WO2023039808A1 - 电机控制器的功率器件过温保护的方法及装置 - Google Patents

电机控制器的功率器件过温保护的方法及装置 Download PDF

Info

Publication number
WO2023039808A1
WO2023039808A1 PCT/CN2021/118879 CN2021118879W WO2023039808A1 WO 2023039808 A1 WO2023039808 A1 WO 2023039808A1 CN 2021118879 W CN2021118879 W CN 2021118879W WO 2023039808 A1 WO2023039808 A1 WO 2023039808A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
motor controller
power device
temperature difference
power
Prior art date
Application number
PCT/CN2021/118879
Other languages
English (en)
French (fr)
Inventor
林罗斌
蔡飞龙
潘先喜
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180084301.5A priority Critical patent/CN116601471A/zh
Priority to PCT/CN2021/118879 priority patent/WO2023039808A1/zh
Publication of WO2023039808A1 publication Critical patent/WO2023039808A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes

Definitions

  • Embodiments of the present application relate to the field of automobiles, and more specifically, relate to a method and device for overtemperature protection of a power device of a motor controller, a motor controller, and an electric vehicle.
  • the power device is a key component of the motor controller and has been widely used in electric vehicles. During the operation of the electric vehicle, the power device will inevitably heat up, which may cause the power device to be damaged due to overheating. Therefore, during the operation of the motor controller, cooling the power device can effectively protect the power device and prolong the service life of the power device.
  • the existing power device over-temperature protection method cannot effectively reduce the temperature of the power device in time, which may damage the power device due to overheating and affect the driving safety of the electric vehicle. Therefore, how to provide a timely, safe and effective power device over-temperature protection scheme for the motor controller has become an urgent problem to be solved.
  • the present application provides a method and device for over-temperature protection of a power device of a motor controller, a motor controller and an electric vehicle, capable of protecting the safe operation of the power device of the motor controller.
  • the first aspect of the present application provides a method for over-temperature protection of a power device of a motor controller, the method comprising: obtaining the temperature of the power device of the motor controller; obtaining the temperature of the coolant in the cooling device of the motor controller temperature; according to the temperature of the power device and the temperature of the cooling liquid, determine the temperature difference between the temperature of the power device and the temperature of the cooling liquid; when the temperature difference satisfies a preset condition , to limit the output power of the motor controller.
  • the output power of the motor controller is limited according to the temperature difference between the temperature of the power device and the temperature of the coolant, so that when the temperature difference is large, for example, when the cooling capacity of the cooling device drops, the The output power of the motor controller is limited to avoid overheating damage to the power device due to rapid temperature rise, thereby protecting the safe operation of the power device of the motor controller.
  • the method further includes: limiting the output power of the motor controller when the temperature difference satisfies a preset condition; when the temperature difference exceeds the first over-temperature drop When the rated threshold is reached, the output power of the motor controller is limited.
  • the setting of the first over-temperature derating threshold can make the motor controller start to reduce the output power of the motor controller when the temperature difference exceeds the first over-temperature derating threshold, so as to realize the over-temperature protection of the power device.
  • the method further includes: limiting the output power of the motor controller when the temperature difference satisfies a preset condition; when the compensated temperature difference exceeds the second over-temperature derating When the threshold value is reached, the output power of the motor controller is limited; the compensation temperature difference is the sum of the temperature difference and a preset temperature compensation value.
  • the preset temperature compensation value can make the compensation temperature difference be at the same level as the temperature of the power device, so that the second over-temperature derating threshold can adopt a threshold value corresponding to the temperature of the power device.
  • the output power of the motor controller is limited in time, so as to effectively protect the power device from being damaged due to overheating.
  • the method further includes: when the temperature difference satisfies a preset condition, limiting the output power of the motor controller includes: when the system temperature exceeds the third over-temperature drop limit the output power of the motor controller, wherein the system temperature is the maximum value of the compensation temperature difference and the temperature of the power device, and the compensation temperature difference is the temperature difference between the temperature difference and the preset temperature sum of compensation values.
  • the system temperature difference can ensure that when at least one of the compensation temperature difference or the temperature of the power device reaches the over-temperature derating threshold, the output power of the motor controller is reduced in time to realize the over-temperature protection of the power device.
  • the method further includes: limiting the output power of the motor controller when the temperature of the power device exceeds a fourth over-temperature derating threshold.
  • the output power of the motor controller is limited in time, which can protect the power device in time to avoid overheating damage.
  • the temperature difference algorithm fails, the coolant temperature sensor fails, etc.
  • the output power of the motor controller is limited in time, which can Ensure that the output power of the motor controller is reduced in time when the temperature of the power device is high, so as to effectively protect the power device from overheating and damage.
  • the method further includes: when the temperature of the coolant exceeds the fifth overtemperature derating threshold, limiting the output power of the motor controller in time to protect the power device from overheating damage.
  • the temperature sensor of the power device fails, the temperature difference algorithm processing fails, etc., when the temperature of the coolant reaches the fifth over-temperature derating threshold, the output power of the motor controller is limited in time to effectively protect the power device from overheating and damage .
  • the limited output power of the motor controller is negatively correlated with the temperature difference.
  • the output power value reduced by the motor controller is larger; the smaller the temperature difference is, the output power value reduced by the motor controller is smaller, which can effectively protect the power device from being damaged due to overheating.
  • the motor controller may include a plurality of power devices, and the temperature of the power device may include a temperature of a power device with the highest temperature among the plurality of power devices. In this way, when the temperature of a certain power device in the motor controller rises to a high level, the output power of the motor controller can be reduced in time, so as to protect the power device from being damaged due to overheating.
  • the second aspect of the present application provides a device for over-temperature protection of a power device of a motor controller.
  • the device includes: an acquisition module, configured to acquire the temperature of the power device of the motor controller, and acquire the temperature of the power device of the motor controller.
  • the temperature of the cooling liquid in the cooling device; the processing module is used to determine the temperature difference between the temperature of the power device and the temperature of the cooling liquid according to the temperature of the power device and the temperature of the cooling liquid.
  • the output power of the motor controller is limited.
  • the processing module is configured to limit the output power of the motor controller when the temperature difference exceeds a first over-temperature derating threshold.
  • the processing module is configured to limit the output power of the motor controller when the compensation temperature difference exceeds the second over-temperature derating threshold, wherein the compensation temperature difference is the temperature difference and the sum of the preset temperature compensation value.
  • the processing module is configured to limit the output power of the motor controller when the system temperature exceeds a third over-temperature derating threshold, wherein the system temperature is the difference between the compensation temperature and the The maximum value of the temperature of the power device, and the compensation temperature difference is the sum of the temperature difference and a preset temperature compensation value.
  • the third aspect of the present application provides an apparatus for overtemperature protection of a power device of a motor controller, including a memory and a processor, the memory is used to store instructions, and the processor is used to read the instructions and based on the The instruction executes the above first aspect and the method in any possible implementation manner of the first aspect.
  • a fourth aspect of the present application provides a readable storage medium for storing a computer program, and the computer program is used to execute the above first aspect and the method in any possible implementation manner of the first aspect.
  • the fifth aspect of the present application provides a motor controller, including the power device overtemperature protection device of the motor controller of the fourth aspect.
  • a sixth aspect of the present application provides an electric vehicle, including the motor controller of the fifth aspect above.
  • FIG. 1 is a schematic diagram of an application scenario of a power device overtemperature protection method for a motor controller disclosed in an embodiment of the present application;
  • Fig. 2 is a schematic flowchart of a power device over-temperature protection method for a motor controller disclosed in an embodiment of the present application;
  • Fig. 3 is a schematic flowchart of a power device overtemperature protection method of a motor controller disclosed in an embodiment of the present application
  • Fig. 4 is a schematic flowchart of a power device over-temperature protection method of a motor controller disclosed in an embodiment of the present application
  • Fig. 5 is a schematic flowchart of a power device over-temperature protection method for a motor controller disclosed in an embodiment of the present application
  • Fig. 6 is a schematic flow chart of a power device overtemperature protection method for a motor controller disclosed in an embodiment of the present application
  • Fig. 7 is a schematic flowchart of a power device overtemperature protection method for a motor controller disclosed in another embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a power device over-temperature protection device for a motor controller disclosed in another embodiment of the present application.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • the power device over-temperature protection method of the existing motor controller mainly monitors the temperature of the power device, and when the temperature of the power device reaches a limit threshold, the output power of the motor is limited. When the motor runs rapidly, the temperature of the power device will rise rapidly, especially when the cooling capacity of the cooling device decreases. This method of over-temperature protection of the power device has a certain hysteresis, and cannot effectively protect the power device in a timely manner.
  • the embodiment of the present application provides a solution for over-temperature protection of the power device of the motor controller.
  • the output power of the motor controller is limited according to the temperature difference between the temperature of the power device and the temperature of the coolant.
  • the output power of the motor controller is limited in time to avoid overheating damage to the power device due to rapid temperature rise, thereby protecting the safe operation of the power device of the motor controller.
  • This application provides a timely and effective power device over-temperature protection method for a motor controller.
  • This power device over-temperature protection method can be applied to various equipment using motors, such as automobiles, electric vehicles, printers, copiers, and paper processing machines. , factory automation, energy storage equipment, charging piles, aerospace, space and military vehicles, test equipment and robots, and various automation fields involving control.
  • motors such as automobiles, electric vehicles, printers, copiers, and paper processing machines.
  • factory automation energy storage equipment, charging piles, aerospace, space and military vehicles, test equipment and robots, and various automation fields involving control.
  • the motor controller refers to an integrated circuit that controls the motor to work according to the set direction, speed, angle, and response time.
  • the function of the motor controller is to convert the electric energy stored in the power battery into the electric energy required to drive the motor according to the gear position, accelerator, brake and other commands, so as to control the starting operation, forward and backward speed, and climbing of the electric vehicle. It may help the electric vehicle to brake and store part of the braking energy in the power battery.
  • the motor controller may be operated manually, remotely or automatically, which is not limited in this embodiment of the present application.
  • the motor controller is connected to a power source, which may be a battery or a commercial power supply, and also has some circuits that can input or output (digital or analog) signals, etc., which is not limited in this embodiment of the present application.
  • Power devices also known as power semiconductor devices, refer to high-power electronic devices mainly used in power conversion and control circuits of power equipment. Power devices have working characteristics such as conduction and blocking. When the power device is working, the power loss will cause the device to heat up and rise in temperature. If the device temperature is too high, the service life will be shortened or the device will be damaged due to overheating.
  • the power device may include IGBT, SIC, GaN, etc., which is not limited in this embodiment of the present application.
  • the power devices can be applied to fields such as AC motors, frequency converters, switching power supplies, lighting circuits, traction drives, rail transit, smart grids, aerospace, electric vehicles, and new energy equipment, which are not limited in the embodiments of the present application.
  • the temperature sensor component in the power device may be a built-in NTC temperature sensor in the power device module, or may be a temperature sensor installed outside the power device for monitoring the power device, which is not limited in this embodiment of the present application.
  • a motor controller 100 according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic diagram of an application scenario of the technical solution of the embodiment of the present application.
  • a motor controller 100 may include a plurality of power devices 101 - 106 .
  • the electrode controller 100 controls the power of the motor 111 through a plurality of power devices 101-106.
  • the motor controller 100 can adjust the magnitude of the current passing through the power devices 101-106 by controlling the on and off of the power devices 101-106, thereby controlling the temperature of the power devices 101-106, when the power devices 101-106 As the passing current decreases, the temperature of the power device decreases accordingly.
  • a cooling device 121 may also be provided in the motor controller 100 for cooling power devices. However, when the cooling capacity of the cooling device 121 decreases, the temperature of the power device will rise rapidly, while the temperature of the cooling liquid in the cooling device 121 will rise slowly. In this way, the power device may be overheated and damaged due to the rapid temperature rise. In view of this situation, the embodiment of the present application provides a power device over-temperature protection solution to solve the above-mentioned problem.
  • Fig. 2 is a schematic flowchart of a method for over-temperature protection of a power device of a motor controller disclosed by an embodiment of the present application.
  • Step 201 acquire the temperature of the power device of the motor controller.
  • the temperature of the power device of the motor controller can be obtained through the temperature sensor configured in the power device. Multiple temperature sensor assemblies may be provided for monitoring the temperature of the power device.
  • a temperature sensor is a sensor that senses temperature and converts it into a usable output signal. Measurement methods can include contact and non-contact two categories. Can include RTDs, thermocouples, infrared temperature monitoring, etc.
  • the temperature sensor can obtain the temperature of the power device in real time, and can also obtain the temperature of the power device periodically.
  • the temperature of each power device can be selected, or the highest temperature, the lowest temperature, or the average temperature of the temperatures of multiple power devices can be selected etc., which is not limited in this embodiment of the present application.
  • Step 202 acquiring the temperature of the coolant in the cooling device of the motor controller.
  • the cooling device refers to the cooling device of the motor controller, which uses coolant circulation to achieve heat dissipation. It may include: cooling device, coolant pump, data acquisition unit, etc.
  • the cooling device can be arranged inside the motor controller or outside the motor controller. The cooling device may or may not be in contact with the power device.
  • Coolant is the liquid that circulates in the cooling unit.
  • the material of the cooling liquid may include: water, cooling oil, liquid metal, organic solvent, etc.
  • the temperature of the coolant refers to the temperature of the coolant monitored by the temperature sensor.
  • the temperature of the cooling liquid is obtained through the temperature sensor configured in the cooling device. Similar to the temperature of the power device, the temperature of the cooling liquid may be obtained in real time or periodically, which is not limited in this embodiment of the present application. It may be the highest temperature of the cooling liquid, the lowest temperature of the cooling liquid, or the average temperature of the cooling liquid, which is not limited in this embodiment.
  • Step 203 according to the temperature of the power device and the temperature of the cooling liquid, determine the temperature difference between the temperature of the power device and the temperature of the cooling liquid.
  • the temperature difference refers to the temperature difference between the temperature of the power device and the temperature of the coolant, which may include the temperature difference between the maximum temperature of the power device and the maximum temperature of the coolant, the temperature between the average temperature of the power device and the average temperature of the coolant.
  • the difference, the temperature difference between the maximum temperature of the power device and the average temperature of the coolant, and the temperature difference between the real-time temperature of the power device and the real-time temperature of the coolant are not limited in this embodiment of the present application.
  • Step 204 when the temperature difference satisfies a preset condition, limit the output power of the motor controller.
  • the temperature difference satisfies the preset condition, which may include the temperature difference, the value corresponding to the temperature difference through a table lookup, or the value calculated by the temperature difference through a functional relationship exceeding a specific threshold, etc., which is not limited in the embodiment of the present application.
  • the way to limit the output power of the motor controller may include limiting the voltage output by the motor controller, limiting the current output by the motor controller, controlling the on and off of the power device in the motor controller, and controlling the power device in the power device.
  • the magnitude of the current, etc., are not limited in this embodiment of the present application.
  • the output power of the motor controller is limited according to the temperature difference between the temperature of the power device and the temperature of the coolant, so that when the temperature difference is large, for example, when the cooling capacity of the cooling device drops, the The output power of the motor controller is limited to avoid overheating damage to the power device due to rapid temperature rise, thereby protecting the safe operation of the power device of the motor controller.
  • Fig. 3 is a schematic flowchart of a method for over-temperature protection of a power device of a motor controller disclosed by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a method for over-temperature protection of a power device of a motor controller disclosed by an embodiment of the present application.
  • Step 301 acquire the temperature of the power device of the motor controller.
  • Step 302 acquiring the temperature of the coolant in the cooling device of the motor controller.
  • Step 303 according to the temperature of the power device and the temperature of the cooling liquid, determine the temperature difference between the temperature of the power device and the temperature of the cooling liquid.
  • Step 304 judging whether the temperature difference is greater than the first over-temperature derating threshold.
  • Step 305 when the temperature difference is greater than the first over-temperature derating threshold, limit the output power of the motor controller.
  • Step 306 when the temperature difference is smaller than the first over-temperature derating threshold, the output power of the motor controller is not limited.
  • the first over-temperature derating threshold refers to the first temperature parameter preset by the system. When the temperature difference exceeds the first over-temperature derating threshold, the output power of the motor controller starts to be limited.
  • the temperature parameter of the first over-temperature derating threshold may include a fixed value, a modifiable value, a value determined by a table lookup method, and a value determined by a functional relationship, which is not limited in this embodiment of the present application.
  • the first overtemperature derating threshold may be a maximum temperature difference at which the power device does not suffer from overheating damage.
  • the first over-temperature derating threshold may be 45°C, so the temperature difference between the power device and the cooling liquid may be controlled below 45°C.
  • limit the power output of the electrical controller which may specifically include limiting the voltage output by the motor controller, limiting the current output by the motor controller, and controlling the output of the motor controller. Turning on and off of power devices, switching of control circuits, etc.
  • the output power of the motor controller is not limited. Specifically, it may include that when the temperature difference is equal to the first over-temperature derating threshold, the output power of the motor controller is not limited, and the motor controller continues to run.
  • the output power of the motor controller is limited according to the size between the temperature difference and the first over-temperature derating threshold, and when the cooling capacity of the cooling device decreases, when the temperature difference exceeds the first over-temperature derating threshold When the threshold value is exceeded, the output power of the motor controller is limited in time, which can effectively reduce the temperature of the power device.
  • Fig. 4 is a schematic flowchart of a power device over-temperature protection method of a motor controller disclosed by an embodiment of the present application. For steps similar to those in the foregoing embodiments in FIG. 4 , reference may be made to the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • Step 401 acquire the temperature of the power device.
  • Step 402 acquiring the temperature of the cooling liquid.
  • Step 403 determining the temperature difference between the temperature of the power device and the temperature of the cooling liquid.
  • Step 404 determine the compensation temperature difference, the compensation temperature difference is the sum of the temperature difference and the preset temperature compensation value.
  • Step 405 judging whether the compensation temperature difference is greater than the second over-temperature derating threshold.
  • Step 406 judging that the compensation temperature difference is greater than the second over-temperature derating threshold, and limiting the output power of the motor controller.
  • Step 407 judging that the compensated temperature difference is smaller than the second over-temperature derating threshold, and not limiting the output power of the motor controller.
  • the compensated temperature difference refers to the sum of the temperature difference between the temperature of the power device and the temperature of the coolant and the preset temperature compensation value.
  • the preset temperature compensation value refers to the temperature compensation value preset by the system. When the cooling device fails and the coolant temperature is low, the preset temperature compensation value is added so that when the compensation temperature difference exceeds the second derating threshold, the system starts to limit the motor. output power of the controller.
  • the preset temperature compensation value may include a fixed value, a changeable value, a value determined by looking up a table, a value determined by a functional relationship, etc., which are not limited in this embodiment of the present application.
  • the second over-temperature derating threshold refers to a second temperature parameter preset by the system.
  • the second over-temperature derating threshold may include a fixed value, a changeable value, a value determined by looking up a table, a value determined by a functional relationship, etc., which is not limited in this embodiment of the present application.
  • the second overtemperature derating threshold may be the maximum compensation temperature difference at which the power device does not suffer from overheating damage.
  • the preset temperature compensation value can make the compensation temperature difference be at the same level as the temperature of the power device, so that the second over-temperature derating threshold can adopt a threshold value corresponding to the temperature of the power device.
  • the preset temperature compensation value may be 65°C
  • the second over-temperature derating threshold may be 110°C.
  • the motor controller receives a signal command to control the power output of the electrical controller, which may specifically include limiting the voltage output by the motor controller, limiting the current output by the motor controller The size of the switch, control the closing of the switch in the power device, the closing of the switch in the control circuit, etc.
  • the output power of the motor controller is not limited. Specifically, it may include that when the compensation temperature difference is equal to the second over-temperature derating threshold, the output power of the motor controller is not limited, and the motor controller continues to run.
  • the output power of the motor controller is limited according to the size relationship between the compensation temperature difference and the second over-temperature derating threshold, so that when the cooling capacity of the cooling device of the motor controller decreases, the motor controller It can respond in advance, and when the compensation temperature difference exceeds the second overtemperature derating threshold, the output power of the motor controller is limited in time, so as to effectively protect the power device from being damaged due to overheating.
  • Fig. 5 is a schematic flowchart of a power device overtemperature protection method of a motor controller disclosed by an embodiment of the present application. For steps similar to those in the foregoing embodiments in FIG. 5 , reference may be made to the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • Step 501 acquire the temperature of the power device.
  • Step 502 acquiring the temperature of the cooling liquid.
  • Step 503 determining the temperature difference between the temperature of the power device and the temperature of the coolant.
  • Step 504 determine the compensation temperature difference, the compensation temperature difference is the sum of the temperature difference determined in step 503 and the preset temperature compensation value.
  • Step 505 determining the system temperature difference, where the system temperature difference is the maximum value between the compensation temperature difference and the temperature of the power device.
  • Step 506 judging whether the system temperature difference is greater than a third over-temperature derating threshold.
  • Step 507 judging that the system temperature difference is greater than the third over-temperature derating threshold, and limiting the output power of the motor controller.
  • Step 508 judging that the system temperature difference is less than the third over-temperature derating threshold, and not limiting the output power of the motor controller.
  • the system temperature is the maximum value between the compensated temperature difference and the power device temperature.
  • the value of the system temperature difference is equal to the compensation temperature difference.
  • the value of the system temperature difference is equal to the value of the compensation temperature difference.
  • the value of the system temperature difference is equal to the determined compensation temperature difference and the determined maximum temperature of the power device.
  • the third over-temperature derating threshold refers to a third temperature parameter preset by the system.
  • the third over-temperature derating threshold may include a fixed value, a changeable value, a value determined by looking up a table, a value determined by a functional relationship, etc., which is not limited in this embodiment of the present application.
  • the third overtemperature derating threshold may be a maximum system temperature difference at which the power device does not suffer from overheating damage.
  • the preset temperature compensation value may be the same as the foregoing embodiment, that is, 65°C, and the third over-temperature derating threshold may be 110°C.
  • the output power of the motor controller is limited according to the magnitude relationship between the system temperature difference and the third over-temperature derating threshold, so that the difference between the compensation temperature difference or the maximum temperature of the power device can be compensated.
  • the system can limit the output power of the motor controller in time, so as to better protect the power devices from being damaged due to overheating.
  • Fig. 6 is a schematic flowchart of a power device overtemperature protection method of a motor controller disclosed by an embodiment of the present application. For steps similar to those in the foregoing embodiments in FIG. 6 , reference may be made to the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • Step 601 acquire the temperature of the power device.
  • Step 602 acquiring the temperature of the cooling liquid.
  • Step 603 judging whether the temperature of the power device is greater than the fourth cooling threshold.
  • Step 604 judging that the temperature of the power device is greater than the fourth over-temperature derating threshold, and limiting the output power of the motor controller.
  • Step 605 judging that the temperature of the power device is lower than the fourth over-temperature derating threshold, and not limiting the output power of the motor controller.
  • the fourth over-temperature derating threshold refers to a fourth temperature parameter preset by the system. When the temperature of the power device exceeds the fourth over-temperature derating threshold, the output power of the motor controller starts to be limited.
  • the fourth over-temperature derating threshold may include a fixed value, a changeable value, a value determined by looking up a table, a value determined by a functional relationship, etc., which is not limited in this embodiment of the present application.
  • the fourth overtemperature derating threshold may be a maximum temperature at which the power device does not suffer from overheating damage.
  • the fourth over-temperature derating threshold may be 110°C.
  • the motor controller receives a signal command to control the power output of the electrical controller, which may specifically include limiting the output voltage of the motor controller, limiting the output of the motor controller The magnitude of the current, the closure of the switch in the control power device, the closure of the switch in the control circuit, etc.
  • the output power of the motor controller is not limited. Specifically, it may include that when the temperature of the power device is equal to the fourth over-temperature derating threshold, the output power of the motor controller is not limited, and the motor controller continues to run.
  • the output power of the motor controller is limited according to the temperature of the power device, which can ensure that the output power of the motor controller is reduced in time when the temperature of the power device is high, and effectively protects the power device from overheating and damage.
  • Fig. 7 is a schematic flowchart of a power device over-temperature protection method of a motor controller disclosed by an embodiment of the present application. Steps in FIG. 7 that are similar to those in the foregoing embodiments may refer to the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • Step 701 acquire the temperature of the power device.
  • Step 702 acquiring the temperature of the cooling liquid.
  • Step 703 judging whether the temperature of the cooling liquid is greater than the fifth cooling threshold.
  • Step 704 judging that the temperature of the coolant is greater than the fifth over-temperature derating threshold, and limiting the output power of the motor controller.
  • Step 705 judging that the temperature of the coolant is lower than the fifth over-temperature derating threshold, and not limiting the output power of the motor controller.
  • the fifth over-temperature derating threshold refers to the fifth temperature parameter preset by the system. When the temperature of the coolant exceeds the fifth over-temperature derating threshold, the output power of the motor controller starts to be limited.
  • the fifth over-temperature derating threshold may include a fixed value, a changeable value, a value determined by looking up a table, a value determined by a functional relationship, etc., which is not limited in this embodiment of the present application. The embodiment of the present application does not limit this.
  • the fifth over-temperature derating threshold may be a maximum temperature of the cooling liquid at which the power device is not overheated and damaged.
  • the motor controller receives a signal command to control the power output of the electrical controller, which may specifically include limiting the voltage output by the motor controller, limiting the output of the motor controller The magnitude of the current, the closure of the switch in the control power device, the closure of the switch in the control circuit, etc.
  • the output power of the motor controller is not limited. Specifically, it may include that when the temperature of the cooling liquid is equal to the fifth over-temperature derating threshold, the output power of the motor controller is not limited, and the motor controller continues to run.
  • the output power of the motor controller is directly reduced, which can effectively protect the power device.
  • the temperature monitoring of the power device fails or the processing module fails, the temperature sensor monitors the temperature of the coolant, thereby reducing the output power of the motor controller in time, effectively protecting the power device from overheating and damage.
  • the reduced output power value of the motor controller is negatively correlated with the temperature difference.
  • a negative correlation means that the value of the dependent variable decreases (increases) as the value of the independent variable increases (decreases), in which case the correlation coefficient between the dependent variable and the independent variable is negative.
  • the output power value reduced by the motor controller when the temperature difference is higher, the output power value reduced by the motor controller is larger; the smaller the temperature difference is, the output power value reduced by the motor controller is smaller, which can effectively protect power devices from Damage due to overheating.
  • the motor controller may include multiple power devices.
  • the temperature of the power device is the temperature of the power device with the highest temperature among the plurality of power devices.
  • Fig. 8 is a schematic block diagram of an apparatus for overtemperature protection of a power device of a motor controller disclosed in another embodiment of the present application.
  • the device for over-temperature protection of the power device of the motor controller may include an acquisition module 801 and a processing module 802 .
  • the obtaining module 801 may be used to obtain the temperature of the power device including the motor controller monitored by the temperature sensor, and the temperature of the coolant.
  • the processing module 802 may determine a temperature difference between the temperature of the power device and the temperature of the cooling liquid according to the temperature of the power device and the temperature of the cooling liquid. It can be used to determine temperature difference, system temperature difference, and compensation temperature difference. It can be used to control the output power of the motor controller, the current in the motor controller, the voltage in the motor controller, the switch closure in the circuit, the switch closure in the power device, etc. according to the relevant instructions.
  • the processing module 802 limits the output power of the motor controller when the temperature difference exceeds the first over-temperature derating threshold.
  • the temperature difference information refers to the temperature difference between the temperature of the power device and the temperature of the coolant, which may include the temperature difference between the maximum temperature of the power device and the maximum temperature of the coolant, the temperature difference between the average temperature of the power device and the average temperature of the coolant.
  • the embodiment of the present application does not limit the temperature difference, the temperature difference between the maximum temperature of the power device and the average temperature of the coolant, and the temperature difference between the real-time temperature of the power device and the real-time temperature of the coolant.
  • the first over-temperature derating threshold refers to a first temperature parameter preset by the system.
  • the processing module 802 starts to limit the output power of the motor controller.
  • the temperature parameter of the first over-temperature derating threshold may include a fixed value, a modifiable value, a value determined by a table lookup method, and a value determined by a functional relationship, which is not limited in this embodiment of the present application.
  • the first overtemperature derating threshold may be a maximum temperature difference at which the power device does not suffer from overheating damage.
  • the first over-temperature derating threshold may be 45°C, so the temperature difference between the power device and the cooling liquid may be controlled below 45°C.
  • the processing module 802 determines the size between the temperature difference and the first over-temperature derating threshold.
  • the processing module 802 performs Limiting the output power of the motor controller can specifically include limiting the magnitude of the voltage output by the motor controller, limiting the magnitude of the current output by the motor controller, controlling the closing of the switch in the power device, and the closing of the switch in the control circuit. Not limited.
  • the processing module 802 limits the output power of the motor controller when the compensated temperature difference exceeds the second over-temperature derating threshold.
  • the compensated temperature difference is the sum of the temperature difference between the temperature of the power device and the temperature of the cooling liquid and a preset temperature compensation value.
  • the processing module 802 determines the size between the compensation temperature difference and the second over-temperature derating threshold.
  • the processing module 802 limits The output power of the motor controller. Specifically, it may include limiting the magnitude of the voltage output by the motor controller, limiting the magnitude of the current output by the motor controller, controlling the closing of the switch in the power device, and controlling the closing of the switch in the circuit, etc., which are not limited in this embodiment.
  • the second overtemperature derating threshold may be the maximum compensation temperature difference at which the power device does not suffer from overheating damage.
  • the processing module 802 limits the output power of the motor controller when the system temperature exceeds the third over-temperature derating threshold.
  • the system temperature is the maximum value of the compensation temperature difference and the temperature of the power device
  • the compensation temperature difference is the sum of the temperature difference and a preset temperature compensation value.
  • the processing module 802 determines the size between the system temperature and the third over-temperature derating threshold, and when the processing module 802 determines that the system temperature exceeds the third over-temperature derating threshold, the processing module 802 limits the motor controller output power. Specifically, it may include limiting the magnitude of the voltage output by the motor controller, limiting the magnitude of the current output by the motor controller, controlling the turn-on and turn-off of power devices, and controlling the turn-on and turn-off of switches in the circuit. Not limited.
  • the third overtemperature derating threshold may be a maximum system temperature at which the power device does not suffer from overheating damage.
  • the embodiment of the present application also provides another device for over-temperature protection of a power device of a motor controller.
  • the device includes a memory and a processor, wherein the memory is used to store instructions, and the processor is used to read the instructions and based on the The instructions execute the methods of the foregoing various embodiments of the present application.
  • the embodiment of the present application also provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the above-mentioned various embodiments of the present application.
  • the embodiment of the present application also provides a motor controller, including the device for over-temperature protection of the power device of the motor controller in the embodiment of the present application.
  • the embodiment of the present application also provides an electric vehicle, which may include the motor controller in the foregoing embodiments of the present application.
  • the power device of the motor controller can be effectively protected from damage due to overheating, which can make the electric vehicle run more safely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

提供了一种电机控制器的功率器件过温保护的方法及装置,涉及汽车领域。该方法包括:获取电机控制器的功率器件的温度(201);获取电机控制器的冷却装置中冷却液的温度(202);根据功率器件的温度和冷却液的温度,确定功率器件的温度和冷却液的温度之间的温度差(203);在温度差满足预设条件的情况下,限制电机控制器的输出功率(204)。该方法能够避免功率器件由于温度快速上升而发生过热损坏,从而能够保护电机控制器的功率器件安全运行。

Description

电机控制器的功率器件过温保护的方法及装置 技术领域
本申请实施例涉及汽车领域,并且更具体地,涉及一种电机控制器的功率器件过温保护的方法、装置、电机控制器以及电动车辆。
背景技术
功率器件是电机控制器关键部件,在电动车辆中已得到广泛的应用,在电动车辆运行的过程中,不可避免的会使得功率器件发热,导致功率器件可能因过热而损坏。因此在电机控制器的运行过程中,对功率器件进行降温,能有效保护功率器件,延长功率器件的使用寿命。但现有的功率器件过温保护方法无法及时有效降低功率器件的温度,从而可能使功率器件因过热发生损坏,影响电动车辆的行驶安全。因此,如何提供一种及时安全有效的电机控制器的功率器件过温保护方案,成为亟待解决的问题。
发明内容
本申请提供了一种电机控制器的功率器件过温保护的方法、装置、电机控制器以及电动车辆,能够保护电机控制器的功率器件的安全运行。
本申请第一方面提供了一种电机控制器的功率器件过温保护的方法,所述方法包括:获取所述电机控制器的功率器件的温度;获取所述电机控制器的冷却装置中冷却液的温度;根据所述功率器件的温度和所述冷却液的温度,确定所述功率器件的温度和所述冷却液的温度之间的温度差;在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率。
在本申请实施例中,根据功率器件的温度和冷却液的温度之间的温度 差限制电机控制器的输出功率,这样可以在该温度差较大时,例如冷却装置的冷却能力下降时,及时限制电机控制器的输出功率,避免功率器件由于温度快速上升而发生过热损坏,从而能够保护电机控制器的功率器件的安全运行。
在一些可能的实施例中,所述方法还包括:所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率;在所述温度差超过第一过温降额阈值时,限制所述电机控制器的输出功率。第一过温降额阈值的设定可以使得电机控制器在温度差超过第一过温降额阈值时就开始降低电机控制器的输出功率,从而实现功率器件的过温保护。
在一些可能的实施例中,所述方法还包括:所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率;在补偿温度差超过第二过温降额阈值时,限制所述电机控制器的输出功率;所述补偿温度差为所述温度差与预设温度补偿值的和。利用预设温度补偿值可以使得补偿温度差与功率器件的温度在同一个水平,这样第二过温降额阈值可以采用对应于功率器件的温度的阈值。在补偿温度差超过第二过温降额阈值时,及时对电机控制器的输出功率进行限制,从而有效保护功率器件避免因过热发生损坏。
在一些可能的实施例中,所述方法还包括:所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率,包括:在系统温度超过第三过温降额阈值时,限制所述电机控制器的输出功率,其中,所述系统温度为补偿温度差与所述功率器件的温度中的最大值,所述补偿温度差为所述温度差与预设温度补偿值的和。系统温度差可以确保在补偿温度差或者功率器件的温度二者之间至少一个达到过温降额阈值时,就及时降低电机控制器的输出功率,实现对功率器件的过温保护。
在一些可能的实施例中,所述方法还包括:在所述功率器件的温度超过第四过温降额阈值时,限制所述电机控制器的输出功率。在功率器件的温 度超过第四过温降额阈值时,就及时限制电机控制器的输出功率,可以及时保护功率器件避免过热损坏。或者在冷却装置发生故障、温度差算法处理发生故障、冷却液的温度传感器发生故障等情况,在功率器件的温度达到第四过温降额阈值时,及时限制电机控制器的输出功率,这样可以确保在功率器件的温度较高时及时降低电机控制器的输出功率,有效保护功率器件避免过热发生损坏。
在一些可能的实施例中,所述方法还包括:在冷却液的温度超过第五过温降额阈值时,及时限制电机控制器的输出功率,保护功率器件避免过热损坏。在功率器件的温度传感器发生故障、温度差算法处理发生故障等情况,在冷却液的温度达到第五过温降额阈值时,及时限制电机控制器的输出功率,有效保护功率器件避免过热发生损坏。
在一些可能的实施例中,限制后的所述电机控制器的输出功率与所述温度差负相关。当温度差越高时,电机控制器所降低的输出功率值越大;温度差越小时,电机控制器所降低的输出功率值越小,能有效保护功率器件避免因过热发生损坏。
在一些可能的实施例中,所述电机控制器可以包括多个功率器件,所述功率器件的温度可以包括多个功率器件中温度最高的功率器件的温度。这样可以使得在电机控制器中某一个功率器件温度上升较高时,及时降低电机控制器的输出功率,从而保护功率器件避免过热发生损坏。
本申请第二方面提供了一种电机控制器的功率器件过温保护的装置,所述装置包括:获取模块,用于获取所述电机控制器的功率器件的温度,获取所述电机控制器的冷却装置中冷却液的温度;处理模块,用于根据所述功率器件的温度和所述冷却液的温度,确定所述功率器件的温度和所述冷却液的温度之间的温度差,在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率。
在一些可能的实施例中,所述处理模块用于在所述温度差超过第一过温降额阈值时,限制所述电机控制器的输出功率。
在一些可能的实施例中,所述处理模块用于在补偿温度差超过第二过温降额阈值时,限制所述电机控制器的输出功率,其中,所述补偿温度差为所述温度差与预设温度补偿值的和。
在一些可能的实施例中,所述处理模块用于在系统温度超过第三过温降额阈值时,限制所述电机控制器的输出功率,其中,所述系统温度为补偿温度差与所述功率器件的温度中的最大值,所述补偿温度差为所述温度差与预设温度补偿值的和。
本申请的第三方面提供了一种电机控制器的功率器件过温保护的装置,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行上述第一方面和第一方面的任意可能的实现方式中的方法。
本申请第四方面提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行上述第一方面和第一方面的任意可能的实现方式中的方法。
本申请第五方面提供了一种电机控制器,包括上述第四方面的电机控制器的功率器件过温保护的装置。
本申请第六方面提供一种电动车辆,包括上述第五方面的电机控制器。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是 本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的电机控制器的功率器件过温保护方法的应用场景的示意图;
图2是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图3是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图4是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图5是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图6是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图7是本申请另一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图;
图8是本申请另一实施例公开的电机控制器的功率器件过温保护装置的示意性框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请 的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
现有电机控制器的功率器件过温保护方法主要通过监测功率器件的温度,当功率器件的温度达到限制阈值时,限制电机的输出功率。在电机快速运行时功率器件的温度会快速上升,尤其是在冷却装置的冷却能力下降时, 这种功率器件的过温保护方法存在一定的滞后性,无法及时有效对功率器件进行降温保护。
鉴于此,本申请实施例提供了一种电机控制器的功率器件过温保护的方案,根据功率器件的温度和冷却液的温度之间的温度差限制电机控制器的输出功率,在该温度差较大时,例如冷却装置的冷却能力下降时,及时限制电机控制器的输出功率,避免了功率器件由于温度快速上升而发生过热损坏,从而能够保护电机控制器的功率器件的安全运行。
本申请提供一种及时有效的电机控制器的功率器件过温保护方法,这种功率器件过温保护方法可以适用于各种使用电机的设备,例如汽车、电动车辆、打印机、复印机、纸张处理机、工厂自动化、储能设备、充电桩、航空航天、太空和军事载具、测试设备和机械人以及各种涉及控制的自动化领域。应理解,本申请实施例描述的技术方案,不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电机控制器的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
电机控制器是指通过控制电机按照设定的方向、速度、角度、响应时间进行工作的集成电路。在电动车辆中,电机控制器的功能是根据档位、油门、刹车等指令,将动力电池所存储的电能转化为驱动电机所需的电能,来控制电动车辆的启动运行、进退速度、爬坡力度等行驶状态,或者将帮助电动车辆刹车,并将部分刹车能量存储到动力电池中。电动机控制器可以由人工操作,也可以是遥控或是自动操作,本申请实施例对此并不限定。电动机控制器会连接到电源,可能是电池或是市电,也会有一些可以输入或输出(数位或类比)讯号的电路等,本申请实施例对此并不限定。
功率器件又称为功率半导体器件,是指主要用于电力设备的电能变换和控制电路方面大功率的电子器件。功率器件具有导通和阻断等工作特性。功率器件工作时,会因功率损耗引起器件发热、升温,器件温度过高将缩短 使用寿命或发生过热损毁。功率器件可以包括IGBT、SIC、GaN等,本申请实施例对此并不限定。功率器件可以应用于交流电机、变频器、开关电源、照明电路、牵引传动、轨道交通、智能电网、航空航天、电动车辆、新能源装备等领域,本申请实施例对此并不限定。
功率器件中的温度传感器组件可以是功率器件模块中自带的NTC温度传感器,也可以是设置于功率器件外部用来监测功率器件的温度传感器,本申请实施例对此并不限定。
以下实施例为了方便说明,以本申请一实施例的一种电机控制器100为例进行说明。
图1为本申请实施例的技术方案的应用场景的示意图。如图1所示,电机控制器100可以包括多个功率器件101-106。电极控制器100通过多个功率器件101-106控制电机111的功率。电机控制器100可以通过控制功率器件101-106的导通和关断,以调整功率器件101-106中通过的电流的大小,进而控制功率器件101-106的温度,当功率器件101-106中通过的电流降低,则功率器件的温度随之降低。
电机控制器100内还可以设置有冷却装置121,用于冷却功率器件。然而,在冷却装置121的冷却能力下降时,功率器件的温度会快速上升,而冷却装置121中冷却液的温度却上升较慢,这样,功率器件可能会由于温度快速上升而发生过热损坏。针对这种情况,本申请实施例提供了一种功率器件过温保护的方案,以解决上述问题。
图2是本申请一实施例公开的电机控制器的功率器件过温保护的方法的示意性流程图。
步骤201,获取电机控制器的功率器件的温度。
电机控制器的功率器件的温度可以通过功率器件配置的温度传感器获 取。可以设置多个温度传感器组件用于监测功率器件的温度。温度传感器是指能感受温度并转换成可用输出信号的传感器。测量方式可以包括接触式和非接触式两大类。可以包括热电阻、热电偶、红外温度监测等。温度传感器可以实时获取功率器件的温度,也可以定时获取功率器件的温度。可选地,对于电机控制器的多个功率器件,可以选择每一个功率器件的温度,也可以选择多个功率器件的温度中的最高温度、最低温度、或多个功率器件的温度的平均温度等,本申请实施例对此并不限定。
步骤202,获取电机控制器的冷却装置中冷却液的温度。
冷却装置是指电机控制器的冷却装置,利用冷却液循环实现散热。可以包括:散热装置、冷却液泵、数据采集单元等。冷却装置可以设置在电机控制器内部,也可以设置在电机控制器外部。冷却装置可以与功率器件接触,也可以不与功率器件接触。
冷却液是指冷却装置中进行循环的液体。冷却液的材料可以包括:水、冷却油、液态金属、有机溶剂等。冷却液的温度是指根据温度传感器监测的冷却液的温度。
通过冷却装置中配置的温度传感器获取冷却液的温度。与功率器件的温度类似,可以实时获取冷却液的温度,也可以定时获取冷却液的温度,本申请实施例对此并不限定。可以是冷却液的最高温度、冷却液的最低温度、冷却液的平均温度,本实施例对此并不限定。
步骤203,根据功率器件的温度和冷却液的温度,确定功率器件的温度和冷却液的温度之间的温度差。
温度差是指功率器件的温度与冷却液的温度之间的温度差,可以包括功率器件最高温度与冷却液的最高温度之间的温度差、功率器件平均温度与冷却液平均温度之间的温度差、功率器件最高温度与冷却液平均温度之间的温度差、功率器件的实时温度与冷却液实时温度之间的温度差,本申请实施 例对此并不限定。
步骤204,在温度差满足预设条件的情况下,限制电机控制器的输出功率。
温度差满足预设条件,可以包括温度差、温度差经由查表对应的数值、或者温度差经由函数关系计算的数值超过具体的阈值等,本申请实施例对此并不限定。
限制电机控制器的输出功率的方式可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制电机控制器中功率器件的导通和关断、控制功率器件中通过的电流的大小等,本申请实施例对此并不限制。
在本申请实施例中,根据功率器件的温度和冷却液的温度之间的温度差限制电机控制器的输出功率,这样可以在该温度差较大时,例如冷却装置的冷却能力下降时,及时限制电机控制器的输出功率,避免功率器件由于温度快速上升而发生过热损坏,从而能够保护电机控制器的功率器件的安全运行。
图3是本申请一实施例公开的电机控制器的功率器件过温保护的方法的示意性流程图。图3与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤301,获取电机控制器的功率器件的温度。
步骤302,获取电机控制器的冷却装置中冷却液的温度。
步骤303,根据功率器件的温度和冷却液的温度,确定功率器件温度与冷却液温度之间的温度差。
步骤304,判断温度差是否大于第一过温降额阈值。
步骤305,在温度差大于第一过温降额阈值的情况下,限制电机控制 器的输出功率。
步骤306,在温度差小于第一过温降额阈值的情况下,不限制电机控制器的输出功率。
第一过温降额阈值是指系统预设的第一温度参数,当温度差超过第一过温降额阈值时,开始限制电机控制器的输出功率。第一过温降额阈值的温度参数可以包括固定的数值、可修改的数值、查表方式确定的数值、函数关系确定的数值,本申请实施例对此并不限定。第一过温降额阈值可以为功率器件不发生过热损坏的最大温度差。例如,第一过温降额阈值可以为45℃,因此功率器件与冷却液之间的温度差可以被控制在45℃以下。
当判断温度差大于第一过温降额阈值时,限制电器控制器的功率输出,具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制电机控制器中功率器件的导通和关断、控制电路的开关等。当温度差小于第一过温降额阈值,不限制电机控制器的输出功率。具体的,可以包括温度差等于第一过温降额阈值时,不限制电机控制器的输出功率,电机控制器继续保持运行。
在本申请的实施例中,根据温度差与第一过温降额阈值之间的大小限制电机控制器的输出功率,可以在冷却装置冷却能力下降时,在温度差超过第一过温降额阈值时,及时对电机控制器的输出功率进行限制,可以对功率器件进行有效的降温保护。
图4是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图。图4与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤401,获取功率器件的温度。
步骤402,获取冷却液的温度。
步骤403,确定功率器件温度与冷却液温度之间的温度差。
步骤404,确定补偿温度差,补偿温度差为温度差与预设温度补偿值之和。
步骤405,判断补偿温度差是否大于第二过温降额阈值。
步骤406,判断补偿温度差大于第二过温降额阈值,限制电机控制器的输出功率。
步骤407,判断补偿温度差小于第二过温降额阈值,不限制电机控制器的输出功率。
补偿温度差是指功率器件的温度与冷却液温度之间的温度差与预设温度补偿值的和。
预设温度补偿值是指系统预设的温度补偿值,在冷却装置发生故障导致冷却液温度低时,加入预设温度补偿值,使得补偿温度差超过第二降额阈值时,系统开始限制电机控制器的输出功率。预设温度补偿值可以包括固定的数值、可更改的数值、查表确定的数值、函数关系确定的数值等,本申请实施例在此并不限定。
第二过温降额阈值是指系统预设的第二温度参数,当补偿温度差超过第二过温降额阈值时,开始限制电机控制器的输出功率。第二过温降额阈值可以包括固定的数值、可更改的数值、查表确定的数值、函数关系确定的数值等,本申请实施例在此并不限定。可选的,第二过温降额阈值可以为功率器件不发生过热损坏的最大补偿温度差。利用预设温度补偿值可以使得补偿温度差与功率器件的温度在同一个水平,这样第二过温降额阈值可以采用对应于功率器件的温度的阈值。例如,预设温度补偿值可以为65℃,第二过温降额阈值可以为110℃。
当补偿温度差大于第二过温降额阈值时,电机控制器接收到信号指 令,控制电器控制器的功率输出,具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件中开关的闭合、控制电路中开关的闭合等。当补偿温度差小于第二过温降额阈值,不限制电机控制器的输出功率。具体的,可以包括补偿温度差等于第二过温降额阈值时,不限制电机控制器的输出功率,电机控制器继续保持运行。
在本申请的实施例中,根据补偿温度差和第二过温降额阈值之间的大小关系限制电机控制器的输出功率,可以在电机控制器的冷却装置冷却能力下降时,使得电机控制器可以提前响应,在补偿温度差超过第二过温降额阈值时,及时对电机控制器的输出功率进行限制,从而有效保护功率器件避免因过热发生损坏。
图5是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图。图5与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤501,获取功率器件的温度。
步骤502,获取冷却液的温度。
步骤503,确定功率器件温度与冷却液温度之间的温度差。
步骤504,确定补偿温度差,补偿温度差为步骤503确定的温度差与预设温度补偿值之和。
步骤505,确定系统温度差,系统温度差为补偿温度差与功率器件温度二者之间的最大值。
步骤506,判断系统温度差是否大于第三过温降额阈值。
步骤507,判断系统温度差大于第三过温降额阈值,限制电机控制器的输出功率。
步骤508,判断系统温度差小于第三过温降额阈值,不限制电机控制 器的输出功率。
系统温度是指补偿温度差与功率器件温度二者之间的最大值。当确定的补偿温度差的数值大于确定的功率器件的最高温度时,系统温度差的数值等于补偿温度差。当确定补偿温度差小于确定的功率器件的最高温度时,系统温度差的数值等于补偿温度差的数值。当确定的补偿温度差的数值等于确定的功率器件的最高温度时,系统温度差的数值与确定的补偿温度差、确定的功率器件的最高温度相等。
第三过温降额阈值是指系统预设的第三温度参数,当系统温度差超过第三过温降额阈值时,开始限制电机控制器的输出功率。第三过温降额阈值可以包括固定的数值、可更改的数值、查表确定的数值、函数关系确定的数值等,本申请实施例在此并不限定。可选的,第三过温降额阈值可以为功率器件不发生过热损坏的最大系统温度差。例如,预设温度补偿值可以与前述实施例相同,即为65℃,第三过温降额阈值可以为110℃。
在本申请的实施例中,根据系统温度差与第三过温降额阈值之间的大小关系限制电机控制器的输出功率,这样可以在补偿温度差或功率器件最高温度二者之间的大小任一个超过第三过温降额阈值时,使系统可以及时对电机控制器的输出功率进行限制,从而更好保护功率器件避免因过热发生损坏。
图6是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图。图6与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤601,获取功率器件的温度。
步骤602,获取冷却液的温度。
步骤603,判断功率器件的温度是否大于第四降温阈值。
步骤604,判断功率器件的温度大于第四过温降额阈值,限制电机控制器的输出功率。
步骤605,判断功率器件的温度小于第四过温降额阈值,不限制电机控制器的输出功率。
第四过温降额阈值是指系统预设的第四温度参数,当功率器件的温度超过第四过温降额阈值时,开始限制电机控制器的输出功率。第四过温降额阈值可以包括固定的数值、可更改的数值、查表确定的数值、函数关系确定的数值等,本申请实施例对此并不限定。可选的,第四过温降额阈值可以为功率器件不发生过热损坏的最大温度。例如,第四过温降额阈值可以为110℃。
当功率器件的温度大于第四过温降额阈值时,电机控制器接收到信号指令,控制电器控制器的功率输出,具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件中开关的闭合、控制电路中开关的闭合等。当功率器件的温度小于第四过温降额阈值,不限制电机控制器的输出功率。具体的,可以包括功率器件的温度等于第四过温降额阈值时,不限制电机控制器的输出功率,电机控制器继续保持运行。
在本申请的实施例中,根据功率器件的温度限制电机控制器的输出功率,这样可以确保在功率器件的温度较高时及时降低电机控制器的输出功率,有效保护功率器件避免过热发生损坏。
图7是本申请一实施例公开的电机控制器的功率器件过温保护方法的示意性流程图。图7与前述实施例中类似的步骤可以参考前述实施例,为了简洁,在此不再赘述。
步骤701,获取功率器件的温度。
步骤702,获取冷却液的温度。
步骤703,判断冷却液的温度是否大于第五降温阈值。
步骤704,判断冷却液的温度大于第五过温降额阈值,限制电机控制器的输出功率。
步骤705,判断冷却液的温度小于第五过温降额阈值,不限制电机控制器的输出功率。
第五过温降额阈值是指系统预设的第五温度参数,当冷却液的温度超过第五过温降额阈值时,开始限制电机控制器的输出功率。第五过温降额阈值可以包括固定的数值、可更改的数值、查表确定的数值、函数关系确定的数值等,本申请实施例在此并不限定。本申请实施例对此并不限定。可选的,第五过温降额阈值可以为功率器件不发生过热损坏的冷却液的最大温度。
当冷却液的温度大于第五过温降额阈值时,电机控制器接收到信号指令,控制电器控制器的功率输出,具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件中开关的闭合、控制电路中开关的闭合等。当冷却液的温度小于第五过温降额阈值,不限制电机控制器的输出功率。具体的,可以包括冷却液的温度等于第五过温降额阈值时,不限制电机控制器的输出功率,电机控制器继续保持运行。
在本申请的实施例中,在冷却液的温度过高时,直接降低电机控制器的输出功率,能有效保护功率器件。当功率器件的温度监测发生故障,或者处理模块失灵时,通过温度传感器监测冷却液的温度,从而及时降低电机控制器的输出功率,有效保护功率器件避免过热发生损坏。
在本申请的一些实施例中,电机控制器降低的输出功率值与温度差呈负相关。
负相关是指因变量值随自变量值的增大(减小)而减小(增大),在这种情况下,因变量和自变量的相关系数为负值。
在本申请的实施例中,当温度差越高时,电机控制器所降低的输出功率值越大;温度差越小时,电机控制器所降低的输出功率值越小,能有效保护功率器件避免因过热发生损坏。
在本申请的一些实施例中,电机控制器可以包括多个功率器件。功率器件的温度为多个功率器件中温度最高的功率器件的温度。
在本申请的实施例中,通过监测多个功率器件的多路温度,可以使得在电机控制器中某一个功率器件温度上升较高时,及时降低电机控制器的输出功率,从而保护功率器件避免过热发生损坏。
上文描述了本申请实施例的电机控制器的功率器件过温保护的方法,下面描述本申请实施例的电机控制器的功率器件过温保护的装置,其中未详细描述的部分可参见前述各实施例。
图8是本申请另一实施例公开的电机控制器的功率器件过温保护的装置的示意性框图。在本申请的实施例中,电机控制器的功率器件的过温保护的装置可以包括获取模块801、处理模块802。
获取模块801可以用于获取包括由温度传感器监测的电机控制器的功率器件的温度、冷却液的温度。
处理模块802可以根据功率器件的温度和冷却液的温度,确定功率器件的温度和冷却液的温度之间的温度差。可以用于确定包括温度差、系统温度差、补偿温度差。可以用于根据相关指令控制电机控制器的输出功率、电机控制器中的电流大小、电机控制器中的电压大小、电路中的开关闭合、功率器件中的开关闭合等。
在本申请的一些实施例中,处理模块802在温度差超过第一过温降额 阈值时,限制电机控制器的输出功率。
温度差信息是指功率器件的温度与冷却液的温度之间的温度差,可以包括功率器件最高温度与冷却液的最高温度之间的温度差、功率器件平均温度与冷却液平均温度之间的温度差、功率器件最高温度与冷却液平均温度之间的温度差、功率器件的实时温度与冷却液实时温度之间的温度差,本申请实施例对此并不限定。
第一过温降额阈值是指系统预设的第一温度参数,当温度差超过第一过温降额阈值时,处理模块802开始限制电机控制器的输出功率。第一过温降额阈值的温度参数可以包括固定的数值、可修改的数值、查表方式确定的数值、函数关系确定的数值,本申请实施例对此并不限定。可选的,第一过温降额阈值可以为功率器件不发生过热损坏的最大温度差。例如,第一过温降额阈值可以为45℃,因此功率器件与冷却液之间的温度差可以被控制在45℃以下。
处理模块802在获取温度差信息后,确定温度差与第一过温降额阈值之间的大小,当处理模块802确定温度差超过第一过温降额阈值时,处理模块802对电机控制器的输出功率进行限制,具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件中开关的闭合、控制电路中开关的闭合等,本实施例对此并不限定。
在本申请的一些实施例中,处理模块802在补偿温度差超过第二过温降额阈值时,限制电机控制器的输出功率。其中,补偿温度差为功率器件的温度与冷却液的温度之间的温度差与预设温度补偿值之和。
处理模块802在获取补偿温度差信息后,确定补偿温度差与第二过温降额阈值之间的大小,当处理模块802确定补偿温度差超过第二过温降额阈值时,处理模块802限制电机控制器的输出功率。具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件 中开关的闭合、控制电路中开关的闭合等,本实施例对此并不限定。可选的,第二过温降额阈值可以为功率器件不发生过热损坏的最大补偿温度差。
在本申请的一些实施例中,处理模块802在系统温度超过第三过温降额阈值时,限制电机控制器的输出功率。其中,系统温度为补偿温度差与功率器件的温度中的最大值,补偿温度差为温度差与预设温度补偿值的和。
处理模块802在获取系统温度信息后,确定系统温度与第三过温降额阈值之间的大小,当处理模块802确定系统温度超过第三过温降额阈值时,处理模块802限制电机控制器的输出功率。具体可以包括限制电机控制器输出的电压的大小、限制电机控制器输出的电流的大小、控制功率器件的导通与关断、控制电路中开关的导通与关断等,本实施例对此并不限定。可选的,第三过温降额阈值可以为功率器件不发生过热损坏的最大系统温度。
本申请实施例还提供了另一种电机控制器的功率器件过温保护的装置,该装置包括存储器和处理器,其中,存储器用于存储指令,处理器用于读取所述指令并基于所述指令执行前述本申请各种实施例的方法。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。
本申请实施例还提供了一种电机控制器,包括前述本申请实施例的电机控制器的功率器件过温保护的装置。
本申请实施例还提供了一种电动车辆,可以包括前述本申请实施例的电机控制器。
在本申请的实施例中,电机控制器的功率器件能得到有效保护,避免因过热而发生损坏,可以使得电动车辆更安全运行。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部 件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种电机控制器的功率器件过温保护的方法,其特征在于,包括:
    获取所述电机控制器的功率器件的温度;
    获取所述电机控制器的冷却装置中冷却液的温度;
    根据所述功率器件的温度和所述冷却液的温度,确定所述功率器件的温度和所述冷却液的温度之间的温度差;
    在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率,包括:
    在所述温度差超过第一过温降额阈值时,限制所述电机控制器的输出功率。
  3. 根据权利要求1所述的方法,其特征在于,所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率,包括:
    在补偿温度差超过第二过温降额阈值时,限制所述电机控制器的输出功率,其中,所述补偿温度差为所述温度差与预设温度补偿值的和。
  4. 根据权利要求1所述的方法,其特征在于,所述在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率,包括:
    在系统温度超过第三过温降额阈值时,限制所述电机控制器的输出功率,其中,所述系统温度为补偿温度差与所述功率器件的温度中的最大值,所述补偿温度差为所述温度差与预设温度补偿值的和。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    在所述功率器件的温度超过第四过温降额阈值时,限制所述电机控制器的输出功率。
  6. 根据权利要求1至5中任一项的方法,其特征在于,所述方法还包括:
    在所述冷却液的温度超过第五过温降额阈值,限制所述电机控制器的输出功率。
  7. 根据权利要求1至6中任一项的方法,其特征在于,限制后的所述电机控制器的输出功率与所述温度差负相关。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述电机控制器包括多个功率器件,所述功率器件的温度为所述多个功率器件中温度最高的功率器件的温度。
  9. 一种电机控制器的功率器件过温保护的装置,其特征在于,包括:
    获取模块,用于获取所述电机控制器的功率器件的温度,以及,获取所述电机控制器的冷却装置中冷却液的温度;
    处理模块,用于根据所述功率器件的温度和所述冷却液的温度,确定所述功率器件的温度和所述冷却液的温度之间的温度差,在所述温度差满足预设条件的情况下,限制所述电机控制器的输出功率。
  10. 根据权利要求9所述的装置,其特征在于,所述处理模块用于在所述温度差超过第一过温降额阈值时,限制所述电机控制器的输出功率。
  11. 根据权利要求9所述的装置,其特征在于,所述处理模块用于在补偿温度差超过第二过温降额阈值时,限制所述电机控制器的输出功率,其中,所述补偿温度差为所述温度差与预设温度补偿值的和。
  12. 根据权利要求9所述的装置,其特征在于,所述处理模块用于在系统温度超过第三过温降额阈值时,限制所述电机控制器的输出功率,其中,所述系统温度为补偿温度差与所述功率器件的温度中的最大值,所述补偿温度差为所述温度差与预设温度补偿值的和。
  13. 一种电机控制器,其特征在于,包括权利要求9-12中任一项所述的功率器件过温保护装置。
  14. 一种电动车辆,其特征在于,包括权利要求13所述的电机控制器。
PCT/CN2021/118879 2021-09-16 2021-09-16 电机控制器的功率器件过温保护的方法及装置 WO2023039808A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084301.5A CN116601471A (zh) 2021-09-16 2021-09-16 电机控制器的功率器件过温保护的方法及装置
PCT/CN2021/118879 WO2023039808A1 (zh) 2021-09-16 2021-09-16 电机控制器的功率器件过温保护的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118879 WO2023039808A1 (zh) 2021-09-16 2021-09-16 电机控制器的功率器件过温保护的方法及装置

Publications (1)

Publication Number Publication Date
WO2023039808A1 true WO2023039808A1 (zh) 2023-03-23

Family

ID=85602270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118879 WO2023039808A1 (zh) 2021-09-16 2021-09-16 电机控制器的功率器件过温保护的方法及装置

Country Status (2)

Country Link
CN (1) CN116601471A (zh)
WO (1) WO2023039808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826664A (zh) * 2023-06-28 2023-09-29 小米汽车科技有限公司 功率电感的控制方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149064A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp 車両駆動システムおよびそれを備える車両
CN103328248A (zh) * 2011-01-18 2013-09-25 日立汽车系统株式会社 车载旋转电机用电力转换装置的冷却系统
CN104076844A (zh) * 2013-03-27 2014-10-01 上海微电子装备有限公司 一种电机冷却控制系统及控制方法
US20190178728A1 (en) * 2016-08-23 2019-06-13 Nissan Motor Co., Ltd. Temperature abnormality detection method for power conversion device and temperature abnormality detection device for power conversion device
CN111552331A (zh) * 2020-05-14 2020-08-18 海马新能源汽车有限公司 一种冷却控制方法和冷却控制系统
CN112092630A (zh) * 2020-09-23 2020-12-18 北京车和家信息技术有限公司 电机过温保护方法、装置、驱动系统及车辆
CN112744087A (zh) * 2020-04-08 2021-05-04 长城汽车股份有限公司 环境温度确定方法、电机控制器、控制系统及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149064A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp 車両駆動システムおよびそれを備える車両
CN103328248A (zh) * 2011-01-18 2013-09-25 日立汽车系统株式会社 车载旋转电机用电力转换装置的冷却系统
CN104076844A (zh) * 2013-03-27 2014-10-01 上海微电子装备有限公司 一种电机冷却控制系统及控制方法
US20190178728A1 (en) * 2016-08-23 2019-06-13 Nissan Motor Co., Ltd. Temperature abnormality detection method for power conversion device and temperature abnormality detection device for power conversion device
CN112744087A (zh) * 2020-04-08 2021-05-04 长城汽车股份有限公司 环境温度确定方法、电机控制器、控制系统及存储介质
CN111552331A (zh) * 2020-05-14 2020-08-18 海马新能源汽车有限公司 一种冷却控制方法和冷却控制系统
CN112092630A (zh) * 2020-09-23 2020-12-18 北京车和家信息技术有限公司 电机过温保护方法、装置、驱动系统及车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826664A (zh) * 2023-06-28 2023-09-29 小米汽车科技有限公司 功率电感的控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116601471A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
JP2004312813A (ja) 電動装置の冷却システムおよび冷却制御方法
JP5843735B2 (ja) インバータの過熱保護制御装置及びインバータの過熱保護制御方法
JP5821727B2 (ja) 電気自動車
US9692351B2 (en) Protective device for vehicle inverter
WO2023039808A1 (zh) 电机控制器的功率器件过温保护的方法及装置
KR101628603B1 (ko) 환경차량용 충전기 냉각시스템 제어 방법 및 냉각시스템 제어기
US8628310B2 (en) Fan system having improved availability and method for its operation
EP2880752B1 (en) Overload limitation in peak power operation
RU2729775C1 (ru) Оборудование защиты устройства и способ защиты устройства
JP2009254206A (ja) 電源制御システム
KR20180096088A (ko) 플러그 인 차량의 충전제어방법
US11264901B2 (en) Electric-power conversion system controller
JP4967868B2 (ja) ハイブリッド車両用駆動装置及び制御方法
CN110556793B (zh) 实时igbt过载保护方法
JP6957383B2 (ja) 電力変換装置
US10251320B2 (en) Managing device for cooling inverter
CN112253517B (zh) 一种风机过热保护和风量控制系统及方法
CN112902494A (zh) 控制方法及电子设备
CN114374307B (zh) 车载充电器的温度保护方法及装置、车载充电器
CN117426038A (zh) 电气化车辆的车载充电装置的热保护方法
CN116321928A (zh) 功率电子组件的热调节和保护
CN112821488A (zh) 充电电路、充电方法、电子设备及存储介质
JP2022125582A5 (zh)
JP2020043681A (ja) 電力変換装置
JPH03213943A (ja) 空気調和機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084301.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE