WO2023037611A1 - 駆動装置、駆動方法及び発光装置 - Google Patents

駆動装置、駆動方法及び発光装置 Download PDF

Info

Publication number
WO2023037611A1
WO2023037611A1 PCT/JP2022/010593 JP2022010593W WO2023037611A1 WO 2023037611 A1 WO2023037611 A1 WO 2023037611A1 JP 2022010593 W JP2022010593 W JP 2022010593W WO 2023037611 A1 WO2023037611 A1 WO 2023037611A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
control signal
light emitting
limiting element
light
Prior art date
Application number
PCT/JP2022/010593
Other languages
English (en)
French (fr)
Inventor
卓 鎌田
耕司 森
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023037611A1 publication Critical patent/WO2023037611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to a driving device, a driving method, and a light emitting device.
  • a driving device has been proposed that appropriately drives a light-emitting element used as a light source.
  • a driving device has been proposed that includes a light receiving element that receives part of the light emitted from the light emitting element and that sets a target current for setting the emitted light to a desired intensity.
  • This driving device controls the driving current of the light emitting element based on the set target current.
  • the light emitting element of this driving device is driven by a MOS transistor that supplies a constant current to the light emitting element.
  • a gate voltage corresponding to the target current is applied to the MOS transistor during the period in which the light emitting element is caused to emit light, and a drive current flows through the light emitting element, thereby controlling the light emission intensity to a desired level.
  • the conventional technology described above has a problem that the light emission intensity changes when the gate voltage of the MOS transistor that supplies the drive current to the light emitting element changes.
  • the present disclosure proposes a driving device, a driving method, and a light emitting device that stabilize a control signal for an element that supplies a driving current to the light emitting element.
  • a drive device includes a switch element connected in series with a light emitting element to allow a drive current to flow during a light emission period, and a current limiter connected in series to the switch element to limit the drive current to a set current value.
  • a current-limiting element controller that generates a current control signal corresponding to the set current value and supplies it to a control terminal of the current-limiting element; and detects a change in the current control signal during the light emission period. and a detection unit for adjusting the current limiting element control unit.
  • FIG. 1 is a diagram showing a configuration example of a light emitting device according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram showing a configuration example of a light emission control section and a control signal output section according to an embodiment of the present disclosure
  • 4 is a diagram illustrating a configuration example of a detection unit according to an embodiment of the present disclosure
  • FIG. [0014] Figure 4 illustrates an example of adjustment of a current control signal according to an embodiment of the present disclosure
  • FIG. 4 is a diagram illustrating an example of a driving method according to an embodiment of the present disclosure
  • FIG. 1 is a diagram illustrating a configuration example of a distance measuring device to which technology according to the present disclosure may be applied;
  • Embodiments of the present disclosure will be described in detail below with reference to the drawings. The explanation is given in the following order. In addition, in each of the following embodiments, the same parts are denoted by the same reference numerals, thereby omitting redundant explanations. 1.
  • FIG. 1 is a diagram showing a configuration example of a light emitting device according to an embodiment of the present disclosure. This figure is a diagram showing a configuration example of the light emitting device 100 .
  • the light-emitting device 100 is a device that includes a light-emitting element and a drive circuit for the light-emitting element and emits light.
  • Light emitting device 100 includes light emitting element 101, switch element 103, current limiting element 102, light receiving element 104, resistor 105, setting section 110, light emission control section 120, control signal output section 130, and detection section. 140.
  • the light emitting element 101 is an element that emits light.
  • a laser diode for example, can be used for the light emitting element 101 .
  • a light emitting element 101 shown in the figure has an anode connected to a power line Vdd for supplying power, and a cathode connected to a drain of a current limiting element 102 .
  • the current limiting element 102 is connected in series with the light emitting element 101 and limits the drive current flowing through the light emitting element 101 during the light emitting period to a set current value.
  • the drive current is a current that causes the light emitting element 101 to emit light with a desired intensity.
  • the current limiting element 102 is an element that drives the light emitting element 101 with a constant current.
  • a MOS transistor for example, can be applied to the current limiting element 102 .
  • the switch element 103 is an element that allows a drive current to flow during the light emission period.
  • a switch element 103 in the figure has a drain connected to the source of the current limiting element 102 and a source grounded. Thus, the switch element 103 is connected in series with the light emitting element 101 via the current limiting element 102 .
  • a MOS transistor for example, can be applied to the switch element 103 .
  • the light receiving element 104 is an element that receives light from the light emitting element 101 and outputs a light receiving current.
  • the resistor 105 is an element that is connected in series with the light receiving element 104 and generates a voltage corresponding to the light receiving current of the light receiving element 104 .
  • the setting unit 110 sets the driving current value of the light emitting element 101 based on the output of the light receiving element 104 .
  • the drive current set value is output to the light emission control section 120 .
  • the light emission control section 120 generates a current control signal corresponding to the set value of the drive current and supplies it to the control terminal of the current limiting element 102 .
  • the gate is the control terminal.
  • a light emission control unit 120 in the figure supplies a current control signal to the current limiting element 102 via a control signal output unit 130 .
  • the light emission control section 120 outputs a reference current of a current mirror circuit, which will be described later, to the control signal output section 130 as a current control signal.
  • the light emission control section 120 further outputs a control signal for controlling the control signal output section 130 .
  • the light emission control unit 120 also generates and outputs a drive signal for the switch element 103 .
  • the light emission control section 120 also generates and outputs a control signal for the detection section 140 . Details of the configuration of the light emission control unit 120 will be described later.
  • the light emission control section 120 is an example of the current limiting element control section described in the claims.
  • the control signal output unit 130 forms a current mirror circuit together with the current limiting element 102, and supplies the gate voltage of the current mirror circuit to the current limiting element 102 as a current control signal.
  • the detection unit 140 detects changes in the current control signal during the light emission period.
  • a detection unit 140 in the figure detects a change in the gate voltage output from the control signal output unit 130 .
  • a detection result of the detection unit 140 is output to the light emission control unit 120 . Based on this detection result, the light emission control section 120 adjusts the current control signal.
  • FIG. 2 is a diagram illustrating a configuration example of a light emission control unit and a control signal output unit according to an embodiment of the present disclosure; This figure is a circuit diagram showing a configuration example of the light emission control section 120 and the control signal output section 130 .
  • the light emission control unit 120 in the figure includes a control unit 121 and a constant current source 122 .
  • the constant current source 122 generates and outputs a reference current for the current mirror circuit under the control of the control section 121 .
  • the control section 121 sets the reference current of the constant current source 122 based on the set value of the driving current input from the setting section 110 .
  • the control unit 121 also generates and outputs control signals for the control signal output unit 130 and the switch element 103 .
  • the control signal of the control signal output section 130 is transmitted through signal lines 202 and 203 .
  • a control signal for the switch element 103 is transmitted through the signal line 201 .
  • control unit 121 further generates and outputs control signals for the detection unit 140 . Further, the control unit 121 further adjusts the reference current and the control signal to the control signal output unit 130 based on the detection result of the detection unit 140 .
  • the control signal output unit 130 includes MOS transistors 131 to 136. N-channel MOS transistors can be used for the MOS transistors 131 to 136 .
  • the drain and gate of the MOS transistor 131 , the drain and gate of the MOS transistor 133 and the drain and gate of the MOS transistor 135 are commonly connected to the signal line 200 .
  • the source of MOS transistor 131 is connected to the drain of MOS transistor 132 .
  • the MOS transistor 132 has a gate connected to the power supply line Vdd and a source grounded.
  • the source of MOS transistor 133 is connected to the drain of MOS transistor 134 .
  • MOS transistor 134 has a gate connected to signal line 202 and a source grounded.
  • MOS transistor 135 The source of MOS transistor 135 is connected to the drain of MOS transistor 136 .
  • MOS transistor 136 has a gate connected to signal line 203 and a source grounded. Also, the signal line 200 is connected to the gate of the current limiting element 102 and the detection section 140 .
  • MOS transistors 131, 133 and 135 connected in parallel and the current limiting element 102 form a current mirror circuit.
  • This current becomes the drive current for the light emitting element 101 .
  • MOS transistors 132, 134 and 136 are switches that connect MOS transistors 131, 133 and 135 to the current mirror circuit, respectively. By switching the conduction and non-conduction of the MOS transistors 131, 133 and 135, the current mirror ratio of the current mirror circuit can be changed. It should be noted that the MOS transistor 132 is always in a conductive state in FIG.
  • the current mirror ratio when the MOS transistor 132 is conducting and the MOS transistors 134 and 136 are non-conducting can be set to 1:200, for example. In this case, the current mirror ratio is the highest.
  • a drive current that is 200 times the reference current flows through the current limiting element 102 .
  • the current mirror ratio when the MOS transistors 131, 133 and 135 are conductive can be, for example, 3:200.
  • the current mirror ratio can be changed to a desired value by adjusting the channel width and channel length of the MOS transistors 131, 133 and 135.
  • control section 121 can adjust the drive current of the current limiting element 102 by adjusting the reference current and the control signal of the control signal output section 130 .
  • FIG. 3 is a diagram illustrating a configuration example of a detection unit according to an embodiment of the present disclosure; This figure is a block diagram showing a configuration example of the detection unit 140 .
  • the detection section 140 includes an amplifier 141 , an S/H section 142 , an AD conversion section 143 and a difference detection section 144 .
  • the amplifier 141 has an input terminal connected to the aforementioned signal line 200 and amplifies the current limiting signal. This amplifier 141 is used as a buffer. The output of amplifier 141 is connected to S/H section 142 .
  • the S/H section 142 takes in and holds the current control signal amplified by the amplifier 141 at a predetermined timing.
  • the held current control signal is output to the AD converter 143 .
  • the S/H unit 142 can take in and hold the current control signal twice during the light emission period.
  • the AD conversion section 143 converts the current control signal held by the S/H section 142 into a digital signal.
  • the converted digital current control signal is output to the difference detection section 144 .
  • the difference detection section 144 detects the difference between the two current control signals held by the S/H section 142 . This difference corresponds to the amount of change in the current control signal during the light emission period. The detected difference is output to the controller 121 as the detection result of the detector 140 .
  • the control unit 121 adjusts the reference current and the control signal of the control signal output unit 130 so as to reduce the difference in the current control signal, which is the detection result of the detection unit 140 .
  • Adjustment of the control signal of the control signal output unit 130 corresponds to adjustment of the timing and pulse width of the control signal, for example.
  • FIG. 4 is a diagram illustrating an example of adjusting a current control signal according to an embodiment of the present disclosure.
  • This figure is a diagram showing an example of the adjustment of the current control signal by the control unit 121.
  • Signal line 201 represents the ON voltage of the MOS transistor.
  • This on-voltage is a voltage that exceeds the threshold of the gate-drain voltage Vgs that makes the MOS transistor conductive.
  • the value "0" represents the off-voltage of the MOS transistor.
  • a “signal line 200” represents the waveform of the current control signal on the signal line 200.
  • FIG. This corresponds to the gate voltage of current limiting element 102 .
  • Drive current represents the waveform of the drive current for the light emitting element 101 .
  • the current control signal has a relatively high voltage during the non-light emitting period. This is because the MOS transistor 132 of FIG. 2 is conducting.
  • the gate voltage of the current limiting element 102 can be adjusted to, for example, 1.3 V during the non-light emitting period and 1.0 V during the light emitting period.
  • the left side of the figure shows an example in which the switch element 103, the MOS transistor 134, and the MOS transistor 136 in FIG. 2 are simultaneously turned on during the light emission period.
  • the voltage (current control signal) of the signal line 200 has a waveform that gradually decreases during the light emission period. In this case, a sag occurs in the driving current, and the emission intensity of the light emitting element 101 fluctuates.
  • S1 and S2 in the figure represent the timing of capturing the current control signal by the detection unit 140 described in FIG.
  • the detection unit 140 detects the difference between the current control signals at “S1” and “S2” and outputs it to the control unit 121 .
  • the detection unit 140 can detect the difference between the current control signals at the beginning and end of the light emission period.
  • the right side of the figure shows an example in which a constant-on voltage is applied to the signal line 202 to make the MOS transistor 134 conductive.
  • the current control signal for the current limiting element 102 can have a flat waveform, and fluctuations in the drive current can be reduced.
  • FIG. 5 is a diagram showing an example of a driving method according to an embodiment of the present disclosure. This figure is a flow chart showing an example of a method for driving the light emitting device 100 .
  • the setting unit 110 sets the drive current based on the received light current (step S100).
  • the control unit 121 generates a current control signal based on the set current value (step S101).
  • the control unit 121 outputs control signals for the current limiting element 102 and the switching element 103 to cause the light emitting element 101 to start emitting light (step S102).
  • the detection unit 140 detects changes in the current control signal (step S103). This can be done by detecting the difference in the current control signals.
  • control unit 121 stops the light emission of the light emitting element 101 (step S104).
  • control unit 121 compares the detection result from the detection unit 140 with a predetermined threshold (step S105). As a result, when the detection result is equal to or less than the threshold value (step S105, Yes), the process proceeds to step S106. On the other hand, if the detection result is not equal to or less than the threshold value (step S105, No), the current control signal is adjusted (step S107), and the process proceeds to step S102.
  • the control unit 121 holds the current control signal (step S106). This can be done by storing the setting of the reference current for outputting the current control signal and the setting of the control signal of the control signal output section 130 .
  • the light-emitting device 100 of the embodiment of the present disclosure detects changes in the current control signal of the current limiting element 102 during the light emission period, and adjusts the current control signal based on the detection result. As a result, the current control signal can be stabilized, and fluctuations in the light emission intensity of the light emitting element 101 can be reduced.
  • the light emitting device 100 of the above embodiment can be applied to various products. An example in which the light emitting device 100 is applied to a distance measuring device will be described.
  • FIG. 6 is a diagram showing a configuration example of a distance measuring device to which the technology according to the present disclosure can be applied.
  • This figure is a block diagram showing a configuration example of the distance measuring device 800 .
  • Distance measuring device 800 includes photodetector 813 , control device 810 , light source device 811 , and photographing lens 812 . This distance measuring device 800 performs distance measurement for measuring the distance to an object. In the figure, an object 809 is also shown.
  • the light source device 811 emits light.
  • the light source device 811 irradiates the object 809 with emitted light 801 during distance measurement.
  • the light source device 811 can use, for example, a light-emitting diode that emits infrared light.
  • a photographing lens 812 is a lens that converges light from an object 809 onto a photodetector 813 .
  • the photodetector 813 measures the distance to the object 809 by detecting the reflected light 802 from the object 809 .
  • the photodetector 813 includes a sensor that detects the reflected light 802 and a processing circuit that performs distance measurement. In this distance measurement processing, the time from the emission of the emitted light 801 by the light source device 811 to the detection of the reflected light 802 is measured, and based on the measured time from the emission of the emitted light 801 to the detection of the reflected light 802, the object is measured. 809 is the process of measuring the distance. The measured distance to the object 809 is output to an external device as distance data.
  • the control device 810 controls the entire distance measuring device 800 .
  • the control device 810 controls the light source device 811 to emit the emitted light 801 and controls the photodetector device 813 to start timing and perform distance measurement.
  • the light emitting device 100 in FIG. 1 can be applied to the light source device 811 in FIG.
  • the present technology can also take the following configuration.
  • a switch element that is connected in series with the light emitting element and causes a drive current to flow during the light emitting period; a current limiting element connected in series with the switch element to limit the drive current to a set current value; a current limiting element control unit that generates a current control signal corresponding to the set current value and supplies it to a control terminal of the current limiting element; and a detection unit that detects a change in the current control signal during the light emission period and causes the current limiting element control unit to adjust the current control signal.
  • the current limiting element is a MOS transistor having a gate as the control terminal.
  • (3) further comprising a control signal output unit forming a current mirror circuit with the current limiting element,
  • the control signal output unit supplies the gate voltage of the current mirror circuit as the current control signal to the current limiting element
  • the current limiting element control section supplies the reference current in the current mirror circuit corresponding to the set current to the control signal output section and adjusts the reference current based on the detection result of the detection section.
  • the drive device according to . (4) The drive device according to (3), wherein the current limiting element control section further adjusts the current mirror ratio of the control signal output section based on the detection result of the detection section.
  • the control signal output unit includes a plurality of MOS transistors for shunting the reference current;
  • the detection unit detects a difference between the current control signal at the beginning and the end of the light emission period as a change in the current control signal.
  • a drive device passing a drive current through a switch element connected in series with a light emitting element during a light emitting period; generating a current control signal according to the set current value; supplying the current control signal to a control terminal of a current limiting device connected in series with the switch device to limit the drive current to a set current value; and adjusting the current limit signal by detecting a change in the current control signal during the light emitting period.
  • a light emitting element a current setting unit for setting a current value of the light emitting element based on the output of a light receiving element that receives light from the light emitting element; and a switch element connected in series with the light emitting element to supply a drive current during the light emission period.
  • a current limiting element connected in series with the switch element to limit the drive current to the set current value; a current limiting element control unit that generates a current control signal corresponding to the set current value and supplies it to a control terminal of the current limiting element; and a detection unit that detects a change in the current control signal during the light emission period and causes the current limiting element control unit to make an adjustment.
  • REFERENCE SIGNS LIST 100 light emitting device 101 light emitting element 102 current limiting element 103 switch element 104 light receiving element 110 setting section 120 light emission control section 121 control section 130 control signal output section 131 to 136 MOS transistor 140 detection section 144 difference detection section 800 distance measuring device

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Electronic Switches (AREA)

Abstract

発光素子に駆動電流を供給する素子の制御信号を安定化する。駆動装置は、スイッチ素子と、電流制限素子と、電流制限素子制御部と、検出部とを有する。スイッチ素子は、発光素子と直列に接続されて発光期間に駆動電流を流す。電流制限素子は、スイッチ素子に直列に接続されて駆動電流を設定された電流値に制限する。電流制限素子制御部は、設定された電流値に応じた電流制御信号を生成して電流制限素子の制御端子に供給する。検出部は、発光期間に電流制御信号の変化を検出して電流制限素子制御部に調整させる。

Description

駆動装置、駆動方法及び発光装置
 本開示は、駆動装置、駆動方法及び発光装置に関する。
 光源として使用する発光素子を適切に駆動する駆動装置が提案されている。例えば、発光素子からの出射光の一部を受光する受光素子を備えて出射光を所望の強度に設定するためのターゲット電流を設定する駆動装置が提案されている。この駆動装置は、設定したターゲット電流に基づいて発光素子の駆動電流を制御する。この駆動装置の発光素子は、発光素子に定電流を供給するMOSトランジスタにより駆動される。発光素子を発光させる期間にターゲット電流に応じたゲート電圧が上記MOSトランジスタに印加されて発光素子に駆動電流が流れ、所望の発光強度に制御される。
特開2019-041201号公報
 しかしながら、上記の従来技術では、発光素子に駆動電流を供給するMOSトランジスタのゲート電圧が変化した場合に発光強度が変化するという問題がある。
 そこで、本開示では、発光素子に駆動電流を供給する素子の制御信号を安定化する駆動装置、駆動方法及び発光装置を提案する。
 本開示に係る駆動装置は、発光素子と直列に接続されて発光期間に駆動電流を流すスイッチ素子と、上記スイッチ素子に直列に接続されて上記駆動電流を設定された電流値に制限する電流制限素子と、上記設定された電流値に応じた電流制御信号を生成して上記電流制限素子の制御端子に供給する電流制限素子制御部と、上記発光期間に上記電流制御信号の変化を検出して上記電流制限素子制御部に調整させる検出部とを有する。
本開示の実施形態に係る発光装置の構成例を示す図である。 本開示の実施形態に係る発光制御部及び制御信号出力部の構成例を示す図である。 本開示の実施形態に係る検出部の構成例を示す図である。 本開示の実施形態に係る電流制御信号の調整の一例を示す図である。 本開示の実施形態に係る駆動方法の一例を示す図である。 本開示に係る技術が適用され得る測距装置の構成例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。説明は、以下の順に行う。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
1.実施形態
2.測距装置への応用例
 (1.実施形態)
 [発光装置の構成]
 図1は、本開示の実施形態に係る発光装置の構成例を示す図である。同図は、発光装置100の構成例を表す図である。発光装置100は、発光素子と発光素子の駆動回路を備えて光を照射する装置である。発光装置100は、発光素子101と、スイッチ素子103と、電流制限素子102と、受光素子104と、抵抗105と、設定部110と、発光制御部120と、制御信号出力部130と、検出部140とを備える。
 発光素子101は、光を出射する素子である。この発光素子101には、例えばレーザーダイオードを使用することができる。同図の発光素子101は、電源を供給する電源線Vddにアノードが接続され、カソードが電流制限素子102のドレインに接続される。
 電流制限素子102は、発光素子101と直列に接続されて発光期間に発光素子101に流れる駆動電流を設定された電流値に制限するものである。ここで、駆動電流は、発光素子101を所望の強度に発光させる電流である。また、この電流制限素子102は、発光素子101を定電流駆動する素子である。この電流制限素子102には、例えば、MOSトランジスタを適用することができる。
 スイッチ素子103は、発光期間に駆動電流を流す素子である。同図のスイッチ素子103は、ドレインが電流制限素子102のソースに接続され、ソースが接地される。このように、スイッチ素子103は、電流制限素子102を介して発光素子101と直列に接続される。このスイッチ素子103には、例えば、MOSトランジスタを適用することができる。
 受光素子104は、発光素子101からの光を受光して受光電流を出力する素子である。同図の受光素子104は、カソードが電源線Vddに接続され、アノードが抵抗105に接続される。
 抵抗105は、受光素子104と直列に接続されて受光素子104の受光電流に応じた電圧を生成する素子である。
 設定部110は、受光素子104の出力に基づいて発光素子101の駆動電流値を設定するものである。駆動電流の設定値は、発光制御部120に対して出力される。
 発光制御部120は、駆動電流の設定値に応じた電流制御信号を生成して電流制限素子102の制御端子に供給するものである。電流制限素子102にMOSトランジスタを使用する場合、ゲートが制御端子となる。同図の発光制御部120は、制御信号出力部130を介して電流制御信号を電流制限素子102に供給する。発光制御部120は、後述するカレントミラー回路の参照電流を電流制御信号として制御信号出力部130に出力する。また、発光制御部120は、制御信号出力部130を制御する制御信号を更に出力する。また、発光制御部120は、スイッチ素子103の駆動信号を生成して出力する。また、発光制御部120は、検出部140の制御信号を生成して出力する。発光制御部120の構成の詳細については後述する。なお、発光制御部120は、請求の範囲に記載の電流制限素子制御部の一例である。
 制御信号出力部130は、電流制限素子102とカレントミラー回路を構成し、カレントミラー回路のゲート電圧を電流制御信号として電流制限素子102に供給するものである。
 検出部140は、発光期間に電流制御信号の変化を検出するものである。同図の検出部140は、制御信号出力部130から出力されるゲート電圧の変化を検出する。検出部140の検出結果は、発光制御部120に出力される。この検出結果に基づいて発光制御部120は電流制御信号を調整する。
 なお、同図の設定部110、発光制御部120、制御信号出力部130、検出部140、スイッチ素子103及び電流制限素子102の回路は、請求の範囲に記載の駆動装置の一例である。
 [発光制御部及び制御信号出力部の構成]
 図2は、本開示の実施形態に係る発光制御部及び制御信号出力部の構成例を示す図である。同図は、発光制御部120及び制御信号出力部130の構成例を表す回路図である。
 同図の発光制御部120は、制御部121と、定電流源122とを備える。
 定電流源122は、制御部121の制御に基づいてカレントミラー回路の参照電流を生成して出力するものである。同図の定電流源122は、吐き出し電流の参照電流を信号線200に対して出力する。
 制御部121は、設定部110から入力される駆動電流の設定値に基づいて定電流源122の参照電流を設定するものである。また、制御部121は、制御信号出力部130及びスイッチ素子103の制御信号を生成し、出力する。同図に表したように、制御信号出力部130の制御信号は、信号線202及び203により伝達される。また、スイッチ素子103の制御信号は、信号線201により伝達される。
 後述するように、制御部121は、検出部140の制御信号を更に生成し、出力する。また、制御部121は、検出部140の検出結果に基づいて上述の参照電流の調整や制御信号出力部130への制御信号の調整を更に行う。
 制御信号出力部130は、MOSトランジスタ131乃至136を備える。MOSトランジスタ131乃至136には、nチャネルMOSトランジスタを使用することができる。MOSトランジスタ131のドレイン及びゲート、MOSトランジスタ133のドレイン及びゲート並びにMOSトランジスタ135のドレイン及びゲートは、信号線200に共通に接続される。MOSトランジスタ131のソースは、MOSトランジスタ132のドレインに接続される。MOSトランジスタ132のゲートは電源線Vddに接続され、ソースは接地される。MOSトランジスタ133のソースは、MOSトランジスタ134のドレインに接続される。MOSトランジスタ134のゲートは信号線202に接続され、ソースは接地される。MOSトランジスタ135のソースは、MOSトランジスタ136のドレインに接続される。MOSトランジスタ136のゲートは信号線203に接続され、ソースは接地される。また、信号線200は、電流制限素子102のゲート及び検出部140に接続される。
 並列に接続されるMOSトランジスタ131、133及び135と電流制限素子102とは、カレントミラー回路を構成する。電流制限素子102には、MOSトランジスタ131、133及び135に流れる参照電流に応じた電流が流れる。この電流が発光素子101の駆動電流となる。MOSトランジスタ132、134及び136は、それぞれMOSトランジスタ131、133及び135をカレントミラー回路に接続するスイッチである。MOSトランジスタ131、133及び135の導通及び非導通を切り替えることによりカレントミラー回路のカレントミラー比を変更することができる。なお、同図においてMOSトランジスタ132は常時導通状態となる。
 MOSトランジスタ132が導通し、MOSトランジスタ134及び136が非導通の場合のカレントミラー比は、例えば1:200にすることができる。この場合、最も高いカレントミラー比となる。電流制限素子102には、参照電流の200倍の駆動電流が流れる。MOSトランジスタ131、133及び135が導通状態の場合のカレントミラー比は、例えば、3:200にすることができる。カレントミラー比は、MOSトランジスタ131、133及び135のチャネル幅及びチャネル長を調整することにより所望の値に変更することができる。
 このように、制御部121は、参照電流及び制御信号出力部130の制御信号を調整することにより、電流制限素子102の駆動電流を調整することができる。
 [検出部の構成]
 図3は、本開示の実施形態に係る検出部の構成例を示す図である。同図は、検出部140の構成例を表すブロック図である。検出部140は、増幅器141と、S/H部142と、AD変換部143と、差分検出部144とを備える。
 増幅器141は、前述の信号線200に入力端子が接続されて電流制限信号を増幅するものである。この増幅器141は、バッファとして使用される。増幅器141の出力は、S/H部142に接続される。
 S/H部142は、増幅器141により増幅された電流制御信号を所定のタイミングにおいて取り込み、保持するものである。保持された電流制御信号は、AD変換部143に対して出力される。なお、S/H部142は、発光期間において、電流制御信号の取り込み及び保持を2回行うことができる。
 AD変換部143は、S/H部142により保持された電流制御信号をデジタルの信号に変換するものである。変換されたデジタルの電流制御信号は、差分検出部144に対して出力される。
 差分検出部144は、S/H部142により保持された2つの電流制御信号の差分を検出するものである。この差分は、発光期間における電流制御信号の変化分に相当する。検出された差分は、検出部140の検出結果として制御部121に対して出力される。
 制御部121は、検出部140の検出結果である電流制御信号の差分を縮小するように参照電流や制御信号出力部130の制御信号を調整する。制御信号出力部130の制御信号の調整は、例えば、制御信号のタイミングやパルス幅の調整が該当する。
 [電流制御信号の調整]
 図4は、本開示の実施形態に係る電流制御信号の調整の一例を示す図である。同図は、制御部121による電流制御信号の調整の一例表す図である。同図の「信号線201」、「信号線202」、「信号線203」及び「信号線200」は、それぞれ図2の信号線201、202、203及び200の制御信号の2値化された波形を表す。これらの波形の値「1」の部分がMOSトランジスタのオン電圧を表す。このオン電圧は、MOSトランジスタを導通状態にするゲートドレイン間電圧Vgsの閾値を超える電圧である。また、値「0」の部分がMOSトランジスタのオフ電圧を表す。また、「信号線200」は、信号線200の電流制御信号の波形を表す。これは、電流制限素子102のゲート電圧に相当する。「駆動電流」は、発光素子101の駆動電流の波形を表す。
 同図において、電流制御信号は、非発光期間において比較的高い電圧となる。これは、図2のMOSトランジスタ132が導通しているためである。非発光期間に電流制限素子102のゲート電圧を高くすることにより、発光期間に移行した際のミラー効果による電流制限素子102のゲート電圧の低下を低減することができる。電流制限素子102のゲート電圧は、例えば、非発光期間に1.3V、発光期間に1.0に調整することができる。
 同図の左側は、発光期間に図2のスイッチ素子103、MOSトランジスタ134及びMOSトランジスタ136を同時にオンさせる制御を行った場合の例を表したものである。信号線200の電圧(電流制御信号)は、発光期間に徐々に低下する波形となる。この場合、駆動電流にサグを生じ、発光素子101の発光強度が変動する。
 なお、同図の「S1」及び「S2」は、図3において説明した検出部140による電流制御信号を取り込むタイミングを表す。検出部140は、「S1」及び「S2」の際の電流制御信号の差分を検出し、制御部121に対して出力する。このように、検出部140は、発光期間の初期及び末期の電流制御信号の差分を検出することができる。
 同図の右側は、信号線202に常時オン電圧を印加してMOSトランジスタ134を導通状態にする場合の例を表したものである。電流制限素子102の電流制御信号を平坦な波形にすることができ、駆動電流の変動を低減することができる。
 [駆動方法]
 図5は、本開示の実施形態に係る駆動方法の一例を示す図である。同図は、発光装置100の駆動方法の一例を表す流れ図である。まず、設定部110が受光電流に基づいて駆動電流を設定する(ステップS100)。次に、制御部121が設定された電流値に基づいて電流制御信号を生成する(ステップS101)。次に、制御部121が電流制限素子102及びスイッチ素子103の制御信号を出力して発光素子101の発光を開始させる(ステップS102)。次に、検出部140が電流制御信号の変化を検出する(ステップS103)。これは、電流制御信号の差分を検出することにより行うことができる。次に、制御部121が発光素子101の発光を停止させる(ステップS104)。次に、制御部121は、検出部140からの検出結果と所定の閾値との比較を行う(ステップS105)。その結果、検出結果が閾値以下の場合は(ステップS105,Yes)、ステップS106の処理に移行する。一方、検出結果が閾値以下でない場合は(ステップS105,No)、電流制御信号の調整を行い(ステップS107)、ステップS102の処理に移行する。
 ステップS106において、制御部121は、電流制御信号を保持する(ステップS106)。これは、当該電流制御信号を出力する参照電流や制御信号出力部130の制御信号の設定を記憶することにより行うことができる。
 このように、本開示の実施形態の発光装置100は、発光期間に電流制限素子102の電流制御信号の変化を検出し、検出結果に基づいて電流制御信号を調整する。これにより、電流制御信号を安定化して、発光素子101の発光強度の変動を低減することができる。
 (2.測距装置への応用例)
 上述の実施形態の発光装置100は、様々な製品へ応用することができる。発光装置100を測距装置に適用する例について説明する。
 図6は、本開示に係る技術が適用され得る測距装置の構成例を示す図である。同図は、測距装置800の構成例を表すブロック図である。測距装置800は、光検出装置813と、制御装置810と、光源装置811と、撮影レンズ812とを備える。この測距装置800は、対象物までの距離を測定する測距を行うものである。同図には、対象物809を更に記載した。
 光源装置811は、光を照射するものである。この光源装置811は、測距の際に対象物809に対して出射光801を照射する。光源装置811は、例えば、赤外光を出射する発光ダイオードを使用することができる。
 撮影レンズ812は、対象物809からの光を光検出装置813に集光するレンズである。同図の撮影レンズ812は、出射光801が対象物809により反射された反射光802を光検出装置813に集光する。
 光検出装置813は、対象物809からの反射光802を検出して対象物809までの距離を測定するものである。この光検出装置813は、反射光802を検出するセンサと測距処理を行う処理回路とを備える。この測距処理は、光源装置811による出射光801の出射から反射光802の検出までの時間を計時し、この計時した出射光801の出射から反射光802の検出までの時間に基づいて対象物809までの距離を測定する処理である。測定した対象物809までの距離は、距離データとして外部の装置に出力される。
 制御装置810は、測距装置800の全体を制御するものである。この制御装置810は、測距の際、光源装置811を制御して出射光801を出射させ、光検出装置813を制御して計時を開始させて測距を行わせる制御を行う。
 同図の光源装置811に、図1の発光装置100を適用することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 発光素子と直列に接続されて発光期間に駆動電流を流すスイッチ素子と、
 前記スイッチ素子に直列に接続されて前記駆動電流を設定された電流値に制限する電流制限素子と、
 前記設定された電流値に応じた電流制御信号を生成して前記電流制限素子の制御端子に供給する電流制限素子制御部と、
 前記発光期間に前記電流制御信号の変化を検出して前記電流制限素子制御部に調整させる検出部と
 を有する駆動装置。
(2)
 前記電流制限素子は、ゲートを前記制御端子とするMOSトランジスタにより構成される前記(1)に記載の駆動装置。
(3)
 前記電流制限素子とカレントミラー回路を構成する制御信号出力部
 を更に有し、
 前記制御信号出力部は、前記カレントミラー回路のゲート電圧を前記電流制御信号として前記電流制限素子に供給し、
 前記電流制限素子制御部は、前記設定電流に応じた前記カレントミラー回路における参照電流を前記制御信号出力部に供給するとともに前記検出部の検出結果に基づいて前記参照電流を調整する
 前記(2)に記載の駆動装置。
(4)
 前記電流制限素子制御部は、前記検出部の検出結果に基づいて前記制御信号出力部のカレントミラー比を更に調整する
前記(3)に記載の駆動装置。
(5)
 前記制御信号出力部は、前記参照電流を分流する複数のMOSトランジスタを備え、
 前記電流制限素子制御部は、前記制御信号出力部の前記複数のMOSトランジスタの導通及び非導通を切り替えることにより前記カレントミラー比を調整する
 前記(4)に記載の駆動装置。
(6)
 前記検出部は、前記発光期間の初期及び末期の前記電流制御信号の差分を前記電流制御信号の変化として検出する前記(1)から(5)の何れかに記載の駆動装置。
(7)
 前記発光素子からの光を受光する受光素子の出力に基づいて前記発光素子の電流値を設定して前記電流制限素子制御部に供給する設定部を更に有する前記(1)から(6)の何れかに記載の駆動装置。
(8)
 発光素子と直列に接続されるスイッチ素子に発光期間に駆動電流を流すことと、
 設定された電流値に応じた電流制御信号を生成することと、
 前記スイッチ素子に直列に接続されて前記駆動電流を設定された電流値に制限する電流制限素子の制御端子に前記電流制御信号を供給することと、
 前記発光期間に前記電流制御信号の変化を検出して前記電流制限信号を調整することと
 を有する駆動方法。
(9)
 発光素子と、
 前記発光素子からの光を受光する受光素子の出力に基づいて前記発光素子の電流値を設定する電流設定部と
 発光素子と直列に接続されて発光期間に駆動電流を流すスイッチ素子と、
 前記スイッチ素子に直列に接続されて前記駆動電流を前記設定された電流値に制限する電流制限素子と、
 前記設定された電流値に応じた電流制御信号を生成して前記電流制限素子の制御端子に供給する電流制限素子制御部と、
 前記発光期間に前記電流制御信号の変化を検出して前記電流制限素子制御部に調整させる検出部と
 を有する発光装置。
 100 発光装置
 101 発光素子
 102 電流制限素子
 103 スイッチ素子
 104 受光素子
 110 設定部
 120 発光制御部
 121 制御部
 130 制御信号出力部
 131~136 MOSトランジスタ
 140 検出部
 144 差分検出部
 800 測距装置

Claims (9)

  1.  発光素子と直列に接続されて発光期間に駆動電流を流すスイッチ素子と、
     前記スイッチ素子に直列に接続されて前記駆動電流を設定された電流値に制限する電流制限素子と、
     前記設定された電流値に応じた電流制御信号を生成して前記電流制限素子の制御端子に供給する電流制限素子制御部と、
     前記発光期間に前記電流制御信号の変化を検出して前記電流制限素子制御部に調整させる検出部と
     を有する駆動装置。
  2.  前記電流制限素子は、ゲートを前記制御端子とするMOSトランジスタにより構成される請求項1に記載の駆動装置。
  3.  前記電流制限素子とカレントミラー回路を構成する制御信号出力部
     を更に有し、
     前記制御信号出力部は、前記カレントミラー回路のゲート電圧を前記電流制御信号として前記電流制限素子に供給し、
     前記電流制限素子制御部は、前記設定された電流値に応じた前記カレントミラー回路における参照電流を前記制御信号出力部に供給するとともに前記検出部の検出結果に基づいて前記参照電流を調整する
     請求項2に記載の駆動装置。
  4.  前記電流制限素子制御部は、前記検出部の検出結果に基づいて前記制御信号出力部のカレントミラー比を更に調整する請求項3に記載の駆動装置。
  5.  前記制御信号出力部は、前記参照電流を分流する複数のMOSトランジスタを備え、
     前記電流制限素子制御部は、前記制御信号出力部の前記複数のMOSトランジスタの導通及び非導通を切り替えることにより前記カレントミラー比を調整する
     請求項4に記載の駆動装置。
  6.  前記検出部は、前記発光期間の初期及び末期の前記電流制御信号の差分を前記電流制御信号の変化として検出する請求項1に記載の駆動装置。
  7.  前記発光素子からの光を受光する受光素子の出力に基づいて前記発光素子の電流値を設定して前記電流制限素子制御部に供給する設定部を更に有する請求項1に記載の駆動装置。
  8.  発光素子と直列に接続されるスイッチ素子に発光期間に駆動電流を流すことと、
     設定された電流値に応じた電流制御信号を生成することと、
     前記スイッチ素子に直列に接続されて前記駆動電流を設定された電流値に制限する電流制限素子の制御端子に前記電流制御信号を供給することと、
     前記発光期間に前記電流制御信号の変化を検出して前記電流制御信号を調整することと
     を有する駆動方法。
  9.  発光素子と、
     前記発光素子からの光を受光する受光素子の出力に基づいて前記発光素子の電流値を設定する電流設定部と
     発光素子と直列に接続されて発光期間に駆動電流を流すスイッチ素子と、
     前記スイッチ素子に直列に接続されて前記駆動電流を前記設定された電流値に制限する電流制限素子と、
     前記設定された電流値に応じた電流制御信号を生成して前記電流制限素子の制御端子に供給する電流制限素子制御部と、
     前記発光期間に前記電流制御信号の変化を検出して前記電流制限素子制御部に調整させる検出部と
     を有する発光装置。
PCT/JP2022/010593 2021-09-08 2022-03-10 駆動装置、駆動方法及び発光装置 WO2023037611A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146272 2021-09-08
JP2021146272A JP2023039220A (ja) 2021-09-08 2021-09-08 駆動装置、駆動方法及び発光装置

Publications (1)

Publication Number Publication Date
WO2023037611A1 true WO2023037611A1 (ja) 2023-03-16

Family

ID=85507461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010593 WO2023037611A1 (ja) 2021-09-08 2022-03-10 駆動装置、駆動方法及び発光装置

Country Status (2)

Country Link
JP (1) JP2023039220A (ja)
WO (1) WO2023037611A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271182A (ja) * 1991-02-27 1992-09-28 Mitsubishi Electric Corp 発光素子駆動回路
JPH11291550A (ja) * 1998-02-10 1999-10-26 Oki Data Corp 駆動回路
US6560258B1 (en) * 2001-04-17 2003-05-06 Analog Devices, Inc. Direct-coupled laser diode driver structures and methods
JP2005340774A (ja) * 2004-04-28 2005-12-08 Renesas Technology Corp レーザーダイオードの駆動回路及び半導体装置
JP2006210812A (ja) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd 光出力制御回路及び光出力制御方法
JP2012150338A (ja) * 2011-01-20 2012-08-09 Canon Inc 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271182A (ja) * 1991-02-27 1992-09-28 Mitsubishi Electric Corp 発光素子駆動回路
JPH11291550A (ja) * 1998-02-10 1999-10-26 Oki Data Corp 駆動回路
US6560258B1 (en) * 2001-04-17 2003-05-06 Analog Devices, Inc. Direct-coupled laser diode driver structures and methods
JP2005340774A (ja) * 2004-04-28 2005-12-08 Renesas Technology Corp レーザーダイオードの駆動回路及び半導体装置
JP2006210812A (ja) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd 光出力制御回路及び光出力制御方法
JP2012150338A (ja) * 2011-01-20 2012-08-09 Canon Inc 画像形成装置

Also Published As

Publication number Publication date
JP2023039220A (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
JP3260263B2 (ja) レーザー・ダイオード駆動装置
US7991032B2 (en) Laser drive
US8116055B2 (en) Methods and apparatuses for performing common mode pulse compensation in an opto-isolator
US20040251854A1 (en) Power supply for lighting
KR102062566B1 (ko) Led 발광 장치 및 그 구동 방법
JP2002335038A (ja) 発光素子駆動装置および発光素子駆動システム
TWI386104B (zh) 保護電路及方法
US8513895B2 (en) High efficiency LED driver with current source regulations
US20160353533A1 (en) Semiconductor light source drive device
CN108933380B (zh) 激光器装置
JP4043844B2 (ja) 発光素子駆動装置
JP4229210B2 (ja) 発光素子駆動装置および発光素子駆動システム
KR950007489B1 (ko) 반도체레이저소자 구동회로
CN109448621B (zh) 一种驱动电路及显示装置
US6965357B2 (en) Light-emitting element drive circuit
US8853969B1 (en) Light emitting element drive device
WO2023037611A1 (ja) 駆動装置、駆動方法及び発光装置
JP2006229224A (ja) レーザダイオードのレーザ閾値を決定する方法
JP2010286235A (ja) 光電センサ
JP2010157572A (ja) 半導体レーザアレイ光量制御回路及びその半導体レーザアレイ光量制御回路を使用した画像形成装置
JP6848936B2 (ja) スイッチング素子の駆動回路
JP2006100555A (ja) 発光素子駆動回路および前置増幅回路
WO2024043129A1 (ja) 光源装置及び測距装置
JP3276668B2 (ja) 光検出装置
US10761470B2 (en) Printing apparatus and light-emitting element driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE