WO2023038402A1 - 음극 활물질의 제조방법, 음극 및 이차전지 - Google Patents

음극 활물질의 제조방법, 음극 및 이차전지 Download PDF

Info

Publication number
WO2023038402A1
WO2023038402A1 PCT/KR2022/013367 KR2022013367W WO2023038402A1 WO 2023038402 A1 WO2023038402 A1 WO 2023038402A1 KR 2022013367 W KR2022013367 W KR 2022013367W WO 2023038402 A1 WO2023038402 A1 WO 2023038402A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
coke particles
particles
electrode active
Prior art date
Application number
PCT/KR2022/013367
Other languages
English (en)
French (fr)
Inventor
이창주
최승연
임가현
우상욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22867671.4A priority Critical patent/EP4357301A1/en
Priority to CN202280048903.XA priority patent/CN117651691A/zh
Priority to CA3227003A priority patent/CA3227003A1/en
Publication of WO2023038402A1 publication Critical patent/WO2023038402A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing an anode active material, an anode, and a secondary battery.
  • the secondary battery has conventionally used lithium metal as an anode, but the battery short circuit due to the formation of dendrites and the risk of explosion due to this become a problem, and reversible intercalation and desorption of lithium ions are possible, The use of carbon-based active materials that maintain structural and electrical properties is emerging.
  • the carbon-based active material various types of carbon-based materials such as artificial graphite, natural graphite, and hard carbon have been applied. There is. Since the graphite-based active material has a low discharge voltage of -0.2V compared to lithium, a battery using the graphite-based active material can exhibit a high discharge voltage of 3.6V, providing many advantages in terms of energy density of the lithium battery.
  • artificial graphite has the advantage of excellent anti-swelling effect and excellent high-temperature characteristics compared to natural graphite.
  • artificial graphite since artificial graphite has a problem of low output characteristics due to fewer pores than natural graphite, artificial graphite is converted into secondary particles in which primary particles are aggregated or combined in order to improve output characteristics and form pores in the particles. It is known to use
  • artificial graphite assembled with secondary particles is highly likely to have an irregular and uneven shape depending on the shape of the primary particles and their assembly.
  • artificial graphite is used for a negative electrode, there is a problem of poor electrode adhesion, a decrease in electrode adhesion, deterioration in fairness, and a deterioration in long-term cycle characteristics due to an active material detachment phenomenon during operation of the cathode.
  • Japanese Patent Registration Publication No. 4403327 discloses a graphite powder for a negative electrode of a lithium ion secondary battery, but fails to suggest an alternative to the above problem.
  • One object of the present invention is to manufacture a method for manufacturing a negative electrode active material including artificial graphite in the form of secondary particles, which has excellent adhesive strength and improved rapid charging performance.
  • another object of the present invention is to provide an anode including the anode active material prepared from the method for preparing the anode active material described above.
  • Another object of the present invention is to provide a secondary battery including the negative electrode described above.
  • the present invention comprises the steps of mixing green coke particles, calcined coke particles and a binder; and forming artificial graphite particles in the form of secondary particles in which primary artificial graphite particles are bonded to each other by heat-treating and graphitizing the mixture, wherein the average particle diameter (D 50 ) of the green coke particles is determined by the calcined coke It provides a method for producing an anode active material, characterized in that it is larger than the average particle diameter (D 50 ) of the particles.
  • the present invention is a negative electrode current collector; and an anode active material layer disposed on at least one surface of the anode current collector, wherein the anode active material layer provides an anode including the anode active material prepared by the anode active material manufacturing method described above.
  • the present invention is the above-described negative electrode; an anode facing the cathode; a separator interposed between the cathode and the anode; And an electrolyte; it provides a secondary battery comprising a.
  • the negative electrode active material of the present invention in manufacturing the negative active material including artificial graphite in the form of secondary particles, green coke particles and calcined coke particles are used as raw materials for primary particles, but the average particle diameter of the green coke particles (D 50 ) is larger than the average particle diameter (D 50 ) of the calcined coke particles.
  • the negative electrode including the negative electrode active material prepared by the method of manufacturing the negative electrode active material of the present invention may have improved adhesion and rapid charging performance at the same time.
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) may be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters of several millimeters in the submicron region, and can obtain results with high reproducibility and high resolution.
  • the present invention relates to a method for manufacturing an anode active material, and more specifically, to a method for manufacturing a cathode active material for a lithium secondary battery.
  • the method for producing an anode active material according to the present invention includes mixing green coke particles, calcined coke particles, and a binder; and forming artificial graphite particles in the form of secondary particles in which primary artificial graphite particles are bonded to each other by heat-treating and graphitizing the mixture, wherein the average particle diameter (D 50 ) of the green coke particles is determined by the calcined coke It is characterized in that it is larger than the average particle diameter (D 50 ) of the particles.
  • artificial graphite in the form of secondary particles is highly likely to have an irregular and uneven shape depending on the shape of the primary particles and their assembly.
  • artificial graphite is used for a negative electrode, there is a problem of poor electrode adhesion, a decrease in electrode adhesion, deterioration in fairness, and a deterioration in long-term cycle characteristics due to an active material detachment phenomenon during operation of the cathode.
  • the adhesive strength when the size of the primary particles increases, the adhesive strength is improved, but the rapid charging performance tends to deteriorate.
  • the rapid charging performance improves, but the adhesive strength tends to decrease.
  • the present invention comprises mixing green coke particles, calcined coke particles and a binder; and forming artificial graphite particles in the form of secondary particles in which primary artificial graphite particles are bonded to each other by heat-treating and graphitizing the mixture, wherein the average particle diameter (D 50 ) of the green coke particles is determined by the calcined coke It is characterized in that it is larger than the average particle diameter (D 50 ) of the particles. Since the green coke particles have round and smooth characteristics and have a larger average particle diameter (D 50 ) than the calcined coke particles, it can help improve the overall adhesion of the negative electrode active material.
  • the calcined coke particles have a smaller average particle diameter (D 50 ) than the green coke particles, contributing to the improvement of rapid charging performance and excellent capacity retention performance.
  • D 50 average particle diameter
  • the anode active material prepared from the manufacturing method of the anode active material of the present invention can be simultaneously improved in rapid charging performance and adhesive strength.
  • the method for producing a negative electrode active material of the present invention includes mixing green coke particles, calcined coke particles, and a binder. At this time, the average particle diameter (D 50 ) of the green coke particles is larger than the average particle diameter (D 50 ) of the calcined coke particles.
  • the green coke particles and the calcined coke particles may form artificial graphite particles in the form of primary particles, respectively, by a graphitization process.
  • primary artificial graphite particles derived from the green coke particles and the calcined coke particles may be combined with each other to form artificial graphite particles in the form of secondary particles.
  • the green coke particles can be obtained by performing a coking reaction on coal or petroleum residue, or pitch, which is a processed product, under high pressure and high temperature conditions.
  • the green coke particles may be coke particles obtained immediately after the coking process, and may contain volatile components (eg, sulfur) without undergoing heat treatment such as calcination or carbonization.
  • the green coke particles may have a smoother surface and a gentler shape than calcined coke particles described later. Accordingly, when the green coke particles are converted into secondary particles, the entire surface of the particles can be smoothed and the uniformity of the shape can be improved, so that the adhesion of the negative electrode active material can be improved. In particular, in the present invention, since the average particle diameter of the green coke particles is larger than that of the calcined coke particles, the adhesiveness of the negative electrode active material prepared therefrom can be further improved.
  • the average particle diameter (D 50 ) of the green coke particles may be 9 ⁇ m to 15 ⁇ m, specifically 10 ⁇ m to 13 ⁇ m. When it is within the above range, the effect of improving the adhesion of the negative electrode active material may be maximized while preventing degradation of rapid charging performance due to excessively large green coke particles.
  • the true density of the green coke particles may be 1.20 g/cc to 1.60 g/cc, specifically 1.3 g/cc to 1.5 g/cc.
  • true density may mean the density of only particles excluding gaps between particles to be measured.
  • the true density may be measured using a Gas pycnometer.
  • the green coke particles may include sulfur (S) in an amount of 1,000 ppm to 5,000 ppm, specifically, 1,500 ppm to 3,000 ppm.
  • S sulfur
  • the sulfur content may be measured by an inductively coupled plasma (ICP) analysis method.
  • the calcined coke particles may refer to coke that is calcined after performing a coking reaction on coal or petroleum-based residue or pitch, which is a processed product, under high-pressure and high-temperature conditions.
  • the calcined coke particles may contain no or trace amounts of volatile components as the calcining process is performed.
  • the calcined coke particles generally tend to be flatter and sharper than the green coke particles, but have excellent capacity retention characteristics.
  • the average particle diameter (D 50 ) of the calcined coke particles is adjusted to be smaller than the average particle diameter (D 50 ) of the green coke particles, the capacity retention characteristics and fast charging characteristics are improved without deterioration in adhesive strength It is possible to implement an excellent negative electrode active material.
  • the average particle diameter (D 50 ) of the calcined coke particles may be 3 ⁇ m to 8 ⁇ m, specifically 6 ⁇ m to 8 ⁇ m. When it is within the above range, it is possible to improve the rapid charging performance of the negative electrode active material while preventing the decrease in adhesiveness due to the excessive increase in the size of the calcined coke particles.
  • the real density of the calcined coke particles may be 1.80 g/cc to 2.25 g/cc, specifically 1.9 g/cc to 2.2 g/cc.
  • the calcined coke particles may include sulfur (S) in an amount of 50 ppm to 1,000 ppm, specifically 80 ppm to 200 ppm.
  • the average particle diameter (D 50 ) of the green coke particles is greater than the average particle diameter (D 50 ) of the calcined coke particles. Since the green coke particles have a smooth and gentle surface and have a larger average particle diameter (D 50 ) than the calcined coke particles, it can help improve the overall adhesion of the negative electrode active material. On the other hand, the calcined coke particles have a smaller average particle diameter (D 50 ) than the green coke particles, contributing to the improvement of rapid charging performance and excellent capacity retention performance. Through this, the anode active material prepared from the manufacturing method of the anode active material of the present invention can be simultaneously improved in rapid charging performance and adhesiveness.
  • the green coke particles may cause Not only the effect of improving adhesion cannot be improved, but also the rapid filling performance cannot be improved as the particle size of the calcined coke particles becomes larger compared to the green coke particles.
  • the ratio of the average particle diameter (D 50 ) of the calcined coke particles to the average particle diameter (D 50 ) of the green coke particles may be 0.3 or more and less than 1, specifically 0.5 to 0.8, and when in the above range, the above-mentioned rapid Simultaneous improvement of charging performance and adhesion can be maximized.
  • the green coke particles and the calcined coke particles may be mixed in a weight ratio of 10:90 to 90:10, specifically, 25:75 to 75:25. When the range is above, it is preferable that the fast charging performance can be improved while the adhesion of the negative electrode active material by the green coke particles is maximized.
  • the green coke particles and the calcined coke particles may each be mixed as a plurality of particles of two or more.
  • the binder may serve to bind or bind the green coke particles and the calcined coke particles to each other.
  • the binder may serve to bind or bind the green coke particles and the calcined coke particles to each other.
  • the green coke particles and the calcined coke particles can be manufactured into primary artificial graphite particles, and at the same time, the primary artificial graphite particles can be produced. It is possible to manufacture artificial graphite particles in the form of secondary particles in which graphite particles are bonded to each other.
  • the binder may include at least one selected from a polymer resin and a pitch.
  • the polymer resin is sucrose, phenol resin, naphthalene resin, polyvinyl alcohol resin, furfuryl alcohol resin, polyacrylonitrile resin , polyamide resin, furan resin, cellulose resin, styrene resin, polyimide resin, epoxy resin, vinyl chloride resin, and polyvinyl It may include at least one selected from the group consisting of chloride.
  • the pitch may include at least one selected from the group consisting of coal-based pitch, petroleum-based pitch, and mesophase pitch.
  • the binder may be mixed in an amount of 1% to 10% by weight, specifically 4% to 8% by weight, based on the total weight of the green coke particles, the calcined coke particles, and the binder.
  • the green coke particles contain volatile matter therein and have a low true density, and may not require a binder when artificial graphite in the form of secondary particles is produced using only the green coke particles.
  • the calcined coke particles are internally
  • a binder may be essential.
  • each coke particle is densely assembled to further improve rapid charging performance and adhesive strength.
  • the present invention includes forming artificial graphite particles in the form of secondary particles in which primary artificial graphite particles are bonded to each other by graphitizing the mixture by heat treatment.
  • the artificial graphite particles in the form of secondary particles may be graphitized by heat-treating a mixture of the green coke particles, the calcined coke particles, and the binder. Specifically, the mixture of the green coke particles, the calcined coke particles, and the binder is put into a reactor, and the reactor is operated to combine the mixture by centrifugal force to form secondary particles in which primary particles are bonded, It can be graphitized by heat treatment.
  • the heat treatment may be performed at 2,500 ° C to 3,500 ° C, preferably 2,700 ° C to 3,200 ° C, and smooth graphitization of the green coke particles and the calcined coke particles is possible in the above temperature range.
  • the heat treatment may be performed for 40 hours to 60 hours, and when the heat treatment is within the above range, the green coke particles and the calcined coke particles may be sufficiently graphitized through the heat treatment in the above temperature range.
  • the present invention may further include forming an amorphous carbon coating layer on the artificial graphite particles in the form of secondary particles.
  • the amorphous carbon coating layer may contribute to improving structural stability of the artificial graphite particles in the form of secondary particles and preventing side reactions between the negative electrode active material and the electrolyte.
  • the amorphous carbon coating layer may be formed in an amount of 0.1 wt% to 10 wt%, preferably 1 wt% to 5 wt%, based on the total weight of the negative electrode active material.
  • the presence of the amorphous carbon coating layer can improve the structural stability of the negative electrode active material, excessive formation of the amorphous carbon coating layer may cause a decrease in initial efficiency due to an increase in the specific surface area during cathode rolling and deterioration in high-temperature storage performance. It is preferable to form the carbon coating layer with an amount within a range.
  • the amorphous carbon coating layer may be formed by heat treatment after providing a carbon coating layer precursor to the artificial graphite particles in the form of secondary particles.
  • the carbon coating layer precursor may include at least one selected from polymer resin and pitch.
  • the polymer resin is sucrose, phenol resin, naphthalene resin, polyvinyl alcohol resin, furfuryl alcohol resin, polyacrylonitrile resin , polyamide resin, furan resin, cellulose resin, styrene resin, polyimide resin, epoxy resin, vinyl chloride resin, and polyvinyl It may include at least one selected from the group consisting of chloride.
  • the pitch may include at least one selected from the group consisting of coal-based pitch, petroleum-based pitch, and mesophase pitch.
  • the heat treatment process for forming the amorphous carbon coating layer may be performed at 1,000° C. to 1,500° C. in order to promote uniform formation of the amorphous carbon coating layer.
  • an anode active material including artificial graphite particles in the form of secondary particles in which primary artificial graphite particles are bonded to each other.
  • the primary artificial graphite particles are derived by graphitization of the green coke particles and the calcined coke particles.
  • the artificial graphite in the form of secondary particles may be formed by combining and assembling the primary artificial graphite particles.
  • the present invention provides a negative electrode, more specifically, a negative electrode for a lithium secondary battery, including the negative electrode active material prepared by the method for producing the negative electrode active material described above.
  • the negative electrode may include a negative electrode current collector; and an anode active material layer disposed on the anode current collector.
  • the anode active material layer includes the anode active material prepared by the method for preparing the anode active material described above.
  • the negative electrode current collector any negative current collector commonly used in the art may be used without limitation, and, for example, a negative electrode current collector that does not cause a chemical change of a lithium secondary battery and has high conductivity is not particularly limited.
  • the anode current collector may include at least one selected from copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and an aluminum-cadmium alloy, preferably copper.
  • the negative electrode current collector may form fine irregularities on the surface to enhance bonding strength of negative electrode active materials, and may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and nonwoven fabrics.
  • the anode current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the anode active material layer is laminated on the anode current collector and includes an anode active material prepared from the anode active material described above.
  • the average particle diameter (D 50 ) of the negative electrode active material may be 10 ⁇ m to 30 ⁇ m, specifically 14 ⁇ m to 25 ⁇ m, and more specifically 15 ⁇ m to 20 ⁇ m.
  • adhesion is improved by the green coke particles and rapid charging performance is improved by calcined coke having a smaller average particle diameter than the green coke particles. The effect can be further improved.
  • the negative active material may have a tap density of 1.08 g/cc to 1.17 g/cc, specifically 1.10 g/cc to 1.16 g/cc, and when the tap density is satisfied, a negative active material having a smooth and uniform surface may be realized. It is possible and it is preferable because it can implement high electrode adhesiveness.
  • the negative active material may be included in an amount of 80% to 99% by weight, preferably 93% to 98% by weight in the negative active material layer.
  • the anode active material layer may further include an anode binder, an anode conductive material, and/or a thickener in addition to the anode active material described above.
  • the anode binder is a component that assists in bonding between the active material and/or the current collector, and may be typically included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 10 wt%, in the anode active material layer.
  • the anode binder is polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoro At least one selected from the group consisting of ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber and fluororubber, preferably polyvinylidene fluoride and styrene-butadiene It may include at least one selected from rubber.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluororubber preferably polyvinylidene fluoride and styrene-
  • thickener all thickeners conventionally used in lithium secondary batteries may be used, and one example is carboxymethyl cellulose (CMC) and the like.
  • CMC carboxymethyl cellulose
  • the anode conductive material is a component for further improving conductivity of the anode active material, and may be included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 10 wt%, in the anode active material layer.
  • the negative electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as
  • conductive materials include Chevron Chemical Company, which is an acetylene black series, Denka Singapore Private Limited, Gulf Oil Company products, etc.), Ketjenblack, EC family (made by Armak Company), Vulcan XC-72 (made by Cabot Company) and Super P (made by Timcal).
  • the negative electrode active material layer is prepared by preparing a negative electrode slurry by mixing the above-described negative electrode active material and at least one selected from the negative electrode binder, negative electrode conductive material, and thickener in a solvent, and applying, rolling, and drying the negative electrode slurry to the negative electrode current collector It can be.
  • the solvent may include water or an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that has a desired viscosity when including the anode active material, and optionally a cathode binder and an anode conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solid content including the negative electrode active material and optionally at least one selected from the negative electrode binder, thickener, and negative electrode conductive material is 50% to 95% by weight, preferably 70% to 90% by weight.
  • the negative electrode may have an orientation index I(004)/I(110) of 8.5 or less, specifically 4.0 to 8.5.
  • the particles of the active materials may be arranged to minimize the diffusion path of lithium ions, so that rapid charging performance may be improved.
  • the achievement of the orientation index may be implemented by using the anode active material prepared by the method for preparing the anode active material as described above for the anode.
  • the orientation index indicates the extent to which crystal structures inside the cathode are aligned in a certain direction, can evaluate in which direction the crystals are oriented in the electrode, and can be measured by X-ray diffraction (XRD). More specifically, the orientation index is the area ratio ((004) obtained by integrating the peak intensities of the (110) and (004) planes after measuring the (110) and (004) planes of the negative electrode active material included in the negative electrode by XRD. )/(110)), and more specifically, the XRD measurement conditions are as follows.
  • (004) plane 53.5 degrees ⁇ 2 ⁇ ⁇ 56.0 degrees, 0.01 degrees / 3 seconds,
  • 2 ⁇ represents the diffraction angle
  • the XRD measurement is an example, and other measurement methods may also be used.
  • the present invention provides a secondary battery, more specifically, a lithium secondary battery including the negative electrode described above.
  • the secondary battery may include the aforementioned negative electrode; an anode facing the cathode; a separator interposed between the cathode and the anode; and an electrolyte.
  • the positive electrode may include a positive electrode current collector; and a cathode active material layer disposed on the cathode current collector.
  • an anode current collector generally used in the art may be used without limitation, and, for example, a negative current collector that does not cause chemical change of a secondary battery and has high conductivity is not particularly limited.
  • the cathode current collector may include at least one selected from copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and an aluminum-cadmium alloy, preferably aluminum.
  • the cathode current collector may form fine irregularities on the surface to enhance bonding strength of the cathode active material, and may be used in various forms such as a film, sheet, foil, net, porous material, foam, or nonwoven fabric.
  • the cathode current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the cathode active material layer may include a cathode active material.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and at least one metal such as cobalt, manganese, nickel, or aluminum. there is.
  • the lithium composite metal oxide is lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese oxide (eg, LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt-based oxide (eg, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt based oxides (eg, LiCo 1-Y2 Mn Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 (where 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel -
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (eg, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , etc.), or lithium nickel cobalt aluminum oxide (eg, Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 etc.), etc.
  • the lithium composite metal oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1
  • the positive electrode active material may be included in an amount of 80% to 99% by weight in the positive electrode active material layer.
  • the positive electrode active material layer may further include at least one selected from the group consisting of a positive electrode binder and a positive electrode conductive material together with the positive electrode active material.
  • the positive electrode binder is a component that assists in bonding between an active material and a conductive material and a current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the positive electrode mixture.
  • examples of such anode binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, and polytetrafluorocarbons.
  • It may include at least one selected from the group consisting of ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, and fluororubber.
  • EPDM ethylene-propylene-diene terpolymer
  • sulfonated EPDM styrene-butadiene rubber
  • fluororubber fluororubber
  • the positive electrode binder may be included in an amount of 1% to 30% by weight in the positive electrode active material layer.
  • the cathode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; fluorinated carbon; metal powders such as aluminum and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • conductive materials include Chevron Chemical Company, which is an acetylene black series, Denka Singapore Private Limited, Gulf Oil Company products, etc.), Ketjenblack, EC family (made by Armak Company), Vulcan XC-72 (made by Cabot Company) and Super P (made by Timcal).
  • the cathode conductive material may be added in an amount of 1 wt% to 30 wt% in the cathode active material layer.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion movement, and can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery. Excellent is desirable.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention includes an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in manufacturing a lithium secondary battery, and is limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester-based solvents such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or hydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon solvents such as benzene and fluorobenzene; carbonate solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC); alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or cyclic hydrocarbon group, and may contain a double-bonded aromatic
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN( C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 , and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, rapid charging characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles (hybrid electric vehicles) HEV), and the like, and can be preferably used as a component battery of a medium or large battery module. Accordingly, the present invention also provides a medium or large-sized battery module including the above secondary battery as a unit battery.
  • Such medium- or large-sized battery modules may be preferably applied to power sources requiring high output and large capacity, such as electric vehicles, hybrid electric vehicles, and power storage devices.
  • Green coke particles having a sulfur content of 2,009 ppm, a true density of 1.4 g/cc, and an average particle diameter (D 50 ) of 11 ⁇ m, and a sulfur content of 115 ppm, a true density of 2.1 g/cc, and an average particle diameter (D 50 ) calcined coke particles having a diameter of 7 ⁇ m and a petroleum-based pitch binder were introduced into the reactor.
  • the green coke particles and the calcined coke particles were mixed in a weight ratio of 30:70.
  • the pitch binder was mixed at 7% by weight based on the total weight of the green coke particles, the calcined coke particles, and the petroleum pitch.
  • the green coke particles, the calcined coke particles, and the petroleum-based pitch binder were graphitized by heat treatment at 3,000 ° C. for 50 hours, thereby preparing artificial graphite particles in the form of secondary particles in which primary artificial graphite particles were bonded to each other.
  • the primary artificial graphite particles are derived from the green coke particles and the calcined coke particles.
  • the artificial graphite particles in the form of secondary particles and petroleum-based pitch were mixed and heat-treated at 1,300 ° C. in a roller hearth kiln to form an amorphous carbon coating layer on the artificial graphite particles in the form of secondary particles.
  • the negative electrode active material prepared above had a tap density of 1.13 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • the amorphous carbon coating layer was formed at 3.5% by weight based on the weight of the negative electrode active material.
  • the tap density was obtained by measuring the apparent density by measuring the final volume obtained by filling the container with 40 g of the negative electrode active material and vibrating it up and down 1,000 times.
  • An anode active material was prepared in the same manner as in Example 1, except that the green coke particles and the calcined coke particles were mixed in a weight ratio of 70:30.
  • the negative electrode active material prepared above had a tap density of 1.15 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • An anode active material was prepared in the same manner as in Example 1, except that calcined coke particles were not used as the coke particles and only green coke particles were used.
  • the negative electrode active material prepared above had a tap density of 1.05 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • An anode active material was prepared in the same manner as in Example 1, except that only calcined coke particles were used instead of green coke particles as the coke particles.
  • the negative electrode active material prepared above had a tap density of 0.87 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • An anode active material was prepared in the same manner as in Example 1, except that no binder was used.
  • the negative electrode active material prepared above had a tap density of 1.18 g/cc and an average particle diameter (D 50 ) of 12 ⁇ m.
  • An anode active material was prepared by mixing the anode active material prepared in Comparative Example 1 and the anode active material prepared in Comparative Example 2 at a weight ratio of 30:70.
  • the negative electrode active material prepared above had a tap density of 0.98 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • An anode active material was prepared by mixing the anode active material prepared in Comparative Example 1 and the anode active material prepared in Comparative Example 2 at a weight ratio of 70:30.
  • the negative electrode active material prepared above had a tap density of 1.04 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • Green coke particles having a sulfur content of 2,009 ppm, a true density of 1.4 g/cc, and an average particle diameter (D 50 ) of 7 ⁇ m were prepared.
  • Calcined coke particles having a sulfur content of 115 ppm, a true density of 2.1 g/cc, and an average particle diameter (D 50 ) of 11 ⁇ m were prepared.
  • An anode active material was prepared in the same manner as in Example 1, except that the green coke particles and the calcined coke particles were used.
  • the negative electrode active material prepared above had a tap density of 1.02 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • Green coke particles having a sulfur content of 2,009 ppm, a true density of 1.4 g/cc, and an average particle diameter (D 50 ) of 9 ⁇ m were prepared.
  • Calcined coke particles having a sulfur content of 115 ppm, a true density of 2.1 g/cc, and an average particle diameter (D 50 ) of 9 ⁇ m were prepared.
  • An anode active material was prepared in the same manner as in Example 1, except that the green coke particles and the calcined coke particles were used.
  • the negative electrode active material prepared above had a tap density of 1.05 g/cc and an average particle diameter (D 50 ) of 18 ⁇ m.
  • the anode active material prepared in Example 1 carbon black as a conductive material, styrene-butadiene rubber as a binder, and carboxymethylcellulose as a thickener were mixed in a weight ratio of 95.9: 0.5: 2.5: 1.1, and water was added to prepare a negative electrode slurry. did
  • the negative electrode slurry was applied to a copper negative electrode current collector (thickness: 15 ⁇ m), vacuum dried and rolled at about 130 ° C. for 8 hours to form a negative electrode active material layer (thickness: 55 ⁇ m) to prepare a negative electrode of Example 1. .
  • the loading of the negative electrode was prepared to be 3.3mAh/cm 2 .
  • Negative electrodes of Example 2 and Comparative Examples 1 to 7 were prepared in the same manner as in Example 1, except that the negative electrode active materials prepared in Example 2 and Comparative Examples 1 to 7 were used, respectively.
  • the orientation indices of the negative electrodes of Examples and Comparative Examples were obtained by measuring the (004) plane and the (110) plane by XRD, and integrating the measured XRD peaks to obtain an area ratio I(004)/I(110). XRD measurement conditions are as follows. The results are shown in Table 1 below.
  • the negative electrode of Example 1 was punched out to a size of 20 mm ⁇ 150 mm, fixed to the center of a 25 mm ⁇ 75 mm slide glass using double-sided tape, and then collected using UTM (manufacturer: LLOYD Instrument LTD., device name: LF Plus). While peeling off the negative electrode active material layer from the whole, the 90 degree peeling strength was measured. Five identical negative electrodes of Example 1 were prepared, and 90 degree peel strength was measured five times in the same manner, and the average value thereof was used as the adhesive strength (unit: gf/10mm) of the negative electrode of Example 1.
  • Example 2 The 90 degree peel strength of Example 2 and Comparative Examples 1 to 7 was measured in the same manner as in Example 1. The results are shown in Table 2 below.
  • a lithium metal counter electrode was prepared as a positive electrode.
  • Secondary batteries of Examples and Comparative Examples were prepared by interposing a polyolefin separator between the negative electrode and the positive electrode prepared in Examples 1 to 4 and Comparative Examples 1 to 4, and then injecting an electrolyte solution.
  • the electrolyte solution is a non-aqueous electrolyte solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed in a volume ratio of 2:8, vinylene carbonate (VC) is added in an amount of 0.5% by weight based on the solvent, and LiPF 6 is 1M dissolved was used.
  • the secondary battery was charged and discharged at 1C for 3 cycles, then charged at 3C for 15 minutes, and the profile was first differentiated. At this time, the inflection point appearing in dQ/dV was confirmed to quantify the lithium plating SOC (Li-Plating SOC, %), which is the SOC at the time when lithium precipitation occurs on the surface of the anode. The results are shown in Table 2 below.
  • the negative electrode and the secondary battery of Examples 1 and 2 can simultaneously improve the negative electrode adhesion and rapid charging performance compared to the negative electrode and the secondary battery of Comparative Examples 1 to 7.

Abstract

본 발명은 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계; 및 상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계;를 포함하고, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 하는 음극 활물질의 제조방법에 관한 것이다.

Description

음극 활물질의 제조방법, 음극 및 이차전지
관련출원과의 상호인용
본 출원은 2021년 9월 10일 자 한국 특허 출원 제10-2021-0121303호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 활물질의 제조방법, 음극 및 이차전지에 관한 것이다.
화석연료의 고갈에 의한 에너지원의 가격 상승, 환경오염의 관심이 증폭되면서, 친환경 대체 에너지원이 미래 생활을 위한 필수 불가결한 요인이 되고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 친환경 대체 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지가 주로 연구, 사용되고 있다.
상기 이차전지는 음극으로 종래 리튬 금속이 사용되었으나, 덴드라이트(dendrite) 형성에 따른 전지 단락과, 이에 의한 폭발의 위험성이 문제가 되면서, 가역적인 리튬 이온의 삽입(intercalation) 및 탈리가 가능하고, 구조적 및 전기적 성질을 유지하는 탄소계 활물질의 사용 대두되고 있다.
상기 탄소계 활물질로는 인조흑연, 천연흑연, 하드카본 등의 다양한 형태의 탄소계 재료가 적용되어 왔으며, 이 중에서도 뛰어난 가역성으로 리튬 이차전지의 수명 특성을 보장할 수 있는 흑연계 활물질이 가장 널리 사용되고 있다. 상기 흑연계 활물질은 리튬 대비 방전 전압이 -0.2V로 낮기 때문에, 흑연계 활물질을 이용한 전지는 3.6V의 높은 방전 전압을 나타낼 수 있으므로, 리튬 전지의 에너지 밀도면에서 많은 이점을 제공하고 있다.
이 중에서도, 인조흑연은 천연흑연에 비해 스웰링 방지 효과가 우수하고, 고온 특성이 우수하다는 장점이 있다. 다만, 인조흑연은 천연흑연에 비해 공극이 적어 출력 특성이 낮다는 문제가 있으므로, 출력 특성을 향상시키고, 입자 내의 공극 형성을 위해, 인조흑연을 1차 입자들이 응집 또는 결합된 2차 입자 형태로 사용하는 것이 알려져 있다.
그러나, 2차 입자로 조립된 인조흑연은 1차 입자들의 형상, 이들의 조립에 따라 불규칙하고 매끄럽지 않은 형상을 가지게 될 가능성이 높다. 이러한 인조흑연은 음극에 사용될 때 전극 접착력이 좋지 않은 문제가 있으며, 전극 접착력의 저하로 인해 공정성이 저하되며, 음극 구동 시 활물질 탈리 현상이 발생하여 장기 사이클 특성이 저하되는 문제가 있다.
일본 특허등록공보 제4403327호는 리튬이온 이차전지 음극용 흑연 분말에 관해 개시하고 있으나, 전술한 문제에 대한 대안을 제시하지 못하였다.
[선행기술문헌]
[특허문헌]
일본 특허등록공보 제4403327호
본 발명의 일 과제는 2차 입자 형태의 인조흑연을 포함하는 음극 활물질의 제조방법에 있어서, 접착력이 우수함과 동시에 급속 충전 성능이 향상된 음극 활물질의 제조방법을 제조하는 것이다.
또한, 본 발명의 다른 과제는 전술한 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함하는 음극을 제공하는 것이다.
또한, 본 발명의 또 다른 과제는 전술한 음극을 포함하는 이차전지를 제공하는 것이다.
본 발명은 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계; 및 상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계;를 포함하고, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 하는 음극 활물질의 제조방법을 제공한다.
또한, 본 발명은 음극 집전체; 및 상기 음극 집전체의 적어도 일면에 배치되는 음극 활물질층;을 포함하고, 상기 음극 활물질층은 전술한 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함하는 음극을 제공한다.
또한, 본 발명은 전술한 음극; 상기 음극에 대향하는 양극; 상기 음극 및 상기 양극 사이에 개재되는 분리막; 및 전해질;을 포함하는 이차전지를 제공한다.
본 발명의 음극 활물질의 제조방법은 2차 입자 형태의 인조흑연을 포함하는 음극 활물질을 제조함에 있어서, 1차 입자의 원재료로서 그린 코크스 입자 및 하소 코크스 입자를 사용하되, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 한다. 본 발명의 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함하는 음극은 접착력 및 급속 충전 성능이 동시에 향상될 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
음극 활물질의 제조방법
본 발명은 음극 활물질의 제조방법에 관한 것으로, 구체적으로 리튬 이차전지용 음극 활물질의 제조방법에 관한 것이다.
구체적으로, 본 발명에 따른 음극 활물질의 제조방법은 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계; 및 상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계;를 포함하고, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 한다.
종래, 2차 입자 형태의 인조흑연은 1차 입자들의 형상, 이들의 조립에 따라 불규칙하고 매끄럽지 않은 형상을 가지게 될 가능성이 높다. 이러한 인조흑연은 음극에 사용될 때 전극 접착력이 좋지 않은 문제가 있으며, 전극 접착력의 저하로 인해 공정성이 저하되며, 음극 구동 시 활물질 탈리 현상이 발생하여 장기 사이클 특성이 저하되는 문제가 있다. 또한, 2차 입자 형태의 인조흑연의 경우, 1차 입자의 크기가 커지면 접착력이 향상되지만, 급속 충전 성능은 저하되는 경향을 보이는 문제가 있다. 반대로, 2차 입자 형태의 인조흑연의 경우, 1차 입자의 크기가 작아지면 급속 충전 성능은 향상되지만, 접착력은 저하되는 경향을 보이는 문제가 있다.
이러한 문제를 해결하기 위해, 본 발명은 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계; 및 상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계;를 포함하고, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 한다. 상기 그린 코크스 입자는 둥글고 완만한 특성을 가지며, 상기 하소 코크스 입자에 비해 평균 입경(D50)이 크므로, 음극 활물질의 전체적인 접착력 향상에 도움을 줄 수 있다. 한편, 상기 하소 코크스 입자는 상기 그린 코크스 입자에 비해 평균 입경(D50)이 작아 급속 충전 성능 향상에 기여하며, 용량 보존 성능이 우수하다. 이를 통해 본 발명의 음극 활물질의 제조방법으로부터 제조된 음극 활물질은 급속 충전 성능 및 접착력이 동시에 향상될 수 있다.
본 발명의 음극 활물질의 제조방법은 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계를 포함한다. 이때, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 크다.
상기 그린 코크스 입자 및 상기 하소 코크스 입자는 흑연화 공정에 의해 각각 1차 입자 형태의 인조흑연 입자를 형성할 수 있다. 또한, 상기 그린 코크스 입자 및 상기 하소 코크스 입자로부터 유래된 1차 인조흑연 입자들이 서로 결합되어 2차 입자 형태의 인조흑연 입자를 형성할 수 있다.
상기 그린 코크스 입자는 석탄 또는 석유계 잔사, 또는 가공품인 핏치를 고압 및 고온 조건에서 코킹 반응을 수행하여 얻을 수 있다. 이때, 상기 그린 코크스 입자는 코킹 공정 직후 얻어지는 코크스 입자로서, 하소(Calcination) 또는 탄화(Carbonization) 등의 열처리를 거치지 않아, 휘발분(예를 들면, 황)을 포함하고 있는 것일 수 있다.
상기 그린 코크스 입자는 후술하는 하소 코크스 입자에 비해 표면이 매끈하고 완만한 형상을 가질 수 있다. 이에 따라, 상기 그린 코크스 입자는 2차 입자화될 시, 입자 전체의 표면을 매끈하게 하며, 형상의 균일성을 향상시키는데 기여할 수 있으므로, 음극 활물질의 접착력 향상에 기여할 수 있다. 특히, 본 발명에 있어서, 상기 그린 코크스 입자는 상기 하소 코크스 입자에 비해 평균 입경이 더 크므로, 이로부터 제조된 음극 활물질의 접착력은 더욱 향상될 수 있다.
상기 그린 코크스 입자의 평균 입경(D50)은 9㎛ 내지 15㎛, 구체적으로 10㎛ 내지 13㎛일 수 있다. 상기 범위에 있을 때, 그린 코크스 입자가 과도하게 커짐으로 인한 급속 충전 성능의 저하를 방지하면서도, 음극 활물질의 접착력 향상 효과가 극대화될 수 있다.
상기 그린 코크스 입자의 진밀도는 1.20g/cc 내지 1.60g/cc, 구체적으로 1.3g/cc 내지 1.5g/cc일 수 있다. 본 명세서에서, 진밀도(true density)는 측정 대상인 입자들 사이의 간극을 제외한 입자만의 밀도를 의미하는 것일 수 있다. 상기 진밀도는 Gas pycnometer를 이용해 측정될 수 있다.
또한, 상기 그린 코크스 입자는 황(S)을 1,000ppm 내지 5,000ppm, 구체적으로 1,500ppm 내지 3,000ppm으로 포함할 수 있다. 상기 황의 함량의 측정은 유도 결합 플라즈마(Inductively Coupled Plasma, ICP) 분석법에 의해 측정될 수 있다.
상기 하소 코크스 입자는 석탄 또는 석유계 잔사, 또는 가공품인 핏치를 고압 및 고온 조건에서 코킹 반응을 수행한 후, 하소(Calcination)가 이루어진 코크스를 의미하는 것일 수 있다. 상기 하소 코크스 입자는 하소 공정이 수행됨에 따라, 휘발분을 함유하지 않거나, 미량으로 함유하는 것일 수 있다.
상기 하소 코크스 입자는 일반적으로 상기 그린 코크스 입자에 비해 형상이 납작하고 뾰족한 경향을 보이지만, 용량 보존 특성이 우수하다. 또한, 본 발명에 있어서, 상기 하소 코크스 입자의 평균 입경(D50)을 상기 그린 코크스 입자의 평균 입경(D50)보다 작게 조절함에 따라, 접착력이 저하되지 않으면서도 용량 보존 특성 및 급속 충전 특성이 우수한 음극 활물질의 구현이 가능해진다.
상기 하소 코크스 입자의 평균 입경(D50)은 3㎛ 내지 8㎛, 구체적으로 6㎛ 내지 8㎛일 수 있다. 상기 범위에 있을 때, 하소 코크스 입자의 크기가 과도하게 커짐으로 인한 접착력 저하를 방지하면서도, 음극 활물질의 급속 충전 성능 향상이 가능할 수 있다.
상기 하소 코크스 입자의 진밀도는 1.80g/cc 내지 2.25g/cc, 구체적으로 1.9g/cc 내지 2.2g/cc일 수 있다.
또한, 상기 하소 코크스 입자는 황(S)을 50ppm 내지 1,000ppm, 구체적으로 80ppm 내지 200ppm으로 포함할 수 있다.
본 발명에 있어서, 상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)보다 크다. 상기 그린 코크스 입자는 표면이 매끄럽고 완만한 특성을 가지며, 상기 하소 코크스 입자에 비해 평균 입경(D50)이 크므로, 음극 활물질의 전체적인 접착력 향상에 도움을 줄 수 있다. 한편, 상기 하소 코크스 입자는 상기 그린 코크스 입자에 비해 평균 입경(D50)이 작아 급속 충전 성능 향상에 기여하며, 용량 보존 성능이 우수하다. 이를 통해 본 발명의 음극 활물질의 제조방법으로부터 제조된 음극 활물질은 급속 충전 성능 및 접착력이 동시에 향상될 수 있다.
만일 상기 그린 코크스 입자의 평균 입경(D50)이 상기 하소 코크스 입자의 평균 입경(D50)과 같거나, 상기 하소 코크스 입자의 평균 입경(D50)에 비해 작을 경우에는 상기 그린 코크스 입자로 인한 접착력 향상 효과가 향상될 수 없을 뿐 아니라, 하소 코크스 입자가 그린 코크스 입자에 대비하여 입자 크기가 커짐에 따라 급속 충전 성능도 향상될 수 없다.
구체적으로, 상기 그린 코크스 입자의 평균 입경(D50) 대비 상기 하소 코크스 입자의 평균 입경(D50)의 비율은 0.3 이상 1 미만, 구체적으로 0.5 내지 0.8일 수 있으며, 상기 범위일 때 상술한 급속 충전 성능 및 접착력의 동시 향상 효과가 극대화될 수 있다.
상기 그린 코크스 입자 및 상기 하소 코크스 입자는 10:90 내지 90:10의 중량비, 구체적으로 25:75 내지 75:25의 중량비로 혼합될 수 있다. 상기 범위일 때, 그린 코크스 입자에 의한 음극 활물질의 접착력 향상이 극대화되면서도, 급속 충전 성능이 향상될 수 있어 바람직하다.
상기 그린 코크스 입자 및 상기 하소 코크스 입자는 각각 2 이상의 복수의 입자로서 혼합될 수 있다.
상기 바인더는 상기 그린 코크스 입자 및 상기 하소 코크스 입자들을 서로 결합, 또는 결착시키는 역할을 수행할 수 있다. 상기 바인더로 상기 그린 코크스 입자 및 상기 하소 코크스 입자를 결착시킨 후 열처리 및 흑연화를 수행함으로써, 상기 그린 코크스 입자 및 상기 하소 코크스 입자를 1차 인조흑연 입자로 제조할 수 있음과 동시에 이러한 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자의 제조가 가능하다.
상기 바인더는 고분자 수지 및 핏치 중에서 선택된 적어도 1종을 포함할 수 있다. 구체적으로, 상기 고분자 수지는 수크로오스(sucrose), 페놀(phenol) 수지, 나프탈렌(naphthalene) 수지, 폴리비닐알코올(polyvinyl alcohol) 수지, 퍼푸릴 알코올(furfuryl alcohol) 수지, 폴리아크릴로니트릴(polyacrylonitrile) 수지, 폴리아미드(polyamide) 수지, 퓨란(furan) 수지, 셀룰로오스(cellulose) 수지, 스티렌(stylene) 수지, 폴리이미드(polyimide) 수지, 에폭시(epoxy) 수지, 염화비닐(vinyl chloride) 수지, 및 폴리비닐클로라이드로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다. 상기 핏치는 석탄계 핏치, 석유계 핏치, 및 메조페이스 핏치로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 바인더는 상기 그린 코크스 입자, 상기 하소 코크스 입자 및 상기 바인더의 중량의 총합 기준 1중량% 내지 10중량%, 구체적으로 4중량% 내지 8중량%로 혼합될 수 있다. 상기 그린 코크스 입자는 내부에 휘발분을 포함하며, 진밀도가 낮은 수준으로서 상기 그린 코크스 입자 단독으로 2차 입자 형태의 인조흑연을 제조할 경우에는 바인더가 필요하지 않을 수 있지만, 상기 하소 코크스 입자는 내부에 휘발분이 제거된 것이고 진밀도가 높아 상기 하소 코크스 입자 단독으로 2차 입자 형태의 인조흑연을 제조할 경우에는 바인더가 필수적으로 필요할 수 있다. 본 발명에 있어서, 상기 바인더를 상기 범위의 함량으로 상기 그린 코크스 입자 및 상기 하소 코크스 입자의 혼합물에 첨가할 경우, 각각의 코크스 입자들이 치밀하게 조립되어 급속 충전 성능 및 접착력을 더욱 향상시킬 수 있다.
본 발명은 상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계를 포함한다.
상기 2차 입자 형태의 인조흑연 입자는 상기 그린 코크스 입자, 상기 하소 코크스 입자 및 상기 바인더의 혼합물을 열처리하여 흑연화시킬 수 있다. 구체적으로, 상기 그린 코크스 입자, 상기 하소 코크스 입자, 및 상기 바인더의 혼합물을 반응기에 투입하고, 상기 반응기를 작동시켜 상기 혼합물을 원심력에 의해 결합시켜 1차 입자들이 결합된 2차 입자를 형성하고, 이를 열처리하여 흑연화시킬 수 있다.
상기 열처리는 2,500℃ 내지 3,500℃, 바람직하게는 2,700℃ 내지 3,200℃에서 수행될 수 있으며, 상기 온도 범위에서 상기 그린 코크스 입자 및 상기 하소 코크스 입자의 원활한 흑연화가 가능하다.
상기 열처리는 40 시간 내지 60 시간 동안 수행될 수 있으며, 상기 범위일 때 상술한 온도 범위의 열처리를 통해 상기 그린 코크스 입자 및 상기 하소 코크스 입자를 충분히 흑연화시킬 수 있다.
본 발명은 상기 2차 입자 형태의 인조흑연 입자 상에 비정질 탄소 코팅층을 형성하는 단계를 더 포함할 수 있다.
상기 비정질 탄소 코팅층은 2차 입자 형태의 인조흑연 입자의 구조적 안정성을 향상시키고 음극 활물질과 전해액의 부반응을 방지하는데 기여할 수 있다.
상기 비정질 탄소 코팅층은 상기 음극 활물질의 전체 중량을 기준으로 0.1중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 형성될 수 있다. 상기 비정질 탄소 코팅층의 존재는 음극 활물질의 구조적 안정성을 향상시킬 수 있지만, 비정질 탄소 코팅층의 과도한 형성은 음극 압연 시 비표면적 증가로 인한 초기 효율 감소를 야기하고 고온 저장 성능이 저하될 우려가 있으므로, 상술한 범위의 함량으로 탄소 코팅층을 형성하는 것이 바람직하다.
상기 비정질 탄소 코팅층은 탄소 코팅층 전구체를 상기 2차 입자 형태의 인조흑연 입자에 제공한 후, 열처리하여 형성될 수 있다.
상기 탄소 코팅층 전구체는 고분자 수지 및 핏치 중에서 선택된 적어도 1종을 포함할 수 있다. 구체적으로, 상기 고분자 수지는 수크로오스(sucrose), 페놀(phenol) 수지, 나프탈렌(naphthalene) 수지, 폴리비닐알코올(polyvinyl alcohol) 수지, 퍼푸릴 알코올(furfuryl alcohol) 수지, 폴리아크릴로니트릴(polyacrylonitrile) 수지, 폴리아미드(polyamide) 수지, 퓨란(furan) 수지, 셀룰로오스(cellulose) 수지, 스티렌(stylene) 수지, 폴리이미드(polyimide) 수지, 에폭시(epoxy) 수지, 염화비닐(vinyl chloride) 수지, 및 폴리비닐클로라이드로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다. 상기 핏치는 석탄계 핏치, 석유계 핏치, 및 메조페이스 핏치로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 비정질 탄소 코팅층을 형성하기 위한 열처리 공정은 비정질 탄소 코팅층의 균일한 형성을 도모하는 측면에서 1,000℃ 내지 1,500℃에서 실시할 수 있다.
본 발명에 따르면, 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 포함하는 음극 활물질을 형성할 수 있다. 이때, 상기 1차 인조흑연 입자들은 상기 그린 코크스 입자 및 상기 하소 코크스 입자의 흑연화에 의해 유래된 것이다. 상기 2차 입자 형태의 인조흑연은 상기 1차 인조흑연 입자의 결합, 조립에 의해 형성된 것일 수 있다.
음극
또한, 본 발명은 전술한 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함하는 음극, 보다 구체적으로는 리튬 이차전지용 음극을 제공한다.
상기 음극은 음극 집전체; 및 상기 음극 집전체 상에 배치된 음극 활물질층;을 포함한다. 상기 음극 활물질층은 전술한 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함한다.
상기 음극 집전체는 당분야에서 일반적으로 사용되는 음극 집전체가 제한 없이 사용될 수 있고, 예를 들면 리튬 이차전지의 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 예를 들면 상기 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 및 알루미늄-카드뮴 합금에서 선택된 적어도 1종, 바람직하게는 구리를 포함할 수 있다.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가질 수 있다.
상기 음극 활물질층은 상기 음극 집전체 상에 적층되며, 전술한 음극 활물질로부터 제조된 음극 활물질을 포함한다.
상기 음극 활물질의 평균 입경(D50)은 10㎛ 내지 30㎛, 구체적으로 14㎛ 내지 25㎛, 보다 구체적으로 15㎛ 내지 20㎛일 수 있다. 특히, 본 발명의 제조방법으로부터 제조된 음극 활물질이 상기 범위의 평균 입경을 가질 경우, 상기 그린 코크스 입자에 의한 접착력 향상과, 상기 그린 코크스 입자에 비해 평균 입경이 작은 하소 코크스에 의한 급속 충전 성능 향상 효과가 더욱 향상될 수 있다.
상기 음극 활물질의 탭 밀도는 1.08g/cc 내지 1.17g/cc, 구체적으로 1.10g/cc 내지 1.16g/cc일 수 있으며, 상기 탭 밀도 범위를 만족할 경우 표면이 완만하고 균일한 음극 활물질의 구현이 가능하고, 높은 전극 접착력을 구현할 수 있어 바람직하다.
상기 음극 활물질은 음극 활물질층 내에 80중량% 내지 99중량%, 바람직하게는 93중량% 내지 98중량%로 포함될 수 있다.
상기 음극 활물질층은 전술한 음극 활물질 외에, 음극 바인더, 음극 도전재 및/또는 증점제를 더 포함할 수 있다.
상기 음극 바인더는 활물질 및/또는 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층 내에 1중량% 내지 30중량%, 바람직하게는 1중량% 내지 10중량%로 포함될 수 있다.
상기 음극 바인더는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드 및 스티렌-부타디엔 고무 중에서 선택된 적어도 1종을 포함할 수 있다.
상기 증점제로는 종래 리튬 이차전지에 사용되는 모든 증점제가 사용될 수 있으며, 한 예로는 카르복시메틸셀룰로오즈(CMC) 등이 있다.
상기 음극 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층 내에 1중량% 내지 30중량%, 바람직하게는 1중량% 내지 10중량%로 포함될 수 있다.
상기 음극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 음극 활물질층은 전술한 음극 활물질과 음극 바인더, 음극 도전재 및 증점제에서 선택된 적어도 1종을 용매에 혼합하여 음극 슬러리를 제조하고, 상기 음극 슬러리를 상기 음극 집전체에 도포, 압연, 건조하여 제조될 수 있다.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 음극 바인더 및 음극 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 음극 바인더, 증점제 및 음극 도전재에서 선택된 적어도 1종을 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70중량% 내지 90 중량%가 되도록 포함될 수 있다.
상기 음극의 배향 지수 I(004)/I(110)은 8.5 이하, 구체적으로는 4.0 내지 8.5일 수 있다. 상술한 범위에 있을 때 활물질들이 리튬 이온의 확산 경로를 최소화할 수 있도록 입자 배열될 수 있어, 급속 충전 성능이 향상될 수 있다. 상기 배향 지수의 달성은 전술한 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 상기 음극에 사용함에 의해 구현될 수 있다.
상기 배향 지수는 음극 내부의 결정 구조들이 일정 방향으로 배열되어 있는 정도를 나타내고, 결정이 전극 내에서 어떠한 방향으로 배향되어있는가를 평가할 수 있으며, X-선 회절(XRD)로 측정될 수 있다. 보다 구체적으로, 상기 배향지수는 음극에 포함된 음극 활물질의 (110)면과 (004)면을 XRD로 측정한 후 (110)면과 (004)면의 피크 강도를 적분하여 얻어진 면적비((004)/(110))이며, 더욱 구체적으로, XRD 측정 조건은 다음과 같다.
- 타겟: Cu(Kα 선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1㎜, 산란 슬릿 = 1도
- 측정 구역 및 스텝 각도/측정 시간:
(110) 면: 76.5 도 < 2θ< 78.5도, 0.01도 / 3초
(004) 면: 53.5 도 < 2θ< 56.0도, 0.01도 / 3초,
상기에서 2θ는 회절 각도를 나타낸다.
상기 XRD 측정은 하나의 예로서, 다른 측정 방법 또한 사용될 수 있다.
이차전지
또한, 본 발명은 전술한 음극을 포함하는 이차전지, 보다 구체적으로는 리튬 이차전지를 제공한다.
상기 이차전지는 전술한 음극; 상기 음극에 대향하는 양극; 상기 음극 및 상기 양극 사이에 개재되는 분리막; 및 전해질을 포함할 수 있다.
상기 양극은 양극 집전체; 및 상기 양극 집전체 상에 배치된 양극 활물질층을 포함할 수 있다.
상기 양극 집전체는 당분야에서 일반적으로 사용되는 음극 집전체가 제한 없이 사용될 수 있고, 예를 들면 이차전지의 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 예를 들면 상기 양극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 및 알루미늄-카드뮴 합금에서 선택된 적어도 1종, 바람직하게는 알루미늄을 포함할 수 있다.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가질 수 있다.
상기 양극 활물질층은 양극 활물질을 포함할 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물 (예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 상기 양극 활물질층 내에 80 중량% 내지 99중량%로 포함될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께 양극 바인더, 및 양극 도전재로 이루어진 군에서 선택된 적어도 1종을 더 포함할 수 있다.
상기 양극 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 양극 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 및 불소 고무로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 양극 바인더는 상기 양극 활물질층 내에 1중량% 내지 30중량%로 포함될 수 있다.
상기 양극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 양극 도전재는 상기 양극 활물질층 내에 1중량% 내지 30 중량%로 첨가될 수 있다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트, 에틸 아세테이트, 감마-부티로락톤, ε-카프로락톤 등의 에스테르계 용매; 디부틸 에테르 또는 히드로퓨란 등의 에테르계 용매; 시클로헥사논 등의 케톤계 용매; 벤젠, 플루오로벤젠 등의 방향족 탄화수소계 용매; 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기와 같이 본 발명에 따른 리튬 이차전지는 우수한 방전 용량, 급속 충전 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하며, 특히 중대형 전지모듈의 구성 전지로서 바람직하게 사용될 수 있다. 따라서, 본 발명은 또한 상기와 같은 이차전지를 단위 전지로 포함하는 중대형 전지모듈을 제공한다.
이러한 중대형 전지모듈은 전기자동차, 하이브리드 전기자동차, 전력저장장치 등과 같이 고출력, 대용량이 요구되는 동력원에 바람직하게 적용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
<음극 활물질의 제조>
실시예 1: 음극 활물질의 제조
황 함량이 2,009ppm이고, 진밀도가 1.4g/cc이고, 평균 입경(D50)이 11㎛인 그린 코크스 입자와 황 함량이 115ppm이고, 진밀도가 2.1g/cc이고, 평균 입경(D50)이 7㎛인 하소 코크스 입자와 석유계 핏치 바인더를 반응기에 투입하였다. 상기 그린 코크스 입자와 상기 하소 코크스 입자는 30:70의 중량비로 혼합되었다. 상기 핏치 바인더는 상기 그린 코크스 입자, 상기 하소 코크스 입자, 상기 석유계 핏치의 중량 총합 기준으로 7중량%로 혼합되었다. 상기 그린 코크스 입자, 상기 하소 코크스 입자, 및 상기 석유계 핏치 바인더를 3,000℃에서 50시간 동안 열처리하여 흑연화시킴으로써, 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 제조하였다. 이때, 상기 1차 인조흑연 입자들은 상기 그린 코크스 입자 및 상기 하소 코크스 입자로부터 유래된 것이다.
상기 2차 입자 형태의 인조흑연 입자 및 석유계 핏치를 혼합하고, 롤러 하스 킬른(Roller hearth kiln)에서 1,300℃로 열처리하여 상기 2차 입자 형태의 인조흑연 입자 상에 비정질 탄소 코팅층을 형성하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.13g/cc이며, 평균 입경(D50)은 18㎛이었다. 상기 비정질 탄소 코팅층은 상기 음극 활물질의 중량 기준 3.5중량%로 형성되었다.
이때, 탭 밀도는 상기 음극 활물질 40g을 용기에 충전한 후, 1,000회 위 아래로 진동시켜 얻어지는 최종 부피를 측정하여 겉보기 밀도를 측정함에 의해 구하였다.
실시예 2: 음극 활물질의 제조
상기 그린 코크스 입자 및 상기 하소 코크스 입자를 70:30의 중량비로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.15g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 1: 음극 활물질의 제조
코크스입자로서 하소 코크스 입자를 사용하지 않고, 그린 코크스 입자만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.05g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 2: 음극 활물질의 제조
코크스입자로서 그린 코크스 입자를 사용하지 않고, 하소 코크스 입자만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 0.87g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 3: 음극 활물질의 제조
바인더를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.18g/cc이며, 평균 입경(D50)은 12㎛이었다.
비교예 4: 음극 활물질의 제조
비교예 1에서 제조된 음극 활물질과 비교예 2에서 제조된 음극 활물질을 30:70의 중량비로 혼합하여 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 0.98g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 5: 음극 활물질의 제조
비교예 1에서 제조된 음극 활물질과 비교예 2에서 제조된 음극 활물질을 70:30의 중량비로 혼합하여 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.04g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 6: 음극 활물질의 제조
그린 코크스 입자로서 황 함량이 2,009ppm이고, 진밀도가 1.4g/cc이고, 평균 입경(D50)이 7㎛인 것을 준비하였다. 하소 코크스 입자로서 황 함량이 115ppm이고, 진밀도가 2.1g/cc이고, 평균 입경(D50)이 11㎛인 것을 준비하였다.
상기 그린 코크스 입자 및 하소 코크스 입자를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.02g/cc이며, 평균 입경(D50)은 18㎛이었다.
비교예 7: 음극 활물질의 제조
그린 코크스 입자로서 황 함량이 2,009ppm이고, 진밀도가 1.4g/cc이고, 평균 입경(D50)이 9㎛인 것을 준비하였다. 하소 코크스 입자로서 황 함량이 115ppm이고, 진밀도가 2.1g/cc이고, 평균 입경(D50)이 9㎛인 것을 준비하였다.
상기 그린 코크스 입자 및 하소 코크스 입자를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
상기에서 제조된 음극 활물질의 탭 밀도는 1.05g/cc이며, 평균 입경(D50)은 18㎛이었다.
<음극의 제조>
실시예 1에서 제조된 음극 활물질, 도전재로서 카본블랙, 바인더로서 스티렌-부타디엔 고무, 및 증점제로서 카르복시메틸셀룰로오스를 95.9:0.5:2.5:1.1의 중량비로 혼합하고, 물을 첨가하여 음극 슬러리를 제조하였다.
상기 음극 슬러리를 구리 음극 집전체(두께: 15㎛)에 도포하고, 약 130℃에서 8시간 동안 진공 건조 및 압연하여 음극 활물질층(두께: 55㎛)을 형성하여 실시예 1의 음극을 제조하였다. 이때 음극의 로딩은 3.3mAh/cm2이 되도록 제조하였다.
실시예 2, 및 비교예 1 내지 7에서 제조된 음극 활물질을 각각 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2, 및 비교예 1~7의 음극을 제조하였다.
실시예 및 비교예들의 음극의 배향지수는 (004)면과 (110)면을 XRD로 측정하고, 각각의 측정된 XRD 피크를 적분하여 얻어진 면적비 I(004)/I(110)로 얻어졌다. XRD 측정 조건은 아래와 같다. 그 결과를 하기 표 1에 나타낸다.
- 타겟: Cu(Kα 선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1㎜, 산란 슬릿 = 1도
- 측정 구역 및 스텝 각도/측정 시간:
(110) 면: 76.5 도 < 2θ< 78.5도, 0.01도 / 3초
(004) 면: 53.5 도 < 2θ< 56.0도, 0.01도 / 3초
음극의 배향지수 (I(004)/I(110))
실시예 1 8
실시예 2 8
비교예 1 9
비교예 2 15
비교예 3 22
비교예 4 13
비교예 5 11
비교예 6 18
비교예 7 15
실험예
실험예 1: 접착력 평가
실시예 1의 음극을 20mm×150mm의 크기로 타발하고, 25mm×75mm 슬라이드 글라스 중앙부에 양면 테이프를 사용하여 고정시킨 후, UTM(제조사: LLOYD Instrument LTD., 기기명: LF Plus)를 사용하여 음극 집전체로부터 음극 활물질층을 벗겨 내면서 90도 벗김 강도를 측정하였다. 실시예 1의 음극을 동일한 것으로 5개 준비하여, 동일한 방법으로 5회의 90도 벗김 강도를 측정하였으며, 이의 평균 값을 실시예 1의 음극의 접착력(단위: gf/10mm)으로 하였다.
실시예 1의 경우와 동일한 방법으로 실시예 2, 및 비교예 1 내지 7의 90도 벗김 강도를 측정하였다. 그 결과를 하기 표 2에 나타낸다.
실험예 2: 급속 충전 성능 평가
<이차전지의 제조>
양극으로서 리튬 금속 대극을 준비하였다.
실시예 1~4, 비교예 1~4에서 제조된 각각의 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 전해액을 주입하여 실시예 및 비교예들의 이차전지를 제조하였다. 상기 전해액은 에틸렌 카보네이트(EC)와 에틸 메틸 카보네이트(EMC)를 2:8의 부피비로 혼합한 비수 전해액 용매에 비닐렌 카보네이트(VC)를 용매에 대하여 0.5중량%로 첨가하고, LiPF6를 1M로 용해시킨 것을 사용하였다.
<급속 충전 성능 평가>
상기에서 제조된 이차전지를 사용하여, 상기 이차전지를 1C로 3사이클 동안 충방전 후, 3C로 15분간 충전하여 그 프로필을 1차 미분하였다. 이 때 dQ/dV에서 나타나는 변곡점을 확인하여 음극 표면에 리튬 석출이 일어나는 시점의 SOC인 리튬 플레이팅 SOC(Li-Plating SOC, %)를 정량화하였다. 그 결과를 하기 표 2에 나타내었다.
실험예 1 실험예 2
접착력(단위: gf/10mm) Li-Plating SOC(%)
실시예 1 24 45
실시예 2 25 43
비교예 1 22 39
비교예 2 12 43
비교예 3 10 25
비교예 4 16 41
비교예 5 20 40
비교예 6 18 39
비교예 7 20 40
표 2를 참조하면, 실시예 1 및 실시예 2의 음극 및 이차전지는 비교예 1 내지 7의 음극 및 이차전지에 비해 음극 접착력 및 급속 충전 성능이 동시에 향상될 수 있는 것을 확인할 수 있다.

Claims (15)

  1. 그린 코크스 입자, 하소 코크스 입자 및 바인더를 혼합하는 단계; 및
    상기 혼합물을 열처리하여 흑연화시킴으로써 1차 인조흑연 입자들이 서로 결합된 2차 입자 형태의 인조흑연 입자를 형성하는 단계;를 포함하고,
    상기 그린 코크스 입자의 평균 입경(D50)은 상기 하소 코크스 입자의 평균 입경(D50)에 비해 큰 것을 특징으로 하는 음극 활물질의 제조방법.
  2. 청구항 1에 있어서,
    상기 그린 코크스 입자의 평균 입경(D50)은 9㎛ 내지 15㎛이고,
    상기 하소 코크스 입자의 평균 입경(D50)은 3㎛ 내지 8㎛인 음극 활물질의 제조방법.
  3. 청구항 1에 있어서,
    상기 그린 코크스 입자의 평균 입경(D50) 대비 상기 하소 코크스 입자의 평균 입경(D50)의 비율은 0.3 이상 1 미만인 음극 활물질의 제조방법.
  4. 청구항 1에 있어서,
    상기 그린 코크스 입자의 진밀도는 1.20g/cc 내지 1.60g/cc인 음극 활물질의 제조방법.
  5. 청구항 1에 있어서,
    상기 하소 코크스 입자의 진밀도는 1.80g/cc 내지 2.25g/cc인 음극 활물질의 제조방법.
  6. 청구항 1에 있어서,
    상기 그린 코크스 입자는 황(S)을 1,000ppm 내지 5,000ppm으로 포함하는 음극 활물질의 제조방법.
  7. 청구항 1에 있어서,
    상기 하소 코크스 입자는 황(S)을 50ppm 내지 1,000ppm으로 포함하는 음극 활물질의 제조방법.
  8. 청구항 1에 있어서,
    상기 그린 코크스 입자 및 상기 하소 코크스 입자는 10:90 내지 90:10의 중량비로 혼합되는 음극 활물질의 제조방법.
  9. 청구항 1에 있어서,
    상기 바인더는 상기 그린 코크스 입자, 상기 하소 코크스 입자 및 상기 바인더의 중량의 총합 기준 1중량% 내지 10중량%로 혼합되는 음극 활물질의 제조방법.
  10. 청구항 1에 있어서,
    상기 열처리는 2,500℃ 내지 3,500℃에서 수행되는 음극 활물질의 제조방법.
  11. 청구항 1에 있어서,
    상기 열처리는 40 시간 내지 60 시간 동안 수행되는 음극 활물질의 제조방법.
  12. 음극 집전체; 및
    상기 음극 집전체의 적어도 일면에 배치되는 음극 활물질층;을 포함하고,
    상기 음극 활물질층은 청구항 1에 따른 음극 활물질의 제조방법으로부터 제조된 음극 활물질을 포함하는 음극.
  13. 청구항 12에 있어서,
    상기 음극 활물질의 탭 밀도는 1.08g/cc 내지 1.17g/cc인 음극.
  14. 청구항 12에 있어서,
    상기 음극의 배향 지수 I(004)/I(110)는 8.5 이하인 음극.
  15. 청구항 12에 따른 음극;
    상기 음극에 대향하는 양극;
    상기 음극 및 상기 양극 사이에 개재되는 분리막; 및
    전해질;을 포함하는 이차전지.
PCT/KR2022/013367 2021-09-10 2022-09-06 음극 활물질의 제조방법, 음극 및 이차전지 WO2023038402A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22867671.4A EP4357301A1 (en) 2021-09-10 2022-09-06 Method for preparing negative electrode active material, negative electrode, and secondary battery
CN202280048903.XA CN117651691A (zh) 2021-09-10 2022-09-06 负极活性材料的制备方法、负极和二次电池
CA3227003A CA3227003A1 (en) 2021-09-10 2022-09-06 Method for preparing negative electrode active material, and negative electrode and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0121303 2021-09-10
KR1020210121303A KR20230038049A (ko) 2021-09-10 2021-09-10 음극 활물질의 제조방법, 음극 및 이차전지

Publications (1)

Publication Number Publication Date
WO2023038402A1 true WO2023038402A1 (ko) 2023-03-16

Family

ID=85507449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013367 WO2023038402A1 (ko) 2021-09-10 2022-09-06 음극 활물질의 제조방법, 음극 및 이차전지

Country Status (5)

Country Link
EP (1) EP4357301A1 (ko)
KR (1) KR20230038049A (ko)
CN (1) CN117651691A (ko)
CA (1) CA3227003A1 (ko)
WO (1) WO2023038402A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403327B2 (ja) 1999-07-05 2010-01-27 ソニー株式会社 リチウムイオン二次電池負極用黒鉛粉末およびその製造方法、ならびにリチウムイオン二次電池
KR101173673B1 (ko) * 2011-05-09 2012-08-13 전자부품연구원 리튬 이온 커패시터용 탄소계 음극 재료 및 그의 제조 방법
JP6135680B2 (ja) * 2013-01-11 2017-05-31 日本電気株式会社 リチウムイオン二次電池
KR20190019430A (ko) * 2017-08-17 2019-02-27 주식회사 포스코 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200076504A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 리튬 이차전지용 음극 활물질의 제조방법
KR20200136335A (ko) * 2020-11-17 2020-12-07 주식회사 포스코 리튬 이차 전지용 음극 활물질 및 이의 제조방법 및 이를 이용하여 제조된 음극을 포함하는 리튬 이차 전지
KR20210121303A (ko) 2018-07-17 2021-10-07 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 역방향 충전 기기, 역방향 충전 전류의 조절 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403327B2 (ja) 1999-07-05 2010-01-27 ソニー株式会社 リチウムイオン二次電池負極用黒鉛粉末およびその製造方法、ならびにリチウムイオン二次電池
KR101173673B1 (ko) * 2011-05-09 2012-08-13 전자부품연구원 리튬 이온 커패시터용 탄소계 음극 재료 및 그의 제조 방법
JP6135680B2 (ja) * 2013-01-11 2017-05-31 日本電気株式会社 リチウムイオン二次電池
KR20190019430A (ko) * 2017-08-17 2019-02-27 주식회사 포스코 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20210121303A (ko) 2018-07-17 2021-10-07 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 역방향 충전 기기, 역방향 충전 전류의 조절 방법 및 장치
KR20200076504A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 리튬 이차전지용 음극 활물질의 제조방법
KR20200136335A (ko) * 2020-11-17 2020-12-07 주식회사 포스코 리튬 이차 전지용 음극 활물질 및 이의 제조방법 및 이를 이용하여 제조된 음극을 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
KR20230038049A (ko) 2023-03-17
CA3227003A1 (en) 2023-03-16
EP4357301A1 (en) 2024-04-24
CN117651691A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019194554A1 (ko) 리튬 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 음극, 및 리튬 이차전지
WO2019164347A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
WO2020149679A1 (ko) 리튬 이차전지 및 이의 제조방법
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020036392A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2020141953A1 (ko) 이차전지용 음극 활물질, 이를 포함하는 전극 및 이의 제조방법
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022119157A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022867671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3227003

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022867671

Country of ref document: EP

Effective date: 20240117