CN115189578A - 一种隔离型双向充电机cllc变换器控制装置及方法 - Google Patents

一种隔离型双向充电机cllc变换器控制装置及方法 Download PDF

Info

Publication number
CN115189578A
CN115189578A CN202210917561.2A CN202210917561A CN115189578A CN 115189578 A CN115189578 A CN 115189578A CN 202210917561 A CN202210917561 A CN 202210917561A CN 115189578 A CN115189578 A CN 115189578A
Authority
CN
China
Prior art keywords
cllc
switching tube
converter
synchronous rectification
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210917561.2A
Other languages
English (en)
Other versions
CN115189578B (zh
Inventor
李浩然
朱文杰
孙逸博
刘碧
张品佳
胡存刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210917561.2A priority Critical patent/CN115189578B/zh
Publication of CN115189578A publication Critical patent/CN115189578A/zh
Application granted granted Critical
Publication of CN115189578B publication Critical patent/CN115189578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种隔离型双向充电机CLLC变换器控制装置及方法。该控制方法应用在双向隔离型充电机CLLC变换器当中,通过建立CLLC变换器正向和反向工作的三阶拟合模型,在控制器中计算包含开关频率和输出负载的同步整流导通时间。CLLC原边和副边开关管的开通时间是相同的,同步整流管的关断时间则由所计算的同步整流导通时间决定。正向运行时,CLLC变换器采用基于三阶拟合模型的同步整流控制,实现低导通损耗和高效率;反向运行时,CLLC变换器采用同步整流控制和输入电流前馈控制,使母线电容提供二次工频功率脉动,显著降低电池电流二次纹波,实现高效率。

Description

一种隔离型双向充电机CLLC变换器控制装置及方法
技术领域
本发明属于电力电子变换器技术领域,具体涉及一种隔离型双向充电机CLLC变换器控制装置及方法。
背景技术
双向电动汽车充电机具有从电网到车辆、从车辆到电网和从车辆到负载的双向充放电功能,是目前业界应用的热点。CLLC谐振变换器具有对称结构和宽ZVS范围,是一种很有应用前景的双向拓扑。CLLC同步整流器对于提高效率非常重要。精确的同步整流驱动信号可以进一步优化宽负载范围内的CLLC效率,最小化同步整流体二极管的导通时间,显著降低导通损耗。传统的采用检测电路对低电压为几十伏特下的同步整流方法是有效的。上述传统的方法的缺点是检测电路增加了转换器的复杂度和成本。另一个缺点是,在高电压/高频应用下,可能导致检测时的误操作。
对于双向单相充电机,前级逆变器产生的二次工频脉动影响电池电流。二次纹波不仅增加了开关器件的电流有效值,而且降低了电池寿命。在充电模式下,一般采用直接调节充电电流的方式,在带宽较高的情况下,可以显著降低低频电流纹波。但在放电模式下,通常是对输出母线电压进行控制,而不是对输入电池电流进行控制,因此电池电流的低频纹波给系统控制带来了严峻的挑战。
发明内容
本发明针对现有技术中的缺陷和不足,提出了一种隔离型双向充电机CLLC控制装置及方法,以实现同步整流功能和低放电电池电流纹波。结合开关频率和负载的变化,提出的三阶同步整流控制以较低的计算资源来计算同步整流的导通时间。此外,在放电模式下,提出了一种电池电流纹波抑制控制方法。它不仅实现了同步整流的低导通损耗,而且在很大程度上降低了电池放电电流纹波。
本发明为解决其技术问题,采用的具体技术方案如下:
一种隔离型双向充电机CLLC变换器控制装置,包括交错并联图腾柱无桥功率因数校正变换器、CLLC变换器、采样电路、微控制器和光耦隔离驱动电路;
所述交错并联图腾柱无桥功率因数校正变换器,包括第一开关管M1,第二开关管M2,第三开关管M3,第四开关管M4;第五开关管M5,第六开关管M6;第一开关管M1与第二开关管M2串联构成第一桥臂,第三开关管M3与第四开关管M4串联构成第二桥臂,第五开关管M5与第六开关管M6串联构成第三桥臂;第一桥臂中点经滤波电感Lac1连接电网一端,第二桥臂中点经滤波电感Lac2连接电网一端,且滤波电感Lac1与滤波电感Lac2与电网连接在同一端;第三桥臂中点与电网另一端连接;母线电容采用第一电容Cbus1和第二电容Cbus2串联的结构以提高电压等级,双向AC/DC变换器输出一端和另一端分别接母线电容正极和负极;
所述CLLC变换器包括原边全桥变换电路、谐振电路、副边全桥变换电路;所述原边全桥变换电路包括第一开关管Q1,第二开关管Q2,第三开关管Q3,第四开关管Q4;所述谐振电路包括谐振电感Lr1、谐振电感Lr2,谐振电容Cr1、谐振电容Cr2以及变压器,所述变压器中集成有激磁电感Lm,所述激磁电感Lm设置在所述变压器原边;所述第一开关管Q1和第二开关管Q2的中点与谐振电感Lr1串联,再与所述激磁电感Lm的一端连接,所述激磁电感Lm的另一端和谐振电容Cr1一端连接,谐振电容Cr1另一端连接第三开关管Q3和第四开关管Q4的中点;所述副边全桥变换电路包括第五开关管S1,第六开关管S2,第七开关管S3,第八开关管S4,所述第五开关管S1和第六开关管S2的中点与谐振电感Lr2串联,第七开关管S3和第八开关管S4的中点与谐振电容Cr2一端连接,谐振电感Lr2另一端通过变压器副边与谐振电容Cr2另一端连接。
进一步地,所述第一-第六开关管M1~M6,,第一-第四开关管Q1~Q4,第五-第八开关管S1~S4均为MOS管。
本发明还提供一种隔离型双向充电机CLLC变换器控制装置的同步整流控制方法,
所述同步整流控制方法基于CLLC变换器,正向运行时,建立三阶拟合模型,通过计算开关频率和输出等效负载,在微控制器中计算出同步整流导通时间,设置CLLC变换器原副边开关管的开通时间一致,同步整流关断时间则计算出的同步整流导通时间决定;反向运行时,CLLC变换器采用基于三阶拟合模型的同步整流控制和输入电流前馈控制,提高母线电压脉动,降低电池侧输出电流二次纹波。
进一步地,所述CLLC变换器正向工作时,包括如下步骤:
(1)采集输出电流ibat和输出电压vbat信号,经采样电路输入微控制器中;该信号与微控制器内参考输出电流或参考输出电压比较得到误差信号,该误差信号经比例-积分控制器计算后,得到脉冲频率调制信号;脉冲频率调制信号输入光耦隔离驱动电路得到所述原边全桥变换电路中原边第一-第四开关管Q1~Q4的驱动信号,实现对输出电流ibat和输出电压vbat的控制;
(2)利用采样得到的输出电压和输出电流信号,计算输出等效负载;根据输出等效负载和比例-积分控制器计算出的开关频率,计算出同步整流导通时间;
(3)第五-第八开关管S1~S4开通时间和原边第一-第四开关管Q1~Q4相同,第五-第八开关管S1~S4关断时间则由计算出的同步整流导通时间决定;
所述CLLC变换器反向运行时,包括如下步骤:
(1)采集输出母线电压信号、输入电流信号和输入电压信号,经采样处理电路输入微控制器中;
(2)计算反向运行的CLLC变换器的输出等效电阻,利用建立的CLLC同步整流导通时间三阶拟合模型,计算出与输出负载和开关频率变化时的同步整流导通时间;
(3)设置反向运行的CLLC变换器原副边开关管开通时间一致,即第一-第四开关管Q1~Q4开通时间和原边第五-第八开关管S1~S4相同,第一-第四开关管Q1~Q4的关断时间则由计算出的同步整流导通时间决定;
(4)对所采集的CLLC变换器输入电流信号,采用带通滤波器进行滤波,得到二次电流纹波信号,再经过比例控制器,其输出加入到CLLC变换器输出电压参考值上,实现CLLC变换器低输入电流纹波。
进一步地,所述CLLC变换器双向工作时,利用闭环控制所需的输入电压、输出电压和输出电流采样信号,计算输出等效负载。
本发明具有如下有益效果:
1、通过降低同步整流体二极管的导通时间,所提出的同步整流控制降低了同步整流导通损耗,以较低的微控制器计算资源,显著提高了效率。
2、在放电模式下,所提控制方法显著抑制了电池低频电流纹波,最大限度地延长了电池寿命。
3、该控制器不需要增加额外的硬件电路,只需对直流电流、电压信号进行检测,实现方便、简单。
附图说明
图1是两级式隔离型充电机拓扑结构图。
图2是本发明的正向模式下的数字同步整流控制框图。
图3是本发明的正向模式下的数字同步整流控制流程图。
图4是高负载下正向模式下的CLLC同步整流波形(小于谐振点)。
图5是高负载下正向模式下的CLLC同步整流波形(大于谐振点)。
图6是本发明的反向模式下的数字同步整流控制和输入电流前馈控制框图。
图7是本发明的反向模式下的数字同步整流控制和输入电流前馈控制流程图。
图8是本发明反向模式下电池二次纹波电流的抑制方法控制框图。
图9是反向模式下充电机波形(无二次纹波电流抑制)。
图10是反向模式下充电机波形(采用电池二次纹波电流抑制方法)。
具体实施方式
下面结合附图对本发明创造做进一步详细说明。此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。
如图1、图2和图6所示,本发明的隔离型双向充电机CLLC变换器控制装置包括交错并联图腾柱无桥功率因数校正变换器(PFC)、CLLC变换器、采样电路、微控制器和光耦隔离驱动电路。所述CLLC变换器为双向的。
所述交错并联图腾柱无桥功率因数校正变换器,包括第一开关管M1,第二开关管M2,第三开关管M3,第四开关管M4;第五开关管M5,第六开关管M6;第一、第二开关管M1与M2串联构成第一桥臂,第三、第四开关管M3与M4串联构成第二桥臂,第五、第六开关管M5与M6串联构成第三桥臂;该CLLC变换器采用交错并联图腾柱结构,第一桥臂中点经滤波电感Lac1连接电网一端,第二桥臂中点经滤波电感Lac2连接电网一端,且滤波电感Lac1与滤波电感Lac2与电网连接在同一端;第三桥臂中点与电网另一端连接;母线电容采用第一电容Cbus1和第二电容Cbus2串联的结构以提高电压等级,CLLC变换器输出第一端和第二端分别接母线电容正极和负极。
所述CLLC变换器包括原边全桥变换电路、谐振电路、副边全桥变换电路;所述原边全桥变换电路包括第一开关管Q1,第二开关管Q2,第三开关管Q3,第四开关管Q4;所述谐振电路包括谐振电感Lr1、谐振电感Lr2,谐振电容Cr1、谐振电容Cr2以及变压器,所述变压器中集成有激磁电感Lm,所述激磁电感Lm设置在所述变压器原边;所述第一开关管Q1和第二开关管Q2的中点与谐振电感Lr1串联,再与所述激磁电感Lm的一端连接,所述激磁电感Lm的另一端和谐振电容Cr1一端连接,谐振电容Cr1另一端连接第三开关管Q3和第四开关管Q4的中点;所述副边全桥变换电路包括第五开关管S1,第六开关管S2,第七开关管S3,第八开关管S4,所述第五开关管S1和第六开关管S2的中点与谐振电感Lr2串联,第七开关管S3和第八开关管S4的中点与谐振电容Cr2一端连接,谐振电感Lr2另一端通过变压器副边与谐振电容Cr2另一端连接。
所述装置基于CLLC变换器的三阶拟合模型,通过计算开关频率和输出等效负载,在微控制器中计算出同步整流导通时间,设置CLLC变换器原副边开关管的开通时间一致,同步整流关断时间则等于开通时间加上计算出的同步整流导通时间决定。
所述第一-第六开关管M1~M6,第一-第四开关管Q1~Q4,第五-第八S1~S4均为MOS管。
本发明的一种隔离型双向充电机CLLC变换器同步整流控制方法,基于CLLC变换器的输出等效输出负载,利用建立的三阶拟合模型,通过计算开关频率和输出等效负载,在微控制器中计算出同步整流导通时间,并设置CLLC变换器原副边开关管的开通时间一致,进而同步整流关断时间则等于所述开通时间加上计算的同步整流导通时间。
当开关频率低于谐振频率,同步整流导通时间可以计算出:
Figure BDA0003776370800000051
其中,p00,p10,p01,p20,p11,p02,p30,p21,p12和p03为拟合系数,ro为二次侧的负载阻抗,fs为开关频率。
当开关频率高于谐振频率,同步整流导通时间为:
Figure BDA0003776370800000052
其中,q00,q10,q01,q20,q11,q02,q30,q21,q12和q03为拟合系数,ro为二次侧的负载阻抗,fs为开关频率。
CLLC变换器反向运行时,由于CLLC变换器的拓扑结构是对称的,因此在充电模式和放电模式下等效电路是相似的。此外,对同步整流导通时间的计算也采用了相似的方法,可以通过前面充电模式推导从而简单地推导出来。
当开关频率低于谐振频率时,同步整流导通时间计算为:
Figure BDA0003776370800000053
其中,m00,m10,m01,m20,m11,m02,m30,m21,m12和m03为拟合系数,ro为二次侧的负载阻抗,fs为开关频率。
当开关频率高于谐振频率,同步整流导通时间计算为:
Figure BDA0003776370800000061
其中,n00,n10,n01,n20,n11,n02,n30,n21,n12和n03为拟合系数,ro为二次侧的负载阻抗,fs为开关频率。
如图3所示,所述CLLC变换器正向工作时,主要控制步骤如下:
(1)采集输出电流ibat和输出电压vbat信号,经采样电路输入微控制器中;该信号与微控制器内参考输出电流或参考输出电压比较得到误差信号,该误差信号经比例-积分控制器后,得到脉冲频率调制信号;脉冲频率调制信号输入所述光耦隔离驱动电路得到所述原边全桥变换电路中原边第一-第四开关管Q1~Q4的驱动信号,实现对输出电流ibat和输出电压vbat的控制;
(2)利用采样得到的输出电压和输出电流信号,计算输出等效负载;根据输出等效负载和比例-积分控制器计算出的开关频率,利用所建立的同步整流三阶拟合模型,计算出同步整流导通时间;
(3)同步第五-第八开关管S1~S4开通时间和原边第一-第四开关管Q1~Q4相同,同步第五-第八开关管S1~S4关断时间则由计算出的同步整流导通时间决定。
如图7所示,所述CLLC变换器反向运行时,主要控制步骤如下:
(1)采集输出母线电压信号、输入电流信号和输入电压信号,经采样处理电路输入微控制器中;
(2)计算反向运行的CLLC变换器的输出等效电阻,利用建立的CLLC同步整流导通时间三阶拟合模型,计算出输出负载和开关频率变化时的同步整流导通时间;
(3)设置反向运行的CLLC变换器原副边开关管开通时间一致,即同步第一-第四开关管Q1~Q4开通时间和原边第五-第八开关管S1~S4相同,同步第一-第四开关管Q1~Q4的关断时间则由计算出的同步整流导通时间决定;
(4)对所采集的CLLC变换器输入电流信号,采用带通滤波器进行滤波,得到二次电流纹波信号,再经过比例控制器,其输出加入到CLLC变换器输出电压参考值上,实现CLLC变换器低输入电流纹波。
同时,本发明提出了一种反向模式的低频电流纹波抑制控制,当单相逆变器输出电流与输出电压同相位时,瞬时功率po运行于二倍工频,可计算为:
Figure BDA0003776370800000062
其中,vo和io是交流输出电压和电流瞬时值,Vo和Io为交流侧输出电压、电流的有效值,ωl是电网角频率,pdc是直流功率,p2nd是二次脉动功率。如果二次纹波脉动功率仅由电池供电,则电池二次纹波电流ibat_2nd为:
ibat_2nd=p2nd/Vbat (6)
其中,Vbat为电池电压。CLLC变换器输入输出电压的关系为:
Vbus/(nVbat)=G (7)
其中,G为电压增益,n为CLLC变压器变比,Vbus为母线电压。因此,电池二次纹波电流ibat_2nd为:
ibat_2nd=nGVoIo sin 2ωlt/Vbus (8)
如果二次纹波功率仅由直流母线电容提供,则直流母线电压满足:
Figure BDA0003776370800000071
其中,vbus为母线电压瞬时值,Vbus_dc为母线电压直流分量,ΔV2nd为交流纹波分量。引入比例增益k,可推导为:
Figure BDA0003776370800000072
比例增益k计算为:
k=1/(2nGωlCbus) (11)
下面结合附图进一步说明本发明的CLLC双向同步整流控制方法。
图1所示为两级式隔离型充电机拓扑结构,前级为交错并联图腾柱无桥PFC,后级为双向CLLC变换器。CLLC变换器正向运行时,采用脉冲频率调制方法(PFM)控制,通过调节CLLC变换器的开关频率,实现对输出电压或电流的闭环控制。图2给出了CLLC变换器双向同步整流控制方法的正向原理框图。控制流程如图3所示,步骤如下:
第一,采集输出电流ibat和输出电压vbat,经采样电路输入微控制器(TMS32028377)中;该信号与微控制器内输出电流参考Iref或输出电压参考Vref比较得到误差信号,该误差信号经PI控制器计算后,与三角载波比较得到PFM信号。PFM信号送入光耦隔离驱动电路得到CLLC变换器原边开关管的驱动信号。
图4所示为开关频率小于谐振点时,原边驱动波形和副边同步整流驱动波形。由该图可得,所提同步整流控制算法能够很好地跟踪负载变化,调整同步整流的导通占空比,降低同步整流管体二极管的导通损耗,提高效率。
图5所示为开关频率大于谐振点时,原边驱动波形和副边同步整流驱动波形。由该图可知,所提同步整流控制算法能够很好地跟踪负载变化,调整同步整流的导通占空比,降低同步整流管体二极管的导通损耗,提高效率。
第二,根据采样的输出电流ibat和输出电压vbat,计算出输出等效电阻负载,该信号利用已有的采样电路,无需增加新的电路。利用闭环得到的开关频率和采样得到的等效负载,代入式(1)中,计算得到同步整流管的导通时间Δtf
第三,同步开关管开通时刻和原边相同即ton_S=ton_Q。根据所建模型计算出的同步整流导通时间,同步开关管关断时刻等于原边开通时刻加上计算出的导通时间即toff_S=ton_Q+Δtf。在微控制器中,将同步开关管的导通时间经过换算得到比较寄存器的比较值,得到PFM信号。利用光耦隔离芯片和驱动器,输出同步开关管驱动信号。
本发明在CLLC反向工作时如图6所示,控制流程图如图7所示。控制方法步骤如下:
第一,采集输出电压vbus,经过采样电路后输入到微控制器。与微控制器内已有的输入电压和输入电流信号进行计算,得到等效输出负载。
本发明反向运行时,电路控制框图如图6所示。图7所示为反向CLLC同步整流的控制流程图。
第二,将计算的等效负载代入式(3)中,在微控制器中进行计算,得到同步整流管的导通时间Δtr,原边开通时刻和同步开关管相同即ton_Q=ton_S。根据所建模型计算出的同步整流导通时间,原边关断时刻等于同步开关管开通时刻加上计算出的导通时间即toff_Q=ton_S+Δtr。在微控制器中将计算的同步整流导通时间换算成比较寄存器的值,利用光耦隔离芯片和驱动电路,输出同步整流驱动信号。
第三,在CLLC变换器反向运行时,还提出了一种电池二次纹波抑制的控制方法,以减小放电模式下的低频电流纹波。通过使用带通滤波器,提取电池电流的二次纹波,乘以一个比例增益。然后将该值加入输出母线电压基准,适当增大母线电压的波动,使输出母线电容提供二次工频的功率脉动。
图8显示了输入电流纹波抑制控制。利用带通滤波器提取二次纹波电流纹波并乘以比例系数k,所得乘积加入直流母线电压基准。
图9和图10所示为反向运行时充电机在没有二次纹波电流抑制和采用提出电池二次纹波抑制方法的对比波形,提出的电池二次纹波电流抑制方法,减小了放电模式下的低频电流纹波。通过使用带通滤波器,提取低频纹波并乘以一个比例增益。然后将该值加入输出母线电压基准,适当增大母线电压的波动,使母线电容器提供二次纹波功率脉动。
综上所述,本发明的CLLC双向控制方法,可以在全负载范围实现ZVS和ZCS,减小变换器的损耗,提高变换器的效率,同时电路简单,可靠性高,具备现有控制方法所不具备的优势。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

1.一种隔离型双向充电机CLLC变换器控制装置,其特征在于:包括交错并联图腾柱无桥功率因数校正变换器、CLLC变换器、采样电路、微控制器和光耦隔离驱动电路;
所述交错并联图腾柱无桥功率因数校正变换器,包括第一开关管M1,第二开关管M2,第三开关管M3,第四开关管M4;第五开关管M5,第六开关管M6;第一开关管M1与第二开关管M2串联构成第一桥臂,第三开关管M3与第四开关管M4串联构成第二桥臂,第五开关管M5与第六开关管M6串联构成第三桥臂;第一桥臂中点经滤波电感Lac1连接电网一端,第二桥臂中点经滤波电感Lac2连接电网一端,且滤波电感Lac1与滤波电感Lac2与电网连接在同一端;第三桥臂中点与电网另一端连接;母线电容采用第一电容Cbus1和第二电容Cbus2串联的结构以提高电压等级,双向AC/DC变换器输出第一端和第二端分别接母线电容正极和负极;
所述CLLC变换器包括原边全桥变换电路、谐振电路、副边全桥变换电路;所述原边全桥变换电路包括第一开关管Q1,第二开关管Q2,第三开关管Q3,第四开关管Q4;所述谐振电路包括谐振电感Lr1、谐振电感Lr2,谐振电容Cr1、谐振电容Cr2以及变压器,所述变压器中集成有激磁电感Lm,所述激磁电感Lm设置在所述变压器原边;所述第一开关管Q1和第二开关管Q2的中点与谐振电感Lr1串联,再与所述激磁电感Lm的一端连接,所述激磁电感Lm的另一端和谐振电容Cr1一端连接,谐振电容Cr1另一端连接第三开关管Q3和第四开关管Q4的中点;所述副边全桥变换电路包括第五开关管S1,第六开关管S2,第七开关管S3,第八开关管S4,所述第五开关管S1和第六开关管S2的中点与谐振电感Lr2串联,第七开关管S3和第八开关管S4的中点与谐振电容Cr2一端连接,谐振电感Lr2另一端通过变压器副边与谐振电容Cr2另一端连接。
2.根据权利要求1所述的隔离型双向充电机CLLC变换器控制装置,其特征在于:
所述第一-第六开关管M1~M6,,第一-第四开关管Q1~Q4,第五-第八开关管S1~S4均为MOS管。
3.根据权利要求1或2所述的一种隔离型双向充电机CLLC变换器控制装置的同步整流控制方法,其特征在于:
所述同步整流控制方法基于CLLC变换器,正向运行时,建立三阶拟合模型,通过计算开关频率和输出等效负载,在微控制器中计算出同步整流导通时间,设置CLLC变换器原副边开关管的开通时间一致,同步整流关断时间则计算出的同步整流导通时间决定;反向运行时,CLLC变换器采用基于三阶拟合模型的同步整流控制和输入电流前馈控制,提高母线电压脉动,降低电池侧输出电流二次纹波。
4.根据权利要求3所述的同步整流控制方法,其特征在于:
所述CLLC变换器正向工作时,包括如下步骤:
(1)采集输出电流ibat和输出电压vbat信号,经采样电路输入微控制器中;该信号与微控制器内参考输出电流或参考输出电压比较得到误差信号,该误差信号经比例-积分控制器计算后,得到脉冲频率调制信号;脉冲频率调制信号输入光耦隔离驱动电路得到所述原边全桥变换电路中原边第一-第四开关管Q1~Q4的驱动信号,实现对输出电流ibat和输出电压vbat的控制;
(2)利用采样得到的输出电压和输出电流信号,计算输出等效负载;根据输出等效负载和比例-积分控制器计算出的开关频率,计算出同步整流导通时间;
(3)第五-第八开关管S1~S4开通时间和原边第一-第四开关管Q1~Q4相同,第五-第八开关管S1~S4关断时间则由计算出的同步整流导通时间决定;
所述CLLC变换器反向运行时,包括如下步骤:
(1)采集输出母线电压信号、输入电流信号和输入电压信号,经采样处理电路输入微控制器中;
(2)计算反向运行的CLLC变换器的输出等效电阻,利用建立的CLLC同步整流导通时间三阶拟合模型,计算出与输出负载和开关频率变化时的同步整流导通时间;
(3)设置反向运行的CLLC变换器原副边开关管开通时间一致,即第一-第四开关管Q1~Q4开通时间和原边第五-第八开关管S1~S4相同,第一-第四开关管Q1~Q4的关断时间则由计算出的同步整流导通时间决定;
(4)对所采集的CLLC变换器输入电流信号,采用带通滤波器进行滤波,得到二次电流纹波信号,再经过比例控制器,其输出加入到CLLC变换器输出电压参考值上,实现CLLC变换器低输入电流纹波。
5.根据权利要求4所述的同步整流控制方法,其特征在于:
所述CLLC变换器双向工作时,利用闭环控制所需的输入电压、输出电压和输出电流采样信号,计算输出等效负载。
CN202210917561.2A 2022-08-01 2022-08-01 一种隔离型双向充电机cllc变换器控制装置及方法 Active CN115189578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210917561.2A CN115189578B (zh) 2022-08-01 2022-08-01 一种隔离型双向充电机cllc变换器控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210917561.2A CN115189578B (zh) 2022-08-01 2022-08-01 一种隔离型双向充电机cllc变换器控制装置及方法

Publications (2)

Publication Number Publication Date
CN115189578A true CN115189578A (zh) 2022-10-14
CN115189578B CN115189578B (zh) 2024-07-02

Family

ID=83521762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210917561.2A Active CN115189578B (zh) 2022-08-01 2022-08-01 一种隔离型双向充电机cllc变换器控制装置及方法

Country Status (1)

Country Link
CN (1) CN115189578B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191550A (zh) * 2023-03-29 2023-05-30 苏州博沃创新能源科技有限公司 一种基于SiC的家庭光储充一体系统
CN116207811A (zh) * 2022-12-15 2023-06-02 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块
CN116231705A (zh) * 2022-12-30 2023-06-06 苏州博沃创新能源科技有限公司 20kW双向单相/三相兼容电动汽车非车载直流充电模块
CN116231703A (zh) * 2022-12-30 2023-06-06 苏州博沃创新能源科技有限公司 11kW双向单相/三相兼容电动汽车非车载直流充电模块
CN117060708A (zh) * 2023-08-21 2023-11-14 哈尔滨工业大学 单级无桥pfc变换器及控制方法
WO2024120644A1 (en) * 2022-12-09 2024-06-13 Huawei Digital Power Technologies Co., Ltd. Apparatus and method for controlling a two-stage bidirectional ac-dc power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法
WO2021184467A1 (zh) * 2020-03-16 2021-09-23 浙江大学 一种宽输出电压范围谐振变换器拓扑及其控制方法
CN113691140A (zh) * 2021-09-09 2021-11-23 安徽大学 一种llc变换器双向同步整流控制装置和方法
WO2021237503A1 (zh) * 2020-05-26 2021-12-02 中国科学院电工研究所 三相cllc双向直流变换器及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法
WO2021184467A1 (zh) * 2020-03-16 2021-09-23 浙江大学 一种宽输出电压范围谐振变换器拓扑及其控制方法
WO2021237503A1 (zh) * 2020-05-26 2021-12-02 中国科学院电工研究所 三相cllc双向直流变换器及其控制方法
CN113691140A (zh) * 2021-09-09 2021-11-23 安徽大学 一种llc变换器双向同步整流控制装置和方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120644A1 (en) * 2022-12-09 2024-06-13 Huawei Digital Power Technologies Co., Ltd. Apparatus and method for controlling a two-stage bidirectional ac-dc power converter
CN116207811A (zh) * 2022-12-15 2023-06-02 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块
CN116207811B (zh) * 2022-12-15 2024-04-05 苏州博沃创新能源科技有限公司 7kW双向电动汽车非车载直流充电模块
CN116231705A (zh) * 2022-12-30 2023-06-06 苏州博沃创新能源科技有限公司 20kW双向单相/三相兼容电动汽车非车载直流充电模块
CN116231703A (zh) * 2022-12-30 2023-06-06 苏州博沃创新能源科技有限公司 11kW双向单相/三相兼容电动汽车非车载直流充电模块
CN116231705B (zh) * 2022-12-30 2024-02-20 苏州博沃创新能源科技有限公司 20kW双向单相/三相兼容电动汽车非车载直流充电模块
CN116231703B (zh) * 2022-12-30 2024-03-01 苏州博沃创新能源科技有限公司 11kW双向单相/三相兼容电动汽车非车载直流充电模块
CN116191550A (zh) * 2023-03-29 2023-05-30 苏州博沃创新能源科技有限公司 一种基于SiC的家庭光储充一体系统
CN117060708A (zh) * 2023-08-21 2023-11-14 哈尔滨工业大学 单级无桥pfc变换器及控制方法
CN117060708B (zh) * 2023-08-21 2024-05-24 哈尔滨工业大学 单级无桥pfc变换器及控制方法

Also Published As

Publication number Publication date
CN115189578B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
CN115189578B (zh) 一种隔离型双向充电机cllc变换器控制装置及方法
CN110365205B (zh) 一种高效率图腾柱无桥pfc整流器控制方法
CN113691140B (zh) 一种用于llc变换器双向同步整流控制装置的控制方法
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation
CN112491277B (zh) 一种通过死区时间自适应提高电力电子变压器效率的方法
CN108183603B (zh) 一种单级无桥软开关谐振隔离型功率因数校正电路
CN113135109B (zh) 一种电动汽车大功率充电装置拓扑结构
CN109327158B (zh) 一种集成功率解耦和升降压功能的电流型并网逆变装置
CN115811241B (zh) 单级无桥交错并联Boost-LLC AC-DC变换器混合控制方法
CN102931828A (zh) 功率因数校正电路及改善功率因数的方法
CN116317528B (zh) 单级单相无桥倍压式cuk型pfc变换器
CN106505866A (zh) 一种三电平全桥直流变换装置
CN115566907B (zh) 改进型vmc llc谐振pfc变换器控制系统及其设计方法
CN115242095B (zh) 一种隔离型cllc变换器双向同步整流控制装置和方法
CN106849708B (zh) 一种pfc整流装置
CN113965096B (zh) 带辅助功率因数校正电路的串联型12脉波整流器
CN109951098B (zh) 一种快速隔离断路器及其控制算法
CN110829823B (zh) 一种提高dcm升压pfc变换器临界电感的装置及方法
CN114640255A (zh) 一种串联谐振变换器及其控制方法
CN113765358A (zh) 单级交错并联ac-dc谐振变换电路及其控制方法
CN211959064U (zh) 一种新型非隔离Buck PFC变换器系统
CN116961399B (zh) 基于输出反向的反激与降压单元的无桥降压型pfc变换器
CN110289755B (zh) 高功率因数DCM Buck-Flyback PFC变换器
CN216216584U (zh) 一种升降压逆变器
CN109546851A (zh) 软开关高功率因数交流-直流变换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant