WO2023042846A1 - 透明導電層、透明導電性フィルムおよび物品 - Google Patents

透明導電層、透明導電性フィルムおよび物品 Download PDF

Info

Publication number
WO2023042846A1
WO2023042846A1 PCT/JP2022/034349 JP2022034349W WO2023042846A1 WO 2023042846 A1 WO2023042846 A1 WO 2023042846A1 JP 2022034349 W JP2022034349 W JP 2022034349W WO 2023042846 A1 WO2023042846 A1 WO 2023042846A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
less
region
thickness
Prior art date
Application number
PCT/JP2022/034349
Other languages
English (en)
French (fr)
Inventor
望 藤野
泰介 鴉田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237025547A priority Critical patent/KR20240058799A/ko
Priority to JP2023548480A priority patent/JP7488425B2/ja
Priority to CN202280013108.7A priority patent/CN116848593A/zh
Publication of WO2023042846A1 publication Critical patent/WO2023042846A1/ja
Priority to JP2024024279A priority patent/JP2024061727A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to transparent conductive layers, transparent conductive films and articles.
  • a transparent conductive layer on a film substrate is known (see, for example, Patent Document 1 below).
  • the transparent conductive layer described in Patent Document 1 is crystalline.
  • a transparent conductive layer is provided on the article.
  • the article includes a touch panel.
  • Items may be placed in a high-temperature atmosphere for a long time depending on their type, use and purpose. In that case, suppression of an increase in surface resistance is required for the transparent conductive layer provided in the article. That is, the transparent conductive layer is required to have excellent long-term heating reliability.
  • the present invention provides a transparent conductive layer, a transparent conductive film, and an article that suppress an increase in surface resistance even when placed in a high-temperature atmosphere for a long time.
  • the present invention (1) is a transparent conductive layer containing an inorganic oxide containing a noble gas having an atomic number larger than that of argon, wherein the half width of the peak in the (440) plane when the transparent conductive layer is subjected to X-ray diffraction is greater than 0.27 degrees, including the transparent conductive layer.
  • the present invention (2) is a transparent conductive layer containing an inorganic oxide, wherein the half width of the peak on the (440) plane in X-ray diffraction of the transparent conductive layer exceeds 0.27 degrees, and the thickness is greater than 40 nm.
  • the present invention (3) includes the transparent conductive layer according to (1) or (2), wherein the inorganic oxide is an indium-tin composite oxide.
  • the present invention (4) is a transparent conductive film comprising a substrate containing a resin and the transparent conductive layer according to any one of (1) to (3) in this order toward one side in the thickness direction. including.
  • the present invention (5) includes an article comprising the transparent conductive layer according to any one of (1) to (3).
  • the present invention (6) includes an article comprising the transparent conductive film according to (4).
  • the transparent conductive layer, transparent conductive film and article of the present invention suppress an increase in surface resistance even when placed in a high-temperature atmosphere for a long time.
  • FIG. 1 is a cross-sectional view of a first embodiment of a transparent conductive layer of the present invention
  • FIG. FIG. 2 is a cross-sectional view of a transparent conductive film having a transparent conductive layer shown in FIG. 1
  • FIG. 4 is a cross-sectional view of a second embodiment of the transparent conductive layer of the present invention
  • 4 is a graph showing the relationship between the amount of introduced oxygen and the specific resistance in reactive sputtering of Example 1.
  • First Embodiment A transparent conductive layer 1A according to a first embodiment of the present invention will be described with reference to FIG.
  • This transparent conductive layer 1A extends in the planar direction.
  • the plane direction is perpendicular to the thickness direction.
  • the transparent conductive layer 1A is crystalline.
  • the transparent conductive layer 1A contains an inorganic oxide.
  • inorganic oxides include metal oxides.
  • the metal oxide contains at least one metal selected from the group consisting of In, Sn, Zn, Ga, Sb, Nb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd and W .
  • the material of the transparent conductive layer 1A is preferably indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide. (ITO) and antimony tin composite oxide (ATO), preferably indium tin composite oxide (ITO) from the viewpoint of improving long-term heating reliability.
  • the content of tin oxide (SnO 2 ) in the indium-tin composite oxide is, for example, 0.5% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, more preferably 5% by mass or more, particularly preferably 6% by mass or more, and, for example, less than 50% by mass, preferably 25% by mass or less, more preferably 15% by mass or less , more preferably less than 10% by mass, more preferably 9% by mass or less, 8% by mass or less, or 7% by mass or less.
  • the content of tin oxide in the indium-tin composite oxide is at least the above lower limit, the long-term heating reliability is excellent.
  • the transparent conductive layer 1A having excellent heating reliability can be obtained. It is easy to achieve both excellent resistance characteristics and etching properties of the transparent conductive layer 1 . For example, it may be judged from the content of tin oxide (SnO 2 ) in a sintered body (target) of a mixture of indium oxide and tin oxide. Alternatively, for example, the determination can be made by analyzing the transparent conductive layer 1 by XPS (X-ray Photoelectron Spectroscopy). The content of tin oxide (SnO 2 ) in the thickness direction of the transparent conductive layer 1 can also be determined by obtaining an XPS depth profile as necessary.
  • XPS X-ray Photoelectron Spectroscopy
  • the tin oxide content in the indium-tin composite oxide is uniform in the thickness direction or distributed in the thickness direction.
  • the tin oxide content in the indium-tin composite oxide preferably has a distribution in the thickness direction.
  • the transparent conductive layer 1 includes first regions 3 and second regions 4 having different tin oxide contents in order toward one side in the thickness direction. That is, in this embodiment, the second region 4 is arranged on one side of the first region 3 in the thickness direction.
  • the tin oxide content C1 in the first region 3 is higher than that of the tin oxide content C2 in the second region 4, for example.
  • the ratio (C1/C2) of the tin oxide content C1 in the first region 3 to the tin oxide content C2 in the second region 4 is, for example, greater than 1, preferably 1.5 or more, more preferably 2 Above, more preferably 2.5 or more, particularly preferably 3 or more, and most preferably 3.3 or more.
  • the above ratio (C1/C2) is, for example, 100 or less, preferably 25 or less, more preferably 10 or less. Note that the boundary between the first region 3 and the second region 4 may not be clearly observed.
  • the tin oxide content C1 in the first region 3 is, for example, 5% by mass or more, preferably 7% by mass or more, and more preferably is 9% by mass or more, and, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 25% by mass or less, even more preferably 20% by mass or less, particularly preferably 15% by mass % or less.
  • the tin oxide content C1 in the second region 4 is, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 2% by mass or more. % by mass or more, and for example, 9% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less.
  • the above inorganic oxide contains a rare gas having an atomic number higher than that of argon.
  • the rare gas 2 having an atomic number greater than that of argon exists in the entire transparent conductive layer 1A in the thickness direction, as shown in the enlarged view of FIG.
  • the transparent conductive layer 1A is a composition in which an inorganic oxide (preferably a metal oxide) is mixed with a rare gas having an atomic number greater than that of argon.
  • an inorganic oxide preferably a metal oxide
  • Rare gases with atomic numbers greater than argon include, for example, krypton, xenon, and radon. These can be used alone or in combination.
  • the noble gas having an atomic number greater than that of argon is preferably krypton and xenon, and more preferably krypton (Kr) from the viewpoint of obtaining low cost and excellent electrical conductivity.
  • the inorganic oxide of the transparent conductive layer 1A preferably does not contain argon.
  • the method of identifying noble gases with atomic numbers greater than argon is not limited.
  • Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and/or X-ray fluorescence spectrometry show that noble gases with atomic numbers higher than argon in the transparent conductive layer 1A are Identified (existence or non-existence is determined), preferably by fluorescent X-ray analysis from the viewpoint of analysis simplicity. Details of the fluorescent X-ray analysis are described in Examples.
  • the content ratio of the rare gas having an atomic number larger than that of argon in the inorganic oxide (transparent conductive layer 1A) is, for example, 0.0001 atom % or more, preferably 0.001 atom % or more, or, for example, 1. 0 atom% or less, more preferably 0.7 atom% or less, still more preferably 0.5 atom% or less, even more preferably 0.3 atom% or less, particularly preferably 0.2 atom% or less, most preferably 0 .15 atom % or less. If the content of the rare gas having an atomic number greater than that of argon in the inorganic oxide (transparent conductive layer 1A) is within the above range, the long-term heating reliability of the transparent conductive layer 1A can be improved.
  • the transparent conductive layer 1A is suppressed from taking in a large amount of sputtering gas. Therefore, the crystallinity of the transparent conductive layer 1A is improved, and as a result, long-term heating reliability of the transparent conductive layer 1A is improved.
  • Peak at (440) plane in X-ray diffraction There is a peak at (440) plane when the transparent conductive layer 1A is subjected to X-ray diffraction.
  • the (440) plane is a unique peak included in the spectrum obtained by X-ray diffraction of the crystalline transparent conductive layer 1A.
  • the half width of the peak in the (440) plane in X-ray diffraction is 0.27 degrees or less, the long-term heating reliability of the transparent conductive layer 1A is poor. That is, when the transparent conductive layer 1A is placed in a high-temperature atmosphere for a long time, the surface resistance increases.
  • the transparent conductive layer 1A when the transparent conductive layer 1A is subjected to X-ray diffraction, the half width of the peak in the (440) plane exceeds 0.27 degrees, so the transparent conductive layer 1A is excellent in long-term heating reliability. That is, when the transparent conductive layer 1A is placed in a high-temperature atmosphere for a long time, an increase in surface resistance can be suppressed.
  • the half width of the peak in the (440) plane is preferably 0.275 degrees or more, more preferably 0.28 degrees or more, and still more preferably 0.29 degrees. above, particularly preferably 0.30 degrees or more, more preferably 0.31 degrees or more, 0.32 degrees or more, 0.33 degrees or more, 0.35 degrees or more, 0.37 degrees or more, 0.38 degrees or more is preferred.
  • the half width of the peak in the (440) plane is, for example, 5.00 degrees or less, preferably 3.00 degrees or less, more preferably 1.00 degrees. Below, more preferably 0.75 degrees or less, particularly preferably 0.50 degrees or less.
  • the method for setting the half width of the peak in the (440) plane in X-ray diffraction to the above range is not limited.
  • the half-value width of the peak in the (440) plane of X-ray diffraction is measured based on the description of the later examples.
  • the crystal grain size of the transparent conductive layer 1A is, for example, 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.8 ⁇ m or less, and particularly preferably 0.8 ⁇ m or less. is 0.7 ⁇ m or less. If the crystal grain size is equal to or less than the upper limit described above, the transparent conductive layer 1 is less likely to crack even if the substrate 6 containing a flexible resin is employed.
  • the crystal grain size in the transparent conductive layer 1A is, for example, 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and particularly preferably 0.4 ⁇ m. Above all, the thickness is most preferably 0.5 ⁇ m or more, and more preferably 0.6 ⁇ m or more. If the crystal grain size is equal to or more than the above-described lower limit, the transparent conductive layer 1A is excellent in long-term heating reliability.
  • the crystal grain size is obtained by FE-SEM observation. The details of the method of determination will be described in Examples below.
  • the thickness of the transparent conductive layer 1A is, for example, 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, even more preferably 15 nm or more, particularly preferably 20 nm or more, and for example, 500 nm or less, preferably. is 300 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, particularly preferably 50 nm or less, and further preferably 40 nm or less, 35 nm or less, 30 nm or less, and 25 nm or less.
  • the thickness of the transparent conductive layer 1A is equal to or less than the above upper limit, heating reliability can be improved.
  • the thickness of the transparent conductive layer 1A is measured by FE-TEM observation (cross-sectional observation).
  • each of the first region 3 and the second region 4 is, for example, 3 nm or more, preferably 5 nm or more, more preferably 7 nm or more, and is, for example, 200 nm or less, preferably 100 nm or less, more preferably. is 50 nm or less, more preferably 25 nm or less, even more preferably 20 nm or less, and particularly preferably 15 nm or less.
  • the ratio of the thickness of the first region 3 to the thickness of the second region 4 is, for example, 0.1 or more, preferably 0. .3 or more, more preferably 0.5 or more, still more preferably 0.7 or more, and for example, 10 or less, preferably 5 or less, more preferably 3 or less, further preferably 2 or less is.
  • the total light transmittance of the transparent conductive layer 1A is, for example, 75% or higher, preferably 80% or higher, more preferably 85% or higher, still more preferably 90% or higher.
  • the upper limit of the total light transmittance of the transparent conductive layer 1A is not limited.
  • the upper limit of the total light transmittance of the transparent conductive layer 1A is, for example, 100%.
  • the specific resistance of the transparent conductive layer 1A is, for example, 5.0 ⁇ 10 ⁇ 4 ⁇ cm or less, preferably 3 ⁇ 10 ⁇ 4 ⁇ cm or less, and for example, 0.1 ⁇ 10 ⁇ 4 ⁇ . ⁇ It is more than cm.
  • a specific resistance is measured by the four-probe method.
  • the transparent conductive film 5A provided with the transparent conductive layer 1A described above will be described with reference to FIG. 5 A of transparent conductive films are extended in a surface direction.
  • 5 A of transparent conductive films are provided with the base material 6 and 1 A of transparent conductive layers in order toward one side of the thickness direction. That is, in this embodiment, in the transparent conductive film 5A, the substrate 6 and the transparent conductive layer 1A are arranged in order toward one side in the thickness direction.
  • the transparent conductive film 5A preferably includes only the substrate 6 and the transparent conductive layer 1A.
  • the substrate 6 forms the other surface of the transparent conductive film 5A in the thickness direction.
  • the base material 6 improves the mechanical strength of the transparent conductive film 5A.
  • the base material 6 extends in the surface direction.
  • the base material 6 contains resin, for example. If the substrate 6 contains a resin, both good resistance characteristics and heating reliability of the transparent conductive layer 1A can be achieved. The resin will be explained later.
  • substrate 6 is not adjacent to a glass plate (not shown). In this embodiment, the other surface of the substrate 6 in the thickness direction does not come into contact with the glass plate.
  • the base material 6 includes a base sheet 61 and a functional layer 60 in order in the thickness direction.
  • the functional layer 60 is a single layer.
  • the functional layer 60 contacts one side of the base sheet 61 in the thickness direction.
  • Functional layer 60 is preferably hard coat layer 62 .
  • the base material 6 preferably includes a base material sheet 61 and a hard coat layer 62 in order toward the other side in the thickness direction.
  • the base sheet 61 has flexibility.
  • Examples of the base sheet 61 include a resin film.
  • the resin in the resin film is not limited.
  • Examples of resins include polyester resins, acrylic resins, olefin resins, polycarbonate resins, polyethersulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, and norbornene resins. From the viewpoint of transparency and mechanical strength, the resin is preferably a polyester resin.
  • Polyester resins include, for example, polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, preferably PET.
  • the thickness of the base sheet 61 is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the base sheet 61 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the ratio of the thickness of the base sheet 61 to the thickness of the base material 6 is, for example, 0.80 or more, preferably 0.90 or more, more preferably 0.95 or more, and for example, 0.99 or less. , preferably 0.97 or less.
  • the hard coat layer 62 makes it difficult for scratches to form on one surface of the transparent conductive layer 1A in the thickness direction.
  • the hard coat layer 62 contacts one side of the base sheet 61 in the thickness direction.
  • the hard coat layer 62 is made of resin.
  • the hard coat layer 62 is, for example, a cured product layer of a curable composition containing a curable resin.
  • curable resins include acrylic resins, urethane resins, amide resins, silicone resins, epoxy resins, and melamine resins.
  • the curable resin preferably includes an acrylic resin.
  • the thickness of the hard coat layer 62 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and is, for example, 10 ⁇ m or less, preferably 3 ⁇ m or less.
  • the ratio of the thickness of the hard coat layer 62 to the thickness of the base sheet 61 is, for example, 0.01 or more, preferably 0.02 or more, more preferably 0.03 or more, and for example, 0.20. Below, it is preferably 0.10 or less, more preferably 0.05 or less.
  • the thickness of the hard coat layer 62 corresponds to the thickness of the functional layer 60 .
  • Thickness of Base Material 6 More preferably, it is 100 ⁇ m or less.
  • the thickness of the base material 6 is the total thickness of the base material sheet 61 and the hard coat layer 62 .
  • the total light transmittance of the substrate 6 is, for example, 75% or higher, preferably 80% or higher, more preferably 85% or higher, and still more preferably 90% or higher. .
  • the upper limit of the total light transmittance of the base material 6 is not limited.
  • the upper limit of the total light transmittance of the substrate 6 is, for example, 100%.
  • the total light transmittance of the substrate 6 is obtained based on JIS K 7375-2008.
  • the total light transmittance of the following members is obtained based on the same method as above.
  • a commercially available product can be used for the base material 6 .
  • the transparent conductive layer 1A forms one surface of the transparent conductive film 5A in the thickness direction.
  • the transparent conductive layer 1A is arranged on one surface of the substrate 6 in the thickness direction. 1 A of transparent conductive layers contact the one side of the base material 6 in the thickness direction. That is, the other surface of the transparent conductive layer 1A in the thickness direction is in contact with the substrate 6. As shown in FIG. In this embodiment, the other surface of the transparent conductive layer 1A contacts one surface of the hard coat layer 62 (functional layer 60) in the thickness direction.
  • the transparent conductive layer 1A when the transparent conductive layer 1A has the first region 3 and the second region 4, preferably the first region 3 is formed on one side of the substrate 6 in the thickness direction. placed. Preferably, the first region 3 contacts one surface of the hard coat layer 62 (see FIG. 2) in the thickness direction.
  • the transparent conductive film 5A when the transparent conductive layer 1A has the first region 3 and the second region 4, the transparent conductive film 5A has the base material A sheet 61, a hard coat layer 62, a first region 3, and a second region 4 are provided in order toward one side in the thickness direction. That is, the second region 4 is arranged on the opposite side of the base material 6 with respect to the first region 3 in the thickness direction.
  • Thickness of transparent conductive film 5A and other physical properties It is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the total light transmittance of the transparent conductive film 5A is, for example, 75% or more, preferably 80% or more, and is, for example, 100% or less.
  • each layer is arranged by a roll-to-roll method.
  • the base material 6 is prepared. Specifically, a curable composition is applied to one surface of the base sheet 61 . After that, the curable resin in the curable composition is cured by heat or ultraviolet irradiation. As a result, the hard coat layer 62 is formed on one side of the base sheet 61 . The base material 6 is prepared by this.
  • the transparent conductive layer 1A is formed on one side of the substrate 6 in the thickness direction. Specifically, first, an amorphous transparent conductive layer is formed on one side of the substrate 6 in the thickness direction, and then the amorphous transparent conductive layer is converted into a crystalline to form the transparent conductive layer 1A. .
  • amorphous transparent conductive layer Formation of amorphous transparent conductive layer (sputtering process) To form the amorphous transparent conductive layer, for example, sputtering, preferably reactive sputtering, is carried out.
  • a sputtering apparatus is used for sputtering.
  • a sputtering apparatus includes a single film-forming roll and a plurality of film-forming chambers.
  • the film-forming roll is equipped with a temperature control device.
  • the temperature adjusting device can adjust the temperature of the film forming roll. Since the film-forming roll can contact the base material 6, the temperature of the base material 6 can be adjusted.
  • the surface temperature of the film-forming roll corresponds to the film-forming temperature in sputtering.
  • the film formation temperature is, for example, ⁇ 50° C. or higher, preferably ⁇ 30° C. or higher, more preferably ⁇ 20° C. or higher, still more preferably ⁇ 10° C. or higher, and for example, 20° C. or lower, preferably , 10° C. or lower, more preferably 5° C. or lower, and still more preferably 0° C. or lower.
  • a sputtering gas can be supplied to the inside of each of the plurality of film forming chambers.
  • Sputtering gases include noble gases having atomic numbers higher than argon.
  • Noble gases having atomic numbers greater than argon include, for example, krypton, xenon, and radon, preferably krypton (Kr).
  • the sputtering gas may contain, for example, argon.
  • a sputtering gas can be used alone or in combination.
  • the sputtering gas preferably contains a noble gas with an atomic number greater than argon and does not contain argon.
  • the sputtering gas supplied to each of the plurality of film formation chambers is, for example, the same, and for example, the sputtering gas supplied to one film formation chamber is a rare gas having an atomic number greater than that of argon.
  • the sputtering gas supplied to one film formation chamber is argon.
  • the same sputtering gas is supplied to each of the plurality of film forming chambers.
  • the sputtering gas is preferably mixed with a reactive gas.
  • Reactive gases include, for example, oxygen.
  • the ratio of the introduction amount of the reactive gas to the total introduction amount of the sputtering gas and the reactive gas is, for example, 0.1 flow % or more, preferably 0.5 flow % or more, and for example, 5.0 flow rate. %, preferably 4.0 flow % or less, more preferably 3.5 flow % or less.
  • the target is, for example, (a sintered body of) the metal oxide described above.
  • Each of the plurality of targets is arranged in each of the plurality of deposition chambers.
  • a first target is arranged in a first film forming chamber.
  • a second target is placed in the second deposition chamber.
  • the first target and the second target are, for example, different from each other. Specifically, if both are ITO, the contents of tin oxide are different from each other.
  • the first target is (a sintered body of) a metal oxide corresponding to the first region 3 and has the above-described (high) content of tin oxide.
  • the second film forming chamber is arranged downstream of the first film forming chamber in the transport direction of the substrate 6 .
  • the second target is (a sintered body of) a metal oxide corresponding to the second region 4 and has the aforementioned (low) content of tin oxide.
  • a first sputtering step is performed in a first deposition chamber, and a second deposition is performed.
  • a second sputtering step is performed in the chamber.
  • the atmospheric pressure in the sputtering apparatus is, for example, 1.0 Pa or less and, for example, 0.01 Pa or more.
  • the amorphous transparent conductive layer includes first region 3 and second region 4 .
  • the amorphous transparent conductive layer (laminate comprising) is heated.
  • the heating temperature is, for example, 80° C. or higher, preferably 110° C. or higher, more preferably 130° C. or higher, particularly preferably 150° C. or higher, and for example, 200° C. or lower, preferably It is 180° C. or lower, more preferably 175° C. or lower, still more preferably 170° C. or lower.
  • the heating time is, for example, 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer, and is, for example, 5 hours or shorter, preferably 3 hours or shorter, more preferably 2 hours or shorter. be. Heating is performed, for example, under vacuum or in the atmosphere. From the viewpoint of improving long-term heating reliability, the heating is preferably performed under vacuum.
  • the transparent conductive film 5A having an amorphous transparent conductive layer is allowed to stand in the atmosphere at a temperature of 20° C. or more and less than 80° C. for, for example, 10 hours or more, preferably 24 hours or more.
  • a crystalline transparent conductive layer can also be converted to a crystalline one.
  • the transparent conductive film 5A is used for articles, for example.
  • Articles include optical articles. More specifically, examples of articles include touch sensors, electromagnetic wave shields, light control elements, photoelectric conversion elements, heat ray control members, light-transmitting antenna members, light-transmitting heater members, image display devices, and lighting.
  • the transparent conductive layer 1A and the transparent conductive film 5A are prevented from increasing in surface resistance even when placed in a high-temperature atmosphere for a long time. Therefore, the above article including the transparent conductive layer 1A and/or the transparent conductive film 5A has excellent long-term heating reliability.
  • solar cells, light control elements, heat ray control members, and light transmissive heater members may be placed in a high temperature environment for a long time and exposed to high temperatures for a long time.
  • each article described above includes the transparent conductive layer 1A and/or the transparent conductive film 5A described above, an increase in the surface resistance of the transparent conductive layer 1A is suppressed.
  • the transparent conductive layer 1A may consist of one region.
  • a sputtering apparatus includes a single film formation chamber.
  • the noble gas having an atomic number greater than that of argon is contained only in the first region 3 or the second region 4.
  • the transparent conductive film 5A includes a substrate 6, a second region 4, and a first region 3 in order toward one side in the thickness direction.
  • the transparent conductive layer 1A has a repeating structure of the first regions 3 and the second regions 4.
  • the functional layer 60 is multi-layered.
  • the functional layer 60 is arranged on one side and the other side of the base sheet 61 in the thickness direction.
  • the functional layer 60 includes an optical adjustment layer and a hard coat layer.
  • the optical adjustment layer is arranged on one side of the base sheet 61 .
  • the hard coat layer is arranged on the other side of the base sheet 61 .
  • Second Embodiment In the following second embodiment, the same reference numerals are given to the same members and processes as those of the first embodiment and the modified example described above, and detailed description thereof will be omitted. Moreover, the second embodiment can achieve the same effects as those of the first embodiment and the modified example unless otherwise specified. Furthermore, the first embodiment, the modified example, and the second embodiment can be combined as appropriate.
  • a transparent conductive layer 1B according to the second embodiment of the present invention will be described with reference to FIG.
  • the transparent conductive layer 1B of the second embodiment has a thickness of more than 40 nm, and the inorganic oxide does not need to contain the noble gas 2 having an atomic number larger than that of argon. different from Other physical properties of the transparent conductive layer 1B may be the same as or different from those of the transparent conductive layer 1A.
  • the thickness of the transparent conductive layer 1B is more than 40 nm.
  • the thickness of the transparent conductive layer 1B is 40 nm or less, long-term heating reliability is lowered. That is, when the transparent conductive layer 1B is placed in a high temperature atmosphere for a long time, the surface resistance increases.
  • the thickness of the transparent conductive layer 1B exceeds 40 nm, it is excellent in long-term heating reliability. That is, when the transparent conductive layer 1B is placed in a high-temperature atmosphere for a long time, an increase in surface resistance can be suppressed.
  • the thickness of the transparent conductive layer 1B is preferably 45 nm or more, more preferably 50 nm or more, still more preferably 60 nm or more, particularly preferably 70 nm or more, and further preferably 80 nm or more, 90 nm or more, 100 nm or more, and 110 nm. Above, 120 nm or more, 125 nm or more, or 130 nm or more is preferable.
  • the thickness of the transparent conductive layer 1B is, for example, 750 nm or less, preferably 500 nm or less, more preferably 350 nm or less, even more preferably 300 nm or less, particularly preferably 200 nm or less, most preferably 150 nm or less.
  • the thickness of the transparent conductive layer 1B is equal to or less than the upper limit described above, the heat stability is excellent.
  • the inorganic oxide may contain a noble gas. That is, in the present embodiment, the inorganic oxide of the transparent conductive layer 1B is allowed to contain a rare gas.
  • Noble gases include, for example, argon, krypton, xenon, and radon. These can be used alone or in combination.
  • Argon is preferably used as the rare gas from the viewpoint of reducing production costs.
  • the inorganic oxide of the transparent conductive layer 1B preferably does not contain a noble gas having an atomic number greater than that of argon, from the viewpoint of reducing manufacturing costs.
  • the method for identifying noble gases is not limited.
  • Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and/or X-ray fluorescence analysis identify noble gases in the transparent conductive layer 1B.
  • the content of tin oxide in ITO is, for example, 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass. Above, more preferably 7% by mass or more, particularly preferably 9% by mass or more, and for example, 50% by mass or less, preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably is 25% by mass or less, more preferably 20% by mass or less, more preferably 15% by mass or less.
  • the content of tin oxide in ITO is at least the above lower limit, the long-term heating reliability is excellent.
  • the content of tin oxide (SnO 2 ) in the indium-tin composite oxide is equal to or less than the above upper limit, the heating stability can be improved.
  • the crystal grain size in the transparent conductive layer 1B is, for example, 1.0 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.4 ⁇ m or less, still more preferably 0.3 ⁇ m or less. . If the crystal grain size is equal to or less than the above upper limit, the heating stability is excellent.
  • the crystal grain size of the transparent conductive layer 1B is, for example, 0.001 ⁇ m or more, preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.05 ⁇ m or more, and particularly preferably 0.07 ⁇ m. That's it. If the crystal grain size in the transparent conductive layer 1B is equal to or greater than the above lower limit, long-term heating reliability is excellent.
  • the half-value width of the peak on the (440) plane in the X-ray diffraction of the transparent conductive layer 1B exceeds 0.27 degrees, preferably 0.272 degrees or more, more preferably , 0.275 degrees or more, more preferably 0.277 degrees or more, particularly preferably 0.280 degrees or more, most preferably 0.285 degrees or more, furthermore 0.287 degrees or more, 0.288 degrees or more is preferred.
  • the half width of the peak in the (440) plane in the X-ray diffraction of the transparent conductive layer 1B is, for example, 5 degrees or less, 3.00 degrees or less, preferably 1.00 degrees or less, more preferably 0.75 degrees or less. , more preferably 0.50 degrees or less, particularly preferably 0.40 degrees or less, most preferably 0.35 degrees or less, further preferably 0.30 degrees or less.
  • the sputtering gas examples include rare gases. Noble gases may be used alone or in combination. Argon is preferably used as the sputtering gas. Also, the sputtering gas is preferably free of noble gases with atomic numbers higher than argon.
  • the deposition chamber can supply the sputtering gas described above.
  • the transparent conductive layer 1B in FIG. 2 is provided on the transparent conductive film 5B together with the base material 6 indicated by phantom lines.
  • the transparent conductive film 5B includes a substrate 6 and a transparent conductive layer 1B in order toward one side in the thickness direction.
  • the above-described transparent conductive layer 1B and/or transparent conductive film 5B are used in the above-described articles.
  • Example 1 ⁇ Preparation of base material 6> A substrate 6 having a thickness of 52 ⁇ m was prepared.
  • a base sheet 61 made of PET was prepared.
  • a hard coat composition (ultraviolet curable resin containing an acrylic resin) was applied to one surface of the base sheet 61 in the thickness direction to form a coating film.
  • the coating was then cured by UV irradiation.
  • a hard coat layer 62 having a thickness of 2 ⁇ m was formed on one side of the base sheet 61 .
  • the base material 6 having the base material sheet 61 and the hard coat layer 62 in order toward one side in the thickness direction was produced.
  • An amorphous transparent conductive layer was formed on one side of the substrate 6 .
  • a first sputtering process and a second sputtering process were performed in order. Both the first sputtering step and the second sputtering step are reactive magnetron sputtering.
  • An amorphous first region 3 was formed on one side of the substrate 6 in a first sputtering step.
  • an amorphous second region 4 was formed on one side of the first region 3 .
  • ⁇ First sputtering step> A sintered body of indium oxide and tin oxide was used as the first target.
  • the tin oxide concentration in the sintered body was 10% by mass.
  • a voltage was applied to the first target using a DC power supply.
  • the horizontal magnetic field strength on the first target was 90 mT.
  • the film formation temperature was -5°C.
  • the inside of the first film forming chamber was evacuated until the ultimate degree of vacuum in the first film forming chamber reached 0.9 ⁇ 10 ⁇ 4 Pa, and the substrate 6 was degassed. After that, Kr as a sputtering gas and oxygen as a reactive gas were introduced into the first film forming chamber, and the pressure inside the first film forming chamber was set to 0.2 Pa.
  • the ratio of the introduced amount of oxygen to the total introduced amount of Kr and oxygen introduced into the first deposition chamber was about 2.6 flow rate %.
  • the oxygen introduction amount is within the region X of the resistivity-oxygen introduction amount curve, and the resistivity of the amorphous first region 3 is 6.5 ⁇ 10 ⁇ 4 ⁇ cm. adjusted to be The thickness of the first region 3 was 11 nm.
  • ⁇ Second sputtering step> A sintered body of indium oxide and tin oxide was used as the second target.
  • the tin oxide concentration in the sintered body was 3% by mass.
  • a voltage was applied to the second target using a DC power supply.
  • the horizontal magnetic field strength on the second target was 90 mT.
  • the film formation temperature was -5°C.
  • the second film forming chamber in the DC magnetron sputtering apparatus is evacuated until the ultimate vacuum in the second film forming chamber reaches 0.9 ⁇ 10 -4 Pa, and then a sputtering gas is introduced into the second film forming chamber. Kr and oxygen as a reactive gas were introduced, and the pressure in the second film forming chamber was set to 0.2 Pa.
  • the ratio of the introduced amount of oxygen to the total introduced amount of Kr and oxygen introduced into the second deposition chamber was about 2.5 flow rate %.
  • the amount of oxygen introduced is within the region X of the resistivity-oxygen introduction curve, and the amorphous transparent region consisting of the amorphous first region 3 and the amorphous second region 4
  • the resistivity of the conductive layer was adjusted to 6.5 ⁇ 10 ⁇ 4 ⁇ cm.
  • the thickness of the second region 4 was 11 nm.
  • the layered product including the substrate 6 and the amorphous transparent conductive layer was heated in a vacuum heating device by bringing it into contact with a heating roll. This crystallized the amorphous transparent conductive layer.
  • the heating temperature was 160° C. and the heating time was 0.1 hour.
  • the amorphous transparent conductive layer was converted into a crystalline transparent conductive layer to form the transparent conductive layer 1A.
  • the thickness of the transparent conductive layer 1A was 22 nm.
  • a transparent conductive film 5 was manufactured, which includes the substrate 6 and the crystalline transparent conductive layer 1A in order toward one side in the thickness direction.
  • Example 2 A transparent conductive layer 1B was produced in the same manner as in Example 1, and then a transparent conductive film 5B having a thickness of 130 nm was produced.
  • the first sputtering process, the second sputtering process, and the heating process were changed as follows.
  • ⁇ First sputtering step> The sputtering gas was changed to argon.
  • the air pressure in the first film forming chamber was changed to 0.4 Pa.
  • the ratio of the introduced amount of oxygen to the total introduced amount of argon and oxygen introduced into the sputtering film forming apparatus was changed to about 1.5 flow rate %.
  • the amorphous transparent conductive layer was crystallized by heating in a hot air oven.
  • the heating temperature was 160° C., and the heating time was 0.5 hours.
  • Comparative example 1 After carrying out the first sputtering process and the second sputtering process in the same manner as in Example 2, a transparent conductive film 5 was produced. However, the following points have been changed.
  • ⁇ First sputtering step> The sputtering gas was changed to argon.
  • the pressure inside the sputtering film forming apparatus was changed to 0.4 Pa.
  • the ratio of the amount of oxygen introduced to the total amount of argon and oxygen introduced into the first deposition chamber was set to about 1.5 flow rate %.
  • a first region 3 having a thickness of 19 nm was formed by the first sputtering step.
  • ⁇ Second sputtering step> The sputtering gas was changed to argon.
  • the air pressure in the second film forming chamber was changed to 0.4 Pa.
  • the ratio of the amount of oxygen introduced to the total amount of argon and oxygen introduced into the first deposition chamber was set to about 1.5 flow rate %.
  • a second region 4 having a thickness of 3 nm was formed by a second sputtering step.
  • the thickness of the transparent conductive layer 1 was 22 nm.
  • ⁇ Thickness> ⁇ Thickness of transparent conductive layers 1A and 1B> The thicknesses of the transparent conductive layers 1A, 1B, 1 were measured by FE-TEM observation. Specifically, first, cross-sectional observation samples of the transparent conductive layers 1A, 1B, 1 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (trade name “FB2200”, manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV. Next, the thicknesses of the transparent conductive layers 1A, 1B, 1 in the samples for cross-sectional observation were measured by FE-TEM observation. In the FE-TEM observation, an FE-TEM apparatus (trade name “JEM-2800” manufactured by JEOL) was used with an acceleration voltage of 200 kV.
  • the thickness of the second region 4 was calculated by subtracting the thickness of the first region 3 from the thickness of the transparent conductive layers 1A and 1A.
  • the X-ray peak profile was obtained by subtracting the background derived from the base material 6 (the base material 6 heated under the same conditions as the transparent conductive layers 1A and 1B of each example and each comparative example). After that, using analysis software (software name "SmartLab Studio II"), create an X-ray diffraction peak profile corresponding to the (440) plane so that 2 ⁇ is in the range of 49.8 ° to 51.8 °, By fitting the X-ray diffraction peak (peak shape: split Pearson VII function, background type: B-spline, fitting conditions: automatic), the half width of the X-ray diffraction peak in the (440) plane (FWHM, unit ;°) was obtained.
  • analysis software software name "SmartLab Studio II”
  • ⁇ Crystal grain size> One surface of the transparent conductive layers 1A, 1B, 1 was observed with an FE-SEM (device: SU8020 manufactured by Hitachi) to determine the crystal grain size of the transparent conductive layers 1A, 1B, 1. Specifically, after fixing the transparent conductive layers 1A, 1B, 1 to a table, surface FE-SEM observation (accelerating voltage: 0.8 kV, observed image: secondary electron image) was performed to obtain the transparent conductive layer 1A. , 1B, 1 were photographed in plan view. The magnification was adjusted so that the grains could be clearly identified.
  • FE-SEM device: SU8020 manufactured by Hitachi
  • the area of the region is obtained from the number of pixels present in the region defined by the grain boundary (region within each grain boundary), and the area of the same area as the area is obtained.
  • the diameter of the circle was determined as the crystal grain size (equivalent circle diameter).
  • Example 1 the crystal grain size of Example 1 was 0.6 ⁇ m.
  • the grain size of Example 2 was 0.1 ⁇ m.
  • the crystal grain size of Comparative Example 1 was 0.4 ⁇ m.
  • the transparent conductive film 5 was placed in a hot air oven at 80°C for 500 hours. After removing the transparent conductive film 5 from the hot air oven, the surface resistance of the transparent conductive film 5 was obtained as the surface resistance R1 after heating.
  • the rate of increase in surface resistance before and after the heating test was obtained by dividing the initial surface resistance R0 by the surface resistance R1 after heating. The results are listed in Table 1.
  • Example 1 the rate of increase in surface resistance before and after the heating test in Example 1 was less than 1, and compared to Example 2, it can be seen that the increase in surface resistance after the heating test was further suppressed.
  • the transparent conductive layer is used for optical articles.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

透明導電層(1A)は、アルゴンより原子番号の大きい希ガスを含有する。透明導電層(1B)の厚みは、40nm超過である。透明導電層(1A,1B)をX線回折したときの、(440)面におけるピークの半値幅が、0.27度超過である。

Description

透明導電層、透明導電性フィルムおよび物品
 本発明は、透明導電層、透明導電性フィルムおよび物品に関する。
 フィルム基材上にある透明導電層が知られている(例えば、下記特許文献1参照。)。特許文献1に記載の透明導電層は、結晶質である。透明導電層は、物品に備えられる。物品は、タッチパネルを含む。
特開2014-157814号公報
 物品は、その種類、用途および目的に応じて、高温雰囲気下に長時間置かれる場合がある。その場合に、物品に備えられる透明導電層には、表面抵抗の増大の抑制が求められる。つまり、透明導電層には、優れた長時間加熱信頼性が求められる。
 しかし、特許文献1に記載の透明導電層は、上記した要求を十分に満足できないという不具合がある。
 本発明は、高温雰囲気に長時間置かれた場合でも、表面抵抗の増大が抑制される透明導電層、透明導電性フィルムおよび物品を提供する。
 本発明(1)は、アルゴンより原子番号の大きい希ガスを含有する無機酸化物を含む透明導電層であり、前記透明導電層をX線回折したときの、(440)面におけるピークの半値幅が、0.27度超過である、透明導電層を含む。
 本発明(2)は、無機酸化物を含む透明導電層であり、前記透明導電層をX線回折したときの、(440)面におけるピークの半値幅が、0.27度超過であり、厚みが40nm超過である、透明導電層を含む。
 本発明(3)は、前記無機酸化物が、インジウムスズ複合酸化物である、(1)または(2)に記載の透明導電層を含む。
 本発明(4)は、樹脂を含む基材と、(1)から(3)のいずれか一項に記載の透明導電層とを、厚み方向の一方側に向かって順に備える、透明導電性フィルムを含む。
 本発明(5)は、(1)から(3)のいずれか一項に記載の透明導電層を備える、物品を含む。
 本発明(6)は、(4)に記載の透明導電性フィルムを備える、物品を含む。
 本発明の透明導電層、透明導電性フィルムおよび物品は、高温雰囲気に長時間置かれた場合でも、表面抵抗の増大が抑制される。
本発明の透明導電層の第1実施形態の断面図である。 図1に示す透明導電層を備える透明導電性フィルムの断面図である。 本発明の透明導電層の第2実施形態の断面図である。 実施例1の反応性スパッタリングにおいて、酸素導入量と、比抵抗との関係を示すグラフである。
 1. 第1実施形態
 本発明の第1実施形態の透明導電層1Aを、図1を参照して説明する。この透明導電層1Aは、面方向に延びる。面方向は、厚み方向に直交する。透明導電層1Aは、結晶質である。
 1.1 透明導電層1に含有される無機酸化物
 透明導電層1Aは、無機酸化物を含む。無機酸化物としては、例えば、金属酸化物が挙げられる。金属酸化物は、In、Sn、Zn、Ga、Sb、Nb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む。具体的には、透明導電層1Aの材料としては、好ましくは、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、インジウムガリウム複合酸化物(IGO)、インジウムスズ複合酸化物(ITO)、および、アンチモンスズ複合酸化物(ATO)が挙げられ、好ましくは、長時間加熱信頼性を向上する観点から、インジウムスズ複合酸化物(ITO)が挙げられる。
 1.2 酸化スズ(SnO)の含有量
 インジウムスズ複合酸化物における酸化スズ(SnO)の含有量は、例えば、0.5質量%以上、好ましくは、1質量%以上、より好ましくは、3質量%以上、さらに好ましくは、5質量%以上、とりわけ好ましくは、6質量%以上であり、また、例えば、50質量%未満、好ましくは、25質量%以下、より好ましくは、15質量%以下、さらに好ましくは、10質量%未満、さらには、9質量%以下、8質量%以下、7質量%以下が好適である。インジウムスズ複合酸化物における酸化スズの含有量が上記した下限以上であれば、長時間加熱信頼性に優れる。インジウムスズ複合酸化物における酸化スズの含有量が上記した上限以下であれば、加熱信頼性に優れる透明導電層1Aが得られる。透明導電層1の優れた抵抗特性とエッチング性を両立しやすい。例えば、酸化インジウムと酸化スズの混合物の焼結体(ターゲット)における、酸化スズ(SnO)の含有量から判断してもよい。また、例えば、透明導電層1をXPS(X-ray Photoelectron Spectroscopy)で分析することでも判断することができる。必要に応じてXPSのデプスプロファイルを取得することで透明導電層1の厚み方向の酸化スズ(SnO)の含有量を求めることもできる。
 1.2.1 酸化スズの含有量の分布
 インジウムスズ複合酸化物における酸化スズの含有量は、厚み方向に均一であり、または、厚み方向に分布がある。本実施形態では、インジウムスズ複合酸化物における酸化スズの含有量は、好ましくは、厚み方向に分布がある。図1の拡大図に示すように、本実施形態では、透明導電層1は、酸化スズの含有量が互いに異なる第1領域3および第2領域4を厚み方向の一方側に向かって順に備える。つまり、本実施形態では、第2領域4は、厚み方向において第1領域3の一方側に配置される。第1領域3における酸化スズの含有量C1は、第2領域4における酸化スズの含有量C2のそれより、例えば、高い。第2領域4における酸化スズの含有量C2に対する第1領域3における酸化スズの含有量C1の比(C1/C2)は、例えば、1超過、好ましくは、1.5以上、より好ましくは、2以上、さらに好ましくは、2.5以上、とりわけ好ましくは、3以上であり、最も好ましくは、3.3以上である。上記した比(C1/C2)は、例えば、100以下、好ましくは、25以下、より好ましくは、10以下である。なお、第1領域3および第2領域4の境界は、明確に観察されなくてもよい。
 1.2.2 第1領域3における酸化スズの含有量
 具体的には、第1領域3における酸化スズの含有量C1は、例えば、5質量%以上、好ましくは、7質量%以上、より好ましくは、9質量%以上であり、また、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、25質量%以下、さらに好ましくは、20質量%以下、とりわけ好ましくは、15質量%以下である。
 1.2.3 第2領域4における酸化スズの含有量
 第2領域4における酸化スズの含有量C1は、例えば、0.1質量%以上、好ましくは、1質量%以上、より好ましくは、2質量%以上であり、また、例えば、9質量%以下、好ましくは、7質量%以下、より好ましくは、5質量%以下、さらに好ましくは、4質量%以下である。
 1.3 無機酸化物に含有される、アルゴンより原子番号の大きい希ガス
 上記した無機酸化物は、アルゴンより原子番号の大きい希ガスを含有する。アルゴンより原子番号の大きい希ガス2は、図1における拡大図に示すように、厚み方向における透明導電層1Aの全体に存在する。
 無機酸化物(好ましくは、金属酸化物)にアルゴンより原子番号が大きい希ガスが混入した組成物が、透明導電層1Aである。
 アルゴンより原子番号が大きい希ガスとしては、例えば、クリプトン、キセノン、および、ラドンが挙げられる。これらは、単独または併用できる。アルゴンより原子番号が大きい希ガスとして、好ましくは、クリプトン、および、キセノンが挙げられ、より好ましくは、低価格と優れた電気伝導性とを得る観点から、クリプトン(Kr)が挙げられる。
 本実施形態では、透明導電層1Aの無機酸化物は、好ましくは、アルゴンを含有しない。
 アルゴンより原子番号が大きい希ガスの同定方法は、限定されない。例えば、ラザフォード後方散乱分析(Rutherford Backscattering Spectrometry)、二次イオン質量分析法、レーザー共鳴イオン化質量分析法、および/または、蛍光X線分析により、透明導電層1Aにおけるアルゴンより原子番号が大きい希ガスが同定される(存否が判断される)が、好ましくは、分析簡易性の観点から、蛍光X線分析で、同定される。蛍光X線分析の詳細は、実施例に記載する。アルゴンより原子番号が大きい希ガスを定量するために、ラザフォード後方散乱分析を実施すると、アルゴンより原子番号が大きい希ガスの含有量が検出限界値(下限値)以上でないために定量できない一方、蛍光X線分析を実施すると、アルゴンより原子番号が大きい希ガスの存在が同定される場合には、当該透明導電層1Aにおけるアルゴンより原子番号が大きい希ガスの含有量が0.0001atom%以上である領域を含む、と判断する。
 無機酸化物(透明導電層1A)におけるアルゴンより原子番号が大きい希ガスの含有割合は、例えば、0.0001atom%以上であり、好ましくは、0.001atom%以上であり、また、例えば、1.0atom%以下、より好ましくは、0.7atom%以下、さらに好ましくは、0.5atom%以下、ことさらに好ましくは、0.3atom%以下、とくに好ましくは、0.2atom%以下、もっとも好ましくは、0.15atom%以下である。無機酸化物(透明導電層1A)におけるアルゴンより原子番号が大きい希ガスの含有割合が、上記範囲であれば、透明導電層1Aの長時間加熱信頼性を向上できる。
 後述するスパッタリングにおいて、スパッタリングガスがアルゴンを含有する場合には、透明導電層1Aにアルゴンが、多量に取り込まれる。対して、スパッタリングガスがアルゴンより原子番号が大きい希ガスを含有し、アルゴンを含有しない本実施形態では、透明導電層1Aは、スパッタリングガスの多量の取り込みが抑制される。そのため、透明導電層1Aの結晶性が良好になり、その結果、透明導電層1Aの長時間加熱信頼性が向上する。
 1.4 X線回折における(440)面におけるピーク
 透明導電層1AをX線回折したときの、(440)面におけるピークが存在する。(440)面は、結晶質な透明導電層1AをX線回折したときに得られるスペクトルに含まれる固有のピークである。
 1.4.1 (440)面におけるピークの半値幅
 X線回折における(440)面におけるピークの半値幅は、0.27度超過である。
 他方、X線回折における(440)面におけるピークの半値幅は、0.27度以下であれば、透明導電層1Aの長時間加熱信頼性が不良である。つまり、透明導電層1Aが高温雰囲気下に長時間置かれた場合に、表面抵抗が増大する。
 対して、透明導電層1AをX線回折したときの、(440)面におけるピークの半値幅は、0.27度超過であるので、透明導電層1Aは、長時間加熱信頼性に優れる。つまり、透明導電層1Aが高温雰囲気下に長時間置かれた場合に、表面抵抗の増大を抑制できる。
 透明導電層1AをX線回折したときの、(440)面におけるピークの半値幅は、好ましくは、0.275度以上、より好ましくは、0.28度以上、さらに好ましくは、0.29度以上、とりわけ好ましくは、0.30度以上、さらには、0.31度以上、0.32度以上、0.33度以上、0.35度以上、0.37度以上、0.38度以上が好適である。
 また、透明導電層1AをX線回折したときの、(440)面におけるピークの半値幅は、例えば、5.00度以下、好ましくは、3.00度以下、より好ましくは、1.00度以下、さらに好ましくは、0.75度以下、とりわけ好ましくは、0.50度以下である。
 (440)面におけるピークの半値幅が上記した上限以下であれば、透明導電層1Aの優れた加熱信頼性と良好な抵抗特性とを両立できる。
 X線回折における(440)面におけるピークの半値幅を上記範囲にする方法は、限定されない。
 X線回折の(440)面におけるピークの半値幅は、後の実施例の記載に基づいて、測定される。
 1.5 透明導電層1Aの他の物性
 透明導電層1Aにおける結晶粒径は、例えば、3μm以下、好ましくは、2μm以下、より好ましくは、1μm以下、さらに好ましくは、0.8μm以下、とりわけ好ましくは、0.7μm以下である。結晶粒径が上記した上限以下であれば、可撓性を有する樹脂を含む基材6を採用しても、透明導電層1に割れが生じにくい。透明導電層1Aにおける結晶粒径は、例えば、0.01μm以上、好ましくは、0.1μm以上、より好ましくは、0.2μm以上、さらに好ましくは、0.3μm以上、とりわけ好ましくは、0.4μm以上、最も好ましくは、0.5μm以上であり、さらには、0.6μm以上が好適である。結晶粒径が上記した下限以上であれば、透明導電層1Aは、長時間加熱信頼性に優れる。
 結晶粒径は、FE-SEM観察によって、求められる。求め方の詳細は、後の実施例で記載される。
 透明導電層1Aの厚みは、例えば、1nm以上、好ましくは、5nm以上、より好ましくは、10nm以上、さらに好ましくは、15nm以上、とりわけ好ましくは、20nm以上であり、また、例えば、500nm以下、好ましくは、300nm以下、より好ましくは、200nm以下、さらに好ましくは、100nm以下、とりわけ好ましくは、50nm以下であり、さらには、40nm以下、35nm以下、30nm以下、25nm以下が好適である。透明導電層1Aの厚みが上記した上限以下であれば、加熱信頼性を向上できる。
 透明導電層1Aの厚みは、FE-TEM観察(断面観察)により測定される。
 第1領域3および第2領域4のそれぞれの厚みは、例えば、3nm以上、好ましくは、5nm以上、より好ましくは、7nm以上であり、また、例えば、200nm以下、好ましくは、100nm以下、より好ましくは、50nm以下、より好ましくは、25nm以下、さらに好ましくは、20nm以下、とりわけ好ましくは、15nm以下である。
 透明導電層1が上記した第1領域3および第2領域4を含む場合には、第2領域4の厚みに対する第1領域3の厚みの比は、例えば、0.1以上、好ましくは、0.3以上、より好ましくは、0.5以上、さらに好ましくは、0.7以上であり、また、例えば、10以下、好ましくは、5以下、より好ましくは、3以下、さらに好ましくは、2以下である。
 透明導電層1Aの全光線透過率は、例えば、75%以上、好ましくは、80%以上、より好ましくは、85%以上、さらに好ましくは、90%以上である。透明導電層1Aの全光線透過率の上限は、限定されない。透明導電層1Aの全光線透過率の上限は、例えば、100%である。
 透明導電層1Aの比抵抗は、例えば、5.0×10-4Ω・cm以下、好ましくは、3×10-4Ω・cm以下であり、また、例えば、0.1×10-4Ω・cm以上である。
 比抵抗は、四端子法により測定される。
 1.6 透明導電性フィルム5A
 次に、上記した透明導電層1Aを備える透明導電性フィルム5Aを、図2を参照して説明する。透明導電性フィルム5Aは、面方向に延びる。透明導電性フィルム5Aは、基材6と、透明導電層1Aとを厚み方向の一方側に向かって順に備える。つまり、本実施形態では、透明導電性フィルム5Aでは、基材6と、透明導電層1Aとが、厚み方向の一方側に向かって順に配置される。本実施形態では、透明導電性フィルム5Aは、好ましくは、基材6と、透明導電層1Aとのみを備える。
 1.8 基材6
 本実施形態では、基材6は、厚み方向における透明導電性フィルム5Aの他方面を形成する。基材6は、透明導電性フィルム5Aの機械強度を向上させる。基材6は、面方向に延びる。基材6は、例えば、樹脂を含む。基材6が樹脂を含めば、透明導電層1Aの良好な抵抗特性と加熱信頼性の両立ができる。樹脂は、後で説明する。本実施形態では、基材6は、ガラス板(図示せず)に隣接しない。本実施形態では、厚み方向における基材6の他方面は、ガラス板に接触しない。
 1.8.1 基材6の層構成
 本実施形態では、図2の拡大図で示すように、基材6は、基材シート61と、機能層60とを厚み方向に順に備える。本実施形態では、機能層60は、単層である。機能層60は、厚み方向における基材シート61の一方面に接触する。機能層60は、好ましくは、ハードコート層62である。本実施形態では、基材6は、好ましくは、基材シート61と、ハードコート層62とを厚み方向の他方側に向かって順に備える。
 1.8.1.1 基材シート61
 基材シート61は、可撓性を有する。基材シート61としては、例えば、樹脂フィルムが挙げられる。樹脂フィルムにおける樹脂は、限定されない。樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、および、ノルボルネン樹脂が挙げられる。樹脂として、好ましくは、透明性および機械強度の観点から、ポリエステル樹脂が挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、および、ポリエチレンナフタレートが挙げられ、好ましくは、PETが挙げられる。
 基材シート61の厚みは、好ましくは、1μm以上、より好ましくは、10μm以上、さらに好ましくは、30μm以上である。基材シート61の厚みは、好ましくは、300μm以下、より好ましくは、200μm以下、さらに好ましくは、150μm以下、とりわけ好ましくは、100μm以下である。基材6の厚みに対する基材シート61の厚みの割合は、例えば、0.80以上、好ましくは、0.90以上、より好ましくは、0.95以上であり、また、例えば、0.99以下、好ましくは、0.97以下である。
 1.8.1.2 ハードコート層62
 ハードコート層62は、厚み方向における透明導電層1Aの一方面に擦り傷が形成されにくくする。ハードコート層62は、厚み方向における基材シート61の一方面に接触する。ハードコート層62は、樹脂からなる。具体的には、ハードコート層62は、例えば、硬化性樹脂を含む硬化性組成物の硬化物層である。硬化性樹脂としては、例えば、アクリル樹脂、ウレタン樹脂、アミド樹脂、シリコーン樹脂、エポキシ樹脂、および、メラミン樹脂が挙げられる。硬化性樹脂としては、好ましくは、アクリル樹脂が挙げられる。ハードコート層62の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、3μm以下である。基材シート61の厚みに対するハードコート層62の厚みの割合は、例えば、0.01以上、好ましくは、0.02以上、より好ましくは、0.03以上であり、また、例えば、0.20以下、好ましくは、0.10以下、より好ましくは、0.05以下である。ハードコート層62の厚みは、機能層60の厚みに相当する。
 1.8.2 基材6の厚み
 基材6の厚みは、例えば、5μm以上、好ましくは、10μm以上、より好ましくは、25μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下、より好ましくは、100μm以下である。基材6の厚みは、基材シート61およびハードコート層62の合計厚みである。
 1.8.3 基材6の物性
 基材6の全光線透過率は、例えば、75%以上、好ましくは、80%以上、より好ましくは、85%以上、さらに好ましくは、90%以上である。基材6の全光線透過率の上限は、限定されない。基材6の全光線透過率の上限は、例えば、100%である。基材6の全光線透過率は、JIS K 7375-2008に基づいて求められる。以下の部材の全光線透過率は、上記と同様の方法に基づいて求められる。
 基材6は、市販品を用いることができる。
 1.9 透明導電層1A
 本実施形態の透明導電性フィルム5Aでは、透明導電層1Aは、厚み方向における透明導電性フィルム5Aの一方面を形成する。透明導電層1Aは、厚み方向における基材6の一方面に配置される。透明導電層1Aは、厚み方向における基材6の一方面に接触する。
 つまり、厚み方向における透明導電層1Aの他方面が、基材6に接触する。本実施形態では、透明導電層1Aの他方面は、厚み方向におけるハードコート層62(機能層60)の一方面に接触する。
 図1の拡大図に示すように、透明導電層1Aが、第1領域3と第2領域4を有する場合には、好ましくは、第1領域3が、厚み方向の基材6の一方面に配置される。好ましくは、第1領域3が、厚み方向におけるハードコート層62(図2参照)の一方面に接触する。図1の下側の拡大図、および、図2の拡大図に示すように、透明導電層1Aが第1領域3と第2領域4を有する場合には、透明導電性フィルム5Aは、基材シート61と、ハードコート層62と、第1領域3と、第2領域4とを厚み方向の一方側に向かって順に備える。つまり、第2領域4は、厚み方向において、第1領域3に対して基材6の反対側に配置される。
 1.10 透明導電性フィルム5Aの厚み、他の物性
 透明導電性フィルム5Aの厚みは、例えば、2μm以上、好ましくは、20μm以上、より好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下である。
 透明導電性フィルム5Aの全光線透過率は、例えば、75%以上、好ましくは、80%以上であり、また、例えば、100%以下である。
 1.11 透明導電性フィルム5Aの製造方法
 この方法では、例えば、各層のそれぞれをロール-トゥ-ロール法で配置する。
 1.11.1 基材6の準備
 まず、基材6を準備する。具体的には、基材シート61の一方面に硬化性組成物を塗布する。その後、硬化性組成物における硬化性樹脂を、熱または紫外線照射によって、硬化させる。これによって、ハードコート層62を基材シート61の一方面に形成する。これによって、基材6を準備する。
 1.11.2 透明導電層1Aの形成
 その後、透明導電層1Aを、厚み方向における基材6の一方面に形成する。具体的には、まず、非晶質透明導電層を厚み方向における基材6の一方面に形成し、その後、非晶質透明導電層を結晶質に転化して、透明導電層1Aを形成する。
 1.11.2.1 非晶質透明導電層の形成(スパッタリング工程)
 非晶質透明導電層を形成するには、例えば、スパッタリング、好ましくは、反応性スパッタリングを実施する。
 スパッタリングでは、スパッタリング装置が用いられる。スパッタリング装置は、単数の成膜ロールと、複数の成膜室とを備える。
 成膜ロールは、温度調整装置を備える。温度調整装置は、成膜ロールの温度を調整可能である。成膜ロールは、基材6に接触可能であることから、基材6の温度を調整可能である。成膜ロールの表面温度は、スパッタリングにおける成膜温度に相当する。成膜温度は、例えば、-50℃以上、好ましくは、-30℃以上、より好ましくは、-20℃以上、さらに好ましくは、-10℃以上であり、また、例えば、20℃以下、好ましくは、10℃以下、より好ましくは、5℃以下、さらに好ましくは、0℃以下である。
 複数の成膜室のそれぞれは、内部にスパッタリングガスを供給可能である。スパッタリングガスとしては、アルゴンより原子番号が大きい希ガスが挙げられる。アルゴンより原子番号が大きい希ガスとしては、例えば、クリプトン、キセノン、および、ラドンが挙げられ、好ましくは、クリプトン(Kr)が挙げられる。スパッタリングガスは、例えば、アルゴンを含有してもよい。スパッタリングガスは、単独または併用できる。本実施形態では、スパッタリングガスは、好ましくは、アルゴンより原子番号が大きい希ガスを含有し、アルゴンを含有しない。
 なお、複数の成膜室のそれぞれに供給されるスパッタリングガスは、例えば、いずれも同一であり、また、例えば、一の成膜室に供給されるスパッタリングガスがアルゴンより原子番号が大きい希ガスであり、他の成膜室に一の成膜室に供給されるスパッタリングガスがアルゴンである。好ましくは、複数の成膜室のそれぞれに供給されるスパッタリングガスは、いずれも同一である。
 スパッタリングガスは、好ましくは、反応性ガスと混合される。反応性ガスとしては、例えば、酸素が挙げられる。スパッタリングガスおよび反応性ガスの合計導入量に対する反応性ガスの導入量の割合は、例えば、0.1流量%以上、好ましくは、0.5流量%以上であり、また、例えば、5.0流量%未満、好ましくは、4.0流量%以下、より好ましくは、3.5流量%以下である。
 ターゲットは、例えば、上記した金属酸化物(の焼結体)である。複数の成膜室のそれぞれに、複数のターゲットのそれぞれが配置される。例えば、第1成膜室に第1ターゲットが配置される。第2成膜室に第2ターゲットが配置される。本実施形態では、第1ターゲットと第2ターゲットとは、例えば、互いに異なり、具体的には、いずれもITOであれば、酸化スズの含有量が互いに異なる。
 第1ターゲットは、第1領域3に対応する金属酸化物(の焼結体)であって、酸化スズの上記した(高い)含有量を有する。
 第2成膜室は、基材6の搬送方向において第1成膜室の下流側に配置される。第2ターゲットは、第2領域4に対応する金属酸化物(の焼結体)であって、酸化スズの上記した(低い)含有量を有する。
 図1の拡大図に示すように、透明導電層1Aに上記した第1領域3と第2領域4とを備えるには、第1成膜室で第1スパッタリング工程を実施し、第2成膜室で第2スパッタリング工程を実施する。
 スパッタリング装置内の気圧は、例えば、1.0Pa以下であり、また、例えば、0.01Pa以上である。
 これによって、基材6と、非晶質透明導電層とを備える積層体が製造される。スパッタリング装置が第1および第2成膜室を備える場合には、非晶質透明導電層は、第1領域3および第2領域4を含む。
 1.11.2.2 非晶質透明導電層の結晶質への転化
 その後、非晶質透明導電層を結晶質に転化して、透明導電層1Aを形成する。
 透明導電層1Aを結晶質に転化するには、非晶質透明導電層(を備える積層体)を加熱する。
 加熱温度は、例えば、80℃以上、好ましくは、110℃以上、より好ましくは、さらに好ましくは、130℃以上、とりわけ好ましくは、150℃以上であり、また、例えば、200℃以下、好ましくは、180℃以下、より好ましくは、175℃以下、さらに好ましくは、170℃以下である。加熱時間は、例えば、1分間以上、好ましくは、3分間以上、より好ましくは、5分間以上であり、また、例えば、5時間以下、好ましくは、3時間以下、より好ましくは、2時間以下である。加熱は、例えば、真空下、または、大気下で、実施される。長時間加熱信頼性を向上する観点から、好ましくは、加熱は、真空下で実施される。
 または、非晶質透明導電層を備える透明導電性フィルム5Aを、大気下で、20℃以上、80℃未満の範囲で、例えば、10時間以上、好ましくは、24時間以上放置して、非晶質透明導電層を結晶質に転化することもできる。
 1.12 透明導電性フィルム5Aの用途
 透明導電性フィルム5Aは、例えば、物品に用いられる。物品としては、光学用の物品が挙げられる。詳しくは、物品としては、例えば、タッチセンサ、電磁波シールド、調光素子、光電変換素子、熱線制御部材、光透過性アンテナ部材、光透過性ヒータ部材、画像表示装置、および、照明が挙げられる。
 2. 第1実施形態の作用効果
 透明導電層1Aおよび透明導電性フィルム5Aは、高温雰囲気に長時間置かれた場合でも、表面抵抗の増大が抑制される。そのため、透明導電層1Aおよび/または透明導電性フィルム5Aを備える上記した物品は、長時間加熱信頼性に優れる。
 とりわけ、太陽電池、調光素子、熱線制御部材、および、光透過性ヒータ部材は、高温環境に長時間置かれる場合があり、長時間高温に曝される。しかしながら、上記した各物品は、上記した透明導電層1Aおよび/または透明導電性フィルム5Aを備えるので、透明導電層1Aの表面抵抗の増大が抑制される。
 3. 第1実施形態の変形例
 以下の各変形例において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、第1実施形態と同様の作用効果を奏することができる。さらに、第1実施形態および変形例を適宜組み合わせることができる。
 変形例では、透明導電層1Aは、1つの領域からなってもよい。スパッタリング装置は、単数の成膜室を備える。
 別の変形例では、図示しないが、アルゴンより原子番号の大きい希ガスは、第1領域3または第2領域4のみに含まれる。
 別の変形例では、透明導電性フィルム5Aは、基材6と、第2領域4と、第1領域3とを厚み方向の一方側に向かって順に備える。
 別の変形例では、透明導電層1Aは、第1領域3と第2領域4との繰り返し構造を有する。
 変形例では、図示しないが、機能層60は、複層である。機能層60は、厚み方向における基材シート61の一方面および他方面に配置される。例えば、機能層60は、光学調整層と、ハードコート層とを備える。光学調整層は、基材シート61の一方面に配置される。ハードコート層は、基材シート61の他方面に配置される。
 4. 第2実施形態
 以下の第2実施形態において、上記した第1実施形態および変形例と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態は、特記する以外、第1実施形態および変形例と同様の作用効果を奏することができる。さらに、第1実施形態、変形例および第2実施形態を適宜組み合わせることができる。
 本発明の第2実施形態の透明導電層1Bを、図3を参照して説明する。第2実施形態の透明導電層1Bは、厚みが40nm超過である点、無機酸化物がアルゴンより原子番号の大きい希ガス2を含まなくてもよい点において、第1実施形態の透明導電層1Aと異なる。透明導電層1Bにおける他の物性は、透明導電層1Aのそれと同一であってもよいし、異なってもよい。
 4.1 透明導電層1Bの厚み
 上記したように、本実施形態では、透明導電層1Bの厚みは、40nm超過である。
 透明導電層1Bの厚みが40nm以下であれば、長時間加熱信頼性が低下する。つまり、透明導電層1Bが高温雰囲気下に長時間置かれた場合に、表面抵抗が増大する。
 対して、本実施形態では、透明導電層1Bの厚みが40nm超過であるので、長時間加熱信頼性に優れる。つまり、透明導電層1Bが高温雰囲気下に長時間置かれた場合に、表面抵抗の増大を抑制できる。
 透明導電層1Bの厚みは、好ましくは、45nm以上、より好ましくは、50nm以上、さらに好ましくは、60nm以上、とりわけ好ましくは、70nm以上であり、さらには、80nm以上、90nm以上、100nm以上、110nm以上、120nm以上、125nm以上、130nm以上が好適である。
 透明導電層1Bの厚みは、例えば、750nm以下、好ましくは、500nm以下、より好ましくは、350nm以下、さらに好ましくは、300nm以下、とりわけ好ましくは、200nm以下、最も好ましくは、150nm以下である。透明導電層1Bの厚みが上記した上限以下であれば、加熱安定性に優れる。
 4.2 希ガス
 無機酸化物は、希ガスを含有してもよい。つまり、本実施形態では、透明導電層1Bの無機酸化物に希ガスが含有することが許容される。希ガスとしては、例えば、アルゴン、クリプトン、キセノン、および、ラドンが挙げられる。これらは、単独または併用できる。希ガスとして、好ましくは、製造コストを低減する観点から、アルゴンが挙げられる。
 他方、透明導電層1Bの無機酸化物は、好ましくは、製造コストを低減する観点から、アルゴンより原子番号の大きい希ガスを含有しない。
 希ガスの同定方法は、限定されない。例えば、ラザフォード後方散乱分析(Rutherford Backscattering Spectrometry)、二次イオン質量分析法、レーザー共鳴イオン化質量分析法、および/または、蛍光X線分析により、透明導電層1Bにおける希ガスが同定される。
 4.3 酸化スズの含有量
 透明導電層1BがITOを含む場合において、ITOにおける酸化スズの含有量は、例えば、1質量%以上、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、7質量%以上、とりわけ好ましくは、9質量%以上であり、また、例えば、50質量%以下、好ましくは、35質量%以下、より好ましくは、30質量%以下、さらに好ましくは、25質量%以下、さらに好ましくは、20質量%以下、さらに好ましくは、15質量%以下である。ITOにおける酸化スズの含有量が上記した下限以上であれば、長時間加熱信頼性に優れる。インジウムスズ複合酸化物における酸化スズ(SnO)の含有量が上記した上限以下であれば、加熱安定性を向上できる。
 4.4 結晶粒径
 透明導電層1Bにおける結晶粒径は、例えば、1.0μm以下、好ましくは、0.5μm以下、より好ましくは、0.4μm以下、さらに好ましくは、0.3μm以下である。
 結晶粒径が上記した上限以下であれば、加熱安定性に優れる。
 透明導電層1Bにおける結晶粒径は、例えば、0.001μm以上、好ましくは、0.01μm以上、より好ましくは、0.03μm以上、さらに好ましくは、0.05μm以上、とりわけ好ましくは、0.07μm以上である。透明導電層1Bにおける結晶粒径が上記した下限以上であれば、長時間加熱信頼性に優れる。
 4.5 (440)面におけるピークの半値幅
 透明導電層1BのX線回折における(440)面におけるピークの半値幅は、0.27度超過、好ましくは、0.272度以上、より好ましくは、0.275度以上、さらに好ましくは、0.277度以上、とりわけ好ましくは、0.280度以上、最も好ましくは0.285度以上、さらには、0.287度以上、0.288度以上が好適である。透明導電層1BのX線回折における(440)面におけるピークの半値幅は、例えば、5度以下、3.00度以下、好ましくは、1.00度以下、より好ましくは、0.75度以下、さらに好ましくは、0.50度以下、とりわけ好ましくは、0.40度以下、最も好ましくは、0.35度以下、さらには、0.30度以下が好適である。
 4.6 スパッタリングガスおよび成膜室
 スパッタリングガスとしては、例えば、希ガスが挙げられる。希ガスは、単独使用または併用される。スパッタリングガスとして、好ましくは、アルゴンが挙げられる。また、スパッタリングガスは、好ましくは、アルゴンより原子番号が大きい希ガスを含まない。
 スパッタリング装置における成膜室は、単数である。成膜室は、上記したスパッタリングガスを内部に供給可能である。
 4.7 第2実施形態の透明導電性フィルム5Bおよび物品
 図2における透明導電層1Bは、仮想線で示す基材6とともに、透明導電性フィルム5Bに備えられる。透明導電性フィルム5Bは、基材6と、透明導電層1Bとを、厚み方向の一方側に向かって順に備える。
 上記した透明導電層1Bおよび/または透明導電性フィルム5Bは、上記した物品に用いられる。
 以下に、実施例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
<基材6の準備>
 厚み52μmの基材6を準備した。
 具体的には、PETからなる基材シート61(厚み50μm、東レ社製)を準備した。次いで、ハードコート組成物(アクリル樹脂を含有する紫外線硬化性樹脂)を厚み方向における基材シート61の一方面に塗布して塗膜を形成した。次いで、紫外線照射によって、塗膜を硬化させた。これにより、厚み2μmのハードコート層62を基材シート61の一方面に形成した。これによって、基材シート61と、ハードコート層62とを厚み方向の一方側に向かって順に備える基材6を作製した。
 非晶質透明導電層を、基材6の一方面に形成した。非晶質透明導電層の形成では、第1スパッタリング工程と第2スパッタリング工程とを順に実施した。第1スパッタリング工程と第2スパッタリング工程とのいずれもが、反応性マグネトロンスパッタリングである。第1スパッタリング工程で、非晶質の第1領域3を基材6の一方面に形成した。第2スパッタリング工程で、非晶質の第2領域4を第1領域3の一方面に形成した。
<第1スパッタリング工程>
 第1ターゲットとして、酸化インジウムと酸化スズとの焼結体を用いた。焼結体における酸化スズ濃度は10質量%であった。DC電源を用いて、第1ターゲットに対して電圧を印加した。第1ターゲット上の水平磁場強度は90mTとした。成膜温度は、-5℃とした。また、第1成膜室内の到達真空度が0.9×10-4Paに至るまで第1成膜室内を真空排気して、基材6に対して脱ガス処理を実施した。その後、第1成膜室内に、スパッタリングガスとしてのKrと、反応性ガスとしての酸素とを導入し、第1成膜室内の気圧を0.2Paとした。第1成膜室に導入されるKrおよび酸素の合計導入量に対する酸素導入量の割合は約2.6流量%であった。酸素導入量は、図4に示すように、比抵抗-酸素導入量曲線の領域X内であって、非晶質の第1領域3の比抵抗が6.5×10-4Ω・cmになるように調整した。第1領域3の厚みは、11nmであった。
<第2スパッタリング工程>
 第2ターゲットとして、酸化インジウムと酸化スズとの焼結体を用いた。焼結体における酸化スズ濃度は3質量%であった。DC電源を用いて、第2ターゲットに対して電圧を印加した。第2ターゲット上の水平磁場強度は90mTとした。成膜温度は、-5℃とした。また、DCマグネトロンスパッタリング装置における第2成膜室内の到達真空度が0.9×10-4Paに至るまで第2成膜室内を真空排気し、その後、第2成膜室内に、スパッタリングガスとしてのKrと、反応性ガスとしての酸素とを導入し、第2成膜室内の気圧を0.2Paとした。第2成膜室に導入されるKrおよび酸素の合計導入量に対する酸素導入量の割合は約2.5流量%であった。酸素導入量は、図4に示すように、比抵抗-酸素導入量曲線の領域X内であって、非晶質の第1領域3および非晶質の第2領域4からなる非晶質透明導電層の比抵抗が6.5×10-4Ω・cmになるように調整した。第2領域4の厚みは、11nmであった。
<非晶質透明導電層の結晶化>
 その後、基材6と非晶質透明導電層とを備える積層体を、真空加熱装置内で加熱ロールと接触させて加熱した。これによって、非晶質透明導電層を結晶化させた。加熱温度は160℃とし、加熱時間は0.1時間とした。これにより、非晶質透明導電層を結晶質に転化して、透明導電層1Aを形成した。透明導電層1Aの厚みは、厚み22nmであった。
 これによって、基材6と、結晶質の透明導電層1Aとを厚み方向の一方側に向かって順に備える透明導電性フィルム5を製造した。
  実施例2
 実施例1と同様にして、透明導電層1Bを製造し、続いて、厚み130nmの透明導電性フィルム5Bを製造した。
 但し、第1スパッタリング工程、第2スパッタリング工程および加熱工程を以下の通りに変更した。
<第1スパッタリング工程>
 スパッタリングガスをアルゴンに変更した。第1成膜室内の気圧を0.4Paに変更した。スパッタ成膜装置に導入されるアルゴンおよび酸素の合計導入量に対する酸素導入量の割合を約1.5流量%に変更した。
<第2スパッタリング工程>
 第2スパッタリング工程を実施しなかった。
<加熱工程>
 非晶質透明導電層を、熱風オーブン内での加熱によって結晶化させた。加熱温度は160℃とし、加熱時間は0.5時間とした。
  比較例1
 実施例2と同様にして、第1スパッタリング工程と第2スパッタリング工程とを実施した後、透明導電性フィルム5を製造した。但し、以下の点を変更した。
<第1スパッタリング工程>
 スパッタリングガスを、アルゴンに変更した。スパッタ成膜装置内の気圧を0.4Paに変更した。第1成膜室に導入されるアルゴンおよび酸素の合計導入量に対する酸素導入量の割合は約1.5流量%とした。第1スパッタリング工程によって、厚み19nmの第1領域3を形成した。
<第2スパッタリング工程>
 スパッタリングガスを、アルゴンに変更した。第2成膜室内の気圧を0.4Paに変更した。第1成膜室に導入されるアルゴンおよび酸素の合計導入量に対する酸素導入量の割合は約1.5流量%とした。第2スパッタリング工程によって、厚み3nmの第2領域4を形成した。透明導電層1の厚みは、22nmであった。
<評価>
 実施例1、2および比較例1のそれぞれの透明導電性フィルム5について、下記の項目を評価した。
<厚み>
<透明導電層1A,1Bの厚み>
 透明導電層1A,1B,1の厚みを、FE-TEM観察により測定した。具体的には、まず、FIBマイクロサンプリング法により、透明導電層1A,1B,1の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(商品名「FB2200」、Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観察用サンプルにおける透明導電層1A,1B,1の厚みを、FE-TEM観察によって測定した。FE-TEM観察では、FE-TEM装置(商品名「JEM-2800」、JEOL製)を使用し、加速電圧を200kVとした。
<第1領域3の厚み>
 実施例1および比較例1に関し、第2領域4を形成する前に、第1領域3から、断面観察用サンプルを作製し、そのサンプルをFE-TEM観察して、第1領域3の厚みを算出した。
<第2領域4の厚み>
 実施例1および比較例1に関し、透明導電層1A,1の厚みから、第1領域3の厚みを差し引くことにより、第2領域4の厚みを算出した。
<(440)面におけるX線回折のピークの半値幅>
 透明導電層1A,1B,1のX線回折ピークは、水平型X線回折装置(商品名「SmartLab」、株式会社リガク製)を用いて、下記測定条件に基づいて、X線回折測定することにより取得した。結果を表1に記載する。
[測定条件]
 平行ビーム光学配置
 光源:CuKα線(波長:1.54059Å)
 出力:45kV、200mA
 入射側スリット系:ソーラスリット5.0°
 入射スリット:1.000mm
 受光スリット:20.100mm
 受光側スリット:パラレルスリットアナライザー(PSA)0.114deg.
 検出器:多次元ピクセル検出器 Hypix-3000
 試料ステージ:透明導電性フィルム5の基材6に、粘着層を介してガラスを貼り合せた検体を、試料板(4インチウェーハ試料板)に静置した。
 スキャン軸:2θ/θ(Out of Plane測定)
 ステップ間隔:0.02°
 測定スピード:0.8°/分
 測定範囲:10°~90°
 X線ピークプロファイルは、基材6(各実施例および各比較例の透明導電層1A,1Bと同条件で加熱済みの基材6)由来のバックグラウンドを差し引いた値とした。その後、解析ソフトウェア(ソフト名「SmartLab StudioII」)を用いて、2θが49.8°~51.8°の範囲となるように(440)面に対応するX線回折ピークのプロファイルを作成し、X線回折ピークのフィッティング(ピーク形状;分割型PearsonVII関数、バックグラウンドタイプ;B-スプライン、フィッティング条件;自動)をすることで、(440)面におけるX線回折のピークの半値幅(FWHM、単位;°)を求めた。
 なお、上記のX線回折の(440)面におけるピークの半値幅の測定では、以下の手順が実施されている。
[1](440)面におけるピークにおける2つの裾を通過するベースラインをX線回折チャートに描画する。
[2](440)面におけるピークトップからベースラインまでの強度をピーク強度として取得する。
[3](440)面におけるピーク強度の半値における強度を特定する。
[4](440)面におけるピークにおいて、半値における2つの点の間の2θ(度)を半値幅(FWHM:半値全幅)として取得する。
 上記した手順を含むプログラムを備えるX線回折装置によって、(440)によって求められる。
<結晶粒径>
 透明導電層1A,1B,1の一方面をFE-SEM(装置;Hitachi製、SU8020)で観察して、透明導電層1A,1B,1の結晶粒径を求めた。具体的には、透明導電層1A,1B,1を台に固定した後、表面FE-SEM観察(加速電圧;0.8kV、観察像:二次電子像)を実施して、透明導電層1A,1B,1を平面視で撮影した。倍率を、結晶粒が明瞭に確認できるように調整した。
 次いで、撮影された画像を画像解析処理することにより、結晶粒界によって規定される領域(各結晶粒界内領域)に存在するピクセルの数から当該領域の面積を求め、当該面積と同じ面積の円の直径を結晶粒径(円相当径)として求めた。
 その結果、実施例1の結晶粒径は、0.6μmであった。実施例2の結晶粒径は、0.1μmであった。比較例1の結晶粒径は、0.4μmであった。
<長時間加熱信頼性試験>
 透明導電層1A,1B,1の表面抵抗を測定し、初期の表面抵抗R0を取得した。
 その後、透明導電性フィルム5を、80℃の熱風オーブンに、500時間投入した。熱風オーブンから透明導電性フィルム5を取り出した後、透明導電性フィルム5の表面抵抗を加熱後の表面抵抗R1として得た。
 加熱試験の前後の表面抵抗の増加率を、初期の表面抵抗R0を、加熱後の表面抵抗R1で除することによって、求めた。結果を表1に記載する。
 表1から分かるように、実施例1および実施例2の加熱試験の前後の表面抵抗の増加率は、いずれも、1以下であり、加熱試験後の表面抵抗の増大が抑制されたことが分かる。
 とりわけ、実施例1の加熱試験の前後の表面抵抗の増加率は、1未満であり、実施例2に比べて、加熱試験後の表面抵抗の増大がより一層抑制されたことが分かる。
 対して、比較例1の加熱試験の前後の表面抵抗の増加率は、1超過であり、加熱試験後の表面抵抗が増大したことが分かる。
<透明導電層1A内のKr原子の確認>
 実施例1における透明導電層1AがKr原子を含有することを、次のようにして確認した。
 まず、走査型蛍光X線分析装置(商品名「ZSX PrimusIV」、リガク社製)を使用して、下記の測定条件にて蛍光X線分析測定を5回繰り返し、各走査角度の平均値を算出し、X線スペクトルを作成した。そして、作成されたX線スペクトルにおいて、走査角度28.2°近傍にピークが出ていることを確認することにより、透明導電層1AにKr原子が含有されることを確認した。
[測定条件]
 スペクトル;Kr-KA
 測定径:30mm
 雰囲気:真空
 ターゲット:Rh
 管電圧:50kV
 管電流:60mA
 1次フィルタ:Ni40
 走査角度(deg):27.0~29.5
 ステップ(deg):0.020
 速度(deg/分):0.75
 アッテネータ:1/1
 スリット:S2
 分光結晶:LiF(200)
 検出器:SC
 PHA:100~300
<透明導電層1BにおけるArの確認>
 実施例2の透明導電層1B、および、比較例1の透明導電層がArを含有することを、ラザフォード後方散乱分光法(RBS)によって、確認した。
 具体的には、In+Sn(ラザフォード後方散乱分光法では、InとSnを分離しての測定が困難であるため、2元素の合算として評価した)、O、Arの4元素を検出元素として測定を行い、透明導電層におけるArの存在を確認した。使用装置および測定条件は、下記のとおりである。
<使用装置>
 Pelletron 3SDH(National Electrostatics Corporation製)
<測定条件>
 入射イオン:4He++
 入射エネルギー:2300keV
 入射角:0deg
 散乱角:160deg
 試料電流:6nA
 ビーム径:2mmφ
 面内回転:無
 照射量:75μC
Figure JPOXMLDOC01-appb-T000001
 透明導電層は、光学用の物品に用いられる。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
1A,1B 透明導電層
2     希ガス
5A,5B 透明導電性フィルム
6     基材

Claims (8)

  1.  アルゴンより原子番号の大きい希ガスを含有する無機酸化物を含む透明導電層であり、
     前記透明導電層をX線回折したときの、(440)面におけるピークの半値幅が、0.27度超過である、透明導電層。
  2.  無機酸化物を含む透明導電層であり、
     前記透明導電層をX線回折したときの、(440)面におけるピークの半値幅が、0.27度超過であり、
     厚みが40nm超過である、透明導電層。
  3.  前記無機酸化物が、インジウムスズ複合酸化物である、請求項1または2に記載の透明導電層。
  4.  樹脂を含む基材と、請求項1または2に記載の透明導電層とを、厚み方向の一方側に向かって順に備える、透明導電性フィルム。
  5.  樹脂を含む基材と、請求項3に記載の透明導電層とを、厚み方向の一方側に向かって順に備える、透明導電性フィルム。
  6.  請求項1または2に記載の透明導電層を備える、物品。
  7.  請求項4に記載の透明導電性フィルムを備える、物品。
  8.  請求項5に記載の透明導電性フィルムを備える、物品。
PCT/JP2022/034349 2021-09-17 2022-09-14 透明導電層、透明導電性フィルムおよび物品 WO2023042846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237025547A KR20240058799A (ko) 2021-09-17 2022-09-14 투명 도전층, 투명 도전성 필름 및 물품
JP2023548480A JP7488425B2 (ja) 2021-09-17 2022-09-14 透明導電性フィルムおよび物品
CN202280013108.7A CN116848593A (zh) 2021-09-17 2022-09-14 透明导电层、透明导电性薄膜及物品
JP2024024279A JP2024061727A (ja) 2021-09-17 2024-02-21 透明導電層、透明導電性フィルムおよび物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021152347 2021-09-17
JP2021-152347 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042846A1 true WO2023042846A1 (ja) 2023-03-23

Family

ID=85602916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034349 WO2023042846A1 (ja) 2021-09-17 2022-09-14 透明導電層、透明導電性フィルムおよび物品

Country Status (4)

Country Link
JP (2) JP7488425B2 (ja)
KR (1) KR20240058799A (ja)
CN (1) CN116848593A (ja)
WO (1) WO2023042846A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (ja) * 1992-05-29 1993-12-17 Tonen Corp 透明導電薄膜の製造法
JP2000038654A (ja) * 1998-07-21 2000-02-08 Nippon Sheet Glass Co Ltd 透明導電膜付き基板の製造方法、透明導電膜付き基板およびそれを用いた液晶表示素子
WO2011034145A1 (ja) * 2009-09-18 2011-03-24 三洋電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池システム
JP2016191157A (ja) * 2013-01-16 2016-11-10 日東電工株式会社 透明導電フィルムおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129427A (ja) 1998-10-20 2000-05-09 Teijin Ltd 透明導電積層体の製造方法
JP6261987B2 (ja) 2013-01-16 2018-01-17 日東電工株式会社 透明導電フィルムおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (ja) * 1992-05-29 1993-12-17 Tonen Corp 透明導電薄膜の製造法
JP2000038654A (ja) * 1998-07-21 2000-02-08 Nippon Sheet Glass Co Ltd 透明導電膜付き基板の製造方法、透明導電膜付き基板およびそれを用いた液晶表示素子
WO2011034145A1 (ja) * 2009-09-18 2011-03-24 三洋電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池システム
JP2016191157A (ja) * 2013-01-16 2016-11-10 日東電工株式会社 透明導電フィルムおよびその製造方法

Also Published As

Publication number Publication date
JPWO2023042846A1 (ja) 2023-03-23
CN116848593A (zh) 2023-10-03
JP2024061727A (ja) 2024-05-08
KR20240058799A (ko) 2024-05-07
JP7488425B2 (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
US20230127104A1 (en) Transparent electroconductive film
JP2023017917A (ja) 透明導電性フィルムおよび透明導電性フィルムの製造方法
JP7213962B2 (ja) 光透過性導電層および光透過性導電フィルム
WO2023042846A1 (ja) 透明導電層、透明導電性フィルムおよび物品
WO2023042847A1 (ja) 透明導電層、透明導電性フィルムおよび物品
WO2023042845A1 (ja) 透明導電層および透明導電性フィルム
TW202204138A (zh) 透光性導電膜及透明導電性膜
WO2023013734A1 (ja) 積層体
WO2023042843A1 (ja) 透明導電性フィルム
WO2023042844A1 (ja) 透明導電性フィルム
WO2021187576A1 (ja) 透明導電性フィルム
US20230129748A1 (en) Transparent electroconductive film
US20230128838A1 (en) Light-transmitting electroconductive film and transparent electroconductive film
WO2022092190A2 (ja) 透明導電性フィルム、および透明導電性フィルムの製造方法
JP2024131595A (ja) 透明導電性フィルム
JP2024131594A (ja) 透明導電性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013108.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023548480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869993

Country of ref document: EP

Kind code of ref document: A1