,控制驱动单元调控第一开关管S 1和第三开关管S 3关断,则第二续流回路导通,则所述滤波电感L g的电流增加,完成电网的电流调节;
步骤4.6:当电网U电压的工频周期为负半周时,该逆变器的工作模式为升降压模式,控制驱动单元调控所有开关高频开关;
步骤4.7:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf小于所述第二电流参考信号i ref2时,控制驱动单元调控第一开关管S 1和第三开关管S 3导通,则第一闭合回路导通,输入电源U in通过第一闭合回路调节滤波电感L g的电流负向减小,完成电网的电流调节;
步骤4.8:当第一电流反馈信号i L1f和第二电流反馈信号i L2f相减后的信号i Lf大于第二电流参考信号i ref2时,控制驱动单元调控第一开关管S 1和第三开关管S 3关断,则第二续流回路导通,则滤波电感L g的电流负向增加,完 成电网的电流调节。
本发明的工作原理:
传感器系统实时监测输入电压和电网电压,并对所述输入电压和电网电压的大小进行第一次判定,判定所述输入电压大于或小于电网电压;传感器系统实时监测电网电压,并对所述电网电压的工频周期进行第二次判定,判定所述电网电压的工频周期为正半周或者负半周;当电网电压的工频周期为正半周且输入电压大于电网电压时,控制驱动单元调控该逆变器的第一开关和/或第二开关,以导通第一闭合回路和/或第一续流回路,使得第一电流反馈信号和第二电流反馈信号相减后的信号跟踪第一电流参考信号,以完成电网的电流调节;当电网电压的工频周期为负半周或电网电压的工频周期为正半周且输入电压小于电网电压时,控制驱动单元调控该逆变器的第一开关、第二开关、第三开关和/或第四开关,以导通第一闭合回路和/或第二续流回路,使得第一电流反馈信号和第二电流反馈信号相减后的信号跟踪第二电流参考信号,以完成电网的电流调节。
综上所述,本发明一种升降压逆变器及其控制方法,解决了传统光伏逆变器升降压变换效率低的问题,消除了共模漏电流现象,实现了升降压变换,提高了光伏逆变器系统的变换效率。
以上所述,仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和范围之内做出的任何修改、等同替换和改进等,均包含在本发明的保护范围之内。

Claims (10)

  1. 一种升降压逆变器,其特征在于,包含:
    输入电源,其负极与电网的负极连接,且所述输入电源的负极和电网的负极共同接地;
    滤波单元,包括滤波电感、阻尼电阻和滤波电容;滤波电感的第一端与电网的正极连接,阻尼电阻的第一端分别与第二开关的第二端和电网的负极连接,阻尼电阻的第二端与滤波电容的第一端连接;
    耦合电感,包括原边绕组和副边绕组;耦合电感的原边绕组的第一端分别与滤波电感的第二端、滤波电容的第二端和耦合电感的副边绕组的第四端连接,第二端分别通过一第三开关、一第一开关与所述输入电源的正极连接,则所述耦合电感的原边绕组与电网、滤波单元、所述输入电源、所述第三开关和所述第一开关,构成第一闭合回路;所述耦合电感的原边绕组与电网、滤波单元、所述第三开关和一第二开关,构成第一续流回路;
    耦合电感的副边绕组的第三端分别通过一第四开关、所述第二开关与电网的负极连接,则所述耦合电感的副边绕组与电网、所述滤波单元、所述第四开关和所述第二开关,构成第二续流回路;
    控制驱动单元,输入端分别与电网、输入电源、所述耦合电感的原边绕组和所述耦合电感的副边绕组连接,输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接,用于分别驱动控制各个开关的开闭,来连通各个闭合电路,进而完成电网电流的调节。
  2. 如权利要求1所述的升降压逆变器,其特征在于,所述控制驱动单元还包括:
    传感器系统,输入端分别与与电网、输入电源、所述耦合电感的原边绕组和所述耦合电感的副边绕组连接,分别采集电网的电网电压反馈信号、输入电源的电压反馈信号、所述耦合电感的原边绕组的第一电流反馈信号和所述耦合电感的副边绕组的第二电流反馈信号;
    DSP,输入端与所述传感器系统的第一输出端连接,对所述电网电压反馈 信号进行电压信号处理,并分别生成所述第一电流参考信号和所述第二电流参考信号;
    控制电路,第一输入端与所述DSP的输出端连接,第二输入端与所述传感器系统的输出端连接,根据所述第一电流参考信号和所述第二电流参考信号,与所述第一电流反馈信号和所述第二电流反馈信号相减后的信号,进行电流比较控制,分别生成第一开关逻辑信号、第二开关逻辑信号、第三开关逻辑信号和第四开关逻辑信号;
    驱动电路,输入端与所述控制电路的输出端连接,输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接,分别根据所述第一开关逻辑信号、所述第二开关逻辑信号、所述第三开关逻辑信号和所述第四开关逻辑信号,相应生成第一驱动信号、第二驱动信号、第三驱动信号和第四驱动信号,以相应驱动各个开关的开闭。
  3. 如权利要求2所述的升降压逆变器,其特征在于,所述传感器系统包括:
    电网电压传感器,输入端与电网连接,第一输出端与所述DSP的输入端连接,用于采集所述电网电压反馈信号并传输至所述DSP中;
    输入电压传感器,输入端与所述输入电源连接,第一输出端与所述DSP的输入端连接,用于采集所述输入电源电压反馈信号并传输至所述DSP中;
    第一电流传感器,输入端与原边绕组连接,输出端与所述控制电路的第二输入端连接,用于采集所述第一电流反馈信号,并传输至所述控制电路中;
    第二电流传感器,输入端与副边绕组连接,输出端与所述控制电路的第二输入端连接,用于采集所述第二电流反馈信号,并传输至所述控制电路中。
  4. 如权利要求3所述的升降压逆变器,其特征在于,所述DSP包括:
    第一模数转换模块,输入端与所述电网电压传感器的第一输出端连接,对所述电网电压反馈信号进行第一次模数转换,获得第一数字信号;
    锁相环,输入端与所述第一模数转换模块的第一输出端连接,对所述第一数字信号进行数字处理,获得电网的电压相位;
    第二模数转换模块,输入端与所述输入电压传感器的输出端连接,对所述 输入电压反馈信号进行第二次模数转换,获得第二数字信号;
    第一电流参考计算模块,第一输入端与所述锁相环的第一输出端连接,第二输入端与所述第一模数转换模块的第二输出端连接,根据所述第一数字信号和所述电压相位,进行第一电流参考信号计算,获得第一电流参考数字信号;
    第一数模转换模块,输入端与所述第一电流参考计算模块的输出端连接,对所述第一电流的参考数字信号进行第一次数模转换,获得第一电流参考信号;
    第二电流参考计算模块,第一输入端与所述锁相环的第二输出端连接,第二输入端与所述第一模数转换模块的第三输出端连接,第三输入端与所述第二模数转换模块的输出端连接,根据所述电压相位、所述第一数字信号和所述第二数字信号,进行第二电流参考信号计算,获得第二参考数字信号;
    第二数模转换模块,输入端与所述第二电流参考计算模块的输出端连
    接,对所述第二参考数字信号进行第二次数模转换,获得第二电流参考信号。
  5. 如权利要求1所述的升降压逆变器,其特征在于,所述驱动电路还包括:
    第一驱动电路、第二驱动电路、第三驱动电路和第四驱动电路,其输出端分别与所述第一开关、所述第二开关、所述第三开关和所述第四开关连接。
  6. 如权利要求1所述的升降压逆变器,其特征在于,所述控制电路包括:
    第一比较器,第一输入端与所述电网电压传感器的第二输出端连接,第二输入端与所述输入电压传感器的第二输出端连接,将所述输入电压反馈信号与所述电网电压反馈信号进行比较,获得第一模式选择信号;
    第二比较器,输入端与所述电网电压传感器的第三输出端连接,将所述电网电压反馈信号与地进行比较,获得第二模式选择信号;
    第一反相器,输入端与所述第一比较器的第一输出端连接,获得第三模式选择信号;
    第二反相器,输入端与所述第二比较器的第一输出端连接,获得第四模式 选择信号;
    第一电流调节器,第一输入端与第一数模转换模块的输出端连接,第二输入端与所述第一电流反馈信号和第二电流反馈信号相减后的输出端连接,对所述第一电流反馈信号和所述第二电流反馈信号相减后的信号和所述第一电流参考信号进行第一次电流调节,获得第一高频开关信号;
    第二电流调节器,第一输入端与第二数模转换模块的输出端连接,第二输入端与所述第一电流反馈信号和所述第二电流反馈信号相减后的输出端连接,对所述第一电流反馈信号和所述第二电流反馈信号相减后的信号和所述第二电流参考信号进行第二次电流调节,获得第二高频开关信号;第三反相器,输入端与所述第二电流调节器的第一输出端连接,获得第三高频开关信号;
    第一与门,第一输入端与所述第一比较器的第二输出端连接,第二输入端与所述第二比较器的第二输出端连接,根据第一和第二模式选择信号,获得第五模式选择信号;
    第二与门,第一输入端与所述第一反相器的输出端连接,第二输入端与所述第二比较器的第三输出端连接,根据第二和第三模式选择信号,获得第六模式选择信号;
    第三与门,第一输入端与所述第二电流调节器的第二输出端连接,第二输入端与所述第二反相器的输出端连接,根据所述第二高频开关信号和所述第二模式选择信号,获得第四高频开关信号;
    第四与门,第一输入端与所述第三反相器的输出端连接,第二输入端与所述第二与门的输出端连接,根据所述第六模式选择信号和所述第三高频开关信号,获得第五高频开关信号;
    第一或门,第一输入端与所述第四与门的输出端连接,第二输入端与所述第三与门的输出端连接,根据第四和第五高频开关信号,获得第六高频开关信号;
    第二或门,第一输入端与所述第一或门的第一输出端连接,第二输入端与所述第一与门的第一输出端连接,根据所述第五模式选择信号和所述第六高频开关信号,获得第三开关逻辑信号,并传输至第三驱动电路;
    第五与门,第一输入端与所述第一与门的第二输出端连接,第二输入端与 所述第一电流调节器的输出端连接,根据所述第五模式选择信号和所述第一高频开关信号,获得第七高频开关信号;
    第三或门,第一输入端与所述第五与门的输出端连接,第二输入端与所述第二或门的第二输出端连接,根据所述第七高频开关信号和所述第三开关逻辑信号,获得第一开关逻辑信号,并传输至第一驱动电路;
    第四反相器,输入端与所述第三或门的第二输出端连接,根据所述第一开关逻辑信号,获得第二开关逻辑信号,并传输至第二驱动电路;
    第五反相器,输入端与所述第一与门的第三输出端连接,获得第七模式选择信号;
    第六反相器,输入端与所述第一或门的第二输出端连接,获得第八高频开关信号;
    第六与门,第一输入端与所述第五反相器的输出端连接,第二输入端与所述第六反相器的输出端连接,输出端与第四驱动电路输入端连接,根据所述第七模式选择信号和所述第八高频开关信号,获得第四开关逻辑信号,并传输至所述第四驱动电路。
  7. 一种升降压逆变器控制方法,该逆变器控制方法是基于权利要求1-6项中任意一项所述的升降压逆变器实现的,该逆变器控制方法包括以下步骤:
    步骤1:传感器系统实时监测输入电压和电网电压,并对所述输入电压和电网电压的大小进行第一次判定,判定所述输入电压大于或小于电网电压;
    步骤2:传感器系统实时监测电网电压,并对所述电网电压的工频周期进行第二次判定,判定所述电网电压的工频周期为正半周或者负半周;
    步骤3:当所述电网电压的工频周期为正半周且输入电压大于电网电压
    时,控制驱动单元调控第一开关和/或第二开关,以导通第一闭合回路和/或第一续流回路,使得第一电流反馈信号和第二电流反馈信号相减后的信号跟踪第一参考电流,以完成电网的电流调节;
    步骤4:当所述电网电压的工频周期为负半周或所述电网电压的工频周期为正半周且输入电压小于电网电压时,所述控制驱动单元调控该第一开 关、第二开关、第三开关和/或第四开关,以导通第一闭合回路和/或第二续流回路,使得所述第一电流反馈信号和所述第二电流反馈信号相减后的信号跟踪第二参考电流,以完成电网的电流调节。
  8. 如权利要求7所述的升降压逆变器控制方法,其特征在于,所述驱动单元调控第一开关和/或第二开关包括以下步骤:
    步骤3.1:所述控制驱动单元调控所述第四开关关断,第三开关导通,则所述第二续流回路关断;
    步骤3.2:将第一和第二电流传感器分别实时采集的第一和第二电流反馈信号相减后,与DSP生成的第一电流参考信号比较;
    步骤3.3:当第一和第二电流反馈信号相减后的信号小于所述第一电流参考信号时,所述控制驱动单元调控所述第一开关管导通,则所述第一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流增加,完成电网的电流调节;
    步骤3.4:当第一和第二电流反馈信号相减后的信号大于所述第一电流参考信号时,所述控制驱动单元调控所述第一开关管关断,则所述第一续流回路导通,则所述滤波电感的电流减小,完成电网的电流调节。
  9. 如权利要求7所述的升降压逆变器控制方法,其特征在于,所述控制驱动单元调控第一开关、第二开关、第三开关和/或第四开关包括以下步骤:
    步骤4.1:对该逆变器的工作模式进行第二次判定,判定该逆变器的工作模式为升压模式或升降压模式;
    步骤4.2:将第一电流传感器和第二电流传感器分别实时采集的第一电流反馈信和第二电流反馈信号相减后的信号,与DSP生成的第二电流参考信号比较;
    步骤4.3:当所述电网电压的工频周期为正半周且输入电压小于电网电压时,该逆变器的工作模式为升压模式,所述控制驱动单元调控所有开关高频开关;
    步骤4.4:当第一和第二电流反馈信号相减后的信号大于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管导通,则所述第 一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流减小,完成电网的电流调节;
    步骤4.5:当第一和第二电流反馈信号相减后的信号小于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管关断,则所述第二续流回路导通,则所述滤波电感的电流增加,完成电网的电流调节;
    步骤4.6:当所述电网电压的工频周期为负半周时,该逆变器的工作模式为升降压模式,所述控制驱动单元调控所有开关高频开关;
    步骤4.7:当第一和第二电流反馈信号相减后的信号小于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管导通,则所述第一闭合回路导通,输入电源通过所述第一闭合回路调节滤波电感的电流负向减小,完成电网的电流调节;
    步骤4.8:当第一和第二电流反馈信号相减后的信号大于所述第二电流参考信号时,所述控制驱动单元调控所述第一和第三开关管关断,则所述第二续流回路导通,则所述滤波电感的电流负向增加,完成电网的电流调节。
  10. 如权利要求7所述的升降压逆变器控制方法,其特征在于,第三和第四开关为可承受正反压的器件。
PCT/CN2022/098578 2021-09-23 2022-06-14 一种升降压逆变器及其控制方法 WO2023045416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529029A JP2023549868A (ja) 2021-09-23 2022-06-14 昇降圧インバータ及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114381.2 2021-09-23
CN202111114381.2A CN113824349A (zh) 2021-09-23 2021-09-23 一种升降压逆变器及其控制方法

Publications (1)

Publication Number Publication Date
WO2023045416A1 true WO2023045416A1 (zh) 2023-03-30

Family

ID=78915237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098578 WO2023045416A1 (zh) 2021-09-23 2022-06-14 一种升降压逆变器及其控制方法

Country Status (3)

Country Link
JP (1) JP2023549868A (zh)
CN (1) CN113824349A (zh)
WO (1) WO2023045416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824349A (zh) * 2021-09-23 2021-12-21 上海海事大学 一种升降压逆变器及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248334A1 (en) * 2015-02-25 2016-08-25 Rockwell Automation Technologies, Inc. Motor drive with lcl filter inductor with built-in passive damping resistor for afe rectifier
CN106787900A (zh) * 2017-03-27 2017-05-31 盐城工学院 升压并网逆变器及其控制方法
CN209659178U (zh) * 2019-04-12 2019-11-19 青岛理工大学 一种新型倍压-z源逆变器
CN112737389A (zh) * 2021-01-13 2021-04-30 上海海事大学 一种高可靠升降压的光伏逆变器及其控制方法
CN113824349A (zh) * 2021-09-23 2021-12-21 上海海事大学 一种升降压逆变器及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248334A1 (en) * 2015-02-25 2016-08-25 Rockwell Automation Technologies, Inc. Motor drive with lcl filter inductor with built-in passive damping resistor for afe rectifier
CN106787900A (zh) * 2017-03-27 2017-05-31 盐城工学院 升压并网逆变器及其控制方法
CN209659178U (zh) * 2019-04-12 2019-11-19 青岛理工大学 一种新型倍压-z源逆变器
CN112737389A (zh) * 2021-01-13 2021-04-30 上海海事大学 一种高可靠升降压的光伏逆变器及其控制方法
CN113824349A (zh) * 2021-09-23 2021-12-21 上海海事大学 一种升降压逆变器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, QIANG: "Auxiliary Resonant Commutated Pole Inverter Without Change of Neutral Point Potential", PROCEEDINGS OF THE CSEE, ZHONGGUO DIANJI GONGCHENG XUEHUI, CN, vol. 31, no. 18, 25 June 2011 (2011-06-25), CN , pages 27 - 32, XP009544817, ISSN: 0258-8013, DOI: 10.13334/j.0258-8013.pcsee.2011.18.006 *

Also Published As

Publication number Publication date
CN113824349A (zh) 2021-12-21
JP2023549868A (ja) 2023-11-29

Similar Documents

Publication Publication Date Title
US20230142869A1 (en) Method and system for adjusting double-sided lcc compensation network of wireless charging system
CN110365205B (zh) 一种高效率图腾柱无桥pfc整流器控制方法
TWI517545B (zh) 雙向直流變換器
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN113691140B (zh) 一种用于llc变换器双向同步整流控制装置的控制方法
US20100177536A1 (en) Dc-dc power supply apparatus method for improving dc-dc power supply apparatus
CN107493015B (zh) 一种双变压器结构的双向直流变换器及其功率控制方法
CN106981994A (zh) 一种单管双端逆变隔离型dc‑dc升压变换器
CN109361318A (zh) 基于dab的单级隔离型pfc变换器直接电流控制系统及控制方法
CN108880268B (zh) 电压源型半有源桥dc-dc变换器的多模式控制方法
CN113872451A (zh) 谐振型双有源桥式变换电路的控制方法、控制器及变换器
CN112491277B (zh) 一种通过死区时间自适应提高电力电子变压器效率的方法
CN115189578A (zh) 一种隔离型双向充电机cllc变换器控制装置及方法
WO2023045416A1 (zh) 一种升降压逆变器及其控制方法
CN110445387B (zh) 一种化成分容用电源的拓扑结构和控制方法
CN109412420B (zh) 双向隔离dc/dc电路及其采用的控制方法
CN114448248A (zh) 耦合电感交错并联四开关升降压双向变换器的控制电路
CN115811241B (zh) 单级无桥交错并联Boost-LLC AC-DC变换器混合控制方法
CN114285286B (zh) 一种单级式零电流开关全桥升压直流变换器及其控制方法
CN115001275A (zh) 级联Buck+Boost变换器的软开关-最小电流轨迹控制方法
CN201830155U (zh) 三相功率因数校正开关电源装置
CN216216584U (zh) 一种升降压逆变器
CN108134512B (zh) 一种针对h3imc的注入谐波电流控制方法
CN112737389A (zh) 一种高可靠升降压的光伏逆变器及其控制方法
Song et al. Hybrid control method for CLLLC resonant converter with Low output voltage ripple

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529029

Country of ref document: JP