WO2023036129A1 - 测温结构、充电装置及机动车辆 - Google Patents

测温结构、充电装置及机动车辆 Download PDF

Info

Publication number
WO2023036129A1
WO2023036129A1 PCT/CN2022/117271 CN2022117271W WO2023036129A1 WO 2023036129 A1 WO2023036129 A1 WO 2023036129A1 CN 2022117271 W CN2022117271 W CN 2022117271W WO 2023036129 A1 WO2023036129 A1 WO 2023036129A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature measuring
temperature
structure according
measuring element
measured object
Prior art date
Application number
PCT/CN2022/117271
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to EP22866592.3A priority Critical patent/EP4400820A1/en
Publication of WO2023036129A1 publication Critical patent/WO2023036129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the field of electrical connection, in particular to a temperature measuring structure, a charging device and a motor vehicle.
  • the charging gun head and the charging stand of new energy vehicles will have a charging terminal with a plug-in structure, and the charging terminal is fixed on the charging gun head or the terminal card seat of the charging stand.
  • the current at the charging terminal increases rapidly, and the calorific value rises sharply. Therefore, for safety reasons, many manufacturers will install a temperature measuring device at the charging terminal.
  • the contact temperature measuring device is simple, reliable and has high measurement accuracy. However, the temperature measurement device must be in contact with the measured medium to measure the temperature.
  • the installed charging terminal needs to maintain a certain pressure with the temperature measurement device in order to more accurately measure the temperature of the charging terminal.
  • the current installation method of the temperature measuring device is to install the charging terminal, and then make the charging terminal and the temperature measuring device fit together, but because there is no pressure between the charging terminal and the temperature measuring device, there are actually many tiny gaps in the bonding area , As a result, the temperature of the charging terminal cannot be accurately measured, and the temperature control system cannot adjust the temperature of the charging system in time, resulting in excessive temperature rise of the charging system and charging failure.
  • the invention provides a temperature measurement structure, including a bracket and a temperature measurement element, the bracket has a first surface, and the first surface is provided with An area for accommodating the temperature measuring element, the temperature measuring element has a temperature measuring surface, the temperature measuring surface at least partially protrudes from the first surface, and the temperature measuring surface and the first surface form a variable clamp horn.
  • the included angle between the temperature measuring surface and the first surface is 1°-27°.
  • the height of the temperature measuring surface protruding from the first surface is 1%-30% of the thickness of the temperature measuring element.
  • the region is provided with a groove, and the temperature measuring element is at least partially accommodated in the groove.
  • the bracket further has a first end surface, and the groove penetrates to the first end surface.
  • the first end surface is further provided with locking grooves, and the locking grooves are located on both sides of the groove.
  • one end of the temperature measuring element has two opposite rotating shafts, and the rotating shafts are located in the slot.
  • the temperature measuring element has two opposite second surfaces, and the rotating shafts are vertically arranged on the second surfaces respectively.
  • the temperature measuring element has a second end surface, the second end surface is provided with the rotating shaft, and the rotating shaft extends perpendicularly to the second surface.
  • the locking groove has a third surface, and the third surface is a surface parallel to the first surface with the shortest distance.
  • the distance from the first surface to the edge of the rotating shaft is smaller than the distance from the first surface to the third surface.
  • the distance from the first surface to the edge of the rotating shaft is 0.5-0.8 times the distance from the first surface to the third surface.
  • the shaft is elastic.
  • the groove has a bottom surface, a claw is provided on the bottom surface, a hook is provided on the claw, and the hook protrudes from the bottom surface.
  • the hook has a limiting surface, and the limiting surface is perpendicular to the bottom surface, or an included angle between the limiting surface and the bottom surface is an acute angle.
  • the temperature measuring element has a second end surface, and the limiting surface is in contact with the second end surface to restrict the temperature measuring element from detaching from the groove.
  • the claw has elasticity, so that the hook does not protrude from the bottom surface under the action of external force.
  • the cross-sectional shape of the temperature measuring element perpendicular to the temperature measuring surface is rectangle, quadrilateral and polygon.
  • the width of the groove is greater than or equal to the widest point of the temperature measuring element parallel to the temperature measuring surface.
  • the cross-sectional shape of the rotating shaft is circular, elliptical, flat, triangular, rectangular, quadrangular and polygonal.
  • the temperature measuring element is an NTC temperature sensor or a PTC temperature sensor.
  • the temperature measuring element is a bimetallic temperature sensor.
  • the deformation of the metal of the bimetallic temperature sensor is less than or equal to 1 mm.
  • the temperature measuring element has a metal shell, and the material of the metal shell contains silver or copper.
  • the invention also discloses a charging device, which includes the measured object and the above-mentioned temperature measuring structure.
  • the temperature measuring element when the charging device is assembled, the temperature measuring element is in contact with the measured object, and the temperature measuring surface is in close contact with the measured object and applies pressure to the measured object , the temperature measuring element measures the temperature of the measured object.
  • the contact area between the temperature measuring surface and the measured object accounts for 0.1%-95% of the surface area of the measured object.
  • the contact area between the temperature measuring surface and the measured object accounts for 1%-85% of the surface area of the measured object.
  • the pressure applied by the temperature measuring surface to the measured object is 5N-98N.
  • the present invention also provides a motor vehicle, which includes the above-mentioned temperature measuring structure or the above-mentioned charging device.
  • the temperature measuring structure provided by the present invention can closely adhere the temperature measuring surface of the temperature measuring element to the measured object, and without the need for additional devices, the temperature measuring surface can exert a certain pressure on the measured object. pressure, so that the temperature measuring element can measure the temperature data closest to the actual temperature of the measured object, so that the staff or the corresponding processor can understand the temperature of the measured object more timely and accurately, and avoid the subsequent use of the temperature measuring element During the process, the temperature measuring surface is separated from the measured object, or the temperature measuring surface and the measured object cannot be continuously attached, resulting in the inability to accurately measure the temperature.
  • the temperature-measuring structure provided by the present invention breaks the conventional practice of setting the temperature-measuring surface parallel to the plane of the object to be measured, and then attaching it together. Instead, the temperature-measuring surface protrudes from the temperature-measuring structure.
  • the plane of the measured object has a certain changeable angle, so that the temperature measuring surface is flattened by the measured object to generate a relative reaction force, so that there is a relative pressure between the temperature measuring surface and the measured object, making the fit closer , can more accurately measure the actual temperature of the measured object.
  • Fig. 1 is a schematic structural diagram of a temperature measuring element in an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a stent in an embodiment of the present invention.
  • Fig. 3 is a structural schematic diagram of a temperature measuring structure in an embodiment of the present invention.
  • Fig. 4 is another structural schematic diagram of the temperature measuring structure in the embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional structure diagram of the claw in the embodiment of the present invention.
  • Fig. 6 is another structural schematic diagram of the temperature measuring structure in the embodiment of the present invention.
  • the present invention provides a temperature measuring structure, as shown in Figures 1-6, including a bracket 2 and a temperature measuring element 1, the bracket 2 has a first surface 21, and a groove for accommodating the temperature measuring element 1 is arranged on the first surface 21 22.
  • the temperature measuring element 1 has a temperature measuring surface 11, the temperature measuring surface 11 at least partially protrudes from the first surface 21, and the angle between the temperature measuring surface 11 and the first surface 21 is variable.
  • the temperature measuring surface 11 protrudes from the first surface 21, and the temperature measuring surface 11 of the temperature measuring element 1 and the first surface 21 on the bracket 2 form a variable angle
  • the measured object 3 can be in contact with the temperature measuring surface 11, and since the temperature measuring surface 11 and the first surface 21 form a certain angle in the initial state, the distance between the measured object 3 and the temperature measuring surface 11
  • the interaction force is generated, which can make the temperature measuring surface 11 of the temperature measuring element 1 closely and continuously adhere to the surface of the measured object 3, so that the temperature measuring element 1 can measure the temperature data closest to the actual temperature of the measured object 3,
  • This enables the staff or the corresponding processor to know the temperature of the measured object 3 more timely and accurately, and avoids the situation that the temperature measuring surface 11 is separated from the measured object 3 during the subsequent use of the temperature measuring element 1, or the occurrence of The situation that the temperature measuring surface 11 and the measured object 3 cannot be adhered continuously leads to the inability to accurately measure the temperature.
  • the temperature measuring structure in this embodiment breaks the conventional practice of first setting the temperature measuring surface 11 parallel to the plane of the object to be measured, and then attaching it to each other. Instead, the temperature measuring surface 11 protrudes from the temperature measuring structure, and It has a certain changeable angle with the plane of the measured object, so that the temperature measuring surface 11 is flattened by the measured object to generate a relative reaction force, so that there is a relative pressure between the temperature measuring surface 11 and the measured object, so that the sticking Closer fit, more accurate measurement of the actual temperature of the measured object.
  • the included angle between the temperature measuring surface 11 and the first surface 21 is 1°-27°, because in the final assembly, the temperature measuring surface 11 of the temperature measuring element 1 is tightly and continuously attached to the surface under test. At this time, the temperature measuring element 1 is squeezed by the measured object 3, causing the angle between the temperature measuring surface 11 and the first surface 21 to become smaller, and the temperature measuring element 1 relies on the reaction force of the interference between the rotating shaft 13 and the third surface 25 , make the temperature measuring surface 11 apply pressure to the measured object 3, the greater the angle change, the greater the applied pressure.
  • the inventor selected the same size Standard bracket 2, the same temperature measuring element 1, different angles between the temperature measuring surface 11 and the first surface 21, and test the pressure applied when the angle between the temperature measuring surface 11 and the first surface 21 is pressed to 0° , and the temperature drift value of the measured object 3 temperature measured by the temperature measuring element 1, and recorded in Table 1,
  • the pressure measurement method is to use a precision push-pull force gauge to touch the measurement end to the highest end of the temperature measurement surface 11, and then read the precision push-pull when the angle between the temperature measurement surface 11 and the first surface 21 is pressed from the initial angle to 0° The value displayed on the force gauge.
  • the method of measuring the temperature drift value adopts another precision temperature sensor, which is precisely attached to the object under test 3, and if necessary, smears thermal conductive silicon grease on the attached surface to make the temperature measurement more accurate. Then, at different angles between the temperature measuring surface 11 and the first surface 21, read the displayed temperature values of the precision temperature sensor and the temperature measuring element 1 respectively, and make the difference to obtain the absolute value, which is the temperature drift value of the current angle.
  • the pressure is 5N-98N. If the pressure is too small, the temperature measuring surface 11 and the measured object 3 cannot be closely bonded. If the pressure is too high, the temperature measuring element 1 will be damaged. If the temperature drift value is less than 10K, it is a qualified value. If the temperature drift value is greater than 10K, the actual temperature of the measured object 3 is quite different from the temperature measured by the temperature measuring element 1, which cannot reflect the actual temperature of the measured object 3 in time.
  • the temperature control system The temperature of the system cannot be adjusted in time, resulting in excessive temperature rise of the system and failure of functions.
  • Table 1 The influence of the angle between the temperature measuring surface and the first surface on the pressure applied by the temperature measuring surface and the temperature drift value of the measured object
  • the temperature drift value of the temperature measuring object 3 measured by the temperature measuring element 1 is greater than 10K.
  • the actual temperature of the measuring object 3 and the temperature measuring The measured temperature of the component 1 has a large difference, which cannot reflect the actual temperature of the measured object 3 in time.
  • the larger the angle the smaller the temperature drift value, which is different from the common perception of the public. It is not that the contact surface is parallel and the temperature measurement is more accurate, but that the contact surface has a variable angle, and there is a relative pressure after the contact is flattened. The gap of the contact surface becomes smaller, and the temperature drift value is smaller. Therefore, the inventors set the angle between the temperature measuring surface 11 and the first surface 21 to be 1°-27°.
  • the height of the temperature measuring surface 11 protruding from the first surface 21 is 1%-30% of the thickness of the temperature measuring element 1 .
  • the pressure and the temperature drift value of the measured object 3 temperature measured by the temperature measuring element 1 are recorded in Table 2.
  • the pressure measurement method is to use a precision push-pull force gauge to touch the measurement end to the highest end of the temperature measurement surface 11, and then read the precision push-pull when the angle between the temperature measurement surface 11 and the first surface 21 is pressed from the initial angle to 0° The value displayed on the force gauge.
  • the method of measuring the temperature drift value adopts another precision temperature sensor, which is precisely attached to the object under test 3, and if necessary, smears thermal conductive silicon grease on the attached surface to make the temperature measurement more accurate. Then, at different angles between the temperature measuring surface 11 and the first surface 21, read the displayed temperature values of the precision temperature sensor and the temperature measuring element 1 respectively, and make the difference to obtain the absolute value, which is the temperature drift value of the current angle.
  • the pressure is 5N-98N. If the pressure is too small, the temperature measuring surface 11 and the measured object 3 cannot be closely bonded. If the pressure is too high, the temperature measuring element 1 will be damaged. If the temperature drift value is less than 10K, it is a qualified value. If the temperature drift value is greater than 10K, the actual temperature of the measured object 3 is quite different from the temperature measured by the temperature measuring element 1, which cannot reflect the actual temperature of the measured object 3 in time.
  • the temperature control system The temperature of the system cannot be adjusted in time, resulting in excessive temperature rise of the system and failure of functions.
  • Table 2 The influence of the height of the temperature measuring surface protruding from the first surface on the pressure applied by the temperature measuring surface and the temperature drift value of the measured object
  • the temperature drift value of the temperature measuring object 3 measured by the temperature measuring element 1 is greater than 10K.
  • the actual temperature of the measuring object 3 and the temperature measuring The measured temperature of the component 1 has a large difference, which cannot reflect the actual temperature of the measured object 3 in time. Therefore, the inventors set the height of the temperature measuring surface 11 protruding from the first surface 21 to be 1%-30% of the thickness of the temperature measuring element 1 .
  • the region is provided with a groove, and the temperature measuring element 1 is at least partially accommodated in the groove. That is to say, the area on the first surface 21 for accommodating the temperature measuring element 1 is groove-shaped, or part of it is groove-shaped, and the temperature measuring element 1 can be arranged in the groove.
  • the bracket 2 also has a first end surface 23 , and the groove 22 penetrates to the first end surface 23 .
  • the temperature measuring element 1 can be installed and placed in the groove 22, and the measured object 3 is pressed in the groove 22. If the groove 22 has no other openings, when the temperature measuring element 1 is damaged alone, the measured object must also be placed. 3.
  • the temperature measuring element 1 can only be taken out for replacement after dismantling. Therefore, a through opening of the groove 22 is provided on the first end surface 23, and the temperature measuring element 1 can be installed and maintained through the through opening, without dismantling the entire temperature measuring structure, saving maintenance time, and avoid secondary damage to the measured object 3.
  • the temperature measuring element 1 also needs to be connected with the corresponding control unit by a data line, and the data line can also be drawn out from this through hole, and there is no need to perform drilling and other processing on the bracket 2, which reduces the processing steps, reduces the processing time, and saves processing costs .
  • first end surface 23 is further provided with locking grooves 24 , and the locking grooves 24 are located on both sides of the groove 22 .
  • the slot 24 is recessed downwards on the first end surface 23, so as to place the rotating shaft 13 of the temperature measuring element 1.
  • one end of the temperature measuring element 1 has two opposite rotating shafts 13 , and the rotating shafts 13 are located in the slot 24 .
  • the temperature measuring element 1 has a rotating shaft 13 and is arranged in the slot 24 so that the temperature measuring element 1 can rotate around the rotating shaft 13 so that the temperature measuring surface 11 and the first surface 21 form a variable angle.
  • the temperature measuring element 1 has two opposite second surfaces 12 , and the rotating shaft 13 is vertically arranged on the second surfaces 12 .
  • the rotating shaft 13 is arranged on the second surface 12 and is located at one end of the temperature measuring element 1, so that the rotating shaft 13 can be conveniently arranged on the second surface 12, and the installation is also very simple and fast.
  • the temperature measuring element 1 has a second end face 14 , the second end face 14 is provided with a rotating shaft 13 , and the rotating shaft 13 extends perpendicular to the second surface 12 .
  • the rotating shaft 13 can also be arranged on the second end face 14 of the temperature measuring element 1, and the rotating shaft 13 can be axially parallel to the second end face 14 and attached to the second end face 14, It can also be vertically arranged on the second end surface 14 , connected by a bent portion, and extend in a direction perpendicular to the second surface 12 .
  • the locking groove 24 has a third surface 25 , and the third surface 25 is a surface parallel to the first surface 21 and with the shortest distance.
  • the engaging slot 24 is recessed downwards on the first end surface 23 , and forms a third surface 25 near the first surface 21 .
  • the distance from the first surface 21 to the edge of the rotating shaft 13 is smaller than the distance from the first surface 21 to the third surface 25 .
  • the distance from the first surface 21 to the edge of the rotating shaft 13 is 0.5-0.8 times the distance from the first surface 21 to the third surface 25 .
  • the rotating shaft 13 has elasticity.
  • the third surface 25 is the surface parallel to the first surface 21 and the closest distance between the two, and the distance from the first surface 21 to the edge of the rotating shaft 13 is smaller than that of the first surface 21.
  • the distance to the third surface 25, and the rotating shaft 13 has elasticity.
  • the temperature measuring element 1 can be made into a regular cuboid shape or a cube shape. 23 is put into the card slot 24 in an inclined manner, and the temperature measuring element 1 enters the groove 22 through the first end surface 23. At this time, because the rotating shaft 13 is in contact with the third surface 25 and generates stress, the temperature measuring surface 11 is opposite to the first end surface 25.
  • a surface 21 is at a certain angle.
  • the measured object 3 After installing the measured object 3, the measured object 3 abuts against the temperature measuring surface 11 and generates pressure on the temperature measuring surface 11. Since the rotating shaft 13 is elastic, the measured object and the temperature measuring surface When the surface 11 contacts and generates pressure on the temperature measuring surface 11, the rotating shaft 13 contacts the third surface 25 and generates stress, causing the rotating shaft 13 to deform. Since the rotating shaft 13 has elasticity, the rotating shaft 13 attempts to recover from the deformed shape or position to the deformed In the process of the previous shape or position, the temperature measuring surface 11 of the temperature measuring element 1 exerts a certain pressure on the measured object 3, so that the two can be more closely and continuously attached, so that the temperature measuring element 1 can measure more accurately The temperature of the measured object 3 is set. With this structure, the temperature measuring surface 11 of the temperature measuring element 1 is difficult to separate from the surface of the measured object 3 when the position of the measured object 3 does not change, and during use, The temperature measuring element 1 will not fall from the groove 22 .
  • the angle between the temperature measuring surface 11 and the first surface 21 and the temperature measuring element 1 are measured. Influenced by the temperature drift value of the object 3 temperature, the inventor selects the same support 2, the distance from the first surface 21 to the third surface 25 on the support 2 is the same, and selects different temperature measuring elements 1, and the first surface 21 on different temperature measuring elements 1 The distance to the edge of the rotating shaft 13 is different. During the test, the rotating shafts 13 of different temperature measuring elements 1 are placed in the slot 24. When the temperature measuring element 1 cannot move relative to the first surface 21, the temperature measuring surface 11 and the first surface 21 are measured.
  • the included angle of the surface 21 is qualified when the included angle is 1° to 27°.
  • the temperature drift value of the measured object 3 temperature measured by the temperature measuring element 1 the temperature drift value is less than 10K is a qualified value, and the temperature drift value is greater than 10K, then the actual temperature of the measured object 3 is different from the temperature measured by the temperature measuring element 1.
  • the angle between the temperature measuring surface 11 and the first surface 21 is greater than 27°, which means When the temperature measurement structure is unqualified, and the distance from the first surface 21 to the edge of the rotating shaft 13 accounts for 0.5 to 0.8 times the distance from the first surface 21 to the third surface 25, the gap between the temperature measurement surface 11 and the first surface 21 When the angle is between 1° and 27°, and when the ratio is greater than 0.8 times, the temperature drift value of the temperature measurement element 1 measuring the temperature of the object 3 is unqualified. Therefore, the inventor set the first surface 21 to the rotating shaft 13 The distance of the edge accounts for 0.5-0.8 times of the distance from the first surface 21 to the third surface 25 .
  • the groove 22 has a bottom surface 26 , and a claw 27 is disposed on the bottom surface 26 , and a hook 28 is provided on the claw 27 , and the hook 28 protrudes from the bottom surface 26 .
  • the hook 28 has a limiting surface 29 , and the limiting surface 29 is perpendicular to the bottom surface 26 , or the angle between the limiting surface 29 and the bottom surface 26 is an acute angle.
  • the temperature measuring element 1 has a second end surface 14 , and the limiting surface 29 is in contact with the second end surface 14 to limit the temperature measuring element 1 from the groove 22 .
  • the claw 27 is set on the bottom surface 26, and the hook 28 is set on the claw 27.
  • the hook 28 is provided with a limit surface 29 perpendicular to the bottom surface 26 or at an acute angle with the bottom surface 26, so that the temperature measuring element
  • the second end surface 14 of 1 contacts the limit surface 29, restricts the temperature measuring element 1 from the groove 22, and can fix the temperature measuring element 1 more firmly in the groove 22, preventing the temperature measuring element 1 from detaching from the groove 22,
  • the temperature measuring structure can be used in more environments as required.
  • the claw 27 has elasticity, so that the hook 28 does not protrude from the bottom surface 26 under the action of an external force.
  • the temperature measuring element 1 can be easily taken out without moving the object to be measured, which facilitates the subsequent replacement of the temperature measuring element 1 as needed, reducing procedures and saving time.
  • the shape of the section perpendicular to the temperature measuring surface 11 of the temperature measuring element 1 is not particularly limited, as long as the temperature measuring element 1 can enter the groove 22 through the first surface 21 .
  • the cross-sectional shape of the temperature measuring element 1 perpendicular to the temperature measuring surface 11 is rectangle, quadrilateral and polygon. It can be designed into different shapes according to needs to match the actual use environment.
  • the width of the groove 22 is greater than or equal to the widest point of the temperature measuring element 1 parallel to the temperature measuring surface 11 .
  • the width of the groove 22 is greater than or equal to the widest point of the temperature measuring element 1 parallel to the temperature measuring surface 11 , as long as the temperature measuring element 1 can enter the groove 22 through the first surface 21 .
  • the cross-sectional shape of the rotating shaft 13 is a circle, an ellipse, a flat shape, a triangle, a rectangle, a quadrangle and a polygon.
  • the cross-sectional shape of the rotating shaft 13 can be set into various cross-sectional shapes according to the different shapes of the temperature measuring element 1 and the different processing methods of the rotating shaft 13 , so as to be conveniently matched and connected with the groove 22 .
  • the temperature measuring element 1 is an NTC temperature sensor or a PTC temperature sensor.
  • the temperature measuring element 1 is an NTC temperature sensor or a PTC temperature sensor.
  • the advantage of using these two temperature sensors is that they are small in size and can measure gaps that cannot be measured by other thermometers; they are easy to use, and the resistance value can be arbitrarily selected from 0.1 to 100k ⁇ ; they are easy to process into complex shapes, can be mass-produced, and have good stability. , Strong overload capacity, suitable for conversion joints, which require small size and stable performance.
  • the temperature measuring element 1 is a bimetallic temperature sensor.
  • the bimetal temperature sensor is composed of two metals with different expansion coefficients. When the temperature changes, the metal with a large expansion coefficient will bend, which has better vibration resistance and is suitable for electric vehicles.
  • the deformation of the metal of the bimetallic temperature sensor is less than or equal to 1 mm.
  • the inventor conducted a related test.
  • the test method is set for the measured object 3 For the same temperature, choose the same bracket, choose bimetallic temperature sensors with different metal deformations, record the temperature values measured in different situations and make the difference with the real temperature to take the absolute value.
  • the absolute value is less than or equal to 0.2°C. The results are shown in Table 4.
  • the temperature measuring element 1 has a metal shell, and the material of the metal shell contains silver or copper.
  • the thermal conductivity of common metals is silver: 429; copper 401; gold: 317; aluminum: 237; iron: 80; tin 67; lead: 34.8.
  • the higher the thermal conductivity the closer the temperature transmitted to the temperature measuring element 1 is to the real value. From the above coefficients, it can be seen that the thermal conductivity of silver is the highest, and the thermal conductivity of copper is also close to it, and both are much higher than Due to the thermal conductivity of other metals, the inventors prefer that the material of the metal shell contains silver or copper. Considering that the price of silver is much higher than that of copper, it is easy to cause a substantial increase in cost, so the most preferred solution is to contain copper.
  • the present invention provides a charging device, which includes the object under test 3 and the temperature measuring structure in the first embodiment above.
  • the temperature measuring element 1 is in contact with the measured object 3
  • the temperature measuring surface 11 is in contact with the measured object 3 and exerts pressure on the measured object 3
  • the temperature measuring element 1 measures the measured object 3. The temperature of object 3.
  • the measured object 3 and the temperature measuring element 1 when the charging device is assembled and used, the measured object 3 and the temperature measuring element 1 generate stress between the rotating shaft 13 and the third surface 25, so that the temperature measuring surface 11 and the first surface 21 form a certain angle. At this time, pressure is generated between the temperature measuring surface 11 and the measured object 3, so that the temperature measuring element 1 is firmly fixed in the bracket 2, and the temperature measuring surface 11 can be continuously and closely attached to the measured object 3.
  • the contact area between the temperature measuring surface 11 and the measured object 3 accounts for 0.1%-95% of the surface area of the measured object 3 .
  • the contact area between the temperature measuring surface 11 and the measured object 3 accounts for 1%-85% of the surface area of the measured object 3 .
  • the inventor selected the measured object 3 of the same size and different contact areas of the temperature measuring surface 11 and the measured object 3 to measure the measured object 3, and use the same pressure to make the temperature measuring surface 11 contact with the measured object 3, set the measured object 3 to the same temperature, then use the temperature measuring element 1 to measure the temperature of the measured object 3 and compare it with the actual temperature Take the absolute value of the difference, if the absolute value is greater than 2°C, it is unqualified, and the results are recorded in Table 5.
  • Table 5 The influence of the area ratio of the temperature measurement surface in contact with the measured object on the temperature measurement effect
  • the inventors set the contact area between the temperature measuring surface 11 and the object 3 to be 0.1%-95% %, it can be seen from Table 5 that when the area of the temperature measuring surface 11 in contact with the measured object 3 is greater than or equal to 1% of the contact surface area, a better temperature measurement effect can be obtained, and it is also very ideal when it is less than or equal to 85%. Therefore, the inventor further prefers that the area where the temperature measuring surface 11 is in contact with the measured object 3 accounts for 1%-85% of the contact surface area.
  • the pressure applied to the measured object 3 by the temperature measuring surface 11 is 5N-98N.
  • the inventor selected the same measured object 3 and the temperature measuring element 1, and adopted The pressure of different temperature measuring surfaces 11 on the measured object 3 is tested under different pressure conditions, the temperature rise value detected by the temperature measuring element 1 and the damage of the temperature measuring element 1.
  • the temperature rise value is greater than 12K. Qualified, the temperature measuring element 1 is damaged as unqualified.
  • the detection method of the temperature rise value is to apply the same heat to the object under test 3 to keep the temperature consistent, then read the temperature detected by the temperature measuring element 1 in contact with the object under test 3, and make a difference with the initial temperature to obtain the temperature rise value , recorded in Table 6.
  • the detection method for the damage of the temperature measuring element 1 is to carry out 50 pressure experiments under the condition that the measured object 3 exerts different pressures on the temperature measuring element 1 , and observe the damage of the temperature measuring element 1 .
  • the present invention also provides a motor vehicle, which includes the above-mentioned temperature measuring structure or the above-mentioned charging device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种测温结构、充电装置及机动车辆。测温结构包括支架(2)和测温元件(1),支架(2)具有第一表面(21),第一表面(21)上设置容纳测温元件(1)的区域(22),测温元件具有测温面(11),测温面(11)至少部分突出于第一表面(21),测温面(11)与第一表面(21)呈可变化的夹角。以上测温结构能够将测温元件(1)的测温面(11)与被测物紧密贴合在一起,在不需要借助额外装置的情况下,即可实现测温面(11)针对被测物施加一定的压力,以使得测温元件(1)针对被测物测量出最为接近实际温度的温度数据,使得工作人员或相应的处理器能更及时准确的了解被测物的温度,避免了测温元件(1)在后续使用过程中,出现测温面(11)与被测物相分离的情况。

Description

测温结构、充电装置及机动车辆
本发明要求2021年9月7日递交的申请号为202111045635.X、发明名称为“测温结构、充电装置及机动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电气连接领域,具体的是一种测温结构,充电装置及机动车辆。
背景技术
当前新能源汽车的充电枪头和充电座都会有对插结构的充电端子,充电端子固定在充电枪头或者充电座的端子卡座上。当汽车充电时,充电端子处的电流迅速增大,发热量急剧升高,因此为了安全起见,很多厂家会在充电端子处设置测温装置。接触式测温装置简单、可靠,且测量精度高。但是测温装置必须与被测介质接触后才能进行测温,安装后的充电端子需要和测温装置保持一定的压力,才能更准确的测量充电端子的温度。
目前的测温装置安装方式为安装好充电端子后,再使充电端子和测温装置间贴合,但是由于充电端子和测温装置之间没有压力,导致贴合的区域其实有很多微小的缝隙,导致不能够准确的测量充电端子的温度,温控系统无法及时对充电系统的温度进行调节,导致充电系统温升过高引发充电失效。
因此,现有技术中亟需一种测温装置与被测介质紧密接触,准确的测量被测介质温度的测温结构。
发明内容
为了能够使充电端子在安装后立刻具有和温度传感器之间的压力,本发明提供了一种测温结构,包括支架和测温元件,所述支架具有第一表面,所述第一表面上设置容纳所述测温元件的区域,所述测温元件具有测温面,所述测温面至少部分突出于所述第一表面,所述测温面与所述第一表面呈可变化的夹角。
在一些实施例中,所述测温面与所述第一表面的夹角为1°-27°。
在一些实施例中,所述测温面突出于所述第一表面的高度为所述测温元件厚度的1%-30%。
在一些实施例中,所述区域设置有凹槽,所述测温元件至少部分容纳在所述凹槽内。
在一些实施例中,所述支架还具有第一端面,所述凹槽贯通至所述第一端面。
在一些实施例中,所述第一端面上还设置卡槽,所述卡槽位于所述凹槽的两侧。
在一些实施例中,所述测温元件的一端具有相对的两个转轴,所述转轴位于所述卡槽内。
在一些实施例中,所述测温元件具有相对的两个第二表面,所述第二表面上分别垂直设置所述转轴。
在一些实施例中,所述测温元件具有第二端面,所述第二端面设置所述转轴,所述转轴垂直所述第二表面延伸。
在一些实施例中,所述卡槽具有第三表面,所述第三表面为与所述第一表面平行且距离最短的面。
在一些实施例中,所述第一表面到所述转轴边缘的距离小于所述第一表面到所述第三表面的距离。
在一些实施例中,所述第一表面到所述转轴边缘的距离占所述第一表面到所述第三表面的距离的0.5倍-0.8倍。
在一些实施例中,所述转轴具有弹性。
在一些实施例中,所述凹槽具有底面,所述底面上设置卡爪,所述卡爪上具有卡勾,所述卡勾突出所述底面。
在一些实施例中,所述卡勾具有限位面,所述限位面与所述底面垂直,或者所述限位面与所述底面的夹角呈锐角。
在一些实施例中,所述测温元件具有第二端面,所述限位面与所述第二端面接触,限制所述测温元件脱离所述凹槽。
在一些实施例中,所述卡爪具有弹性,在外力作用下使所述卡勾不突出所述底面。
在一些实施例中,所述测温元件在垂直于所述测温面的截面形状为矩形、四边形和多边形。
在一些实施例中,所述凹槽的宽度,大于等于所述测温元件平行于所述测温面的最宽处。
在一些实施例中,所述转轴的截面形状为圆形、椭圆形、扁平形、三角形、矩形、四边形和多边形。
在一些实施例中,所述测温元件为NTC温度传感器或PTC温度传感器。
在一些实施例中,所述测温元件为双金属温度传感器。
在一些实施例中,外界的温度变化量为1℃时,所述双金属温度传感器的金属的形变量小于等于1mm。
在一些实施例中,所述测温元件具有金属外壳,所述金属外壳的材质含有银或铜。
本发明还公开了一种充电装置,所述充电装置包括被测物和上述的测温结构。
在一些实施例中,所述充电装置在组装时,所述测温元件与被测物抵接,所述测温面与所述被测物贴合接触并施加压力到所述被测物上,所述测温元件测量所述被测物的温度。
在一些实施例中,所述测温面与所述被测物的接触面积,占所述被测物表面积的0.1%-95%。
在一些实施例中,所述测温面与所述被测物的接触面积,占所述被测物表面积的1%-85%。
在一些实施例中,所述测温面施加到被测物的压力为5N-98N。
本发明同时提供了一种机动车辆,所述机动车辆包括如上所述的测温结构或者包括如上所述的充电装置。
本发明的有益效果是:
1.本发明提供的测温结构能够将测温元件的测温面与被测物紧密贴合在一起,在不需要借助额外装置的情况下,即可实现测温面针对被测物施加一定的压力,以使得测温元件针对被测物测量出最为接近实际温度的温度数据,使得工作人员或相应的处理器能更及时准确的了解被测物的温度,避免了测温元件在后续使用过程中,出现测温面与被测物相分离的情况,或者出现测温面与被测物不能持续贴合的情况,导致不能准确测量温度。
2.本发明提供的测温结构,打破了常规做法中,先将测温面与被测物的平面平行设置,然后再贴合的做法,而是使测温面突出测温结构,并且与被测物的平面呈一定可变化的角度,从而靠被测物将测温面压平而产生相对的反作用力,使测温面与被测物之间存在相对的压力,使贴合更紧密,更能准确测量被测物的实际温度。
3.通过设置卡爪,可在不拆除被测物的情况下,施加外力使卡爪变形,将卡爪上的卡勾不突出底面,此时可将测温元件从支架中取出,在后续的设备维修以及更换测温元件时,能够减少工序,节省时间,方便工作人员操作。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例中测温元件的结构示意图。
图2为本发明实施例中支架的结构示意图。
图3为本发明实施例中测温结构的一种结构示意图。
图4为本发明实施例中测温结构的另一种结构示意图。
图5为本发明实施例中卡爪的剖面结构示意图。
图6为本发明实施例中测温结构的再一种结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
实施例一
本发明提供了一种测温结构,如图1-图6所示,包括支架2和测温元件1,支架2具有第一表面21,第一表面21上设置容纳测温元件1的凹槽22,测温元件1具有测温面11,测温面11至少部分突出于第一表面21,测温面11与第一表面21呈可变化的夹角。
具体实施时,测温元件1置于凹槽内时,测温面11突出第一表面21,测温元件1的测温面11与位于支架2上的第一表面21呈可变化的角度,安装被测物3后,被测物3能够与测温面11接触,并且由于测温面11与第一表面21在初始状态下呈一定角度,所以被测物3与测温面11之间产生相互作用力,能够使得测温元件1的测温面11紧密且持续的贴合在被测物3表面,以使测温元件1针对被测物3测量出最为接近实际温度的温度数据,使得工作人员或相应的处理器能更及时准确的了解被测物3的温度,避免了测温元件1在后续使用过程中,出现测温面11与被测物3相分离的情况,或者出现测温面11与被测物3不能持续贴合的情况,导致不能准确测量温度。
本实施例中的测温结构,打破了常规做法中,先将测温面11与被测物的平面平行设置,然后再贴合的做法,而是使测温面11突出测温结构,并且与被测物的平面呈一定可变化的角度,从而靠被测物将测温面11压平而产生相对的反作用力,使测温面11与被测物之间存在相对的压力,使贴合更紧密,更能准确测量被测物的实际温度。
在一种实施方式中,测温面11与第一表面21的夹角为1°-27°,由于在最终装配时,测温元件1的测温面11紧密且持续的贴合在被测物3表面,此时测温元件1被被测物3挤压,导致测温面11与第一表面21的夹角变小,测温元件1依靠转轴13和第三表面25干涉的反作用力,使测温面11向被测物3施加压力,角度变化越大,施加的压力也就越大。
为了验证测温面11与第一表面21的夹角对测温面11向被测物3施加压力,以及测温元件1测量被测物3温度的温飘值的影响,发明人选用相同尺寸规格的支架2,相同的测温元件1,不同的测温面11与第一表面21的夹角,并测试将测温面11与第一表面21的夹角压到0°时施加的压力,以及测温元件1测量被测物3温度的温飘值,并记录在表1中,
压力的测量方法,使用精密推拉力计,将测量端抵接测温面11最高端,然后将测温面11与第一表面21的夹角,从初始角度压到0°时读取精密推拉力计上显示的数值。
温飘值的测量方法,采用另外的精密温度传感器,精密贴附在被测物3上,必要时在贴附面涂抹导热硅脂,使测温更准确。然后在测温面11与第一表面21不同的夹角状态下,分别读取精密温度传感器和测温元件1的显示温度值,并做差取绝对值,为当前角度的温飘值。
在本实施例中,压力在5N-98N为合格,压力过小,无法使测温面11和被测物3紧密贴合,压力过大,会导致测温元件1损坏。温飘值小于10K为合格值,温飘值大于10K,则被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度,温控系统无法及时对系统的温度进行调节,导致系统温升过高引发功能失效。
表1:测温面与第一表面的夹角对测温面向被测物施加压力和温飘值的影响
Figure PCTCN2022117271-appb-000001
Figure PCTCN2022117271-appb-000002
根据表1可以看出,在测温面11与第一表面21的夹角角度大于27°时,测温面11与第一表面21的夹角压到0°时施加的压力超过98N,此时测温元件1受到的压力过大,极容易造成损坏。在测温面11与第一表面21的夹角角度小于1°时,测温面11与第一表面21的夹角压到0°时施加的压力小于5N,此时测温面11和被测物3无法紧密贴合,也无法准确的测量到被测物3的实际温度。另外,测温面11与第一表面21的夹角压到0°时,测温元件1测量被测物3温度的温飘值大于10K,此时被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度。而角度越大,温飘值越小,这与公众的平常认知不同,不是接触面平行,测温更准确,而是接触面呈可变化的角度,在接触压平后有相对压力存在,使接触面的缝隙变小,温飘值更小。因此,发明人设定测温面11与第一表面21的夹角为1°-27°。
在一种实施方式中,所述测温面11突出于所述第一表面21的高度为所述测温元件1厚度的1%-30%。为了验证测温面11突出于所述第一表面21的高度对测温面11向被测物3施加压力,以及测温元件1测量被测物3温度的温飘值的影响,发明人选用相同尺寸规格的支架2,相同的测温元件1,不同的测温面11突出于第一表面21的高度,并测试将测温面11与第一表面21的夹角压到0°时施加的压力,以及测温元件1测量被测物3温度的温飘值,记录在表2中。
压力的测量方法,使用精密推拉力计,将测量端抵接测温面11最高端,然后将测温面11与第一表面21的夹角,从初始角度压到0°时读取精密推拉力计上显示的数值。
温飘值的测量方法,采用另外的精密温度传感器,精密贴附在被测物3上,必要时在贴附面涂抹导热硅脂,使测温更准确。然后在测温面11与第一表面21不同的夹角状态下,分别读取精密温度传感器和测温元件1的显示温度值,并做差取绝对值,为当前角度的温飘值。
在本实施例中,压力在5N-98N为合格,压力过小,无法使测温面11和被测物3紧密贴合,压力过大,会导致测温元件1损坏。温飘值小于10K为合格值,温飘值大于10K,则被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度,温控系统无法及时对系统的温度进行调节,导致系统温升过高引发功能失效。
表2:测温面突出于第一表面的高度对测温面向被测物施加压力和温飘值的影响
Figure PCTCN2022117271-appb-000003
根据表2可以看出,在测温面11突出于所述第一表面21的高度占比大于30%时,测温面11与第一表面21的夹角压到0°时施加的压力超过98N,此时测温元件1受到的压力过大,极容易造成损坏。在测温面11突出于所述第一表面21的高度占比小于1%时,测温面11与第一表面21的夹角压到0°时施加的压力小于5N,此时测温面11和被测物3无法紧密贴合,也无法准确的测量到被测物3的实际温度。另外,测温面11与第一表面21的夹角压到0°时,测温元件1测量被测物3温度的温飘值大于10K,此时被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度。因此,发明人设定所述测温面11突出于所述第一表面21的高度为所述测温元件1厚度的1%-30%。
在一些实施方式中,所述区域设置有凹槽,所述测温元件1至少部分容纳在所述凹槽内。也就是说在第一表面21上容纳测温元件1的区域为凹槽型,或者其部分为凹槽型,测温元件1可以设置在凹槽中。
在一种实施方式中,支架2还具有第一端面23,凹槽22贯通至第一端面23。测温元件1可以安装放置在凹槽22中,并且被被测物3压在凹槽22中,如果凹槽22没有其他的开口,当测温元件1单独损坏时,也必须将被测物3拆除,才能取出测温元件1进行更换,因此在第一端面23上设置凹槽22的贯通口,测温元件1可以从此贯通口进行安装和维修,不需要拆除整个测温结构,节省维修时间,也避免对被测物3造成二次损害。
另外,测温元件1也需要有数据线与相应的控制单元连接,数据线也可以从此贯通口引出,不需要在支架2上进行钻孔等加工,减少加工工序,降低加工时间,节省加工成本。
进一步的,第一端面23上还设置卡槽24,卡槽24位于凹槽22的两侧。卡槽24在第一端面23上向下凹陷,以便于放置测温元件1的转轴13.
进一步的,测温元件1的一端具有相对的两个转轴13,转轴13位于卡槽24内。测温元件1具有转轴13,并且设置在卡槽24内,可以使测温元件1绕转轴13进行转动,使测温面11与第一表面21呈可变化的夹角。
进一步的,测温元件1具有相对的两个第二表面12,所述第二表面12上垂直设置所述转轴13。转轴13设置在第二表面12上,并且位于测温元件1的一端,这样转轴13就可以很方便的设置在第二表面12上,另外安装也很简单快捷。
进一步的,测温元件1具有第二端面14,第二端面14设置转轴13,转轴13垂直于第二表面12延伸。当在第二表面12不方便设置转轴13时,也可以在测温元件1的第二端面14上设置转轴13,转轴13可以轴向平行第二端面14并贴附在第二端面14上,也可以垂直于设置在第二端面14上,并有弯折部连接,向垂直于第二表面12的方向延伸。
进一步的,卡槽24具有第三表面25,第三表面25为与第一表面21平行并距离最短的面。卡槽24在第一端面23上向下凹陷,在靠近第一表面21的位置形成第三表面25。
进一步的,第一表面21到转轴13边缘的距离,小于第一表面21到第三表面25的距离。
进一步的,第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的0.5倍-0.8倍。
进一步的,转轴13具有弹性。
具体实施时,通过在卡槽24上设置第三表面25,第三表面25为平行第一表面21且二者距离最近的面,第一表面21到转轴13边缘的距离,小于第一表面21到第三表面25的距离,且转轴13具有弹性,此时,测温元件1可制成规则的长方体形状或正方体形状,在安装测温元件1时,可先将转轴13以相对第一端面23倾斜的方式放入卡槽24中,完成测温元件1经第一端面23进入凹槽22中,此时,由于转轴13与第三表面25接触并产生应力,使得测温面11相对第一表面21呈一定的夹角,在安装被测物3后,被测物3与测温面11相抵接并对测温面11产生压力,由于转轴13具有弹性,在被测物与测温面11接触并对测温面11产生压力时,转轴13与第三表面25接触并产生应力,致使转轴13变形,由于转轴13具有弹性,在转轴13试图从变形后的形状或位置恢复到变形前的形状或位置的过程中,测温元件1的测温面11对被测物3施加一定的压力,使得二者能够更紧密持续的贴合,以使得测温元件1能够更准确的测量出被测物3的温 度,此种结构的设置,测温元件1的测温面11在被测物3位置不改变的情况下,难以脱离被测物3的表面,以及在使用过程中,不会出现测温元件1从凹槽22中掉落的情况。
为了验证第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的比值,对测温面11与第一表面21的夹角角度,以及测温元件1测量被测物3温度的温飘值的影响,发明人选用相同支架2,支架2上第一表面21到第三表面25的距离相同,选用不同测温元件1,不同测温元件1上第一表面21到转轴13边缘的距离不同,试验时,将不同的测温元件1的转轴13置于卡槽24内,测量测温元件1不能相对第一表面21移动时,测量测温面11与第一表面21的夹角角度,夹角角度1°至27°时为合格。以及测温元件1测量被测物3温度的温飘值,温飘值小于10K为合格值,温飘值大于10K,则被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度,温控系统无法及时对系统的温度进行调节,导致系统温升过高引发功能失效。
表3,第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的占比,对测温面11与第一表面21的夹角角度和温飘值的影响
Figure PCTCN2022117271-appb-000004
根据表3可知,第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的占比在0.9以上时,测温面11与第一表面21的夹角角度小于1°,此时测温面11与第一表面21的夹角角度不合格,而且测温元件1测量被测物3温度的温飘值也大于10K,为不合格。在第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的占比在0.5倍以下时,测温面11与第一表面21的夹角角度大于27°,此时测温结构不合格,第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的占比0.5倍至0.8倍时,测温面11与第一表面21的夹角角度在1°至27°之间,并且在占比大于0.8倍时,测温元件1测量被测物3温度的温飘值不合格,因此,发明人设定第一表面21到转轴13边缘的距离占第一表面21到第三表面25的距离的0.5倍-0.8倍。
在一种实施方式中,凹槽22具有底面26,底面26上设置卡爪27,卡爪27上具有卡勾28,卡勾28突出底面26。
进一步的,卡勾28具有限位面29,限位面29与底面26垂直,或者限位面29与底面26的夹角呈锐角。
进一步的,测温元件1具有第二端面14,限位面29与第二端面14接触,限制测温元件1脱离凹槽22。
具体实施时,通过底面26上设置卡爪27,以及在卡爪27上设置卡勾28,卡勾28设置有与底面26垂直或与底面26成锐角的限位面29,可将测温元件1的第二端面14接触限位面29,限制测温元件1脱离凹槽22,可将测温元件1更牢固的固定在凹槽22内,防止测温元件1从凹槽22内脱离,可将测温结构根据需要在更多的环境下使用。
进一步的,卡爪27具有弹性,在外力作用下使所述卡勾28不突出所述底面26。
具体实施时,通过对具有弹性的卡爪27施加外力,可在不移动被测物的情况下,轻松取出测温元件1,方便后续根据需要更换测温元件1,减少工序且节省时间。
具体实施时,测温元件1在垂直于测温面11的截面的形状不做特别限定,只要能将测温元件1经第一表面21进入凹槽22即可。
在一种实施方式中,测温元1件垂直于测温面11的截面形状为矩形、四边形和多边形。可以根据需要设计成不同的形状来匹配实际的使用环境。
在一种实施方式中,凹槽22的宽度,大于等于测温元件1平行于所述测温面11的最宽处。
具体实施时,凹槽22的宽度,大于等于测温元件1平行于所述测温面11的最宽处,只要能将测温元件1经第一表面21进入凹槽22即可。
在一种实施方式中,转轴13的截面形状为圆形、椭圆形、扁平形、三角形、矩形、四边形和多边形。转轴13的截面形状,可以根据测温元件1的不同形状,及转轴13的不同加工方式,设置成各种不同的截面形状,方便与凹槽22进行匹配连接。
在一种实施方式中,测温元件1为NTC温度传感器或PTC温度传感器。
具体实施时,测温元件1为NTC温度传感器或PTC温度传感器。采用这两种温度传感器的好处是体积小,能够测量其他温度计无法测量的空隙;使用方便,电阻值可在 0.1~100kΩ间任意选择;易加工成复杂的形状,可大批量生产,稳定性好、过载能力强,适用于转换接头这种要求体积小,性能稳定的产品中。
在一些实施方式中,测温元件1为双金属温度传感器。双金属温度传感器由两种不同膨胀系数的金属构成,当温度变化时,膨胀系数大的金属发生弯曲,具有较好的抗振动性,适合用于电动汽车。
更进一步的,外界的温度变化量为1℃时,双金属温度传感器的金属的形变量小于等于1mm。形变量越小的双金属温度传感器其测温效果越准确,因此发明人选用的双金属温度传感器的金属的形变量小于等于1mm。
金属的形变量越小,双金属温度传感器测得的温度值越接近真实值,为了验证金属的形变量与测温的值的关系,发明人行了相关测试,测试方法为被测物3设定为相同的温度,选择相同的支架,选用不同的金属形变量的双金属温度传感器,记录不同情况测得的温度值并与真实温度做差取绝对值,绝对值小于等于0.2℃为合格。结果如表4所示。
表4:不同金属形变量的双金属温度传感器对测温效果的影响
金属形变(mm) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1 1.05
差值(℃) 0.1 0.1 0.11 0.12 0.13 0.14 0.16 0.18 0.2 0.2 0.21
从表4可知,当双金属温度传感器的金属形变量在大于1mm后,测得的温度值与实际温度值相差过大,为不合格,所以发明人选用的双金属温度传感器在外界的温度变化量为1℃时,其金属的形变量小于等于1mm。
在一种实施方式中,测温元件1具有金属外壳,金属外壳的材质含有银或铜。常见金属的导热系数为,银:429;铜401;金:317;铝:237;铁:80;锡67;铅:34.8。
具体实施时,导热系数越高,传递给测温元件1的温度越接近真实值,从上述系数中可知,银的导热系数最高,铜的导热系数也与之接近,且两者都远高于其他金属的导热系数,因此发明人优选金属外壳的材质含有银或铜。考虑到银的价格要远高于铜,容易造成成本大幅提高,因此最优选的方案为含有铜。
实施例二
本发明提供了一种充电装置,充电装置包括被测物3和上述实施例一中的测温结构。
进一步的,充电装置在组装时,测温元件1与被测物3抵接,测温面11与被测物3贴合接触并施加压力到被测物3上,测温元件1测量被测物3的温度。
具体实施时,充电装置在组装使用时,被测物3与测温元件1通过转轴13与第三表面25之间产生应力,使得测温面11与第一表面21呈一定的夹角,此时,测温面11与被测物3之间产生压力,使得测温元件1牢固的固定在支架2中,并可将测温面11持续紧密的与被测物3贴合。
在一些实施例中,所述测温面11与所述被测物3的接触面积,占所述被测物3表面积的0.1%-95%。
进一步的,所述测温面11与所述被测物3的接触面积,占所述被测物3表面积的1%-85%。
为了验证测温面11与被测物3接触的面积对测温效果的影响,发明人选用相同尺寸的被测物3,不同测温面11与被测物3接触的面积来测量被测物3的温度,并以相同的压力使测温面11与被测物3接触,被测物3设定为相同的温度,然后使用测温元件1测量被测物3的温度并与实际温度做差取绝对值,绝对值大于2℃为不合格,结果记录在表5中。
表5:测温面与被测物接触的面积占比对测温效果的影响
Figure PCTCN2022117271-appb-000005
从表5可以看出,测温面11与被测物3接触的面积占接触面面积小于0.1%时,温差超过2℃,当测温面11与被测物3接触的面积占被测物3面积大于95%后,测温元件1测量的温度与实际温度相同,继续增大接触面积已经没有必要,因此发明人设定测温面11与被测物3接触的面积为0.1%-95%,从表5中可以看出当测温面11与被测物3接触的面积占接触面面积大于等于1%后,能获得更好的测温效果,而小于等于85%时也是非常理想的情况,因此发明人进一步优选测温面11与被测物3接触的面积占接触面面积为1%-85%。
进一步的,测温面11施加给被测物3的压力为5N-98N。
为了验证测温面11对被测物3的施加的压力大小对测温元件1检测结果及测温元件1损坏情况的影响,发明人选用了相同的被测物3和测温元件1,采用不同的测温面11对被测物3的压力,测试不同压力情况下,测温元件1检测到的温升值和测温元件1损坏的情况,在本实施例中,温升值大于12K为不合格,测温元件1损坏为不合格。
温升值的检测方式为,将被测物3施加同样的热量使其温度保持一致,然后读取与被测物3接触的测温元件1检测到的温度,并与初始温度做差获得温升值,记录到表6中。
测温元件1损坏情况的检测方式为,在被测物3对测温元件1施加不同压力的情况下,进行50次施压实验,观测测温元件1损坏情况。
表6,不同的测温面11施加给被测物3的压力对温升值的影响
Figure PCTCN2022117271-appb-000006
从上表6可以看出,当被测物3对测温面11的压力小于5N时,测温元件1检测到的温升值超过要求值,不符合标准要求。而被测物对测温面11的压力大于98N时,测温元件1损坏次数达到2次以上,也不符合标准要求,因此,发明人设定被测物3对测温元件1产生压力为5N-98N。
实施例三
本发明还提供了一种机动车辆,机动车辆包括上述测温结构或者上述的充电装置。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (30)

  1. 一种测温结构,其特征在于:包括支架和测温元件,所述支架具有第一表面,所述第一表面上设置容纳所述测温元件的区域,所述测温元件具有测温面,所述测温面至少部分突出于所述第一表面,所述测温面与所述第一表面呈可变化的夹角。
  2. 根据权利要求1所述的测温结构,其特征在于:所述测温面与所述第一表面的夹角为1°-27°。
  3. 根据权利要求1所述的测温结构,其特征在于:所述测温面突出于所述第一表面的高度为所述测温元件厚度的1%-30%。
  4. 根据权利要求1所述的测温结构,其特征在于:所述区域设置有凹槽,所述测温元件至少部分容纳在所述凹槽内。
  5. 根据权利要求4所述的测温结构,其特征在于:所述支架还具有第一端面,所述凹槽贯通至所述第一端面。
  6. 根据权利要求5所述的测温结构,其特征在于:所述第一端面上还设置卡槽,所述卡槽位于所述凹槽的两侧。
  7. 根据权利要求6所述的测温结构,其特征在于:所述测温元件的一端具有相对的两个转轴,所述转轴位于所述卡槽内。
  8. 根据权利要求7所述的测温结构,其特征在于:所述测温元件具有相对的两个第二表面,所述第二表面上分别垂直设置所述转轴。
  9. 根据权利要求8所述的测温结构,其特征在于:所述测温元件具有第二端面,所述第二端面设置所述转轴,所述转轴垂直所述第二表面延伸。
  10. 根据权利要求9所述的测温结构,其特征在于:所述卡槽具有第三表面,所述第三表面为与所述第一表面平行且距离最短的面。
  11. 根据权利要求10所述的测温结构,其特征在于:所述第一表面到所述转轴的边缘的距离小于所述第一表面到所述第三表面的距离。
  12. 根据权利要求11所述的测温结构,其特征在于:所述第一表面到所述转轴边缘的距离占所述第一表面到所述第三表面的距离的0.5倍-0.8倍。
  13. 根据权利要求7所述的测温结构,其特征在于:所述转轴具有弹性。
  14. 根据权利要求4所述的测温结构,其特征在于:所述凹槽具有底面,所述底面上设置卡爪,所述卡爪上具有卡勾,所述卡勾突出所述底面。
  15. 根据权利要求14所述的测温结构,其特征在于:所述卡勾具有限位面,所述限 位面与所述底面垂直,或者所述限位面与所述底面的夹角呈锐角。
  16. 根据权利要求15所述的测温结构,其特征在于:所述测温元件具有第二端面,所述限位面与所述第二端面接触,限制所述测温元件脱离所述凹槽。
  17. 根据权利要求14所述的测温结构,其特征在于:所述卡爪具有弹性,在外力作用下使所述卡勾不突出所述底面。
  18. 根据权利要求1所述的测温结构,其特征在于:所述测温元件在垂直于所述测温面的截面形状为矩形、四边形和多边形。
  19. 根据权利要求4所述的测温结构,其特征在于:所述凹槽的宽度,大于等于所述测温元件平行于所述测温面的最宽处。
  20. 根据权利要求7所述的测温结构,其特征在于:所述转轴的截面形状为圆形、椭圆形、扁平形、三角形、矩形、四边形和多边形。
  21. 根据权利要求1所述的测温结构,其特征在于:所述测温元件为NTC温度传感器或PTC温度传感器。
  22. 根据权利要求1所述的测温结构,其特征在于:所述测温元件为双金属温度传感器。
  23. 根据权利要求22所述的一种测温结构,其特征在于:外界的温度变化量为1℃时,所述双金属温度传感器的金属的形变量小于等于1mm。
  24. 根据权利要求1所述的测温结构,其特征在于:所述测温元件具有金属外壳,所述金属外壳的材质含有银或铜。
  25. 一种充电装置,其特征在于:所述充电装置包括被测物和权利要求1-24任一项所述的测温结构。
  26. 根据权利要求25所述的充电装置,其特征在于:所述充电装置在组装时,所述测温元件与被测物抵接,所述测温面与所述被测物贴合接触并施加压力到所述被测物上,所述测温元件测量所述被测物的温度。
  27. 根据权利要求26所述的充电装置,其特征在于:所述测温面与所述被测物的接触面积,占所述被测物表面积的0.1%-95%。
  28. 根据权利要求27所述的充电装置,其特征在于:所述测温面与所述被测物的接触面积,占所述被测物表面积的1%-85%。
  29. 根据权利要求25所述的充电装置,其特征在于:所述测温面施加到被测物的压力为5N-98N。
  30. 一种机动车辆,其特征在于:所述机动车辆包括权利要求1-24任一项所述测温结构或者包括权利要求25-29任一项所述充电装置。
PCT/CN2022/117271 2021-09-07 2022-09-06 测温结构、充电装置及机动车辆 WO2023036129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22866592.3A EP4400820A1 (en) 2021-09-07 2022-09-06 Temperature measuring structure, charging device, and motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111045635.X 2021-09-07
CN202111045635.XA CN113639889A (zh) 2021-09-07 2021-09-07 测温结构、充电装置及机动车辆

Publications (1)

Publication Number Publication Date
WO2023036129A1 true WO2023036129A1 (zh) 2023-03-16

Family

ID=78425242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117271 WO2023036129A1 (zh) 2021-09-07 2022-09-06 测温结构、充电装置及机动车辆

Country Status (3)

Country Link
EP (1) EP4400820A1 (zh)
CN (1) CN113639889A (zh)
WO (1) WO2023036129A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639889A (zh) * 2021-09-07 2021-11-12 长春捷翼汽车零部件有限公司 测温结构、充电装置及机动车辆
CN215893824U (zh) * 2021-09-07 2022-02-22 长春捷翼汽车零部件有限公司 测温结构、充电装置及机动车辆
CN216695324U (zh) * 2021-11-30 2022-06-07 长春捷翼汽车零部件有限公司 一种可移动式的测温结构及充电装置
CN219347993U (zh) * 2023-01-11 2023-07-14 长春捷翼汽车科技股份有限公司 一种可调节角度的温感组件及一种充电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765075A (en) * 1995-09-14 1998-06-09 Fuji Xerox Co., Ltd. Temperature sensor and method and apparatus for using the temperature sensor and fixing apparatus in combination with a temperature sensor
JP2014173927A (ja) * 2013-03-07 2014-09-22 Yazaki Corp 温度センサ及び温度センサの組付構造
CN105953937A (zh) * 2016-06-30 2016-09-21 深圳市金洲精工科技股份有限公司 用于测量流水线产品温度的温度测量装置和测量方法
CN209014341U (zh) * 2018-10-30 2019-06-21 合肥欣奕华智能机器有限公司 一种支架及温度检测装置
JP2019100952A (ja) * 2017-12-06 2019-06-24 矢崎総業株式会社 温度センサの収容構造、及び、電池パック
CN111537094A (zh) * 2020-04-22 2020-08-14 湖南华润电力鲤鱼江有限公司 一种端面热电阻
CN213812614U (zh) * 2020-12-01 2021-07-27 深圳市中控美芯科技有限公司 一种用于温度检测的报警装置
CN113639889A (zh) * 2021-09-07 2021-11-12 长春捷翼汽车零部件有限公司 测温结构、充电装置及机动车辆
CN216283996U (zh) * 2021-09-07 2022-04-12 长春捷翼汽车零部件有限公司 测温结构,充电装置及机动车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765075A (en) * 1995-09-14 1998-06-09 Fuji Xerox Co., Ltd. Temperature sensor and method and apparatus for using the temperature sensor and fixing apparatus in combination with a temperature sensor
JP2014173927A (ja) * 2013-03-07 2014-09-22 Yazaki Corp 温度センサ及び温度センサの組付構造
CN105953937A (zh) * 2016-06-30 2016-09-21 深圳市金洲精工科技股份有限公司 用于测量流水线产品温度的温度测量装置和测量方法
JP2019100952A (ja) * 2017-12-06 2019-06-24 矢崎総業株式会社 温度センサの収容構造、及び、電池パック
CN209014341U (zh) * 2018-10-30 2019-06-21 合肥欣奕华智能机器有限公司 一种支架及温度检测装置
CN111537094A (zh) * 2020-04-22 2020-08-14 湖南华润电力鲤鱼江有限公司 一种端面热电阻
CN213812614U (zh) * 2020-12-01 2021-07-27 深圳市中控美芯科技有限公司 一种用于温度检测的报警装置
CN113639889A (zh) * 2021-09-07 2021-11-12 长春捷翼汽车零部件有限公司 测温结构、充电装置及机动车辆
CN216283996U (zh) * 2021-09-07 2022-04-12 长春捷翼汽车零部件有限公司 测温结构,充电装置及机动车辆

Also Published As

Publication number Publication date
CN113639889A (zh) 2021-11-12
EP4400820A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2023036129A1 (zh) 测温结构、充电装置及机动车辆
WO2023036130A1 (zh) 测温结构、充电装置及机动车辆
CN216283996U (zh) 测温结构,充电装置及机动车辆
JPWO2020026394A1 (ja) 温度検知装置および組付体
WO2023098643A1 (zh) 一种可移动式的测温结构及充电装置
EP3637074B1 (en) Temperature measurement device and battery pack
WO2024140959A1 (zh) 一种端子测温结构及一种连接器
WO2023020377A1 (zh) 一种测温结构、充电装置和机动车辆
WO2023202710A1 (zh) 一种测温结构及充电装置
TW201032425A (en) Thermo-compression bonding device
US20070262782A1 (en) Method for compensation for a position change of a probe card
JP2000074752A (ja) 温度センサ
WO2023030483A1 (zh) 测温结构、充电装置及机动车辆
WO2023125140A1 (zh) 一种端子测温结构
TWI785743B (zh) 具浮動調整功能的測試裝置
CN212458902U (zh) 散热器检测装置和散热器实验设备
US11609125B2 (en) Systems and methods for thermal monitoring
JP2024531302A (ja) 測温構造、充電装置及び自動車
JP3324741B2 (ja) 端子の弾性接触片の変位量測定装置及び測定方法
CN219368981U (zh) 热传感器
CN217085734U (zh) Cpu发热传热模拟装置、散热测试装置
WO2023202549A1 (zh) 一种测温结构、一种端子固定座及一种充电装置
CN113405170B (zh) 散热装置安装检测方法、装置及空调器
JP2013247328A (ja) フィン嵌合状態検査装置
CN113504062B (zh) 测试相变散热器散热均温性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866592

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866592

Country of ref document: EP

Effective date: 20240408