WO2023042526A1 - 捕収剤、浮遊選鉱方法および化合物 - Google Patents

捕収剤、浮遊選鉱方法および化合物 Download PDF

Info

Publication number
WO2023042526A1
WO2023042526A1 PCT/JP2022/026599 JP2022026599W WO2023042526A1 WO 2023042526 A1 WO2023042526 A1 WO 2023042526A1 JP 2022026599 W JP2022026599 W JP 2022026599W WO 2023042526 A1 WO2023042526 A1 WO 2023042526A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ore
compound represented
collector
compound
Prior art date
Application number
PCT/JP2022/026599
Other languages
English (en)
French (fr)
Inventor
敦 柴山
学 山田
一寿 芳賀
佳 趙
歩実 浅野
Original Assignee
国立大学法人秋田大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022027875A external-priority patent/JP2023042507A/ja
Application filed by 国立大学法人秋田大学, 住友化学株式会社 filed Critical 国立大学法人秋田大学
Priority to AU2022348225A priority Critical patent/AU2022348225A1/en
Priority to CN202280062219.7A priority patent/CN117980074A/zh
Publication of WO2023042526A1 publication Critical patent/WO2023042526A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • C07C323/35Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group
    • C07C323/37Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group the sulfur atom of the sulfide group being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/64Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/36Heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to collectors, ore flotation methods and compounds.
  • Patent Document 1 describes a copper recovery method that uses dodecyl mercaptan and 2-mercaptobenzothiazole as collectors used in ore flotation.
  • An object of the present disclosure is to provide a collector containing a compound that increases the recovery amount of target minerals, an ore flotation method using this compound, and a compound suitable for the collector.
  • a collector containing a compound represented by the following formula (1) (In the above formula (1), R 1 represents an alkyl group having 1 to 18 carbon atoms, X represents NR 2 R 3 , SR 4 or OR 5. R 2-3 represents hydrogen or carbon atoms represents an alkyl group of 1 or more and 18 or less, and R 4-5 represents an alkyl group of 1 or more and 18 or less carbon atoms.) [2] The collector according to [1] above, wherein R 1 is an alkyl group having 5 to 10 carbon atoms. [3] The collector according to [1] or [2] above, wherein X is NR 2 R 3 or SR 4 .
  • the collector according to any one of [1] to [3] above, wherein R 2 and R 3 are hydrogen. [5] The collector according to any one of [1] to [3] above, wherein R 4 is an alkyl group having 5 to 10 carbon atoms. [6] The collector according to [1] or [2] above, wherein R 5 is an alkyl group having 5 to 10 carbon atoms. [7] The collector is a collector that floats one or more minerals containing one or more metals selected from the group consisting of Cu, Au, Zn, Pb, Pt, Pd, Rh, Ni and Co. The collector according to any one of [1] to [6] above, which is a collector.
  • R 2-3 represents hydrogen or carbon atoms represents an alkyl group of 1 or more and 18 or less
  • R 4-5 represents an alkyl group of 1 or more and 18 or less carbon atoms.
  • the ore slurry is an ore slurry containing at least one mineral containing at least one metal selected from the group consisting of Cu, Au, Zn, Pb, Pt, Pd, Rh, Ni and Co.
  • the ore flotation method according to [8] or [9] above, wherein the amount of the compound represented by formula (1) added is 0.1 g or more and 1000 g or less per 1000 kg of ore.
  • a collector containing a compound that increases the recovery amount of target minerals, an ore flotation method using this compound, and a compound suitable for the collector it is possible to provide a collector containing a compound that increases the recovery amount of target minerals, an ore flotation method using this compound, and a compound suitable for the collector.
  • FIG. 1 is an X-ray diffraction pattern of chalcopyrite used in Examples 1-1 to 1-6 and Comparative Example 1-1.
  • FIG. 2 is an X-ray diffraction pattern of the ore used in Example 4-1 and Comparative Example 4-1.
  • FIG. 3 shows the contents of metals contained in the ores used in Example 4-1 and Comparative Example 4-1.
  • FIG. 4 is an X-ray diffraction pattern of copper sulfide ores used in Examples 5-1 to 5-8 and Comparative Examples 5-1 to 5-2.
  • the collector of this embodiment is a collector containing a compound represented by the following formula (1).
  • R 1 represents an alkyl group having 1 to 18 carbon atoms
  • X represents NR 2 R 3 , SR 4 or OR 5
  • R 2-3 represents hydrogen or an alkyl group having 1 to 18 carbon atoms
  • R 4 to 5 represents an alkyl group having 1 to 18 carbon atoms.
  • R 1 is an alkyl group having 1 or more and 18 or less carbon atoms, preferably an alkyl group having 5 or more and 10 or less carbon atoms.
  • a compound in which X in formula (1) is NR 2 R 3 is represented by the following formula (2).
  • an amine that binds to the benzene ring is introduced for the purpose of enhancing the electron-donating property.
  • sulfur is introduced to bond with the benzene ring.
  • R 2 and R 3 are preferably hydrogen.
  • a compound in which R 2 and R 3 in formula (2) are hydrogen is represented by the following formula (2-1).
  • R 1 is preferably an alkyl group having 1 or more and 18 or less carbon atoms, and an alkyl group having 5 or more and 10 or less carbon atoms. more preferably a group.
  • R 1 is an alkyl group having 8 carbon atoms ( octyl group) and R 2 and R 3 are preferably hydrogen.
  • This compound is represented by the following formula (2-2).
  • the compound represented by formula (2-2) is an isomer, a compound represented by formula (2-2-1), a compound represented by formula (2-2-2), and a compound represented by formula (2 -2-3) contains at least one compound.
  • the compound represented by formula (2) can be synthesized by the reaction represented by the following reaction formula.
  • a compound in which X in formula (1) is SR 4 is represented by the following formula (3).
  • R 1 is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 5 to 10 carbon atoms. .
  • R 4 is an alkyl group having 1 or more and 18 or less carbon atoms, preferably an alkyl group having 5 or more and 10 or less carbon atoms.
  • R 1 and R 4 have 8 carbon atoms
  • An alkyl group (octyl group) is preferred.
  • a compound in which R 1 and R 4 are an alkyl group having 8 carbon atoms is represented by the following formula (3-1).
  • the compound represented by formula (3-1) is an isomer, a compound represented by formula (3-1-1), a compound represented by formula (3-1-2), and a compound represented by formula (3 -1-3) contains at least one compound.
  • the compound represented by formula (3) can be synthesized by the reaction represented by the following reaction formula.
  • benzenedithiol under a nitrogen gas stream, benzenedithiol, one or more types of alkyl bromides (for example, BrR 1 and BrR 4 in the above formula), and potassium hydroxide are heated to reflux in ethanol while stirring. Subsequently, the obtained sample is washed, dehydrated and dried. Thus, the compound represented by Formula (3) can be obtained. Further, 1,2-benzenedithiol is used when synthesizing an ortho-substituted compound of the compound represented by formula (3), such as the compound represented by formula (3-1-1). 1,3-Benzenedithiol is used when synthesizing a meta-substituted compound of formula (3), such as the compound of formula (3-1-2). 1,4-Benzenedithiol is used when synthesizing a para-substituted compound of formula (3), such as the compound of formula (3-1-3).
  • 1,2-benzenedithiol is used when synthesizing an ortho-substituted compound of the compound represented by formula (3),
  • a compound in which X in formula (1) is OR 5 is represented by the following formula (4).
  • R 1 is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 5 to 10 carbon atoms. .
  • R 5 is an alkyl group having 1 or more and 18 or less carbon atoms, preferably an alkyl group having 5 or more and 10 or less carbon atoms.
  • the compound represented by formula (4) can be synthesized by the reaction represented by the following reaction formula.
  • mercaptophenol one or more alkyl bromides (for example, BrR 1 and BrR 5 in the above formula), and potassium hydroxide are heated to reflux in ethanol under a nitrogen gas stream while stirring. Subsequently, the obtained sample is washed, dehydrated and dried. Thus, a compound represented by formula (4) can be obtained. Further, 2-mercaptophenol is used when synthesizing an ortho-substituted compound of the compound represented by formula (4). 3-Mercaptophenol is used when synthesizing the meta-substituted compound of the formula (4). When synthesizing the para-substituted compound of the formula (4), 4-mercaptophenol is used.
  • X is NR 2 R 3 like the compound represented by the formula (2), or It is preferred that X is SR4 , as in the compounds of formula (3).
  • R 2 and R 3 are preferably hydrogen, as in the compound represented by formula (2-1).
  • the target mineral is one or more minerals containing one or more metals selected from the group consisting of Cu, Au, Zn, Pb, Pt, Pd, Rh, Ni and Co.
  • the compound represented by the above formula (1) can increase the recovery amount of target minerals compared to conventional collectors, and in particular can increase the recovery amount of multiple types of minerals containing multiple types of metals. Therefore, the collector containing the compound represented by Formula (1) can improve the recovery amount of minerals, particularly the recovery amount of multiple types of minerals containing multiple types of metals.
  • Such a collector of the present embodiment is suitably used for ore flotation.
  • the collector containing the compound represented by the above formula (1) contains one or more metals selected from the group consisting of Cu, Au, Zn, Pb, Pt, Pd, Rh, Ni and Co. It is preferably a collector that floats one or more minerals containing, and is a collector that floats one or more minerals containing one or more metals selected from the group consisting of Cu, Au, Zn and Pb. More preferably, it is an absorbent. In ore flotation, the compound represented by formula (1) can improve the recovery of minerals, especially those containing the above metals. Therefore, when the collector containing the compound represented by formula (1) is used as the collector, the recovery amount of one or more minerals can be increased.
  • the form of the collector in this embodiment can be appropriately selected according to the ore flotation process.
  • the collector of the present embodiment contains a foaming agent in addition to the compound represented by formula (1).
  • the collector of the present embodiment may not contain the foaming agent. Foaming agents used in conventional flotation can be used.
  • the collector of the present embodiment may contain various additives such as inhibitors.
  • the compound represented by the above formula (1) and a foaming agent are added to the ore slurry to float and recover one or more minerals in the ore slurry.
  • various additives such as inhibitors may be added to the ore slurry in addition to the compound represented by formula (1) and the foaming agent.
  • the compound represented by formula (1) and a foaming agent are added to the ore slurry, and one or more minerals captured by the compound represented by formula (1) are added as a foaming agent It floats on the liquid surface of the ore slurry together with the bubbles generated by Metals can then be recovered from the ore slurry by recovering the mineral-laden foamy layer from the ore slurry.
  • the ore slurry used in the flotation method is obtained by mixing the pulverized ore containing the desired mineral with a liquid such as water.
  • a foaming agent is a substance that dissolves in a solvent to stabilize the foam of the solution. Specific substances include, but are not limited to, methyl isobutyl carbinol (MIBC), pine oil, Aerofroth 70 (CYTEC), and the like.
  • the amount of the foaming agent is preferably 0.001 g/t or more and 2000 g/t or less (0.001 g or more and 2000 g or less with respect to 1000 kg of ore).
  • the amount of the foaming agent is 0.001 g/t or more, it is easy to obtain floating ore, and when the amount of the foaming agent exceeds 2000 g/t, the effect of adding the foaming agent may plateau. .
  • the ore flotation method the ore slurry to which the compound represented by Formula (1) and the foaming agent are added may be bubbled.
  • the compound represented by formula (1) can improve the recovery of minerals, particularly the recovery of multiple types of minerals. Therefore, in the ore flotation method of the present embodiment using the compound represented by formula (1), a large amount of minerals can float on the liquid surface of the ore slurry compared to the conventional collector, so that the ore slurry can be Increases the amount of recovered minerals.
  • the ore slurry contains one or more metals selected from the group consisting of Cu, Au, Zn, Pb, Pt, Pd, Rh, Ni and Co. It is preferably an ore slurry containing minerals, more preferably an ore slurry containing one or more minerals containing one or more metals selected from the group consisting of Cu, Au, Zn and Pb. preferable.
  • the compound represented by formula (1) can improve the recovery of minerals, especially those containing the above metals. Therefore, in the ore flotation method of the present embodiment, flotation of one or more minerals containing one or more metals can increase the recovery amount of the one or more minerals.
  • the amount of the compound represented by formula (1) added is preferably 0.1 g or more and 1000 g or less, more preferably 10 g or more and 300 g or less, relative to 1000 kg of ore. More preferably, it is 50 g or more and 300 g or less.
  • the added amount of the compound represented by formula (1) is 0.1 g or more, the recovery amount of the target mineral can be sufficiently increased.
  • the amount of the compound represented by formula (1) added is 1000 g or less, the cost of the compound represented by formula (1) can be reduced.
  • the pH of the ore slurry is preferably 6 or more and 12 or less, more preferably 9 or more and 12 or less.
  • the recovery amount of minerals can be further increased.
  • the compound of this embodiment is a compound represented by the above formula (3-1-1).
  • the compound represented by formula (3-1-1) in the compound represented by formula (3-1-1), two sulfur atoms present at adjacent positions strongly bind to minerals. Therefore, the compound represented by formula (3-1-1) is preferably used as a collector.
  • the compound represented by formula (3-1-1) can be synthesized by the reaction represented by the following reaction formula.
  • the collection amount of target minerals can be increased by using the collector containing the compound represented by formula (1). Therefore, in flotation, the recovery of desired minerals can be increased.
  • each example was performed using a collector containing each compound.
  • Example 1-1 to 6 and Comparative Example 1-1 As Examples 1-1 to 6, as shown in Table 1, formulas (2-2-1) to (2-2-3) and formulas (3-1-1) to (3-1-3 ) was used to flotate chalcopyrite. Further, as Comparative Example 1-1, chalcopyrite flotation was performed using PAX (Cytec Industries, Potassium Amyl Xanthate).
  • the flotation was carried out according to the following procedure. First, a slurry of pulverized chalcopyrite having an X-ray diffraction pattern shown in FIG. 100 g of an agent (methyl isobutyl carbinol (MIBC)) was added. The chalcopyrite used had a Cu grade of 27.5% and an Fe grade of 40.9%. The amount of pulverized material in the slurry was 25 g. The compound represented by the formula (3-1-3) is dissolved in kerosene and then added to the slurry, and the compounds other than the compound represented by the formula (3-1-3) are directly added to the slurry. bottom. Then, ore flotation was carried out in 10 minutes to obtain floating ore and tailings.
  • MIBC methyl isobutyl carbinol
  • the copper grades of the obtained floating ore and tailing were analyzed, and the recovery rate of Cu was calculated based on the following formula. Float is the ore that floats in the flotation, and tailings is the ore that does not float in the flotation. Further, the Cu grade shown in Table 1 is the copper grade of floating ore.
  • Cu recovery rate (%) floating ore weight x floating ore copper grade / (floating ore weight x floating ore copper grade + tailing weight x tailing copper grade)
  • Example 2-1 to 4 and Comparative Example 2-1 As shown in Table 2, flotation was performed in the same manner as in Example 1-1 except that each compound was used and 100 g of each compound was added per 1000 kg of chalcopyrite.
  • Examples 3-1 to 3 and Comparative Example 3-1 As shown in Table 3, flotation was performed in the same manner as in Example 1-1 except that each compound was used and 300 g of each compound was added per 1000 kg of chalcopyrite.
  • Example 4-1 and Comparative Example 4-1 As shown in Table 4, as Example 4-1 and Comparative Example 4-1, respectively, the compound represented by formula (2-2-1) or PAX was used to obtain the X-ray diffraction patterns shown in FIG. Flotation of the indicated ores was carried out. As a result of MP-AES and XRF analysis of this ore, it was found to contain various metals shown in FIG.
  • the flotation was carried out according to the following procedure. First, a slurry of pulverized ore pulverized to a particle size of 75 ⁇ m or less is adjusted to pH 7 to 8, and 100 g of the compound represented by formula (2-2-1) or PAX and a foaming agent (methyl isobutyl 200 g of carbinol (MIBC)) was added. The amount of pulverized material in the slurry was 75 g and the Pulp concentration was 30%. Then, ore flotation was performed in 15 minutes, and the recovery rates of Au, Zn, and Pb were calculated.
  • a foaming agent methyl isobutyl 200 g of carbinol (MIBC)
  • Example 4-1 As shown in Table 4, in Example 4-1, the Au recovery rate, Zn recovery rate, and Pb recovery rate all increased compared to Comparative Example 4-1.
  • Examples 5-1 to 8 and Comparative Examples 5-1 to 2 As Examples 5-1 to 8, as shown in Table 5, using compounds represented by formulas (2-2-1) to (2-2-3) and (3-1-1) , carried out flotation of copper sulfide ore. Further, as Comparative Examples 5-1 and 5-2, copper sulfide ore was flotated using PAX.
  • the flotation was carried out according to the following procedure. First, a slurry of pulverized copper sulfide ore showing the X-ray diffraction pattern shown in FIG. 100 g and 100 g of a foaming agent (methyl isobutyl carbinol (MIBC)) were added.
  • the copper sulfide ore used had a Cu grade of 3.0% and an Fe grade of 4.2%.
  • the amount of pulverized material in the slurry was 25 g.
  • PAX was dissolved in water and then added to the slurry, and compounds other than PAX were added directly to the slurry. Then, ore flotation was carried out in 10 minutes to obtain floating ore and tailings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

対象鉱物の回収量を増加させる化合物を含む捕収剤およびこの化合物を用いた浮遊選鉱方法、ならびに捕収剤に好適な化合物を提供する。下記式(1)で表される化合物を含む捕収剤。(前記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。)

Description

捕収剤、浮遊選鉱方法および化合物
 本開示は、捕収剤、浮遊選鉱方法および化合物に関する。
 従来から、鉱石に含まれる鉱物を回収する浮遊選鉱が知られている。
 例えば、特許文献1には、浮遊選鉱で用いられる捕収剤として、ドデシルメルカプタンと2-メルカプトベンゾチアゾールとを使用する銅の回収方法が記載されている。
 しかしながら、特許文献1に記載されているドデシルメルカプタンと2-メルカプトベンゾチアゾールとを使用する銅の回収方法では、銅の回収量が不十分である。
 そのため、対象鉱物の回収量を増加させる捕収剤が求められている。さらには、捕収剤に有用な化合物の開発が進められている。
特開2006-307293号公報
 本開示の目的は、対象鉱物の回収量を増加させる化合物を含む捕収剤およびこの化合物を用いた浮遊選鉱方法、ならびに捕収剤に好適な化合物を提供することである。
[1] 下記式(1)で表される化合物を含む捕収剤。
Figure JPOXMLDOC01-appb-C000004
(前記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。)
[2] Rは炭素数5以上10以下のアルキル基である、上記[1]に記載の捕収剤。
[3] XはNRまたはSRである、上記[1]または[2]に記載の捕収剤。
[4] RおよびRは水素である、上記[1]~[3]のいずれか1つに記載の捕収剤。
[5] Rは炭素数5以上10以下のアルキル基である、上記[1]~[3]のいずれか1つに記載の捕収剤。
[6] Rは炭素数5以上10以下のアルキル基である、上記[1]または[2]に記載の捕収剤。
[7] 前記捕収剤は、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を浮遊選鉱する捕収剤である、上記[1]~[6]のいずれか1つに記載の捕収剤。
[8] 鉱石スラリーに対して下記式(1)で表される化合物および起泡剤を添加し、1種以上の鉱物を前記鉱石スラリー中に浮遊させて回収する、浮遊選鉱方法。
Figure JPOXMLDOC01-appb-C000005
(前記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。)
[9] 前記鉱石スラリーは、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を含有する鉱石のスラリーである、上記[8]に記載の浮遊選鉱方法。
[10] 前記式(1)で表される化合物の添加量は、鉱石1000kgに対して、0.1g以上1000g以下である、上記[8]または[9]に記載の浮遊選鉱方法。
[11] 前記鉱石スラリーのpHは6以上12以下である、上記[8]~[10]のいずれか1つに記載の浮遊選鉱方法。
[12] 下記式(3-1-1)で表される化合物。
Figure JPOXMLDOC01-appb-C000006
 本開示によれば、対象鉱物の回収量を増加させる化合物を含む捕収剤およびこの化合物を用いた浮遊選鉱方法、ならびに捕収剤に好適な化合物を提供することができる。
図1は、実施例1-1~6および比較例1-1で用いた黄銅鉱のX線回折パターンである。 図2は、実施例4-1および比較例4-1で用いた鉱石のX線回折パターンである。 図3は、実施例4-1および比較例4-1で用いた鉱石に含まれる金属の含有割合である。 図4は、実施例5-1~8および比較例5-1~2で用いた硫化銅鉱石のX線回折パターンである。
 以下、実施形態に基づき詳細に説明する。
 本発明者らは、鋭意研究を重ねた結果、対象鉱物の回収量を向上する化合物を見出した。さらに、本発明者らは、従来の捕収剤に比べて、上記化合物を含む捕収剤が対象鉱物の回収量を増加することを見出した。本開示は、かかる知見に基づいて完成させるに至った。
 まず、本開示の一実施形態の捕収剤について説明する。
 本実施形態の捕収剤は、下記式(1)で表される化合物を含む捕収剤である。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。
 鉱物の回収量を向上する観点から、式(1)において、Rは、炭素数1以上18以下のアルキル基であり、好ましくは炭素数5以上10以下のアルキル基である。
 式(1)のXがNRである化合物は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000008
 式(2)で表される化合物では、電子供与性を高める目的で、ベンゼン環と結合するアミンを導入している。また、ベンゼン環と結合する硫黄を導入している。
 鉱物の回収量を向上する観点から、式(2)において、好ましくは、RおよびRが水素である。式(2)のRおよびRが水素である化合物は、下記式(2-1)で表される。
Figure JPOXMLDOC01-appb-C000009
 鉱物の回収量を向上する観点から、式(2)および式(2-1)において、Rは、炭素数1以上18以下のアルキル基であることが好ましく、炭素数5以上10以下のアルキル基であることがより好ましい。
 そのなかでも、疎水性の付与、水への溶解性、有機溶媒のような希釈剤への溶解性、安定性などの観点から、式(2)において、Rが炭素数8のアルキル基(オクチル基)であり、RおよびRが水素であることが好ましい。この化合物は、下記式(2-2)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(2-2)で表される化合物は、異性体である、式(2-2-1)で表される化合物、式(2-2-2)で表される化合物、および式(2-2-3)で表される化合物の少なくとも1種の化合物を含む。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(2)で表される化合物は、下記反応式で表される反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000014
 まず、窒素ガス気流下で、式(2-3)で表される化合物、アルキルブロミド、水酸化カリウムをアセトン中で撹拌しながら加熱還流する。続いて、得られた試料を洗浄、脱水、乾燥する。こうして、式(2)で表される化合物を得ることができる。また、式(2-1)で表される化合物を得る場合、式(2-3)で表される化合物として、アミノベンゼンチオールを用いる。また、式(2-2-1)で表される化合物のような式(2)で表される化合物のオルト置換体を合成する場合、式(2-3)で表される化合物のオルト体を用いる。式(2-2-2)で表される化合物のような式(2)で表される化合物のメタ置換体を合成する場合、式(2-3)で表される化合物のメタ体を用いる。式(2-2-3)で表される化合物のような式(2)で表される化合物のパラ置換体を合成する場合、式(2-3)で表される化合物のパラ体を用いる。
 また、式(1)のXがSRである化合物は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000015
 式(3)で表される化合物では、ベンゼン環と結合する硫黄2個を導入している。
 鉱物の回収量を向上する観点から、式(3)において、Rは、炭素数1以上18以下のアルキル基であることが好ましく、炭素数5以上10以下のアルキル基であることがより好ましい。
 鉱物の回収量を向上する観点から、式(3)において、Rは、炭素数1以上18以下のアルキル基であり、好ましくは炭素数5以上10以下のアルキル基である。
 そのなかでも、疎水性の付与、水への溶解性、有機溶媒のような希釈剤への溶解性、安定性などの観点から、式(3)において、RおよびRは炭素数8のアルキル基(オクチル基)であることが好ましい。RおよびRが炭素数8のアルキル基である化合物は、下記式(3-1)で表される。
Figure JPOXMLDOC01-appb-C000016
 式(3-1)で表される化合物は、異性体である、式(3-1-1)で表される化合物、式(3-1-2)で表される化合物、および式(3-1-3)で表される化合物の少なくとも1種の化合物を含む。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 式(3)で表される化合物は、下記反応式で表される反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000020
 まず、窒素ガス気流下で、ベンゼンジチオール、1種類以上のアルキルブロミド(例えば、上記式ではBrRとBrR)、水酸化カリウムをエタノール中で撹拌しながら加熱還流する。続いて、得られた試料を洗浄、脱水、乾燥する。こうして、式(3)で表される化合物を得ることができる。また、式(3-1-1)で表される化合物のような式(3)で表される化合物のオルト置換体を合成する場合、1,2-ベンゼンジチオールを用いる。式(3-1-2)で表される化合物のような式(3)で表される化合物のメタ置換体を合成する場合、1,3-ベンゼンジチオールを用いる。式(3-1-3)で表される化合物のような式(3)で表される化合物のパラ置換体を合成する場合、1,4-ベンゼンジチオールを用いる。
 また、式(1)のXがORである化合物は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000021
 式(4)で表される化合物では、ベンゼン環と結合する硫黄および酸素を導入している。
 鉱物の回収量を向上する観点から、式(4)において、Rは、炭素数1以上18以下のアルキル基であることが好ましく、炭素数5以上10以下のアルキル基であることがより好ましい。
 鉱物の回収量を向上する観点から、式(4)において、Rは、炭素数1以上18以下のアルキル基であり、好ましくは炭素数5以上10以下のアルキル基である。
 式(4)で表される化合物は、下記反応式で表される反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000022
 まず、窒素ガス気流下で、メルカプトフェノール、1種類以上のアルキルブロミド(例えば、上記式ではBrRとBrR)、水酸化カリウムをエタノール中で撹拌しながら加熱還流する。続いて、得られた試料を洗浄、脱水、乾燥する。こうして、式(4)で表される化合物を得ることができる。また、式(4)で表される化合物のオルト置換体を合成する場合、2-メルカプトフェノールを用いる。式(4)で表される化合物のメタ置換体を合成する場合、3-メルカプトフェノールを用いる。式(4)で表される化合物のパラ置換体を合成する場合、4-メルカプトフェノールを用いる。
 対象鉱物の回収量を向上させる観点から、上記の式(1)で表される化合物のなかでも、式(2)で表される化合物のように、XがNRであること、または式(3)で表される化合物のように、XがSRであることが好ましい。XがNRである化合物のなかでは、式(2-1)で表される化合物のように、RおよびRが水素であることが好ましい。対象鉱物とは、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物である。
 上記の式(1)で表される化合物は、従来の捕収剤に比べて、対象鉱物の回収量を増加でき、特に複数種の金属を含む複数種の鉱物の回収量を増加できる。そのため、式(1)で表される化合物を含む捕収剤は、鉱物の回収量、特に複数種の金属を含む複数種の鉱物の回収量を向上できる。このような本実施形態の捕収剤は、浮遊選鉱に好適に用いられる。
 また、上記の式(1)で表される化合物を含む捕収剤は、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を浮遊選鉱する捕収剤であることが好ましく、Cu、Au、ZnおよびPbからなる群より選択される1種以上の金属を含む1種以上の鉱物を浮遊選鉱する捕収剤であることがより好ましい。浮遊選鉱において、式(1)で表される化合物は、特に上記の金属を含む鉱物の回収量を向上できる。そのため、式(1)で表される化合物を含む捕収剤を上記捕収剤に用いると、1種以上の鉱物の回収量を増加できる。
 本実施形態の捕収剤の形態は、浮遊選鉱のプロセスに応じて、適宜選択できる。例えば、鉱石スラリーに対して、捕収剤のみを添加する場合、本実施形態の捕収剤には、式(1)で表される化合物に加えて起泡剤が含まれる。また、鉱石スラリーに対して、捕収剤および起泡剤を添加する場合、本実施形態の捕収剤には、起泡剤が含まれなくてもよい。起泡剤は、従来の浮遊選鉱で用いられる起泡剤を使用できる。また、必要に応じて、本実施形態の捕収剤は、抑制剤などの各種添加剤を含有してもよい。
 次に、本開示の一実施形態の浮遊選鉱方法について説明する。
 本実施形態の浮遊選鉱方法は、鉱石スラリーに対して上記式(1)で表される化合物および起泡剤を添加し、1種以上の鉱物を鉱石スラリー中に浮遊させて回収する。また、浮遊選鉱方法では、上記の式(1)で表される化合物および起泡剤に加えて、抑制剤などの各種添加剤を鉱石スラリーに添加してもよい。
 浮遊選鉱方法では、鉱石スラリーに対して式(1)で表される化合物および起泡剤を添加し、式(1)で表される化合物で捕収した1種以上の鉱物が、起泡剤によって発生した泡と共に、鉱石スラリーの液面に浮遊する。そして、鉱物を含む泡沫層を鉱石スラリーから回収することによって、鉱石スラリーから金属を回収できる。
 浮遊選鉱方法で用いられる鉱石スラリーは、所望の鉱物を含む鉱石を粉砕した粉砕物を水などの液体に混合して得られる。また、起泡剤は、溶媒に溶けて溶液の泡を安定化する物質である。具体的な物質としては、特に限定されないが、メチルイソブチルカルビノール(MIBC)、パイン油、Aerof roth70(CYTEC)等が挙げられる。起泡剤の量は、0.001g/t以上2000g/t以下(鉱石1000kgに対して、0.001g以上2000g以下)であることが好ましい。起泡剤の量が0.001g/t以上であると、浮鉱を得られやすく、起泡剤の量が2000g/t超であると、起泡剤添加の効果が頭打ちになることがある。また、浮遊選鉱方法では、式(1)で表される化合物および起泡剤を添加した鉱石スラリーをバブリングしてもよい。
 上記で説明したように、式(1)で表される化合物は、鉱物の回収量、特に複数種の鉱物の回収量を向上できる。そのため、従来の捕収剤に比べて、式(1)で表される化合物を用いる本実施形態の浮遊選鉱方法では、多くの量の鉱物を鉱石スラリーの液面に浮遊できるため、鉱石スラリーから回収する鉱物の回収量を増加できる。
 また、本実施形態の浮遊選鉱方法では、鉱石スラリーは、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を含有する鉱石のスラリーであることが好ましく、Cu、Au、ZnおよびPbからなる群より選択される1種以上の金属を含む1種以上の鉱物を含有する鉱石のスラリーであることがより好ましい。
 上記で説明したように、式(1)で表される化合物は、特に上記の金属を含む鉱物の回収量を向上できる。そのため、本実施形態の浮遊選鉱方法において、上記1種以上の金属を含む1種以上の鉱物を浮遊選鉱すると、上記1種以上の鉱物の回収量を増加できる。
 また、浮遊選鉱方法において、式(1)で表される化合物の添加量は、鉱石1000kgに対して、0.1g以上1000g以下であることが好ましく、10g以上300g以下であることがより好ましく、50g以上300g以下であることがさらに好ましい。式(1)で表される化合物の上記添加量が0.1g以上であると、対象鉱物の回収量を十分に増加できる。式(1)で表される化合物の上記添加量が1000g以下であると、式(1)で表される化合物のコストを削減できる。
 また、浮遊選鉱方法において、鉱石スラリーのpHは、6以上12以下であることが好ましく、9以上12以下であることがより好ましい。鉱石スラリーのpHが上記範囲内であると、鉱物の回収量をさらに増加できる。
 次に、本開示の一実施形態の化合物について説明する。
 本実施形態の化合物は、上記式(3-1-1)で表される化合物である。
 上記の式(1)で表される化合物のなかでも、式(3-1-1)で表される化合物は、隣接位に存在する2つの硫黄が鉱物へ強く結合する。そのため、式(3-1-1)で表される化合物は、捕収剤に好適に用いられる。
 式(3-1-1)で表される化合物は、下記反応式で表される反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000023
 まず、窒素ガス気流下で、1,2-ベンゼンジチオール、1-ブロモオクタン、水酸化カリウムをエタノール中で撹拌しながら加熱還流する。続いて、得られた試料を洗浄、脱水、乾燥する。こうして、式(3-1-1)で表される化合物を得ることができる。
 以上説明した実施形態によれば、式(1)で表される化合物を含む捕収剤を用いることで、対象鉱物の回収量を増加することができる。そのため、浮遊選鉱において、所望の鉱物の回収量を増加することができる。
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
 上記で示した化合物を調製した後、各化合物を含む捕収剤を用いて、各実施例を行った。
(式(2-2-1)の合成) 
 窒素ガス気流下で、2-アミノベンゼンチオール(0.5g)、水酸化カリウム(0.5g)、1-ブロモオクタン(0.77g)をアセトン(30mL)中で撹拌しながら75℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(2-2-1)で表される化合物を収率80.1%で得ることができた。この化合物は、茶褐色油状であった。
Figure JPOXMLDOC01-appb-C000024
(式(2-2-2)の合成)
 窒素ガス気流下で、3-アミノベンゼンチオール(0.5g)、水酸化カリウム(0.5g)、1-ブロモオクタン(0.77g)をアセトン(30mL)中で撹拌しながら75℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(2-2-2)で表される化合物を収率82.5%で得ることができた。この化合物は、赤褐色油状であった。
Figure JPOXMLDOC01-appb-C000025
(式(2-2-3)の合成)
 窒素ガス気流下で、4-アミノベンゼンチオール(0.5g)、水酸化カリウム(0.5g)、1-ブロモオクタン(0.77g)をアセトン(30mL)中で撹拌しながら75℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(2-2-3)で表される化合物を収率は85.0%で得ることができた。この化合物は、茶黒色油状であった。
Figure JPOXMLDOC01-appb-C000026
(式(3-1-1)の合成)
 窒素ガス気流下で、1,2-ベンゼンジチオール(0.5g)、水酸化カリウム(1.57g)、1-ブロモオクタン(3.35g)をエタノール(24mL)中で撹拌しながら100℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(3-1-1)で表される化合物を92.3%の収率で得ることができた。この化合物は、黄色油状であった。
式(3-1-1)のH-NMR(CDCl、500MHz):δ0.88(t、6H)、δ1.28(br、16H)、δ1.44(tt、4H)、δ1.67(tt、4H)、δ2.90(t、4H)、δ7.12(dd、2H)、δ7.26(dd、2H)
Figure JPOXMLDOC01-appb-C000027
(式(3-1-2)の合成)
 窒素ガス気流下で、1,3-ベンゼンジチオール(0.5g)、水酸化カリウム(1.57g)、1-ブロモオクタン(3.35g)をエタノール(24mL)中で撹拌しながら100℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(3-1-2)で表される化合物を81.4%の収率で得ることができた。この化合物は、黄色油状であった。
Figure JPOXMLDOC01-appb-C000028
(式(3-1-3)の合成)
 窒素ガス気流下で、1,4-ベンゼンジチオール(0.5g)、水酸化カリウム(1.57g)、1-ブロモオクタン(3.35g)をエタノール(24mL)中で撹拌しながら100℃で1時間の加熱還流を行った。続いて、得られた試料を洗浄、脱水、真空乾燥した。得られた試料をNMRで分析した結果、式(3-1-3)で表される化合物を75.2%の収率で得ることができた。この化合物は、薄黄色結晶であった。
Figure JPOXMLDOC01-appb-C000029
(実施例1-1~6および比較例1-1)
 実施例1-1~6として、表1に示すように、式(2-2-1)~式(2-2-3)および式(3-1-1)~式(3-1-3)で表される化合物を用いて、黄銅鉱の浮遊選鉱を行った。また、比較例1-1として、PAX(Cytec Industries、Potassium Amyl Xanthate カリウムアミルザンセート)を用いて、黄銅鉱の浮遊選鉱を行った。
 浮遊選鉱は、以下の手順で行った。まず、粒度75μm以下に粉砕した図1に示すX線回折パターンを示す黄銅鉱の粉砕物のスラリーをpH9に調整し、黄銅鉱1000kgあたり、各式で表される化合物またはPAXを50gおよび起泡剤(メチルイソブチルカルビノール(MIBC))を100g添加した。使用した黄銅鉱のCu品位は27.5%、Fe品位は40.9%であった。スラリー中の粉砕物の量は25gとした。なお、式(3-1-3)で表される化合物は、ケロシンに溶かしてから、スラリーに添加し、式(3-1-3)で表される化合物以外の化合物は、スラリーに直接添加した。そして、10分で浮遊選鉱を行い、浮鉱と尾鉱を得た。得られた浮鉱と尾鉱の銅品位を分析し、次の式を基にしてCuの回収率を算出した。浮鉱とは、浮遊選鉱において浮遊した鉱石であり、尾鉱とは、浮遊選鉱において浮遊しなかった鉱石である。また、表1に示すCu品位は、浮鉱の銅品位である。
 Cuの回収率(%)=浮鉱重量×浮鉱銅品位/(浮鉱重量×浮鉱銅品位+尾鉱重量×尾鉱銅品位)
Figure JPOXMLDOC01-appb-T000030
 表1に示すように、実施例1-1~6では、比較例1-1に比べて、Cuの回収率が増加した。
(実施例2-1~4および比較例2-1)
 表2に示すように、各化合物を用い、黄銅鉱1000kgあたり各化合物を100g添加したこと以外は実施例1-1と同様にして、浮遊選鉱を行った。
Figure JPOXMLDOC01-appb-T000031
 表2に示すように、実施例2-1~4では、比較例2-1に比べて、Cuの回収率が増加した。
(実施例3-1~3および比較例3-1)
 表3に示すように、各化合物を用い、黄銅鉱1000kgあたり各化合物を300g添加したこと以外は実施例1-1と同様にして、浮遊選鉱を行った。
Figure JPOXMLDOC01-appb-T000032
 表3に示すように、実施例3-1~3では、比較例3-1に比べて、Cuの回収率が増加した。
(実施例4-1および比較例4-1)
 表4に示すように、実施例4-1および比較例4-1として、それぞれ、式(2-2-1)で表される化合物またはPAXを用いて、図2に示すX線回折パターンを示す鉱石の浮遊選鉱を行った。また、この鉱石についてMP-AESおよびXRFで分析した結果、図3に示す各種金属を含有することがわかった。
 浮遊選鉱は、以下の手順で行った。まず、粒度75μm以下に粉砕した鉱石の粉砕物のスラリーをpH7~8に調整し、鉱石1000kgあたり、式(2-2-1)で表される化合物またはPAXを100gおよび起泡剤(メチルイソブチルカルビノール(MIBC))を200g添加した。スラリー中の粉砕物の量は75g、Pulp濃度は30%とした。そして、15分で浮遊選鉱を行い、Au、Zn、Pbの回収率を算出した。
Figure JPOXMLDOC01-appb-T000033
 表4に示すように、実施例4-1では、比較例4-1に比べて、Auの回収率、Znの回収率、Pbの回収率の全てが増加した。
(実施例5-1~8および比較例5-1~2)
 実施例5-1~8として、表5に示すように、式(2-2-1)~式(2-2-3)および式(3-1-1)で表される化合物を用いて、硫化銅鉱石の浮遊選鉱を行った。また、比較例5-1~2として、PAXを用いて、硫化銅鉱石の浮遊選鉱を行った。
 浮遊選鉱は、以下の手順で行った。まず、粒度75μm以下に粉砕した図4に示すX線回折パターンを示す硫化銅鉱石の粉砕物のスラリーをpH9または12に調整し、硫化銅鉱石1000kgあたり、各式で表される化合物またはPAXを100gおよび起泡剤(メチルイソブチルカルビノール(MIBC))を100g添加した。使用した硫化銅鉱石のCu品位は3.0%、Fe品位は4.2%であった。スラリー中の粉砕物の量は25gとした。PAXは水に溶かしてから、スラリーに添加し、PAX以外の化合物は、スラリーに直接添加した。そして、10分で浮遊選鉱を行い、浮鉱と尾鉱を得た。
Figure JPOXMLDOC01-appb-T000034
 表5に示すように、実施例5-1~4では比較例5-1に比べて、実施例5-5~8では比較例5-2に比べて、それぞれ、Cuの回収率が増加し、Cu品位の向上も認められた。

Claims (12)

  1.  下記式(1)で表される化合物を含む捕収剤。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。)
  2.  Rは炭素数5以上10以下のアルキル基である、請求項1に記載の捕収剤。
  3.  XはNRまたはSRである、請求項1または2に記載の捕収剤。
  4.  RおよびRは水素である、請求項1~3のいずれか1項に記載の捕収剤。
  5.  Rは炭素数5以上10以下のアルキル基である、請求項1~3のいずれか1項に記載の捕収剤。
  6.  Rは炭素数5以上10以下のアルキル基である、請求項1または2に記載の捕収剤。
  7.  前記捕収剤は、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を浮遊選鉱する捕収剤である、請求項1~6のいずれか1項に記載の捕収剤。
  8.  鉱石スラリーに対して下記式(1)で表される化合物および起泡剤を添加し、1種以上の鉱物を前記鉱石スラリー中に浮遊させて回収する、浮遊選鉱方法。
    Figure JPOXMLDOC01-appb-C000002
    (前記式(1)中、Rは、炭素数1以上18以下のアルキル基を示し、Xは、NR、SRまたはORを示す。R2~3は、水素または炭素数1以上18以下のアルキル基を示し、R4~5は、炭素数1以上18以下のアルキル基を示す。)
  9.  前記鉱石スラリーは、Cu、Au、Zn、Pb、Pt、Pd、Rh、NiおよびCoからなる群より選択される1種以上の金属を含む1種以上の鉱物を含有する鉱石のスラリーである、請求項8に記載の浮遊選鉱方法。
  10.  前記式(1)で表される化合物の添加量は、鉱石1000kgに対して、0.1g以上1000g以下である、請求項8または9に記載の浮遊選鉱方法。
  11.  前記鉱石スラリーのpHは6以上12以下である、請求項8~10のいずれか1項に記載の浮遊選鉱方法。
  12.  下記式(3-1-1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
PCT/JP2022/026599 2021-09-14 2022-07-04 捕収剤、浮遊選鉱方法および化合物 WO2023042526A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022348225A AU2022348225A1 (en) 2021-09-14 2022-07-04 Collector, ore flotation method, and compound
CN202280062219.7A CN117980074A (zh) 2021-09-14 2022-07-04 捕收剂、浮游选矿方法及化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-149785 2021-09-14
JP2021149785 2021-09-14
JP2022-027875 2022-02-25
JP2022027875A JP2023042507A (ja) 2021-09-14 2022-02-25 捕収剤、浮遊選鉱方法および化合物

Publications (1)

Publication Number Publication Date
WO2023042526A1 true WO2023042526A1 (ja) 2023-03-23

Family

ID=85602686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026599 WO2023042526A1 (ja) 2021-09-14 2022-07-04 捕収剤、浮遊選鉱方法および化合物

Country Status (2)

Country Link
AU (1) AU2022348225A1 (ja)
WO (1) WO2023042526A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161351A (ja) * 1982-05-17 1984-09-12 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 活性化されていない芳香族又はヘテロ芳香族物質の求核置換反応
JPS61258246A (ja) * 1985-05-13 1986-11-15 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
CN104761477A (zh) * 2015-04-29 2015-07-08 嘉兴学院 一种制备邻苯二硫酚的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161351A (ja) * 1982-05-17 1984-09-12 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 活性化されていない芳香族又はヘテロ芳香族物質の求核置換反応
JPS61258246A (ja) * 1985-05-13 1986-11-15 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
CN104761477A (zh) * 2015-04-29 2015-07-08 嘉兴学院 一种制备邻苯二硫酚的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAN JIN-CHENG, LIU QUAN-JUN, ZHANG ZHI-GUO, LI DI-FEI : "Research on Concentration of Tajik Copper-Tin Oxide Ore", THE CHINESE JOURNAL OF PROCESS ENGINEERING, KEXUE CHUBANSHE, BEIJING, CN, vol. 14, no. 6, 31 December 2014 (2014-12-31), CN , pages 923 - 929, XP093048977, ISSN: 1009-606X *

Also Published As

Publication number Publication date
AU2022348225A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
Ma et al. A novel surfactant S-benzoyl-N, N-diethyldithiocarbamate synthesis and its flotation performance to galena
Yin et al. Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite
CN106955791B (zh) 一种n-烷基羟肟酸-二硫代氨基甲酸酯捕收剂、制备及其应用
CN106955790B (zh) 一种n-烷基羟肟酸-o-烃基硫氨酯捕收剂、制备及其应用
CN109675723B (zh) 具有酰胺基和硫代酰胺基的捕收剂及其制备方法和应用
CN110563621B (zh) 一种硫氨酯生产过程中副产品2-巯基乙酸钠的利用方法
FI78242B (fi) Foerfarande foer flotation av mineraler ur malm.
CN108296028B (zh) 一种硫代羰基酰胺捕收剂及其制备方法与应用
CA2952642C (en) Flotation of sphalerite from mixed base metal sulfide ores either without or with largely reduced amount of copper sulfate addition using 2-(alkylamino) ethanethiols as collectors
Zhao et al. Efficient separation of magnesite and quartz using eco-friendly Dimethylaminopropyl lauramide experimental and mechanistic studies
Liu et al. Selective flotation of copper oxide minerals with a novel amino-triazole-thione surfactant: A comparison to hydroxamic acid collector
JP2023042507A (ja) 捕収剤、浮遊選鉱方法および化合物
CN105801458B (zh) 一种醚基双硫氨酯衍生物或醚基双硫脲衍生物及其制备方法和应用
Li et al. Flotation performance and adsorption mechanism of novel 1-(2-hydroxyphenyl) hex-2-en-1-one oxime flotation collector to malachite
Yang et al. Investigating the adsorption performances and hydrophobic mechanism of O-ethyl-N-benzoyl thionocarbamate on chalcopyrite surface
FI74458B (fi) Ett nytt tritiokarbonat och malmflotationsfoerfarandet, daer tritiokarbonatet anvaendes som flotationsmedel.
SE461768B (sv) Samlarreagenskomposition och foerfarande foer skumflotation
CA2034615A1 (en) Process for the selective flotation of metal ores using 2-mercaptothiazole derivatives
WO2023042526A1 (ja) 捕収剤、浮遊選鉱方法および化合物
Acker et al. Polyether-tethered imidazole-2-thiones, imidazole-2-selenones and imidazolium salts as collectors for the flotation of lithium aluminate and spodumene
CN113210134A (zh) 一种酰基羧基硫氮酯类化合物的制备与应用
Zhao et al. Flotation behavior and surface analytical study of synthesized (octylthio) aniline and bis (octylthio) benzene as novel collectors on sulfide minerals
CA3020278A1 (en) Mercaptanized dicyclopentadiene compositions and use thereof as a mining chemical collector
CN117980074A (zh) 捕收剂、浮游选矿方法及化合物
CN110756336B (zh) 一种6-胺基-1,3,5-三嗪-2,4-二硫醇类化合物在金属矿浮选中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18691225

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022348225

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280062219.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022348225

Country of ref document: AU

Date of ref document: 20220704

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869675

Country of ref document: EP

Kind code of ref document: A1