WO2023045367A1 - 一种中子减速复合材料 - Google Patents

一种中子减速复合材料 Download PDF

Info

Publication number
WO2023045367A1
WO2023045367A1 PCT/CN2022/094087 CN2022094087W WO2023045367A1 WO 2023045367 A1 WO2023045367 A1 WO 2023045367A1 CN 2022094087 W CN2022094087 W CN 2022094087W WO 2023045367 A1 WO2023045367 A1 WO 2023045367A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
composite material
neutron
particle size
mixed material
Prior art date
Application number
PCT/CN2022/094087
Other languages
English (en)
French (fr)
Inventor
胡志良
梁天骄
傅世年
Original Assignee
散裂中子源科学中心
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 散裂中子源科学中心, 中国科学院高能物理研究所 filed Critical 散裂中子源科学中心
Publication of WO2023045367A1 publication Critical patent/WO2023045367A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Definitions

  • the invention relates to the technical field of metal matrix composite materials, in particular to a neutron deceleration composite material used for BNCT boron neutron capture therapy equipment to obtain neutron beams of a specific energy range.
  • the neutron energy spectrum produced by various radiation sources is basically a continuous energy spectrum in which fast neutron components are absolutely dominant, and is widely used in national defense and nuclear power and nuclear medicine.
  • neutron beams with specific energy ranges are required for treatment, such as thermal neutrons (En ⁇ 0.5eV) for surface cancer treatment, epithermal neutrons (0.5eV ⁇ En ⁇ 10KeV) ) has high energy, can penetrate human tissues at a certain depth, and is used for the treatment of deep tumors in the human body.
  • Fast neutrons (En > 10KeV) are very harmful to the human body and have a strong penetrating ability.
  • a neutron decelerating material is needed to reduce neutron slowing down Neutrons of a specific energy segment are screened out for tumor treatment.
  • the Chinese invention application with publication number CN105732047A discloses a neutron filter material and its preparation method, using tungsten powder, aluminum powder, titanium powder, boron carbide, titanium oxide, lithium fluoride, aluminum fluoride, gadolinium oxide, fluoride At least one of gadolinium, boron nitride, boron oxide, zirconium boride, titanium boride, and lithium oxide powder, prepared by pressing, sintering, and hot isostatic pressing, to obtain a filter material, but with more powder elements , and contains many heavy metal elements that are prone to induced radioactivity, it is difficult to meet the physical design indicators of boron neutron capture therapy devices.
  • the Chinese invention application with publication number CN107921273B discloses a beam shaper for neutron capture therapy, the retarder decelerates the neutrons generated from the target to the epithermal neutron energy region, the retarder
  • the body material consists of one or more mixed materials containing PbF 4 , Al 2 O 3 , AlF 3 , CaF 2 or MgF 2 and the The weight percentage of one or more mixed materials is 0.1-5% by mixing materials containing 6 Li elements, wherein the material of the retarder is made of powder or powder compact by powder sintering equipment through powder sintering process into blocks.
  • Some nuclides have a large neutron absorption cross section in the epithermal region.
  • the present invention proposes a neutron deceleration composite material, aiming to solve the technical problems in the above-mentioned background technology.
  • the object of the present invention is to solve the problems existing in the prior art, and provide a neutron deceleration composite material to overcome the problems of poor economic performance, high radioactivity induced by neutron irradiation for a long time, and unfriendly environment. It has excellent neutron deceleration performance, can decelerate fast neutrons to the epithermal neutron energy region, and is suitable for the field of boron neutron capture therapy.
  • a neutron deceleration composite material proposed by the present invention which includes: a mixed material, a material containing 6 Li element accounting for 0.1-5% by weight of the mixed material, and Cu accounting for 0.1-5% by weight of the mixed material.
  • the material includes a mixture of one or more materials in Al, MgF 2 , AlF 3 , and the mixed material is calculated by mass percentage, including:
  • Aluminum fluoride powder 20-80%;
  • Magnesium fluoride powder 0.1-15%
  • the material containing 6 Li element is 6 LiF powder.
  • the mixed material further includes pure magnesium powder, and the mass percentage of the pure magnesium powder is 0.1-5%.
  • the particle size of the aluminum fluoride powder is 0.5-75 ⁇ m.
  • the particle size of the magnesium fluoride powder is: 0.5-50 ⁇ m.
  • the particle size of the pure aluminum powder is: 0.1-100 ⁇ m.
  • the particle size of the lithium fluoride powder is: 0.5-50 ⁇ m.
  • the particle size of the pure magnesium powder is: 0.1-100 ⁇ m.
  • the present invention also proposes a method for manufacturing a metal-matrix composite material base material, which includes the above-mentioned neutron deceleration composite material, and the processing steps of the metal-matrix composite material base material are as follows:
  • the neutron deceleration composite material provided by the present invention when decommissioning the deceleration material at the end of the device or equipment, its radioactivity can decay to the level of exemption or below in a relatively short period of time, which has advantages in the disposal method and economy of radioactive waste obvious;
  • a neutron deceleration composite material provided by the present invention has no or minimal harm to the human body
  • the absorption cross section of the main nuclides in the epithermal neutron energy region is smaller, and the elastic scattering cross section is larger, that is to say, these nuclides are more conducive to neutron deceleration, and at the same time Minimize the absorption of neutrons and the generation of unwanted gamma rays;
  • Cu used in the present invention has a larger absorption cross-section than Mg and Al, its elastic scattering cross-section in the superthermal energy region is much larger than the absorption cross-section. At the same time, Cu has a higher atomic number and has a better absorption effect on gamma.
  • Fig. 1 is the overall reaction sectional view of embodiment one;
  • Fig. 2 is the elastic scattering sectional view of embodiment one;
  • Fig. 3 is the (n, ⁇ ) absorption sectional view of embodiment one;
  • Fig. 4 is the total reaction sectional view of embodiment two;
  • Fig. 5 is the elastic scattering sectional view of embodiment two;
  • Fig. 6 is the (n, ⁇ ) absorption cross-sectional view of the second embodiment.
  • a kind of neutron moderation composite material by weight percentage, comprises Al (wt%): 28.0, MgF 2 (wt%): 1.0, AlF 3 (wt%): 69.0, 6 LiF (wt%): 1.0, Cu (wt%):
  • the mixed material of 1.0, through the powder sintering process of the powder sintering equipment, the moderator block is formed by powder or powder crushing.
  • nuclides such as aluminum, fluorine, and magnesium have small neutron (n, ⁇ ) absorption cross-sections and large elastic scattering cross-sections in the superthermal energy region, which is conducive to moderating fast neutrons to the superthermal energy region; natural lithium is divided into 6 Li and 7 Li are two types of nuclides, both of which have small atomic numbers and have good moderation or deceleration capabilities.
  • 6 Li has a large neutron absorption cross section in the hot zone and below the energy zone, which can absorb thermal neutrons.
  • Cu has a high atomic number and has good ⁇ absorption capacity, and at the same time, the elastic scattering cross section is much larger than the absorption cross section in the superthermal energy region, which is conducive to the moderation of fast neutrons, and its The half-life of the activated product is short, which is convenient for the disposal of radioactive waste.
  • the present embodiment provides a neutron deceleration composite material, including Al (wt%): 28.5, MgF 2 (wt%): 2.0, AlF 3 (wt%): 66.0, 6 LiF (wt%) in weight percentage : 1.0, Cu(wt%): 0.5, Mg(wt%): 2.0 mixed material, through powder sintering equipment through powder sintering process, the moderator block is formed by powder or powder crushing.
  • This embodiment provides a neutron deceleration composite material, in terms of weight percentage, compared with Embodiment 1, the difference is that it includes Al (wt%): 28.0, Mg (wt%): 1.0, AlF3 (wt %): 69.0, 6 LiF (wt%): 1.0, Cu (wt%): 1.0;
  • This embodiment provides a neutron deceleration composite material, in terms of weight percentage, compared with Embodiment 1, the difference is that it includes Al (wt%): 29.0, MgF 2 (wt%): 2.0, AlF 3 ( wt%): 67.5, 6 LiF (wt%): 1.0, Cu (wt%): 0.5;
  • This embodiment provides a neutron deceleration composite material, in terms of weight percentage, compared with Embodiment 1, the difference is that it includes Al (wt%): 29.0, Mg (wt%): 1.0, AlF3 (wt %): 67.5, 6 LiF (wt%): 1.0, Cu (wt%): 1.5;
  • This embodiment provides a neutron deceleration composite material, in terms of weight percentage, compared with Embodiment 1, the difference is that it includes Al (wt%): 28.5, MgF 2 (wt%): 1.0, AlF 3 ( wt%): 68.0, 6 LiF (wt%): 1.0, Cu (wt%): 0.5, Mg (wt%): 1.0;
  • This embodiment provides a neutron deceleration composite material, in terms of weight percentage, compared with Embodiment 1, the difference is that it includes Al (wt%): 31.0, MgF 2 (wt%): 5.5, AlF 3 ( wt%): 62.0, 6 LiF (wt%): 1.0, Cu (wt%): 0.5;
  • the fast neutrons can still be slowed down to the epithermal energy zone, and the neutrons in the epithermal energy zone ( n, ⁇ )
  • This embodiment provides a neutron deceleration composite material, including aluminum fluoride powder, magnesium fluoride powder, pure aluminum powder, lithium fluoride powder, pure magnesium powder and copper, the powders are all micron-sized powders, and the raw materials are easy to obtain and cheap low.
  • the particle size of aluminum fluoride powder is 0.5-75 ⁇ m
  • the particle size of magnesium fluoride powder is 0.5-50 ⁇ m
  • the particle size of pure aluminum powder is 0.1-100 ⁇ m
  • the particle size of lithium fluoride powder is 0.5-50 ⁇ m
  • the particle size of pure magnesium powder is 0.1 ⁇ 100 ⁇ m.
  • the particle size of the aluminum fluoride powder is preferably: 0.5-10 ⁇ m, 10-25 ⁇ m, 25-44 ⁇ m, 44-58 ⁇ m, 58-75 ⁇ m, more specific particle size values: 0.5 ⁇ m, 10 ⁇ m, 25 ⁇ m, 44 ⁇ m, 58 ⁇ m, 75 ⁇ m;
  • the particle size of magnesium fluoride powder is preferably: 0.5-10 ⁇ m, 10-30 ⁇ m, 30-50 ⁇ m, more specific particle size values: 0.5 ⁇ m, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m;
  • the particle size of pure aluminum powder is preferably: 0.1-40 ⁇ m, 40-75 ⁇ m, 75-100 ⁇ m, more specific particle size values: 0.1 ⁇ m, 40 ⁇ m, 75 ⁇ m, 100 ⁇ m;
  • the particle size of lithium fluoride powder is preferably: 0.5-10 ⁇ m, 10-30 ⁇ m, 30-50 ⁇ m, more specific particle size values: 0.5 ⁇ m, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m;
  • the particle size of the pure magnesium powder is preferably: 0.1-40 ⁇ m, 40-75 ⁇ m, 75-100 ⁇ m, more specific particle size values: 0.1 ⁇ m, 40 ⁇ m, 75 ⁇ m, 100 ⁇ m.
  • This embodiment realizes that the same powder adopts a combination of various particle sizes, which is beneficial to reduce the gap between the powders, greatly increases the material density during production and processing, and makes the moderator processed by the hot isostatic pressing method as a whole
  • the high density is more conducive to the deceleration of neutrons, and at the same time, it can absorb less neutrons and generate less unnecessary gamma rays.
  • the neutron deceleration composite material in the process of this embodiment is processed into other metal matrix composite material substrates that can be used for neutron deceleration, such as deceleration body or moderator body or retardation body, and a metal matrix composite material substrate is also proposed
  • the manufacturing method, the main processing steps are as follows:
  • the neutron deceleration composite material provided by the present invention when decommissioning the deceleration material at the end of the device or equipment, its radioactivity can decay to the level of exemption or below in a relatively short period of time, which has advantages in the disposal method and economy of radioactive waste obvious;
  • a neutron deceleration composite material provided by the present invention has no or minimal harm to the human body
  • the absorption cross section of the main nuclides in the epithermal neutron energy region is smaller, and the elastic scattering cross section is larger, that is to say, these nuclides are more conducive to neutron deceleration, and at the same time Minimize the absorption of neutrons and the generation of unwanted gamma rays;
  • Cu used in the present invention has a larger absorption cross-section than Mg and Al, its elastic scattering cross-section in the superthermal energy region is much larger than the absorption cross-section. At the same time, Cu has a higher atomic number and has a better absorption effect on gamma.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种中子减速复合材料,其包括混合材料、占混合材料重量百分比0.1~5%含有 6Li元素的材料、以及占混合材料重量百分比0.1~5%的Cu,所述混合材料包括Al、MgF 2、AlF 3中的一种或多种材料的混合;所述混合材料按质量百分比计,包括:纯铝粉末:10~95%;氟化铝粉末:20~80%;氟化镁粉末:0.1~15%;所述的含有 6Li元素的材料是 6LiF粉末;所述的混合材料还包括纯镁粉末,所述纯镁粉末的质量百分比是0.1~5%。本发明通过在装置或设备末期减速材料退役时,其放射性可在较短时间内衰减至豁免及以下水平,在放射性废物的处置方法及经济性上优势明显。

Description

一种中子减速复合材料
本申请要求于2021年9月26日提交中国专利局、申请号为202111126416.4、发明名称为“一种中子减速复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及金属基复合材料的技术领域,尤其涉及一种用于BNCT硼中子俘获治疗装置获取特定能量段中子束的中子减速复合材料。
背景技术
中国的反应堆中子源、加速器中子产生装置及同位素中子源等各类辐射源产生的中子能谱基本上都是快中子成分绝对占优的连续能谱,广泛应用于国防、核电及核医疗等领域。在硼中子俘获治疗(BNCT)治疗领域,治疗需要特定能量段的中子束,如热中子(En<0.5eV)用于体表癌症治疗,超热中子(0.5eV≤En≤10KeV)具有较高的能量,能穿透一定深度的人体组织,用于人体深部肿瘤治疗。快中子(En>10KeV)对人体危害大,且穿透能力较强,医疗中一般不予考虑,或弃用,或尽量降低其成分比例,因此需要一种中子减速材料将中子慢化、过滤,筛选出特定能量段的中子用于肿瘤治疗。
公开号为CN105732047A的中国发明申请公开了一种中子过滤材料及其制备方法,采用钨粉、铝粉、钛粉、碳化硼、氧化钛、氟化锂、氟化铝、氧化钆、氟化钆、氮化硼、氧化硼、硼化锆、硼化钛和氧化锂粉末中至少一种,采用压制成形、烧结及热等静压成形工艺制备,得到一种过滤材料,但粉末元素较多,且含有不少易产生感生放射性的重金属元素,较难满足硼中子俘获治疗装置的物理设计指标。
公开号为CN107921273B的中国发明申请公开了用于中子捕获治疗的射束整形体,所述缓速体将自所述靶材产生的中子减速至超热中子能区,所述缓速体的材料由含有PbF 4、Al 2O 3、AlF 3、CaF 2或MgF 2中的一种或多种混合材料和占有所述含有PbF4、Al 2O 3、AlF 3、CaF 2或MgF 2中的一种或 多种混合材料的重量百分比为0.1~5%的含有 6Li元素的材料混合制成,其中所述缓速体的材料经粉末烧结设备通过粉末烧结工艺由粉末或粉末压坯变成块。
上述公开的专利存在以下缺陷:
(1)、材料成分过多,部分材料并不常见,加工或生产制造,不具备较好的经济性;
(2)、所用材料成分部分含有高Z元素,经中子活化后,生成半衰期寿命较长的核素,如 45Ca(Hf=162.7d), 205Pb(Hf=1.5e+7y), 185W(Hf=75.1d), 93Zr(Hf=1.61e+6y), 95Zr(Hf=64.03d),不利于退役放射性固体废弃物处置;
(3)、部分材料有剧毒,如PbF 4,生产加工难度大;
(4)、部分核素在超热能区中子吸收截面很大。
本发明提出一种中子减速复合材料,旨解决上述背景技术中存在的技术问题。
发明内容
本发明目的是针对现有技术存在的问题,提供一种中子减速复合材料,以克服经济性能较差、长时间受中子辐照够感生放射性较大、环境不友好等问题,同时材料具有优异的中子减速性能,可将快中子减速至超热中子能区,适用于硼中子俘获治疗领域。
本发明提出的一种中子减速复合材料,其包括:混合材料、占混合材料重量百分比0.1~5%含有 6Li元素的材料、以及占混合材料重量百分比0.1~5%的Cu,所述混合材料包括Al、MgF 2、AlF 3中的一种或多种材料的混合,所述混合材料按质量百分比计,包括:
纯铝粉末:10~95%;
氟化铝粉末:20~80%;
氟化镁粉末:0.1~15%;
在一种具体的实施方式中,所述的含有 6Li元素的材料是 6LiF粉末。
在一种具体的实施方式中,所述的混合材料还包括纯镁粉末,所述纯 镁粉末的质量百分比是0.1~5%。
在一种具体的实施方式中,所述的氟化铝粉末的粒度为0.5~75μm。
在一种具体的实施方式中,所述的氟化镁粉末粒度为:0.5~50μm。
在一种具体的实施方式中,所述的纯铝粉末粒度为:0.1~100μm。
在一种具体的实施方式中,所述的氟化锂粉末粒度为:0.5~50μm。
在一种具体的实施方式中,所述的纯镁粉末粒度为:0.1~100μm。
本发明还提出了一种金属基复合材料基材的制造方法,其包括上述的中子减速复合材料,该金属基复合材料基材加工工艺步骤如下:
S1、将多种不同粉末粒度的原材料充分搅拌混合均匀后置于密闭包套中,在400~600℃环境下连续抽气直至气压小于10~3Pa并保持1小时后停止;
S2、将包套放入热等静压机中开始热等静压,压制过程持续2~6小时,期间温度维持在700~950℃,压力为80~150MPa,压制完毕得到金属基复合材料基材。
本发明的有益效果是:
1、本发明提供的一种中子减速复合材料,在装置或设备末期减速材料退役时,其放射性可在较短时间内衰减至豁免及以下水平,在放射性废物的处置方法及经济性上优势明显;
2、本发明提供的一种中子减速复合材料,对人体没有伤害或伤害极小;
3、本发明提供的一种中子减速复合材料,主要核素在超热中子能区的吸收截面较小,弹性散射截面较大,也就是说这些核素更有利于中子减速,同时尽量少吸收中子和尽量少产生不需要的伽马射线;
4、本发明采用的Cu虽然其吸收截面较Mg、Al大,但其在超热能区弹性散射截面远大于吸收截面,同时Cu原子序数较高,对伽马就较好的吸收效果。
附图说明
为了更好的理解本发明,将根据以下附图对本发明的实施例进行描述:
图1是实施例一的总反应截面图;
图2是实施例一的弹性散射截面图;
图3是实施例一的(n,γ)吸收截面图;
图4是实施例二的总反应截面图;
图5是实施例二的弹性散射截面图;
图6是实施例二的(n,γ)吸收截面图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明;应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明;除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例一
一种中子减速复合材料,以重量百分数计,包括Al(wt%):28.0、MgF 2(wt%):1.0、AlF 3(wt%):69.0、 6LiF(wt%):1.0、Cu(wt%):1.0的混合材料,经粉末烧结设备通过粉末烧结工艺,由粉末或粉末压坏形成慢化体块。
上述材料中,铝、氟、镁等核素在超热能区中子(n,γ)吸收截面小,弹性散射截面大,有利于将快中子慢化至超热能区;天然锂分为 6Li和 7Li两种核素,二者原子序数较小,具有良好的慢化或减速能力,同时 6Li在热区及以下能区具有很大的中子吸收截面,可吸收热中子,便于硼中子俘获治疗装置中束流整形;Cu的原子序数较高,具有较好的γ吸收能力,同时在超热能区弹性散射截面远大于吸收截面,有利于快中子慢化,且其活化产物半衰期短,方便放射性废物处置。
实施例二
本实施例提供一种中子减速复合材料,以重量百分数计,包括Al(wt%):28.5、MgF 2(wt%):2.0、AlF 3(wt%):66.0、 6LiF(wt%):1.0、Cu(wt%):0.5、Mg(wt%):2.0的混合材料,经粉末烧结设备通过粉末烧结工艺,由粉末或粉末压坏形成慢化体块。
其余与实施例一均相同。
由此可知,本实施例添加有纯镁粉末,依然能实现将快中子慢化至超 热能区,达到超热能区中子(n,γ)吸收截面小、弹性散射截面大的目的。
实施例三
本实施例提供一种中子减速复合材料,以重量百分数计,与实施例一相比,不同之处在于,包括Al(wt%):28.0、Mg(wt%):1.0、AlF 3(wt%):69.0、 6LiF(wt%):1.0、Cu(wt%):1.0;
其余与实施例一均相同。
实施例四
本实施例提供一种中子减速复合材料,以重量百分数计,与实施例一相比,不同之处在于,包括Al(wt%):29.0、MgF 2(wt%):2.0、AlF 3(wt%):67.5、 6LiF(wt%):1.0、Cu(wt%):0.5;
其余与实施例一均相同。
实施例五
本实施例提供一种中子减速复合材料,以重量百分数计,与实施例一相比,不同之处在于,包括Al(wt%):29.0、Mg(wt%):1.0、AlF 3(wt%):67.5、 6LiF(wt%):1.0、Cu(wt%):1.5;
其余与实施例一均相同。
实施例六
本实施例提供一种中子减速复合材料,以重量百分数计,与实施例一相比,不同之处在于,包括Al(wt%):28.5、MgF 2(wt%):1.0、AlF 3(wt%):68.0、 6LiF(wt%):1.0、Cu(wt%):0.5、Mg(wt%):1.0;
其余与实施例一均相同。
实施例七
本实施例提供一种中子减速复合材料,以重量百分数计,与实施例一相比,不同之处在于,包括Al(wt%):31.0、MgF 2(wt%):5.5、AlF 3(wt%):62.0、 6LiF(wt%):1.0、Cu(wt%):0.5;
其余与实施例一均相同。
也就是说,实施例一至实施例七无论是否添加有纯镁粉末,还是材料按照一定的重量百分数计范围值,依然能实现将快中子慢化至超热能区,达到超热能区中子(n,γ)吸收截面小、弹性散射截面大的目的。
实施例八
本实施例提供一种中子减速复合材料,包括氟化铝粉末、氟化镁粉末、纯铝粉末、氟化锂粉末、纯镁粉末和铜,粉末均为微米级粉末,原料容易获得且价格低廉。氟化铝粉末的粒度为0.5~75μm、氟化镁粉末粒度为:0.5~50μm、纯铝粉末粒度为:0.1~100μm、氟化锂粉末粒度为:0.5~50μm、纯镁粉末粒度为:0.1~100μm。优选的:
氟化铝粉末的粒度优选为:0.5~10μm、10~25μm、25~44μm、44~58μm、58~75μm,更具体的粒度值为:0.5μm、10μm、25μm、44μm、58μm、75μm;
氟化镁粉末的粒度优选为:0.5~10μm、10~30μm、30~50μm,更具体的粒度值为:0.5μm、10μm、30μm、50μm;
纯铝粉末的粒度优选为:0.1~40μm、40~75μm、75~100μm,更具体的粒度值为:0.1μm、40μm、75μm、100μm;
氟化锂粉末的粒度优选为:0.5~10μm、10~30μm、30~50μm,更具体的粒度值为:0.5μm、10μm、30μm、50μm;
纯镁粉末的粒度优选为:0.1~40μm、40~75μm、75~100μm,更具体的粒度值为:0.1μm、40μm、75μm、100μm。
本实施例实现了:同一种粉末采用多种粒度的组合,有利于减小粉末之间的缝隙,在生产加工时大大提升材料密度,使得通过采用热等静压法加工出来的慢化体整体密度大,更有利于中子的减速,同时能少吸收中子和少产生不需要的伽马射线。
本实施例过程中的中子减速复合材料加工成减速体或慢化体或缓速体等等其它能用于中子减速的金属基复合材料基材,还提出一种金属基复合材料基材的制造方法,主要加工工艺步骤如下:
S1、将多种不同粉末粒度的原材料充分搅拌混合均匀后置于密闭包套中,在400~600℃环境下连续抽气直至气压小于10~3Pa并保持1小时后停止;
S2、将包套放入热等静压机中开始热等静压,压制过程持续2~6小时,期间温度维持在700~950℃,压力为80~150MPa,压制完毕得到金属基 复合材料基材。
本发明的有益效果是:
1、本发明提供的一种中子减速复合材料,在装置或设备末期减速材料退役时,其放射性可在较短时间内衰减至豁免及以下水平,在放射性废物的处置方法及经济性上优势明显;
2、本发明提供的一种中子减速复合材料,对人体没有伤害或伤害极小;
3、本发明提供的一种中子减速复合材料,主要核素在超热中子能区的吸收截面较小,弹性散射截面较大,也就是说这些核素更有利于中子减速,同时尽量少吸收中子和尽量少产生不需要的伽马射线;
4、本发明采用的Cu虽然其吸收截面较Mg、Al大,但其在超热能区弹性散射截面远大于吸收截面,同时Cu原子序数较高,对伽马就较好的吸收效果。
上述实施例仅为本发明的具体实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些显而易见的替换形式均属于本发明的保护范围。

Claims (9)

  1. 一种中子减速复合材料,其特征在于:所述的复合材料包括混合材料、占混合材料重量百分比0.1~5%含有 6Li元素的材料、以及占混合材料重量百分比0.1~5%的Cu,所述混合材料包括Al、MgF 2、AlF 3中的一种或多种材料的混合,所述混合材料按质量百分比计,包括:
    纯铝粉末:10~95%;
    氟化铝粉末:20~80%;
    氟化镁粉末:0.1~15%;
  2. 根据权利要求1所述的一种中子减速复合材料,其特征在于:所述的含有 6Li元素的材料是 6LiF粉末。
  3. 根据权利要求1所述的一种中子减速复合材料,其特征在于:所述的混合材料还包括纯镁粉末,所述纯镁粉末的质量百分比是0.1~5%。
  4. 根据权利要求1所述的一种中子减速复合材料,其特征在于:所述的氟化铝粉末的粒度为0.5~75μm。
  5. 根据权利要求1所述的一种中子减速复合材料,其特征在于:所述的氟化镁粉末粒度为:0.5~50μm。
  6. 根据权利要求1所述的一种中子减速复合材料,其特征在于:所述的纯铝粉末粒度为:0.1~100μm。
  7. 根据权利要求2所述的一种中子减速复合材料,其特征在于:所述的氟化锂粉末粒度为:0.5~50μm。
  8. 根据权利要求3所述的一种中子减速复合材料,其特征在于:所述的纯镁粉末粒度为:0.1~100μm。
  9. 一种金属基复合材料基材的制造方法,其特征在于:包括如权利要求1-8所述的中子减速复合材料,该金属基复合材料基材加工工艺步骤如下:
    S1、将多种不同粉末粒度的原材料充分搅拌混合均匀后置于密闭包套中,在400~600℃环境下连续抽气直至气压小于10~3Pa并保持1小时后停止;
    S2、将包套放入热等静压机中开始热等静压,压制过程持续2~6小时,期间温度维持在700~950℃,压力为80~150MPa,压制完毕得到金属基复合材料基材。
PCT/CN2022/094087 2021-09-26 2022-05-20 一种中子减速复合材料 WO2023045367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111126416.4A CN113897526A (zh) 2021-09-26 2021-09-26 一种中子减速复合材料
CN202111126416.4 2021-09-26

Publications (1)

Publication Number Publication Date
WO2023045367A1 true WO2023045367A1 (zh) 2023-03-30

Family

ID=79029504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094087 WO2023045367A1 (zh) 2021-09-26 2022-05-20 一种中子减速复合材料

Country Status (2)

Country Link
CN (1) CN113897526A (zh)
WO (1) WO2023045367A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897526A (zh) * 2021-09-26 2022-01-07 散裂中子源科学中心 一种中子减速复合材料
CN116375473A (zh) * 2023-03-30 2023-07-04 山东亚赛陶瓷科技有限公司 氟化镁基复合中子慢化材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118953A (ja) * 2004-10-21 2006-05-11 Taiheiyo Cement Corp 中性子吸収作用を有するホウ素−金属基複合材料及びその製造方法
CN105732047A (zh) * 2014-12-08 2016-07-06 北京市射线应用研究中心 一种中子过滤材料及其制备方法
CN106280501A (zh) * 2016-08-16 2017-01-04 南京航空航天大学 一种以泡沫金属为基体的中子屏蔽复合材料及其制备方法
CN106601320A (zh) * 2015-10-15 2017-04-26 南京中硼联康医疗科技有限公司 中子缓速材料
KR102068901B1 (ko) * 2018-07-18 2020-01-21 한국과학기술원 핵연료 저장용기용 흡수재 및 그 제조방법
TWI691238B (zh) * 2019-04-12 2020-04-11 中國鋼鐵股份有限公司 中子減速材料之製作方法
CN111072387A (zh) * 2019-12-31 2020-04-28 中国建筑材料科学研究总院有限公司 氟化铝复合陶瓷及其制备方法
CN112831678A (zh) * 2020-12-29 2021-05-25 山东亚赛陶瓷科技有限公司 一种铝/氟化铝复合陶瓷中子慢化体及其制备方法
CN113897526A (zh) * 2021-09-26 2022-01-07 散裂中子源科学中心 一种中子减速复合材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310540A (zh) * 2015-05-04 2017-01-11 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN109568808A (zh) * 2015-09-11 2019-04-05 南京中硼联康医疗科技有限公司 热压烧结设备及烧结工艺
CN113186440A (zh) * 2021-04-28 2021-07-30 禾材高科(苏州)有限公司 一种氟化铝基陶瓷中子慢化材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118953A (ja) * 2004-10-21 2006-05-11 Taiheiyo Cement Corp 中性子吸収作用を有するホウ素−金属基複合材料及びその製造方法
CN105732047A (zh) * 2014-12-08 2016-07-06 北京市射线应用研究中心 一种中子过滤材料及其制备方法
CN106601320A (zh) * 2015-10-15 2017-04-26 南京中硼联康医疗科技有限公司 中子缓速材料
CN106280501A (zh) * 2016-08-16 2017-01-04 南京航空航天大学 一种以泡沫金属为基体的中子屏蔽复合材料及其制备方法
KR102068901B1 (ko) * 2018-07-18 2020-01-21 한국과학기술원 핵연료 저장용기용 흡수재 및 그 제조방법
TWI691238B (zh) * 2019-04-12 2020-04-11 中國鋼鐵股份有限公司 中子減速材料之製作方法
CN111072387A (zh) * 2019-12-31 2020-04-28 中国建筑材料科学研究总院有限公司 氟化铝复合陶瓷及其制备方法
CN112831678A (zh) * 2020-12-29 2021-05-25 山东亚赛陶瓷科技有限公司 一种铝/氟化铝复合陶瓷中子慢化体及其制备方法
CN113897526A (zh) * 2021-09-26 2022-01-07 散裂中子源科学中心 一种中子减速复合材料

Also Published As

Publication number Publication date
CN113897526A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023045367A1 (zh) 一种中子减速复合材料
CN109771845B (zh) 中子缓速材料
Wang et al. A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy
JP5813258B2 (ja) 中性子線減速材用フッ化物焼結体及びその製造方法
EP0704093B1 (en) Moderator material for neutrons and use of said material
JP6377587B2 (ja) 放射線減速材用MgF2−CaF2二元系焼結体及びその製造方法
EP3453428B1 (en) Beam shaping body for neutron capture therapy
CN105732047B (zh) 一种中子过滤材料及其制备方法
JP6181869B2 (ja) 放射線減速材用MgF2系フッ化物焼結体及びその製造方法
CN101916604A (zh) 一种防护中子辐射的复合屏蔽材料及制备方法
KR102558235B1 (ko) 방사선 차폐재용 소결체, 방사선 차폐재 및 그 제조방법
CN110507914B (zh) 中子缓速材料
JP7165339B2 (ja) 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法
TWI552164B (zh) X射線屏蔽材料之製備方法
RU2816992C2 (ru) Способ получения актининия-225 из радия-226
Donya et al. Optimization of dd110 neutron generator output for boron neutron capture therapy
Powell et al. Target and filter concepts for accelerator-driven boron neutron capture therapy applications
CN113808772A (zh) 一种中子慢化材料
Alghamdi Testing Ammonia Borane as a Promising Non-Toxic, Lightweight, Hydrogen Rich Material for Aprons in Nuclear Medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE